title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A robust approach to quantifying uncertainty in matching problems of causal inference
Unquantified sources of uncertainty in observational causal analyses can break the integrity of the results. One would never want another analyst to repeat a calculation with the same dataset, using a seemingly identical procedure, only to find a different conclusion. However, as we show in this work, there is a typical source of uncertainty that is essentially never considered in observational causal studies: the choice of match assignment for matched groups, that is, which unit is matched to which other unit before a hypothesis test is conducted. The choice of match assignment is anything but innocuous, and can have a surprisingly large influence on the causal conclusions. Given that a vast number of causal inference studies test hypotheses on treatment effects after treatment cases are matched with similar control cases, we should find a way to quantify how much this extra source of uncertainty impacts results. What we would really like to be able to report is that \emph{no matter} which match assignment is made, as long as the match is sufficiently good, then the hypothesis test result still holds. In this paper, we provide methodology based on discrete optimization to create robust tests that explicitly account for this possibility. We formulate robust tests for binary and continuous data based on common test statistics as integer linear programs solvable with common methodologies. We study the finite-sample behavior of our test statistic in the discrete-data case. We apply our methods to simulated and real-world datasets and show that they can produce useful results in practical applied settings.
stat
State Space Emulation and Annealed Sequential Monte Carlo for High Dimensional Optimization
Many high dimensional optimization problems can be reformulated into a problem of finding theoptimal state path under an equivalent state space model setting. In this article, we present a general emulation strategy for developing a state space model whose likelihood function (or posterior distribution) shares the same general landscape as the objective function of the original optimization problem. Then the solution of the optimization problem is the same as the optimal state path that maximizes the likelihood function or the posterior distribution under the emulated system. To find such an optimal path, we adapt a simulated annealing approach by inserting a temperature control into the emulated dynamic system and propose a novel annealed Sequential Monte Carlo (SMC) method that effectively generating Monte Carlo sample paths utilizing samples obtained on the high temperature scale. Compared to the vanilla simulated annealing implementation, annealed SMC is an iterative algorithm for state space model optimization that directly generates state paths from the equilibrium distributions with a decreasing sequence of temperatures through sequential importance sampling which does not require burn-in or mixing iterations to ensure quasi-equilibrium condition. Several applications of state space model emulation and the corresponding annealed SMC results are demonstrated.
stat
Graphite: Iterative Generative Modeling of Graphs
Graphs are a fundamental abstraction for modeling relational data. However, graphs are discrete and combinatorial in nature, and learning representations suitable for machine learning tasks poses statistical and computational challenges. In this work, we propose Graphite, an algorithmic framework for unsupervised learning of representations over nodes in large graphs using deep latent variable generative models. Our model parameterizes variational autoencoders (VAE) with graph neural networks, and uses a novel iterative graph refinement strategy inspired by low-rank approximations for decoding. On a wide variety of synthetic and benchmark datasets, Graphite outperforms competing approaches for the tasks of density estimation, link prediction, and node classification. Finally, we derive a theoretical connection between message passing in graph neural networks and mean-field variational inference.
stat
Structure learning via unstructured kernel-based M-regression
In statistical learning, identifying underlying structures of true target functions based on observed data plays a crucial role to facilitate subsequent modeling and analysis. Unlike most of those existing methods that focus on some specific settings under certain model assumptions, this paper proposes a general and novel framework for recovering true structures of target functions by using unstructured M-regression in a reproducing kernel Hilbert space (RKHS). The proposed framework is inspired by the fact that gradient functions can be employed as a valid tool to learn underlying structures, including sparse learning, interaction selection and model identification, and it is easy to implement by taking advantage of the nice properties of the RKHS. More importantly, it admits a wide range of loss functions, and thus includes many commonly used methods, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification, which is also computationally efficient by solving convex optimization tasks. The asymptotic results of the proposed framework are established within a rich family of loss functions without any explicit model specifications. The superior performance of the proposed framework is also demonstrated by a variety of simulated examples and a real case study.
stat
Multifidelity probability estimation via fusion of estimators
This paper develops a multifidelity method that enables estimation of failure probabilities for expensive-to-evaluate models via information fusion and importance sampling. The presented general fusion method combines multiple probability estimators with the goal of variance reduction. We use low-fidelity models to derive biasing densities for importance sampling and then fuse the importance sampling estimators such that the fused multifidelity estimator is unbiased and has mean-squared error lower than or equal to that of any of the importance sampling estimators alone. By fusing all available estimators, the method circumvents the challenging problem of selecting the best biasing density and using only that density for sampling. A rigorous analysis shows that the fused estimator is optimal in the sense that it has minimal variance amongst all possible combinations of the estimators. The asymptotic behavior of the proposed method is demonstrated on a convection-diffusion-reaction partial differential equation model for which $10^5$ samples can be afforded. To illustrate the proposed method at scale, we consider a model of a free plane jet and quantify how uncertainties at the flow inlet propagate to a quantity of interest related to turbulent mixing. Compared to an importance sampling estimator that uses the high-fidelity model alone, our multifidelity estimator reduces the required CPU time by 65\% while achieving a similar coefficient of variation.
stat
Analysis of KNN Information Estimators for Smooth Distributions
KSG mutual information estimator, which is based on the distances of each sample to its k-th nearest neighbor, is widely used to estimate mutual information between two continuous random variables. Existing work has analyzed the convergence rate of this estimator for random variables whose densities are bounded away from zero in its support. In practice, however, KSG estimator also performs well for a much broader class of distributions, including not only those with bounded support and densities bounded away from zero, but also those with bounded support but densities approaching zero, and those with unbounded support. In this paper, we analyze the convergence rate of the error of KSG estimator for smooth distributions, whose support of density can be both bounded and unbounded. As KSG mutual information estimator can be viewed as an adaptive recombination of KL entropy estimators, in our analysis, we also provide convergence analysis of KL entropy estimator for a broad class of distributions.
stat
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
We introduce Deep Adaptive Design (DAD), a general method for amortizing the cost of performing sequential adaptive experiments using the framework of Bayesian optimal experimental design (BOED). Traditional sequential BOED approaches require substantial computational time at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.
stat
Adaptive use of replicated Latin Hypercube Designs for computing Sobol' sensitivity indices
As recently pointed out in the field of Global Sensitivity Analysis (GSA) of computer simulations, the use of replicated Latin Hypercube Designs (rLHDs) is a cost-saving alternative to regular Monte Carlo sampling to estimate first-order Sobol' indices. Indeed, two rLHDs are sufficient to compute the whole set of those indices regardless of the number of input variables. This relies on a permutation trick which, however, only works within the class of estimators called Oracle 2. In the present paper, we show that rLHDs are still beneficial to another class of estimators, called Oracle 1, which often outperforms Oracle 2 for estimating small and moderate indices. Even though unlike Oracle 2 the computation cost of Oracle 1 depends on the input dimension, the permutation trick can be applied to construct an averaged (triple) Oracle 1 estimator whose great accuracy is presented on a numerical example. Thus, we promote an adaptive rLHDs-based Sobol' sensitivity analysis where the first stage is to compute the whole set of first-order indices by Oracle 2. If needed, the accuracy of small and moderate indices can then be reevaluated by the averaged Oracle 1 estimators. This strategy, cost-saving and guaranteeing the accuracy of estimates, is applied to a computer model from the nuclear field.
stat
Impacts of California Proposition 47 on Crime in Santa Monica, CA
We examine crime patterns in Santa Monica, California before and after passage of Proposition 47, a 2014 initiative that reclassified some non-violent felonies to misdemeanors. We also study how the 2016 opening of four new light rail stations, and how more community-based policing starting in late 2018, impacted crime. A series of statistical analyses are performed on reclassified (larceny, fraud, possession of narcotics, forgery, receiving/possessing stolen property) and non-reclassified crimes by probing publicly available databases from 2006 to 2019. We compare data before and after passage of Proposition 47, city-wide and within eight neighborhoods. Similar analyses are conducted within a 450 meter radius of the new transit stations. Reports of monthly reclassified crimes increased city-wide by approximately 15% after enactment of Proposition 47, with a significant drop observed in late 2018. Downtown exhibited the largest overall surge. The reported incidence of larceny intensified throughout the city. Two new train stations, including Downtown, reported significant crime increases in their vicinity after service began. While the number of reported reclassified crimes increased after passage of Proposition 47, those not affected by the new law decreased or stayed constant, suggesting that Proposition 47 strongly impacted crime in Santa Monica. Reported crimes decreased in late 2018 concurrent with the adoption of new policing measures that enhanced outreach and patrolling. These findings may be relevant to law enforcement and policy-makers. Follow-up studies needed to confirm long-term trends may be affected by the COVID-19 pandemic that drastically changed societal conditions.
stat
Deep Fourier Kernel for Self-Attentive Point Processes
We present a novel attention-based model for discrete event data to capture complex non-linear temporal dependence structures. We borrow the idea from the attention mechanism and incorporate it into the point processes' conditional intensity function. We further introduce a novel score function using Fourier kernel embedding, whose spectrum is represented using neural networks, which drastically differs from the traditional dot-product kernel and can capture a more complex similarity structure. We establish our approach's theoretical properties and demonstrate our approach's competitive performance compared to the state-of-the-art for synthetic and real data.
stat
Sparse Gaussian Process Based On Hat Basis Functions
Gaussian process is one of the most popular non-parametric Bayesian methodologies for modeling the regression problem. It is completely determined by its mean and covariance functions. And its linear property makes it relatively straightforward to solve the prediction problem. Although Gaussian process has been successfully applied in many fields, it is still not enough to deal with physical systems that satisfy inequality constraints. This issue has been addressed by the so-called constrained Gaussian process in recent years. In this paper, we extend the core ideas of constrained Gaussian process. According to the range of training or test data, we redefine the hat basis functions mentioned in the constrained Gaussian process. Based on hat basis functions, we propose a new sparse Gaussian process method to solve the unconstrained regression problem. Similar to the exact Gaussian process and Gaussian process with Fully Independent Training Conditional approximation, our method obtains satisfactory approximate results on open-source datasets or analytical functions. In terms of performance, the proposed method reduces the overall computational complexity from $O(n^{3})$ computation in exact Gaussian process to $O(nm^{2})$ with $m$ hat basis functions and $n$ training data points.
stat
Multilevel Emulation for Stochastic Computer Models with Application to Large Offshore Wind farms
Large renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer models can be prohibitively slow and thus an emulator may be constructed and deployed to allow for efficient computation. We present a novel heteroscedastic Gaussian Process emulator which exploits cheap approximations to a stochastic offshore wind farm simulator. We conduct a probabilistic sensitivity analysis to understand the influence of key parameters in the wind farm simulator which will help us to plan a probability elicitation in the future.
stat
Robust inference for nonlinear regression models from the Tsallis score: application to Covid-19 contagion in Italy
We discuss an approach for fitting robust nonlinear regression models, which can be employed to model and predict the contagion dynamics of the Covid-19 in Italy. The focus is on the analysis of epidemic data using robust dose-response curves, but the functionality is applicable to arbitrary nonlinear regression models.
stat
Dynamic Sasvi: Strong Safe Screening for Norm-Regularized Least Squares
A recently introduced technique for a sparse optimization problem called "safe screening" allows us to identify irrelevant variables in the early stage of optimization. In this paper, we first propose a flexible framework for safe screening based on the Fenchel-Rockafellar duality and then derive a strong safe screening rule for norm-regularized least squares by the framework. We call the proposed screening rule for norm-regularized least squares "dynamic Sasvi" because it can be interpreted as a generalization of Sasvi. Unlike the original Sasvi, it does not require the exact solution of a more strongly regularized problem; hence, it works safely in practice. We show that our screening rule can eliminate more features and increase the speed of the solver in comparison with other screening rules both theoretically and experimentally.
stat
Explaining predictive models with mixed features using Shapley values and conditional inference trees
It is becoming increasingly important to explain complex, black-box machine learning models. Although there is an expanding literature on this topic, Shapley values stand out as a sound method to explain predictions from any type of machine learning model. The original development of Shapley values for prediction explanation relied on the assumption that the features being described were independent. This methodology was then extended to explain dependent features with an underlying continuous distribution. In this paper, we propose a method to explain mixed (i.e. continuous, discrete, ordinal, and categorical) dependent features by modeling the dependence structure of the features using conditional inference trees. We demonstrate our proposed method against the current industry standards in various simulation studies and find that our method often outperforms the other approaches. Finally, we apply our method to a real financial data set used in the 2018 FICO Explainable Machine Learning Challenge and show how our explanations compare to the FICO challenge Recognition Award winning team.
stat
Entropic Causal Inference: Identifiability and Finite Sample Results
Entropic causal inference is a framework for inferring the causal direction between two categorical variables from observational data. The central assumption is that the amount of unobserved randomness in the system is not too large. This unobserved randomness is measured by the entropy of the exogenous variable in the underlying structural causal model, which governs the causal relation between the observed variables. Kocaoglu et al. conjectured that the causal direction is identifiable when the entropy of the exogenous variable is not too large. In this paper, we prove a variant of their conjecture. Namely, we show that for almost all causal models where the exogenous variable has entropy that does not scale with the number of states of the observed variables, the causal direction is identifiable from observational data. We also consider the minimum entropy coupling-based algorithmic approach presented by Kocaoglu et al., and for the first time demonstrate algorithmic identifiability guarantees using a finite number of samples. We conduct extensive experiments to evaluate the robustness of the method to relaxing some of the assumptions in our theory and demonstrate that both the constant-entropy exogenous variable and the no latent confounder assumptions can be relaxed in practice. We also empirically characterize the number of observational samples needed for causal identification. Finally, we apply the algorithm on Tuebingen cause-effect pairs dataset.
stat
Resampling Methods for Detecting Anisotropic Correlation Structure
This paper proposes parametric and non-parametric hypothesis testing algorithms for detecting anisotropy -- rotational variance of the covariance function in random fields. Both algorithms are based on resampling mechanisms, which enable avoiding relying on asymptotic assumptions, as is common in previous algorithms. The algorithms' performance is illustrated numerically in simulation experiments and on real datasets representing a variety of potential challenges.
stat
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions in Medical Domain
We propose an evaluation framework for class probability estimates (CPEs) in the presence of label uncertainty, which is commonly observed as diagnosis disagreement between experts in the medical domain. We also formalize evaluation metrics for higher-order statistics, including inter-rater disagreement, to assess predictions on label uncertainty. Moreover, we propose a novel post-hoc method called $alpha$-calibration, that equips neural network classifiers with calibrated distributions over CPEs. Using synthetic experiments and a large-scale medical imaging application, we show that our approach significantly enhances the reliability of uncertainty estimates: disagreement probabilities and posterior CPEs.
stat
Clustering Binary Data by Application of Combinatorial Optimization Heuristics
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters. Five new and original methods are introduced, using neighborhoods and population behavior combinatorial optimization metaheuristics: first ones are simulated annealing, threshold accepting and tabu search, and the others are a genetic algorithm and ant colony optimization. The methods are implemented, performing the proper calibration of parameters in the case of heuristics, to ensure good results. From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM. Simulated annealing perform very well, especially compared to classical methods.
stat
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
Bayesian Optimization (BO) has shown significant success in tackling expensive low-dimensional black-box optimization problems. Many optimization problems of interest are high-dimensional, and scaling BO to such settings remains an important challenge. In this paper, we consider generalized additive models in which low-dimensional functions with overlapping subsets of variables are composed to model a high-dimensional target function. Our goal is to lower the computational resources required and facilitate faster model learning by reducing the model complexity while retaining the sample-efficiency of existing methods. Specifically, we constrain the underlying dependency graphs to tree structures in order to facilitate both the structure learning and optimization of the acquisition function. For the former, we propose a hybrid graph learning algorithm based on Gibbs sampling and mutation. In addition, we propose a novel zooming-based algorithm that permits generalized additive models to be employed more efficiently in the case of continuous domains. We demonstrate and discuss the efficacy of our approach via a range of experiments on synthetic functions and real-world datasets.
stat
A Framework for Sample Efficient Interval Estimation with Control Variates
We consider the problem of estimating confidence intervals for the mean of a random variable, where the goal is to produce the smallest possible interval for a given number of samples. While minimax optimal algorithms are known for this problem in the general case, improved performance is possible under additional assumptions. In particular, we design an estimation algorithm to take advantage of side information in the form of a control variate, leveraging order statistics. Under certain conditions on the quality of the control variates, we show improved asymptotic efficiency compared to existing estimation algorithms. Empirically, we demonstrate superior performance on several real world surveying and estimation tasks where we use the output of regression models as the control variates.
stat
Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement
Accurately forecasting county level COVID-19 confirmed cases is crucial to optimizing medical resources. Forecasting emerging outbreaks pose a particular challenge because many existing forecasting techniques learn from historical seasons trends. Recurrent neural networks (RNNs) with LSTM-based cells are a logical choice of model due to their ability to learn temporal dynamics. In this paper, we adapt the state and county level influenza model, TDEFSI-LONLY, proposed in Wang et a. [l2020] to national and county level COVID-19 data. We show that this model poorly forecasts the current pandemic. We analyze the two week ahead forecasting capabilities of the TDEFSI-LONLY model with combinations of regularization techniques. Effective training of the TDEFSI-LONLY model requires data augmentation, to overcome this challenge we utilize an SEIR model and present an inter-county mixing extension to this model to simulate sufficient training data. Further, we propose an alternate forecast model, {\it County Level Epidemiological Inference Recurrent Network} (\alg{}) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern and utilizes a time distributed dense layer to learn individual county confirmed case changes each day for a two weeks forecast. We show that the best, worst, and median state forecasts made using CLEIR-Net model are respectively New York, South Carolina, and Montana.
stat
Multiple imputation using dimension reduction techniques for high-dimensional data
Missing data present challenges in data analysis. Naive analyses such as complete-case and available-case analysis may introduce bias and loss of efficiency, and produce unreliable results. Multiple imputation (MI) is one of the most widely used methods for handling missing data which can be partly attributed to its ease of use. However, existing MI methods implemented in most statistical software are not applicable to or do not perform well in high-dimensional settings where the number of predictors is large relative to the sample size. To remedy this issue, we develop an MI approach that uses dimension reduction techniques. Specifically, in constructing imputation models in the presence of high-dimensional data our approach uses sure independent screening followed by either sparse principal component analysis (sPCA) or sufficient dimension reduction (SDR) techniques. Our simulation studies, conducted for high-dimensional data, demonstrate that using SIS followed by sPCA to perform MI achieves better performance than the other imputation methods including several existing imputation approaches. We apply our approach to analysis of gene expression data from a prostate cancer study.
stat
Data segmentation algorithms: Univariate mean change and beyond
Data segmentation a.k.a. multiple change point analysis has received considerable attention due to its importance in time series analysis and signal processing, with applications in a variety of fields including natural and social sciences, medicine, engineering and finance. In the first part of this survey, we review the existing literature on the canonical data segmentation problem which aims at detecting and localising multiple change points in the mean of univariate time series. We provide an overview of popular methodologies on their computational complexity and theoretical properties. In particular, our theoretical discussion focuses on the separation rate relating to which change points are detectable by a given procedure, and the localisation rate quantifying the precision of corresponding change point estimators, and we distinguish between whether a homogeneous or multiscale viewpoint has been adopted in their derivation. We further highlight that the latter viewpoint provides the most general setting for investigating the optimality of data segmentation algorithms. Arguably, the canonical segmentation problem has been the most popular framework to propose new data segmentation algorithms and study their efficiency in the last decades. In the second part of this survey, we motivate the importance of attaining an in-depth understanding of strengths and weaknesses of methodologies for the change point problem in a simpler, univariate setting, as a stepping stone for the development of methodologies for more complex problems. We illustrate this with a range of examples showcasing the connections between complex distributional changes and those in the mean. We also discuss extensions towards high-dimensional change point problems where we demonstrate that the challenges arising from high dimensionality are orthogonal to those in dealing with multiple change points.
stat
On Lower Bounds for Standard and Robust Gaussian Process Bandit Optimization
In this paper, we consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm is some Reproducing Kernel Hilbert Space (RKHS), which can be viewed as a non-Bayesian Gaussian process bandit problem. In the standard noisy setting, we provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability. In a robust setting in which every sampled point may be perturbed by a suitably-constrained adversary, we provide a novel lower bound for deterministic strategies, demonstrating an inevitable joint dependence of the cumulative regret on the corruption level and the time horizon, in contrast with existing lower bounds that only characterize the individual dependencies. Furthermore, in a distinct robust setting in which the final point is perturbed by an adversary, we strengthen an existing lower bound that only holds for target success probabilities very close to one, by allowing for arbitrary success probabilities in $(0,1)$.
stat
Sampling Permutations for Shapley Value Estimation
Game-theoretic attribution techniques based on Shapley values are used extensively to interpret black-box machine learning models, but their exact calculation is generally NP-hard, requiring approximation methods for non-trivial models. As the computation of Shapley values can be expressed as a summation over a set of permutations, a common approach is to sample a subset of these permutations for approximation. Unfortunately, standard Monte Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi Monte Carlo methods are not well defined on the space of permutations. To address this, we investigate new approaches based on two classes of approximation methods and compare them empirically. First, we demonstrate quadrature techniques in a RKHS containing functions of permutations, using the Mallows kernel to obtain explicit convergence rates of $O(1/n)$, improving on $O(1/\sqrt{n})$ for plain Monte Carlo. The RKHS perspective also leads to quasi Monte Carlo type error bounds, with a tractable discrepancy measure defined on permutations. Second, we exploit connections between the hypersphere $\mathbb{S}^{d-2}$ and permutations to create practical algorithms for generating permutation samples with good properties. Experiments show the above techniques provide significant improvements for Shapley value estimates over existing methods, converging to a smaller RMSE in the same number of model evaluations.
stat
A Stochastic Large-scale Machine Learning Algorithm for Distributed Features and Observations
As the size of modern data sets exceeds the disk and memory capacities of a single computer, machine learning practitioners have resorted to parallel and distributed computing. Given that optimization is one of the pillars of machine learning and predictive modeling, distributed optimization methods have recently garnered ample attention, in particular when either observations or features are distributed, but not both. We propose a general stochastic algorithm where observations, features, and gradient components can be sampled in a double distributed setting, i.e., with both features and observations distributed. Very technical analyses establish convergence properties of the algorithm under different conditions on the learning rate (diminishing to zero or constant). Computational experiments in Spark demonstrate a superior performance of our algorithm versus a benchmark in early iterations of the algorithm, which is due to the stochastic components of the algorithm.
stat
General Identification of Dynamic Treatment Regimes Under Interference
In many applied fields, researchers are often interested in tailoring treatments to unit-level characteristics in order to optimize an outcome of interest. Methods for identifying and estimating treatment policies are the subject of the dynamic treatment regime literature. Separately, in many settings the assumption that data are independent and identically distributed does not hold due to inter-subject dependence. The phenomenon where a subject's outcome is dependent on his neighbor's exposure is known as interference. These areas intersect in myriad real-world settings. In this paper we consider the problem of identifying optimal treatment policies in the presence of interference. Using a general representation of interference, via Lauritzen-Wermuth-Freydenburg chain graphs (Lauritzen and Richardson, 2002), we formalize a variety of policy interventions under interference and extend existing identification theory (Tian, 2008; Sherman and Shpitser, 2018). Finally, we illustrate the efficacy of policy maximization under interference in a simulation study.
stat
High-dimensional Gaussian graphical model for network-linked data
Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.
stat
Efficient Bayesian generalized linear models with time-varying coefficients: The walker package in R
The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as changes in tax policy which gradually increases their effect over time. The Markov chain Monte Carlo algorithms powering the Bayesian inference are based on Hamiltonian Monte Carlo provided by Stan software, using a state space representation of the model to marginalise over the regression coefficients for efficient low-dimensional sampling.
stat
An introduction to computational complexity in Markov Chain Monte Carlo methods
The aim of this work is to give an introduction to the theoretical background and computational complexity of Markov chain Monte Carlo methods. Most of the mathematical results related to the convergence are not found in most of the statistical references, and computational complexity is still an open question for most of the MCMC methods. In this work, we provide a general overview, references, and discussion about all these theoretical subjects.
stat
Filaments of crime: Informing policing via thresholded ridge estimation
Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime reduction strategies. Methods: We make use of the subspace-constrained mean shift algorithm, a recently introduced approach for ridge estimation further developed in cosmology, which we modify and extend for geospatial datasets and hot spot analysis. Our experiments extract density ridges of Part I crime incidents from the City of Chicago during the year 2018 and early 2019 to demonstrate the application to current data. Results: Our results demonstrate nonlinear mode-following ridges in agreement with broader kernel density estimates. Using early 2019 incidents with predictive ridges extracted from 2018 data, we create multi-run confidence intervals and show that our patrol templates cover around 94% of incidents for 0.1-mile envelopes around ridges, quickly rising to near-complete coverage. We also develop and provide researchers, as well as practitioners, with a user-friendly and open-source software for fast geospatial density ridge estimation. Conclusions: We show that ridges following crime report densities can be used to enhance patrolling capabilities. Our empirical tests show the stability of ridges based on past data, offering an accessible way of identifying routes within hot spots instead of patrolling epicenters. We suggest further research into the application and efficacy of density ridges for patrolling.
stat
Machine Discovery of Partial Differential Equations from Spatiotemporal Data
The study presents a general framework for discovering underlying Partial Differential Equations (PDEs) using measured spatiotemporal data. The method, called Sparse Spatiotemporal System Discovery ($\text{S}^3\text{d}$), decides which physical terms are necessary and which can be removed (because they are physically negligible in the sense that they do not affect the dynamics too much) from a pool of candidate functions. The method is built on the recent development of Sparse Bayesian Learning; which enforces the sparsity in the to-be-identified PDEs, and therefore can balance the model complexity and fitting error with theoretical guarantees. Without leveraging prior knowledge or assumptions in the discovery process, we use an automated approach to discover ten types of PDEs, including the famous Navier-Stokes and sine-Gordon equations, from simulation data alone. Moreover, we demonstrate our data-driven discovery process with the Complex Ginzburg-Landau Equation (CGLE) using data measured from a traveling-wave convection experiment. Our machine discovery approach presents solutions that has the potential to inspire, support and assist physicists for the establishment of physical laws from measured spatiotemporal data, especially in notorious fields that are often too complex to allow a straightforward establishment of physical law, such as biophysics, fluid dynamics, neuroscience or nonlinear optics.
stat
Study designs for extending causal inferences from a randomized trial to a target population
We examine study designs for extending (generalizing or transporting) causal inferences from a randomized trial to a target population. Specifically, we consider nested trial designs, where randomized individuals are nested within a sample from the target population, and non-nested trial designs, including composite dataset designs, where a randomized trial is combined with a separately obtained sample of non-randomized individuals from the target population. We show that the causal quantities that can be identified in each study design depend on what is known about the probability of sampling non-randomized individuals. For each study design, we examine identification of potential outcome means via the g-formula and inverse probability weighting. Last, we explore the implications of the sampling properties underlying the designs for the identification and estimation of the probability of trial participation.
stat
Riemannian geometry for Compound Gaussian distributions: application to recursive change detection
A new Riemannian geometry for the Compound Gaussian distribution is proposed. In particular, the Fisher information metric is obtained, along with corresponding geodesics and distance function. This new geometry is applied on a change detection problem on Multivariate Image Times Series: a recursive approach based on Riemannian optimization is developed. As shown on simulated data, it allows to reach optimal performance while being computationally more efficient.
stat
Spatial homogeneity learning for spatially correlated functional data with application to COVID-19 Growth rate curves
We study the spatial heterogeneity effect on regional COVID-19 pandemic timing and severity by analyzing the COVID-19 growth rate curves in the United States. We propose a geographically detailed functional data grouping method equipped with a functional conditional autoregressive (CAR) prior to fully capture the spatial correlation in the pandemic curves. The spatial homogeneity pattern can then be detected by a geographically weighted Chinese restaurant process prior which allows both locally spatially contiguous groups and globally discontiguous groups. We design an efficient Markov chain Monte Carlo (MCMC) algorithm to simultaneously infer the posterior distributions of the number of groups and the grouping configuration of spatial functional data. The superior numerical performance of the proposed method over competing methods is demonstrated using simulated studies and an application to COVID-19 state-level and county-level data study in the United States.
stat
Penalized least squares and sign constraints with modified Newton-Raphson algorithms: application to EEG source imaging
We propose a modified Newton-Raphson (MNR) algorithm to estimate multiple penalized least squares (MPLS) models, and its extension to perform efficient optimization over the active set of selected features (AMNR). MPLS models are a more flexible approach to find adaptive least squares solutions that can be simultaneously required to be sparse and smooth. This is particularly important when addressing real-life inverse problems where there is no ground truth available, such as electrophysiological source imaging. The proposed MNR technique can be interpreted as a generalization of the Majorize-Minimize (MM) algorithm to include combinations of constraints. The AMNR algorithm allows to extend some penalized least squares methods to the p much greater than n case, as well as considering sign constraints. We show that these algorithms provide solutions with acceptable reconstruction in simulated scenarios that do not cope with model assumptions, for low n/p ratios. We then use both algorithms for estimating known and new electroencephalography (EEG) inverse models with multiple penalties. Synthetic data were used for a preliminary comparison with the corresponding solutions using the least angle regression (LARS) algorithm according to well-known quality measures; while a visual event-related EEG was used to illustrate its usefulness in the analysis of real experimental data.
stat
A power one test for unit roots based on sample autocovariances
We propose a new unit-root test for a stationary null hypothesis $H_0$ against a unit-root alternative $H_1$. Our approach is nonparametric as the null hypothesis only assumes that the process concerned is $I(0)$ without specifying any parametric forms. The new test is based on the fact that the sample autocovariance function (ACF) converges to the finite population ACF for an $I(0)$ process while it diverges to infinity with probability approaching one for a process with unit-roots. Therefore the new test rejects the null hypothesis for the large values of the sample ACF. To address the technical challenge `how large is large', we split the sample and establish an appropriate normal approximation for the null-distribution of the test statistic. The substantial discriminative power of the new test statistic is rooted from the fact that it takes finite value under $H_0$ and diverges to infinity almost surely under $H_1$. This allows us to truncate the critical values of the test to make it with the asymptotic power one. It also alleviates the loss of power due to the sample-splitting. The finite sample properties of the test are illustrated by simulation which shows its stable and more powerful performance in comparison with the KPSS test (Kwiatkowski et al., 1992). The test is implemented in a user-friendly R-function.
stat
Robust Differential Abundance Test in Compositional Data
Differential abundance tests in the compositional data are essential and fundamental tasks in various biomedical applications, such as single-cell, bulk RNA-seq, and microbiome data analysis. Despite the recent developments in the fields, differential abundance analysis in the compositional data is still a complicated and unsolved statistical problem because of the compositional constraint and prevalent zero counts in the dataset. A new differential abundance test is introduced in this paper to address these challenges, referred to as the robust differential abundance (RDB) test. Compared with existing methods, the RDB test 1) is simple and computationally efficient, 2) is robust to prevalent zero counts in compositional datasets, 3) can take the data's compositional nature into account, and 4) has a theoretical guarantee to control false discoveries in a general setting. Furthermore, in the presence of observed covariates, the RDB test can work with the covariate balancing techniques to remove the potential confounding effects and draw reliable conclusions. To demonstrate its practical merits, we apply the new test to several numerical examples using both simulated and real datasets.
stat
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
We implement gradient-based variational inference routines for Wishart and inverse Wishart processes, which we apply as Bayesian models for the dynamic, heteroskedastic covariance matrix of a multivariate time series. The Wishart and inverse Wishart processes are constructed from i.i.d. Gaussian processes, existing variational inference algorithms for which form the basis of our approach. These methods are easy to implement as a black-box and scale favorably with the length of the time series, however, they fail in the case of the Wishart process, an issue we resolve with a simple modification into an additive white noise parameterization of the model. This modification is also key to implementing a factored variant of the construction, allowing inference to additionally scale to high-dimensional covariance matrices. Through experimentation, we demonstrate that some (but not all) model variants outperform multivariate GARCH when forecasting the covariances of returns on financial instruments.
stat
Smoothing methods to estimate the hazard rate under double truncation
In Survival Analysis, the observed lifetimes often correspond to individuals for which the event occurs within a specific calendar time interval. With such interval sampling, the lifetimes are doubly truncated at values determined by the birth dates and the sampling interval. This double truncation may induce a systematic bias in estimation, so specific corrections are needed. A relevant target in Survival Analysis is the hazard rate function, which represents the instantaneous probability for the event of interest. In this work we introduce a flexible estimation approach for the hazard rate under double truncation. Specifically, a kernel smoother is considered, in both a fully nonparametric setting and a semiparametric setting in which the incidence process fits a given parametric model. Properties of the kernel smoothers are investigated both theoretically and through simulations. In particular, an asymptotic expression of the mean integrated squared error is derived, leading to a data-driven bandwidth for the estimators. The relevance of the semiparametric approach is emphasized, in that it is generally more accurate and, importantly, it avoids the potential issues of nonexistence or nonuniqueness of the fully nonparametric estimator. Applications to the age of diagnosis of Acute Coronary Syndrome (ACS) and AIDS incubation times are included.
stat
Quantum Implementation of Risk Analysis-relevant Copulas
Modern quantitative risk management relies on an adequate modeling of the tail dependence and a possibly accurate quantification of risk measures, like Value at Risk (VaR), at high confidence levels like 1 in 100 or even 1 in 2000. Quantum computing makes such a quantification quadratically more efficient than the Monte Carlo method; see (Woerner and Egger, 2018) and, for a broader perspective, (Or\'us et al., 2018). An important element of the risk analysis toolbox is copula, see (Jouanin et al., 2004) regarding financial applications. However, to the best knowledge of the author, no quantum computing implementation for sampling from a risk modeling-relevant copula in explicit form has been published so far. Our focus here is implementation of simple yet powerful copula models, capable of a satisfactory capturing the joint tail behaviour of the modelled risk factors. This paper deals with a few simple copula families, including Multivariate B11 (MB11) copula family, presented in (Milek, 2014). We will show that this copula family is suitable for the risk aggregation as it is exceptionally able to reproduce tail dependence structures; see (Embrechts et al., 2016) for a relevant benchmark as well as necessary and sufficient conditions regarding the ultimate feasible bivariate tail dependence structures. It turns out that such a discretized copula can be expressed using simple constructs present in the quantum computing: binary fraction expansion format, comonotone/independent random variables, controlled gates, and convex combinations, and is therefore suitable for a quantum computer implementation. This paper presents design behind the quantum implementation circuits, numerical and symbolic simulation results, and experimental validation on IBM quantum computer. The paper proposes also a generic method for quantum implementation of any discretized copula.
stat
A Simple Algorithm for Scalable Monte Carlo Inference
The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.
stat
Modelling reporting delays for disease surveillance data
One difficulty for real-time tracking of epidemics is related to reporting delay. The reporting delay may be due to laboratory confirmation, logistic problems, infrastructure difficulties and so on. The ability to correct the available information as quickly as possible is crucial, in terms of decision making such as issuing warnings to the public and local authorities. A Bayesian hierarchical modelling approach is proposed as a flexible way of correcting the reporting delays and to quantify the associated uncertainty. Implementation of the model is fast, due to the use of the integrated nested Laplace approximation (INLA). The approach is illustrated on dengue fever incidence data in Rio de Janeiro, and Severe Acute Respiratory Illness (SARI) data in Paran\'a state, Brazil.
stat
Approximate Variational Estimation for a Model of Network Formation
We develop approximate estimation methods for exponential random graph models (ERGMs), whose likelihood is proportional to an intractable normalizing constant. The usual approach approximates this constant with Monte Carlo simulations, however convergence may be exponentially slow. We propose a deterministic method, based on a variational mean-field approximation of the ERGM's normalizing constant. We compute lower and upper bounds for the approximation error for any network size, adapting nonlinear large deviations results. This translates into bounds on the distance between true likelihood and mean-field likelihood. Monte Carlo simulations suggest that in practice our deterministic method performs better than our conservative theoretical approximation bounds imply, for a large class of models.
stat
Gaussian-Dirichlet Random Fields for Inference over High Dimensional Categorical Observations
We propose a generative model for the spatio-temporal distribution of high dimensional categorical observations. These are commonly produced by robots equipped with an imaging sensor such as a camera, paired with an image classifier, potentially producing observations over thousands of categories. The proposed approach combines the use of Dirichlet distributions to model sparse co-occurrence relations between the observed categories using a latent variable, and Gaussian processes to model the latent variable's spatio-temporal distribution. Experiments in this paper show that the resulting model is able to efficiently and accurately approximate the temporal distribution of high dimensional categorical measurements such as taxonomic observations of microscopic organisms in the ocean, even in unobserved (held out) locations, far from other samples. This work's primary motivation is to enable deployment of informative path planning techniques over high dimensional categorical fields, which until now have been limited to scalar or low dimensional vector observations.
stat
Variance Reduction on Adaptive Stochastic Mirror Descent
In this work, we study the idea of variance reduction applied to adaptive stochastic mirror descent algorithms in the nonsmooth nonconvex finite-sum optimization problems. We propose a simple yet generalized adaptive mirror descent algorithm with variance reduction named SVRAMD and provide its convergence analysis in different settings. We prove that variance reduction reduces the SFO complexity of most adaptive mirror descent algorithms and accelerates their convergence. In particular, our general theory implies that variance reduction can be applied to algorithms using time-varying step sizes and self-adaptive algorithms such as AdaGrad and RMSProp. Moreover, the convergence rates of SVRAMD recover the best existing rates of non-adaptive variance reduced mirror descent algorithms. We check the validity of our claims using experiments in deep learning.
stat
Simultaneous Transformation and Rounding (STAR) Models for Integer-Valued Data
We propose a simple yet powerful framework for modeling integer-valued data, such as counts, scores, and rounded data. The data-generating process is defined by Simultaneously Transforming and Rounding (STAR) a continuous-valued process, which produces a flexible family of integer-valued distributions capable of modeling zero-inflation, bounded or censored data, and over- or underdispersion. The transformation is modeled as unknown for greater distributional flexibility, while the rounding operation ensures a coherent integer-valued data-generating process. An efficient MCMC algorithm is developed for posterior inference and provides a mechanism for adaptation of successful Bayesian models and algorithms for continuous data to the integer-valued data setting. Using the STAR framework, we design a new Bayesian Additive Regression Tree (BART) model for integer-valued data, which demonstrates impressive predictive distribution accuracy for both synthetic data and a large healthcare utilization dataset. For interpretable regression-based inference, we develop a STAR additive model, which offers greater flexibility and scalability than existing integer-valued models. The STAR additive model is applied to study the recent decline in Amazon river dolphins.
stat
Estimating and Forecasting the Smoking-Attributable Mortality Fraction for Both Genders Jointly in Over 60 Countries
Smoking is one of the preventable threats to human health and is a major risk factor for lung cancer, upper aero-digestive cancer, and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. (1992) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantities of interest. We assess the model using out-of-sample predictive validation, and find that it provides good forecasts and well calibrated forecast intervals.
stat
A functional-data approach to the Argo data
The Argo data is a modern oceanography dataset that provides unprecedented global coverage of temperature and salinity measurements in the upper 2,000 meters of depth of the ocean. We study the Argo data from the perspective of functional data analysis (FDA). We develop spatio-temporal functional kriging methodology for mean and covariance estimation to predict temperature and salinity at a fixed location as a smooth function of depth. By combining tools from FDA and spatial statistics, including smoothing splines, local regression, and multivariate spatial modeling and prediction, our approach provides advantages over current methodology that consider pointwise estimation at fixed depths. Our approach naturally leverages the irregularly-sampled data in space, time, and depth to fit a space-time functional model for temperature and salinity. The developed framework provides new tools to address fundamental scientific problems involving the entire upper water column of the oceans such as the estimation of ocean heat content, stratification, and thermohaline oscillation. For example, we show that our functional approach yields more accurate ocean heat content estimates than ones based on discrete integral approximations in pressure. Further, using the derivative function estimates, we obtain a new product of a global map of the mixed layer depth, a key component in the study of heat absorption and nutrient circulation in the oceans. The derivative estimates also reveal evidence for density inversions in areas distinguished by mixing of particularly different water masses.
stat
Component-Wise Boosting of Targets for Multi-Output Prediction
Multi-output prediction deals with the prediction of several targets of possibly diverse types. One way to address this problem is the so called problem transformation method. This method is often used in multi-label learning, but can also be used for multi-output prediction due to its generality and simplicity. In this paper, we introduce an algorithm that uses the problem transformation method for multi-output prediction, while simultaneously learning the dependencies between target variables in a sparse and interpretable manner. In a first step, predictions are obtained for each target individually. Target dependencies are then learned via a component-wise boosting approach. We compare our new method with similar approaches in a benchmark using multi-label, multivariate regression and mixed-type datasets.
stat
Blinded sample size re-calculation in multiple composite population designs with normal data and baseline adjustments
The increasing interest in subpopulation analysis has led to the development of various new trial designs and analysis methods in the fields of personalized medicine and targeted therapies. In this paper, subpopulations are defined in terms of an accumulation of disjoint population subsets and will therefore be called composite populations. The proposed trial design is applicable to any set of composite populations, considering normally distributed endpoints and random baseline covariates. Treatment effects for composite populations are tested by combining $p$-values, calculated on the subset levels, using the inverse normal combination function to generate test statistics for those composite populations. The family-wise type I error rate for simultaneous testing is controlled in the strong sense by the application of the closed testing procedure. Critical values for intersection hypothesis tests are derived using multivariate normal distributions, reflecting the joint distribution of composite population test statistics under the null hypothesis. For sample size calculation and sample size re-calculation multivariate normal distributions are derived which describe the joint distribution of composite population test statistics under an assumed alternative hypothesis. Simulations demonstrate the strong control of the family-wise type I error rate in fixed designs and re-calculation designs with blinded sample size re-calculation. The target power after sample size re-calculation is typically met or close to being met.
stat
Spatial modeling of shot conversion in soccer to single out goalscoring ability
Goals are results of pin-point shots and it is a pivotal decision in soccer when, how and where to shoot. The main contribution of this study is two-fold. At first, after showing that there exists high spatial correlation in the data of shots across games, we introduce a spatial process in the error structure to model the probability of conversion from a shot depending on positional and situational covariates. The model is developed using a full Bayesian framework. Secondly, based on the proposed model, we define two new measures that can appropriately quantify the impact of an individual in soccer, by evaluating the positioning senses and shooting abilities of the players. As a practical application, the method is implemented on Major League Soccer data from 2016/17 season.
stat
Group testing and PCR: a tale of charge value
The original problem of group testing consists in the identification of defective items in a collection, by applying tests on groups of items that detect the presence of at least one defective item in the group. The aim is then to identify all defective items of the collection with as few tests as possible. This problem is relevant in several fields, among which biology and computer sciences. It recently gained attraction as a potential tool to solve a shortage of COVID-19 test kits, in particular for RT-qPCR. However, the problem of group testing is not an exact match to this implementation. Indeed, contrarily to the original problem, PCR testing employed for the detection of COVID-19 returns more than a simple binary contaminated/non-contaminated value when applied to a group of samples collected on different individuals. It gives a real value representing the viral load in the sample instead. We study here the use that can be made of this extra piece of information to construct a one-stage pool testing algorithms on an idealize version of this model. We show that under the right conditions, the total number of tests needed to detect contaminated samples diminishes drastically.
stat
Quadruply Stochastic Gaussian Processes
We introduce a stochastic variational inference procedure for training scalable Gaussian process (GP) models whose per-iteration complexity is independent of both the number of training points, $n$, and the number basis functions used in the kernel approximation, $m$. Our central contributions include an unbiased stochastic estimator of the evidence lower bound (ELBO) for a Gaussian likelihood, as well as a stochastic estimator that lower bounds the ELBO for several other likelihoods such as Laplace and logistic. Independence of the stochastic optimization update complexity on $n$ and $m$ enables inference on huge datasets using large capacity GP models. We demonstrate accurate inference on large classification and regression datasets using GPs and relevance vector machines with up to $m = 10^7$ basis functions.
stat
Uncertainty-Aware (UNA) Bases for Bayesian Regression Using Multi-Headed Auxiliary Networks
Neural Linear Models (NLM) are deep Bayesian models that produce predictive uncertainty by learning features from the data and then performing Bayesian linear regression over these features. Despite their popularity, few works have focused on formally evaluating the predictive uncertainties of these models. Furthermore, existing works point out the difficulties of encoding domain knowledge in models like NLMs, making them unsuitable for applications where interpretability is required. In this work, we show that traditional training procedures for NLMs can drastically underestimate uncertainty in data-scarce regions. We identify the underlying reasons for this behavior and propose a novel training method that can both capture useful predictive uncertainties as well as allow for incorporation of domain knowledge.
stat
The Local Randomization Framework for Regression Discontinuity Designs: A Review and Some Extensions
Regression discontinuity designs (RDDs) are a common quasi-experiment in economics and statistics. The most popular methodologies for analyzing RDDs utilize continuity-based assumptions and local polynomial regression, but recent works have developed alternative assumptions based on local randomization. The local randomization framework avoids modeling assumptions by instead placing assumptions on the assignment mechanism near the cutoff. However, most works have focused on completely randomized assignment mechanisms, which posit that propensity scores are equal for all units near the cutoff. In our review of the local randomization framework, we extend the framework to allow for any assignment mechanism, such that propensity scores may differ. We outline randomization tests that can be used to select a window around the cutoff where a particular assignment mechanism is most plausible, as well as methodologies for estimating causal effects after a window and assignment mechanism are chosen. We apply our methodology to a fuzzy RDD assessing the effects of financial aid on college dropout rates in Italy. We find that positing different assignment mechanisms within a single RDD can provide more nuanced sensitivity analyses as well as more precise inferences for causal effects.
stat
Nonparametric Pattern-Mixture Models for Inference with Missing Data
Pattern-mixture models provide a transparent approach for handling missing data, where the full-data distribution is factorized in a way that explicitly shows the parts that can be estimated from observed data alone, and the parts that require identifying restrictions. We introduce a nonparametric estimator of the full-data distribution based on the pattern-mixture model factorization. Our approach uses the empirical observed-data distribution and augments it with a nonparametric estimator of the missing-data distributions under a given identifying restriction. Our results apply to a large class of donor-based identifying restrictions that encompasses commonly used ones and can handle both monotone and nonmonotone missingness. We propose a Monte Carlo procedure to derive point estimates of functionals of interest, and the bootstrap to construct confidence intervals.
stat
Fiducial Matching for the Approximate Posterior: F-ABC
F-ABC is introduced, using universal sufficient statistics, unlike previous ABC papers, e.g. Bernton et al. (2019), and avoiding in the approximate posterior artifacts due to a Kernel. The nature of matching tolerance is examined and indications for determining its values are presented. F-ABC does not face concerns associated with ABC. Asymptotics and simulation results are also presented.
stat
$\sigma$-Ridge: group regularized ridge regression via empirical Bayes noise level cross-validation
Features in predictive models are not exchangeable, yet common supervised models treat them as such. Here we study ridge regression when the analyst can partition the features into $K$ groups based on external side-information. For example, in high-throughput biology, features may represent gene expression, protein abundance or clinical data and so each feature group represents a distinct modality. The analyst's goal is to choose optimal regularization parameters $\lambda = (\lambda_1, \dotsc, \lambda_K)$ -- one for each group. In this work, we study the impact of $\lambda$ on the predictive risk of group-regularized ridge regression by deriving limiting risk formulae under a high-dimensional random effects model with $p\asymp n$ as $n \to \infty$. Furthermore, we propose a data-driven method for choosing $\lambda$ that attains the optimal asymptotic risk: The key idea is to interpret the residual noise variance $\sigma^2$, as a regularization parameter to be chosen through cross-validation. An empirical Bayes construction maps the one-dimensional parameter $\sigma$ to the $K$-dimensional vector of regularization parameters, i.e., $\sigma \mapsto \widehat{\lambda}(\sigma)$. Beyond its theoretical optimality, the proposed method is practical and runs as fast as cross-validated ridge regression without feature groups ($K=1$).
stat
An RKHS-Based Semiparametric Approach to Nonlinear Sufficient Dimension Reduction
Based on the theory of reproducing kernel Hilbert space (RKHS) and semiparametric method, we propose a new approach to nonlinear dimension reduction. The method extends the semiparametric method into a more generalized domain where both the interested parameters and nuisance parameters to be infinite dimensional. By casting the nonlinear dimensional reduction problem in a generalized semiparametric framework, we calculate the orthogonal complement space of generalized nuisance tangent space to derive the estimating equation. Solving the estimating equation by the theory of RKHS and regularization, we obtain the estimation of dimension reduction directions of the sufficient dimension reduction (SDR) subspace and also show the asymptotic property of estimator. Furthermore, the proposed method does not rely on the linearity condition and constant variance condition. Simulation and real data studies are conducted to demonstrate the finite sample performance of our method in comparison with several existing methods.
stat
Distance Metric Learning for Graph Structured Data
Graphs are versatile tools for representing structured data. Therefore, a variety of machine learning methods have been studied for graph data analysis. Although many of those learning methods depend on the measurement of differences between input graphs, defining an appropriate distance metric for a graph remains a controversial issue. Hence, we propose a supervised distance metric learning method for the graph classification problem. Our method, named interpretable graph metric learning (IGML), learns discriminative metrics in a subgraph-based feature space, which has a strong graph representation capability. By introducing a sparsity-inducing penalty on a weight of each subgraph, IGML can identify a small number of important subgraphs that can provide insight about the given classification task. Since our formulation has a large number of optimization variables, an efficient algorithm is also proposed by using pruning techniques based on safe screening and working set selection methods. An important property of IGML is that the optimality of the solution is guaranteed because the problem is formulated as a convex problem and our pruning strategies only discard unnecessary subgraphs. Further, we show that IGML is also applicable to other structured data such as item-set and sequence data, and that it can incorporate vertex-label similarity by using a transportation-based subgraph feature. We empirically evaluate the computational efficiency and classification performance on several benchmark datasets and show some illustrative examples demonstrating that IGML identifies important subgraphs from a given graph dataset.
stat
Estimation and Inference for the Mediation Effect in a Time-varying Mediation Model
Traditional mediation analysis typically examines the relations among an intervention, a time-invariant mediator, and a time-invariant outcome variable. Although there may be a direct effect of the intervention on the outcome, there is a need to understand the process by which the intervention affects the outcome (i.e. the indirect effect through the mediator). This indirect effect is frequently assumed to be time-invariant. With improvements in data collection technology, it is possible to obtain repeated assessments over time resulting in intensive longitudinal data. This calls for an extension of traditional mediation analysis to incorporate time-varying variables as well as time-varying effects. In this paper, we focus on estimation and inference for the time-varying mediation model, which allows mediation effects to vary as a function of time. We propose a two-step approach to estimate the time-varying mediation effect. Moreover, we use a simulation based approach to derive the corresponding point-wise confidence band for the time-varying mediation effect. Simulation studies show that the proposed procedures perform well when comparing the confidence band and the true underlying model. We further apply the proposed model and the statistical inference procedure to real-world data collected from a smoking cessation study.
stat
Discovering Conditionally Salient Features with Statistical Guarantees
The goal of feature selection is to identify important features that are relevant to explain an outcome variable. Most of the work in this domain has focused on identifying globally relevant features, which are features that are related to the outcome using evidence across the entire dataset. We study a more fine-grained statistical problem: conditional feature selection, where a feature may be relevant depending on the values of the other features. For example in genetic association studies, variant $A$ could be associated with the phenotype in the entire dataset, but conditioned on variant $B$ being present it might be independent of the phenotype. In this sense, variant $A$ is globally relevant, but conditioned on $B$ it is no longer locally relevant in that region of the feature space. We present a generalization of the knockoff procedure that performs conditional feature selection while controlling a generalization of the false discovery rate (FDR) to the conditional setting. By exploiting the feature/response model-free framework of the knockoffs, the quality of the statistical FDR guarantee is not degraded even when we perform conditional feature selections. We implement this method and present an algorithm that automatically partitions the feature space such that it enhances the differences between selected sets in different regions, and validate the statistical theoretical results with experiments.
stat
Observation on F.W.E.R. and F.D.R. for correlated normal
In this paper, we have attempted to study the behaviour of the family wise error rate (FWER) for Bonferroni's procedure and false discovery rate (FDR) of the Benjamini-Hodgeberg procedure for simultaneous testing problem with equicorrelated normal observations. By simulation study, we have shown that F.W.E.R. is a concave function for small no. of hypotheses and asymptotically becomes a convex function of the correlation. The plots of F.W.E.R. and F.D.R. confirms that if non-negative correlation is present, then these procedures control the type-I error rate at a much smaller rate than the desired level of significance. This confirms the conservative nature of these popular methods when correlation is present and provides a scope for improvement in power by appropriate adjustment for correlation.
stat
Uncertainty in the Design Stage of Two-Stage Bayesian Propensity Score Analysis
The two-stage process of propensity score analysis (PSA) includes a design stage where propensity scores are estimated and implemented to approximate a randomized experiment and an analysis stage where treatment effects are estimated conditional upon the design. This paper considers how uncertainty associated with the design stage impacts estimation of causal effects in the analysis stage. Such design uncertainty can derive from the fact that the propensity score itself is an estimated quantity, but also from other features of the design stage tied to choice of propensity score implementation. This paper offers a procedure for obtaining the posterior distribution of causal effects after marginalizing over a distribution of design-stage outputs, lending a degree of formality to Bayesian methods for PSA (BPSA) that have gained attention in recent literature. Formulation of a probability distribution for the design-stage output depends on how the propensity score is implemented in the design stage, and propagation of uncertainty into causal estimates depends on how the treatment effect is estimated in the analysis stage. We explore these differences within a sample of commonly-used propensity score implementations (quantile stratification, nearest-neighbor matching, caliper matching, inverse probability of treatment weighting, and doubly robust estimation) and investigate in a simulation study the impact of statistician choice in PS model and implementation on the degree of between- and within-design variability in the estimated treatment effect. The methods are then deployed in an investigation of the association between levels of fine particulate air pollution and elevated exposure to emissions from coal-fired power plants.
stat
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
We propose a Multiscale Invertible Generative Network (MsIGN) and associated training algorithm that leverages multiscale structure to solve high-dimensional Bayesian inference. To address the curse of dimensionality, MsIGN exploits the low-dimensional nature of the posterior, and generates samples from coarse to fine scale (low to high dimension) by iteratively upsampling and refining samples. MsIGN is trained in a multi-stage manner to minimize the Jeffreys divergence, which avoids mode dropping in high-dimensional cases. On two high-dimensional Bayesian inverse problems, we show superior performance of MsIGN over previous approaches in posterior approximation and multiple mode capture. On the natural image synthesis task, MsIGN achieves superior performance in bits-per-dimension over baseline models and yields great interpret-ability of its neurons in intermediate layers.
stat
A Nonlinear Differential Equation for Generating Warping Function
Given set of functions $y_i(t)$ and $x(t)$ such that $y_i(t) = a_i x\left[h_i(t)\right]$ with $a_i$ being an unknown amplitude with low changes in time (or $\frac{\Delta a_i}{a^2_i} << 1$) and $h_i(t)$ an unknown warping function, the paper shows that $h_i(t)$ can be described using a non-linear differential equation. The differential equation then can be utilized to estimate the warping function $h_i(t)$ using a nonlinear least-squares optimization. This differential equation can also be useful for reducing and analyzing phase variability in data sequences. Results, obtained on synthetic curves, showed that the proposed method is effective in aligning the curves. The obtained aligned curves exhibit variation only in amplitude, and phase variation can be removed efficiently.
stat
Non-constant hazard ratios in randomized controlled trials with composite endpoints
The hazard ratio is routinely used as a summary measure to assess the treatment effect in clinical trials with time-to-event endpoints. It is frequently assumed as constant over time although this assumption often does not hold. When the hazard ratio deviates considerably from being constant, the average of its plausible values is not a valid measure of the treatment effect, can be clinically misleading and common sample size formulas are not appropriate. In this paper, we study the hazard ratio along time of a two-component composite endpoint under the assumption that the hazard ratio for each component is constant. This work considers two measures for quantifying the non-proportionality of the hazard ratio: the difference $D$ between the maximum and minimum values of hazard ratio over time and the relative measure $R$ representing the ratio between the sample sizes for the minimum detectable and the average effects. We illustrate $D$ and $R$ by means of the ZODIAC trial where the primary endpoint was progression-free survival. We have run a simulation study deriving scenarios for different values of the hazard ratios, different event rates and different degrees of association between the components. We illustrate situations that yield non-constant hazard ratios for the composite endpoints and consider the likely impact on sample size. Results show that the distance between the two component hazard ratios plays an important role, especially when they are close to 1. Furthermore, even when the treatment effects for each component are similar, if the two-component hazards are markedly different, hazard ratio of the composite is often non-constant.
stat
Stable Implementation of Probabilistic ODE Solvers
Probabilistic solvers for ordinary differential equations (ODEs) provide efficient quantification of numerical uncertainty associated with simulation of dynamical systems. Their convergence rates have been established by a growing body of theoretical analysis. However, these algorithms suffer from numerical instability when run at high order or with small step-sizes -- that is, exactly in the regime in which they achieve the highest accuracy. The present work proposes and examines a solution to this problem. It involves three components: accurate initialisation, a coordinate change preconditioner that makes numerical stability concerns step-size-independent, and square-root implementation. Using all three techniques enables numerical computation of probabilistic solutions of ODEs with algorithms of order up to 11, as demonstrated on a set of challenging test problems. The resulting rapid convergence is shown to be competitive to high-order, state-of-the-art, classical methods. As a consequence, a barrier between analysing probabilistic ODE solvers and applying them to interesting machine learning problems is effectively removed.
stat
Two-Sample Testing for Event Impacts in Time Series
In many application domains, time series are monitored to detect extreme events like technical faults, natural disasters, or disease outbreaks. Unfortunately, it is often non-trivial to select both a time series that is informative about events and a powerful detection algorithm: detection may fail because the detection algorithm is not suitable, or because there is no shared information between the time series and the events of interest. In this work, we thus propose a non-parametric statistical test for shared information between a time series and a series of observed events. Our test allows identifying time series that carry information on event occurrences without committing to a specific event detection methodology. In a nutshell, we test for divergences of the value distributions of the time series at increasing lags after event occurrences with a multiple two-sample testing approach. In contrast to related tests, our approach is applicable for time series over arbitrary domains, including multivariate numeric, strings or graphs. We perform a large-scale simulation study to show that it outperforms or is on par with related tests on our task for univariate time series. We also demonstrate the real-world applicability of our approach on datasets from social media and smart home environments.
stat
A primer on coupled state-switching models for multiple interacting time series
State-switching models such as hidden Markov models or Markov-switching regression models are routinely applied to analyse sequences of observations that are driven by underlying non-observable states. Coupled state-switching models extend these approaches to address the case of multiple observation sequences whose underlying state variables interact. In this paper, we provide an overview of the modelling techniques related to coupling in state-switching models, thereby forming a rich and flexible statistical framework particularly useful for modelling correlated time series. Simulation experiments demonstrate the relevance of being able to account for an asynchronous evolution as well as interactions between the underlying latent processes. The models are further illustrated using two case studies related to a) interactions between a dolphin mother and her calf as inferred from movement data; and b) electronic health record data collected on 696 patients within an intensive care unit.
stat
Estimating population average treatment effects from experiments with noncompliance
Randomized control trials (RCTs) are the gold standard for estimating causal effects, but often use samples that are non-representative of the actual population of interest. We propose a reweighting method for estimating population average treatment effects in settings with noncompliance. Simulations show the proposed compliance-adjusted population estimator outperforms its unadjusted counterpart when compliance is relatively low and can be predicted by observed covariates. We apply the method to evaluate the effect of Medicaid coverage on health care use for a target population of adults who may benefit from expansions to the Medicaid program. We draw RCT data from the Oregon Health Insurance Experiment, where less than one-third of those randomly selected to receive Medicaid benefits actually enrolled.
stat
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
We propose a lower bound on the log marginal likelihood of Gaussian process regression models that can be computed without matrix factorisation of the full kernel matrix. We show that approximate maximum likelihood learning of model parameters by maximising our lower bound retains many of the sparse variational approach benefits while reducing the bias introduced into parameter learning. The basis of our bound is a more careful analysis of the log-determinant term appearing in the log marginal likelihood, as well as using the method of conjugate gradients to derive tight lower bounds on the term involving a quadratic form. Our approach is a step forward in unifying methods relying on lower bound maximisation (e.g. variational methods) and iterative approaches based on conjugate gradients for training Gaussian processes. In experiments, we show improved predictive performance with our model for a comparable amount of training time compared to other conjugate gradient based approaches.
stat
Hamiltonian Monte Carlo using an adjoint-differentiated Laplace approximation: Bayesian inference for latent Gaussian models and beyond
Gaussian latent variable models are a key class of Bayesian hierarchical models with applications in many fields. Performing Bayesian inference on such models can be challenging as Markov chain Monte Carlo algorithms struggle with the geometry of the resulting posterior distribution and can be prohibitively slow. An alternative is to use a Laplace approximation to marginalize out the latent Gaussian variables and then integrate out the remaining hyperparameters using dynamic Hamiltonian Monte Carlo, a gradient-based Markov chain Monte Carlo sampler. To implement this scheme efficiently, we derive a novel adjoint method that propagates the minimal information needed to construct the gradient of the approximate marginal likelihood. This strategy yields a scalable differentiation method that is orders of magnitude faster than state of the art differentiation techniques when the hyperparameters are high dimensional. We prototype the method in the probabilistic programming framework Stan and test the utility of the embedded Laplace approximation on several models, including one where the dimension of the hyperparameter is $\sim$6,000. Depending on the cases, the benefits can include an alleviation of the geometric pathologies that frustrate Hamiltonian Monte Carlo and a dramatic speed-up.
stat
The FEDHC Bayesian network learning algorithm
The paper proposes a new hybrid Bayesian network learning algorithm, termed Forward Early Dropping Hill Climbing (FEDHC), designed to work with either continuous or categorical data. FEDHC consists of a skeleton identification phase (learning the conditional associations among the variables) followed by the scoring phase that assigns the (causal) directions. Specifically for the case of continuous data, a robust to outliers version of FEDHC is also proposed. Further, the paper manifests that the only implementation of MMHC in the statistical software \textit{R}, is prohibitively expensive and a new implementation is offered. The FEDHC is tested via Monte Carlo simulations that distinctly show it is computationally efficient, and produces Bayesian networks of similar to, or of higher accuracy than MMHC and PCHC. Specifically, FEDHC yields more accurate Bayesian networks than PCHC with continuous data but less accurate with categorical data. Finally, an application of FEDHC, PCHC and MMHC algorithms to real data, from the field of economics, is demonstrated using the statistical software \textit{R}.
stat
Bayesian semi-parametric G-computation for causal inference in a cohort study with MNAR dropout and death
Causal inference with observational longitudinal data and time-varying exposures is often complicated by time-dependent confounding and attrition. The G-computation formula is one approach for estimating a causal effect in this setting. The parametric modeling approach typically used in practice relies on strong modeling assumptions for valid inference, and moreover depends on an assumption of missing at random, which is not appropriate when the missingness is missing not at random (MNAR) or due to death. In this work we develop a flexible Bayesian semi-parametric G-computation approach for assessing the causal effect on the subpopulation that would survive irrespective of exposure, in a setting with MNAR dropout. The approach is to specify models for the observed data using Bayesian additive regression trees, and then use assumptions with embedded sensitivity parameters to identify and estimate the causal effect. The proposed approach is motivated by a longitudinal cohort study on cognition, health, and aging, and we apply our approach to study the effect of becoming a widow on memory. We also compare our approach to several standard methods.
stat
Estimation and inference for the indirect effect in high-dimensional linear mediation models
Mediation analysis is difficult when the number of potential mediators is larger than the sample size. In this paper we propose new inference procedures for the indirect effect in the presence of high-dimensional mediators for linear mediation models. We develop methods for both incomplete mediation, where a direct effect may exist, as well as complete mediation, where the direct effect is known to be absent. We prove consistency and asymptotic normality of our indirect effect estimators. Under complete mediation, where the indirect effect is equivalent to the total effect, we further prove that our approach gives a more powerful test compared to directly testing for the total effect. We confirm our theoretical results in simulations, as well as in an integrative analysis of gene expression and genotype data from a pharmacogenomic study of drug response. We present a novel analysis of gene sets to understand the molecular mechanisms of drug response, and also identify a genome-wide significant noncoding genetic variant that cannot be detected using standard analysis methods.
stat
Demand Forecasting in the Presence of Systematic Events: Cases in Capturing Sales Promotions
Reliable demand forecasts are critical for the effective supply chain management. Several endogenous and exogenous variables can influence the dynamics of demand, and hence a single statistical model that only consists of historical sales data is often insufficient to produce accurate forecasts. In practice, the forecasts generated by baseline statistical models are often judgmentally adjusted by forecasters to incorporate factors and information that are not incorporated in the baseline models. There are however systematic events whose effect can be effectively quantified and modeled to help minimize human intervention in adjusting the baseline forecasts. In this paper, we develop and test a novel regime-switching approach to quantify systematic information/events and objectively incorporate them into the baseline statistical model. Our simple yet practical and effective model can help limit forecast adjustments to only focus on the impact of less systematic events such as sudden climate change or dynamic market activities. The proposed model and approach is validated empirically using sales and promotional data from two Australian companies. Discussions focus on a thorough analysis of the forecasting and benchmarking results. Our analysis indicates that the proposed model can successfully improve the forecast accuracy when compared to the current industry practice which heavily relies on human judgment to factor in all types of information/events.
stat
Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box Optimization Framework
In this work, we focus on the study of stochastic zeroth-order (ZO) optimization which does not require first-order gradient information and uses only function evaluations. The problem of ZO optimization has emerged in many recent machine learning applications, where the gradient of the objective function is either unavailable or difficult to compute. In such cases, we can approximate the full gradients or stochastic gradients through function value based gradient estimates. Here, we propose a novel hybrid gradient estimator (HGE), which takes advantage of the query-efficiency of random gradient estimates as well as the variance-reduction of coordinate-wise gradient estimates. We show that with a graceful design in coordinate importance sampling, the proposed HGE-based ZO optimization method is efficient both in terms of iteration complexity as well as function query cost. We provide a thorough theoretical analysis of the convergence of our proposed method for non-convex, convex, and strongly-convex optimization. We show that the convergence rate that we derive generalizes the results for some prominent existing methods in the nonconvex case, and matches the optimal result in the convex case. We also corroborate the theory with a real-world black-box attack generation application to demonstrate the empirical advantage of our method over state-of-the-art ZO optimization approaches.
stat
Sample size re-estimation incorporating prior information on a nuisance parameter
Prior information is often incorporated informally when planning a clinical trial. Here, we present an approach on how to incorporate prior information, such as data from historical clinical trials, into the nuisance parameter based sample size re-estimation in a design with an internal pilot study. We focus on trials with continuous endpoints in which the outcome variance is the nuisance parameter. For planning and analyzing the trial frequentist methods are considered. Moreover, the external information on the variance is summarized by the Bayesian meta-analytic-predictive (MAP) approach. To incorporate external information into the sample size re-estimation, we propose to update the MAP prior based on the results of the internal pilot study and to re-estimate the sample size using an estimator from the posterior. By means of a simulation study, we compare the operating characteristics such as power and sample size distribution of the proposed procedure with the traditional sample size re-estimation approach which uses the pooled variance estimator. The simulation study shows that, if no prior-data conflict is present, incorporating external information into the sample size re-estimation improves the operating characteristics compared to the traditional approach. In the case of a prior-data conflict, that is when the variance of the ongoing clinical trial is unequal to the prior location, the performance of the traditional sample size re-estimation procedure is in general superior, even when the prior information is robustified. When considering to include prior information in sample size re-estimation, the potential gains should be balanced against the risks.
stat
Maximum likelihood estimation in the additive hazards model
The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As non-parametric model, it offers a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We describe an efficient algorithm to find the maximum likelihood estimator. The method is contrasted with the ordinary least squares approach in a simulation study, and the method is illustrated on a realistic data set.
stat
A review and evaluation of standard methods to handle missing data on time-varying confounders in marginal structural models
Marginal structural models (MSMs) are commonly used to estimate causal intervention effects in longitudinal non-randomised studies. A common issue when analysing data from observational studies is the presence of incomplete confounder data, which might lead to bias in the intervention effect estimates if they are not handled properly in the statistical analysis. However, there is currently no recommendation on how to address missing data on covariates in MSMs under a variety of missingness mechanisms encountered in practice. We reviewed existing methods to handling missing data in MSMs and performed a simulation study to compare the performance of complete case (CC) analysis, the last observation carried forward (LOCF), the missingness pattern approach (MPA), multiple imputation (MI) and inverse-probability-of-missingness weighting (IPMW). We considered three mechanisms for non-monotone missing data which are common in observational studies using electronic health record data. Whereas CC analysis lead to biased estimates of the intervention effect in almost all scenarios, the performance of the other approaches varied across scenarios. The LOCF approach led to unbiased estimates only under a specific non-random mechanism in which confounder values were missing when their values remained unchanged since the previous measurement. In this scenario, MI, the MPA and IPMW were biased. MI and IPMW led to the estimation of unbiased effects when data were missing at random, given the covariates or the treatment but only MI was unbiased when the outcome was a predictor of missingness. Furthermore, IPMW generally lead to very large standard errors. Lastly, regardless of the missingness mechanism, the MPA led to unbiased estimates only when the failure to record a confounder at a given time-point modified the subsequent relationships between the partially observed covariate and the outcome.
stat
Posterior-based proposals for speeding up Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating development of application specific implementations. This paper introduces "posterior-based proposals" (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generates large joint updates in parameter and latent variable space, whilst retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs / random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. Whilst different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs therefore represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
stat
Modeling Spatial Dependence with Cauchy Convolution Processes
We study the class of dependence models for spatial data obtained from Cauchy convolution processes based on different types of kernel functions. We show that the resulting spatial processes have appealing tail dependence properties, such as tail dependence at short distances and independence at long distances with suitable kernel functions. We derive the extreme-value limits of these processes, study their smoothness properties, and detail some interesting special cases. To get higher flexibility at sub-asymptotic levels and separately control the bulk and the tail dependence properties, we further propose spatial models constructed by mixing a Cauchy convolution process with a Gaussian process. We demonstrate that this framework indeed provides a rich class of models for the joint modeling of the bulk and the tail behaviors. Our proposed inference approach relies on matching model-based and empirical summary statistics, and an extensive simulation study shows that it yields accurate estimates. We demonstrate our new methodology by application to a temperature dataset measured at 97 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a very good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.
stat
A Robust Generalization of the Rao Test
This paper presents new families of Rao-type test statistics based on the minimum density power divergence estimators which provide robust generalizations for testing simple and composite null hypotheses. The asymptotic null distributions of the proposed tests are obtained and their robustness properties are also theoretically studied. Numerical illustrations are provided to substantiate the theory developed. On the whole, the proposed tests are seen to be excellent alternatives to the classical Rao test.
stat
A Deep Generative Model for Fragment-Based Molecule Generation
Molecule generation is a challenging open problem in cheminformatics. Currently, deep generative approaches addressing the challenge belong to two broad categories, differing in how molecules are represented. One approach encodes molecular graphs as strings of text, and learns their corresponding character-based language model. Another, more expressive, approach operates directly on the molecular graph. In this work, we address two limitations of the former: generation of invalid and duplicate molecules. To improve validity rates, we develop a language model for small molecular substructures called fragments, loosely inspired by the well-known paradigm of Fragment-Based Drug Design. In other words, we generate molecules fragment by fragment, instead of atom by atom. To improve uniqueness rates, we present a frequency-based masking strategy that helps generate molecules with infrequent fragments. We show experimentally that our model largely outperforms other language model-based competitors, reaching state-of-the-art performances typical of graph-based approaches. Moreover, generated molecules display molecular properties similar to those in the training sample, even in absence of explicit task-specific supervision.
stat
Making learning more transparent using conformalized performance prediction
In this work, we study some novel applications of conformal inference techniques to the problem of providing machine learning procedures with more transparent, accurate, and practical performance guarantees. We provide a natural extension of the traditional conformal prediction framework, done in such a way that we can make valid and well-calibrated predictive statements about the future performance of arbitrary learning algorithms, when passed an as-yet unseen training set. In addition, we include some nascent empirical examples to illustrate potential applications.
stat
Learning Markov models via low-rank optimization
Modeling unknown systems from data is a precursor of system optimization and sequential decision making. In this paper, we focus on learning a Markov model from a single trajectory of states. Suppose that the transition model has a small rank despite of having a large state space, meaning that the system admits a low-dimensional latent structure. We show that one can estimate the full transition model accurately using a trajectory of length that is proportional to the total number of states. We propose two maximum likelihood estimation methods: a convex approach with nuclear-norm regularization and a nonconvex approach with rank constraint. We explicitly derive the statistical rates of both estimators in terms of the Kullback-Leiber divergence and the $\ell_2$ error and also establish a minimax lower bound to assess the tightness of these rates. For computing the nonconvex estimator, we develop a novel DC (difference of convex function) programming algorithm that starts with the convex M-estimator and then successively refines the solution till convergence. Empirical experiments demonstrate consistent superiority of the nonconvex estimator over the convex one.
stat
Integrative Sparse Partial Least Squares
Partial least squares, as a dimension reduction method, has become increasingly important for its ability to deal with problems with a large number of variables. Since noisy variables may weaken the performance of the model, the sparse partial least squares (SPLS) technique has been proposed to identify important variables and generate more interpretable results. However, the small sample size of a single dataset limits the performance of conventional methods. An effective solution comes from gathering information from multiple comparable studies. The integrative analysis holds an important status among multi-datasets analyses. The main idea is to improve estimation results by assembling raw datasets and analyzing them jointly. In this paper, we develop an integrative SPLS (iSPLS) method using penalization based on the SPLS technique. The proposed approach consists of two penalties. The first penalty conducts variable selection under the context of integrative analysis; The second penalty, a contrasted one, is imposed to encourage the similarity of estimates across datasets and generate more reasonable and accurate results. Computational algorithms are provided. Simulation experiments are conducted to compare iSPLS with alternative approaches. The practical utility of iSPLS is shown in the analysis of two TCGA gene expression data.
stat
Shrinking characteristics of precision matrix estimators
We propose a framework to shrink a user-specified characteristic of a precision matrix estimator that is needed to fit a predictive model. Estimators in our framework minimize the Gaussian negative loglikelihood plus an $L_1$ penalty on a linear or affine function evaluated at the optimization variable corresponding to the precision matrix. We establish convergence rate bounds for these estimators and propose an alternating direction method of multipliers algorithm for their computation. Our simulation studies show that our estimators can perform better than competitors when they are used to fit predictive models. In particular, we illustrate cases where our precision matrix estimators perform worse at estimating the population precision matrix but better at prediction.
stat
Practical Bayesian Optimization for Transportation Simulators
We provide a method to solve optimization problem when objective function is a complex stochastic simulator of an urban transportation system. To reach this goal, a Bayesian optimization framework is introduced. We show how the choice of prior and inference algorithm effect the outcome of our optimization procedure. We develop dimensionality reduction techniques that allow for our optimization techniques to be applicable for real-life problems. We develop a distributed, Gaussian Process Bayesian regression and active learning models that allow parallel execution of our algorithms and enable usage of high performance computing. We present a fully Bayesian approach that is more sample efficient and reduces computational budget. Our framework is supported by theoretical analysis and an empirical study. We demonstrate our framework on the problem of calibrating a multi-modal transportation network of city of Bloomington, Illinois. Finally, we discuss directions for further research.
stat
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
Variational inference using the reparameterization trick has enabled large-scale approximate Bayesian inference in complex probabilistic models, leveraging stochastic optimization to sidestep intractable expectations. The reparameterization trick is applicable when we can simulate a random variable by applying a differentiable deterministic function on an auxiliary random variable whose distribution is fixed. For many distributions of interest (such as the gamma or Dirichlet), simulation of random variables relies on acceptance-rejection sampling. The discontinuity introduced by the accept-reject step means that standard reparameterization tricks are not applicable. We propose a new method that lets us leverage reparameterization gradients even when variables are outputs of a acceptance-rejection sampling algorithm. Our approach enables reparameterization on a larger class of variational distributions. In several studies of real and synthetic data, we show that the variance of the estimator of the gradient is significantly lower than other state-of-the-art methods. This leads to faster convergence of stochastic gradient variational inference.
stat
Large Margin Multi-modal Multi-task Feature Extraction for Image Classification
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We therefore propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization and each sub-problem can be efficiently solved. Experiments on two challenging real-world image datasets demonstrate the effectiveness and superiority of the proposed method.
stat
Statistical analysis of two arm randomized pre-post design with one post-treatment measurement
Randomized pre-post designs, with outcomes measured at baseline and follow-ups, have been commonly used to compare the clinical effectiveness of two competing treatments. There are vast, but often conflicting, amount of information in current literature about the best analytic methods for pre-post design. It is challenging for applied researchers to make an informed choice. We discuss six methods commonly used in literature: one way analysis of variance (ANOVA), analysis of covariance main effect and interaction models on post-treatment measurement (ANCOVA I and II), ANOVA on change score between baseline and post-treatment measurements, repeated measures and constrained repeated measures models (cRM) on baseline and post-treatment measurements as joint outcomes. We review a number of study endpoints in pre-post designs and identify the difference in post-treatment measurement as the common treatment effect that all six methods target. We delineate the underlying differences and links between these competing methods in homogeneous and heterogeneous study population. We demonstrate that ANCOVA and cRM outperform other alternatives because their treatment effect estimators have the smallest variances. cRM has comparable performance to ANCOVA I main effect model in homogeneous scenario and to ANCOVA II interaction model in heterogeneous scenario. In spite of that, ANCOVA has several advantages over cRM, including treating baseline measurement as covariate because it is not an outcome by definition, the convenience of incorporating other baseline variables and handling complex heteroscedasticity patterns in a linear regression framework.
stat
Selection of proposal distributions for generalized importance sampling estimators
The standard importance sampling (IS) estimator, generally does not work well in examples involving simultaneous inference on several targets as the importance weights can take arbitrarily large values making the estimator highly unstable. In such situations, alternative generalized IS estimators involving samples from multiple proposal distributions are preferred. Just like the standard IS, the success of these multiple IS estimators crucially depends on the choice of the proposal distributions. The selection of these proposal distributions is the focus of this article. We propose three methods based on (i) a geometric space filling coverage criterion, (ii) a minimax variance approach, and (iii) a maximum entropy approach. The first two methods are applicable to any multi-proposal IS estimator, whereas the third approach is described in the context of Doss's (2010) two-stage IS estimator. For the first method we propose a suitable measure of coverage based on the symmetric Kullback-Leibler divergence, while the second and third approaches use estimates of asymptotic variances of Doss's (2010) IS estimator and Geyer's (1994) reverse logistic estimator, respectively. Thus, we provide consistent spectral variance estimators for these asymptotic variances. The proposed methods for selecting proposal densities are illustrated using various detailed examples.
stat
Probabilistic HIV Recency Classification -- A Logistic Regression without Labeled Individual Level Training Data
Accurate HIV incidence estimation based on individual recent infection status (recent vs long-term infection) is important for monitoring the epidemic, targeting interventions to those at greatest risk of new infection, and evaluating existing programs of prevention and treatment. Starting from 2015, the Population-based HIV Impact Assessment (PHIA) individual-level surveys are implemented in the most-affected countries in sub-Saharan Africa. PHIA is a nationally-representative HIV-focused survey that combines household visits with key questions and cutting-edge technologies such as biomarker tests for HIV antibody and HIV viral load which offer the unique opportunity of distinguishing between recent infection and long-term infection, and providing relevant HIV information by age, gender, and location. In this article, we propose a semi-supervised logistic regression model for estimating individual level HIV recency status. It incorporates information from multiple data sources -- the PHIA survey where the true HIV recency status is unknown, and the cohort studies provided in the literature where the relationship between HIV recency status and the covariates are presented in the form of a contingency table. It also utilizes the national level HIV incidence estimates from the epidemiology model. Applying the proposed model to Malawi PHIA data, we demonstrate that our approach is more accurate for the individual level estimation and more appropriate for estimating HIV recency rates at aggregated levels than the current practice -- the binary classification tree (BCT).
stat
Relaxed Softmax for learning from Positive and Unlabeled data
In recent years, the softmax model and its fast approximations have become the de-facto loss functions for deep neural networks when dealing with multi-class prediction. This loss has been extended to language modeling and recommendation, two fields that fall into the framework of learning from Positive and Unlabeled data. In this paper, we stress the different drawbacks of the current family of softmax losses and sampling schemes when applied in a Positive and Unlabeled learning setup. We propose both a Relaxed Softmax loss (RS) and a new negative sampling scheme based on Boltzmann formulation. We show that the new training objective is better suited for the tasks of density estimation, item similarity and next-event prediction by driving uplifts in performance on textual and recommendation datasets against classical softmax.
stat
A Convex Optimization Approach to High-Dimensional Sparse Quadratic Discriminant Analysis
In this paper, we study high-dimensional sparse Quadratic Discriminant Analysis (QDA) and aim to establish the optimal convergence rates for the classification error. Minimax lower bounds are established to demonstrate the necessity of structural assumptions such as sparsity conditions on the discriminating direction and differential graph for the possible construction of consistent high-dimensional QDA rules. We then propose a classification algorithm called SDAR using constrained convex optimization under the sparsity assumptions. Both minimax upper and lower bounds are obtained and this classification rule is shown to be simultaneously rate optimal over a collection of parameter spaces, up to a logarithmic factor. Simulation studies demonstrate that SDAR performs well numerically. The algorithm is also illustrated through an analysis of prostate cancer data and colon tissue data. The methodology and theory developed for high-dimensional QDA for two groups in the Gaussian setting are also extended to multi-group classification and to classification under the Gaussian copula model.
stat
Applications of Quantum Annealing in Statistics
Quantum computation offers exciting new possibilities for statistics. This paper explores the use of the D-Wave machine, a specialized type of quantum computer, which performs quantum annealing. A general description of quantum annealing through the use of the D-Wave is given, along with technical issues to be encountered. Quantum annealing is used to perform maximum likelihood estimation, generate an experimental design, and perform matrix inversion. Though the results show that quantum computing is still at an early stage which is not yet superior to classical computation, there is promise for quantum computation in the future.
stat