title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Learning summary features of time series for likelihood free inference
There has been an increasing interest from the scientific community in using likelihood-free inference (LFI) to determine which parameters of a given simulator model could best describe a set of experimental data. Despite exciting recent results and a wide range of possible applications, an important bottleneck of LFI when applied to time series data is the necessity of defining a set of summary features, often hand-tailored based on domain knowledge. In this work, we present a data-driven strategy for automatically learning summary features from univariate time series and apply it to signals generated from autoregressive-moving-average (ARMA) models and the Van der Pol Oscillator. Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values such as autocorrelation coefficients even in the linear case.
stat
The more you ask, the less you get: the negative impact of collaborative overload on performance
This paper is about the possible negative impact of excessive collaboration on the performance of top employees. With the rise of participatory culture and developments in communications technology, management practices require greater conceptual awareness about possible outcomes of increased organizational interconnectivity. While there exists a sound theoretical basis for possible burdens brought by collaborative overload, the literature never really manage to measure and empirically test this phenomenon. We address this gap by developing a methodological framework for the identification of organizational actors at risk of operational capacity overload. Drawing on social network analysis as the widely applied approach for the estimation of employees' involvement in the information exchange networks, this paper describes potential personal and organizational causes leading to the emergence of collaborative overload. Relying on primary data gathered through a survey conducted among employees in a large insurance company, we present a testable model for overload detection. A second merit of the paper consists in finding a novel identification strategy for empirical works on cross-sectional network data, which often face the issue of endogeneity. This research suggests that active collaborative activity does not cause a decrease throughout every aspect of performance. We found that expertise sharing depends on a few key players who take core knowledge assets upon themselves and thus run higher risks of exposure to overload.
stat
Classification with Rejection Based on Cost-sensitive Classification
The goal of classification with rejection is to avoid risky misclassification in error-critical applications such as medical diagnosis and product inspection. In this paper, based on the relationship between classification with rejection and cost-sensitive classification, we propose a novel method of classification with rejection by learning an ensemble of cost-sensitive classifiers, which satisfies all the following properties for the first time: (i) it can avoid estimating class-posterior probabilities, resulting in improved classification accuracy. (ii) it allows a flexible choice of losses including non-convex ones, (iii) it does not require complicated modifications when using different losses, (iv) it is applicable to both binary and multiclass cases, and (v) it is theoretically justifiable for any classification-calibrated loss. Experimental results demonstrate the usefulness of our proposed approach in clean-labeled, noisy-labeled, and positive-unlabeled classification.
stat
Increasing the efficiency of randomized trial estimates via linear adjustment for a prognostic score
Estimating causal effects from randomized experiments is central to clinical research. Reducing the statistical uncertainty in these analyses is an important objective for statisticians. Registries, prior trials, and health records constitute a growing compendium of historical data on patients under standard-of-care conditions that may be exploitable to this end. However, most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control. Here, we propose a use of historical data that exploits linear covariate adjustment to improve the efficiency of trial analyses without incurring bias. Specifically, we train a prognostic model on the historical data, then estimate the treatment effect using a linear regression while adjusting for the trial subjects' predicted outcomes (their prognostic scores). We prove that, under certain conditions, this prognostic covariate adjustment procedure attains the minimum variance possible among a large class of estimators. When those conditions are not met, prognostic covariate adjustment is still more efficient than raw covariate adjustment and the gain in efficiency is proportional to a measure of the predictive accuracy of the prognostic model. We demonstrate the approach using simulations and a reanalysis of an Alzheimer's Disease clinical trial and observe meaningful reductions in mean-squared error and the estimated variance. Lastly, we provide a simplified formula for asymptotic variance that enables power and sample size calculations that account for the gains from the prognostic model for clinical trial design. Sample size reductions between 10% and 30% are attainable when using prognostic models that explain a clinically realistic percentage of the outcome variance.
stat
Posterior Contraction Rate of Sparse Latent Feature Models with Application to Proteomics
The Indian buffet process (IBP) and phylogenetic Indian buffet process (pIBP) can be used as prior models to infer latent features in a data set. The theoretical properties of these models are under-explored, however, especially in high dimensional settings. In this paper, we show that under mild sparsity condition, the posterior distribution of the latent feature matrix, generated via IBP or pIBP priors, converges to the true latent feature matrix asymptotically. We derive the posterior convergence rate, referred to as the contraction rate. We show that the convergence holds even when the dimensionality of the latent feature matrix increases with the sample size, therefore making the posterior inference valid in high dimensional setting. We demonstrate the theoretical results using computer simulation, in which the parallel-tempering Markov chain Monte Carlo method is applied to overcome computational hurdles. The practical utility of the derived properties is demonstrated by inferring the latent features in a reverse phase protein arrays (RPPA) dataset under the IBP prior model. Software and dataset reported in the manuscript are provided at http://www.compgenome.org/IBP.
stat
A Projection Based Conditional Dependence Measure with Applications to High-dimensional Undirected Graphical Models
Measuring conditional dependence is an important topic in statistics with broad applications including graphical models. Under a factor model setting, a new conditional dependence measure based on projection is proposed. The corresponding conditional independence test is developed with the asymptotic null distribution unveiled where the number of factors could be high-dimensional. It is also shown that the new test has control over the asymptotic significance level and can be calculated efficiently. A generic method for building dependency graphs without Gaussian assumption using the new test is elaborated. Numerical results and real data analysis show the superiority of the new method.
stat
Bayesian Variable Selection For Survival Data Using Inverse Moment Priors
Efficient variable selection in high-dimensional cancer genomic studies is critical for discovering genes associated with specific cancer types and for predicting response to treatment. Censored survival data is prevalent in such studies. In this article we introduce a Bayesian variable selection procedure that uses a mixture prior composed of a point mass at zero and an inverse moment prior in conjunction with the partial likelihood defined by the Cox proportional hazard model. The procedure is implemented in the R package BVSNLP, which supports parallel computing and uses a stochastic search method to explore the model space. Bayesian model averaging is used for prediction. The proposed algorithm provides better performance than other variable selection procedures in simulation studies, and appears to provide more consistent variable selection when applied to actual genomic datasets.
stat
Point process models for sequence detection in high-dimensional neural spike trains
Sparse sequences of neural spikes are posited to underlie aspects of working memory, motor production, and learning. Discovering these sequences in an unsupervised manner is a longstanding problem in statistical neuroscience. Promising recent work utilized a convolutive nonnegative matrix factorization model to tackle this challenge. However, this model requires spike times to be discretized, utilizes a sub-optimal least-squares criterion, and does not provide uncertainty estimates for model predictions or estimated parameters. We address each of these shortcomings by developing a point process model that characterizes fine-scale sequences at the level of individual spikes and represents sequence occurrences as a small number of marked events in continuous time. This ultra-sparse representation of sequence events opens new possibilities for spike train modeling. For example, we introduce learnable time warping parameters to model sequences of varying duration, which have been experimentally observed in neural circuits. We demonstrate these advantages on experimental recordings from songbird higher vocal center and rodent hippocampus.
stat
Memory- and Communication-Aware Model Compression for Distributed Deep Learning Inference on IoT
Model compression has emerged as an important area of research for deploying deep learning models on Internet-of-Things (IoT). However, for extremely memory-constrained scenarios, even the compressed models cannot fit within the memory of a single device and, as a result, must be distributed across multiple devices. This leads to a distributed inference paradigm in which memory and communication costs represent a major bottleneck. Yet, existing model compression techniques are not communication-aware. Therefore, we propose Network of Neural Networks (NoNN), a new distributed IoT learning paradigm that compresses a large pretrained 'teacher' deep network into several disjoint and highly-compressed 'student' modules, without loss of accuracy. Moreover, we propose a network science-based knowledge partitioning algorithm for the teacher model, and then train individual students on the resulting disjoint partitions. Extensive experimentation on five image classification datasets, for user-defined memory/performance budgets, show that NoNN achieves higher accuracy than several baselines and similar accuracy as the teacher model, while using minimal communication among students. Finally, as a case study, we deploy the proposed model for CIFAR-10 dataset on edge devices and demonstrate significant improvements in memory footprint (up to 24x), performance (up to 12x), and energy per node (up to 14x) compared to the large teacher model. We further show that for distributed inference on multiple edge devices, our proposed NoNN model results in up to 33x reduction in total latency w.r.t. a state-of-the-art model compression baseline.
stat
Distance-Based Independence Screening for Canonical Analysis
This paper introduces a new method named Distance-based Independence Screening for Canonical Analysis (DISCA) to reduce dimensions of two random vectors with arbitrary dimensions. The objective of our method is to identify the low dimensional linear projections of two random vectors, such that any dimension reduction based on linear projection with lower dimensions will surely affect some dependent structure -- the removed components are not independent. The essence of DISCA is to use the distance correlation to eliminate the "redundant" dimensions until infeasible. Unlike the existing canonical analysis methods, DISCA does not require the dimensions of the reduced subspaces of the two random vectors to be equal, nor does it require certain distributional assumption on the random vectors. We show that under mild conditions, our approach does undercover the lowest possible linear dependency structures between two random vectors, and our conditions are weaker than some sufficient linear subspace-based methods. Numerically, DISCA is to solve a non-convex optimization problem. We formulate it as a difference-of-convex (DC) optimization problem, and then further adopt the alternating direction method of multipliers (ADMM) on the convex step of the DC algorithms to parallelize/accelerate the computation. Some sufficient linear subspace-based methods use potentially numerically-intensive bootstrap method to determine the dimensions of the reduced subspaces in advance; our method avoids this complexity. In simulations, we present cases that DISCA can solve effectively, while other methods cannot. In both the simulation studies and real data cases, when the other state-of-the-art dimension reduction methods are applicable, we observe that DISCA performs either comparably or better than most of them. Codes and an R package can be found in GitHub https://github.com/ChuanpingYu/DISCA.
stat
Functional additive models for optimizing individualized treatment rules
A novel functional additive model is proposed which is uniquely modified and constrained to model nonlinear interactions between a treatment indicator and a potentially large number of functional and/or scalar pretreatment covariates. The primary motivation for this approach is to optimize individualized treatment rules based on data from a randomized clinical trial. We generalize functional additive regression models by incorporating treatment-specific components into additive effect components. A structural constraint is imposed on the treatment-specific components in order to provide a class of additive models with main effects and interaction effects that are orthogonal to each other. If primary interest is in the interaction between treatment and the covariates, as is generally the case when optimizing individualized treatment rules, we can thereby circumvent the need to estimate the main effects of the covariates, obviating the need to specify their form and thus avoiding the issue of model misspecification. The methods are illustrated with data from a depression clinical trial with electroencephalogram functional data as patients' pretreatment covariates.
stat
Kernel density decomposition with an application to the social cost of carbon
A kernel density is an aggregate of kernel functions, which are itself densities and could be kernel densities. This is used to decompose a kernel into its constituent parts. Pearson's test for equality of proportions is applied to quantiles to test whether the component distributions differ from one another. The proposed methods are illustrated with a meta-analysis of the social cost of carbon. Different discount rates lead to significantly different Pigou taxes, but not different growth rates. Estimates have not varied over time. Different authors have contributed different estimates, but these differences are insignificant. Kernel decomposition can be applied in many other fields with discrete explanatory variables.
stat
Estimation and Inference on Treatment Effects Under Treatment-Based Sampling
Causal inference in a program evaluation setting faces the problem of external validity when the treatment effect in the target population is different from the treatment effect identified from the population of which the sample is representative. This paper focuses on a situation where such discrepancy arises by a stratified sampling design based on the individual treatment status and other characteristics. In such settings, the design probability is known from the sampling design but the target population depends on the underlying population share vector which is often unknown, and except for special cases, the treatment effect parameters are not identified. First, we propose a method of constructing confidence sets that are valid for a given range of population shares. Second, when a benchmark population share vector and a corresponding estimator of a treatment effect parameter are given, we propose a method to discover the scope of external validity with familywise error rate control. Third, we propose an optimal sampling design which minimizes the semiparametric efficiency bound given a population share associated with a target population. We provide Monte Carlo simulation results and an empirical application to demonstrate the usefulness of our proposals.
stat
Sequential Computer Experimental Design for Estimating an Extreme Probability or Quantile
A computer code can simulate a system's propagation of variation from random inputs to output measures of quality. Our aim here is to estimate a critical output tail probability or quantile without a large Monte Carlo experiment. Instead, we build a statistical surrogate for the input-output relationship with a modest number of evaluations and then sequentially add further runs, guided by a criterion to improve the estimate. We compare two criteria in the literature. Moreover, we investigate two practical questions: how to design the initial code runs and how to model the input distribution. Hence, we close the gap between the theory of sequential design and its application.
stat
Estimation of Structural Causal Model via Sparsely Mixing Independent Component Analysis
We consider the problem of inferring the causal structure from observational data, especially when the structure is sparse. This type of problem is usually formulated as an inference of a directed acyclic graph (DAG) model. The linear non-Gaussian acyclic model (LiNGAM) is one of the most successful DAG models, and various estimation methods have been developed. However, existing methods are not efficient for some reasons: (i) the sparse structure is not always incorporated in causal order estimation, and (ii) the whole information of the data is not used in parameter estimation. To address {these issues}, we propose a new estimation method for a linear DAG model with non-Gaussian noises. The proposed method is based on the log-likelihood of independent component analysis (ICA) with two penalty terms related to the sparsity and the consistency condition. The proposed method enables us to estimate the causal order and the parameters simultaneously. For stable and efficient optimization, we propose some devices, such as a modified natural gradient. Numerical experiments show that the proposed method outperforms existing methods, including LiNGAM and NOTEARS.
stat
Wisdom of crowds: much ado about nothing
The puzzling idea that the combination of independent estimates of the magnitude of a quantity results in a very accurate prediction, which is superior to any or, at least, to most of the individual estimates is known as the wisdom of crowds. Here we use the Federal Reserve Bank of Philadelphia's Survey of Professional Forecasters database to confront the statistical and psychophysical explanations of this phenomenon. Overall we find that the data do not support any of the proposed explanations of the wisdom of crowds. In particular, we find a positive correlation between the variance (or diversity) of the estimates and the crowd error in disagreement with some interpretations of the diversity prediction theorem. In addition, contra the predictions of the psychophysical augmented quincunx model, we find that the skew of the estimates offers no information about the crowd error. More importantly, we find that the crowd beats all individuals in less than 2% of the forecasts and beats most individuals in less than 70% of the forecasts, which means that there is a sporting chance that an individual selected at random will perform better than the crowd. These results contrast starkly with the performance of non-natural crowds composed of unbiased forecasters which beat most individuals in practically all forecasts. The moderate statistical advantage of a real-world crowd over its members does not justify the ado about its wisdom, which is most likely a product of the selective attention fallacy.
stat
A method for deriving information from running R code
It is often useful to tap information from a running R script. Obvious use cases include monitoring the consumption of resources (time, memory) and logging. Perhaps less obvious cases include tracking changes in R objects orcollecting output of unit tests. In this paper we demonstrate an approach that abstracts collection and processing of such secondary information from the running R script. Our approach is based on a combination of three elements. The first element is to build a customized way to evaluate code. The second is labeled \emph{local masking} and it involves temporarily masking auser-facing function so an alternative version of it is called. The third element we label \emph{local side effect}. This refers to the fact that the masking function exports information to the secondary information flow without altering a global state. The result is a method for building systems in pure R that lets users create and control secondary flows of information with minimal impact on their workflow, and no global side effects.
stat
A flat persistence diagram for improved visualization of persistent homology
Visualization in the emerging field of topological data analysis has progressed from persistence barcodes and persistence diagrams to display of two-parameter persistent homology. Although persistence barcodes and diagrams have permitted insight into the geometry underlying complex datasets, visualization of even single-parameter persistent homology has significant room for improvement. Here, we propose a modification to the conventional persistence diagram - the flat persistence diagram - that more efficiently displays information relevant to persistent homology and simultaneously corrects for visual bias present in the former. Flat persistence diagrams display equivalent information as their predecessor, while providing researchers with an intuitive horizontal reference axis in contrast to the usual diagonal reference line. Reducing visual bias through the use of appropriate graphical displays not only provides more accurate, but also deeper insights into the topology that underlies complex datasets. Introducing flat persistence diagrams into widespread use would bring researchers one step closer to practical application of topological data analysis.
stat
Bayesian workflow for disease transmission modeling in Stan
This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the SARS-CoV-2 pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple Susceptible-Infected-Recovered (SIR) model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale-up models based on ordinary differential equations.
stat
Classification with the matrix-variate-$t$ distribution
Matrix-variate distributions can intuitively model the dependence structure of matrix-valued observations that arise in applications with multivariate time series, spatio-temporal or repeated measures. This paper develops an Expectation-Maximization algorithm for discriminant analysis and classification with matrix-variate $t$-distributions. The methodology shows promise on simulated datasets or when applied to the forensic matching of fractured surfaces or the classification of functional Magnetic Resonance, satellite or hand gestures images.
stat
The diffusion-based extension of the Mat\'ern field to space-time
The Mat\' ern field is the most well known family of covariance functions used for Gaussian processes in spatial models. We build upon the original research of Whittle (1953, 1964) and develop the diffusion-based extension of the Mat\' ern field to space-time (DEMF). We argue that this diffusion-based extension is the natural extension of these processes, due to the strong physical interpretation. The corresponding non-separable spatio-temporal Gaussian process is a spatio-temporal analogue of the Mat\' ern field, with range parameters in space and time, smoothness parameters in space and time, and a separability parameter. We provide a sparse representation based on finite element methods that is well suited for statistical inference.
stat
A Bayesian Nonparametric Approach for Evaluating the Causal Effect of Treatment in Randomized Trials with Semi-Competing Risks
We develop a Bayesian nonparametric (BNP) approach to evaluate the causal effect of treatment in a randomized trial where a nonterminal event may be censored by a terminal event, but not vice versa (i.e., semi-competing risks). Based on the idea of principal stratification, we define a novel estimand for the causal effect of treatment on the nonterminal event. We introduce identification assumptions, indexed by a sensitivity parameter, and show how to draw inference using our BNP approach. We conduct simulation studies and illustrate our methodology using data from a brain cancer trial.
stat
Measurement error models: from nonparametric methods to deep neural networks
The success of deep learning has inspired recent interests in applying neural networks in statistical inference. In this paper, we investigate the use of deep neural networks for nonparametric regression with measurement errors. We propose an efficient neural network design for estimating measurement error models, in which we use a fully connected feed-forward neural network (FNN) to approximate the regression function $f(x)$, a normalizing flow to approximate the prior distribution of $X$, and an inference network to approximate the posterior distribution of $X$. Our method utilizes recent advances in variational inference for deep neural networks, such as the importance weight autoencoder, doubly reparametrized gradient estimator, and non-linear independent components estimation. We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods and observe that the neural network approach is more flexible in accommodating different classes of regression functions and performs superior or comparable to the best available method in nearly all settings.
stat
Impacts of Heat Decarbonisation on System Adequacy considering Increased Meteorological Sensitivity
This paper explores the impacts of decarbonisation of heat on demand and subsequently on the generation capacity required to secure against system adequacy standards. Gas demand is explored as a proxy variable for modelling the electrification of heating demand in existing housing stock, with a focus on impacts on timescales of capacity markets (up to four years ahead). The work considers the systemic changes that electrification of heating could introduce, including biases that could be introduced if legacy modelling approaches continue to prevail. Covariates from gas and electrical regression models are combined to form a novel, time-collapsed system model, with demand-weather sensitivities determined using lasso-regularized linear regression. It is shown, using a GB case study with one million domestic heat pump installations per year, that the sensitivity of electrical system demand to temperature (and subsequently sensitivities to cold/warm winter seasons) could increase by 50% following four years of heat demand electrification. A central estimate of 1.75 kW additional peak demand per heat pump is estimated, with variability across three published heat demand profiles leading to a range of more than 14 GW in the most extreme cases. It is shown that the legacy approach of scaling historic demand, as compared to the explicit modelling of heat, could lead to over-procurement of 0.79 GW due to bias in estimates of additional capacity to secure. Failure to address this issue could lead to {\pounds}100m overspend on capacity over ten years.
stat
Sharp Analysis of a Simple Model for Random Forests
Random forests have become an important tool for improving accuracy in regression and classification problems since their inception by Leo Breiman in 2001. In this paper, we revisit a historically important random forest model originally proposed by Breiman in 2004 and later studied by G\'erard Biau in 2012, where a feature is selected at random and the splits occurs at the midpoint of the node along the chosen feature. If the regression function is Lipschitz and depends only on a small subset of $ S $ out of $ d $ features, we show that, given access to $ n $ observations and properly tuned split probabilities, the mean-squared prediction error is $ O((n(\log n)^{(S-1)/2})^{-\frac{1}{S\log2+1}}) $. This positively answers an outstanding question of Biau about whether the rate of convergence for this random forest model could be improved. Furthermore, by a refined analysis of the approximation and estimation errors for linear models, we show that this rate cannot be improved in general. Finally, we generalize our analysis and improve extant prediction error bounds for another random forest model in which each tree is constructed from subsampled data and the splits are performed at the empirical median along a chosen feature.
stat
Linear Mixed Models for Comparing Dynamic Treatment Regimens on a Longitudinal Outcome in Sequentially Randomized Trials
A dynamic treatment regimen (DTR) is a pre-specified sequence of decision rules which maps baseline or time-varying measurements on an individual to a recommended intervention or set of interventions. Sequential multiple assignment randomized trials (SMARTs) represent an important data collection tool for informing the construction of effective DTRs. A common primary aim in a SMART is the marginal mean comparison between two or more of the DTRs embedded in the trial. This manuscript develops a mixed effects modeling and estimation approach for these primary aim comparisons based on a continuous, longitudinal outcome. The method is illustrated using data from a SMART in autism research.
stat
Towards Automatic Concept-based Explanations
Interpretability has become an important topic of research as more machine learning (ML) models are deployed and widely used to make important decisions. Most of the current explanation methods provide explanations through feature importance scores, which identify features that are important for each individual input. However, how to systematically summarize and interpret such per sample feature importance scores itself is challenging. In this work, we propose principles and desiderata for \emph{concept} based explanation, which goes beyond per-sample features to identify higher-level human-understandable concepts that apply across the entire dataset. We develop a new algorithm, ACE, to automatically extract visual concepts. Our systematic experiments demonstrate that \alg discovers concepts that are human-meaningful, coherent and important for the neural network's predictions.
stat
Optimizing the tie-breaker regression discontinuity design
Motivated by customer loyalty plans and scholarship programs, we study tie-breaker designs which are hybrids of randomized controlled trials (RCTs) and regression discontinuity designs (RDDs). We quantify the statistical efficiency of a tie-breaker design in which a proportion $\Delta$ of observed subjects are in the RCT. In a two line regression, statistical efficiency increases monotonically with $\Delta$, so efficiency is maximized by an RCT. We point to additional advantages of tie-breakers versus RDD: for a nonparametric regression the boundary bias is much less severe and for quadratic regression, the variance is greatly reduced. For a two line model we can quantify the short term value of the treatment allocation and this comparison favors smaller $\Delta$ with the RDD being best. We solve for the optimal tradeoff between these exploration and exploitation goals. The usual tie-breaker design applies an RCT on the middle $\Delta$ subjects as ranked by the assignment variable. We quantify the efficiency of other designs such as experimenting only in the second decile from the top. We also show that in some general parametric models a Monte Carlo evaluation can be replaced by matrix algebra.
stat
Conceptualising Natural and Quasi Experiments in Public Health
Background: Natural or quasi experiments are appealing for public health research because they enable the evaluation of events or interventions that are difficult or impossible to manipulate experimentally, such as many policy and health system reforms. However, there remains ambiguity in the literature about their definition and how they differ from randomised controlled experiments and from other observational designs. Methods: We conceptualise natural experiments in in the context of public health evaluations, align the study design to the Target Trial Framework, and provide recommendation for improvement of their design and reporting. Results: Natural experiment studies combine features of experiments and non-experiments. They differ from RCTs in that exposure allocation is not controlled by researchers while they differ from other observational designs in that they evaluate the impact of event or exposure changes. As a result they are, in theory, less susceptible to bias than other observational study designs. Importantly, the strength of causal inferences relies on the plausibility that the exposure allocation can be considered "as-if randomised". The target trial framework provides a systematic basis for assessing the plausibility of such claims, and enables a structured method for assessing other design elements. Conclusions: Natural experiment studies should be considered a distinct study design rather than a set of tools for analyses of non-randomised interventions. Alignment of natural experiments to the Target Trial framework will clarify the strength of evidence underpinning claims about the effectiveness of public health interventions.
stat
Estimating the association between blood pressure variability and cardiovascular disease: An application using the ARIC Study
The association between visit-to-visit systolic blood pressure variability and cardiovascular events has recently received a lot of attention in the cardiovascular literature. But blood pressure variability is usually estimated on a person-by-person basis, and is therefore subject to considerable measurement error. We demonstrate that hazard ratios estimated using this approach are subject to bias due to regression dilution and we propose alternative methods to reduce this bias: a two-stage method and a joint model. For the two-stage method, in stage one repeated measurements are modelled using a mixed effects model with a random component on the residual standard deviation. The mixed effects model is used to estimate the blood pressure standard deviation for each individual, which in stage two is used as a covariate in a time-to-event model. For the joint model, the mixed effects sub-model and time-to-event sub-model are fitted simultaneously using shared random effects. We illustrate the methods using data from the Atherosclerosis Risk in Communities (ARIC) study.
stat
Bayesian state space modelling for COVID-19: with Tennessee and New York case studies
We develop a Bayesian inferential framework for the spread of COVID-19 using mechanistic epidemiological models, such as SIR or SEIR, and allow the effective contact rate to vary in time. A novel aspect of our approach is the incorporation of a time-varying reporting rate accounting for the initial phase of the pandemic before testing was widely available. By varying both the reporting rate and the effective contact rate in time, our models can capture changes in the data induced by external influences, such as public health intervention measures, for example. We view COVID-19 incidence data as the observed measurements of a hidden Markov model, with latent space represented by the underlying epidemiological model, and employ a particle Markov chain Monte Carlo (PMCMC) sampling scheme for Bayesian inference. Parameter inference is performed via PMCMC on incidence data collated by the New York Times from the states of New York and Tennessee from March 1, 2020 through August 30, 2020. Lastly, we perform Bayesian model selection on the different formulations of the epidemiological models, make predictions from our fitted models, and validate our predictions against the true incidence data for the week between August 31, 2020 and September 7, 2020.
stat
Fast Mixing of Multi-Scale Langevin Dynamics under the Manifold Hypothesis
Recently, the task of image generation has attracted much attention. In particular, the recent empirical successes of the Markov Chain Monte Carlo (MCMC) technique of Langevin Dynamics have prompted a number of theoretical advances; despite this, several outstanding problems remain. First, the Langevin Dynamics is run in very high dimension on a nonconvex landscape; in the worst case, due to the NP-hardness of nonconvex optimization, it is thought that Langevin Dynamics mixes only in time exponential in the dimension. In this work, we demonstrate how the manifold hypothesis allows for the considerable reduction of mixing time, from exponential in the ambient dimension to depending only on the (much smaller) intrinsic dimension of the data. Second, the high dimension of the sampling space significantly hurts the performance of Langevin Dynamics; we leverage a multi-scale approach to help ameliorate this issue and observe that this multi-resolution algorithm allows for a trade-off between image quality and computational expense in generation.
stat
Parametric mode regression for bounded responses
We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supplementary materials that contain technical details, and additional simulation and data analysis results are available online.
stat
An Exact Solution Path Algorithm for SLOPE and Quasi-Spherical OSCAR
Sorted $L_1$ penalization estimator (SLOPE) is a regularization technique for sorted absolute coefficients in high-dimensional regression. By arbitrarily setting its regularization weights $\lambda$ under the monotonicity constraint, SLOPE can have various feature selection and clustering properties. On weight tuning, the selected features and their clusters are very sensitive to the tuning parameters. Moreover, the exhaustive tracking of their changes is difficult using grid search methods. This study presents a solution path algorithm that provides the complete and exact path of solutions for SLOPE in fine-tuning regularization weights. A simple optimality condition for SLOPE is derived and used to specify the next splitting point of the solution path. This study also proposes a new design of a regularization sequence $\lambda$ for feature clustering, which is called the quasi-spherical and octagonal shrinkage and clustering algorithm for regression (QS-OSCAR). QS-OSCAR is designed with a contour surface of the regularization terms most similar to a sphere. Among several regularization sequence designs, sparsity and clustering performance are compared through simulation studies. The numerical observations show that QS-OSCAR performs feature clustering more efficiently than other designs.
stat
Sample complexity and effective dimension for regression on manifolds
We consider the theory of regression on a manifold using reproducing kernel Hilbert space methods. Manifold models arise in a wide variety of modern machine learning problems, and our goal is to help understand the effectiveness of various implicit and explicit dimensionality-reduction methods that exploit manifold structure. Our first key contribution is to establish a novel nonasymptotic version of the Weyl law from differential geometry. From this we are able to show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension rather than any ambient data dimension. Finally, we show that given (potentially noisy) function values taken uniformly at random over a manifold, a kernel regression estimator (derived from the spectral decomposition of the manifold) yields minimax-optimal error bounds that are controlled by the effective dimension.
stat
From controlled to undisciplined data: estimating causal effects in the era of data science using a potential outcome framework
This paper discusses the fundamental principles of causal inference - the area of statistics that estimates the effect of specific occurrences, treatments, interventions, and exposures on a given outcome from experimental and observational data. We explain the key assumptions required to identify causal effects, and highlight the challenges associated with the use of observational data. We emphasize that experimental thinking is crucial in causal inference. The quality of the data (not necessarily the quantity), the study design, the degree to which the assumptions are met, and the rigor of the statistical analysis allow us to credibly infer causal effects. Although we advocate leveraging the use of big data and the application of machine learning (ML) algorithms for estimating causal effects, they are not a substitute of thoughtful study design. Concepts are illustrated via examples.
stat
Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
Stochastic variance-reduced gradient (SVRG) is a classical optimization method. Although it is theoretically proved to have better convergence performance than stochastic gradient descent (SGD), the generalization performance of SVRG remains open. In this paper we investigate the effects of some training techniques, mini-batching and learning rate decay, on the generalization performance of SVRG, and verify the generalization performance of Batch-SVRG (B-SVRG). In terms of the relationship between optimization and generalization, we believe that the average norm of gradients on each training sample as well as the norm of average gradient indicate how flat the landscape is and how well the model generalizes. Based on empirical observations of such metrics, we perform a sign switch on B-SVRG and derive a practical algorithm, BatchPlus-SVRG (BP-SVRG), which is numerically shown to enjoy better generalization performance than B-SVRG, even SGD in some scenarios of deep neural networks.
stat
GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models
We extend and improve the work of Model Agnostic Anchors for explanations on image classification through the use of generative adversarial networks (GANs). Using GANs, we generate samples from a more realistic perturbation distribution, by optimizing under a lower dimensional latent space. This increases the trust in an explanation, as results now come from images that are more likely to be found in the original training set of a classifier, rather than an overlay of random images. A large drawback to our method is the computational complexity of sampling through optimization; to address this, we implement more efficient algorithms, including a diverse encoder. Lastly, we share results from the MNIST and CelebA datasets, and note that our explanations can lead to smaller and higher precision anchors.
stat
The COVID-19 pandemic's impact on U.S. electricity demand and supply: an early view from the data
After the onset of the recent COVID-19 pandemic, a number of studies reported on possible changes in electricity consumption trends. The overall theme of these reports was that ``electricity use has decreased during the pandemic, but the power grid is still reliable''---mostly due to reduced economic activity. In this paper we analyze electricity data upto end of May 2020, examining both electricity demand and variables that can indicate stress on the power grid, such as peak demand and demand ramp-rate. We limit this study to three states in the USA: New York, California, and Florida. The results indicate that the effect of the pandemic on electricity demand is not a simple reduction from comparable time frames, and there are noticeable differences among regions. The variables that can indicate stress on the grid also conveyed mixed messages: some indicate an increase in stress, some indicate a decrease, and some do not indicate any clear difference. A positive message is that some of the changes that were observed around the time stay-at-home orders were issued appeared to revert back by May 2020. A key challenge in ascribing any observed change to the pandemic is correcting for weather. We provide a weather-correction method, apply it to a small city-wide area, and discuss the implications of the estimated changes in demand. The weather correction exercise underscored that weather-correction is as challenging as it is important.
stat
Estimands and Inference in Cluster-Randomized Vaccine Trials
Cluster-randomized trials are often conducted to assess vaccine effects. Defining estimands of interest before conducting a trial is integral to the alignment between a study's objectives and the data to be collected and analyzed. This paper considers estimands and estimators for overall, indirect, and total vaccine effects in trials where clusters of individuals are randomized to vaccine or control. The scenario is considered where individuals self-select whether to participate in the trial and the outcome of interest is measured on all individuals in each cluster. Unlike the overall, indirect, and total effects, the direct effect of vaccination is shown in general not to be estimable without further assumptions, such as no unmeasured confounding. An illustrative example motivated by a cluster-randomized typhoid vaccine trial is provided.
stat
A Framework for Interdomain and Multioutput Gaussian Processes
One obstacle to the use of Gaussian processes (GPs) in large-scale problems, and as a component in deep learning system, is the need for bespoke derivations and implementations for small variations in the model or inference. In order to improve the utility of GPs we need a modular system that allows rapid implementation and testing, as seen in the neural network community. We present a mathematical and software framework for scalable approximate inference in GPs, which combines interdomain approximations and multiple outputs. Our framework, implemented in GPflow, provides a unified interface for many existing multioutput models, as well as more recent convolutional structures. This simplifies the creation of deep models with GPs, and we hope that this work will encourage more interest in this approach.
stat
Best Subset Selection in Reduced Rank Regression
We design a new algorithm on the best subset selection model in reduced rank regression.
stat
Generalized Liquid Association Analysis for Multimodal Data Integration
Multimodal data are now prevailing in scientific research. A central question in multimodal integrative analysis is to understand how two data modalities associate and interact with each other given another modality or demographic variables. The problem can be formulated as studying the associations among three sets of random variables, a question that has received relatively less attention in the literature. In this article, we propose a novel generalized liquid association analysis method, which offers a new and unique angle to this important class of problems of studying three-way associations. We extend the notion of liquid association of \citet{li2002LA} from the univariate setting to the sparse, multivariate, and high-dimensional setting. We establish a population dimension reduction model, transform the problem to sparse Tucker decomposition of a three-way tensor, and develop a higher-order orthogonal iteration algorithm for parameter estimation. We derive the non-asymptotic error bound and asymptotic consistency of the proposed estimator, while allowing the variable dimensions to be larger than and diverge with the sample size. We demonstrate the efficacy of the method through both simulations and a multimodal neuroimaging application for Alzheimer's disease research.
stat
Generalized Linear Models for Longitudinal Data with Biased Sampling Designs: A Sequential Offsetted Regressions Approach
Biased sampling designs can be highly efficient when studying rare (binary) or low variability (continuous) endpoints. We consider longitudinal data settings in which the probability of being sampled depends on a repeatedly measured response through an outcome-related, auxiliary variable. Such auxiliary variable- or outcome-dependent sampling improves observed response and possibly exposure variability over random sampling, {even though} the auxiliary variable is not of scientific interest. {For analysis,} we propose a generalized linear model based approach using a sequence of two offsetted regressions. The first estimates the relationship of the auxiliary variable to response and covariate data using an offsetted logistic regression model. The offset hinges on the (assumed) known ratio of sampling probabilities for different values of the auxiliary variable. Results from the auxiliary model are used to estimate observation-specific probabilities of being sampled conditional on the response and covariates, and these probabilities are then used to account for bias in the second, target population model. We provide asymptotic standard errors accounting for uncertainty in the estimation of the auxiliary model, and perform simulation studies demonstrating substantial bias reduction, correct coverage probability, and improved design efficiency over simple random sampling designs. We illustrate the approaches with two examples.
stat
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Conventional supervised learning methods, especially deep ones, are found to be sensitive to out-of-distribution (OOD) examples, largely because the learned representation mixes the semantic factor with the variation factor due to their domain-specific correlation, while only the semantic factor causes the output. To address the problem, we propose a Causal Semantic Generative model (CSG) based on a causal thought so that the two factors are modeled separately, and develop methods to learn it on a single training domain and predict in a test domain without (OOD generalization) or with unsupervised data (domain adaptation). We prove that under proper conditions, CSG identifies the semantic factor by learning from training data, and this semantic identification guarantees the boundedness of OOD generalization error and the success of adaptation. The methods and theory are built on the invariance principle of causal generative mechanisms, which is fundamental and general. The methods are based on variational Bayes, with a novel design for both efficient learning and easy prediction. Empirical study demonstrates the improved test accuracy for both OOD generalization and domain adaptation.
stat
Static and Dynamic Models for Multivariate Distribution Forecasts: Proper Scoring Rule Tests of Factor-Quantile vs. Multivariate GARCH Models
A plethora of static and dynamic models exist to forecast Value-at-Risk and other quantile-related metrics used in financial risk management. Industry practice tends to favour simpler, static models such as historical simulation or its variants whereas most academic research centres on dynamic models in the GARCH family. While numerous studies examine the accuracy of multivariate models for forecasting risk metrics, there is little research on accurately predicting the entire multivariate distribution. Yet this is an essential element of asset pricing or portfolio optimization problems having non-analytic solutions. We approach this highly complex problem using a variety of proper multivariate scoring rules to evaluate over 100,000 forecasts of eight-dimensional multivariate distributions: of exchange rates, interest rates and commodity futures. This way we test the performance of static models, viz. empirical distribution functions and a new factor-quantile model, with commonly used dynamic models in the asymmetric multivariate GARCH class.
stat
STAR: A general interactive framework for FDR control under structural constraints
We propose a general framework based on selectively traversed accumulation rules (STAR) for interactive multiple testing with generic structural constraints on the rejection set. It combines accumulation tests from ordered multiple testing with data-carving ideas from post-selection inference, allowing for highly flexible adaptation to generic structural information. Our procedure defines an interactive protocol for gradually pruning a candidate rejection set, beginning with the set of all hypotheses and shrinking with each step. By restricting the information at each step via a technique we call masking, our protocol enables interaction while controlling the false discovery rate (FDR) in finite samples for any data-adaptive update rule that the analyst may choose. We suggest update rules for a variety of applications with complex structural constraints, show that STAR performs well for problems ranging from convex region detection to FDR control on directed acyclic graphs, and show how to extend it to regression problems where knockoff statistics are available in lieu of $p$-values.
stat
Real-time Prediction of COVID-19 related Mortality using Electronic Health Records
Coronavirus Disease 2019 (COVID-19) is an emerging respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with rapid human-to-human transmission and a high case fatality rate particularly in older patients. Due to the exponential growth of infections, many healthcare systems across the world are under pressure to care for increasing amounts of at-risk patients. Given the high number of infected patients, identifying patients with the highest mortality risk early is critical to enable effective intervention and optimal prioritisation of care. Here, we present the COVID-19 Early Warning System (CovEWS), a clinical risk scoring system for assessing COVID-19 related mortality risk. CovEWS provides continuous real-time risk scores for individual patients with clinically meaningful predictive performance up to 192 hours (8 days) in advance, and is automatically derived from patients' electronic health records (EHRs) using machine learning. We trained and evaluated CovEWS using de-identified data from a cohort of 66430 COVID-19 positive patients seen at over 69 healthcare institutions in the United States (US), Australia, Malaysia and India amounting to an aggregated total of over 2863 years of patient observation time. On an external test cohort of 5005 patients, CovEWS predicts COVID-19 related mortality from $78.8\%$ ($95\%$ confidence interval [CI]: $76.0$, $84.7\%$) to $69.4\%$ ($95\%$ CI: $57.6, 75.2\%$) specificity at a sensitivity greater than $95\%$ between respectively 1 and 192 hours prior to observed mortality events - significantly outperforming existing generic and COVID-19 specific clinical risk scores. CovEWS could enable clinicians to intervene at an earlier stage, and may therefore help in preventing or mitigating COVID-19 related mortality.
stat
Estimating Sleep & Work Hours from Alternative Data by Segmented Functional Classification Analysis (SFCA)
Alternative data is increasingly adapted to predict human and economic behaviour. This paper introduces a new type of alternative data by re-conceptualising the internet as a data-driven insights platform at global scale. Using data from a unique internet activity and location dataset drawn from over 1.5 trillion observations of end-user internet connections, we construct a functional dataset covering over 1,600 cities during a 7 year period with temporal resolution of just 15min. To predict accurate temporal patterns of sleep and work activity from this data-set, we develop a new technique, Segmented Functional Classification Analysis (SFCA), and compare its performance to a wide array of linear, functional, and classification methods. To confirm the wider applicability of SFCA, in a second application we predict sleep and work activity using SFCA from US city-wide electricity demand functional data. Across both problems, SFCA is shown to out-perform current methods.
stat
A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning
We propose and study a general framework for regularized Markov decision processes (MDPs) where the goal is to find an optimal policy that maximizes the expected discounted total reward plus a policy regularization term. The extant entropy-regularized MDPs can be cast into our framework. Moreover, under our framework, many regularization terms can bring multi-modality and sparsity, which are potentially useful in reinforcement learning. In particular, we present sufficient and necessary conditions that induce a sparse optimal policy. We also conduct a full mathematical analysis of the proposed regularized MDPs, including the optimality condition, performance error, and sparseness control. We provide a generic method to devise regularization forms and propose off-policy actor critic algorithms in complex environment settings. We empirically analyze the numerical properties of optimal policies and compare the performance of different sparse regularization forms in discrete and continuous environments.
stat
Hamiltonian Monte-Carlo for Orthogonal Matrices
We consider the problem of sampling from posterior distributions for Bayesian models where some parameters are restricted to be orthogonal matrices. Such matrices are sometimes used in neural networks models for reasons of regularization and stabilization of training procedures, and also can parameterize matrices of bounded rank, positive-definite matrices and others. In \citet{byrne2013geodesic} authors have already considered sampling from distributions over manifolds using exact geodesic flows in a scheme similar to Hamiltonian Monte Carlo (HMC). We propose new sampling scheme for a set of orthogonal matrices that is based on the same approach, uses ideas of Riemannian optimization and does not require exact computation of geodesic flows. The method is theoretically justified by proof of symplecticity for the proposed iteration. In experiments we show that the new scheme is comparable or faster in time per iteration and more sample-efficient comparing to conventional HMC with explicit orthogonal parameterization and Geodesic Monte-Carlo. We also provide promising results of Bayesian ensembling for orthogonal neural networks and low-rank matrix factorization.
stat
Model-based metrics: Sample-efficient estimates of predictive model subpopulation performance
Machine learning models $-$ now commonly developed to screen, diagnose, or predict health conditions $-$ are evaluated with a variety of performance metrics. An important first step in assessing the practical utility of a model is to evaluate its average performance over an entire population of interest. In many settings, it is also critical that the model makes good predictions within predefined subpopulations. For instance, showing that a model is fair or equitable requires evaluating the model's performance in different demographic subgroups. However, subpopulation performance metrics are typically computed using only data from that subgroup, resulting in higher variance estimates for smaller groups. We devise a procedure to measure subpopulation performance that can be more sample-efficient than the typical subsample estimates. We propose using an evaluation model $-$ a model that describes the conditional distribution of the predictive model score $-$ to form model-based metric (MBM) estimates. Our procedure incorporates model checking and validation, and we propose a computationally efficient approximation of the traditional nonparametric bootstrap to form confidence intervals. We evaluate MBMs on two main tasks: a semi-synthetic setting where ground truth metrics are available and a real-world hospital readmission prediction task. We find that MBMs consistently produce more accurate and lower variance estimates of model performance for small subpopulations.
stat
Rodent: Relevance determination in differential equations
We aim to identify the generating, ordinary differential equation (ODE) from a set of trajectories of a partially observed system. Our approach does not need prescribed basis functions to learn the ODE model, but only a rich set of Neural Arithmetic Units. For maximal explainability of the learnt model, we minimise the state size of the ODE as well as the number of non-zero parameters that are needed to solve the problem. This sparsification is realized through a combination of the Variational Auto-Encoder (VAE) and Automatic Relevance Determination (ARD). We show that it is possible to learn not only one specific model for a single process, but a manifold of models representing harmonic signals as well as a manifold of Lotka-Volterra systems.
stat
A simulation study of disaggregation regression for spatial disease mapping
Disaggregation regression has become an important tool in spatial disease mapping for making fine-scale predictions of disease risk from aggregated response data. By including high resolution covariate information and modelling the data generating process on a fine scale, it is hoped that these models can accurately learn the relationships between covariates and response at a fine spatial scale. However, validating these high resolution predictions can be a challenge, as often there is no data observed at this spatial scale. In this study, disaggregation regression was performed on simulated data in various settings and the resulting fine-scale predictions are compared to the simulated ground truth. Performance was investigated with varying numbers of data points, sizes of aggregated areas and levels of model misspecification. The effectiveness of cross validation on the aggregate level as a measure of fine-scale predictive performance was also investigated. Predictive performance improved as the number of observations increased and as the size of the aggregated areas decreased. When the model was well-specified, fine-scale predictions were accurate even with small numbers of observations and large aggregated areas. Under model misspecification predictive performance was significantly worse for large aggregated areas but remained high when response data was aggregated over smaller regions. Cross-validation correlation on the aggregate level was a moderately good predictor of fine-scale predictive performance. While the simulations are unlikely to capture the nuances of real-life response data, this study gives insight into the effectiveness of disaggregation regression in different contexts.
stat
Quantile Treatment Effects in Regression Kink Designs
The literature on regression kink designs develops identification results for average effects of continuous treatments (Card, Lee, Pei, and Weber, 2015), average effects of binary treatments (Dong, 2018), and quantile-wise effects of continuous treatments (Chiang and Sasaki, 2019), but there has been no identification result for quantile-wise effects of binary treatments to date. In this paper, we fill this void in the literature by providing an identification of quantile treatment effects in regression kink designs with binary treatment variables. For completeness, we also develop large sample theories for statistical inference and a practical guideline on estimation and inference.
stat
Active Testing: Sample-Efficient Model Evaluation
We introduce active testing: a new framework for sample-efficient model evaluation. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. Actively selecting labels introduces a bias; we show how to remove that bias while reducing the variance of the estimator at the same time. Active testing is easy to implement, effective, and can be applied to any supervised machine learning method. We demonstrate this on models including WideResNet and Gaussian processes on datasets including CIFAR-100.
stat
A method to find an efficient and robust sampling strategy under model uncertainty
We consider the problem of deciding on sampling strategy, in particular sampling design. We propose a risk measure, whose minimizing value guides the choice. The method makes use of a superpopulation model and takes into account uncertainty about its parameters. The method is illustrated with a real dataset, yielding satisfactory results. As a baseline, we use the strategy that couples probability proportional-to-size sampling with the difference estimator, as it is known to be optimal when the superpopulation model is fully known. We show that, even under moderate misspecifications of the model, this strategy is not robust and can be outperformed by some alternatives
stat
Fast Bayesian Record Linkage With Record-Specific Disagreement Parameters
Researchers are often interested in linking individuals between two datasets that lack a common unique identifier. Matching procedures often struggle to match records with common names, birthplaces or other field values. Computational feasibility is also a challenge, particularly when linking large datasets. We develop a Bayesian method for automated probabilistic record linkage and show it recovers more than 50% more true matches, holding accuracy constant, than comparable methods in a matching of military recruitment data to the 1900 US Census for which expert-labelled matches are available. Our approach, which builds on a recent state-of-the-art Bayesian method, refines the modelling of comparison data, allowing disagreement probability parameters conditional on non-match status to be record-specific in the smaller of the two datasets. This flexibility significantly improves matching when many records share common field values. We show that our method is computationally feasible in practice, despite the added complexity, with an R/C++ implementation that achieves significant improvement in speed over comparable recent methods. We also suggest a lightweight method for treatment of very common names and show how to estimate true positive rate and positive predictive value when true match status is unavailable.
stat
Prior sample size extensions for assessing prior impact and prior--likelihood discordance
This paper outlines a framework for quantifying the prior's contribution to posterior inference in the presence of prior-likelihood discordance, a broader concept than the usual notion of prior-likelihood conflict. We achieve this dual purpose by extending the classic notion of \textit{prior sample size}, $M$, in three directions: (I) estimating $M$ beyond conjugate families; (II) formulating $M$ as a relative notion, i.e., as a function of the likelihood sample size $k, M(k),$ which also leads naturally to a graphical diagnosis; and (III) permitting negative $M$, as a measure of prior-likelihood conflict, i.e., harmful discordance. Our asymptotic regime permits the prior sample size to grow with the likelihood data size, hence making asymptotic arguments meaningful for investigating the impact of the prior relative to that of likelihood. It leads to a simple asymptotic formula for quantifying the impact of a proper prior that only involves computing a centrality and a spread measure of the prior and the posterior. We use simulated and real data to illustrate the potential of the proposed framework, including quantifying how weak is a "weakly informative" prior adopted in a study of lupus nephritis. Whereas we take a pragmatic perspective in assessing the impact of a prior on a given inference problem under a specific evaluative metric, we also touch upon conceptual and theoretical issues such as using improper priors and permitting priors with asymptotically non-vanishing influence.
stat
Adaptive Importance Sampling for Efficient Stochastic Root Finding and Quantile Estimation
In solving simulation-based stochastic root-finding or optimization problems that involve rare events, such as in extreme quantile estimation, running crude Monte Carlo can be prohibitively inefficient. To address this issue, importance sampling can be employed to drive down the sampling error to a desirable level. However, selecting a good importance sampler requires knowledge of the solution to the problem at hand, which is the goal to begin with and thus forms a circular challenge. We investigate the use of adaptive importance sampling to untie this circularity. Our procedure sequentially updates the importance sampler to reach the optimal sampler and the optimal solution simultaneously, and can be embedded in both sample average approximation and stochastic approximation-type algorithms. Our theoretical analysis establishes strong consistency and asymptotic normality of the resulting estimators. We also demonstrate, via a minimax perspective, the key role of using adaptivity in controlling asymptotic errors. Finally, we illustrate the effectiveness of our approach via numerical experiments.
stat
Using Embeddings to Correct for Unobserved Confounding in Networks
We consider causal inference in the presence of unobserved confounding. We study the case where a proxy is available for the unobserved confounding in the form of a network connecting the units. For example, the link structure of a social network carries information about its members. We show how to effectively use the proxy to do causal inference. The main idea is to reduce the causal estimation problem to a semi-supervised prediction of both the treatments and outcomes. Networks admit high-quality embedding models that can be used for this semi-supervised prediction. We show that the method yields valid inferences under suitable (weak) conditions on the quality of the predictive model. We validate the method with experiments on a semi-synthetic social network dataset. Code is available at github.com/vveitch/causal-network-embeddings.
stat
Synthetic Difference in Differences
We present a new estimator for causal effects with panel data that builds on insights behind the widely used difference in differences and synthetic control methods. Relative to these methods, we find, both theoretically and empirically, that the proposed "synthetic difference in differences" estimator has desirable robustness properties, and that it performs well in settings where the conventional estimators are commonly used in practice. We study the asymptotic behavior of the estimator when the systematic part of the outcome model includes latent unit factors interacted with latent time factors, and we present conditions for consistency and asymptotic normality.
stat
Doubly Robust Semiparametric Inference Using Regularized Calibrated Estimation with High-dimensional Data
Consider semiparametric estimation where a doubly robust estimating function for a low-dimensional parameter is available, depending on two working models. With high-dimensional data, we develop regularized calibrated estimation as a general method for estimating the parameters in the two working models, such that valid Wald confidence intervals can be obtained for the parameter of interest under suitable sparsity conditions if either of the two working models is correctly specified. We propose a computationally tractable two-step algorithm and provide rigorous theoretical analysis which justifies sufficiently fast rates of convergence for the regularized calibrated estimators in spite of sequential construction and establishes a desired asymptotic expansion for the doubly robust estimator. As concrete examples, we discuss applications to partially linear, log-linear, and logistic models and estimation of average treatment effects. Numerical studies in the former three examples demonstrate superior performance of our method, compared with debiased Lasso.
stat
Approximate Cross-Validation in High Dimensions with Guarantees
Leave-one-out cross-validation (LOOCV) can be particularly accurate among cross-validation (CV) variants for machine learning assessment tasks -- e.g., assessing methods' error or variability. But it is expensive to re-fit a model $N$ times for a dataset of size $N$. Previous work has shown that approximations to LOOCV can be both fast and accurate -- when the unknown parameter is of small, fixed dimension. But these approximations incur a running time roughly cubic in dimension -- and we show that, besides computational issues, their accuracy dramatically deteriorates in high dimensions. Authors have suggested many potential and seemingly intuitive solutions, but these methods have not yet been systematically evaluated or compared. We find that all but one perform so poorly as to be unusable for approximating LOOCV. Crucially, though, we are able to show, both empirically and theoretically, that one approximation can perform well in high dimensions -- in cases where the high-dimensional parameter exhibits sparsity. Under interpretable assumptions, our theory demonstrates that the problem can be reduced to working within an empirically recovered (small) support. This procedure is straightforward to implement, and we prove that its running time and error depend on the (small) support size even when the full parameter dimension is large.
stat
A scalable hierarchical lasso for gene-environment interactions
We describe a regularized regression model for the selection of gene-environment (GxE) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (GxE) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.
stat
Visualisation of Brain Statistics with R-packages ggseg and ggseg3d
There is an increased emphasis on visualizing neuroimaging results in more intuitive ways. Common statistical tools for dissemination, such as bar charts, lack the spatial dimension that is inherent in neuroimaging data. Here we present two packages for the statistical software R, ggseg and ggseg3d, that integrate this spatial component. The ggseg and ggseg3d packages visualize pre-defined brain segmentations as both 2D polygons and 3D meshes, respectively. Both packages are integrated with other well-established R-packages, allowing great flexibility. In this tutorial, we present the main data and functions in the ggseg and ggseg3d packages for brain atlas visualization. The main highlighted functions are able to display brain segmentation plots in R. Further, the accompanying ggsegExtra-package includes a wider collection of atlases, and is intended for community-based efforts to develop more compatible atlases to ggseg and ggseg3d. Overall, the ggseg-packages facilitate parcellation-based visualizations in R, improve and ease the dissemination of the results, and increase the efficiency of the workflows.
stat
Transporting treatment effects with incomplete attributes
The simultaneous availability of experimental and observational data to estimate a treatment effect is both an opportunity and a statistical challenge: Combining the information gathered from both data is a promising avenue to build upon the internal validity of randomized controlled trials (RCTs) and a greater external validity of observational data, but it raises methodological issues, especially due to different sampling designs inducing distributional shifts. We focus on the aim of transporting a causal effect estimated on an RCT onto a target population described by a set of covariates. Available methods such as inverse propensity weighting are not designed to handle missing values, which are however common in both data. In addition to coupling the assumptions for causal identifiability and for the missing values mechanism and to defining appropriate strategies, one has to consider the specific structure of the data with two sources and treatment and outcome only available in the RCT. We study different approaches and their underlying assumptions on the data generating processes and distribution of missing values and suggest several adapted methods, in particular multiple imputation strategies. These methods are assessed in an extensive simulation study and practical guidelines are provided for different scenarios. This work is motivated by the analysis of a large registry of over 20,000 major trauma patients and a multi-centered RCT studying the effect of tranexamic acid administration on mortality. The analysis illustrates how the missing values handling can impact the conclusion about the effect transported from the RCT to the target population.
stat
Machine learning the real discriminant locus
Parameterized systems of polynomial equations arise in many applications in science and engineering with the real solutions describing, for example, equilibria of a dynamical system, linkages satisfying design constraints, and scene reconstruction in computer vision. Since different parameter values can have a different number of real solutions, the parameter space is decomposed into regions whose boundary forms the real discriminant locus. This article views locating the real discriminant locus as a supervised classification problem in machine learning where the goal is to determine classification boundaries over the parameter space, with the classes being the number of real solutions. For multidimensional parameter spaces, this article presents a novel sampling method which carefully samples the parameter space. At each sample point, homotopy continuation is used to obtain the number of real solutions to the corresponding polynomial system. Machine learning techniques including nearest neighbor and deep learning are used to efficiently approximate the real discriminant locus. One application of having learned the real discriminant locus is to develop a real homotopy method that only tracks the real solution paths unlike traditional methods which track all~complex~solution~paths. Examples show that the proposed approach can efficiently approximate complicated solution boundaries such as those arising from the equilibria of the Kuramoto model.
stat
Asymmetric compressive learning guarantees with applications to quantized sketches
The compressive learning framework reduces the computational cost of training on large-scale datasets. In a sketching phase, the data is first compressed to a lightweight sketch vector, obtained by mapping the data samples through a well-chosen feature map, and averaging those contributions. In a learning phase, the desired model parameters are then extracted from this sketch by solving an optimization problem, which also involves a feature map. When the feature map is identical during the sketching and learning phases, formal statistical guarantees (excess risk bounds) have been proven. However, the desirable properties of the feature map are different during sketching and learning (e.g. quantized outputs, and differentiability, respectively). We thus study the relaxation where this map is allowed to be different for each phase. First, we prove that the existing guarantees carry over to this asymmetric scheme, up to a controlled error term, provided some Limited Projected Distortion (LPD) property holds. We then instantiate this framework to the setting of quantized sketches, by proving that the LPD indeed holds for binary sketch contributions. Finally, we further validate the approach with numerical simulations, including a large-scale application in audio event classification.
stat
Model Order Selection Based on Information Theoretic Criteria: Design of the Penalty
Information theoretic criteria (ITC) have been widely adopted in engineering and statistics for selecting, among an ordered set of candidate models, the one that better fits the observed sample data. The selected model minimizes a penalized likelihood metric, where the penalty is determined by the criterion adopted. While rules for choosing a penalty that guarantees a consistent estimate of the model order are known, theoretical tools for its design with finite samples have never been provided in a general setting. In this paper, we study model order selection for finite samples under a design perspective, focusing on the generalized information criterion (GIC), which embraces the most common ITC. The theory is general, and as case studies we consider: a) the problem of estimating the number of signals embedded in additive white Gaussian noise (AWGN) by using multiple sensors; b) model selection for the general linear model (GLM), which includes e.g. the problem of estimating the number of sinusoids in AWGN. The analysis reveals a trade-off between the probabilities of overestimating and underestimating the order of the model. We then propose to design the GIC penalty to minimize underestimation while keeping the overestimation probability below a specified level. For the considered problems, this method leads to analytical derivation of the optimal penalty for a given sample size. A performance comparison between the penalty optimized GIC and common AIC and BIC is provided, demonstrating the effectiveness of the proposed design strategy.
stat
Generalized active learning and design of statistical experiments for manifold-valued data
Characterizing the appearance of real-world surfaces is a fundamental problem in multidimensional reflectometry, computer vision and computer graphics. For many applications, appearance is sufficiently well characterized by the bidirectional reflectance distribution function (BRDF). We treat BRDF measurements as samples of points from high-dimensional non-linear non-convex manifolds. BRDF manifolds form an infinite-dimensional space, but typically the available measurements are very scarce for complicated problems such as BRDF estimation. Therefore, an efficient learning strategy is crucial when performing the measurements. In this paper, we build the foundation of a mathematical framework that allows to develop and apply new techniques within statistical design of experiments and generalized proactive learning, in order to establish more efficient sampling and measurement strategies for BRDF data manifolds.
stat
Akaike's Bayesian information criterion (ABIC) or not ABIC for geophysical inversion
Akaike's Bayesian information criterion (ABIC) has been widely used in geophysical inversion and beyond. However, little has been done to investigate its statistical aspects. We present an alternative derivation of the marginal distribution of measurements, whose maximization directly leads to the invention of ABIC by Akaike. We show that ABIC is to statistically estimate the variance of measurements and the prior variance by maximizing the marginal distribution of measurements. The determination of the regularization parameter on the basis of ABIC is actually equivalent to estimating the relative weighting factor between the variance of measurements and the prior variance for geophysical inverse problems. We show that if the noise level of measurements is unknown, ABIC tends to produce a substantially biased estimate of the variance of measurements. In particular, since the prior mean is generally unknown but arbitrarily treated as zero in geophysical inversion, ABIC does not produce a reasonable estimate for the prior variance either.
stat
Unlucky Number 13? Manipulating Evidence Subject to Snooping
Questionable research practices like HARKing or p-hacking have generated considerable recent interest throughout and beyond the scientific community. We subsume such practices involving secret data snooping that influences subsequent statistical inference under the term MESSing (manipulating evidence subject to snooping) and discuss, illustrate and quantify the possibly dramatic effects of several forms of MESSing using an empirical and a simple theoretical example. The empirical example uses numbers from the most popular German lottery, which seem to suggest that 13 is an unlucky number.
stat
Representation formulas and pointwise properties for Barron functions
We study the natural function space for infinitely wide two-layer neural networks and establish different representation formulae. In two cases, we describe the space explicitly up to isomorphism. Using a convenient representation, we study the pointwise properties of two-layer networks and show that functions whose singular set is fractal or curved (for example distance functions from smooth submanifolds) cannot be represented by infinitely wide two-layer networks with finite path-norm.
stat
Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational studies. Motivated by the recent proposed proximal causal inference, we develop several proximal learning approaches to estimating optimal individualized treatment regimes (ITRs) in the presence of unmeasured confounding. In particular, we establish several identification results for different classes of ITRs, exhibiting the trade-off between the risk of making untestable assumptions and the value function improvement in decision making. Based on these results, we propose several classification-based approaches to finding a variety of restricted in-class optimal ITRs and develop their theoretical properties. The appealing numerical performance of our proposed methods is demonstrated via an extensive simulation study and one real data application.
stat
Multiple imputation in data that grow over time: A comparison of three strategies
Multiple imputation is a highly recommended technique to deal with missing data, but the application to longitudinal datasets can be done in multiple ways. When a new wave of longitudinal data arrives, we can treat the combined data of multiple waves as a new missing data problem and overwrite existing imputations with new values (re-imputation). Alternatively, we may keep the existing imputations, and impute only the new data. We may do either a full multiple imputation (nested) or a single imputation (appended) on the new data per imputed set. This study compares these three strategies by means of simulation. All techniques resulted in valid inference under a monotone missingness pattern. A non-monotone missingness pattern led to biased and non-confidence valid regression coefficients after nested and appended imputation, depending on the correlation structure of the data. Correlations within timepoints must be stronger than correlations between timepoints to obtain valid inference. In an empirical example, the three strategies performed similarly.We conclude that appended imputation is especially beneficial in longitudinal datasets that suffer from dropout.
stat
A Note on a Simple and Practical Randomized Response Framework for Eliciting Sensitive Dichotomous & Quantitative Information
Many issues of interest to social scientists and policymakers are of a sensitive nature in the sense that they are intrusive, stigmatizing or incriminating to the respondent. This results in refusals to cooperate or evasive cooperation in studies using self-reports. In a seminal article Warner proposed to curb this problem by generating an artificial variability in responses to inoculate the individual meaning of answers to sensitive questions. This procedure was further developed and extended, and came to be known as the randomized response (RR) technique. Here, we propose a unified treatment for eliciting sensitive binary as well as quantitative information with RR based on a model where the inoculating elements are provided for by the randomization device. The procedure is simple and we will argue that its implementation in a computer-assisted setting may have superior practical capabilities.
stat
Estimation of within-study covariances in multivariate meta-analysis
Multivariate meta-analysis can be adapted to a wide range of situations for multiple outcomes and multiple treatment groups when combining studies together. The within-study correlation between effect sizes is often assumed known in multivariate meta-analysis while it is not always known practically. In this paper, we propose a generic method to approximate the within-study covariance for effect sizes in multivariate meta-analysis and apply this method to the scenarios with multiple outcomes and one outcome with multiple treatment groups respectively.
stat
Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformization
By attaching auxiliary event times to the chronologically ordered observations, we formulate the Bayesian multiple changepoint problem of discrete-time observations into that of continuous-time ones. A version of forward-filtering backward-sampling (FFBS) algorithm is proposed for the simulation of changepoints within a collapsed Gibbs sampling scheme. Ideally, both the computational cost and memory cost of the FFBS algorithm can be quadratically scaled down to the number of changepoints, instead of the number of observations, which is otherwise prohibitive for a long sequence of observations. The new formulation allows the number of changepoints accrue unboundedly upon the arrivals of new data. Also, a time-varying changepoint recurrence rate across different segments is assumed to characterize diverse scales of run lengths of changepoints. We then suggest a continuous-time Viterbi algorithm for obtaining the Maximum A Posteriori (MAP) estimates of changepoints. We demonstrate the methods through simulation studies and real data analysis.
stat
A spliced Gamma-Generalized Pareto model for short-term extreme wind speed probabilistic forecasting
Renewable sources of energy such as wind power have become a sustainable alternative to fossil fuel-based energy. However, the uncertainty and fluctuation of the wind speed derived from its intermittent nature bring a great threat to the wind power production stability, and to the wind turbines themselves. Lately, much work has been done on developing models to forecast average wind speed values, yet surprisingly little has focused on proposing models to accurately forecast extreme wind speeds, which can damage the turbines. In this work, we develop a flexible spliced Gamma-Generalized Pareto model to forecast extreme and non-extreme wind speeds simultaneously. Our model belongs to the class of latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approximation method. Considering a flexible additive regression structure, we propose two models for the latent linear predictor to capture the spatio-temporal dynamics of wind speeds. Our models are fast to fit and can describe both the bulk and the tail of the wind speed distribution while producing short-term extreme and non-extreme wind speed probabilistic forecasts.
stat
Unsupervised and Supervised Principal Component Analysis: Tutorial
This is a detailed tutorial paper which explains the Principal Component Analysis (PCA), Supervised PCA (SPCA), kernel PCA, and kernel SPCA. We start with projection, PCA with eigen-decomposition, PCA with one and multiple projection directions, properties of the projection matrix, reconstruction error minimization, and we connect to auto-encoder. Then, PCA with singular value decomposition, dual PCA, and kernel PCA are covered. SPCA using both scoring and Hilbert-Schmidt independence criterion are explained. Kernel SPCA using both direct and dual approaches are then introduced. We cover all cases of projection and reconstruction of training and out-of-sample data. Finally, some simulations are provided on Frey and AT&T face datasets for verifying the theory in practice.
stat
Sample size considerations for comparing dynamic treatment regimens in a sequential multiple-assignment randomized trial with a continuous longitudinal outcome
Clinicians and researchers alike are increasingly interested in how best to personalize interventions. A dynamic treatment regimen (DTR) is a sequence of pre-specified decision rules which can be used to guide the delivery of a sequence of treatments or interventions that are tailored to the changing needs of the individual. The sequential multiple-assignment randomized trial (SMART) is a research tool which allows for the construction of effective DTRs. We derive easy-to-use formulae for computing the total sample size for three common two-stage SMART designs in which the primary aim is to compare mean end-of-study outcomes for two embedded DTRs which recommend different first-stage treatments. The formulae are derived in the context of a regression model which leverages information from a longitudinal outcome collected over the entire study. We show that the sample size formula for a SMART can be written as the product of the sample size formula for a standard two-arm randomized trial, a deflation factor that accounts for the increased statistical efficiency resulting from a longitudinal analysis, and an inflation factor that accounts for the design of a SMART. The SMART design inflation factor is typically a function of the anticipated probability of response to first-stage treatment. We review modeling and estimation for DTR effect analyses using a longitudinal outcome from a SMART, as well as the estimation of standard errors. We also present estimators for the covariance matrix for a variety of common working correlation structures. Methods are motivated using the ENGAGE study, a SMART aimed at developing a DTR for increasing motivation to attend treatments among alcohol- and cocaine-dependent patients.
stat
Scalable Multiple Changepoint Detection for Functional Data Sequences
We propose the Multiple Changepoint Isolation (MCI) method for detecting multiple changes in the mean and covariance of a functional process. We first introduce a pair of projections to represent the high and low frequency features of the data. We then apply total variation denoising and introduce a new regionalization procedure to split the projections into multiple regions. Denoising and regionalizing act to isolate each changepoint into its own region, so that the classical univariate CUSUM statistic can be applied region-wise to find all changepoints. Simulations show that our method accurately detects the number and locations of changepoints under many different scenarios. These include light and heavy tailed data, data with symmetric and skewed distributions, sparsely and densely sampled changepoints, and both mean and covariance changes. We show that our method outperforms a recent multiple functional changepoint detector and several univariate changepoint detectors applied to our proposed projections. We also show that the MCI is more robust than existing approaches, and scales linearly with sample size. Finally, we demonstrate our method on a large time series of water vapor mixing ratio profiles from atmospheric emitted radiance interferometer measurements.
stat
Spatial Spread Sampling Using Weakly Associated Vectors
Geographical data are generally autocorrelated. In this case, it is preferable to select spread units. In this paper, we propose a new method for selecting well-spread samples from a finite spatial population with equal or unequal inclusion probabilities. The proposed method is based on the definition of a spatial structure by using a stratification matrix. Our method exactly satisfies given inclusion probabilities and provides samples that are very well-spread. A set of simulations shows that our method outperforms other existing methods such as the Generalized Random Tessellation Stratified (GRTS) or the Local Pivotal Method (LPM). Analysis of the variance on a real dataset shows that our method is more accurate than these two. Furthermore, a variance estimator is proposed.
stat
Dynamic Window-level Granger Causality of Multi-channel Time Series
Granger causality method analyzes the time series causalities without building a complex causality graph. However, the traditional Granger causality method assumes that the causalities lie between time series channels and remain constant, which cannot model the real-world time series data with dynamic causalities along the time series channels. In this paper, we present the dynamic window-level Granger causality method (DWGC) for multi-channel time series data. We build the causality model on the window-level by doing the F-test with the forecasting errors on the sliding windows. We propose the causality indexing trick in our DWGC method to reweight the original time series data. Essentially, the causality indexing is to decrease the auto-correlation and increase the cross-correlation causal effects, which improves the DWGC method. Theoretical analysis and experimental results on two synthetic and one real-world datasets show that the improved DWGC method with causality indexing better detects the window-level causalities.
stat
Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization
We evaluate a large-scale set of interventions to increase demand for immunization in Haryana, India. The policies under consideration include the two most frequently discussed tools--reminders and incentives--as well as an intervention inspired by the networks literature. We cross-randomize whether (a) individuals receive SMS reminders about upcoming vaccination drives; (b) individuals receive incentives for vaccinating their children; (c) influential individuals (information hubs, trusted individuals, or both) are asked to act as "ambassadors" receiving regular reminders to spread the word about immunization in their community. By taking into account different versions (or "dosages") of each intervention, we obtain 75 unique policy combinations. We develop a new statistical technique--a smart pooling and pruning procedure--for finding a best policy from a large set, which also determines which policies are effective and the effect of the best policy. We proceed in two steps. First, we use a LASSO technique to collapse the data: we pool dosages of the same treatment if the data cannot reject that they had the same impact, and prune policies deemed ineffective. Second, using the remaining (pooled) policies, we estimate the effect of the best policy, accounting for the winner's curse. The key outcomes are (i) the number of measles immunizations and (ii) the number of immunizations per dollar spent. The policy that has the largest impact (information hubs, SMS reminders, incentives that increase with each immunization) increases the number of immunizations by 44% relative to the status quo. The most cost-effective policy (information hubs, SMS reminders, no incentives) increases the number of immunizations per dollar by 9.1%.
stat
CP Degeneracy in Tensor Regression
Tensor linear regression is an important and useful tool for analyzing tensor data. To deal with high dimensionality, CANDECOMP/PARAFAC (CP) low-rank constraints are often imposed on the coefficient tensor parameter in the (penalized) $M$-estimation. However, we show that the corresponding optimization may not be attainable, and when this happens, the estimator is not well-defined. This is closely related to a phenomenon, called CP degeneracy, in low-rank tensor approximation problems. In this article, we provide useful results of CP degeneracy in tensor regression problems. In addition, we provide a general penalized strategy as a solution to overcome CP degeneracy. The asymptotic properties of the resulting estimation are also studied. Numerical experiments are conducted to illustrate our findings.
stat
Joint Curve Registration and Classification with Two-level Functional Models
Many classification techniques when the data are curves or functions have been recently proposed. However, the presence of misaligned problems in the curves can influence the performance of most of them. In this paper, we propose a model-based approach for simultaneous curve registration and classification. The method is proposed to perform curve classification based on a functional logistic regression model that relies on both scalar variables and functional variables, and to align curves simultaneously via a data registration model. EM-based algorithms are developed to perform maximum likelihood inference of the proposed models. We establish the identifiability results for curve registration model and investigate the asymptotic properties of the proposed estimation procedures. Simulation studies are conducted to demonstrate the finite sample performance of the proposed models. An application of the hyoid bone movement data from stroke patients reveals the effectiveness of the new models.
stat
Good Classifiers are Abundant in the Interpolating Regime
Within the machine learning community, the widely-used uniform convergence framework has been used to answer the question of how complex, over-parameterized models can generalize well to new data. This approach bounds the test error of the worst-case model one could have fit to the data, but it has fundamental limitations. Inspired by the statistical mechanics approach to learning, we formally define and develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers from several model classes. We apply our method to compute this distribution for several real and synthetic datasets, with both linear and random feature classification models. We find that test errors tend to concentrate around a small typical value $\varepsilon^*$, which deviates substantially from the test error of the worst-case interpolating model on the same datasets, indicating that "bad" classifiers are extremely rare. We provide theoretical results in a simple setting in which we characterize the full asymptotic distribution of test errors, and we show that these indeed concentrate around a value $\varepsilon^*$, which we also identify exactly. We then formalize a more general conjecture supported by our empirical findings. Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice, and that approaches based on the statistical mechanics of learning may offer a promising alternative.
stat
Learning Latent Space Energy-Based Prior Model
We propose to learn energy-based model (EBM) in the latent space of a generator model, so that the EBM serves as a prior model that stands on the top-down network of the generator model. Both the latent space EBM and the top-down network can be learned jointly by maximum likelihood, which involves short-run MCMC sampling from both the prior and posterior distributions of the latent vector. Due to the low dimensionality of the latent space and the expressiveness of the top-down network, a simple EBM in latent space can capture regularities in the data effectively, and MCMC sampling in latent space is efficient and mixes well. We show that the learned model exhibits strong performances in terms of image and text generation and anomaly detection. The one-page code can be found in supplementary materials.
stat
Improved Differentially Private Decentralized Source Separation for fMRI Data
Blind source separation algorithms such as independent component analysis (ICA) are widely used in the analysis of neuroimaging data. In order to leverage larger sample sizes, different data holders/sites may wish to collaboratively learn feature representations. However, such datasets are often privacy-sensitive, precluding centralized analyses that pool the data at a single site. In this work, we propose a differentially private algorithm for performing ICA in a decentralized data setting. Conventional approaches to decentralized differentially private algorithms may introduce too much noise due to the typically small sample sizes at each site. We propose a novel protocol that uses correlated noise to remedy this problem. We show that our algorithm outperforms existing approaches on synthetic and real neuroimaging datasets and demonstrate that it can sometimes reach the same level of utility as the corresponding non-private algorithm. This indicates that it is possible to have meaningful utility while preserving privacy.
stat
Quantile regression for compositional covariates
Quantile regression is a very important tool to explore the relationship between the response variable and its covariates. Motivated by mean regression with LASSO for compositional covariates proposed by Lin et al. (2014), we consider quantile regression with no-penalty and penalty function. We develop the computational algorithms based on linear programming. Numerical studies indicate that our methods provides the better alternative than mean regression under many settings, particularly for heavy-tailed or skewed distribution of the error term. Finally, we study the fat data using the proposed method.
stat
Model enhancement and personalization using weakly supervised learning for multi-modal mobile sensing
Always-on sensing of mobile device user's contextual information is critical to many intelligent use cases nowadays such as healthcare, drive assistance, voice UI. State-of-the-art approaches for predicting user context have proved the value to leverage multiple sensing modalities for better accuracy. However, those context inference algorithms that run on application processor nowadays tend to drain heavy amount of power, making them not suitable for an always-on implementation. We claim that not every sensing modality is suitable to be activated all the time and it remains challenging to build an inference engine using power friendly sensing modalities. Meanwhile, due to the diverse population, we find it challenging to learn a context inference model that generalizes well, with limited training data, especially when only using always-on low power sensors. In this work, we propose an approach to leverage the opportunistically-on counterparts in device to improve the always-on prediction model, leading to a personalized solution. We model this problem using a weakly supervised learning framework and provide both theoretical and experimental results to validate our design. The proposed framework achieves satisfying result in the IMU based activity recognition application we considered.
stat
Restoration and extrapolation of structural transformation by dynamical general equilibrium feedbacks
We model sectoral production by serially nesting (cascading) binary compounding processes. The sequence of processes is discovered in a self-similar hierarchical structure stylized in macroscopic input-output transactions. The feedback system of unit cost functions, with recursively estimated nest-wise CES parameters, is calibrated for sectoral productivities to replicate two temporally distant cost share structures, observed in a set of linked input--output tables. We model representative households by multifactor CES, with parameters estimated by fixed effects regressions. By the integrated dynamic general equilibrium model, we extrapolate potential structural transformations, and measure the associated welfare changes, caused by exogenous sectoral productivity shocks.
stat
Early Anomaly Detection in Time Series: A Hierarchical Approach for Predicting Critical Health Episodes
The early detection of anomalous events in time series data is essential in many domains of application. In this paper we deal with critical health events, which represent a significant cause of mortality in intensive care units of hospitals. The timely prediction of these events is crucial for mitigating their consequences and improving healthcare. One of the most common approaches to tackle early anomaly detection problems is standard classification methods. In this paper we propose a novel method that uses a layered learning architecture to address these tasks. One key contribution of our work is the idea of pre-conditional events, which denote arbitrary but computable relaxed versions of the event of interest. We leverage this idea to break the original problem into two hierarchical layers, which we hypothesize are easier to solve. The results suggest that the proposed approach leads to a better performance relative to state of the art approaches for critical health episode prediction.
stat
A Swiss Army Infinitesimal Jackknife
The error or variability of machine learning algorithms is often assessed by repeatedly re-fitting a model with different weighted versions of the observed data. The ubiquitous tools of cross-validation (CV) and the bootstrap are examples of this technique. These methods are powerful in large part due to their model agnosticism but can be slow to run on modern, large data sets due to the need to repeatedly re-fit the model. In this work, we use a linear approximation to the dependence of the fitting procedure on the weights, producing results that can be faster than repeated re-fitting by an order of magnitude. This linear approximation is sometimes known as the "infinitesimal jackknife" in the statistics literature, where it is mostly used as a theoretical tool to prove asymptotic results. We provide explicit finite-sample error bounds for the infinitesimal jackknife in terms of a small number of simple, verifiable assumptions. Our results apply whether the weights and data are stochastic or deterministic, and so can be used as a tool for proving the accuracy of the infinitesimal jackknife on a wide variety of problems. As a corollary, we state mild regularity conditions under which our approximation consistently estimates true leave-$k$-out cross-validation for any fixed $k$. These theoretical results, together with modern automatic differentiation software, support the application of the infinitesimal jackknife to a wide variety of practical problems in machine learning, providing a "Swiss Army infinitesimal jackknife". We demonstrate the accuracy of our methods on a range of simulated and real datasets.
stat
On the marginal likelihood and cross-validation
In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out cross-validation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors but is motivated through a different course.
stat
The statistical properties of RCTs and a proposal for shrinkage
We abstract the concept of a randomized controlled trial (RCT) as a triple (beta,b,s), where beta is the primary efficacy parameter, b the estimate and s the standard error (s>0). The parameter beta is either a difference of means, a log odds ratio or a log hazard ratio. If we assume that b is unbiased and normally distributed, then we can estimate the full joint distribution of (beta,b,s) from a sample of pairs (b_i,s_i). We have collected 23,747 such pairs from the Cochrane database to do so. Here, we report the estimated distribution of the signal-to-noise ratio beta/s and the achieved power. We estimate the median achieved power to be 0.13. We also consider the exaggeration ratio which is the factor by which the magnitude of beta is overestimated. We find that if the estimate is just significant at the 5% level, we would expect it to overestimate the true effect by a factor of 1.7. This exaggeration is sometimes referred to as the winner's curse and it is undoubtedly to a considerable extent responsible for disappointing replication results. For this reason, we believe it is important to shrink the unbiased estimator, and we propose a method for doing so.
stat
Moving sum data segmentation for stochastics processes based on invariance
The segmentation of data into stationary stretches also known as multiple change point problem is important for many applications in time series analysis as well as signal processing. Based on strong invariance principles, we analyse data segmentation methodology using moving sum (MOSUM) statistics for a class of regime-switching multivariate processes where each switch results in a change in the drift. In particular, this framework includes the data segmentation of multivariate partial sum, integrated diffusion and renewal processes even if the distance between change points is sublinear. We study the asymptotic behaviour of the corresponding change point estimators, show consistency and derive the corresponding localisation rates which are minimax optimal in a variety of situations including an unbounded number of changes in Wiener processes with drift. Furthermore, we derive the limit distribution of the change point estimators for local changes - a result that can in principle be used to derive confidence intervals for the change points.
stat
Why Are the ARIMA and SARIMA not Sufficient
The autoregressive moving average (ARMA) model takes the significant position in time series analysis for a wide-sense stationary time series. The difference operator and seasonal difference operator, which are bases of ARIMA and SARIMA (Seasonal ARIMA), respectively, were introduced to remove the trend and seasonal component so that the original non-stationary time series could be transformed into a wide-sense stationary one, which could then be handled by Box-Jenkins methodology. However, such difference operators are more practical experiences than exact theories by now. In this paper, we investigate the power of the (resp. seasonal) difference operator from the perspective of spectral analysis, linear system theory and digital filtering, and point out the characteristics and limitations of (resp. seasonal) difference operator. Besides, the general method that transforms a non-stationary (the non-stationarity in the mean sense) stochastic process to be wide-sense stationary will be presented.
stat