title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A simple consistent Bayes factor for testing the Kendall rank correlation coefficient
In this paper, we propose a simple and easy-to-implement Bayesian hypothesis test for the presence of an association, described by Kendall's tau coefficient, between two variables measured on at least an ordinal scale. Owing to the absence of the likelihood functions for the data, we employ the asymptotic sampling distributions of the test statistic as the working likelihoods and then specify a truncated normal prior distribution on the noncentrality parameter of the alternative hypothesis, which results in the Bayes factor available in closed form in terms of the cumulative distribution function of the standard normal distribution. Investigating the asymptotic behavior of the Bayes factor we find the conditions of the priors so that it is consistent to whichever the hypothesis is true. Simulation studies and a real-data application are used to illustrate the effectiveness of the proposed Bayes factor. It deserves mentioning that the proposed method can be easily covered in undergraduate and graduate courses in nonparametric statistics with an emphasis on students' Bayesian thinking for data analysis.
stat
A Stein Goodness-of-fit Test for Directional Distributions
In many fields, data appears in the form of direction (unit vector) and usual statistical procedures are not applicable to such directional data. In this study, we propose non-parametric goodness-of-fit testing procedures for general directional distributions based on kernel Stein discrepancy. Our method is based on Stein's operator on spheres, which is derived by using Stokes' theorem. Notably, the proposed method is applicable to distributions with an intractable normalization constant, which commonly appear in directional statistics. Experimental results demonstrate that the proposed methods control type-I error well and have larger power than existing tests, including the test based on the maximum mean discrepancy.
stat
Spherical Principal Curves
This paper presents a new approach for dimension reduction of data observed in a sphere. Several dimension reduction techniques have recently developed for the analysis of non-Euclidean data. As a pioneer work, Hauberg (2016) attempted to implement principal curves on Riemannian manifolds. However, this approach uses approximations to deal with data on Riemannian manifolds, which causes distorted results. In this study, we propose a new approach to construct principal curves on a sphere by a projection of the data onto a continuous curve. Our approach lies in the same line of Hastie and Stuetzle (1989) that proposed principal curves for Euclidean space data. We further investigate the stationarity of the proposed principal curves that satisfy the self-consistency on a sphere. Results from real data analysis with earthquake data and simulation examples demonstrate the promising empirical properties of the proposed approach.
stat
Forest Guided Smoothing
We use the output of a random forest to define a family of local smoothers with spatially adaptive bandwidth matrices. The smoother inherits the flexibility of the original forest but, since it is a simple, linear smoother, it is very interpretable and it can be used for tasks that would be intractable for the original forest. This includes bias correction, confidence intervals, assessing variable importance and methods for exploring the structure of the forest. We illustrate the method on some synthetic examples and on data related to Covid-19.
stat
Dirichlet Simplex Nest and Geometric Inference
We propose Dirichlet Simplex Nest, a class of probabilistic models suitable for a variety of data types, and develop fast and provably accurate inference algorithms by accounting for the model's convex geometry and low dimensional simplicial structure. By exploiting the connection to Voronoi tessellation and properties of Dirichlet distribution, the proposed inference algorithm is shown to achieve consistency and strong error bound guarantees on a range of model settings and data distributions. The effectiveness of our model and the learning algorithm is demonstrated by simulations and by analyses of text and financial data.
stat
A proof of convergence of multi-class logistic regression network
This paper revisits the special type of a neural network known under two names. In the statistics and machine learning community it is known as a multi-class logistic regression neural network. In the neural network community, it is simply the soft-max layer. The importance is underscored by its role in deep learning: as the last layer, whose autput is actually the classification of the input patterns, such as images. Our exposition focuses on mathematically rigorous derivation of the key equation expressing the gradient. The fringe benefit of our approach is a fully vectorized expression, which is a basis of an efficient implementation. The second result of this paper is the positivity of the second derivative of the cross-entropy loss function as function of the weights. This result proves that optimization methods based on convexity may be used to train this network. As a corollary, we demonstrate that no $L^2$-regularizer is needed to guarantee convergence of gradient descent.
stat
The Duration of Optimal Stopping Problems
Optimal stopping problems give rise to random distributions describing how many applicants the decision-maker will sample or interview before choosing one, a quantity sometimes referred to as the search time or process duration. This research note surveys several variants of optimal stopping problems, extends earlier results in various directions, and shows how many interviews are expected to be conducted in various settings. The focus is on problems that require a decision-maker to choose a candidate from a pool of sequential applicants with no recall, in the vein of previously studied Cayley-Moser, Secretary and Sultan's Dowry problems.
stat
Selective prediction-set models with coverage guarantees
Though black-box predictors are state-of-the-art for many complex tasks, they often fail to properly quantify predictive uncertainty and may provide inappropriate predictions for unfamiliar data. Instead, we can learn more reliable models by letting them either output a prediction set or abstain when the uncertainty is high. We propose training these selective prediction-set models using an uncertainty-aware loss minimization framework, which unifies ideas from decision theory and robust maximum likelihood. Moreover, since black-box methods are not guaranteed to output well-calibrated prediction sets, we show how to calculate point estimates and confidence intervals for the true coverage of any selective prediction-set model, as well as a uniform mixture of K set models obtained from K-fold sample-splitting. When applied to predicting in-hospital mortality and length-of-stay for ICU patients, our model outperforms existing approaches on both in-sample and out-of-sample age groups, and our recalibration method provides accurate inference for prediction set coverage.
stat
Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line, with the 2-Wasserstein metric. We focus in particular on Principal Component Analysis (PCA) and regression. To define these models, we exploit a representation of the Wasserstein space closely related to its weak Riemannian structure, by mapping the data to a suitable linear space and using a metric projection operator to constrain the results in the Wasserstein space. By carefully choosing the tangent point, we are able to derive fast empirical methods, exploiting a constrained B-spline approximation. As a byproduct of our approach, we are also able to derive faster routines for previous work on PCA for distributions. By means of simulation studies, we compare our approaches to previously proposed methods, showing that our projected PCA has similar performance for a fraction of the computational cost and that the projected regression is extremely flexible even under misspecification. Several theoretical properties of the models are investigated and asymptotic consistency is proven. Two real world applications to Covid-19 mortality in the US and wind speed forecasting are discussed.
stat
Tree boosting for learning probability measures
Learning probability measures based on an i.i.d. sample is a fundamental inference task, but is challenging when the sample space is high-dimensional. Inspired by the success of tree boosting in high-dimensional classification and regression, we propose a tree boosting method for learning high-dimensional probability distributions. We formulate concepts of "addition" and "residuals" on probability distributions in terms of compositions of a new, more general notion of multivariate cumulative distribution functions (CDFs) than classical CDFs. This then gives rise to a simple boosting algorithm based on forward-stagewise (FS) fitting of an additive ensemble of measures, which sequentially minimizes the entropy loss. The output of the FS algorithm allows analytic computation of the probability density function for the fitted distribution. It also provides an exact simulator for drawing independent Monte Carlo samples from the fitted measure. Typical considerations in applying boosting--namely choosing the number of trees, setting the appropriate level of shrinkage/regularization in the weak learner, and the evaluation of variable importance--can all be accomplished in an analogous fashion to traditional boosting in supervised learning. Numerical experiments confirm that boosting can substantially improve the fit to multivariate distributions compared to the state-of-the-art single-tree learner and is computationally efficient. We illustrate through an application to a data set from mass cytometry how the simulator can be used to investigate various aspects of the underlying distribution.
stat
Modelling Grocery Retail Topic Distributions: Evaluation, Interpretability and Stability
Understanding the shopping motivations behind market baskets has high commercial value in the grocery retail industry. Analyzing shopping transactions demands techniques that can cope with the volume and dimensionality of grocery transactional data while keeping interpretable outcomes. Latent Dirichlet Allocation (LDA) provides a suitable framework to process grocery transactions and to discover a broad representation of customers' shopping motivations. However, summarizing the posterior distribution of an LDA model is challenging, while individual LDA draws may not be coherent and cannot capture topic uncertainty. Moreover, the evaluation of LDA models is dominated by model-fit measures which may not adequately capture the qualitative aspects such as interpretability and stability of topics. In this paper, we introduce clustering methodology that post-processes posterior LDA draws to summarise the entire posterior distribution and identify semantic modes represented as recurrent topics. Our approach is an alternative to standard label-switching techniques and provides a single posterior summary set of topics, as well as associated measures of uncertainty. Furthermore, we establish a more holistic definition for model evaluation, which assesses topic models based not only on their likelihood but also on their coherence, distinctiveness and stability. By means of a survey, we set thresholds for the interpretation of topic coherence and topic similarity in the domain of grocery retail data. We demonstrate that the selection of recurrent topics through our clustering methodology not only improves model likelihood but also outperforms the qualitative aspects of LDA such as interpretability and stability. We illustrate our methods on an example from a large UK supermarket chain.
stat
Statistical models for short and long term forecasts of snow depth
Forecasting of future snow depths is useful for many applications like road safety, winter sport activities, avalanche risk assessment and hydrology. Motivated by the lack of statistical forecasts models for snow depth, in this paper we present a set of models to fill this gap. First, we present a model to do short term forecasts when we assume that reliable weather forecasts of air temperature and precipitation are available. The covariates are included nonlinearly into the model following basic physical principles of snowfall, snow aging and melting. Due to the large set of observations with snow depth equal to zero, we use a zero-inflated gamma regression model, which is commonly used to similar applications like precipitation. We also do long term forecasts of snow depth and much further than traditional weather forecasts for temperature and precipitation. The long-term forecasts are based on fitting models to historic time series of precipitation, temperature and snow depth. We fit the models to data from three locations in Norway with different climatic properties. Forecasting five days into the future, the results showed that, given reliable weather forecasts of temperature and precipitation, the forecast errors in absolute value was between 3 and 7 cm for different locations in Norway. Forecasting three weeks into the future, the forecast errors were between 7 and 16 cm.
stat
A simple method for implementing Monte Carlo tests
We consider a statistical test whose p-value can only be approximated using Monte Carlo simulations. We are interested in deciding whether the p-value for an observed data set lies above or below a given threshold such as 5%. We want to ensure that the resampling risk, the probability of the (Monte Carlo) decision being different from the true decision, is uniformly bounded. This article introduces a simple open-ended method with this property, the confidence sequence method (CSM). We compare our approach to another algorithm, SIMCTEST, which also guarantees an (asymptotic) uniform bound on the resampling risk, as well as to other Monte Carlo procedures without a uniform bound. CSM is free of tuning parameters and conservative. It has the same theoretical guarantee as SIMCTEST and, in many settings, similar stopping boundaries. As it is much simpler than other methods, CSM is a useful method for practical applications.
stat
A Tutorial on Multivariate $k$-Statistics and their Computation
This document aims to provide an accessible tutorial on the unbiased estimation of multivariate cumulants, using $k$-statistics. We offer an explicit and general formula for multivariate $k$-statistics of arbitrary order. We also prove that the $k$-statistics are unbiased, using M\"obius inversion and rudimentary combinatorics. Many detailed examples are considered throughout the paper. We conclude with a discussion of $k$-statistics computation, including the challenge of time complexity, and we examine a couple of possible avenues to improve the efficiency of this computation. The purpose of this document is threefold: to provide a clear introduction to $k$-statistics without relying on specialized tools like the umbral calculus; to construct an explicit formula for $k$-statistics that might facilitate future approximations and faster algorithms; and to serve as a companion paper to our Python library PyMoments, which implements this formula.
stat
Probabilistic Recalibration of Forecasts
We present a scheme by which a probabilistic forecasting system whose predictions have poor probabilistic calibration may be recalibrated by incorporating past performance information to produce a new forecasting system that is demonstrably superior to the original, in that one may use it to consistently win wagers against someone using the original system. The scheme utilizes Gaussian process (GP) modeling to estimate a probability distribution over the Probability Integral Transform (PIT) of a scalar predictand. The GP density estimate gives closed-form access to information entropy measures associated with the estimated distribution, which allows prediction of winnings in wagers against the base forecasting system. A separate consequence of the procedure is that the recalibrated forecast has a uniform expected PIT distribution. A distinguishing feature of the procedure is that it is appropriate even if the PIT values are not i.i.d. The recalibration scheme is formulated in a framework that exploits the deep connections between information theory, forecasting, and betting. We demonstrate the effectiveness of the scheme in two case studies: a laboratory experiment with a nonlinear circuit and seasonal forecasts of the intensity of the El Ni\~no-Southern Oscillation phenomenon.
stat
Kernel-Distance-Based Covariate Balancing
A common concern in observational studies focuses on properly evaluating the causal effect, which usually refers to the average treatment effect or the average treatment effect on the treated. In this paper, we propose a data preprocessing method, the Kernel-distance-based covariate balancing, for observational studies with binary treatments. This proposed method yields a set of unit weights for the treatment and control groups, respectively, such that the reweighted covariate distributions can satisfy a set of pre-specified balance conditions. This preprocessing methodology can effectively reduce confounding bias of subsequent estimation of causal effects. We demonstrate the implementation and performance of Kernel-distance-based covariate balancing with Monte Carlo simulation experiments and a real data analysis.
stat
Social Network Mediation Analysis: a Latent Space Approach
Social networks contain data on both actor attributes and social connections among them. Such connections reflect the dependence among social actors, which is important for individual's mental health and social development. To investigate the potential mediation role of a social network, we propose a mediation model with a social network as a mediator. In the model, dependence among actors is accounted by a few mutually orthogonal latent dimensions. The scores on these dimensions are directly involved in the intervention process between an independent variable and a dependent variable. Because all the latent dimensions are equivalent in terms of their relationship to social networks, it is hardly to name them. The intervening effect through an individual dimension is thus of little practical interest. Therefore, we would rather focus on the mediation effect of a network. Although the scores are not unique, we rigorously articulate that the proposed network mediation effect is still well-defined. To estimate the model, we adopt a Bayesian estimation method. This modeling framework and the Bayesian estimation method is evaluated through a simulation study under representative conditions. Its usefulness is demonstrated through an empirical application to a college friendship network.
stat
Precision-Recall Curve (PRC) Classification Trees
The classification of imbalanced data has presented a significant challenge for most well-known classification algorithms that were often designed for data with relatively balanced class distributions. Nevertheless skewed class distribution is a common feature in real world problems. It is especially prevalent in certain application domains with great need for machine learning and better predictive analysis such as disease diagnosis, fraud detection, bankruptcy prediction, and suspect identification. In this paper, we propose a novel tree-based algorithm based on the area under the precision-recall curve (AUPRC) for variable selection in the classification context. Our algorithm, named as the "Precision-Recall Curve classification tree", or simply the "PRC classification tree" modifies two crucial stages in tree building. The first stage is to maximize the area under the precision-recall curve in node variable selection. The second stage is to maximize the harmonic mean of recall and precision (F-measure) for threshold selection. We found the proposed PRC classification tree, and its subsequent extension, the PRC random forest, work well especially for class-imbalanced data sets. We have demonstrated that our methods outperform their classic counterparts, the usual CART and random forest for both synthetic and real data. Furthermore, the ROC classification tree proposed by our group previously has shown good performance in imbalanced data. The combination of them, the PRC-ROC tree, also shows great promise in identifying the minority class.
stat
Strong Consistency of Spectral Clustering for Stochastic Block Models
In this paper we prove the strong consistency of several methods based on the spectral clustering techniques that are widely used to study the community detection problem in stochastic block models (SBMs). We show that under some weak conditions on the minimal degree, the number of communities, and the eigenvalues of the probability block matrix, the K-means algorithm applied to the eigenvectors of the graph Laplacian associated with its first few largest eigenvalues can classify all individuals into the true community uniformly correctly almost surely. Extensions to both regularized spectral clustering and degree-corrected SBMs are also considered. We illustrate the performance of different methods on simulated networks.
stat
Computational Causal Inference
We introduce computational causal inference as an interdisciplinary field across causal inference, algorithms design and numerical computing. The field aims to develop software specializing in causal inference that can analyze massive datasets with a variety of causal effects, in a performant, general, and robust way. The focus on software improves research agility, and enables causal inference to be easily integrated into large engineering systems. In particular, we use computational causal inference to deepen the relationship between causal inference, online experimentation, and algorithmic decision making. This paper describes the new field, the demand, opportunities for scalability, open challenges, and begins the discussion for how the community can unite to solve challenges for scaling causal inference and decision making.
stat
Comparing high dimensional partitions, with the Coclustering Adjusted Rand Index
We consider the simultaneous clustering of rows and columns of a matrix and more particularly the ability to measure the agreement between two co-clustering partitions. The new criterion we developed is based on the Adjusted Rand Index and is called the Co-clustering Adjusted Rand Index named CARI. We also suggest new improvements to existing criteria such as the Classification Error which counts the proportion of misclassified cells and the Extended Normalized Mutual Information criterion which is a generalization of the criterion based on mutual information in the case of classic classifications. We study these criteria with regard to some desired properties deriving from the co-clustering context. Experiments on simulated and real observed data are proposed to compare the behavior of these criteria.
stat
Convergence of Parameter Estimates for Regularized Mixed Linear Regression Models
We consider {\em Mixed Linear Regression (MLR)}, where training data have been generated from a mixture of distinct linear models (or clusters) and we seek to identify the corresponding coefficient vectors. We introduce a {\em Mixed Integer Programming (MIP)} formulation for MLR subject to regularization constraints on the coefficient vectors. We establish that as the number of training samples grows large, the MIP solution converges to the true coefficient vectors in the absence of noise. Subject to slightly stronger assumptions, we also establish that the MIP identifies the clusters from which the training samples were generated. In the special case where training data come from a single cluster, we establish that the corresponding MIP yields a solution that converges to the true coefficient vector even when training data are perturbed by (martingale difference) noise. We provide a counterexample indicating that in the presence of noise, the MIP may fail to produce the true coefficient vectors for more than one clusters. We also provide numerical results testing the MIP solutions in synthetic examples with noise.
stat
Sparse inversion for derivative of log determinant
Algorithms for Gaussian process, marginal likelihood methods or restricted maximum likelihood methods often require derivatives of log determinant terms. These log determinants are usually parametric with variance parameters of the underlying statistical models. This paper demonstrates that, when the underlying matrix is sparse, how to take the advantage of sparse inversion---selected inversion which share the same sparsity as the original matrix---to accelerate evaluating the derivative of log determinant.
stat
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized model's log-density. We estimate the Stein discrepancy between the data density $p(x)$ and the model density $q(x)$ defined by a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize the discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing $q(x)$ to minimize this discrepancy produces a novel method for training unnormalized models which scales more gracefully than existing methods. The ability to both learn and compare models is a unique feature of the proposed method.
stat
Metric-Optimized Example Weights
Real-world machine learning applications often have complex test metrics, and may have training and test data that are not identically distributed. Motivated by known connections between complex test metrics and cost-weighted learning, we propose addressing these issues by using a weighted loss function with a standard loss, where the weights on the training examples are learned to optimize the test metric on a validation set. These metric-optimized example weights can be learned for any test metric, including black box and customized ones for specific applications. We illustrate the performance of the proposed method on diverse public benchmark datasets and real-world applications. We also provide a generalization bound for the method.
stat
Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation
A large number of commonly used parametric Archimedean copula (AC) families are restricted to a single parameter, connected to a concordance measure such as Kendall's tau. This often leads to poor statistical fits, particularly in the joint tails, and can sometimes even limit the ability to model concordance or tail dependence mathematically. This work suggests outer power (OP) transformations of Archimedean generators to overcome these limitations. The copulas generated by OP-transformed generators can, for example, allow one to capture both a given concordance measure and a tail dependence coefficient simultaneously. For exchangeable OP-transformed ACs, a formula for computing tail dependence coefficients is obtained, as well as two feasible OP AC estimators are proposed and their properties studied by simulation. For hierarchical extensions of OP-transformed ACs, a new construction principle, efficient sampling and parameter estimation are addressed. By simulation, convergence rate and standard errors of the proposed estimator are studied. Excellent tail fitting capabilities of OP-transformed hierarchical AC models are demonstrated in a risk management application. The results show that the OP transformation is able to improve the statistical fit of exchangeable ACs, particularly of those that cannot capture upper tail dependence or strong concordance, as well as the statistical fit of hierarchical ACs, especially in terms of tail dependence and higher dimensions. Given how comparably simple it is to include OP transformations into existing exchangeable and hierarchical AC models, this transformation provides an attractive trade-off between computational effort and statistical improvement.
stat
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Scaling Bayesian optimisation (BO) to high-dimensional search spaces is a active and open research problems particularly when no assumptions are made on function structure. The main reason is that at each iteration, BO requires to find global maximisation of acquisition function, which itself is a non-convex optimization problem in the original search space. With growing dimensions, the computational budget for this maximisation gets increasingly short leading to inaccurate solution of the maximisation. This inaccuracy adversely affects both the convergence and the efficiency of BO. We propose a novel approach where the acquisition function only requires maximisation on a discrete set of low dimensional subspaces embedded in the original high-dimensional search space. Our method is free of any low dimensional structure assumption on the function unlike many recent high-dimensional BO methods. Optimising acquisition function in low dimensional subspaces allows our method to obtain accurate solutions within limited computational budget. We show that in spite of this convenience, our algorithm remains convergent. In particular, cumulative regret of our algorithm only grows sub-linearly with the number of iterations. More importantly, as evident from our regret bounds, our algorithm provides a way to trade the convergence rate with the number of subspaces used in the optimisation. Finally, when the number of subspaces is "sufficiently large", our algorithm's cumulative regret is at most $\mathcal{O}^{*}(\sqrt{T\gamma_T})$ as opposed to $\mathcal{O}^{*}(\sqrt{DT\gamma_T})$ for the GP-UCB of Srinivas et al. (2012), reducing a crucial factor $\sqrt{D}$ where $D$ being the dimensional number of input space.
stat
Variable Selection with Rigorous Uncertainty Quantification using Deep Bayesian Neural Networks: Posterior Concentration and Bernstein-von Mises Phenomenon
This work develops rigorous theoretical basis for the fact that deep Bayesian neural network (BNN) is an effective tool for high-dimensional variable selection with rigorous uncertainty quantification. We develop new Bayesian non-parametric theorems to show that a properly configured deep BNN (1) learns the variable importance effectively in high dimensions, and its learning rate can sometimes "break" the curse of dimensionality. (2) BNN's uncertainty quantification for variable importance is rigorous, in the sense that its 95% credible intervals for variable importance indeed covers the truth 95% of the time (i.e., the Bernstein-von Mises (BvM) phenomenon). The theoretical results suggest a simple variable selection algorithm based on the BNN's credible intervals. Extensive simulation confirms the theoretical findings and shows that the proposed algorithm outperforms existing classic and neural-network-based variable selection methods, particularly in high dimensions.
stat
Active Ordinal Querying for Tuplewise Similarity Learning
Many machine learning tasks such as clustering, classification, and dataset search benefit from embedding data points in a space where distances reflect notions of relative similarity as perceived by humans. A common way to construct such an embedding is to request triplet similarity queries to an oracle, comparing two objects with respect to a reference. This work generalizes triplet queries to tuple queries of arbitrary size that ask an oracle to rank multiple objects against a reference, and introduces an efficient and robust adaptive selection method called InfoTuple that uses a novel approach to mutual information maximization. We show that the performance of InfoTuple at various tuple sizes exceeds that of the state-of-the-art adaptive triplet selection method on synthetic tests and new human response datasets, and empirically demonstrate the significant gains in efficiency and query consistency achieved by querying larger tuples instead of triplets.
stat
Reverse-Bayes methods: a review of recent technical advances
It is now widely accepted that the standard inferential toolkit used by the scientific research community -- null-hypothesis significance testing (NHST) -- is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches. This lack of consensus reflects long-standing issues concerning Bayesian methods, the principal alternative to NHST. We report on recent work that builds on an approach to inference put forward over 70 years ago to address the well-known "Problem of Priors" in Bayesian analysis, by reversing the conventional prior-likelihood-posterior ("forward") use of Bayes's Theorem. Such Reverse-Bayes analysis allows priors to be deduced from the likelihood by requiring that the posterior achieve a specified level of credibility. We summarise the technical underpinning of this approach, and show how it opens up new approaches to common inferential challenges, such as assessing the credibility of scientific findings, setting them in appropriate context, estimating the probability of successful replications, and extracting more insight from NHST while reducing the risk of misinterpretation. We argue that Reverse-Bayes methods have a key role to play in making Bayesian methods more accessible and attractive to the scientific community. As a running example we consider a recently published meta-analysis from several randomized controlled clinical trials investigating the association between corticosteroids and mortality in hospitalized patients with COVID-19.
stat
Mean and median bias reduction in generalized linear models
This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively re-weighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter
stat
Identifying Critical States by the Action-Based Variance of Expected Return
The balance of exploration and exploitation plays a crucial role in accelerating reinforcement learning (RL). To deploy an RL agent in human society, its explainability is also essential. However, basic RL approaches have difficulties in deciding when to choose exploitation as well as in extracting useful points for a brief explanation of its operation. One reason for the difficulties is that these approaches treat all states the same way. Here, we show that identifying critical states and treating them specially is commonly beneficial to both problems. These critical states are the states at which the action selection changes the potential of success and failure substantially. We propose to identify the critical states using the variance in the Q-function for the actions and to perform exploitation with high probability on the identified states. These simple methods accelerate RL in a grid world with cliffs and two baseline tasks of deep RL. Our results also demonstrate that the identified critical states are intuitively interpretable regarding the crucial nature of the action selection. Furthermore, our analysis of the relationship between the timing of the identification of especially critical states and the rapid progress of learning suggests there are a few especially critical states that have important information for accelerating RL rapidly.
stat
Time Adaptive Gaussian Model
Multivariate time series analysis is becoming an integral part of data analysis pipelines. Understanding the individual time point connections between covariates as well as how these connections change in time is non-trivial. To this aim, we propose a novel method that leverages on Hidden Markov Models and Gaussian Graphical Models -- Time Adaptive Gaussian Model (TAGM). Our model is a generalization of state-of-the-art methods for the inference of temporal graphical models, its formulation leverages on both aspects of these models providing better results than current methods. In particular,it performs pattern recognition by clustering data points in time; and, it finds probabilistic (and possibly causal) relationships among the observed variables. Compared to current methods for temporal network inference, it reduces the basic assumptions while still showing good inference performances.
stat
Modeling event cascades using networks of additive count sequences
We propose a statistical model for networks of event count sequences built on a cascade structure. We assume that each event triggers successor events, whose counts follow additive probability distributions; the ensemble of counts is given by their superposition. These assumptions allow the marginal distribution of count sequences and the conditional distribution of event cascades to take analytic forms. We present our model framework using Poisson and negative binomial distributions as the building blocks. Based on this formulation, we describe a statistical method for estimating the model parameters and event cascades from the observed count sequences.
stat
Learning Asymmetric and Local Features in Multi-Dimensional Data through Wavelets with Recursive Partitioning
Effective learning of asymmetric and local features in images and other data observed on multi-dimensional grids is a challenging objective critical for a wide range of image processing applications involving biomedical and natural images. It requires methods that are sensitive to local details while fast enough to handle massive numbers of images of ever increasing sizes. We introduce a probabilistic model-based framework that achieves these objectives by incorporating adaptivity into discrete wavelet transforms (DWT) through Bayesian hierarchical modeling, thereby allowing wavelet bases to adapt to the geometric structure of the data while maintaining the high computational scalability of wavelet methods---linear in the sample size (e.g., the resolution of an image). We derive a recursive representation of the Bayesian posterior model which leads to an exact message passing algorithm to complete learning and inference. While our framework is applicable to a range of problems including multi-dimensional signal processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of image reconstruction using real images from the ImageNet database, two widely used benchmark datasets, and a dataset from retinal optical coherence tomography and compare its performance to state-of-the-art methods based on basis transforms and deep learning.
stat
Modelling antimicrobial prescriptions in Scotland: A spatio-temporal clustering approach
In 2016 the British government acknowledged the importance of reducing antimicrobial prescriptions in order to avoid the long-term harmful effects of over-prescription. Prescription needs are highly dependent on factors that have a spatio-temporal component, such as the presence of a bacterial outbreak and the population density. In this context, density-based clustering algorithms are flexible tools to analyse data by searching for group structures. The case of Scotland presents an additional challenge due to the diversity of population densities under the area of study. We present here a spatio-temporal clustering approach for highlighting the behaviour of general practitioners (GPs) in Scotland. Particularly, we consider the density-based spatial clustering of applications with noise algorithm (DBSCAN) due to its ability to include both spatial and temporal data, as well as its flexibility to be extended with further variables. We extend this approach into two directions. For the temporal analysis, we use dynamic time warping to measure the dissimilarity between warped and shifted time series. For the spatial component, we introduce a new way of weighting spatial distances with continuous weights derived from a KDE-based process. This makes our approach suitable for cases involving spatial clusters with differing densities, which is a well-known issue for the original DBSCAN. We show an improved performance compared to both the latter and the popular k-means algorithm on simulated, as well as empirical data, presenting evidence for the ability to cluster more elements correctly and deliver actionable insights.
stat
Innovative And Additive Outlier Robust Kalman Filtering With A Robust Particle Filter
In this paper, we propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state. Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes. The filter is computationally efficient as we derive new, accurate approximations to the optimal proposal distributions for the particles. The proposed algorithm is shown to compare well with existing approaches and is applied to both machine temperature and server data.
stat
Decision Making with Machine Learning and ROC Curves
The Receiver Operating Characteristic (ROC) curve is a representation of the statistical information discovered in binary classification problems and is a key concept in machine learning and data science. This paper studies the statistical properties of ROC curves and its implication on model selection. We analyze the implications of different models of incentive heterogeneity and information asymmetry on the relation between human decisions and the ROC curves. Our theoretical discussion is illustrated in the context of a large data set of pregnancy outcomes and doctor diagnosis from the Pre-Pregnancy Checkups of reproductive age couples in Henan Province provided by the Chinese Ministry of Health.
stat
Spectral Non-Convex Optimization for Dimension Reduction with Hilbert-Schmidt Independence Criterion
The Hilbert Schmidt Independence Criterion (HSIC) is a kernel dependence measure that has applications in various aspects of machine learning. Conveniently, the objectives of different dimensionality reduction applications using HSIC often reduce to the same optimization problem. However, the nonconvexity of the objective function arising from non-linear kernels poses a serious challenge to optimization efficiency and limits the potential of HSIC-based formulations. As a result, only linear kernels have been computationally tractable in practice. This paper proposes a spectral-based optimization algorithm that extends beyond the linear kernel. The algorithm identifies a family of suitable kernels and provides the first and second-order local guarantees when a fixed point is reached. Furthermore, we propose a principled initialization strategy, thereby removing the need to repeat the algorithm at random initialization points. Compared to state-of-the-art optimization algorithms, our empirical results on real data show a run-time improvement by as much as a factor of $10^5$ while consistently achieving lower cost and classification/clustering errors. The implementation source code is publicly available on https://github.com/endsley.
stat
Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection
We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine. However, it is very challenging as we need to balance exploration and exploitation. We propose doubly growing epochs and estimating the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves $ \tilde{\mathcal{O}}(s\sqrt{T})$ regret with high probability, which is nearly independent in the ``ambient'' regression model dimension $d$. We further attain a sharper $\tilde{\mathcal{O}}(\sqrt{sT})$ regret by using the \textsc{SupLinUCB} framework and match the minimax lower bound of low-dimensional linear stochastic bandit problems. Finally, we conduct extensive numerical experiments to demonstrate the applicability and robustness of our algorithms empirically.
stat
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning
Efficient approximation lies at the heart of large-scale machine learning problems. In this paper, we propose a novel, robust maximum entropy algorithm, which is capable of dealing with hundreds of moments and allows for computationally efficient approximations. We showcase the usefulness of the proposed method, its equivalence to constrained Bayesian variational inference and demonstrate its superiority over existing approaches in two applications, namely, fast log determinant estimation and information-theoretic Bayesian optimisation.
stat
Guarantees for Tuning the Step Size using a Learning-to-Learn Approach
Learning-to-learn (using optimization algorithms to learn a new optimizer) has successfully trained efficient optimizers in practice. This approach relies on meta-gradient descent on a meta-objective based on the trajectory that the optimizer generates. However, there were few theoretical guarantees on how to avoid meta-gradient explosion/vanishing problems, or how to train an optimizer with good generalization performance. In this paper, we study the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss. Our results show that although there is a way to design the meta-objective so that the meta-gradient remain polynomially bounded, computing the meta-gradient directly using backpropagation leads to numerical issues that look similar to gradient explosion/vanishing problems. We also characterize when it is necessary to compute the meta-objective on a separate validation set instead of the original training set. Finally, we verify our results empirically and show that a similar phenomenon appears even for more complicated learned optimizers parametrized by neural networks.
stat
Tensor Variable Elimination for Plated Factor Graphs
A wide class of machine learning algorithms can be reduced to variable elimination on factor graphs. While factor graphs provide a unifying notation for these algorithms, they do not provide a compact way to express repeated structure when compared to plate diagrams for directed graphical models. To exploit efficient tensor algebra in graphs with plates of variables, we generalize undirected factor graphs to plated factor graphs and variable elimination to a tensor variable elimination algorithm that operates directly on plated factor graphs. Moreover, we generalize complexity bounds based on treewidth and characterize the class of plated factor graphs for which inference is tractable. As an application, we integrate tensor variable elimination into the Pyro probabilistic programming language to enable exact inference in discrete latent variable models with repeated structure. We validate our methods with experiments on both directed and undirected graphical models, including applications to polyphonic music modeling, animal movement modeling, and latent sentiment analysis.
stat
Valid p-Values and Expectations of p-Values Revisited
A storm of favorable or critical publications regarding p-values-based procedures has been observed in both the theoretical and applied literature. We focus on valid definitions of p-values in the scenarios when composite null models are in effect. A valid p-value (VpV) statistic can be used to make a prefixed level-decision. In this context, Kolmogorov Smirnov goodness-of-fit tests and the normal two sample problem are considered. In particular, we examine an issue regarding the goodness-of-fit testability based on a single observation. This article exemplifies constructions of new test procedures, advocating practical reasons to implement VpV-based mechanisms. The VpV framework induces an extension of the conventional expected p-value (EPV) tool for measuring the performance of a test. Associating the EPV concept with the receiver operating characteristic (ROC) curve methodology, a well-established biostatistical approach, we propose a Youden index based optimality principle to derive critical values of decision making procedures. In these terms, the significance level alpha=0.05 can be suggested, in many situations. In light of an ROC curve analysis, we introduce partial EPVs to characterize properties of tests including their unbiasedness. We also provide the intrinsic relationship between the Bayes Factor (BF) test statistic and the BF of test statistics. Keywords: AUC; Bayes Factor; Expected p-value; Kolmogorov Smirnov tests; Likelihood ratio; Nuisance parameters; P-value; ROC curve; Pooled data; Single observation; Type I error rate; Youden index
stat
Model-assisted estimation through random forests in finite population sampling
Surveys are used to collect data on a subset of a finite population. Most often, the interest lies in estimating finite population parameters such as population totals and means. In some surveys, auxiliary information is available at the population level. This information may be incorporated in the estimation procedures to increase their precision. Model-assisted procedures may be based on parametric or nonparametric models. In this paper, we propose a new class of model-assisted procedures based on random forests based on partitions built at the population level as well as at the sample level. We derive associated variance estimators and we establish the theoretical properties of the proposed procedures. A model-calibration procedure that has the ability to handle multiple survey variables is discussed. Finally, the results of a simulation study suggest that the proposed point and estimation procedures perform well in term of bias, efficiency and coverage in a wide variety of settings.
stat
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Implicit stochastic models, where the data-generation distribution is intractable but sampling is possible, are ubiquitous in the natural sciences. The models typically have free parameters that need to be inferred from data collected in scientific experiments. A fundamental question is how to design the experiments so that the collected data are most useful. The field of Bayesian experimental design advocates that, ideally, we should choose designs that maximise the mutual information (MI) between the data and the parameters. For implicit models, however, this approach is severely hampered by the high computational cost of computing posteriors and maximising MI, in particular when we have more than a handful of design variables to optimise. In this paper, we propose a new approach to Bayesian experimental design for implicit models that leverages recent advances in neural MI estimation to deal with these issues. We show that training a neural network to maximise a lower bound on MI allows us to jointly determine the optimal design and the posterior. Simulation studies illustrate that this gracefully extends Bayesian experimental design for implicit models to higher design dimensions.
stat
Stratified cross-validation for unbiased and privacy-preserving federated learning
Large-scale collections of electronic records constitute both an opportunity for the development of more accurate prediction models and a threat for privacy. To limit privacy exposure new privacy-enhancing techniques are emerging such as federated learning which enables large-scale data analysis while avoiding the centralization of records in a unique database that would represent a critical point of failure. Although promising regarding privacy protection, federated learning prevents using some data-cleaning algorithms thus inducing new biases. In this work we focus on the recurrent problem of duplicated records that, if not handled properly, may cause over-optimistic estimations of a model's performances. We introduce and discuss stratified cross-validation, a validation methodology that leverages stratification techniques to prevent data leakage in federated learning settings without relying on demanding deduplication algorithms.
stat
A Semi-Smooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning
The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP) penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously, and thus have potential applications in various fields such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors $p$ may be much larger than the number of observations $n$. However, numerically, it is quite challenging to develop fast and stable algorithms due to their non-convexity and non-smoothness. In this paper we develop a fast algorithm for SCAD and MCP penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semi-smooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. Computational complexity analysis shows that the cost of the SSN algorithm per iteration is $O(np)$. Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.
stat
Testing Independence under Biased Sampling
Testing for association or dependence between pairs of random variables is a fundamental problem in statistics. In some applications, data are subject to selection bias that causes dependence between observations even when it is absent from the population. An important example is truncation models, in which observed pairs are restricted to a specific subset of the X-Y plane. Standard tests for independence are not suitable in such cases, and alternative tests that take the selection bias into account are required. To deal with this issue, we generalize the notion of quasi-independence with respect to the sampling mechanism, and study the problem of detecting any deviations from it. We develop two test statistics motivated by the classic Hoeffding's statistic, and use two approaches to compute their distribution under the null: (i) a bootstrap-based approach, and (ii) a permutation-test with non-uniform probability of permutations, sampled using either MCMC or importance sampling with various proposal distributions. We show that our tests can tackle cases where the biased sampling mechanism is estimated from the data, with an important application to the case of censoring with truncation. We prove the validity of the tests, and show, using simulations, that they perform well for important special cases of the problem and improve power compared to competing methods. The tests are applied to four datasets, two that are subject to truncation, with and without censoring, and two to positive bias mechanisms related to length bias.
stat
Convex Nonparanormal Regression
Quantifying uncertainty in predictions or, more generally, estimating the posterior conditional distribution, is a core challenge in machine learning and statistics. We introduce Convex Nonparanormal Regression (CNR), a conditional nonparanormal approach for coping with this task. CNR involves a convex optimization of a posterior defined via a rich dictionary of pre-defined non linear transformations on Gaussians. It can fit an arbitrary conditional distribution, including multimodal and non-symmetric posteriors. For the special but powerful case of a piecewise linear dictionary, we provide a closed form of the posterior mean which can be used for point-wise predictions. Finally, we demonstrate the advantages of CNR over classical competitors using synthetic and real world data.
stat
Towards reliable projections of global mean surface temperature
Quantifying the risk of global warming exceeding critical targets such as 2.0 K requires reliable projections of uncertainty as well as best estimates of Global Mean Surface Temperature (GMST). However, uncertainty bands on GMST projections are often calculated heuristically and have several potential shortcomings. In particular, the uncertainty bands shown in IPCC plume projections of GMST are based on the distribution of GMST anomalies from climate model runs and so are strongly determined by model characteristics with little influence from observations of the real-world. Physically motivated time-series approaches are proposed based on fitting energy balance models (EBMs) to climate model outputs and observations in order to constrain future projections. It is shown that EBMs fitted to one forcing scenario will not produce reliable projections when different forcing scenarios are applied. The errors in the EBM projections can be interpreted as arising due to a discrepancy in the effective forcing felt by the model. A simple time-series approach to correcting the projections is proposed based on learning the evolution of the forcing discrepancy so that it can be projected into the future. These approaches give reliable projections of GMST when tested in a perfect model setting, and when applied to observations lead to well constrained projections with lower mean warming and narrower projection bands than previous estimates. Despite the reduced uncertainty, the lower warming leads to a greatly reduced probability of exceeding the 2.0 K warming target.
stat
Faster MCMC for Gaussian Latent Position Network Models
Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node's latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy---defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo---that leverages the posterior distribution's functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
stat
Practical Calculation of Gittins Indices for Multi-armed Bandits
Gittins indices provide an optimal solution to the classical multi-armed bandit problem. An obstacle to their use has been the common perception that their computation is very difficult. This paper demonstrates an accessible general methodology for the calculating Gittins indices for the multi-armed bandit with a detailed study on the cases of Bernoulli and Gaussian rewards. With accompanying easy-to-use open source software, this work removes computation as a barrier to using Gittins indices in these commonly found settings.
stat
Modern Monte Carlo Methods for Efficient Uncertainty Quantification and Propagation: A Survey
Uncertainty quantification (UQ) includes the characterization, integration, and propagation of uncertainties that result from stochastic variations and a lack of knowledge or data in the natural world. Monte Carlo (MC) method is a sampling-based approach that has widely used for quantification and propagation of uncertainties. However, the standard MC method is often time-consuming if the simulation-based model is computationally intensive. This article gives an overview of modern MC methods to address the existing challenges of the standard MC in the context of UQ. Specifically, multilevel Monte Carlo (MLMC) extending the concept of control variates achieves a significant reduction of the computational cost by performing most evaluations with low accuracy and corresponding low cost, and relatively few evaluations at high accuracy and correspondingly high cost. Multifidelity Monte Carlo (MFMC) accelerates the convergence of standard Monte Carlo by generalizing the control variates with different models having varying fidelities and varying computational costs. Multimodel Monte Carlo method (MMMC), having a different setting of MLMC and MFMC, aims to address the issue of uncertainty quantification and propagation when data for characterizing probability distributions are limited. Multimodel inference combined with importance sampling is proposed for quantifying and efficiently propagating the uncertainties resulting from small datasets. All of these three modern MC methods achieve a significant improvement of computational efficiency for probabilistic UQ, particularly uncertainty propagation. An algorithm summary and the corresponding code implementation are provided for each of the modern Monte Carlo methods. The extension and application of these methods are discussed in detail.
stat
Fast estimation of a convolution type model for the intensity of spatial point processes
Estimating the first-order intensity function in point pattern analysis is an important problem, and it has been approached so far from different perspectives: parametrically, semiparametrically or nonparametrically. Our approach is close to a semiparametric one. Motivated by eye-movement data, we introduce a convolution type model where the log-intensity is modelled as the convolution of a function $\beta(\cdot)$, to be estimated, and a single spatial covariate (the image an individual is looking at for eye-movement data). Based on a Fourier series expansion, we show that the proposed model is related to the log-linear model with infinite number of coefficients, which correspond to the spectral decomposition of $\beta(\cdot)$. After truncation, we estimate these coefficients through a penalized Poisson likelihood and prove infill asymptotic results for a large class of spatial point processes. We illustrate the efficiency of the proposed methodology on simulated data and real data.
stat
Generic probabilistic modelling and non-homogeneity issues for the UK epidemic of COVID-19
Coronavirus COVID-19 spreads through the population mostly based on social contact. To gauge the potential for widespread contagion, to cope with associated uncertainty and to inform its mitigation, more accurate and robust modelling is centrally important for policy making. We provide a flexible modelling approach that increases the accuracy with which insights can be made. We use this to analyse different scenarios relevant to the COVID-19 situation in the UK. We present a stochastic model that captures the inherently probabilistic nature of contagion between population members. The computational nature of our model means that spatial constraints (e.g., communities and regions), the susceptibility of different age groups and other factors such as medical pre-histories can be incorporated with ease. We analyse different possible scenarios of the COVID-19 situation in the UK. Our model is robust to small changes in the parameters and is flexible in being able to deal with different scenarios. This approach goes beyond the convention of representing the spread of an epidemic through a fixed cycle of susceptibility, infection and recovery (SIR). It is important to emphasise that standard SIR-type models, unlike our model, are not flexible enough and are also not stochastic and hence should be used with extreme caution. Our model allows both heterogeneity and inherent uncertainty to be incorporated. Due to the scarcity of verified data, we draw insights by calibrating our model using parameters from other relevant sources, including agreement on average (mean field) with parameters in SIR-based models.
stat
Faking Fairness via Stealthily Biased Sampling
Auditing fairness of decision-makers is now in high demand. To respond to this social demand, several fairness auditing tools have been developed. The focus of this study is to raise an awareness of the risk of malicious decision-makers who fake fairness by abusing the auditing tools and thereby deceiving the social communities. The question is whether such a fraud of the decision-maker is detectable so that the society can avoid the risk of fake fairness. In this study, we answer this question negatively. We specifically put our focus on a situation where the decision-maker publishes a benchmark dataset as the evidence of his/her fairness and attempts to deceive a person who uses an auditing tool that computes a fairness metric. To assess the (un)detectability of the fraud, we explicitly construct an algorithm, the stealthily biased sampling, that can deliberately construct an evil benchmark dataset via subsampling. We show that the fraud made by the stealthily based sampling is indeed difficult to detect both theoretically and empirically.
stat
Causal inference of hazard ratio based on propensity score matching
Propensity score matching is commonly used to draw causal inference from observational survival data. However, there is no gold standard approach to analyze survival data after propensity score matching, and variance estimation after matching is open to debate. We derive the statistical properties of the propensity score matching estimator of the marginal causal hazard ratio based on matching with replacement and a fixed number of matches. We also propose a double-resampling technique for variance estimation that takes into account the uncertainty due to propensity score estimation prior to matching.
stat
Best-scored Random Forest Density Estimation
This paper presents a brand new nonparametric density estimation strategy named the best-scored random forest density estimation whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. The terminology best-scored stands for selecting one density tree with the best estimation performance out of a certain number of purely random density tree candidates and we then name the selected one the best-scored random density tree. In this manner, the ensemble of these selected trees that is the best-scored random density forest can achieve even better estimation results than simply integrating trees without selection. From the theoretical perspective, by decomposing the error term into two, we are able to carry out the following analysis: First of all, we establish the consistency of the best-scored random density trees under $L_1$-norm. Secondly, we provide the convergence rates of them under $L_1$-norm concerning with three different tail assumptions, respectively. Thirdly, the convergence rates under $L_{\infty}$-norm is presented. Last but not least, we also achieve the above convergence rates analysis for the best-scored random density forest. When conducting comparative experiments with other state-of-the-art density estimation approaches on both synthetic and real data sets, it turns out that our algorithm has not only significant advantages in terms of estimation accuracy over other methods, but also stronger resistance to the curse of dimensionality.
stat
TSEC: a framework for online experimentation under experimental constraints
Thompson sampling is a popular algorithm for solving multi-armed bandit problems, and has been applied in a wide range of applications, from website design to portfolio optimization. In such applications, however, the number of choices (or arms) $N$ can be large, and the data needed to make adaptive decisions require expensive experimentation. One is then faced with the constraint of experimenting on only a small subset of $K \ll N$ arms within each time period, which poses a problem for traditional Thompson sampling. We propose a new Thompson Sampling under Experimental Constraints (TSEC) method, which addresses this so-called "arm budget constraint". TSEC makes use of a Bayesian interaction model with effect hierarchy priors, to model correlations between rewards on different arms. This fitted model is then integrated within Thompson sampling, to jointly identify a good subset of arms for experimentation and to allocate resources over these arms. We demonstrate the effectiveness of TSEC in two problems with arm budget constraints. The first is a simulated website optimization study, where TSEC shows noticeable improvements over industry benchmarks. The second is a portfolio optimization application on industry-based exchange-traded funds, where TSEC provides more consistent and greater wealth accumulation over standard investment strategies.
stat
Balancing the Tradeoff Between Clustering Value and Interpretability
Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a $\beta$-interpretable clustering algorithm that ensures that at least $\beta$ fraction of nodes in each cluster share the same feature value. The tunable parameter $\beta$ is user-specified. We also present a more efficient algorithm for scenarios with $\beta\!=\!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.
stat
Posterior inference unchained with EL_2O
Statistical inference of analytically non-tractable posteriors is a difficult problem because of marginalization of correlated variables and stochastic methods such as MCMC and VI are commonly used. We argue that stochastic KL divergence minimization used by MCMC and VI is noisy, and we propose instead EL_2O, expectation optimization of L_2 distance squared between the approximate log posterior q and the un-normalized log posterior of p. When sampling from q the solutions agree with stochastic KL divergence minimization based VI in the large sample limit, however EL_2O method is free of sampling noise, has better optimization properties, and requires only as many sample evaluations as the number of parameters we are optimizing if q covers p. As a consequence, increasing the expressivity of q improves both the quality of results and the convergence rate, allowing EL_2O to approach exact inference. Use of automatic differentiation methods enables us to develop Hessian, gradient and gradient free versions of the method, which can determine M(M+2)/2+1, M+1 and 1 parameter(s) of q with a single sample, respectively. EL_2O provides a reliable estimate of the quality of the approximating posterior, and converges rapidly on full rank gaussian approximation for q and extensions beyond it, such as nonlinear transformations and gaussian mixtures. These can handle general posteriors, while still allowing fast analytic marginalizations. We test it on several examples, including a realistic 13 dimensional galaxy clustering analysis, showing that it is several orders of magnitude faster than MCMC, while giving smooth and accurate non-gaussian posteriors, often requiring a few to a few dozen of iterations only.
stat
Stochastic Approximation EM for Exploratory Item Factor Analysis
The stochastic approximation EM algorithm (SAEM) is described for the estimation of item and person parameters given test data coded as dichotomous or ordinal variables. The method hinges upon the eigenanalysis of missing variables sampled as augmented data; the augmented data approach was introduced by Albert's seminal work applying Gibbs sampling to Item Response Theory in 1992. Similar to maximum likelihood factor analysis, the factor structure in this Bayesian approach depends only on sufficient statistics, which are computed from the missing latent data. A second feature of the SAEM algorithm is the use of the Robbins-Monro procedure for establishing convergence. Contrary to Expectation Maximization methods where costly integrals must be calculated, this method is well-suited for highly multidimensional data, and an annealing method is implemented to prevent convergence to a local maximum likelihood. Multiple calculations of errors applied within this framework of Markov Chain Monte Carlo are presented to delineate the uncertainty of parameter estimates. Given the nature of EFA (exploratory factor analysis), an algorithm is formalized leveraging the Tracy-Widom distribution for the retention of factors extracted from an eigenanalysis of the sufficient statistic of the covariance of the augmented data matrix. Simulation conditions of dichotomous and polytomous data, from one to ten dimensions of factor loadings, are used to assess statistical accuracy and to gauge computational time of the EFA approach of this IRT-specific implementation of the SAEM algorithm. Finally, three applications of this methodology are also reported that demonstrate the effectiveness of the method for enabling timely analyses as well as substantive interpretations when this method is applied to real data.
stat
The Benefits of Probability-Proportional-to-Size Sampling in Cluster-Randomized Experiments
In a cluster-randomized experiment, treatment is assigned to clusters of individual units of interest--households, classrooms, villages, etc.--instead of the units themselves. The number of clusters sampled and the number of units sampled within each cluster is typically restricted by a budget constraint. Previous analysis of cluster randomized experiments under the Neyman-Rubin potential outcomes model of response have assumed a simple random sample of clusters. Estimators of the population average treatment effect (PATE) under this assumption are often either biased or not invariant to location shifts of potential outcomes. We demonstrate that, by sampling clusters with probability proportional to the number of units within a cluster, the Horvitz-Thompson estimator (HT) is invariant to location shifts and unbiasedly estimates PATE. We derive standard errors of HT and discuss how to estimate these standard errors. We also show that results hold for stratified random samples when samples are drawn proportionally to cluster size within each stratum. We demonstrate the efficacy of this sampling scheme using a simulation based on data from an experiment measuring the efficacy of the National Solidarity Programme in Afghanistan.
stat
Causal Inference on Non-linear Spaces: Distribution Functions and Beyond
Understanding causal relationships is one of the most important goals of modern science. So far, the causal inference literature has focused almost exclusively on outcomes coming from a linear space, most commonly the Euclidean space. However, it is increasingly common that complex datasets collected through electronic sources, such as wearable devices and medical imaging, cannot be represented as data points from linear spaces. In this paper, we present a formal definition of causal effects for outcomes from non-linear spaces, with a focus on the Wasserstein space of cumulative distribution functions. We develop doubly robust estimators and associated asymptotic theory for these causal effects. Our framework extends to outcomes from certain Riemannian manifolds. As an illustration, we use our framework to quantify the causal effect of marriage on physical activity patterns using wearable device data collected through the National Health and Nutrition Examination Survey.
stat
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
In many applications, it is desirable that a classifier not only makes accurate predictions, but also outputs calibrated probabilities. However, many existing classifiers, especially deep neural network classifiers, tend not to be calibrated. Post-hoc calibration is a technique to recalibrate a model, and its goal is to learn a calibration map. Existing approaches mostly focus on constructing calibration maps with low calibration errors. Contrary to these methods, we study post-hoc calibration for multi-class classification under constraints, as a calibrator with a low calibration error does not necessarily mean it is useful in practice. In this paper, we introduce two practical constraints to be taken into consideration. We then present Meta-Cal, which is built from a base calibrator and a ranking model. Under some mild assumptions, two high-probability bounds are given with respect to these constraints. Empirical results on CIFAR-10, CIFAR-100 and ImageNet and a range of popular network architectures show our proposed method significantly outperforms the current state of the art for post-hoc multi-class classification calibration.
stat
Exact Asymptotics for Learning Tree-Structured Graphical Models with Side Information: Noiseless and Noisy Samples
Given side information that an Ising tree-structured graphical model is homogeneous and has no external field, we derive the exact asymptotics of learning its structure from independently drawn samples. Our results, which leverage the use of probabilistic tools from the theory of strong large deviations, refine the large deviation (error exponents) results of Tan, Anandkumar, Tong, and Willsky [IEEE Trans. on Inform. Th., 57(3):1714--1735, 2011] and strictly improve those of Bresler and Karzand [Ann. Statist., 2020]. In addition, we extend our results to the scenario in which the samples are observed in random noise. In this case, we show that they strictly improve on the recent results of Nikolakakis, Kalogerias, and Sarwate [Proc. AISTATS, 1771--1782, 2019]. Our theoretical results demonstrate keen agreement with experimental results for sample sizes as small as that in the hundreds.
stat
Recent advances in directional statistics
Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.
stat
Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding Meta-Amortization Error
The ability to learn new concepts with small amounts of data is a crucial aspect of intelligence that has proven challenging for deep learning methods. Meta-learning for few-shot learning offers a potential solution to this problem: by learning to learn across data from many previous tasks, few-shot learning algorithms can discover the structure among tasks to enable fast learning of new tasks. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful prior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be very ambiguous to acquire a single model for that task. The Bayesian meta-learning models can naturally resolve this problem by putting a sophisticated prior distribution and let the posterior well regularized through Bayesian decision theory. However, currently known Bayesian meta-learning procedures such as VERSA suffer from the so-called {\it information preference problem}, that is, the posterior distribution is degenerated to one point and is far from the exact one. To address this challenge, we design a novel meta-regularization objective using {\it cyclical annealing schedule} and {\it maximum mean discrepancy} (MMD) criterion. The cyclical annealing schedule is quite effective at avoiding such degenerate solutions. This procedure includes a difficult KL-divergence estimation, but we resolve the issue by employing MMD instead of KL-divergence. The experimental results show that our approach substantially outperforms standard meta-learning algorithms.
stat
The Micro-Randomized Trial for Developing Digital Interventions: Data Analysis Methods
Although there is much excitement surrounding the use of mobile and wearable technology for the purposes of delivering interventions as people go through their day-to-day lives, data analysis methods for constructing and optimizing digital interventions lag behind. Here, we elucidate data analysis methods for primary and secondary analyses of micro-randomized trials (MRTs), an experimental design to optimize digital just-in-time adaptive interventions. We provide a definition of causal "excursion" effects suitable for use in digital intervention development. We introduce the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators for digital interventions from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as SAS or R. Throughout we use HeartSteps, an MRT designed to increase physical activity among sedentary individuals, to illustrate potential primary and secondary analyses.
stat
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
Important objectives in cancer research are the prediction of a patient's risk based on molecular measurements such as gene expression data and the identification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often challenging because patient cohorts are typically small and can be heterogeneous. In classical subgroup analysis, a separate prediction model is fitted using only the data of one specific cohort. However, this can lead to a loss of power when the sample size is small. Simple pooling of all cohorts, on the other hand, can lead to biased results, especially when the cohorts are heterogeneous. For this situation, we propose a new Bayesian approach suitable for continuous molecular measurements and survival outcome that identifies the important predictors and provides a separate risk prediction model for each cohort. It allows sharing information between cohorts to increase power by assuming a graph linking predictors within and across different cohorts. The graph helps to identify pathways of functionally related genes and genes that are simultaneously prognostic in different cohorts. Results demonstrate that our proposed approach is superior to the standard approaches in terms of prediction performance and increased power in variable selection when the sample size is small.
stat
Optimal post-selection inference for sparse signals: a nonparametric empirical-Bayes approach
Many recently developed Bayesian methods have focused on sparse signal detection. However, much less work has been done addressing the natural follow-up question: how to make valid inferences for the magnitude of those signals after selection. Ordinary Bayesian credible intervals suffer from selection bias, owing to the fact that the target of inference is chosen adaptively. Existing Bayesian approaches for correcting this bias produce credible intervals with poor frequentist properties, while existing frequentist approaches require sacrificing the benefits of shrinkage typical in Bayesian methods, resulting in confidence intervals that are needlessly wide. We address this gap by proposing a nonparametric empirical-Bayes approach for constructing optimal selection-adjusted confidence sets. Our method produces confidence sets that are as short as possible on average, while both adjusting for selection and maintaining exact frequentist coverage uniformly over the parameter space. Our main theoretical result establishes an important consistency property of our procedure: that under mild conditions, it asymptotically converges to the results of an oracle-Bayes analysis in which the prior distribution of signal sizes is known exactly. Across a series of examples, the method outperforms existing frequentist techniques for post-selection inference, producing confidence sets that are notably shorter but with the same coverage guarantee.
stat
How to iron out rough landscapes and get optimal performances: Averaged Gradient Descent and its application to tensor PCA
In many high-dimensional estimation problems the main task consists in minimizing a cost function, which is often strongly non-convex when scanned in the space of parameters to be estimated. A standard solution to flatten the corresponding rough landscape consists in summing the losses associated to different data points and obtain a smoother empirical risk. Here we propose a complementary method that works for a single data point. The main idea is that a large amount of the roughness is uncorrelated in different parts of the landscape. One can then substantially reduce the noise by evaluating an empirical average of the gradient obtained as a sum over many random independent positions in the space of parameters to be optimized. We present an algorithm, called Averaged Gradient Descent, based on this idea and we apply it to tensor PCA, which is a very hard estimation problem. We show that Averaged Gradient Descent over-performs physical algorithms such as gradient descent and approximate message passing and matches the best algorithmic thresholds known so far, obtained by tensor unfolding and methods based on sum-of-squares.
stat
Multivariate hierarchical analysis of car crashes data considering a spatial network lattice
Road traffic casualties represent a hidden global epidemic, demanding evidence-based interventions. This paper demonstrates a network lattice approach for identifying road segments of particular concern, based on a case study of a major city (Leeds, UK), in which 5862 crashes of different severities were recorded over an eight-year period (2011-2018). We consider a family of Bayesian hierarchical models that include spatially structured and unstructured random effects, to capture the dependencies between the severity levels. Results highlight roads that are more prone to collisions, relative to estimated traffic volumes, in the North of the city. We analyse the Modifiable Areal Unit Problem (MAUP), proposing a novel procedure to investigate the presence of MAUP on a network lattice. We conclude that our methods enable a reliable estimation of road safety levels to help identify hotspots on the road network and to inform effective local interventions.
stat
Learning Whenever Learning is Possible: Universal Learning under General Stochastic Processes
This work initiates a general study of learning and generalization without the i.i.d. assumption, starting from first principles. While the traditional approach to statistical learning theory typically relies on standard assumptions from probability theory (e.g., i.i.d. or stationary ergodic), in this work we are interested in developing a theory of learning based only on the most fundamental and necessary assumptions implicit in the requirements of the learning problem itself. We specifically study universally consistent function learning, where the objective is to obtain low long-run average loss for any target function, when the data follow a given stochastic process. We are then interested in the question of whether there exist learning rules guaranteed to be universally consistent given only the assumption that universally consistent learning is possible for the given data process. The reasoning that motivates this criterion emanates from a kind of optimist's decision theory, and so we refer to such learning rules as being optimistically universal. We study this question in three natural learning settings: inductive, self-adaptive, and online. Remarkably, as our strongest positive result, we find that optimistically universal learning rules do indeed exist in the self-adaptive learning setting. Establishing this fact requires us to develop new approaches to the design of learning algorithms. Along the way, we also identify concise characterizations of the family of processes under which universally consistent learning is possible in the inductive and self-adaptive settings. We additionally pose a number of enticing open problems, particularly for the online learning setting.
stat
Analyzing Basket Trials under Multisource Exchangeability Assumptions
Basket designs are prospective clinical trials that are devised with the hypothesis that the presence of selected molecular features determine a patient's subsequent response to a particular "targeted" treatment strategy. Basket trials are designed to enroll multiple clinical subpopulations to which it is assumed that the therapy in question offers beneficial efficacy in the presence of the targeted molecular profile. The treatment, however, may not offer acceptable efficacy to all subpopulations enrolled. Moreover, for rare disease settings, such as oncology wherein these trials have become popular, marginal measures of statistical evidence are difficult to interpret for sparsely enrolled subpopulations. Consequently, basket trials pose challenges to the traditional paradigm for trial design, which assumes inter-patient exchangeability. The R-package \pkg{basket} facilitates the analysis of basket trials by implementing multi-source exchangeability models. By evaluating all possible pairwise exchangeability relationships, this hierarchical modeling framework facilitates Bayesian posterior shrinkage among a collection of discrete and pre-specified subpopulations. Analysis functions are provided to implement posterior inference of the response rates and all possible exchangeability relationships between subpopulations. In addition, the package can identify "poolable" subsets of and report their response characteristics. The functionality of the package is demonstrated using data from an oncology study with subpopulations defined by tumor histology.
stat
Learning the piece-wise constant graph structure of a varying Ising model
This work focuses on the estimation of multiple change-points in a time-varying Ising model that evolves piece-wise constantly. The aim is to identify both the moments at which significant changes occur in the Ising model, as well as the underlying graph structures. For this purpose, we propose to estimate the neighborhood of each node by maximizing a penalized version of its conditional log-likelihood. The objective of the penalization is twofold: it imposes sparsity in the learned graphs and, thanks to a fused-type penalty, it also enforces them to evolve piece-wise constantly. Using few assumptions, we provide two change-points consistency theorems. Those are the first in the context of unknown number of change-points detection in time-varying Ising model. Finally, experimental results on several synthetic datasets and a real-world dataset demonstrate the performance of our method.
stat
Space Filling Split Plot Design using Fast Flexible Filling
In this article, an adaption of an algorithm for the creation of experimental designs by Lekivetz and Jones (2015) is suggested, dealing with constraints around randomization. Split-plot design of experiments is used, when the levels of some factors cannot be modified as easily as others. While most split-plot designs deal in the context of I-optimal or D-optimal designs for continuous response outputs, a space filling design strategy is suggested in here. The proposed designs are evaluated based on different design criteria, as well as an analytical example.
stat
A Non-Gaussian Spatio-Temporal Model for Daily Wind Speeds Based on a Multivariate Skew-t Distribution
Facing increasing domestic energy consumption from population growth and industrialization, Saudi Arabia is aiming to reduce its reliance on fossil fuels and to broaden its energy mix by expanding investment in renewable energy sources, including wind energy. A preliminary task in the development of wind energy infrastructure is the assessment of wind energy potential, a key aspect of which is the characterization of its spatio-temporal behavior. In this study we examine the impact of internal climate variability on seasonal wind power density fluctuations over Saudi Arabia using 30 simulations from the Large Ensemble Project (LENS) developed at the National Center for Atmospheric Research. Furthermore, a spatio-temporal model for daily wind speed is proposed with neighbor-based cross-temporal dependence, and a multivariate skew-t distribution to capture the spatial patterns of higher order moments. The model can be used to generate synthetic time series over the entire spatial domain that adequately reproduce the internal variability of the LENS dataset.
stat
Fast Rates for Contextual Linear Optimization
Incorporating side observations in decision making can reduce uncertainty and boost performance, but it also requires we tackle a potentially complex predictive relationship. While one may use off-the-shelf machine learning methods to separately learn a predictive model and plug it in, a variety of recent methods instead integrate estimation and optimization by fitting the model to directly optimize downstream decision performance. Surprisingly, in the case of contextual linear optimization, we show that the naive plug-in approach actually achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance. We show this by leveraging the fact that specific problem instances do not have arbitrarily bad near-dual-degeneracy. While there are other pros and cons to consider as we discuss and illustrate numerically, our results highlight a nuanced landscape for the enterprise to integrate estimation and optimization. Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
stat
Causal Autoregressive Flows
Two apparently unrelated fields -- normalizing flows and causality -- have recently received considerable attention in the machine learning community. In this work, we highlight an intrinsic correspondence between a simple family of autoregressive normalizing flows and identifiable causal models. We exploit the fact that autoregressive flow architectures define an ordering over variables, analogous to a causal ordering, to show that they are well-suited to performing a range of causal inference tasks, ranging from causal discovery to making interventional and counterfactual predictions. First, we show that causal models derived from both affine and additive autoregressive flows with fixed orderings over variables are identifiable, i.e. the true direction of causal influence can be recovered. This provides a generalization of the additive noise model well-known in causal discovery. Second, we derive a bivariate measure of causal direction based on likelihood ratios, leveraging the fact that flow models can estimate normalized log-densities of data. Third, we demonstrate that flows naturally allow for direct evaluation of both interventional and counterfactual queries, the latter case being possible due to the invertible nature of flows. Finally, throughout a series of experiments on synthetic and real data, the proposed method is shown to outperform current approaches for causal discovery as well as making accurate interventional and counterfactual predictions.
stat
Rapid Bayesian inference for expensive stochastic models
Almost all fields of science rely upon statistical inference to estimate unknown parameters in theoretical and computational models. While the performance of modern computer hardware continues to grow, the computational requirements for the simulation of models are growing even faster. This is largely due to the increase in model complexity, often including stochastic dynamics, that is necessary to describe and characterize phenomena observed using modern, high resolution, experimental techniques. Such models are rarely analytically tractable, meaning that extremely large numbers of stochastic simulations are required for parameter inference. In such cases, parameter inference can be practically impossible. In this work, we present new computational Bayesian techniques that accelerate inference for expensive stochastic models by using computationally inexpensive approximations to inform feasible regions in parameter space, and through learning transforms that adjust the biased approximate inferences to closer represent the correct inferences under the expensive stochastic model. Using topical examples from ecology and cell biology, we demonstrate a speed improvement of an order of magnitude without any loss in accuracy. This represents a substantial improvement over current state-of-the-art methods for Bayesian computations when appropriate model approximations are available.
stat
Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders
We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (DIPW) scheme for average treatment effect estimation that delivers $\sqrt{n}$-consistent estimates of the average treatment effect when the propensity score follows a sparse logistic regression model; the regression functions are permitted to be arbitrarily complex. Our theoretical results quantify the price to pay for permitting the regression functions to be unestimable, which shows up as an inflation of the variance of the estimator compared to the semiparametric efficient variance by at most O(1) under mild conditions. Given the lack of assumptions on the regression functions, averages of transformed responses under each treatment may also be estimated at the $\sqrt{n}$ rate, and so for example, the variances of the potential outcomes may be estimated. We show how confidence intervals centred on our estimates may be constructed, and also discuss an extension of the method to estimating projections of the heterogeneous treatment effect function.
stat
Variational Tracking and Prediction with Generative Disentangled State-Space Models
We address tracking and prediction of multiple moving objects in visual data streams as inference and sampling in a disentangled latent state-space model. By encoding objects separately and including explicit position information in the latent state space, we perform tracking via amortized variational Bayesian inference of the respective latent positions. Inference is implemented in a modular neural framework tailored towards our disentangled latent space. Generative and inference model are jointly learned from observations only. Comparing to related prior work, we empirically show that our Markovian state-space assumption enables faithful and much improved long-term prediction well beyond the training horizon. Further, our inference model correctly decomposes frames into objects, even in the presence of occlusions. Tracking performance is increased significantly over prior art.
stat
Weather-inspired ensemble-based probabilistic prediction of COVID-19
The objective of this work is to predict the spread of COVID-19 starting from observed data, using a forecast method inspired by probabilistic weather prediction systems operational today. Results show that this method works well for China: on day 25 we could have predicted well the outcome for the next 35 days. The same method has been applied to Italy and South Korea, and forecasts for the forthcoming weeks are included in this work. For Italy, forecasts based on data collected up to today (24 March) indicate that number of observed cases could grow from the current value of 69,176, to between 101k-180k, with a 50% probability of being between 110k-135k. For South Korea, it suggests that the number of observed cases could grow from the current value of 9,018 (as of the 23rd of March), to values between 8,500 and 9,300, with a 50% probability of being between 8,700 and 8,900. We conclude by suggesting that probabilistic disease prediction systems are possible and could be developed following key ideas and methods from weather forecasting. Having access to skilful daily updated forecasts could help taking better informed decisions on how to manage the spread of diseases such as COVID-19.
stat
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Despite its success in a wide range of applications, characterizing the generalization properties of stochastic gradient descent (SGD) in non-convex deep learning problems is still an important challenge. While modeling the trajectories of SGD via stochastic differential equations (SDE) under heavy-tailed gradient noise has recently shed light over several peculiar characteristics of SGD, a rigorous treatment of the generalization properties of such SDEs in a learning theoretical framework is still missing. Aiming to bridge this gap, in this paper, we prove generalization bounds for SGD under the assumption that its trajectories can be well-approximated by a \emph{Feller process}, which defines a rich class of Markov processes that include several recent SDE representations (both Brownian or heavy-tailed) as its special case. We show that the generalization error can be controlled by the \emph{Hausdorff dimension} of the trajectories, which is intimately linked to the tail behavior of the driving process. Our results imply that heavier-tailed processes should achieve better generalization; hence, the tail-index of the process can be used as a notion of "capacity metric". We support our theory with experiments on deep neural networks illustrating that the proposed capacity metric accurately estimates the generalization error, and it does not necessarily grow with the number of parameters unlike the existing capacity metrics in the literature.
stat
Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak
As the coronavirus disease 2019 (COVID-19) has shown profound effects on public health and the economy worldwide, it becomes crucial to assess the impact on the virus transmission and develop effective strategies to address the challenge. A new statistical model derived from the SIR epidemic model with functional parameters is proposed to understand the impact of weather and government interventions on the virus spread and also provide the forecasts of COVID-19 infections among eight metropolitan areas in the United States. The model uses Bayesian inference with Gaussian process priors to study the functional parameters nonparametrically, and sensitivity analysis is adopted to investigate the main and interaction effects of these factors. This analysis reveals several important results including the potential interaction effects between weather and government interventions, which shed new light on the effective strategies for policymakers to mitigate the COVID-19 outbreak.
stat
Semiparametric estimation of structural failure time model in continuous-time processes
Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed to estimate the model parameters in the presence of time-dependent confounding and administrative censoring. However, most of existing methods require manually preprocessing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the non-smoothness of artificial censoring. We propose a class of continuous-time structural failure time models, which respects the continuous time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from potentially infinite estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, in the sense that the estimators are consistent if either the treatment process model or the failure time model is correctly specified, but not necessarily both. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce non-smoothness in estimation and ensures that the resampling methods can be used to make inference.
stat
Sparsely Observed Functional Time Series: Estimation and Prediction
Functional time series analysis, whether based on time of frequency domain methodology, has traditionally been carried out under the assumption of complete observation of the constituent series of curves, assumed stationary. Nevertheless, as is often the case with independent functional data, it may well happen that the data available to the analyst are not the actual sequence of curves, but relatively few and noisy measurements per curve, potentially at different locations in each curve's domain. Under this sparse sampling regime, neither the established estimators of the time series' dynamics, nor their corresponding theoretical analysis will apply. The subject of this paper is to tackle the problem of estimating the dynamics and of recovering the latent process of smooth curves in the sparse regime. Assuming smoothness of the latent curves, we construct a consistent nonparametric estimator of the series' spectral density operator and use it develop a frequency-domain recovery approach, that predicts the latent curve at a given time by borrowing strength from the (estimated) dynamic correlations in the series across time. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting. Means of providing corresponding confidence bands are also investigated. A simulation study interestingly suggests that sparse observation for a longer time period, may be provide better performance than dense observation for a shorter period, in the presence of smoothness. The methodology is further illustrated by application to an environmental data set on fair-weather atmospheric electricity, which naturally leads to a sparse functional time-series.
stat
Smoothed Nested Testing on Directed Acyclic Graphs
We consider the problem of multiple hypothesis testing when there is a logical nested structure to the hypotheses. When one hypothesis is nested inside another, the outer hypothesis must be false if the inner hypothesis is false. We model the nested structure as a directed acyclic graph, including chain and tree graphs as special cases. Each node in the graph is a hypothesis and rejecting a node requires also rejecting all of its ancestors. We propose a general framework for adjusting node-level test statistics using the known logical constraints. Within this framework, we study a smoothing procedure that combines each node with all of its descendants to form a more powerful statistic. We prove a broad class of smoothing strategies can be used with existing selection procedures to control the familywise error rate, false discovery exceedance rate, or false discovery rate, so long as the original test statistics are independent under the null. When the null statistics are not independent but are derived from positively-correlated normal observations, we prove control for all three error rates when the smoothing method is arithmetic averaging of the observations. Simulations and an application to a real biology dataset demonstrate that smoothing leads to substantial power gains.
stat
A New Spatial Count Data Model with Bayesian Additive Regression Trees for Accident Hot Spot Identification
The identification of accident hot spots is a central task of road safety management. Bayesian count data models have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks. Typically, these methods assume simple linear link function specifications, which, however, limit the predictive power of a model. Furthermore, extensive specification searches are precluded by complex model structures arising from the need to account for unobserved heterogeneity and spatial correlations. Modern machine learning (ML) methods offer ways to automate the specification of the link function. However, these methods do not capture estimation uncertainty, and it is also difficult to incorporate spatial correlations. In light of these gaps in the literature, this paper proposes a new spatial negative binomial model, which uses Bayesian additive regression trees to endogenously select the specification of the link function. Posterior inference in the proposed model is made feasible with the help of the Polya-Gamma data augmentation technique. We test the performance of this new model on a crash count data set from a metropolitan highway network. The empirical results show that the proposed model performs at least as well as a baseline spatial count data model with random parameters in terms of goodness of fit and site ranking ability.
stat
Langevin Monte Carlo without smoothness
Langevin Monte Carlo (LMC) is an iterative algorithm used to generate samples from a distribution that is known only up to a normalizing constant. The nonasymptotic dependence of its mixing time on the dimension and target accuracy is understood mainly in the setting of smooth (gradient-Lipschitz) log-densities, a serious limitation for applications in machine learning. In this paper, we remove this limitation, providing polynomial-time convergence guarantees for a variant of LMC in the setting of nonsmooth log-concave distributions. At a high level, our results follow by leveraging the implicit smoothing of the log-density that comes from a small Gaussian perturbation that we add to the iterates of the algorithm and controlling the bias and variance that are induced by this perturbation.
stat
Spherical Motion Dynamics: Learning Dynamics of Neural Network with Normalization, Weight Decay, and SGD
In this work, we comprehensively reveal the learning dynamics of neural network with normalization, weight decay (WD), and SGD (with momentum), named as Spherical Motion Dynamics (SMD). Most related works study SMD by focusing on "effective learning rate" in "equilibrium" condition, where weight norm remains unchanged. However, their discussions on why equilibrium condition can be reached in SMD is either absent or less convincing. Our work investigates SMD by directly exploring the cause of equilibrium condition. Specifically, 1) we introduce the assumptions that can lead to equilibrium condition in SMD, and prove that weight norm can converge at linear rate with given assumptions; 2) we propose "angular update" as a substitute for effective learning rate to measure the evolving of neural network in SMD, and prove angular update can also converge to its theoretical value at linear rate; 3) we verify our assumptions and theoretical results on various computer vision tasks including ImageNet and MSCOCO with standard settings. Experiment results show our theoretical findings agree well with empirical observations.
stat
Robust multivariate methods in Chemometrics
This chapter presents an introduction to robust statistics with applications of a chemometric nature. Following a description of the basic ideas and concepts behind robust statistics, including how robust estimators can be conceived, the chapter builds up to the construction (and use) of robust alternatives for some methods for multivariate analysis frequently used in chemometrics, such as principal component analysis and partial least squares. The chapter then provides an insight into how these robust methods can be used or extended to classification. To conclude, the issue of validation of the results is being addressed: it is shown how uncertainty statements associated with robust estimates, can be obtained.
stat
Space-time calibration of wind speed forecasts from regional climate models
Numerical weather predictions (NWP) are systematically subject to errors due to the deterministic solutions used by numerical models to simulate the atmosphere. Statistical postprocessing techniques are widely used nowadays for NWP calibration. However, time-varying bias is usually not accommodated by such models. Its calibration performance is also sensitive to the temporal window used for training. This paper proposes space-time models that extend the main statistical postprocessing approaches to calibrate NWP model outputs. Trans-Gaussian random fields are considered to account for meteorological variables with asymmetric behavior. Data augmentation is used to account for censuring in the response variable. The benefits of the proposed extensions are illustrated through the calibration of hourly 10 m wind speed forecasts in Southeastern Brazil coming from the Eta model.
stat
An efficient Bayesian experimental calibration of dynamic thermal models
Experimental calibration of dynamic thermal models is required for model predictive control and characterization of building energy performance. In these applications, the uncertainty assessment of the parameter estimates is decisive; this is why a Bayesian calibration procedure (selection, calibration and validation) is presented. The calibration is based on an improved Metropolis-Hastings algorithm suitable for linear and Gaussian state-space models. The procedure, illustrated on a real house experiment, shows that the algorithm is more robust to initial conditions than a maximum likelihood optimization with a quasi-Newton algorithm. Furthermore, when the data are not informative enough, the use of prior distributions helps to regularize the problem.
stat
Regression Modeling for Recurrent Events Using R Package reReg
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg (Chiou and Huang 2021) offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, possibly with the presence of an informative terminal event. The regression framework is a general scale-change model which encompasses the popular Cox-type model, the accelerated rate model, and the accelerated mean model as special cases. Informative censoring is accommodated through a subject-specific frailty without no need for parametric specification. Different regression models are allowed for the recurrent event process and the terminal event. Also included are visualization and simulation tools.
stat
Improving Interpretable Piecewise Linear Models through Hierarchical Spatial and Functional Smoothing
Scientists often use simple models with solutions that provide insight into physical and environmental systems. Although easy to understand, these simple models often lack the flexibility to accurately model associated data. We focus on the setting where we have functional data distributed over space, where (1) the interpretable model can be expressed as a linear combination of basis functions, (2) the properties of the data-generating process vary spatially, and (3) the interpretable model is too simple to effectively match the data. In this manuscript, through our motivating example of modeling snow density, we develop a framework for functionally smoothing generalized piecewise linear models while preserving inference on the simple model by projecting a smooth function into the orthogonal column space of the piecewise linear model. Moreover, we allow the parameters of the simple model and the functional smoothing to vary spatially. We use a snow density model for ice sheets as the motivating application of this model. The underlying piecewise linear differential equation solution fails to match several data features. We address these issues with a novel, physically-constrained regression model for snow density as a function of depth. The proposed spatially and functionally smoothed snow density model better fits the data while preserving inference on physical parameters. Lastly, we use a unique hierarchical, heteroscedastic error model that accounts for differences between data sources. Using this model, we find significant spatial variation in the parameters that govern snow densification.
stat
Practical Deep Learning with Bayesian Principles
Bayesian methods promise to fix many shortcomings of deep learning, but they are impractical and rarely match the performance of standard methods, let alone improve them. In this paper, we demonstrate practical training of deep networks with natural-gradient variational inference. By applying techniques such as batch normalisation, data augmentation, and distributed training, we achieve similar performance in about the same number of epochs as the Adam optimiser, even on large datasets such as ImageNet. Importantly, the benefits of Bayesian principles are preserved: predictive probabilities are well-calibrated, uncertainties on out-of-distribution data are improved, and continual-learning performance is boosted. This work enables practical deep learning while preserving benefits of Bayesian principles. A PyTorch implementation is available as a plug-and-play optimiser.
stat
Optimization for L1-Norm Error Fitting via Data Aggregation
We propose a data aggregation-based algorithm with monotonic convergence to a global optimum for a generalized version of the L1-norm error fitting model with an assumption of the fitting function. The proposed algorithm generalizes the recent algorithm in the literature, aggregate and iterative disaggregate (AID), which selectively solves three specific L1-norm error fitting problems. With the proposed algorithm, any L1-norm error fitting model can be solved optimally if it follows the form of the L1-norm error fitting problem and if the fitting function satisfies the assumption. The proposed algorithm can also solve multi-dimensional fitting problems with arbitrary constraints on the fitting coefficients matrix. The generalized problem includes popular models such as regression and the orthogonal Procrustes problem. The results of the computational experiment show that the proposed algorithms are faster than the state-of-the-art benchmarks for L1-norm regression subset selection and L1-norm regression over a sphere. Further, the relative performance of the proposed algorithm improves as data size increases.
stat