title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Robust estimation of the mean with bounded relative standard deviation
Many randomized approximation algorithms operate by giving a procedure for simulating a random variable $X$ which has mean $\mu$ equal to the target answer, and a relative standard deviation bounded above by a known constant $c$. Examples of this type of algorithm includes methods for approximating the number of satisfying assignments to 2-SAT or DNF, the volume of a convex body, and the partition function of a Gibbs distribution. Because the answer is usually exponentially large in the problem input size, it is typical to require an estimate $\hat \mu$ satisfy $\mathbb{P}(|\hat \mu/\mu - 1| > \epsilon) \leq \delta$, where $\epsilon$ and $\delta$ are user specified nonnegative parameters. The current best algorithm uses $\lceil 2c^2\epsilon^{-2}(1+\epsilon)^2 \ln(2/\delta) \rceil$ samples to achieve such an estimate. By modifying the algorithm in order to balance the tails, it is possible to improve this result to $\lceil 2(c^2\epsilon^{-2} + 1)/(1-\epsilon^2)\ln(2/\delta) \rceil$ samples. Aside from the theoretical improvement, we also consider how to best implement this algorithm in practice. Numerical experiments show the behavior of the estimator on distributions where the relative standard deviation is unknown or infinite.
stat
Outlier-Robust Optimal Transport
Optimal transport (OT) provides a way of measuring distances between distributions that depends on the geometry of the sample space. In light of recent advances in solving the OT problem, OT distances are widely used as loss functions in minimum distance estimation. Despite its prevalence and advantages, however, OT is extremely sensitive to outliers. A single adversarially-picked outlier can increase OT distance arbitrarily. To address this issue, in this work we propose an outlier-robust OT formulation. Our formulation is convex but challenging to scale at a first glance. We proceed by deriving an \emph{equivalent} formulation based on cost truncation that is easy to incorporate into modern stochastic algorithms for regularized OT. We demonstrate our model applied to mean estimation under the Huber contamination model in simulation as well as outlier detection on real data.
stat
Generalized Score Distribution
A class of discrete probability distributions contains distributions with limited support, i.e. possible argument values are limited to a set of numbers (typically consecutive). Examples of such data are results from subjective experiments utilizing the Absolute Category Rating (ACR) technique, where possible answers (argument values) are $\{1, 2, \cdots, 5\}$ or typical Likert scale $\{-3, -2, \cdots, 3\}$. An interesting subclass of those distributions are distributions limited to two parameters: describing the mean value and the spread of the answers, and having no more than one change in the probability monotonicity. In this paper we propose a general distribution passing those limitations called Generalized Score Distribution (GSD). The proposed GSD covers all spreads of the answers, from very small, given by the Bernoulli distribution, to the maximum given by a Beta Binomial distribution. We also show that GSD correctly describes subjective experiments scores from video quality evaluations with probability of 99.7\%. A Google Collaboratory website with implementation of the GSD estimation, simulation, and visualization is provided.
stat
Probabilistic symmetries and invariant neural networks
Treating neural network inputs and outputs as random variables, we characterize the structure of neural networks that can be used to model data that are invariant or equivariant under the action of a compact group. Much recent research has been devoted to encoding invariance under symmetry transformations into neural network architectures, in an effort to improve the performance of deep neural networks in data-scarce, non-i.i.d., or unsupervised settings. By considering group invariance from the perspective of probabilistic symmetry, we establish a link between functional and probabilistic symmetry, and obtain generative functional representations of probability distributions that are invariant or equivariant under the action of a compact group. Our representations completely characterize the structure of neural networks that can be used to model such distributions and yield a general program for constructing invariant stochastic or deterministic neural networks. We demonstrate that examples from the recent literature are special cases, and develop the details of the general program for exchangeable sequences and arrays.
stat
Testing goodness-of-fit and conditional independence with approximate co-sufficient sampling
Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to model selection, confidence interval construction, conditional independence testing, and multiple testing, just to name a few applications. While testing the GoF of a simple (point) null hypothesis provides an analyst great flexibility in the choice of test statistic while still ensuring validity, most GoF tests for composite null hypotheses are far more constrained, as the test statistic must have a tractable distribution over the entire null model space. A notable exception is co-sufficient sampling (CSS): resampling the data conditional on a sufficient statistic for the null model guarantees valid GoF testing using any test statistic the analyst chooses. But CSS testing requires the null model to have a compact (in an information-theoretic sense) sufficient statistic, which only holds for a very limited class of models; even for a null model as simple as logistic regression, CSS testing is powerless. In this paper, we leverage the concept of approximate sufficiency to generalize CSS testing to essentially any parametric model with an asymptotically-efficient estimator; we call our extension "approximate CSS" (aCSS) testing. We quantify the finite-sample Type I error inflation of aCSS testing and show that it is vanishing under standard maximum likelihood asymptotics, for any choice of test statistic. We apply our proposed procedure both theoretically and in simulation to a number of models of interest to demonstrate its finite-sample Type I error and power.
stat
Approximate Bayesian inference in spatial environments
Model-based approaches bear great promise for decision making of agents interacting with the physical world. In the context of spatial environments, different types of problems such as localisation, mapping, navigation or autonomous exploration are typically adressed with specialised methods, often relying on detailed knowledge of the system at hand. We express these tasks as probabilistic inference and planning under the umbrella of deep sequential generative models. Using the frameworks of variational inference and neural networks, our method inherits favourable properties such as flexibility, scalability and the ability to learn from data. The method performs comparably to specialised state-of-the-art methodology in two distinct simulated environments.
stat
Benign Overfitting and Noisy Features
Modern machine learning often operates in the regime where the number of parameters is much higher than the number of data points, with zero training loss and yet good generalization, thereby contradicting the classical bias-variance trade-off. This \textit{benign overfitting} phenomenon has recently been characterized using so called \textit{double descent} curves where the risk undergoes another descent (in addition to the classical U-shaped learning curve when the number of parameters is small) as we increase the number of parameters beyond a certain threshold. In this paper, we examine the conditions under which \textit{Benign Overfitting} occurs in the random feature (RF) models, i.e. in a two-layer neural network with fixed first layer weights. We adopt a new view of random feature and show that \textit{benign overfitting} arises due to the noise which resides in such features (the noise may already be present in the data and propagate to the features or it may be added by the user to the features directly) and plays an important implicit regularization role in the phenomenon.
stat
Statistical Assessment of Replicability via Bayesian Model Criticism
Assessment of replicability is critical to ensure the quality and rigor of scientific research. In this paper, we discuss inference and modeling principles for replicability assessment. Targeting distinct application scenarios, we propose two types of Bayesian model criticism approaches to identify potentially irreproducible results in scientific experiments. They are motivated by established Bayesian prior and posterior predictive model-checking procedures and generalize many existing replicability assessment methods. Finally, we discuss the statistical properties of the proposed replicability assessment approaches and illustrate their usages by simulations and examples of real data analysis, including the data from the Reproducibility Project: Psychology and a systematic review of impacts of pre-existing cardiovascular disease on COVID-19 outcomes.
stat
A P\'olya-Gamma Sampler for a Generalized Logistic Regression
In this paper we introduce a novel Bayesian data augmentation approach for estimating the parameters of the generalised logistic regression model. We propose a P\'olya-Gamma sampler algorithm that allows us to sample from the exact posterior distribution, rather than relying on approximations. A simulation study illustrates the flexibility and accuracy of the proposed approach to capture heavy and light tails in binary response data of different dimensions. The methodology is applied to two different real datasets, where we demonstrate that the P\'olya-Gamma sampler provides more precise estimates than the empirical likelihood method, outperforming approximate approaches.
stat
Adaptive deep density approximation for Fokker-Planck equations
In this paper we present a novel adaptive deep density approximation strategy based on KRnet (ADDA-KR) for solving the steady-state Fokker-Planck equation. It is known that this equation typically has high-dimensional spatial variables posed on unbounded domains, which limit the application of traditional grid based numerical methods. With the Knothe-Rosenblatt rearrangement, our newly proposed flow-based generative model, called KRnet, provides a family of probability density functions to serve as effective solution candidates of the Fokker-Planck equation, which have weaker dependence on dimensionality than traditional computational approaches. To result in effective stochastic collocation points for training KRnet, we develop an adaptive sampling procedure, where samples are generated iteratively using KRnet at each iteration. In addition, we give a detailed discussion of KRnet and show that it can efficiently estimate general high-dimensional density functions. We present a general mathematical framework of ADDA-KR, validate its accuracy and demonstrate its efficiency with numerical experiments.
stat
Modeling from Features: a Mean-field Framework for Over-parameterized Deep Neural Networks
This paper proposes a new mean-field framework for over-parameterized deep neural networks (DNNs), which can be used to analyze neural network training. In this framework, a DNN is represented by probability measures and functions over its features (that is, the function values of the hidden units over the training data) in the continuous limit, instead of the neural network parameters as most existing studies have done. This new representation overcomes the degenerate situation where all the hidden units essentially have only one meaningful hidden unit in each middle layer, and further leads to a simpler representation of DNNs, for which the training objective can be reformulated as a convex optimization problem via suitable re-parameterization. Moreover, we construct a non-linear dynamics called neural feature flow, which captures the evolution of an over-parameterized DNN trained by Gradient Descent. We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures. Furthermore, we show, for Res-Net, when the neural feature flow process converges, it reaches a global minimal solution under suitable conditions. Our analysis leads to the first global convergence proof for over-parameterized neural network training with more than $3$ layers in the mean-field regime.
stat
Learning Adjustment Sets from Observational and Limited Experimental Data
Estimating causal effects from observational data is not always possible due to confounding. Identifying a set of appropriate covariates (adjustment set) and adjusting for their influence can remove confounding bias; however, such a set is typically not identifiable from observational data alone. Experimental data do not have confounding bias, but are typically limited in sample size and can therefore yield imprecise estimates. Furthermore, experimental data often include a limited set of covariates, and therefore provide limited insight into the causal structure of the underlying system. In this work we introduce a method that combines large observational and limited experimental data to identify adjustment sets and improve the estimation of causal effects. The method identifies an adjustment set (if possible) by calculating the marginal likelihood for the experimental data given observationally-derived prior probabilities of potential adjustmen sets. In this way, the method can make inferences that are not possible using only the conditional dependencies and independencies in all the observational and experimental data. We show that the method successfully identifies adjustment sets and improves causal effect estimation in simulated data, and it can sometimes make additional inferences when compared to state-of-the-art methods for combining experimental and observational data.
stat
Exact Bayesian inference in spatio-temporal Cox processes driven by multivariate Gaussian processes
In this paper we present a novel inference methodology to perform Bayesian inference for spatiotemporal Cox processes where the intensity function depends on a multivariate Gaussian process. Dynamic Gaussian processes are introduced to allow for evolution of the intensity function over discrete time. The novelty of the method lies on the fact that no discretisation error is involved despite the non-tractability of the likelihood function and infinite dimensionality of the problem. The method is based on a Markov chain Monte Carlo algorithm that samples from the joint posterior distribution of the parameters and latent variables of the model. The models are defined in a general and flexible way but they are amenable to direct sampling from the relevant distributions, due to careful characterisation of its components. The models also allow for the inclusion of regression covariates and/or temporal components to explain the variability of the intensity function. These components may be subject to relevant interaction with space and/or time. Real and simulated examples illustrate the methodology, followed by concluding remarks.
stat
Gradient tree boosting with random output projections for multi-label classification and multi-output regression
In many applications of supervised learning, multiple classification or regression outputs have to be predicted jointly. We consider several extensions of gradient boosting to address such problems. We first propose a straightforward adaptation of gradient boosting exploiting multiple output regression trees as base learners. We then argue that this method is only expected to be optimal when the outputs are fully correlated, as it forces the partitioning induced by the tree base learners to be shared by all outputs. We then propose a novel extension of gradient tree boosting to specifically address this issue. At each iteration of this new method, a regression tree structure is grown to fit a single random projection of the current residuals and the predictions of this tree are fitted linearly to the current residuals of all the outputs, independently. Because of this linear fit, the method can adapt automatically to any output correlation structure. Extensive experiments are conducted with this method, as well as other algorithmic variants, on several artificial and real problems. Randomly projecting the output space is shown to provide a better adaptation to different output correlation patterns and is therefore competitive with the best of the other methods in most settings. Thanks to model sharing, the convergence speed is also improved, reducing the computing times (or the complexity of the model) to reach a specific accuracy.
stat
Prediction and Evaluation in College Hockey using the Bradley-Terry-Zermelo Model
We describe the application of the Bradley-Terry model to NCAA Division I Men's Ice Hockey. A Bayesian construction gives a joint posterior probability distribution for the log-strength parameters, given a set of game results and a choice of prior distribution. For several suitable choices of prior, it is straightforward to find the maximum a posteriori point (MAP) and a Hessian matrix, allowing a Gaussian approximation to be constructed. Posterior predictive probabilities can be estimated by 1) setting the log-strengths to their MAP values, 2) using the Gaussian approximation for analytical or Monte Carlo integration, or 3) applying importance sampling to re-weight the results of a Monte Carlo simulation. We define a method to evaluate any models which generate predicted probabilities for future outcomes, using the Bayes factor given the actual outcomes, and apply it to NCAA tournament results. Finally, we describe an on-line tool which currently estimates probabilities of future results using MAP evaluation and describe how it can be refined using the Gaussian approximation or importance sampling.
stat
Running on empty: Recharge dynamics from animal movement data
Vital rates such as survival and recruitment have always been important in the study of population and community ecology. At the individual level, physiological processes such as energetics are critical in understanding biomechanics and movement ecology and also scale up to influence food webs and trophic cascades. Although vital rates and population-level characteristics are tied with individual-level animal movement, most statistical models for telemetry data are not equipped to provide inference about these relationships because they lack the explicit, mechanistic connection to physiological dynamics. We present a framework for modeling telemetry data that explicitly includes an aggregated physiological process associated with decision making and movement in heterogeneous environments. Our framework accommodates a wide range of movement and physiological process specifications. We illustrate a specific model formulation in continuous-time to provide direct inference about gains and losses associated with physiological processes based on movement. Our approach can also be extended to accommodate auxiliary data when available. We demonstrate our model to infer mountain lion (in Colorado, USA) and African buffalo (in Kruger National Park, South Africa) recharge dynamics.
stat
To BAN or not to BAN: Bayesian Attention Networks for Reliable Hate Speech Detection
Hate speech is an important problem in the management of user-generated content. To remove offensive content or ban misbehaving users, content moderators need reliable hate speech detectors. Recently, deep neural networks based on the transformer architecture, such as the (multilingual) BERT model, achieve superior performance in many natural language classification tasks, including hate speech detection. So far, these methods have not been able to quantify their output in terms of reliability. We propose a Bayesian method using Monte Carlo dropout within the attention layers of the transformer models to provide well-calibrated reliability estimates. We evaluate and visualize the results of the proposed approach on hate speech detection problems in several languages. Additionally, we test if affective dimensions can enhance the information extracted by the BERT model in hate speech classification. Our experiments show that Monte Carlo dropout provides a viable mechanism for reliability estimation in transformer networks. Used within the BERT model, it ofers state-of-the-art classification performance and can detect less trusted predictions. Also, it was observed that affective dimensions extracted using sentic computing methods can provide insights toward interpretation of emotions involved in hate speech. Our approach not only improves the classification performance of the state-of-the-art multilingual BERT model but the computed reliability scores also significantly reduce the workload in an inspection of ofending cases and reannotation campaigns. The provided visualization helps to understand the borderline outcomes.
stat
ICU Disparnumerophobia and Triskaidekaphobia: The 'Irrational Care Unit'?
Whilst evidence-based medicine is the cornerstone of modern practice, it is likely that clinicians are influenced by cultural biases. This work set out to look for evidence of number preference in invasive mechanical ventilatory therapy as a concrete example of subconscious treatment bias. A retrospective observational intensive care electronic medical record database search and analysis was carried out in adult general, specialist neurosciences and paediatric intensive care units within a tertiary referral hospital. All admitted, invasively mechanically ventilated patients between October 2014 and August 2015 were included. Set positive end-expiratory pressure (PEEP), respiratory rate (RR) and inspiratory pressure (Pinsp) settings were extracted. Statistical analysis using conventional testing and a novel Monte Carlo method were used to look for evidence of two culturally prevalent superstitions: Odd/even preference and aversion to the number 13. Patients spent significantly longer with odd choices for PEEP ($OR=0.16$, $p<2\times10^{-16}$), RR ($OR=0.31$, $p<2\times10^{-16}$) and Pinsp (OR=0.48, $p=2.9\times10^{-7}$). An aversion to the number 13 was detected for choices of RR ($p=0.00024$) and Pinsp ($p=3.9\times10^{-5}$). However a PEEP of 13 was more prevalent than expected by chance ($p=0.00028$). These findings suggest superstitious preferences in intensive care therapy do exist and practitioners should be alert to guard against other, less obvious but perhaps more clinically significant decision-making biases. The methodology described may be useful for detecting statistically significant number preferences in other domains.
stat
Variational Inference with Continuously-Indexed Normalizing Flows
Continuously-indexed flows (CIFs) have recently achieved improvements over baseline normalizing flows in a variety of density estimation tasks. In this paper, we adapt CIFs to the task of variational inference (VI) through the framework of auxiliary VI, and demonstrate that the advantages of CIFs over baseline flows can also translate to the VI setting for both sampling from posteriors with complicated topology and performing maximum likelihood estimation in latent-variable models.
stat
Bayesian Estimation of Sparse Spiked Covariance Matrices in High Dimensions
We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped with a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the operator norm as well as that for the principal subspace with respect to the projection operator norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture element-wise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection operator norm loss under certain low-rank and bounded coherence conditions. In addition, a point estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection operator norm loss. These results are based on a collection of concentration and large deviation inequalities for the matrix spike-and-slab LASSO prior. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example.
stat
Accounting for Location Measurement Error in Imaging Data with Application to Atomic Resolution Images of Crystalline Materials
Scientists use imaging to identify objects of interest and infer properties of these objects. The locations of these objects are often measured with error, which when ignored leads to biased parameter estimates and inflated variance. Current measurement error methods require an estimate or knowledge of the measurement error variance to correct these estimates, which may not be available. Instead, we create a spatial Bayesian hierarchical model that treats the locations as parameters, it using the image itself to incorporate positional uncertainty. We lower the computational burden by approximating the likelihood using a non-contiguous block design around the object locations. We apply this model in a materials science setting to study the relationship between the chemistry and displacement of hundreds of atom columns in crystal structures directly imaged via scanning transmission electron microscopy. Greater knowledge of this relationship can lead to engineering materials with improved properties of interest. We find strong evidence of a negative relationship between atom column displacement and the intensity of neighboring atom columns, which is related to the local chemistry. A simulation study shows our method corrects the bias in the parameter of interest and drastically improves coverage in high noise scenarios compared to non-measurement error models.
stat
Multi-level conformal clustering: A distribution-free technique for clustering and anomaly detection
In this work we present a clustering technique called \textit{multi-level conformal clustering (MLCC)}. The technique is hierarchical in nature because it can be performed at multiple significance levels which yields greater insight into the data than performing it at just one level. We describe the theoretical underpinnings of MLCC, compare and contrast it with the hierarchical clustering algorithm, and then apply it to real world datasets to assess its performance. There are several advantages to using MLCC over more classical clustering techniques: Once a significance level has been set, MLCC is able to automatically select the number of clusters. Furthermore, thanks to the conformal prediction framework the resulting clustering model has a clear statistical meaning without any assumptions about the distribution of the data. This statistical robustness also allows us to perform clustering and anomaly detection simultaneously. Moreover, due to the flexibility of the conformal prediction framework, our algorithm can be used on top of many other machine learning algorithms.
stat
Sequential testing for structural stability in approximate factor models
We develop a monitoring procedure to detect changes in a large approximate factor model. Letting $r$ be the number of common factors, we base our statistics on the fact that the $\left( r+1\right) $-th eigenvalue of the sample covariance matrix is bounded under the null of no change, whereas it becomes spiked under changes. Given that sample eigenvalues cannot be estimated consistently under the null, we randomise the test statistic, obtaining a sequence of \textit{i.i.d} statistics, which are used for the monitoring scheme. Numerical evidence shows a very small probability of false detections, and tight detection times of change-points.
stat
Incorporating Expert Prior Knowledge into Experimental Design via Posterior Sampling
Scientific experiments are usually expensive due to complex experimental preparation and processing. Experimental design is therefore involved with the task of finding the optimal experimental input that results in the desirable output by using as few experiments as possible. Experimenters can often acquire the knowledge about the location of the global optimum. However, they do not know how to exploit this knowledge to accelerate experimental design. In this paper, we adopt the technique of Bayesian optimization for experimental design since Bayesian optimization has established itself as an efficient tool for optimizing expensive black-box functions. Again, it is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization process. To address it, we represent the expert knowledge about the global optimum via placing a prior distribution on it and we then derive its posterior distribution. An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum. We theoretically analyze the convergence of the proposed algorithm and discuss the robustness of incorporating expert prior. We evaluate the efficiency of our algorithm by optimizing synthetic functions and tuning hyperparameters of classifiers along with a real-world experiment on the synthesis of short polymer fiber. The results clearly demonstrate the advantages of our proposed method.
stat
A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data
We develop and implement a novel fast bootstrap for dependent data. Our scheme is based on the i.i.d. resampling of the smoothed moment indicators. We characterize the class of parametric and semi-parametric estimation problems for which the method is valid. We show the asymptotic refinements of the proposed procedure, proving that it is higher-order correct under mild assumptions on the time series, the estimating functions, and the smoothing kernel. We illustrate the applicability and the advantages of our procedure for Generalized Empirical Likelihood estimation. As a by-product, our fast bootstrap provides higher-order correct asymptotic confidence distributions. Monte Carlo simulations on an autoregressive conditional duration model provide numerical evidence that the novel bootstrap yields higher-order accurate confidence intervals. A real-data application on dynamics of trading volume of stocks illustrates the advantage of our method over the routinely-applied first-order asymptotic theory, when the underlying distribution of the test statistic is skewed or fat-tailed.
stat
Spatial disease mapping using Directed Acyclic Graph Auto-Regressive (DAGAR) models
Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Substantive simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model.
stat
Predictive Learning on Hidden Tree-Structured Ising Models
We provide high-probability sample complexity guarantees for exact structure recovery and accurate predictive learning using noise-corrupted samples from an acyclic (tree-shaped) graphical model. The hidden variables follow a tree-structured Ising model distribution, whereas the observable variables are generated by a binary symmetric channel taking the hidden variables as its input (flipping each bit independently with some constant probability $q\in [0,1/2)$). In the absence of noise, predictive learning on Ising models was recently studied by Bresler and Karzand (2020); this paper quantifies how noise in the hidden model impacts the tasks of structure recovery and marginal distribution estimation by proving upper and lower bounds on the sample complexity. Our results generalize state-of-the-art bounds reported in prior work, and they exactly recover the noiseless case ($q=0$). In fact, for any tree with $p$ vertices and probability of incorrect recovery $\delta>0$, the sufficient number of samples remains logarithmic as in the noiseless case, i.e., $\mathcal{O}(\log(p/\delta))$, while the dependence on $q$ is $\mathcal{O}\big( 1/(1-2q)^{4} \big)$, for both aforementioned tasks. We also present a new equivalent of Isserlis' Theorem for sign-valued tree-structured distributions, yielding a new low-complexity algorithm for higher-order moment estimation.
stat
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
stat
Scalable Modeling of Spatiotemporal Data using the Variational Autoencoder: an Application in Glaucoma
As big spatial data becomes increasingly prevalent, classical spatiotemporal (ST) methods often do not scale well. While methods have been developed to account for high-dimensional spatial objects, the setting where there are exceedingly large samples of spatial observations has had less attention. The variational autoencoder (VAE), an unsupervised generative model based on deep learning and approximate Bayesian inference, fills this void using a latent variable specification that is inferred jointly across the large number of samples. In this manuscript, we compare the performance of the VAE with a more classical ST method when analyzing longitudinal visual fields from a large cohort of patients in a prospective glaucoma study. Through simulation and a case study, we demonstrate that the VAE is a scalable method for analyzing ST data, when the goal is to obtain accurate predictions. R code to implement the VAE can be found on GitHub: https://github.com/berchuck/vaeST.
stat
Avoiding Latent Variable Collapse With Generative Skip Models
Variational autoencoders learn distributions of high-dimensional data. They model data with a deep latent-variable model and then fit the model by maximizing a lower bound of the log marginal likelihood. VAEs can capture complex distributions, but they can also suffer from an issue known as "latent variable collapse," especially if the likelihood model is powerful. Specifically, the lower bound involves an approximate posterior of the latent variables; this posterior "collapses" when it is set equal to the prior, i.e., when the approximate posterior is independent of the data. While VAEs learn good generative models, latent variable collapse prevents them from learning useful representations. In this paper, we propose a simple new way to avoid latent variable collapse by including skip connections in our generative model; these connections enforce strong links between the latent variables and the likelihood function. We study generative skip models both theoretically and empirically. Theoretically, we prove that skip models increase the mutual information between the observations and the inferred latent variables. Empirically, we study images (MNIST and Omniglot) and text (Yahoo). Compared to existing VAE architectures, we show that generative skip models maintain similar predictive performance but lead to less collapse and provide more meaningful representations of the data.
stat
Symmetry-Aware Actor-Critic for 3D Molecular Design
Automating molecular design using deep reinforcement learning (RL) has the potential to greatly accelerate the search for novel materials. Despite recent progress on leveraging graph representations to design molecules, such methods are fundamentally limited by the lack of three-dimensional (3D) information. In light of this, we propose a novel actor-critic architecture for 3D molecular design that can generate molecular structures unattainable with previous approaches. This is achieved by exploiting the symmetries of the design process through a rotationally covariant state-action representation based on a spherical harmonics series expansion. We demonstrate the benefits of our approach on several 3D molecular design tasks, where we find that building in such symmetries significantly improves generalization and the quality of generated molecules.
stat
Coupled conditional backward sampling particle filter
The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, the coupling time in terms of iterations increases only linearly with respect to the time horizon under a general (strong mixing) condition. The CCBPF is useful not only as a theoretical tool, but also as a practical method that allows for unbiased estimation of smoothing expectations, following the recent developments by Jacob et al. (to appear). Unbiased estimation has many advantages, such as enabling the construction of asymptotically exact confidence intervals and straightforward parallelisation.
stat
diproperm: An R Package for the DiProPerm Test
High-dimensional low sample size (HDLSS) data sets emerge frequently in many biomedical applications. A common task for analyzing HDLSS data is to assign data to the correct class using a classifier. Classifiers which use two labels and a linear combination of features are known as binary linear classifiers. The direction-projection-permutation (DiProPerm) test was developed for testing the difference of two high-dimensional distributions induced by a binary linear classifier. This paper discusses the key components of the DiProPerm test, introduces the diproperm R package, and demonstrates the package on a real-world data set.
stat
Diabetes Mellitus Forecasting Using Population Health Data in Ontario, Canada
Leveraging health administrative data (HAD) datasets for predicting the risk of chronic diseases including diabetes has gained a lot of attention in the machine learning community recently. In this paper, we use the largest health records datasets of patients in Ontario,Canada. Provided by the Institute of Clinical Evaluative Sciences (ICES), this database is age, gender and ethnicity-diverse. The datasets include demographics, lab measurements,drug benefits, healthcare system interactions, ambulatory and hospitalizations records. We perform one of the first large-scale machine learning studies with this data to study the task of predicting diabetes in a range of 1-10 years ahead, which requires no additional screening of individuals.In the best setup, we reach a test AUC of 80.3 with a single-model trained on an observation window of 5 years with a one-year buffer using all datasets. A subset of top 15 features alone (out of a total of 963) could provide a test AUC of 79.1. In this paper, we provide extensive machine learning model performance and feature contribution analysis, which enables us to narrow down to the most important features useful for diabetes forecasting. Examples include chronic conditions such as asthma and hypertension, lab results, diagnostic codes in insurance claims, age and geographical information.
stat
Post-Processing of MCMC
Markov chain Monte Carlo (MCMC) is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which directly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.
stat
An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA
Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve some relaxations or are heuristic and lack convergence guarantees. In this paper, we propose a new alternating manifold proximal gradient method to solve these two high-dimensional problems and provide a unified convergence analysis. Numerical experiment results are reported to demonstrate the advantages of our algorithm.
stat
Spatial deformation for non-stationary extremal dependence
Modelling the extremal dependence structure of spatial data is considerably easier if that structure is stationary. However, for data observed over large or complicated domains, non-stationarity will often prevail. Current methods for modelling non-stationarity in extremal dependence rely on models that are either computationally difficult to fit or require prior knowledge of covariates. Sampson and Guttorp (1992) proposed a simple technique for handling non-stationarity in spatial dependence by smoothly mapping the sampling locations of the process from the original geographical space to a latent space where stationarity can be reasonably assumed. We present an extension of this method to a spatial extremes framework by considering least squares minimisation of pairwise theoretical and empirical extremal dependence measures. Along with some practical advice on applying these deformations, we provide a detailed simulation study in which we propose three spatial processes with varying degrees of non-stationarity in their extremal and central dependence structures. The methodology is applied to Australian summer temperature extremes and UK precipitation to illustrate its efficacy compared to a naive modelling approach.
stat
Bayesian log-Gaussian Cox process regression: applications to meta-analysis of neuroimaging working memory studies
Working memory (WM) was one of the first cognitive processes studied with functional magnetic resonance imaging. With now over 20 years of studies on WM, each study with tiny sample sizes, there is a need for meta-analysis to identify the brain regions that are consistently activated by WM tasks, and to understand the interstudy variation in those activations. However, current methods in the field cannot fully account for the spatial nature of neuroimaging meta-analysis data or the heterogeneity observed among WM studies. In this work, we propose a fully Bayesian random-effects metaregression model based on log-Gaussian Cox processes, which can be used for meta-analysis of neuroimaging studies. An efficient Markov chain Monte Carlo scheme for posterior simulations is presented which makes use of some recent advances in parallel computing using graphics processing units. Application of the proposed model to a real data set provides valuable insights regarding the function of the WM.
stat
The Weight Function in the Subtree Kernel is Decisive
Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and Smola in the early 2000's. More precisely, we investigate the influence of the weight function from a theoretical perspective and in real data applications. We establish on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight of leaves vanishes, which motivates the definition of a new weight function, learned from the data and not fixed by the user as usually done. To this end, we define a unified framework for computing the subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We show through eight real data classification problems the great efficiency of our approach, in particular for small datasets, which also states the high importance of the weight function. Finally, a visualization tool of the significant features is derived.
stat
Wasserstein Measure Coresets
The proliferation of large data sets and Bayesian inference techniques motivates demand for better data sparsification. Coresets provide a principled way of summarizing a large dataset via a smaller one that is guaranteed to match the performance of the full data set on specific problems. Classical coresets, however, neglect the underlying data distribution, which is often continuous. We address this oversight by introducing Wasserstein measure coresets, an extension of coresets which by definition takes into account generalization. Our formulation of the problem, which essentially consists in minimizing the Wasserstein distance, is solvable via stochastic gradient descent. This yields an algorithm which simply requires sample access to the data distribution and is able to handle large data streams in an online manner. We validate our construction for inference and clustering.
stat
A multi-resolution approximation via linear projection for large spatial datasets
Recent technical advances in collecting spatial data have been increasing the demand for methods to analyze large spatial datasets. The statistical analysis for these types of datasets can provide useful knowledge in various fields. However, conventional spatial statistical methods, such as maximum likelihood estimation and kriging, are impractically time-consuming for large spatial datasets due to the necessary matrix inversions. To cope with this problem, we propose a multi-resolution approximation via linear projection ($M$-RA-lp). The $M$-RA-lp conducts a linear projection approach on each subregion whenever a spatial domain is subdivided, which leads to an approximated covariance function capturing both the large- and small-scale spatial variations. Moreover, we elicit the algorithms for fast computation of the log-likelihood function and predictive distribution with the approximated covariance function obtained by the $M$-RA-lp. Simulation studies and a real data analysis for air dose rates demonstrate that our proposed $M$-RA-lp works well relative to the related existing methods.
stat
Assessing racial inequality in COVID-19 testing with Bayesian threshold tests
There are racial disparities in the COVID-19 test positivity rate, suggesting that minorities may be under-tested. Here, drawing on the literature on statistically assessing racial disparities in policing, we 1) illuminate a statistical flaw, known as infra-marginality, in using the positivity rate as a metric for assessing racial disparities in under-testing; 2) develop a new type of Bayesian threshold test to measure disparities in COVID-19 testing and 3) apply the test to measure racial disparities in testing thresholds in a real-world COVID-19 dataset.
stat
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Optimizing the execution time of tensor program, e.g., a convolution, involves finding its optimal configuration. Searching the configuration space exhaustively is typically infeasible in practice. In line with recent research using TVM, we propose to learn a surrogate model to overcome this issue. The model is trained on an acyclic graph called an abstract syntax tree, and utilizes a graph convolutional network to exploit structure in the graph. We claim that a learnable graph-based data processing is a strong competitor to heuristic-based feature extraction. We present a new dataset of graphs corresponding to configurations and their execution time for various tensor programs. We provide baselines for a runtime prediction task.
stat
Point Pattern Processes and Models
In recent years there has been a substantial increase in the availability of datasets which contain information about the location and timing of an event or group of events and the application of methods to analyse spatio-temporal datasets spans many disciplines. This chapter defines and provides an overview of tools for analysing spatial and temporal point patterns and processes, where discrete events occur at random across space or over time respectively. It also introduces the concept of spatial-temporal point patterns and methods of analysis for data where events occur in both space and time. We discuss models, methods and tools for analysing point processes.
stat
Neural Gaussian Mirror for Controlled Feature Selection in Neural Networks
Deep neural networks (DNNs) have become increasingly popular and achieved outstanding performance in predictive tasks. However, the DNN framework itself cannot inform the user which features are more or less relevant for making the prediction, which limits its applicability in many scientific fields. We introduce neural Gaussian mirrors (NGMs), in which mirrored features are created, via a structured perturbation based on a kernel-based conditional dependence measure, to help evaluate feature importance. We design two modifications of the DNN architecture for incorporating mirrored features and providing mirror statistics to measure feature importance. As shown in simulated and real data examples, the proposed method controls the feature selection error rate at a predefined level and maintains a high selection power even with the presence of highly correlated features.
stat
COVID-19 Data Analysis and Forecasting: Algeria and the World
The novel coronavirus disease 2019 COVID-19 has been leading the world into a prominent crisis. As of May 19, 2020, the virus had spread to 215 countries with more than 4,622,001 confirmed cases and 311,916 reported deaths worldwide, including Algeria with 7201 cases and 555 deaths. Analyze and forecast COVID-19 cases and deaths growth could be useful in many ways, governments could estimate medical equipment and take appropriate policy responses, and experts could approximate the peak and the end of the disease. In this work, we first train a time series Prophet model to analyze and forecast the number of COVID-19 cases and deaths in Algeria based on the previously reported numbers. Then, to better understand the spread and the properties of the COVID-19, we include external factors that may contribute to accelerate/slow the spread of the virus, construct a dataset from reliable sources, and conduct a large-scale data analysis considering 82 countries worldwide. The evaluation results show that the time series Prophet model accurately predicts the number of cases and deaths in Algeria with low RMSE scores of 218.87 and 4.79 respectively, while the forecast suggests that the total number of cases and deaths are expected to increase in the coming weeks. Moreover, the worldwide data-driven analysis reveals several correlations between the increase/decrease in the number of cases and deaths and external factors that may contribute to accelerate/slow the spread of the virus such as geographic, climatic, health, economic, and demographic factors.
stat
Principled Selection of Baseline Covariates to Account for Censoring in Randomized Trials with a Survival Endpoint
The analysis of randomized trials with time-to-event endpoints is nearly always plagued by the problem of censoring. As the censoring mechanism is usually unknown, analyses typically employ the assumption of non-informative censoring. While this assumption usually becomes more plausible as more baseline covariates are being adjusted for, such adjustment also raises concerns. Pre-specification of which covariates will be adjusted for (and how) is difficult, thus prompting the use of data-driven variable selection procedures, which may impede valid inferences to be drawn. The adjustment for covariates moreover adds concerns about model misspecification, and the fact that each change in adjustment set, also changes the censoring assumption and the treatment effect estimand. In this paper, we discuss these concerns and propose a simple variable selection strategy that aims to produce a valid test of the null in large samples. The proposal can be implemented using off-the-shelf software for (penalized) Cox regression, and is empirically found to work well in simulation studies and real data analyses.
stat
Filtering for Aggregate Hidden Markov Models with Continuous Observations
We consider a class of filtering problems for large populations where each individual is modeled by the same hidden Markov model (HMM). In this paper, we focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way such that the individuals are indistinguishable from measurements. We propose an aggregate inference algorithm called continuous observation collective forward-backward algorithm. It extends the recently proposed collective forward-backward algorithm for aggregate inference in HMMs with discrete observations to the case of continuous observations. The efficacy of this algorithm is illustrated through several numerical experiments.
stat
Bayesian Spatial Homogeneity Pursuit Regression for Count Value Data
Spatial regression models are ubiquitous in many different areas such as environmental science, geoscience, and public health. Exploring relationships between response variables and covariates with complex spatial patterns is a very important work. In this paper, we propose a novel spatially clustered coefficients regression model for count value data based on nonparametric Bayesian methods. Our proposed method detects the spatial homogeneity of the Poisson regression coefficients. A Markov random field constraint mixture of finite mixtures prior provides a consistent estimator of the number of the clusters of regression coefficients with the geographically neighborhood information. The theoretical properties of our proposed method are established. An efficient Markov chain Monte Carlo algorithm is developed by using multivariate log gamma distribution as a base distribution. Extensive simulation studies are carried out to examine empirical performance of the proposed method. Additionally, we analyze Georgia premature deaths data as an illustration of the effectiveness of our approach.
stat
Vecchia approximations of Gaussian-process predictions
Gaussian processes (GPs) are highly flexible function estimators used for geospatial analysis, nonparametric regression, and machine learning, but they are computationally infeasible for large datasets. Vecchia approximations of GPs have been used to enable fast evaluation of the likelihood for parameter inference. Here, we study Vecchia approximations of spatial predictions at observed and unobserved locations, including obtaining joint predictive distributions at large sets of locations. We consider a general Vecchia framework for GP predictions, which contains some novel and some existing special cases. We study the accuracy and computational properties of these approaches theoretically and numerically, proving that our new methods exhibit linear computational complexity in the total number of spatial locations. We show that certain choices within the framework can have a strong effect on uncertainty quantification and computational cost, which leads to specific recommendations on which methods are most suitable for various settings. We also apply our methods to a satellite dataset of chlorophyll fluorescence, showing that the new methods are faster or more accurate than existing methods, and reduce unrealistic artifacts in prediction maps.
stat
Learning non-Gaussian graphical models via Hessian scores and triangular transport
Undirected probabilistic graphical models represent the conditional dependencies, or Markov properties, of a collection of random variables. Knowing the sparsity of such a graphical model is valuable for modeling multivariate distributions and for efficiently performing inference. While the problem of learning graph structure from data has been studied extensively for certain parametric families of distributions, most existing methods fail to consistently recover the graph structure for non-Gaussian data. Here we propose an algorithm for learning the Markov structure of continuous and non-Gaussian distributions. To characterize conditional independence, we introduce a score based on integrated Hessian information from the joint log-density, and we prove that this score upper bounds the conditional mutual information for a general class of distributions. To compute the score, our algorithm SING estimates the density using a deterministic coupling, induced by a triangular transport map, and iteratively exploits sparse structure in the map to reveal sparsity in the graph. For certain non-Gaussian datasets, we show that our algorithm recovers the graph structure even with a biased approximation to the density. Among other examples, we apply sing to learn the dependencies between the states of a chaotic dynamical system with local interactions.
stat
High-Dimensional Sparse Linear Bandits
Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $\Omega(n^{2/3})$ dimension-free minimax regret lower bound for sparse linear bandits in the data-poor regime where the horizon is smaller than the ambient dimension and where the feature vectors admit a well-conditioned exploration distribution. This is complemented by a nearly matching upper bound for an explore-then-commit algorithm showing that that $\Theta(n^{2/3})$ is the optimal rate in the data-poor regime. The results complement existing bounds for the data-rich regime and provide another example where carefully balancing the trade-off between information and regret is necessary. Finally, we prove a dimension-free $O(\sqrt{n})$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.
stat
Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis
Several data analysis techniques employ similarity relationships between data points to uncover the intrinsic dimension and geometric structure of the underlying data-generating mechanism. In this paper we work under the model assumption that the data is made of random perturbations of feature vectors lying on a low-dimensional manifold. We study two questions: how to define the similarity relationship over noisy data points, and what is the resulting impact of the choice of similarity in the extraction of global geometric information from the underlying manifold. We provide concrete mathematical evidence that using a local regularization of the noisy data to define the similarity improves the approximation of the hidden Euclidean distance between unperturbed points. Furthermore, graph-based objects constructed with the locally regularized similarity function satisfy better error bounds in their recovery of global geometric ones. Our theory is supported by numerical experiments that demonstrate that the gain in geometric understanding facilitated by local regularization translates into a gain in classification accuracy in simulated and real data.
stat
Score matching for compositional distributions
Compositional data and multivariate count data with known totals are challenging to analyse due to the non-negativity and sum-to-one constraints on the sample space. It is often the case that many of the compositional components are highly right-skewed, with large numbers of zeros. A major limitation of currently available estimators for compositional models is that they either cannot handle many zeros in the data or are not computationally feasible in moderate to high dimensions. We derive a new set of novel score matching estimators applicable to distributions on a Riemannian manifold with boundary, of which the standard simplex is a special case. The score matching method is applied to estimate the parameters in a new flexible truncation model for compositional data and we show that the estimators are scalable and available in closed form. Through extensive simulation studies, the scoring methodology is demonstrated to work well for estimating the parameters in the new truncation model and also for the Dirichlet distribution. We apply the new model and estimators to real microbiome compositional data and show that the model provides a good fit to the data.
stat
Predictive Risk Analysis in Collective Risk Model: Choices between Historical Frequency and Aggregate Severity
Typical risk classification procedure in insurance is consists of a priori risk classification determined by observable risk characteristics, and a posteriori risk classification where the premium is adjusted to reflect the policyholder's claim history. While using the full claim history data is optimal in a posteriori risk classification procedure, i.e. giving premium estimators with the minimal variances, some insurance sectors, however, only use partial information of the claim history for determining the appropriate premium to charge. Classical examples include that auto insurances premium are determined by the claim frequency data and workers' compensation insurances are based on the aggregate severity. The motivation for such practice is to have a simplified and efficient posteriori risk classification procedure which is customized to the involved insurance policy. This paper compares the relative efficiency of the two simplified posteriori risk classifications, i.e. based on frequency versus severity, and provides the mathematical framework to assist practitioners in choosing the most appropriate practice.
stat
Functional Autoregressive Processes in Reproducing Kernel Hilbert Spaces
We study the estimation and prediction of functional autoregressive~(FAR) processes, a statistical tool for modeling functional time series data. Due to the infinite-dimensional nature of FAR processes, the existing literature addresses its inference via dimension reduction and theoretical results therein require the (unrealistic) assumption of fully observed functional time series. We propose an alternative inference framework based on Reproducing Kernel Hilbert Spaces~(RKHS). Specifically, a nuclear norm regularization method is proposed for estimating the transition operators of the FAR process directly from discrete samples of the functional time series. We derive a representer theorem for the FAR process, which enables infinite-dimensional inference without dimension reduction. Sharp theoretical guarantees are established under the (more realistic) assumption that we only have finite discrete samples of the FAR process. Extensive numerical experiments and a real data application of energy consumption prediction are further conducted to illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.
stat
Central Quantile Subspace
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. Existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor X. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on X through a single linear combination of the predictors, then extend to a multi index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and a real data application. Our results suggest that this method has a good finite sample performance and often outperforms existing methods.
stat
Estimating the Standard Error of Cross-Validation-Based Estimators of Classification Rules Performance
First, we analyze the variance of the Cross Validation (CV)-based estimators used for estimating the performance of classification rules. Second, we propose a novel estimator to estimate this variance using the Influence Function (IF) approach that had been used previously very successfully to estimate the variance of the bootstrap-based estimators. The motivation for this research is that, as the best of our knowledge, the literature lacks a rigorous method for estimating the variance of the CV-based estimators. What is available is a set of ad-hoc procedures that have no mathematical foundation since they ignore the covariance structure among dependent random variables. The conducted experiments show that the IF proposed method has small RMS error with some bias. However, surprisingly, the ad-hoc methods still work better than the IF-based method. Unfortunately, this is due to the lack of enough smoothness if compared to the bootstrap estimator. This opens the research for three points: (1) more comprehensive simulation study to clarify when the IF method win or loose; (2) more mathematical analysis to figure out why the ad-hoc methods work well; and (3) more mathematical treatment to figure out the connection between the appropriate amount of "smoothness" and decreasing the bias of the IF method.
stat
Predicting the Number of Future Events
This paper describes prediction methods for the number of future events from a population of units associated with an on-going time-to-event process. Examples include the prediction of warranty returns and the prediction of the number of future product failures that could cause serious threats to property or life. Important decisions such as whether a product recall should be mandated are often based on such predictions. Data, generally right-censored (and sometimes left truncated and right-censored), are used to estimate the parameters of a time-to-event distribution. This distribution can then be used to predict the number of events over future periods of time. Such predictions are sometimes called within-sample predictions and differ from other prediction problems considered in most of the prediction literature. This paper shows that the plug-in (also known as estimative or naive) prediction method is not asymptotically correct (i.e., for large amounts of data, the coverage probability always fails to converge to the nominal confidence level). However, a commonly used prediction calibration method is shown to be asymptotically correct for within-sample predictions, and two alternative predictive-distributionbased methods that perform better than the calibration method are presented and justified.
stat
Estimating Multiple Precision Matrices with Cluster Fusion Regularization
We propose a penalized likelihood framework for estimating multiple precision matrices from different classes. Most existing methods either incorporate no information on relationships between the precision matrices, or require this information be known a priori. The framework proposed in this article allows for simultaneous estimation of the precision matrices and relationships between the precision matrices, jointly. Sparse and non-sparse estimators are proposed, both of which require solving a non-convex optimization problem. To compute our proposed estimators, we use an iterative algorithm which alternates between a convex optimization problem solved by blockwise coordinate descent and a k-means clustering problem. Blockwise updates for computing the sparse estimator require solving an elastic net penalized precision matrix estimation problem, which we solve using a proximal gradient descent algorithm. We prove that this subalgorithm has a linear rate of convergence. In simulation studies and two real data applications, we show that our method can outperform competitors that ignore relevant relationships between precision matrices and performs similarly to methods which use prior information often uknown in practice.
stat
Long-Term Implications of the Revenue Transfer Methodology in the Affordable Care Act
The Affordable Care Act introduced a revenue transfer formula that requires insurance plans with generally healthier enrollees to pay funds into a revenue transfer pool for to reimburse plans with generally less healthy enrollees. For a given plan, the issue arises of whether the plan will be a payer into or a receiver from the pool in a chosen future year. To examine that issue, we analyze data from The Actuary Magazine on transfer payments for 2014-2015, and we infer strong evidence of a statistical relationship between year-to-year transfer payments. We also apply to the data a Markov transition model to study annual changes in the payer-receiver statuses of insurance plans. We estimate that the limiting conditional probability that an insurance plan will pay into the pool, given that the plan had paid into the pool in 2014, is 55.6 percent. Further, that limiting probability is attained quickly because the conditional probability that an insurance plan will pay into the pool in 2024, given that the plan had paid into the pool in 2014, is estimated to be 55.7 percent. We also find the revenue transfer system to have the disturbing feature that once a plan enters the "state" of paying into the pool then it will stay in that state for an average period of 4.87 years; moreover, once a plan has received funds from the pool then it will stay in that state for an average period of 3.89 years.
stat
SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm
Sample- and computationally-efficient distribution estimation is a fundamental tenet in statistics and machine learning. We present SURF, an algorithm for approximating distributions by piecewise polynomials. SURF is: simple, replacing prior complex optimization techniques by straight-forward {empirical probability} approximation of each potential polynomial piece {through simple empirical-probability interpolation}, and using plain divide-and-conquer to merge the pieces; universal, as well-known polynomial-approximation results imply that it accurately approximates a large class of common distributions; robust to distribution mis-specification as for any degree $d \le 8$, it estimates any distribution to an $\ell_1$ distance $< 3$ times that of the nearest degree-$d$ piecewise polynomial, improving known factor upper bounds of 3 for single polynomials and 15 for polynomials with arbitrarily many pieces; fast, using optimal sample complexity, running in near sample-linear time, and if given sorted samples it may be parallelized to run in sub-linear time. In experiments, SURF outperforms state-of-the art algorithms.
stat
Transferability of Operational Status Classification Models Among Different Wind Turbine Typesq
A detailed understanding of wind turbine performance status classification can improve operations and maintenance in the wind energy industry. Due to different engineering properties of wind turbines, the standard supervised learning models used for classification do not generalize across data sets obtained from different wind sites. We propose two methods to deal with the transferability of the trained models: first, data normalization in the form of power curve alignment, and second, a robust method based on convolutional neural networks and feature-space extension. We demonstrate the success of our methods on real-world data sets with industrial applications.
stat
Supervised PCA: A Multiobjective Approach
Methods for supervised principal component analysis (SPCA) aim to incorporate label information into principal component analysis (PCA), so that the extracted features are more useful for a prediction task of interest. Prior work on SPCA has focused primarily on optimizing prediction error, and has neglected the value of maximizing variance explained by the extracted features. We propose a new method for SPCA that addresses both of these objectives jointly, and demonstrate empirically that our approach dominates existing approaches, i.e., outperforms them with respect to both prediction error and variation explained. Our approach accommodates arbitrary supervised learning losses and, through a statistical reformulation, provides a novel low-rank extension of generalized linear models.
stat
Revisiting Identifying Assumptions for Population Size Estimation
The problem of estimating the size of a population based on a subset of individuals observed across multiple data sources is often referred to as capture-recapture or multiple-systems estimation. This is fundamentally a missing data problem, where the number of unobserved individuals represents the missing data. As with any missing data problem, multiple-systems estimation requires users to make an untestable identifying assumption in order to estimate the population size from the observed data. Approaches to multiple-systems estimation often do not emphasize the role of the identifying assumption during model specification, which makes it difficult to decouple the specification of the model for the observed data from the identifying assumption. We present a re-framing of the multiple-systems estimation problem that decouples the specification of the observed-data model from the identifying assumptions, and discuss how log-linear models and the associated no-highest-order interaction assumption fit into this framing. We present an approach to computation in the Bayesian setting which takes advantage of existing software and facilitates various sensitivity analyses. We demonstrate our approach in a case study of estimating the number of civilian casualties in the Kosovo war. Code used to produce this manuscript is available at https://github.com/aleshing/revisiting-identifying-assumptions.
stat
Identifying Precipitation Regimes in China Using Model-Based Clustering of Spatial Functional Data
The identification of precipitation regimes is important for many purposes such as agricultural planning, water resource management, and return period estimation. Since precipitation and other related meteorological data typically exhibit spatial dependency and different characteristics at different time scales, clustering such data presents unique challenges. In this paper, we develop a flexible model-based approach to cluster multi-scale spatial functional data to address such problems. The underlying clustering model is a functional linear model , and the cluster memberships are assumed to be a realization from a Markov random field with geographic covariates. The methodology is applied to a precipitation data from China to identify precipitation regimes.
stat
The Promises and Pitfalls of Deep Kernel Learning
Deep kernel learning and related techniques promise to combine the representational power of neural networks with the reliable uncertainty estimates of Gaussian processes. One crucial aspect of these models is an expectation that, because they are treated as Gaussian process models optimized using the marginal likelihood, they are protected from overfitting. However, we identify pathological behavior, including overfitting, on a simple toy example. We explore this pathology, explaining its origins and considering how it applies to real datasets. Through careful experimentation on UCI datasets, CIFAR-10, and the UTKFace dataset, we find that the overfitting from overparameterized deep kernel learning, in which the model is "somewhat Bayesian", can in certain scenarios be worse than that from not being Bayesian at all. However, we find that a fully Bayesian treatment of deep kernel learning can rectify this overfitting and obtain the desired performance improvements over standard neural networks and Gaussian processes.
stat
Bayesian Networks for Max-linear Models
We study Bayesian networks based on max-linear structural equations as introduced in Gissibl and Kl\"uppelberg [16] and provide a summary of their independence properties. In particular we emphasize that distributions for such networks are generally not faithful to the independence model determined by their associated directed acyclic graph. In addition, we consider some of the basic issues of estimation and discuss generalized maximum likelihood estimation of the coefficients, using the concept of a generalized likelihood ratio for non-dominated families as introduced by Kiefer and Wolfowitz [21]. Finally we argue that the structure of a minimal network asymptotically can be identified completely from observational data.
stat
Personality Traits and Drug Consumption. A Story Told by Data
This is a preprint version of the first book from the series: "Stories told by data". In this book a story is told about the psychological traits associated with drug consumption. The book includes: - A review of published works on the psychological profiles of drug users. - Analysis of a new original database with information on 1885 respondents and usage of 18 drugs. (Database is available online.) - An introductory description of the data mining and machine learning methods used for the analysis of this dataset. - The demonstration that the personality traits (five factor model, impulsivity, and sensation seeking), together with simple demographic data, give the possibility of predicting the risk of consumption of individual drugs with sensitivity and specificity above 70% for most drugs. - The analysis of correlations of use of different substances and the description of the groups of drugs with correlated use (correlation pleiades). - Proof of significant differences of personality profiles for users of different drugs. This is explicitly proved for benzodiazepines, ecstasy, and heroin. - Tables of personality profiles for users and non-users of 18 substances. The book is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of machine learning, advanced data mining concepts or modern psychology of personality is assumed. For more detailed introduction into statistical methods we recommend several undergraduate textbooks. Familiarity with basic statistics and some experience in the use of probabilities would be helpful as well as some basic technical understanding of psychology.
stat
Enabling Cost-Effective Population Health Monitoring By Exploiting Spatiotemporal Correlation: An Empirical Study
Because of its important role in health policy-shaping, population health monitoring (PHM) is considered a fundamental block for public health services. However, traditional public health data collection approaches, such as clinic-visit-based data integration or health surveys, could be very costly and time-consuming. To address this challenge, this paper proposes a cost-effective approach called Compressive Population Health (CPH), where a subset of a given area is selected in terms of regions within the area for data collection in the traditional way, while leveraging inherent spatial correlations of neighboring regions to perform data inference for the rest of the area. By alternating selected regions longitudinally, this approach can validate and correct previously assessed spatial correlations. To verify whether the idea of CPH is feasible, we conduct an in-depth study based on spatiotemporal morbidity rates of chronic diseases in more than 500 regions around London for over ten years. We introduce our CPH approach and present three extensive analytical studies. The first confirms that significant spatiotemporal correlations do exist. In the second study, by deploying multiple state-of-the-art data recovery algorithms, we verify that these spatiotemporal correlations can be leveraged to do data inference accurately using only a small number of samples. Finally, we compare different methods for region selection for traditional data collection and show how such methods can further reduce the overall cost while maintaining high PHM quality.
stat
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging from the environmental sciences to the health sciences. Often, the central object of interest in a point process is the underlying intensity function. Here, we present a general model for the intensity function of a non-homogeneous Poisson process using measure transport. The model is built from a flexible bijective mapping that maps from the underlying intensity function of interest to a simpler reference intensity function. We enforce bijectivity by modeling the map as a composition of multiple simple bijective maps, and show that the model exhibits an important approximation property. Estimation of the flexible mapping is accomplished within an optimization framework, wherein computations are efficiently done using recent technological advances in deep learning and a graphics processing unit. Although we find that intensity function estimates obtained with our method are not necessarily superior to those obtained using conventional methods, the modeling representation brings with it other advantages such as facilitated point process simulation and uncertainty quantification. Modeling point processes in higher dimensions is also facilitated using our approach. We illustrate the use of our model on both simulated data, and a real data set containing the locations of seismic events near Fiji since 1964.
stat
Adversarial Robustness through Local Linearization
Adversarial training is an effective methodology for training deep neural networks that are robust against adversarial, norm-bounded perturbations. However, the computational cost of adversarial training grows prohibitively as the size of the model and number of input dimensions increase. Further, training against less expensive and therefore weaker adversaries produces models that are robust against weak attacks but break down under attacks that are stronger. This is often attributed to the phenomenon of gradient obfuscation; such models have a highly non-linear loss surface in the vicinity of training examples, making it hard for gradient-based attacks to succeed even though adversarial examples still exist. In this work, we introduce a novel regularizer that encourages the loss to behave linearly in the vicinity of the training data, thereby penalizing gradient obfuscation while encouraging robustness. We show via extensive experiments on CIFAR-10 and ImageNet, that models trained with our regularizer avoid gradient obfuscation and can be trained significantly faster than adversarial training. Using this regularizer, we exceed current state of the art and achieve 47% adversarial accuracy for ImageNet with l-infinity adversarial perturbations of radius 4/255 under an untargeted, strong, white-box attack. Additionally, we match state of the art results for CIFAR-10 at 8/255.
stat
Modern strategies for time series regression
This paper discusses several modern approaches to regression analysis involving time series data where some of the predictor variables are also indexed by time. We discuss classical statistical approaches as well as methods that have been proposed recently in the machine learning literature. The approaches are compared and contrasted, and it will be seen that there are advantages and disadvantages to most currently available approaches. There is ample room for methodological developments in this area. The work is motivated by an application involving the prediction of water levels as a function of rainfall and other climate variables in an aquifer in eastern Australia.
stat
Bayesian Active Learning for Structured Output Design
In this paper, we propose an active learning method for an inverse problem that aims to find an input that achieves a desired structured-output. The proposed method provides new acquisition functions for minimizing the error between the desired structured-output and the prediction of a Gaussian process model, by effectively incorporating the correlation between multiple outputs of the underlying multi-valued black box output functions. The effectiveness of the proposed method is verified by applying it to two synthetic shape search problem and real data. In the real data experiment, we tackle the input parameter search which achieves the desired crystal growth rate in silicon carbide (SiC) crystal growth modeling, that is a problem of materials informatics.
stat
Distribution-Free Multisample Test Based on Optimal Matching with Applications to Single Cell Genomics
In this paper we propose a nonparametric graphical test based on optimal matching, for assessing the equality of multiple unknown multivariate probability distributions. Our procedure pools the data from the different classes to create a graph based on the minimum non-bipartite matching, and then utilizes the number of edges connecting data points from different classes to examine the closeness between the distributions. The proposed test is exactly distribution-free (the null distribution does not depend on the distribution of the data) and can be efficiently applied to multivariate as well as non-Euclidean data, whenever the inter-point distances are well-defined. We show that the test is universally consistent, and prove a distributional limit theorem for the test statistic under general alternatives. Through simulation studies, we demonstrate its superior performance against other common and well-known multisample tests. In scenarios where our test suggests distributional differences across classes, we also propose an approach for identifying which class or group contributes to this overall difference. The method is applied to single cell transcriptomics data obtained from the peripheral blood, cancer tissue, and tumor-adjacent normal tissue of human subjects with hepatocellular carcinoma and non-small-cell lung cancer. Our method unveils patterns in how biochemical metabolic pathways are altered across immune cells in a cancer setting, depending on the tissue location. All of the methods described herein are implemented in the R package multicross.
stat
A Relationship Between SIR Model and Generalized Logistic Distribution with Applications to SARS and COVID-19
This paper shows that the generalized logistic distribution model is derived from the well-known compartment model, consisting of susceptible, infected and recovered compartments, abbreviated as the SIR model, under certain conditions. In the SIR model, there are uncertainties in predicting the final values for the number of infected population and the infectious parameter. However, by utilizing the information obtained from the generalized logistic distribution model, we can perform the SIR numerical computation more stably and more accurately. Applications to severe acute respiratory syndrome (SARS) and Coronavirus disease 2019 (COVID-19) using this combined method are also introduced.
stat
Decontamination of Mutual Contamination Models
Many machine learning problems can be characterized by mutual contamination models. In these problems, one observes several random samples from different convex combinations of a set of unknown base distributions and the goal is to infer these base distributions. This paper considers the general setting where the base distributions are defined on arbitrary probability spaces. We examine three popular machine learning problems that arise in this general setting: multiclass classification with label noise, demixing of mixed membership models, and classification with partial labels. In each case, we give sufficient conditions for identifiability and present algorithms for the infinite and finite sample settings, with associated performance guarantees.
stat
Regularized Estimation in High-Dimensional Vector Auto-Regressive Models using Spatio-Temporal Information
A Vector Auto-Regressive (VAR) model is commonly used to model multivariate time series, and there are many penalized methods to handle high dimensionality. However in terms of spatio-temporal data, most methods do not take the spatial and temporal structure of the data into consideration, which may lead to unreliable network detection and inaccurate forecasts. This paper proposes a data-driven weighted l1 regularized approach for spatio-temporal VAR model. Extensive simulation studies are carried out to compare the proposed method with four existing methods of high-dimensional VAR model, demonstrating improvements of our method over others in parameter estimation, network detection and out-of-sample forecasts. We also apply our method on a traffic data set to evaluate its performance in real application. In addition, we explore the theoretical properties of l1 regularized estimation of VAR model under the weakly sparse scenario, in which the exact sparsity can be viewed as a special case. To the best of our knowledge, this direction has not been considered yet in the literature. For general stationary VAR process, we derive the non-asymptotic upper bounds on l1 regularized estimation errors under the weakly sparse scenario, provide the conditions of estimation consistency, and further simplify these conditions for a special VAR(1) case.
stat
Likelihood Inference for Possibly Non-Stationary Processes via Adaptive Overdifferencing
We make a simple observation that facilitates valid likelihood-based inference for the parameters of the popular ARFIMA or FARIMA model without requiring stationarity by allowing the upper bound $\bar{d}$ for the memory parameter $d$ to exceed $0.5$. We observe that estimating the parameters of a single non-stationary ARFIMA model is equivalent to estimating the parameters of a sequence of stationary ARFIMA models. This enables improved inference because many standard methods perform poorly when estimates are close to the boundary of the parameter space. It also allows us to leverage the wealth of likelihood approximations that have been introduced for estimating the parameters of a stationary process. We explore how estimation of the memory parameter $d$ depends on the upper bound $\bar{d}$ and introduce adaptive procedures for choosing $\bar{d}$. Via simulations, we examine the performance of our adaptive procedures for estimating the memory parameter when the true value is as large as $2.5$. Our adaptive procedures estimate the memory parameter well, can be used to obtain confidence intervals for the memory parameter that achieve nominal coverage rates, and perform favorably relative to existing alternatives.
stat
Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression
Motivation: The discovery of relationships between gene expression measurements and phenotypic responses is hampered by both computational and statistical impediments. Conventional statistical methods are less than ideal because they either fail to select relevant genes, predict poorly, ignore the unknown interaction structure between genes, or are computationally intractable. Thus, the creation of new methods which can handle many expression measurements on relatively small numbers of patients while also uncovering gene-gene relationships and predicting well is desirable. Results: We develop a new technique for using the marginal relationship between gene expression measurements and patient survival outcomes to identify a small subset of genes which appear highly relevant for predicting survival, produce a low-dimensional embedding based on this small subset, and amplify this embedding with information from the remaining genes. We motivate our methodology by using gene expression measurements to predict survival time for patients with diffuse large B-cell lymphoma, illustrate the behavior of our methodology on carefully constructed synthetic examples, and test it on a number of other gene expression datasets. Our technique is computationally tractable, generally outperforms other methods, is extensible to other phenotypes, and also identifies different genes (relative to existing methods) for possible future study. Key words: regression; principal components; matrix sketching; preconditioning Availability: All of the code and data are available at https://github.com/dajmcdon/aimer/.
stat
An integer-valued time series model for multivariate surveillance
In recent days different types of surveillance data are becoming available for public health reasons. In most cases several variables are monitored and events of different types are reported. As the amount of surveillance data increases, statistical methods that can effectively address multivariate surveillance scenarios are demanded. Even though research activity in this field is increasing rapidly in recent years, only a few approaches have simultaneously addressed the integer-valued property of the data and its correlation (both time correlation and cross correlation) structure. In this paper, we suggest a multivariate integer-valued autoregressive model that allows for both serial and cross correlation between the series and can easily accommodate overdispersion and covariate information. Moreover, its structure implies a natural decomposition into an endemic and an epidemic component, a common distinction in dynamic models for infectious disease counts. Detection of disease outbreaks is achieved through the comparison of surveillance data with one-step-ahead predictions obtained after fitting the suggested model to a set of clean historical data. The performance of the suggested model is illustrated on a trivariate series of syndromic surveillance data collected during Athens 2004 Olympic Games.
stat
Interpretable, predictive spatio-temporal models via enhanced Pairwise Directions Estimation
This article concerns the predictive modeling for spatio-temporal data as well as model interpretation using data information in space and time. Intrinsically, we develop a novel approach based on dimension reduction for such data in order to capture nonlinear mean structures without requiring a prespecified parametric model. In addition to prediction as a common interest, this approach focuses more on the exploration of geometric information in the data. The method of Pairwise Directions Estimation (PDE) is incorporated in our approach to implement the data-driven function searching of spatial structures and temporal patterns, useful in exploring data trends. The benefit of using geometrical information from the method of PDE is highlighted. We further enhance PDE, referring to it as PDE+, by using resolution adaptive fixed rank kriging to estimate the random effects not explained in the mean structures. Our proposal can not only produce more accurate and explainable prediction, but also increase the computation efficiency for model building. Several simulation examples are conducted and comparisons are made with four existing methods. The results demonstrate that the proposed PDE+ method is very useful for exploring and interpreting the patterns of trend for spatio-temporal data. Illustrative applications to two real datasets are also presented.
stat
Coupled Graphs and Tensor Factorization for Recommender Systems and Community Detection
Joint analysis of data from multiple information repositories facilitates uncovering the underlying structure in heterogeneous datasets. Single and coupled matrix-tensor factorization (CMTF) has been widely used in this context for imputation-based recommendation from ratings, social network, and other user-item data. When this side information is in the form of item-item correlation matrices or graphs, existing CMTF algorithms may fall short. Alleviating current limitations, we introduce a novel model coined coupled graph-tensor factorization (CGTF) that judiciously accounts for graph-related side information. The CGTF model has the potential to overcome practical challenges, such as missing slabs from the tensor and/or missing rows/columns from the correlation matrices. A novel alternating direction method of multipliers (ADMM) is also developed that recovers the nonnegative factors of CGTF. Our algorithm enjoys closed-form updates that result in reduced computational complexity and allow for convergence claims. A novel direction is further explored by employing the interpretable factors to detect graph communities having the tensor as side information. The resulting community detection approach is successful even when some links in the graphs are missing. Results with real data sets corroborate the merits of the proposed methods relative to state-of-the-art competing factorization techniques in providing recommendations and detecting communities.
stat
Personalized Treatment Selection using Causal Heterogeneity
Randomized experimentation (also known as A/B testing or bucket testing) is widely used in the internet industry to measure the metric impact obtained by different treatment variants. A/B tests identify the treatment variant showing the best performance, which then becomes the chosen or selected treatment for the entire population. However, the effect of a given treatment can differ across experimental units and a personalized approach for treatment selection can greatly improve upon the usual global selection strategy. In this work, we develop a framework for personalization through (i) estimation of heterogeneous treatment effect at either a cohort or member-level, followed by (ii) selection of optimal treatment variants for cohorts (or members) obtained through (deterministic or stochastic) constrained optimization. We perform a two-fold evaluation of our proposed methods. First, a simulation analysis is conducted to study the effect of personalized treatment selection under carefully controlled settings. This simulation illustrates the differences between the proposed methods and the suitability of each with increasing uncertainty. We also demonstrate the effectiveness of the method through a real-life example related to serving notifications at Linkedin. The solution significantly outperformed both heuristic solutions and the global treatment selection baseline leading to a sizable win on top-line metrics like member visits.
stat
Bayesian Protein Sequence and Structure Alignment
The structure of a protein is crucial in determining its functionality, and is much more conserved than sequence during evolution. A key task in structural biology is to compare protein structures in order to determine evolutionary relationships, estimate the function of newly-discovered structures, and predict unknown structures. We propose a Bayesian method for protein structure alignment, with the prior on alignments based on functions which penalise ``gaps'' in the aligned sequences. We show how a broad class of penalty functions fits into this framework, and how the resulting posterior distribution can be efficiently sampled. A commonly-used gap penalty function is shown to be a special case, and we propose a new penalty function which alleviates an undesirable feature of the commonly-used penalty. We illustrate our method on benchmark data sets, and find it competes well with popular tools from computational biology. Our method has the benefit of being able to potentially explore multiple competing alignments and quantify their merits probabilistically. The framework naturally allows for further information such as amino acid sequence to be included, and could be adapted to other situations such as flexible proteins or domain swaps.
stat
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
In likelihood-free settings where likelihood evaluations are intractable, approximate Bayesian computation (ABC) addresses the formidable inference task to discover plausible parameters of simulation programs that explain the observations. However, they demand large quantities of simulation calls. Critically, hyperparameters that determine measures of simulation discrepancy crucially balance inference accuracy and sample efficiency, yet are difficult to tune. In this paper, we present kernel embedding likelihood-free inference (KELFI), a holistic framework that automatically learns model hyperparameters to improve inference accuracy given limited simulation budget. By leveraging likelihood smoothness with conditional mean embeddings, we nonparametrically approximate likelihoods and posteriors as surrogate densities and sample from closed-form posterior mean embeddings, whose hyperparameters are learned under its approximate marginal likelihood. Our modular framework demonstrates improved accuracy and efficiency on challenging inference problems in ecology.
stat
NLMEModeling: A Wolfram Mathematica Package for Nonlinear Mixed Effects Modeling of Dynamical Systems
Nonlinear mixed effects modeling is a powerful tool when analyzing data from several entities in an experiment. In this paper, we present NLMEModeling, a package for mixed effects modeling in Wolfram Mathematica. NLMEModeling supports mixed effects modeling of dynamical systems where the underlying dynamics are described by either ordinary or stochastic differential equations combined with a flexible observation error model. Moreover, NLMEModeling is a user-friendly package with functionality for model validation, visual predictive checks and simulation capabilities. The package is freely available and provides a flexible add-on to Wolfram Mathematica.
stat
A Factor Stochastic Volatility Model with Markov-Switching Panic Regimes
The use of factor stochastic volatility models requires choosing the number of latent factors used to describe the dynamics of the financial returns process; however, empirical evidence suggests that the number and makeup of pertinent factors is time-varying and economically situational. We present a novel factor stochastic volatility model that allows for random subsets of assets to have their members experience non-market-wide panics. These participating assets will experience an increase in their variances and within-group covariances. We also give an estimation algorithm for this model that takes advantage of recent results on Particle Markov chain Monte Carlo techniques.
stat
Longitudinal Variational Autoencoder
Longitudinal datasets measured repeatedly over time from individual subjects, arise in many biomedical, psychological, social, and other studies. A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs). However, standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples. We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations imposed by auxiliary covariate information, and derive a new KL divergence upper bound for such GPs. Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations, disentangle effects of individual covariates or their interactions, and achieve highly accurate predictive performance. We compare our model against previous methods on synthetic as well as clinical datasets, and demonstrate the state-of-the-art performance in data imputation, reconstruction, and long-term prediction tasks.
stat
Structural Equation Models as Computation Graphs
Structural equation modeling (SEM) is a popular tool in the social and behavioural sciences, where it is being applied to ever more complex data types. The high-dimensional data produced by modern sensors, brain images, or (epi)genetic measurements require variable selection using parameter penalization; experimental models combining disparate data sources benefit from regularization to obtain a stable result; and genomic SEM or network models lead to alternative objective functions. With each proposed extension, researchers currently have to completely reformulate SEM and its optimization algorithm -- a challenging and time-consuming task. In this paper, we consider each SEM as a computation graph, a flexible method of specifying objective functions borrowed from the field of deep learning. When combined with state-of-the-art optimizers, our computation graph approach can extend SEM without the need for bespoke software development. We show that both existing and novel SEM improvements follow naturally from our approach. To demonstrate, we discuss least absolute deviation estimation and penalized regression models. We also introduce spike-and-slab SEM, which may perform better when shrinkage of large factor loadings is not desired. By applying computation graphs to SEM, we hope to greatly accelerate the process of developing SEM techniques, paving the way for new applications. We provide an accompanying R package tensorsem.
stat
The Normal-Generalised Gamma-Pareto process: A novel pure-jump L\'evy process with flexible tail and jump-activity properties
Pure-jump L\'evy processes are popular classes of stochastic processes which have found many applications in finance, statistics or machine learning. In this paper, we propose a novel family of self-decomposable L\'evy processes where one can control separately the tail behavior and the jump activity of the process, via two different parameters. Crucially, we show that one can sample exactly increments of this process, at any time scale; this allows the implementation of likelihood-free Markov chain Monte Carlo algorithms for (asymptotically) exact posterior inference. We use this novel process in L\'evy-based stochastic volatility models to predict the returns of stock market data, and show that the proposed class of models leads to superior predictive performances compared to classical alternatives.
stat
A New Approach to Determine the Coefficient of Skewness and An Alternative Form of Boxplot
To solve the problems in measuring coefficient of skewness related to extreme value, irregular distance from the middle point and distance between two consecutive numbers, "Rank skewness" a new measure of the coefficient of skewness has been proposed in this paper. Comparing with other measures of the coefficient of skewness, proposed measure of the coefficient of skewness performs better specially for skewed distribution. An alternative of five point summary boxplot, a four point summary graph has also been proposed which is simpler than the traditional boxplot. It is based on all observation and give better result than the five point summary.
stat
Multi-resolution Spatial Regression for Aggregated Data with an Application to Crop Yield Prediction
We develop a new methodology for spatial regression of aggregated outputs on multi-resolution covariates. Such problems often occur with spatial data, for example in crop yield prediction, where the output is spatially-aggregated over an area and the covariates may be observed at multiple resolutions. Building upon previous work on aggregated output regression, we propose a regression framework to synthesise the effects of the covariates at different resolutions on the output and provide uncertainty estimation. We show that, for a crop yield prediction problem, our approach is more scalable, via variational inference, than existing multi-resolution regression models. We also show that our framework yields good predictive performance, compared to existing multi-resolution crop yield models, whilst being able to provide estimation of the underlying spatial effects.
stat
Contributed Discussion of "A Bayesian Conjugate Gradient Method"
We would like to congratulate the authors of "A Bayesian Conjugate Gradient Method" on their insightful paper, and welcome this publication which we firmly believe will become a fundamental contribution to the growing field of probabilistic numerical methods and in particular the sub-field of Bayesian numerical methods. In this short piece, which will be published as a comment alongside the main paper, we first initiate a discussion on the choice of priors for solving linear systems, then propose an extension of the Bayesian conjugate gradient (BayesCG) algorithm for solving several related linear systems simultaneously.
stat
On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces
Deep learning has been applied to various tasks in the field of machine learning and has shown superiority to other common procedures such as kernel methods. To provide a better theoretical understanding of the reasons for its success, we discuss the performance of deep learning and other methods on a nonparametric regression problem with a Gaussian noise. Whereas existing theoretical studies of deep learning have been based mainly on mathematical theories of well-known function classes such as H\"{o}lder and Besov classes, we focus on function classes with discontinuity and sparsity, which are those naturally assumed in practice. To highlight the effectiveness of deep learning, we compare deep learning with a class of linear estimators representative of a class of shallow estimators. It is shown that the minimax risk of a linear estimator on the convex hull of a target function class does not differ from that of the original target function class. This results in the suboptimality of linear methods over a simple but non-convex function class, on which deep learning can attain nearly the minimax-optimal rate. In addition to this extreme case, we consider function classes with sparse wavelet coefficients. On these function classes, deep learning also attains the minimax rate up to log factors of the sample size, and linear methods are still suboptimal if the assumed sparsity is strong. We also point out that the parameter sharing of deep neural networks can remarkably reduce the complexity of the model in our setting.
stat
Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces
Comparing two probability measures supported on heterogeneous spaces is an increasingly important problem in machine learning. Such problems arise when comparing for instance two populations of biological cells, each described with its own set of features, or when looking at families of word embeddings trained across different corpora/languages. For such settings, the Gromov Wasserstein (GW) distance is often presented as the gold standard. GW is intuitive, as it quantifies whether one measure can be isomorphically mapped to the other. However, its exact computation is intractable, and most algorithms that claim to approximate it remain expensive. Building on \cite{memoli-2011}, who proposed to represent each point in each distribution as the 1D distribution of its distances to all other points, we introduce in this paper the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations. Our main contribution is to propose a sweep line algorithm to compute AE \emph{exactly} in log-quadratic time, where a naive implementation would be cubic. This is quasi-linear w.r.t. the description of the problem itself. Our second contribution is the proposal of robust variants of AE and AW that uses rank statistics rather than the original distances. We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations. Code is available at \url{https://github.com/joisino/anchor-energy}.
stat
A Second look at Exponential and Cosine Step Sizes: Simplicity, Convergence, and Performance
Stochastic Gradient Descent (SGD) is a popular tool in training large-scale machine learning models. Its performance, however, is highly variable, depending crucially on the choice of the step sizes. Accordingly, a variety of strategies for tuning the step sizes have been proposed. Yet, most of them lack a theoretical guarantee, whereas those backed by theories often do not shine in practice. In this paper, we study two heuristic step size schedules whose power has been repeatedly confirmed in practice: the exponential and the cosine step sizes. For the first time, we provide theoretical support for them: we prove their (almost) optimal convergence rates for stochastic optimization of smooth non-convex functions. Furthermore, if in addition, the Polyak-\L{}ojasiewicz (PL) condition holds, they both automatically adapt to the level of noise, with a rate interpolating between a linear rate for the noiseless case and a sub-linear one for the noisy case. Finally, we conduct a fair and comprehensive empirical evaluation of real-world datasets with deep learning architectures. Results show that, even if only requiring at most two hyperparameters to tune, they best or match the performance of various finely-tuned state-of-the-art strategies.
stat
Bayesian Optimization with Unknown Search Space
Applying Bayesian optimization in problems wherein the search space is unknown is challenging. To address this problem, we propose a systematic volume expansion strategy for the Bayesian optimization. We devise a strategy to guarantee that in iterative expansions of the search space, our method can find a point whose function value within epsilon of the objective function maximum. Without the need to specify any parameters, our algorithm automatically triggers a minimal expansion required iteratively. We derive analytic expressions for when to trigger the expansion and by how much to expand. We also provide theoretical analysis to show that our method achieves epsilon-accuracy after a finite number of iterations. We demonstrate our method on both benchmark test functions and machine learning hyper-parameter tuning tasks and demonstrate that our method outperforms baselines.
stat
The Wasserstein Impact Measure (WIM): a generally applicable, practical tool for quantifying prior impact in Bayesian statistics
The prior distribution is a crucial building block in Bayesian analysis, and its choice will impact the subsequent inference. It is therefore important to have a convenient way to quantify this impact, as such a measure of prior impact will help us to choose between two or more priors in a given situation. A recently proposed approach consists in determining the Wasserstein distance between posteriors resulting from two distinct priors, revealing how close or distant they are. In particular, if one prior is the uniform/flat prior, this distance leads to a genuine measure of prior impact for the other prior. While highly appealing and successful from a theoretical viewpoint, this proposal suffers from practical limitations: it requires prior distributions to be nested, posterior distributions should not be of a too complex form, in most considered settings the exact distance was not computed but sharp upper and lower bounds were proposed, and the proposal so far is restricted to scalar parameter settings. In this paper, we overcome all these limitations by introducing a practical version of this theoretical approach, namely the Wasserstein Impact Measure (WIM). In three simulated scenarios, we will compare the WIM to the theoretical Wasserstein approach, as well as to two competitor prior impact measures from the literature. We finally illustrate the versatility of the WIM by applying it on two datasets.
stat
MaxSkew and MultiSkew: Two R Packages for Detecting, Measuring and Removing Multivariate Skewness
Skewness plays a relevant role in several multivariate statistical techniques. Sometimes it is used to recover data features, as in cluster analysis. In other circumstances, skewness impairs the performances of statistical methods, as in the Hotelling's one-sample test. In both cases, there is the need to check the symmetry of the underlying distribution, either by visual inspection or by formal testing. The R packages MaxSkew and MultiSkew address these issues by measuring, testing and removing skewness from multivariate data. Skewness is assessed by the third multivariate cumulant and its functions. The hypothesis of symmetry is tested either nonparametrically, with the bootstrap, or parametrically, under the normality assumption. Skewness is removed or at least alleviated by projecting the data onto appropriate linear subspaces. Usages of MaxSkew and MultiSkew are illustrated with the Iris dataset.
stat