title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A Comparison of Likelihood-Free Methods With and Without Summary Statistics
Likelihood-free methods are useful for parameter estimation of complex models with intractable likelihood functions for which it is easy to simulate data. Such models are prevalent in many disciplines including genetics, biology, ecology and cosmology. Likelihood-free methods avoid explicit likelihood evaluation by finding parameter values of the model that generate data close to the observed data. The general consensus has been that it is most efficient to compare datasets on the basis of a low dimensional informative summary statistic, incurring information loss in favour of reduced dimensionality. More recently, researchers have explored various approaches for efficiently comparing empirical distributions in the likelihood-free context in an effort to avoid data summarisation. This article provides a review of these full data distance based approaches, and conducts the first comprehensive comparison of such methods, both qualitatively and empirically. We also conduct a substantive empirical comparison with summary statistic based likelihood-free methods. The discussion and results offer guidance to practitioners considering a likelihood-free approach. Whilst we find the best approach to be problem dependent, we also find that the full data distance based approaches are promising and warrant further development. We discuss some opportunities for future research in this space.
stat
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
Multi-horizon forecasting problems often contain a complex mix of inputs -- including static (i.e. time-invariant) covariates, known future inputs, and other exogenous time series that are only observed historically -- without any prior information on how they interact with the target. While several deep learning models have been proposed for multi-step prediction, they typically comprise black-box models which do not account for the full range of inputs present in common scenarios. In this paper, we introduce the Temporal Fusion Transformer (TFT) -- a novel attention-based architecture which combines high-performance multi-horizon forecasting with interpretable insights into temporal dynamics. To learn temporal relationships at different scales, the TFT utilizes recurrent layers for local processing and interpretable self-attention layers for learning long-term dependencies. The TFT also uses specialized components for the judicious selection of relevant features and a series of gating layers to suppress unnecessary components, enabling high performance in a wide range of regimes. On a variety of real-world datasets, we demonstrate significant performance improvements over existing benchmarks, and showcase three practical interpretability use-cases of TFT.
stat
Post-processing multi-ensemble temperature and precipitation forecasts through an Exchangeable Gamma Normal model and its Tobit extension
Meteorological ensembles are a collection of scenarios for future weather delivered by a meteorological center. Such ensembles form the main source of valuable information for probabilistic forecasting which aims at producing a predictive probability distribution of the quantity of interest instead of a single best guess estimate. Unfortunately, ensembles cannot generally be considered as a sample from such a predictive probability distribution without a preliminary post-processing treatment to calibrate the ensemble. Two main families of post-processing methods, either competing such as BMA or collaborative such as EMOS, can be found in the literature. This paper proposes a mixed effect model belonging to the collaborative family. The structure of the model is based on the hypothesis of invariance under the relabelling of the ensemble members. Its interesting specificities are as follows: 1) exchangeability, which contributes to parsimony, with a latent pivot variable synthesizing the essential meteorological features of the ensembles, 2) a multi-ensemble implementation, allowing to take advantage of various information so as to increase the sharpness of the forecasting procedure. Focus is cast onto Normal statistical structures, first with a direct application for temperatures, then with its Tobit extension for precipitation. Inference is performed by EM algorithms with recourse made to stochastic conditional simulations in the precipitation case. After checking its good behavior on artificial data, the proposed post-processing technique is applied to temperature and precipitation ensemble forecasts produced over five river basins managed by Hydro-Qu$\'e$bec. These ensemble forecasts were extracted from the THORPEX Interactive Grand Global Ensemble (TIGGE) database. The results indicate that post-processed ensemble are calibrated and generally sharper than the raw ensembles.
stat
Simulating feedback mechanisms in patient flow and return visits in an emergency department
Emergency department (ED) crowding has been an increasing problem worldwide. Prior research has identified factors that contribute to ED crowding. However, the relationships between these remain incompletely understood. This study's objective was to analyse the effects of initiating a local protocol to alleviate crowding situations at the expense of increasing returning patients through the development of a system dynamics (SD) simulation model. The SD study is from an academic care hospital in Boston, MA. Data sources include direct observations, semi-structured interviews, archival data from October 2013, and peer-reviewed literature from the domains of emergency medicine and management science. The SD model shows interrelations between inpatient capacity restraints and return visits due to potential premature discharges. The model reflects the vulnerability of the ED system when exposed to unpredicted increases in demand. Default trigger values for the protocol are tested to determine a balance between increased patient flows and the number of returning patients. Baseline simulation runs for generic variables assessment showed high leverage potential in bed assignment- and transfer times. A thorough understanding of the complex non-linear behaviour of causes and effects of ED crowding is enabled through the use of SD. The vulnerability of the system lies in the crucial interaction between the physical constraints and the expedited patient flows through protocol activation. This study is an example of how hospital managers can benefit from virtual scenario testing within a safe simulation environment to immediately visualise the impacts of policy adjustments.
stat
A study of dependency features of spike trains through copulas
Simultaneous recordings from many neurons hide important information and the connections characterizing the network remain generally undiscovered despite the progresses of statistical and machine learning techniques. Discerning the presence of direct links between neuron from data is still a not completely solved problem. To enlarge the number of tools for detecting the underlying network structure, we propose here the use of copulas, pursuing on a research direction we started in [1]. Here, we adapt their use to distinguish different types of connections on a very simple network. Our proposal consists in choosing suitable random intervals in pairs of spike trains determining the shapes of their copulas. We show that this approach allows to detect different types of dependencies. We illustrate the features of the proposed method on synthetic data from suitably connected networks of two or three formal neurons directly connected or influenced by the surrounding network. We show how a smart choice of pairs of random times together with the use of empirical copulas allows to discern between direct and un-direct interactions.
stat
Variational Bayesian Methods for Stochastically Constrained System Design Problems
We study system design problems stated as parameterized stochastic programs with a chance-constraint set. We adopt a Bayesian approach that requires the computation of a posterior predictive integral which is usually intractable. In addition, for the problem to be a well-defined convex program, we must retain the convexity of the feasible set. Consequently, we propose a variational Bayes-based method to approximately compute the posterior predictive integral that ensures tractability and retains the convexity of the feasible set. Under certain regularity conditions, we also show that the solution set obtained using variational Bayes converges to the true solution set as the number of observations tends to infinity. We also provide bounds on the probability of qualifying a true infeasible point (with respect to the true constraints) as feasible under the VB approximation for a given number of samples.
stat
Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
Approximate Bayesian Computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time dependent, real world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g., the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography (EEG) data. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.
stat
Dark Experience for General Continual Learning: a Strong, Simple Baseline
Continual Learning has inspired a plethora of approaches and evaluation settings; however, the majority of them overlooks the properties of a practical scenario, where the data stream cannot be shaped as a sequence of tasks and offline training is not viable. We work towards General Continual Learning (GCL), where task boundaries blur and the domain and class distributions shift either gradually or suddenly. We address it through mixing rehearsal with knowledge distillation and regularization; our simple baseline, Dark Experience Replay, matches the network's logits sampled throughout the optimization trajectory, thus promoting consistency with its past. By conducting an extensive analysis on both standard benchmarks and a novel GCL evaluation setting (MNIST-360), we show that such a seemingly simple baseline outperforms consolidated approaches and leverages limited resources. We further explore the generalization capabilities of our objective, showing its regularization being beneficial beyond mere performance.
stat
Bayesian Modeling of Microbiome Data for Differential Abundance Analysis
The advances of next-generation sequencing technology have accelerated study of the microbiome and stimulated the high throughput profiling of metagenomes. The large volume of sequenced data has encouraged the rise of various studies for detecting differentially abundant taxonomic features across healthy and diseased populations, with the ultimate goal of deciphering the relationship between the microbiome diversity and health conditions. As the microbiome data are high-dimensional, typically featuring by uneven sampling depth, overdispersion and a huge amount of zeros, these data characteristics often hamper the downstream analysis. Moreover, the taxonomic features are implicitly imposed by the phylogenetic tree structure and often ignored. To overcome these challenges, we propose a Bayesian hierarchical modeling framework for the analysis of microbiome count data for differential abundance analysis. Under this framework, we introduce a bi-level Bayesian hierarchical model that allows a flexible choice of the count generating process, and hyperpriors in the feature selection scheme. We particularly focus on employing a zero-inflated negative binomial model with a Bayesian nonparametric prior model on the bottom level, and applying Gaussian mixture models for differentially abundant taxa detection on the top level. Our method allows for the simultaneous modeling of sample heterogeneity and detecting differentially abundant taxa. We conducted comprehensive simulations and summarized the improved statistical performances of the proposed model. We applied the model in two real microbiome study datasets and successfully identified biologically validated differentially abundant taxa. We hope that the proposed framework and model can facilitate further microbiome studies and elucidate disease etiology.
stat
Distribution-on-Distribution Regression via Optimal Transport Maps
We present a framework for performing regression when both covariate and response are probability distributions on a compact interval $\Omega\subset\mathbb{R}$. Our regression model is based on the theory of optimal transportation and links the conditional Fr\'echet mean of the response distribution to the covariate distribution via an optimal transport map. We define a Fr\'echet-least-squares estimator of this regression map, and establish its consistency and rate of convergence to the true map, under both full and partial observation of the regression pairs. Computation of the estimator is shown to reduce to an isotonic regression problem, and thus our regression model can be implemented with ease. We illustrate our methodology using real and simulated data.
stat
Inference in generalized bilinear models
Latent factor models are widely used to discover and adjust for hidden variation in modern applications. However, most methods do not fully account for uncertainty in the latent factors, which can lead to miscalibrated inferences such as overconfident p-values. In this article, we develop a fast and accurate method of uncertainty quantification in generalized bilinear models, which are a flexible extension of generalized linear models to include latent factors as well as row covariates, column covariates, and interactions. In particular, we introduce delta propagation, a general technique for propagating uncertainty among model components using the delta method. Further, we provide a rapidly converging algorithm for maximum a posteriori GBM estimation that extends earlier methods by estimating row and column dispersions. In simulation studies, we find that our method provides approximately correct frequentist coverage of most parameters of interest. We demonstrate on RNA-seq gene expression analysis and copy ratio estimation in cancer genomics.
stat
A Generalization of the Savage-Dickey Density Ratio for Testing Equality and Order Constrained Hypotheses
The Savage-Dickey density ratio is a specific expression of the Bayes factor when testing a precise (equality constrained) hypothesis against an unrestricted alternative. The expression greatly simplifies the computation of the Bayes factor at the cost of assuming a specific form of the prior under the precise hypothesis as a function of the unrestricted prior. A generalization was proposed by Verdinelli and Wasserman (1995) such that the priors can be freely specified under both hypotheses while keeping the computational advantage. This paper presents an extension of this generalization when the hypothesis has equality as well as order constraints on the parameters of interest. The methodology is used for a constrained multivariate t test using the JZS Bayes factor and a constrained hypothesis test under the multinomial model.
stat
Bayesian models for survival data of clinical trials: Comparison of implementations using R software
Objective: To provide guidance for the use of the main functions available in R for performing post hoc Bayesian analysis of a randomized clinical trial with a survival endpoint using proportional hazard models. Study Design and Setting: Data derived from the ALLOZITHRO trial, conducted with 465 patients after allograft to prevent pulmonary complications and allocated between azithromycin and placebo; airflow decline-free survival at 2 years after randomization was the main endpoint. Results: Despite heterogeneity in modeling assumptions, in particular for the baseline hazard (parametric or nonparametric), and in estimation methods, Bayesian posterior mean hazard ratio (HR) estimates of azithromycin effect were close to those obtained by the maximum likelihood approach. Conclusion: Bayesian models can be implemented using various R packages, providing results in close agreement with the maximum likelihood estimates. These models provide probabilistic statements that could not be obtained otherwise.
stat
Structural modeling using overlapped group penalties for discovering predictive biomarkers for subgroup analysis
The identification of predictive biomarkers from a large scale of covariates for subgroup analysis has attracted fundamental attention in medical research. In this article, we propose a generalized penalized regression method with a novel penalty function, for enforcing the hierarchy structure between the prognostic and predictive effects, such that a nonzero predictive effect must induce its ancestor prognostic effects being nonzero in the model. Our method is able to select useful predictive biomarkers by yielding a sparse, interpretable, and predictable model for subgroup analysis, and can deal with different types of response variable such as continuous, categorical, and time-to-event data. We show that our method is asymptotically consistent under some regularized conditions. To minimize the generalized penalized regression model, we propose a novel integrative optimization algorithm by integrating the majorization-minimization and the alternating direction method of multipliers, which is named after \texttt{smog}. The enriched simulation study and real case study demonstrate that our method is very powerful for discovering the true predictive biomarkers and identifying subgroups of patients.
stat
Exact Tests for Offline Changepoint Detection in Multichannel Binary and Count Data with Application to Networks
We consider offline detection of a single changepoint in binary and count time-series. We compare exact tests based on the cumulative sum (CUSUM) and the likelihood ratio (LR) statistics, and a new proposal that combines exact two-sample conditional tests with multiplicity correction, against standard asymptotic tests based on the Brownian bridge approximation to the CUSUM statistic. We see empirically that the exact tests are much more powerful in situations where normal approximations driving asymptotic tests are not trustworthy: (i) small sample settings; (ii) sparse parametric settings; (iii) time-series with changepoint near the boundary. We also consider a multichannel version of the problem, where channels can have different changepoints. Controlling the False Discovery Rate (FDR), we simultaneously detect changes in multiple channels. This "local" approach is shown to be more advantageous than multivariate global testing approaches when the number of channels with changepoints is much smaller than the total number of channels. As a natural application, we consider network-valued time-series and use our approach with (a) edges as binary channels and (b) node-degrees or other local subgraph statistics as count channels. The local testing approach is seen to be much more informative than global network changepoint algorithms.
stat
Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis
Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous setting (such that independent samples for all state-action pairs are drawn from a generative model in each iteration), substantial progress has been made recently towards understanding the sample efficiency of Q-learning. Take a $\gamma$-discounted infinite-horizon MDP with state space $\mathcal{S}$ and action space $\mathcal{A}$: to yield an entrywise $\varepsilon$-accurate estimate of the optimal Q-function, state-of-the-art theory for Q-learning proves that a sample size on the order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^5\varepsilon^{2}}$ is sufficient, which, however, fails to match with the existing minimax lower bound. This gives rise to natural questions: what is the sharp sample complexity of Q-learning? Is Q-learning provably sub-optimal? In this work, we settle these questions by (1) demonstrating that the sample complexity of Q-learning is at most on the order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$ (up to some log factor) for any $0<\varepsilon <1$, and (2) developing a matching lower bound to confirm the sharpness of our result. Our findings unveil both the effectiveness and limitation of Q-learning: its sample complexity matches that of speedy Q-learning without requiring extra computation and storage, albeit still being considerably higher than the minimax lower bound.
stat
Mutual Information Gradient Estimation for Representation Learning
Mutual Information (MI) plays an important role in representation learning. However, MI is unfortunately intractable in continuous and high-dimensional settings. Recent advances establish tractable and scalable MI estimators to discover useful representation. However, most of the existing methods are not capable of providing an accurate estimation of MI with low-variance when the MI is large. We argue that directly estimating the gradients of MI is more appealing for representation learning than estimating MI in itself. To this end, we propose the Mutual Information Gradient Estimator (MIGE) for representation learning based on the score estimation of implicit distributions. MIGE exhibits a tight and smooth gradient estimation of MI in the high-dimensional and large-MI settings. We expand the applications of MIGE in both unsupervised learning of deep representations based on InfoMax and the Information Bottleneck method. Experimental results have indicated significant performance improvement in learning useful representation.
stat
The Power of Unbiased Recursive Partitioning: A Unifying View of CTree, MOB, and GUIDE
A core step of every algorithm for learning regression trees is the selection of the best splitting variable from the available covariates and the corresponding split point. Early tree algorithms (e.g., AID, CART) employed greedy search strategies, directly comparing all possible split points in all available covariates. However, subsequent research showed that this is biased towards selecting covariates with more potential split points. Therefore, unbiased recursive partitioning algorithms have been suggested (e.g., QUEST, GUIDE, CTree, MOB) that first select the covariate based on statistical inference using p-values that are adjusted for the possible split points. In a second step a split point optimizing some objective function is selected in the chosen split variable. However, different unbiased tree algorithms obtain these p-values from different inference frameworks and their relative advantages or disadvantages are not well understood, yet. Therefore, three different popular approaches are considered here: classical categorical association tests (as in GUIDE), conditional inference (as in CTree), and parameter instability tests (as in MOB). First, these are embedded into a common inference framework encompassing parametric model trees, in particular linear model trees. Second, it is assessed how different building blocks from this common framework affect the power of the algorithms to select the appropriate covariates for splitting: observation-wise goodness-of-fit measure (residuals vs. model scores), dichotomization of residuals/scores at zero, and binning of possible split variables. This shows that specifically the goodness-of-fit measure is crucial for the power of the procedures, with model scores without dichotomization performing much better in many scenarios.
stat
Learning from Similarity-Confidence Data
Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data. In this paper, we investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data, where we aim to learn an effective binary classifier from only unlabeled data pairs equipped with confidence that illustrates their degree of similarity (two examples are similar if they belong to the same class). To solve this problem, we propose an unbiased estimator of the classification risk that can be calculated from only Sconf data and show that the estimation error bound achieves the optimal convergence rate. To alleviate potential overfitting when flexible models are used, we further employ a risk correction scheme on the proposed risk estimator. Experimental results demonstrate the effectiveness of the proposed methods.
stat
Segmenting High-dimensional Matrix-valued Time Series via Sequential Transformations
Modeling matrix-valued time series is an interesting and important research topic. In this paper, we extend the method of Chang et al. (2017) to matrix-valued time series. For any given $p\times q$ matrix-valued time series, we look for linear transformations to segment the matrix into many small sub-matrices for which each of them are uncorrelated with the others both contemporaneously and serially, thus they can be analyzed separately, which will greatly reduce the number of parameters to be estimated in terms of modeling. To overcome the identification issue, we propose a two-step and more structured procedure to segment the rows and columns separately. When $\max(p,q)$ is large in relation to the sample size $n$, we assume the transformation matrices are sparse and use threshold estimators for the (auto)covariance matrices. We also propose a block-wisely thresholding method to separate the columns (or rows) of the transformed matrix-valued data. The asymptotic properties are established for both fixed and diverging $\max(p,q)$. Unlike principal component analysis (PCA) for independent data, we cannot guarantee that the required linear transformation exists. When it does not, the proposed method provides an approximate segmentation, which may be useful for forecasting. The proposed method is illustrated with both simulated and real data examples. We also propose a sequential transformation algorithm to segment higher-order tensor-valued time series.
stat
Forecasting age distribution of death counts: An application to annuity pricing
We consider a compositional data analysis approach to forecasting the age distribution of death counts. Using the age-specific period life-table death counts in Australia obtained from the Human Mortality Database, the compositional data analysis approach produces more accurate one- to 20-step-ahead point and interval forecasts than Lee-Carter method, Hyndman-Ullah method, and two na\"{i}ve random walk methods. The improved forecast accuracy of period life-table death counts is of great interest to demographers for estimating survival probabilities and life expectancy, and to actuaries for determining temporary annuity prices for various ages and maturities. Although we focus on temporary annuity prices, we consider long-term contracts which make the annuity almost lifetime, in particular when the age at entry is sufficiently high.
stat
A contribution to Optimal Transport on incomparable spaces
Optimal Transport is a theory that allows to define geometrical notions of distance between probability distributions and to find correspondences, relationships, between sets of points. Many machine learning applications are derived from this theory, at the frontier between mathematics and optimization. This thesis proposes to study the complex scenario in which the different data belong to incomparable spaces. In particular we address the following questions: how to define and apply Optimal Transport between graphs, between structured data? How can it be adapted when the data are varied and not embedded in the same metric space? This thesis proposes a set of Optimal Transport tools for these different cases. An important part is notably devoted to the study of the Gromov-Wasserstein distance whose properties allow to define interesting transport problems on incomparable spaces. More broadly, we analyze the mathematical properties of the various proposed tools, we establish algorithmic solutions to compute them and we study their applicability in numerous machine learning scenarii which cover, in particular, classification, simplification, partitioning of structured data, as well as heterogeneous domain adaptation.
stat
Practical and sample efficient zero-shot HPO
Zero-shot hyperparameter optimization (HPO) is a simple yet effective use of transfer learning for constructing a small list of hyperparameter (HP) configurations that complement each other. That is to say, for any given dataset, at least one of them is expected to perform well. Current techniques for obtaining this list are computationally expensive as they rely on running training jobs on a diverse collection of datasets and a large collection of randomly drawn HPs. This cost is especially problematic in environments where the space of HPs is regularly changing due to new algorithm versions, or changing architectures of deep networks. We provide an overview of available approaches and introduce two novel techniques to handle the problem. The first is based on a surrogate model and adaptively chooses pairs of dataset, configuration to query. The second, for settings where finding, tuning and testing a surrogate model is problematic, is a multi-fidelity technique combining HyperBand with submodular optimization. We benchmark our methods experimentally on five tasks (XGBoost, LightGBM, CatBoost, MLP and AutoML) and show significant improvement in accuracy compared to standard zero-shot HPO with the same training budget. In addition to contributing new algorithms, we provide an extensive study of the zero-shot HPO technique resulting in (1) default hyper-parameters for popular algorithms that would benefit the community using them, (2) massive lookup tables to further the research of hyper-parameter tuning.
stat
Helmholtzian Eigenmap: Topological feature discovery & edge flow learning from point cloud data
The manifold Helmholtzian (1-Laplacian) operator $\Delta_1$ elegantly generalizes the Laplace-Beltrami operator to vector fields on a manifold $\mathcal M$. In this work, we propose the estimation of the manifold Helmholtzian from point cloud data by a weighted 1-Laplacian $\mathbf{\mathcal L}_1$. While higher order Laplacians ave been introduced and studied, this work is the first to present a graph Helmholtzian constructed from a simplicial complex as an estimator for the continuous operator in a non-parametric setting. Equipped with the geometric and topological information about $\mathcal M$, the Helmholtzian is a useful tool for the analysis of flows and vector fields on $\mathcal M$ via the Helmholtz-Hodge theorem. In addition, the $\mathbf{\mathcal L}_1$ allows the smoothing, prediction, and feature extraction of the flows. We demonstrate these possibilities on substantial sets of synthetic and real point cloud datasets with non-trivial topological structures; and provide theoretical results on the limit of $\mathbf{\mathcal L}_1$ to $\Delta_1$.
stat
Learning Proposals for Probabilistic Programs with Inference Combinators
We develop operators for construction of proposals in probabilistic programs, which we refer to as inference combinators. Inference combinators define a grammar over importance samplers that compose primitive operations such as application of a transition kernel and importance resampling. Proposals in these samplers can be parameterized using neural networks, which in turn can be trained by optimizing variational objectives. The result is a framework for user-programmable variational methods that are correct by construction and can be tailored to specific models. We demonstrate the flexibility of this framework by implementing advanced variational methods based on amortized Gibbs sampling and annealing.
stat
Beta Rank Function: A Smooth Double-Pareto-Like Distribution
The Beta Rank Function (BRF) $x(u) =A(1-u)^b/u^a$, where $u$ is the normalized and continuous rank of an observation $x$, has wide applications in fitting real-world data from social science to biological phenomena. The underlying probability density function (pdf) $f_X(x)$ does not usually have a closed expression except for specific parameter values. We show however that it is approximately a unimodal skewed and asymmetric two-sided power law/double Pareto/log-Laplacian distribution. The BRF pdf has simple properties when the independent variable is log-transformed: $f_{Z=\log(X)}(z)$ . At the peak it makes a smooth turn and it does not diverge, lacking the sharp angle observed in the double Pareto or Laplace distribution. The peak position of $f_Z(z)$ is $z_0=\log A+(a-b)\log(\sqrt{a}+\sqrt{b})-(a\log(a)-b\log(b))/2 $; the probability is partitioned by the peak to the proportion of $\sqrt{b}/(\sqrt{a}+\sqrt{b})$ (left) and $\sqrt{a}/(\sqrt{a}+\sqrt{b})$ (right); the functional form near the peak is controlled by the cubic term in the Taylor expansion when $a\ne b$; the mean of $Z$ is $E[Z]=\log A+a-b$; the decay on left and right sides of the peak is approximately exponential with forms $e^{\frac{z-\log A}{b} }/b$ and $e^{ -\frac{z-\log A}{a}}/a$. These results are confirmed by numerical simulations. Properties of $f_X(x)$ without log-transforming the variable are much more complex, though the approximate double Pareto behavior, $(x/A)^{1/b}/(bx)$ (for $x<A$) and $(x/A)^{-1/a}/(ax)$ (for $x > A$) is simple. Our results elucidate the relationship between BRF and log-normal distributions when $a=b$ and explain why the BRF is ubiquitous and versatile. Based on the pdf, we suggest a quick way to elucidate if a real data set follows a one-sided power-law, a log-normal, a two-sided power-law or a BRF. We illustrate our results with two examples: urban populations and financial returns.
stat
Prune Sampling: a MCMC inference technique for discrete and deterministic Bayesian networks
We introduce and characterise the performance of the Markov chain Monte Carlo (MCMC) inference method Prune Sampling for discrete and deterministic Bayesian networks (BNs). We developed a procedure to obtain the performance of a MCMC sampling method in the limit of infinite simulation time, extrapolated from relatively short simulations. This approach was used to conduct a study to compare the accuracy, rate of convergence and the time consumption of Prune Sampling with two conventional MCMC sampling methods: Gibbs- and Metropolis sampling. We show that Markov chains created by Prune Sampling always converge to the desired posterior distribution, also for networks where conventional Gibbs sampling fails. Beside this, we demonstrate that pruning outperforms Gibbs sampling, at least for a certain class of BNs. Though, this tempting feature comes at a price. In the first version of Prune Sampling, for large BNs the procedure to choose the next iteration step uniformly is rather time intensive. Our conclusion is that Prune Sampling is a competitive method for all types of small and medium sized BNs, but (for now) standard methods still perform better for all types of large BNs.
stat
Automatic structured variational inference
Stochastic variational inference offers an attractive option as a default method for differentiable probabilistic programming. However, the performance of the variational approach depends on the choice of an appropriate variational family. Here, we introduce automatic structured variational inference (ASVI), a fully automated method for constructing structured variational families, inspired by the closed-form update in conjugate Bayesian models. These convex-update families incorporate the forward pass of the input probabilistic program and can therefore capture complex statistical dependencies. Convex-update families have the same space and time complexity as the input probabilistic program and are therefore tractable for a very large family of models including both continuous and discrete variables. We validate our automatic variational method on a wide range of low- and high-dimensional inference problems. We find that ASVI provides a clear improvement in performance when compared with other popular approaches such as the mean-field approach and inverse autoregressive flows. We provide an open source implementation of ASVI in TensorFlow Probability.
stat
A computational method for estimating Burr XII parameters with complete and multiple censored data
Flexibility in shape and scale of Burr XII distribution can make close approximation of numerous well-known probability density functions. Due to these capabilities, the usages of Burr XII distribution are applied in risk analysis, lifetime data analysis and process capability estimation. In this paper the Cross-Entropy (CE) method is further developed in terms of Maximum Likelihood Estimation (MLE) to estimate the parameters of Burr XII distribution for the complete data or in the presence of multiple censoring. A simulation study is conducted to evaluate the performance of the MLE by means of CE method for different parameter settings and sample sizes. The results are compared to other existing methods in both uncensored and censored situations.
stat
Interpretable Principal Components Analysis for Multilevel Multivariate Functional Data, with Application to EEG Experiments
Many studies collect functional data from multiple subjects that have both multilevel and multivariate structures. An example of such data comes from popular neuroscience experiments where participants' brain activity is recorded using modalities such as EEG and summarized as power within multiple time-varying frequency bands within multiple electrodes, or brain regions. Summarizing the joint variation across multiple frequency bands for both whole-brain variability between subjects, as well as location-variation within subjects, can help to explain neural reactions to stimuli. This article introduces a novel approach to conducting interpretable principal components analysis on multilevel multivariate functional data that decomposes total variation into subject-level and replicate-within-subject-level (i.e. electrode-level) variation, and provides interpretable components that can be both sparse among variates (e.g. frequency bands) and have localized support over time within each frequency band. The sparsity and localization of components is achieved by solving an innovative rank-one based convex optimization problem with block Frobenius and matrix $L_1$-norm based penalties. The method is used to analyze data from a study to better understand reactions to emotional information in individuals with histories of trauma and the symptom of dissociation, revealing new neurophysiological insights into how subject- and electrode-level brain activity are associated with these phenomena.
stat
Learning Dependency Structures for Weak Supervision Models
Labeling training data is a key bottleneck in the modern machine learning pipeline. Recent weak supervision approaches combine labels from multiple noisy sources by estimating their accuracies without access to ground truth labels; however, estimating the dependencies among these sources is a critical challenge. We focus on a robust PCA-based algorithm for learning these dependency structures, establish improved theoretical recovery rates, and outperform existing methods on various real-world tasks. Under certain conditions, we show that the amount of unlabeled data needed can scale sublinearly or even logarithmically with the number of sources $m$, improving over previous efforts that ignore the sparsity pattern in the dependency structure and scale linearly in $m$. We provide an information-theoretic lower bound on the minimum sample complexity of the weak supervision setting. Our method outperforms weak supervision approaches that assume conditionally-independent sources by up to 4.64 F1 points and previous structure learning approaches by up to 4.41 F1 points on real-world relation extraction and image classification tasks.
stat
Cross validation approaches for penalized Cox regression
Cross validation is commonly used for selecting tuning parameters in penalized regression, but its use in penalized Cox regression models has received relatively little attention in the literature. Due to its partial likelihood construction, carrying out cross validation for Cox models is not straightforward, and there are several potential approaches for implementation. Here, we propose two new cross-validation methods for Cox regression and compare them to approaches that have been proposed elsewhere. Our proposed approach of cross-validating the linear predictors seems to offer an attractive balance of performance and numerical stability. We illustrate these advantages using simulated data as well as using them to analyze data from a high-dimensional study of survival in lung cancer patients.
stat
Unifying Gaussian LWF and AMP Chain Graphs to Model Interference
An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent both interference and non-interference relationships for Gaussian distributions. Specifically, we define the new class of models, introduce global and local and pairwise Markov properties for them, and prove their equivalence. We also propose an algorithm for maximum likelihood parameter estimation for the new models, and report experimental results. Finally, we show how to compute the effects of interventions in the new models.
stat
Markov-chain Monte-Carlo Sampling for Optimal Fidelity Determination in Dynamic Decision-Making
Decision making for dynamic systems is challenging due to the scale and dynamicity of such systems, and it is comprised of decisions at strategic, tactical, and operational levels. One of the most important aspects of decision making is incorporating real time information that reflects immediate status of the system. This type of decision making, which may apply to any dynamic system, needs to comply with the system's current capabilities and calls for a dynamic data driven planning framework. Performance of dynamic data driven planning frameworks relies on the decision making process which in return is relevant to the quality of the available data. This means that the planning framework should be able to set the level of decision making based on the current status of the system, which is learned through the continuous readings of sensory data. In this work, a Markov chain Monte Carlo sampling method is proposed to determine the optimal fidelity of decision making in a dynamic data driven framework. To evaluate the performance of the proposed method, an experiment is conducted, where the impact of workers performance on the production capacity and the fidelity level of decision making are studied.
stat
$K$-Means and Gaussian Mixture Modeling with a Separation Constraint
We consider the problem of clustering with $K$-means and Gaussian mixture models with a constraint on the separation between the centers in the context of real-valued data. We first propose a dynamic programming approach to solving the $K$-means problem with a separation constraint on the centers, building on (Wang and Song, 2011). In the context of fitting a Gaussian mixture model, we then propose an EM algorithm that incorporates such a constraint. A separation constraint can help regularize the output of a clustering algorithm, and we provide both simulated and real data examples to illustrate this point.
stat
Exploratory and Confirmatory Factor Analyses of Religiosity. A Four-Factor Conceptual Model
We describe an exploratory and confirmatory factor analysis of the International Social Survey Programme Religion Cumulation (1991-1998-2008) data set, to identify the factors of individual religiosity and their interrelations in quantitative terms. The exploratory factor analysis was performed using data from the first two waves (1991 and 1998), and led to the identification of four strongly correlated and reliable factors which we labeled Religious formation, Supernatural beliefs, Belief in God, and Religious practice. The confirmatory factor analysis was run using data from 2008, and led to the confirmation of this four-factor structure with very good fit measures. We also ran a set of structural equation models in an attempt to determine the causality links between these four factors. It was found that for the models which provide the best fit Belief in God does not cause Supernatural beliefs, Religious practice can cause Belief in God and that there are multiple paths leading to Belief in God, most of which include Religious formation as a source. The exploratory factor analysis also led to the identification of other factors related to traditional values, confidence in institutions and influence of religious leaders on politics, but these were found to have lower reliability or insufficient number of items to meet the acceptance criteria, and thus were not included in the confirmatory factor analysis and the investigation of causal links. The results obtained in this work have important material implications for the conceptualization of "religiosity," and important methodological implications for the scientific study of religion.
stat
Orthogonal Nonnegative Tucker Decomposition
In this paper, we study the nonnegative tensor data and propose an orthogonal nonnegative Tucker decomposition (ONTD). We discuss some properties of ONTD and develop a convex relaxation algorithm of the augmented Lagrangian function to solve the optimization problem. The convergence of the algorithm is given. We employ ONTD on the image data sets from the real world applications including face recognition, image representation, hyperspectral unmixing. Numerical results are shown to illustrate the effectiveness of the proposed algorithm.
stat
Constructing a Chain Event Graph from a Staged Tree
Chain Event Graphs (CEGs) are a recent family of probabilistic graphical models - a generalisation of Bayesian Networks - providing an explicit representation of structural zeros and context-specific conditional independences within their graph topology. A CEG is constructed from an event tree through a sequence of transformations beginning with the colouring of the vertices of the event tree to identify one-step transition symmetries. This coloured event tree, also known as a staged tree, is the output of the learning algorithms used for this family. Surprisingly, no general algorithm has yet been devised that automatically transforms any staged tree into a CEG representation. In this paper we provide a simple iterative backward algorithm for this transformation. Additionally, we show that no information is lost from transforming a staged tree into a CEG. Finally, we demonstrate that with an optimal stopping time, our algorithm is more efficient than the generalisation of a special case presented in Silander and Leong (2013). We also provide Python code using this algorithm to obtain a CEG from any staged tree along with the functionality to add edges with sampling zeros.
stat
Probabilistic Modeling of Hurricane Wind-Induced Damage in Infrastructure Systems
This paper presents a modeling approach for probabilistic estimation of hurricane wind-induced damage to infrastructural assets. In our approach, we employ a Nonhomogeneous Poisson Process (NHPP) model for estimating spatially-varying probability distributions of damage as a function of hurricane wind field velocities. Specifically, we consider a physically-based, quadratic NHPP model for failures of overhead assets in electricity distribution systems. The wind field velocities are provided by Forecasts of Hurricanes using Large-Ensemble Outputs (FHLO), a framework for generating probabilistic hurricane forecasts. We use FHLO in conjunction with the NHPP model, such that the hurricane forecast uncertainties represented by FHLO are accounted for in estimating the probability distributions of damage. Furthermore, we evaluate the spatial variability and extent of hurricane damage under key wind field parameters (intensity, size, and asymmetries). By applying our approach to prediction of power outages (loss-of-service) in northwestern Florida due to Hurricane Michael (2018), we demonstrate a statistically significant relationship between outage rate and failure rate. Finally, we formulate parametric models that relate total damage and financial losses to the hurricane parameters of intensity and size. Overall, this paper's findings suggest that our approach is well-suited to jointly account for spatial variability and forecast uncertainty in the damage estimates, and is readily applicable to prediction of system loss-of-service due to the damage.
stat
Block Length Choice for the Bootstrap of Dependent Panel Data -- a Comment on Choi and Shin (2020)
Choi and Shin (2020) have constructed a bootstrap-based test for change-points in panels with temporal and and/or cross-sectional dependence. They have compared their test to several other proposed tests. We demonstrate that by an appropriate, data-adaptive choice of the block length, the change-point test by Sharipov, Tewes, Wendler (2016) can at least cope with mild temporal dependence, the size distortion of this test is not as severe as claimed by Choi and Shin (2020).
stat
Communication-Efficient Distributed SVD via Local Power Iterations
We study distributed computing of the truncated singular value decomposition problem. We develop an algorithm that we call \texttt{LocalPower} for improving communication efficiency. Specifically, we uniformly partition the dataset among $m$ nodes and alternate between multiple (precisely $p$) local power iterations and one global aggregation. In the aggregation, we propose to weight each local eigenvector matrix with orthogonal Procrustes transformation (OPT). As a practical surrogate of OPT, sign-fixing, which uses a diagonal matrix with $\pm 1$ entries as weights, has better computation complexity and stability. We theoretically show that under certain assumptions \texttt{LocalPower} lowers the required number of communications by a factor of $p$ to reach a constant accuracy. We also show that the strategy of periodically decaying $p$ helps obtain high-precision solutions. We conduct experiments to demonstrate the effectiveness of \texttt{LocalPower}.
stat
Wavelet Spatio-Temporal Change Detection on multi-temporal PolSAR images
We introduce WECS (Wavelet Energies Correlation Sreening), an unsupervised sparse procedure to detect spatio-temporal change points on multi-temporal SAR (POLSAR) images or even on sequences of very high resolution images. The procedure is based on wavelet approximation for the multi-temporal images, wavelet energy apportionment, and ultra-high dimensional correlation screening for the wavelet coefficients. We present two complimentary wavelet measures in order to detect sudden and/or cumulative changes, as well as for the case of stationary or non-stationary multi-temporal images. We show WECS performance on synthetic multi-temporal image data. We also apply the proposed method to a time series of 85 satellite images in the border region of Brazil and the French Guiana. The images were captured from November 08, 2015 to December 09 2017.
stat
Comparing Samples from the $\mathcal{G}^0$ Distribution using a Geodesic Distance
The $\mathcal{G}^0$ distribution is widely used for monopolarized SAR image modeling because it can characterize regions with different degree of texture accurately. It is indexed by three parameters: the number of looks (which can be estimated for the whole image), a scale parameter and a texture parameter. This paper presents a new proposal for comparing samples from the $\mathcal{G}^0$ distribution using a Geodesic Distance (GD) as a measure of dissimilarity between models. The objective is quantifying the difference between pairs of samples from SAR data using both local parameters (scale and texture) of the $\mathcal{G}^0$ distribution. We propose three tests based on the GD which combine the tests presented in~\cite{GeodesicDistanceGI0JSTARS}, and we estimate their probability distributions using permutation methods.
stat
On the Beta Prime Prior for Scale Parameters in High-Dimensional Bayesian Regression Models
We study high-dimensional Bayesian linear regression with a general beta prime distribution for the scale parameter. Under the assumption of sparsity, we show that appropriate selection of the hyperparameters in the beta prime prior leads to the (near) minimax posterior contraction rate when $p \gg n$. For finite samples, we propose a data-adaptive method for estimating the hyperparameters based on marginal maximum likelihood (MML). This enables our prior to adapt to both sparse and dense settings, and under our proposed empirical Bayes procedure, the MML estimates are never at risk of collapsing to zero. We derive efficient Monte Carlo EM and variational EM algorithms for implementing our model, which are available in the R package NormalBetaPrime. Simulations and analysis of a gene expression data set illustrate our model's self-adaptivity to varying levels of sparsity and signal strengths.
stat
Detection of similar successive groups in a model with diverging number of variable groups
In this paper, a linear model with grouped explanatory variables is considered. The idea is to perform an automatic detection of different successive groups of the unknown coefficients under the assumption that the number of groups is of the same order as the sample size. The standard least squares loss function and the quantile loss function are both used together with the fused and adaptive fused penalty to simultaneously estimate and group the unknown parameters. The proper convergence rate is given for the obtained estimators and the upper bound for the number of different successive group is derived. A simulation study is used to compare the empirical performance of the proposed fused and adaptive fused estimators and a real application on the air quality data demonstrates the practical applicability of the proposed methods.
stat
Online Binary Space Partitioning Forests
The Binary Space Partitioning-Tree~(BSP-Tree) process was recently proposed as an efficient strategy for space partitioning tasks. Because it uses more than one dimension to partition the space, the BSP-Tree Process is more efficient and flexible than conventional axis-aligned cutting strategies. However, due to its batch learning setting, it is not well suited to large-scale classification and regression problems. In this paper, we develop an online BSP-Forest framework to address this limitation. With the arrival of new data, the resulting online algorithm can simultaneously expand the space coverage and refine the partition structure, with guaranteed universal consistency for both classification and regression problems. The effectiveness and competitive performance of the online BSP-Forest is verified via simulations on real-world datasets.
stat
Semiparametric time series models driven by latent factor
We introduce a class of semiparametric time series models by assuming a quasi-likelihood approach driven by a latent factor process. More specifically, given the latent process, we only specify the conditional mean and variance of the time series and enjoy a quasi-likelihood function for estimating parameters related to the mean. This proposed methodology has three remarkable features: (i) no parametric form is assumed for the conditional distribution of the time series given the latent process; (ii) able for modelling non-negative, count, bounded/binary and real-valued time series; (iii) dispersion parameter is not assumed to be known. Further, we obtain explicit expressions for the marginal moments and for the autocorrelation function of the time series process so that a method of moments can be employed for estimating the dispersion parameter and also parameters related to the latent process. Simulated results aiming to check the proposed estimation procedure are presented. Real data analysis on unemployment rate and precipitation time series illustrate the potencial for practice of our methodology.
stat
Learning Multiple Defaults for Machine Learning Algorithms
The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.
stat
Manifold lifting: scaling MCMC to the vanishing noise regime
Standard Markov chain Monte Carlo methods struggle to explore distributions that are concentrated in the neighbourhood of low-dimensional structures. These pathologies naturally occur in a number of situations. For example, they are common to Bayesian inverse problem modelling and Bayesian neural networks, when observational data are highly informative, or when a subset of the statistical parameters of interest are non-identifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the vanishing noise limit. We employ a constrained Hamiltonian Monte Carlo method which exploits the manifold geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in several numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low dimensional structures.
stat
Stochastic Modeling of an Infectious Disease Part III-A: Analysis of Time-Nonhomogeneous Models
We extend our BDI (birth-death-immigration) process based stochastic model of an infectious disease to time-nonhomogeneous cases. First, we discuss the deterministic model, and derive the expected value of the infection process. Then as an application we consider that a government issues a decree to its citizens to curtail their activities that may incur further infections and show how the public's tardy response may further increase infections and prolong the epidemic much longer than one might think. We seek to solve a partial differential equation for the probability generating function. We find, however, that an exact solution is obtainable only for the BD process, i.e., no arrivals of the infected from outside. The coefficient of variation for the nonhomogeneous BD process is found to be well over unity. This result implies that the variations among different sample paths will be as large as in the negative binomial distribution with r<1, which was found in Part I for the homogeneous BDI model. In the final section, we illustrate, using our running example, how much information we can derive from the time dependent PMF (probability mass function) P_k(t)=Pr[I(t)=k]. We present graphical plots of the PMF at various t's, and cross-sections of this function at various k's. A mesh plot of the function over the (k, t) plane summarizes the above numerous plots. The results of this paper reinforce our earlier claim (see Abstract of Part II) that it would be a futile effort to attempt to identify all possible reasons why environments of similar situations differ so much in their epidemic patterns. Mere "luck" plays a more significant role than most of us may believe. We should be prepared for a worse possible scenario, which only a stochastic model can provide with probabilistic qualification. An empirical validation of the above results will be given in Part III-B.
stat
Risk-averse estimation, an axiomatic approach to inference, and Wallace-Freeman without MML
We define a new class of Bayesian point estimators, which we refer to as risk averse. Using this definition, we formulate axioms that provide natural requirements for inference, e.g. in a scientific setting, and show that for well-behaved estimation problems the axioms uniquely characterise an estimator. Namely, for estimation problems in which some parameter values have a positive posterior probability (such as, e.g., problems with a discrete hypothesis space), the axioms characterise Maximum A Posteriori (MAP) estimation, whereas elsewhere (such as in continuous estimation) they characterise the Wallace-Freeman estimator. Our results provide a novel justification for the Wallace-Freeman estimator, which previously was derived only as an approximation to the information-theoretic Strict Minimum Message Length estimator. By contrast, our derivation requires neither approximations nor coding.
stat
The Statistical Performance of Matching-Adjusted Indirect Comparisons
Indirect comparisons of treatment-specific outcomes across separate studies often inform decision-making in the absence of head-to-head randomized comparisons. Differences in baseline characteristics between study populations may introduce confounding bias in such comparisons. Matching-adjusted indirect comparison (MAIC) (Signorovitch et al., 2010) has been used to adjust for differences in observed baseline covariates when the individual patient-level data (IPD) are available for only one study and aggregate data (AGD) are available for the other study. The approach weights outcomes from the IPD using estimates of trial selection odds that balance baseline covariates between the IPD and AGD. With the increasing use of MAIC, there is a need for formal assessments of its statistical properties. In this paper we formulate identification assumptions for causal estimands that justify MAIC estimators. We then examine large sample properties and evaluate strategies for estimating standard errors without the full IPD from both studies. The finite-sample bias of MAIC and the performance of confidence intervals based on different standard error estimators are evaluated through simulations. The method is illustrated through an example comparing placebo arm and natural history outcomes in Duchenne muscular dystrophy.
stat
An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data
In medical studies, the collected covariates usually contain underlying outliers. For clustered /longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers existing in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to a medical dataset and more reliable and convincing results are hence obtained.
stat
A score function for Bayesian cluster analysis
We propose a score function for Bayesian clustering. The function is parameter free and captures the interplay between the within cluster variance and the between cluster entropy of a clustering. It can be used to choose the number of clusters in well-established clustering methods such as hierarchical clustering or $K$-means algorithm.
stat
A spatial Poisson hurdle model with application to wildfires
Modelling wildfire occurrences is important for disaster management including prevention, detection and suppression of large catastrophic events. We present a spatial Poisson hurdle model for exploring geographical variation of monthly counts of wildfire occurrences and apply it to Indonesia and Australia. The model includes two a priori independent spatially structured latent effects that account for residual spatial variation in the probability of wildfire occurrence, and the positive count rate given an occurrence. Inference is provided by empirical Bayes using the Laplace approximation to the marginal posterior which provides fast inference for latent Gaussian models with sparse structures. In both cases, our model matched several empirically known facts about wildfires. We conclude that elevation, percentage tree cover, relative humidity, surface temperature, and the interaction between humidity and temperature to be important predictors of monthly counts of wildfire occurrences. Further, our findings show opposing effects for surface temperature and its interaction with relative humidity.
stat
SubTSBR to tackle high noise and outliers for data-driven discovery of differential equations
Data-driven discovery of differential equations has been an emerging research topic. We propose a novel algorithm subsampling-based threshold sparse Bayesian regression (SubTSBR) to tackle high noise and outliers. The subsampling technique is used for improving the accuracy of the Bayesian learning algorithm. It has two parameters: subsampling size and the number of subsamples. When the subsampling size increases with fixed total sample size, the accuracy of our algorithm goes up and then down. When the number of subsamples increases, the accuracy of our algorithm keeps going up. We demonstrate how to use our algorithm step by step and compare our algorithm with threshold sparse Bayesian regression (TSBR) for the discovery of differential equations. We show that our algorithm produces better results. We also discuss the merits of discovering differential equations from data and demonstrate how to discover models with random initial and boundary condition as well as models with bifurcations. The numerical examples are: (1) predator-prey model with noise, (2) shallow water equations with outliers, (3) heat diffusion with random initial and boundary condition, and (4) fish-harvesting problem with bifurcations.
stat
Neural networks in day-ahead electricity price forecasting: Single vs. multiple outputs
Recent advancements in the fields of artificial intelligence and machine learning methods resulted in a significant increase of their popularity in the literature, including electricity price forecasting. Said methods cover a very broad spectrum, from decision trees, through random forests to various artificial neural network models and hybrid approaches. In electricity price forecasting, neural networks are the most popular machine learning method as they provide a non-linear counterpart for well-tested linear regression models. Their application, however, is not straightforward, with multiple implementation factors to consider. One of such factors is the network's structure. This paper provides a comprehensive comparison of two most common structures when using the deep neural networks -- one that focuses on each hour of the day separately, and one that reflects the daily auction structure and models vectors of the prices. The results show a significant accuracy advantage of using the latter, confirmed on data from five distinct power exchanges.
stat
Smaller $p$-values via indirect information
This article develops $p$-values for evaluating means of normal populations that make use of indirect or prior information. A $p$-value of this type is based on a biased test statistic that is optimal on average with respect to a probability distribution that encodes indirect information about the mean parameter, resulting in a smaller $p$-value if the indirect information is accurate. In a variety of multiparameter settings, we show how to adaptively estimate the indirect information for each mean parameter while still maintaining uniformity of the $p$-values under their null hypotheses. This is done using a linking model through which indirect information about the mean of one population may be obtained from the data of other populations. Importantly, the linking model does not need to be correct to maintain the uniformity of the $p$-values under their null hypotheses. This methodology is illustrated in several data analysis scenarios, including small area inference, spatially arranged populations, interactions in linear regression, and generalized linear models.
stat
Penalized Projected Kernel Calibration for Computer Models
Projected kernel calibration is known to be theoretically superior, its loss function is abbreviated as PK loss function. In this work, we prove the uniform convergence of PK loss function and show that (1) when the sample size is large, any local minimum point and local maximum point of the $L_2$ loss between the true process and the computer models is a local minimum point of the PK loss function; (2) all the local minimum values of the PK loss function converge to the same value. These theoretical results imply that it is extremely hard for the projected kernel calibration to identify the global minimum point of the $L_2$ loss which is defined as the optimal value of the calibration parameters. To solve this problem, a frequentist method, called the penalized projected kernel calibration method is proposed. As a frequentist method, the proposed method is proved to be semi-parametric efficient. On the other hand, the proposed method has a natural bayesian version, which allows users to calculate the credible region of the calibration parameters without using a large sample approximation. Through extensive simulation studies and a real-world case study, we show that the proposed calibration can accurately estimate the calibration parameters, and compare favorably to alternative calibration methods regardless of the sample size.
stat
Online stochastic gradient descent on non-convex losses from high-dimensional inference
Stochastic gradient descent (SGD) is a popular algorithm for optimization problems arising in high-dimensional inference tasks. Here one produces an estimator of an unknown parameter from independent samples of data by iteratively optimizing a loss function. This loss function is random and often non-convex. We study the performance of the simplest version of SGD, namely online SGD, from a random start in the setting where the parameter space is high-dimensional. We develop nearly sharp thresholds for the number of samples needed for consistent estimation as one varies the dimension. Our thresholds depend only on an intrinsic property of the population loss which we call the information exponent. In particular, our results do not assume uniform control on the loss itself, such as convexity or uniform derivative bounds. The thresholds we obtain are polynomial in the dimension and the precise exponent depends explicitly on the information exponent. As a consequence of our results, we find that except for the simplest tasks, almost all of the data is used simply in the initial search phase to obtain non-trivial correlation with the ground truth. Upon attaining non-trivial correlation, the descent is rapid and exhibits law of large numbers type behavior. We illustrate our approach by applying it to a wide set of inference tasks such as phase retrieval, and parameter estimation for generalized linear models, online PCA, and spiked tensor models, as well as to supervised learning for single-layer networks with general activation functions.
stat
Robust Graph Embedding with Noisy Link Weights
We propose $\beta$-graph embedding for robustly learning feature vectors from data vectors and noisy link weights. A newly introduced empirical moment $\beta$-score reduces the influence of contamination and robustly measures the difference between the underlying correct expected weights of links and the specified generative model. The proposed method is computationally tractable; we employ a minibatch-based efficient stochastic algorithm and prove that this algorithm locally minimizes the empirical moment $\beta$-score. We conduct numerical experiments on synthetic and real-world datasets.
stat
A Binary Regression Adaptive Goodness-of-fit Test (BAGofT)
The Pearson's $\chi^2$ test and residual deviance test are two classical goodness-of-fit tests for binary regression models such as logistic regression. These two tests cannot be applied when we have one or more continuous covariates in the data, a quite common situation in practice. In that case, the most widely used approach is the Hosmer-Lemeshow test, which partitions the covariate space into groups according to quantiles of the fitted probabilities from all the observations. However, its grouping scheme is not flexible enough to explore how to adversarially partition the data space in order to enhance the power. In this work, we propose a new methodology, named binary regression adaptive grouping goodness-of-fit test (BAGofT), to address the above concern. It is a two-stage solution where the first stage adaptively selects candidate partitions using "training" data, and the second stage performs $\chi^2$ tests with necessary corrections based on "test" data. A proper data splitting ensures that the test has desirable size and power properties. From our experimental results, BAGofT performs much better than Hosmer-Lemeshow test in many situations.
stat
Accelerography: Feasibility of Gesture Typing using Accelerometer
In this paper, we aim to look into the feasibility of constructing alphabets using gestures. The main idea is to construct gestures, that are easy to remember, not cumbersome to reproduce and easily identifiable. We construct gestures for the entire English alphabet and provide an algorithm to identify the gestures, even when they are constructed continuously. We tackle the problem statistically, taking into account the problem of randomness in the hand movement gestures of users, and achieve an average accuracy of 97.33% with the entire English alphabet.
stat
On the Use of Random Forest for Two-Sample Testing
Following the line of classification-based two-sample testing, tests based on the Random Forest classifier are proposed. The developed tests are easy to use, require almost no tuning, and are applicable for any distribution on $\mathbb{R}^d$. Furthermore, the built-in variable importance measure of the Random Forest gives potential insights into which variables make out the difference in distribution. An asymptotic power analysis for the proposed tests is developed. Finally, two real-world applications illustrate the usefulness of the introduced methodology. To simplify the use of the method, the R-package "hypoRF" is provided.
stat
Sequential Tests of Multiple Hypotheses Controlling False Discovery and Nondiscovery Rates
We propose a general and flexible procedure for testing multiple hypotheses about sequential (or streaming) data that simultaneously controls both the false discovery rate (FDR) and false nondiscovery rate (FNR) under minimal assumptions about the data streams which may differ in distribution, dimension, and be dependent. All that is needed is a test statistic for each data stream that controls the conventional type I and II error probabilities, and no information or assumptions are required about the joint distribution of the statistics or data streams. The procedure can be used with sequential, group sequential, truncated, or other sampling schemes. The procedure is a natural extension of Benjamini and Hochberg's (1995) widely-used fixed sample size procedure to the domain of sequential data, with the added benefit of simultaneous FDR and FNR control that sequential sampling affords. We prove the procedure's error control and give some tips for implementation in commonly encountered testing situations.
stat
Clustering of variables for enhanced interpretability of predictive models
A new strategy is proposed for building easy to interpret predictive models in the context of a high-dimensional dataset, with a large number of highly correlated explanatory variables. The strategy is based on a first step of variables clustering using the CLustering of Variables around Latent Variables (CLV) method. The exploration of the hierarchical clustering dendrogram is undertaken in order to sequentially select the explanatory variables in a group-wise fashion. For model setting implementation, the dendrogram is used as the base-learner in an L2-boosting procedure. The proposed approach, named lmCLV, is illustrated on the basis of a toy-simulated example when the clusters and predictive equation are already known, and on a real case study dealing with the authentication of orange juices based on 1H-NMR spectroscopic analysis. In both illustrative examples, this procedure was shown to have similar predictive efficiency to other methods, with additional interpretability capacity. It is available in the R package ClustVarLV.
stat
Adversarial Alignment of Class Prediction Uncertainties for Domain Adaptation
We consider unsupervised domain adaptation: given labelled examples from a source domain and unlabelled examples from a related target domain, the goal is to infer the labels of target examples. Under the assumption that features from pre-trained deep neural networks are transferable across related domains, domain adaptation reduces to aligning source and target domain at class prediction uncertainty level. We tackle this problem by introducing a method based on adversarial learning which forces the label uncertainty predictions on the target domain to be indistinguishable from those on the source domain. Pre-trained deep neural networks are used to generate deep features having high transferability across related domains. We perform an extensive experimental analysis of the proposed method over a wide set of publicly available pre-trained deep neural networks. Results of our experiments on domain adaptation tasks for image classification show that class prediction uncertainty alignment with features extracted from pre-trained deep neural networks provides an efficient, robust and effective method for domain adaptation.
stat
Variance Estimation and Confidence Intervals from High-dimensional Genome-wide Association Studies Through Misspecified Mixed Model Analysis
We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) misspecified mixed model analysis. Previous studies have shown that, in spite of the model misspecification, certain quantities of genetic interests are estimable, and consistent estimators of these quantities can be obtained using the restricted maximum likelihood (REML) method under a misspecified linear mixed model. However, the asymptotic variance of such a REML estimator is complicated and not ready to be implemented for practical use. In this paper, we develop practical and computationally convenient methods for estimating such asymptotic variances and constructing the associated confidence intervals. Performance of the proposed methods is evaluated empirically based on Monte-Carlo simulations and real-data application.
stat
Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels
By facilitating the generation of samples from arbitrary probability distributions, Markov Chain Monte Carlo (MCMC) is, arguably, \emph{the} tool for the evaluation of Bayesian inference problems that yield non-standard posterior distributions. In recent years, however, it has become apparent that Sequential Monte Carlo (SMC) samplers have the potential to outperform MCMC in a number of ways. SMC samplers are better suited to highly parallel computing architectures and also feature various tuning parameters that are not available to MCMC. One such parameter - the `L-kernel' - is a user-defined probability distribution that can be used to influence the efficiency of the sampler. In the current paper, the authors explain how to derive an expression for the L-kernel that minimises the variance of the estimates realised by an SMC sampler. Various approximation methods are then proposed to aid implementation of the proposed L-kernel. The improved performance of the resulting algorithm is demonstrated in multiple scenarios. For the examples shown in the current paper, the use of an approximately optimum L-kernel has reduced the variance of the SMC estimates by up to 99 % while also reducing the number of times that resampling was required by between 65 % and 70 %. Python code and code tests accompanying this manuscript are available through the Github repository \url{https://github.com/plgreenLIRU/SMC_approx_optL}.
stat
Learning Optimal Tree Models Under Beam Search
Retrieving relevant targets from an extremely large target set under computational limits is a common challenge for information retrieval and recommendation systems. Tree models, which formulate targets as leaves of a tree with trainable node-wise scorers, have attracted a lot of interests in tackling this challenge due to their logarithmic computational complexity in both training and testing. Tree-based deep models (TDMs) and probabilistic label trees (PLTs) are two representative kinds of them. Though achieving many practical successes, existing tree models suffer from the training-testing discrepancy, where the retrieval performance deterioration caused by beam search in testing is not considered in training. This leads to an intrinsic gap between the most relevant targets and those retrieved by beam search with even the optimally trained node-wise scorers. We take a first step towards understanding and analyzing this problem theoretically, and develop the concept of Bayes optimality under beam search and calibration under beam search as general analyzing tools for this purpose. Moreover, to eliminate the discrepancy, we propose a novel algorithm for learning optimal tree models under beam search. Experiments on both synthetic and real data verify the rationality of our theoretical analysis and demonstrate the superiority of our algorithm compared to state-of-the-art methods.
stat
Learning Multimorbidity Patterns from Electronic Health Records Using Non-negative Matrix Factorisation
Multimorbidity, or the presence of several medical conditions in the same individual, has been increasing in the population, both in absolute and relative terms. However, multimorbidity remains poorly understood, and the evidence from existing research to describe its burden, determinants and consequences has been limited. Previous studies attempting to understand multimorbidity patterns are often cross-sectional and do not explicitly account for multimorbidity patterns' evolution over time; some of them are based on small datasets and/or use arbitrary and narrow age ranges; and those that employed advanced models, usually lack appropriate benchmarking and validations. In this study, we (1) introduce a novel approach for using Non-negative Matrix Factorisation (NMF) for temporal phenotyping (i.e., simultaneously mining disease clusters and their trajectories); (2) provide quantitative metrics for the evaluation of disease clusters from such studies; and (3) demonstrate how the temporal characteristics of the disease clusters that result from our model can help mine multimorbidity networks and generate new hypotheses for the emergence of various multimorbidity patterns over time. We trained and evaluated our models on one of the world's largest electronic health records (EHR), with 7 million patients, from which over 2 million where relevant to this study.
stat
Linear and Quadratic Discriminant Analysis: Tutorial
This tutorial explains Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) as two fundamental classification methods in statistical and probabilistic learning. We start with the optimization of decision boundary on which the posteriors are equal. Then, LDA and QDA are derived for binary and multiple classes. The estimation of parameters in LDA and QDA are also covered. Then, we explain how LDA and QDA are related to metric learning, kernel principal component analysis, Mahalanobis distance, logistic regression, Bayes optimal classifier, Gaussian naive Bayes, and likelihood ratio test. We also prove that LDA and Fisher discriminant analysis are equivalent. We finally clarify some of the theoretical concepts with simulations we provide.
stat
Scalable Gaussian Processes on Discrete Domains
Kernel methods on discrete domains have shown great promise for many challenging data types, for instance, biological sequence data and molecular structure data. Scalable kernel methods like Support Vector Machines may offer good predictive performances but do not intrinsically provide uncertainty estimates. In contrast, probabilistic kernel methods like Gaussian Processes offer uncertainty estimates in addition to good predictive performance but fall short in terms of scalability. We present the first sparse Gaussian Process approximation framework on discrete input domains. Our framework achieves good predictive performance as well as uncertainty estimates using discrete optimization techniques. We present competitive results comparing our framework to baseline methods such as Support Vector Machines and full Gaussian Processes on synthetic data as well as on challenging real-world DNA sequence data.
stat
rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data
The analysis of spatial observations on a sphere is important in areas such as geosciences, physics and embryo research, just to name a few. The purpose of the package rcosmo is to conduct efficient information processing, visualisation, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data. The package was developed for spherical data stored in the Hierarchical Equal Area isoLatitude Pixelation (Healpix) representation. rcosmo has more than 100 different functions. Most of them initially were developed for CMB, but also can be used for other spherical data as rcosmo contains tools for transforming spherical data in cartesian and geographic coordinates into the HEALPix representation. We give a general description of the package and illustrate some important functionalities and benchmarks.
stat
Implementing version control with Git and GitHub as a learning objective in statistics and data science courses
A version control system records changes to a file or set of files over time so that changes can be tracked and specific versions of a file can be recalled later. As such, it is an essential element of a reproducible workflow that deserves due consideration among the learning objectives of statistics and data science courses. This paper describes experiences and implementation decisions of four contributing faculty who are teaching different courses at a variety of institutions. Each of these faculty have set version control as a learning objective and successfully integrated one such system (Git) into one or more statistics courses. The various approaches described in the paper span different implementation strategies to suit student background, course type, software choices, and assessment practices. By presenting a wide range of approaches to teaching Git, the paper aims to serve as a resource for statistics and data science instructors teaching courses at any level within an undergraduate or graduate curriculum.
stat
Surrogate-guided sampling designs for classification of rare outcomes from electronic medical records data
Scalable and accurate identification of specific clinical outcomes has been enabled by machine-learning applied to electronic medical record (EMR) systems. The development of classification models requires the collection of a complete labeled data set, where true clinical outcomes are obtained by human expert manual review. For example, the development of natural language processing algorithms requires the abstraction of clinical text data to obtain outcome information necessary for training models. However, if the outcome is rare then simple random sampling results in very few cases and insufficient information to develop accurate classifiers. Since large scale detailed abstraction is often expensive, time-consuming, and not feasible, more efficient strategies are needed. Under such resource constrained settings, we propose a class of enrichment sampling designs, where selection for abstraction is stratified by auxiliary variables related to the true outcome of interest. Stratified sampling on highly specific variables results in targeted samples that are more enriched with cases, which we show translates to increased model discrimination and better statistical learning performance. We provide mathematical details, and simulation evidence that links sampling designs to their resulting prediction model performance. We discuss the impact of our proposed sampling on both model training and validation. Finally, we illustrate the proposed designs for outcome label collection and subsequent machine-learning, using radiology report text data from the Lumbar Imaging with Reporting of Epidemiology (LIRE) study.
stat
Modeling dependent survival data through random effects with spatial correlation at the subject level
Dynamical phenomena such as infectious diseases are often investigated by following up subjects longitudinally, thus generating time to event data. The spatial aspect of such data is also of primordial importance, as many infectious diseases are transmitted from one subject to another. In this paper, a spatially correlated frailty model is introduced that accommodates for the correlation between subjects based on the distance between them. Estimates are obtained through a stochastic approximation version of the Expectation Maximization algorithm combined with a Monte-Carlo Markov Chain, for which convergence is proven. The novelty of this model is that spatial correlation is introduced for survival data at the subject level, each subject having its own frailty. This univariate spatially correlated frailty model is used to analyze spatially dependent malaria data, and its results are compared with other standard models.
stat
Robust weights that optimally balance confounders for estimating marginal hazard ratios
Covariate balance is crucial in obtaining unbiased estimates of treatment effects in observational studies. Methods based on inverse probability weights have been widely used to estimate treatment effects with observational data. Machine learning techniques have been proposed to estimate propensity scores. These techniques however target accuracy instead of covariate balance. Methods that target covariate balance have been successfully proposed and largely applied to estimate treatment effects on continuous outcomes. However, in many medical and epidemiological applications, the interest lies in estimating treatment effects on time-to-event outcomes. With this type of data, one of the most common estimands of interest is the marginal hazard ratio of the Cox proportional hazard model. In this paper, we start by presenting robust orthogonality weights (ROW), a set of weights obtained by solving a quadratic constrained optimization problem that maximizes precision while constraining covariate balance defined as the sample correlation between confounders and treatment. By doing so, ROW optimally deal with both binary and continuous treatments. We then evaluate the performance of the proposed weights in estimating marginal hazard ratios of binary and continuous treatments with time-to-event outcomes in a simulation study. We finally apply ROW on the evaluation of the effect of hormone therapy on time to coronary heart disease and on the effect of red meat consumption on time to colon cancer among 24,069 postmenopausal women enrolled in the Women's Health Initiative observational study.
stat
On the correspondence of deviances and maximum likelihood and interval estimates from log-linear to logistic regression modelling
Consider a set of categorical variables $\mathcal{P}$ where at least one, denoted by $Y$, is binary. The log-linear model that describes the counts in the resulting contingency table implies a specific logistic regression model, with the binary variable as the outcome. Extending results in Christensen (1997), by also considering the case where factors present in the contingency table disappear from the logistic regression model, we prove that the Maximum Likelihood Estimate (MLE) for the parameters of the logistic regression equals the MLE for the corresponding parameters of the log-linear model. We prove that, asymptotically, standard errors for the two sets of parameters are also equal. Subsequently, Wald confidence intervals are asymptotically equal. These results demonstrate the extent to which inferences from the log-linear framework can be translated to inferences within the logistic regression framework, on the magnitude of main effects and interactions. Finally, we prove that the deviance of the log-linear model is equal to the deviance of the corresponding logistic regression, provided that the latter is fitted to a dataset where no cell observations are merged when one or more factors in $\mathcal{P} \setminus \{ Y \}$ become obsolete. We illustrate the derived results with the analysis of a real dataset.
stat
A Statistician Teaches Deep Learning
Deep learning (DL) has gained much attention and become increasingly popular in modern data science. Computer scientists led the way in developing deep learning techniques, so the ideas and perspectives can seem alien to statisticians. Nonetheless, it is important that statisticians become involved -- many of our students need this expertise for their careers. In this paper, developed as part of a program on DL held at the Statistical and Applied Mathematical Sciences Institute, we address this culture gap and provide tips on how to teach deep learning to statistics graduate students. After some background, we list ways in which DL and statistical perspectives differ, provide a recommended syllabus that evolved from teaching two iterations of a DL graduate course, offer examples of suggested homework assignments, give an annotated list of teaching resources, and discuss DL in the context of two research areas.
stat
Robust adaptive variable selection in ultra-high dimensional linear regression models
We consider the problem of simultaneous variable selection and estimation of the corresponding regression coefficients in an ultra-high dimensional linear regression models, an extremely important problem in the recent era. The adaptive penalty functions are used in this regard to achieve the oracle variable selection property along with easier computational burden. However, the usual adaptive procedures (e.g., adaptive LASSO) based on the squared error loss function is extremely non-robust in the presence of data contamination which are quite common with large-scale data (e.g., noisy gene expression data, spectra and spectral data). In this paper, we present a regularization procedure for the ultra-high dimensional data using a robust loss function based on the popular density power divergence (DPD) measure along with the adaptive LASSO penalty. We theoretically study the robustness and the large-sample properties of the proposed adaptive robust estimators for a general class of error distributions; in particular, we show that the proposed adaptive DPD-LASSO estimator is highly robust, satisfies the oracle variable selection property, and the corresponding estimators of the regression coefficients are consistent and asymptotically normal under easily verifiable set of assumptions. Numerical illustrations are provided for the mostly used normal error density. Finally, the proposal is applied to analyze an interesting spectral dataset, in the field of chemometrics, regarding the electron-probe X-ray microanalysis (EPXMA) of archaeological glass vessels from the 16th and 17th centuries.
stat
Point Process Modeling of Drug Overdoses with Heterogeneous and Missing Data
Opioid overdose rates have increased in the United States over the past decade and reflect a major public health crisis. Modeling and prediction of drug and opioid hotspots, where a high percentage of events fall in a small percentage of space-time, could help better focus limited social and health services. In this work we present a spatial-temporal point process model for drug overdose clustering. The data input into the model comes from two heterogeneous sources: 1) high volume emergency medical calls for service (EMS) records containing location and time, but no information on the type of non-fatal overdose and 2) fatal overdose toxicology reports from the coroner containing location and high-dimensional information from the toxicology screen on the drugs present at the time of death. We first use non-negative matrix factorization to cluster toxicology reports into drug overdose categories and we then develop an EM algorithm for integrating the two heterogeneous data sets, where the mark corresponding to overdose category is inferred for the EMS data and the high volume EMS data is used to more accurately predict drug overdose death hotspots. We apply the algorithm to drug overdose data from Indianapolis, showing that the point process defined on the integrated data outperforms point processes that use only homogeneous EMS (AUC improvement .72 to .8) or coroner data (AUC improvement .81 to .85).We also investigate the extent to which overdoses are contagious, as a function of the type of overdose, while controlling for exogenous fluctuations in the background rate that might also contribute to clustering. We find that drug and opioid overdose deaths exhibit significant excitation, with branching ratio ranging from .72 to .98.
stat
CDSM -- Casual Inference using Deep Bayesian Dynamic Survival Models
Causal inference in longitudinal observational health data often requires the accurate estimation of treatment effects on time-to-event outcomes in the presence of time-varying covariates. To tackle this sequential treatment effect estimation problem, we have developed a causal dynamic survival model (CDSM) that uses the potential outcomes framework with the Bayesian recurrent sub-networks to estimate the difference in survival curves. Using simulated survival datasets, CDSM has shown good causal effect estimation performance across scenarios of sample dimension, event rate, confounding and overlapping. However, we found increasing the sample size is not effective if the original data is highly confounded or with low level of overlapping. In two large clinical cohort studies, our model identified the expected conditional average treatment effect and detected individual effect heterogeneity over time and patient subgroups. The model provides individualized absolute treatment effect estimations that could be used in recommendation systems.
stat
Detecting anomalies in fibre systems using 3-dimensional image data
We consider the problem of detecting anomalies in the directional distribution of fibre materials observed in 3D images. We divide the image into a set of scanning windows and classify them into two clusters: homogeneous material and anomaly. Based on a sample of estimated local fibre directions, for each scanning window we compute several classification attributes, namely the coordinate wise means of local fibre directions, the entropy of the directional distribution, and a combination of them. We also propose a new spatial modification of the Stochastic Approximation Expectation-Maximization (SAEM) algorithm. Besides the clustering we also consider testing the significance of anomalies. To this end, we apply a change point technique for random fields and derive the exact inequalities for tail probabilities of a test statistics. The proposed methodology is first validated on simulated images. Finally, it is applied to a 3D image of a fibre reinforced polymer.
stat
Discriminative Topic Modeling with Logistic LDA
Despite many years of research into latent Dirichlet allocation (LDA), applying LDA to collections of non-categorical items is still challenging. Yet many problems with much richer data share a similar structure and could benefit from the vast literature on LDA. We propose logistic LDA, a novel discriminative variant of latent Dirichlet allocation which is easy to apply to arbitrary inputs. In particular, our model can easily be applied to groups of images, arbitrary text embeddings, and integrates well with deep neural networks. Although it is a discriminative model, we show that logistic LDA can learn from unlabeled data in an unsupervised manner by exploiting the group structure present in the data. In contrast to other recent topic models designed to handle arbitrary inputs, our model does not sacrifice the interpretability and principled motivation of LDA.
stat
Bayesian detection of piecewise linear trends in replicated time-series with application to growth data modelling
We consider the situation where a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. We develop a Bayesian approach to infer the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence. A Metropolis-Hastings Markov chain Monte Carlo (MCMC) sampler is constructed for approximating the posterior distribution. Our method is benchmarked using simulated data and is applied to uncover differences in the dynamics of fungal growth from imaging time course data collected from different strains. The source code is available on CRAN.
stat
Stanza: A Nonlinear State Space Model for Probabilistic Inference in Non-Stationary Time Series
Time series with long-term structure arise in a variety of contexts and capturing this temporal structure is a critical challenge in time series analysis for both inference and forecasting settings. Traditionally, state space models have been successful in providing uncertainty estimates of trajectories in the latent space. More recently, deep learning, attention-based approaches have achieved state of the art performance for sequence modeling, though often require large amounts of data and parameters to do so. We propose Stanza, a nonlinear, non-stationary state space model as an intermediate approach to fill the gap between traditional models and modern deep learning approaches for complex time series. Stanza strikes a balance between competitive forecasting accuracy and probabilistic, interpretable inference for highly structured time series. In particular, Stanza achieves forecasting accuracy competitive with deep LSTMs on real-world datasets, especially for multi-step ahead forecasting.
stat
Conditional Sampling With Monotone GANs
We present a new approach for sampling conditional probability measures, enabling consistent uncertainty quantification in supervised learning tasks. We construct a mapping that transforms a reference measure to the measure of the output conditioned on new inputs. The mapping is trained via a modification of generative adversarial networks (GANs), called monotone GANs, that imposes monotonicity and a block triangular structure. We present theoretical guarantees for the consistency of our proposed method, as well as numerical experiments demonstrating the ability of our method to accurately sample conditional measures in applications ranging from inverse problems to image in-painting.
stat
Task Agnostic Continual Learning Using Online Variational Bayes
Catastrophic forgetting is the notorious vulnerability of neural networks to the change of the data distribution while learning. This phenomenon has long been considered a major obstacle for allowing the use of learning agents in realistic continual learning settings. A large body of continual learning research assumes that task boundaries are known during training. However, research for scenarios in which task boundaries are unknown during training has been lacking. In this paper we present, for the first time, a method for preventing catastrophic forgetting (BGD) for scenarios with task boundaries that are unknown during training --- task-agnostic continual learning. Code of our algorithm is available at https://github.com/igolan/bgd.
stat
The relative efficiency of time-to-progression and continuous measures of cognition in pre-symptomatic Alzheimer's
Pre-symptomatic (or Preclinical) Alzheimer's Disease is defined by biomarker evidence of fibrillar amyloid beta pathology in the absence of clinical symptoms. Clinical trials in this early phase of disease are challenging due to the slow rate of disease progression as measured by periodic cognitive performance tests or by transition to a diagnosis of Mild Cognitive Impairment. In a multisite study, experts provide diagnoses by central chart review without the benefit of in-person assessment. We use a simulation study to demonstrate that models of repeated cognitive assessments detect treatment effects more efficiently compared to models of time-to-progression to an endpoint such as change in diagnosis. Multivariate continuous data are simulated from a Bayesian joint mixed effects model fit to data from the Alzheimer's Disease Neuroimaging Initiative. Simulated progression events are algorithmically derived from the continuous assessments using a random forest model fit to the same data. We find that power is approximately doubled with models of repeated continuous outcomes compared to the time-to-progression analysis. The simulations also demonstrate that a plausible informative missing data pattern can induce a bias which inflates treatment effects, yet 5% Type I error is maintained.
stat
A New Graphical Device and Related Tests for the Shape of Non-parametric Regression Function
We consider a non-parametric regression model $y = m(x) + \epsilon$ and propose a novel graphical device to check whether the $r$-th ($r \geqslant 1$) derivative of the regression function $m(x)$ is positive or otherwise. Since the shape of the regression function can be completely characterized by its derivatives, the graphical device can correctly identify the shape of the regression function. The proposed device includes the check for monotonicity and convexity of the function as special cases. We also present an example to elucidate the practical utility of the graphical device. In addition, we employ the graphical device to formulate a class of test statistics and derive its asymptotic distribution. The tests are exhibited in various simulated and real data examples.
stat
Estimation of Climbing Route Difficulty using Whole-History Rating
Existing grading systems for rock climbing routes assign a difficulty grade to a route based on the opinions of a few people. An objective approach to estimating route difficulty on an interval scale was obtained by adapting the Whole-History Rating (WHR) system to rock climbing. WHR's model was fitted to a database of 236,095 ascents recorded by users on an established climbing website. 73% of the ascents used in the dataset were classified as successful. Predictions were on average 85% accurate with 10-fold cross-validation. The results suggest that an empirical rating system is accurate at assessing route difficulty and is viable for revising conventional route grades.
stat
Meta Analysis of Bayes Factors
Bayes Factors, the Bayesian tool for hypothesis testing, are receiving increasing attention in the literature. Compared to their frequentist rivals ($p$-values or test statistics), Bayes Factors have the conceptual advantage of providing evidence both for and against a null hypothesis and they can be calibrated so that they do not depend so heavily on the sample size. However, research on the synthesis of Bayes Factors arising from individual studies has received very limited attention. In this work we review and propose methods for combining Bayes Factors from multiple studies, depending on the level of information available. In the process, we provide insights with respect to the interplay between frequentist and Bayesian evidence. We also clarify why some intuitive suggestions in the literature can be misleading. We assess the performance of the methods discussed via a simulation study and apply the methods in an example from the field of psychology.
stat
Application of a new information priority accumulated grey model with time power to predict short-term wind turbine capacity
Wind energy makes a significant contribution to global power generation. Predicting wind turbine capacity is becoming increasingly crucial for cleaner production. For this purpose, a new information priority accumulated grey model with time power is proposed to predict short-term wind turbine capacity. Firstly, the computational formulas for the time response sequence and the prediction values are deduced by grey modeling technique and the definite integral trapezoidal approximation formula. Secondly, an intelligent algorithm based on particle swarm optimization is applied to determine the optimal nonlinear parameters of the novel model. Thirdly, three real numerical examples are given to examine the accuracy of the new model by comparing with six existing prediction models. Finally, based on the wind turbine capacity from 2007 to 2017, the proposed model is established to predict the total wind turbine capacity in Europe, North America, Asia, and the world. The numerical results reveal that the novel model is superior to other forecasting models. It has a great advantage for small samples with new characteristic behaviors. Besides, reasonable suggestions are put forward from the standpoint of the practitioners and governments, which has high potential to advance the sustainable improvement of clean energy production in the future.
stat
Divide-and-Conquer MCMC for Multivariate Binary Data
We analyze a large database of de-identified Medicare Advantage claims from a single large US health insurance provider, where the number of individuals available for analysis are an order of magnitude larger than the number of potential covariates. This type of data, dubbed `tall data', often does not fit in memory, and estimating parameters using traditional Markov Chain Monte Carlo (MCMC) methods is a computationally infeasible task. We show how divide-and-conquer MCMC, which splits the data into disjoint subsamples and runs a MCMC algorithm on each sample in parallel before combining results, can be used with a multivariate probit factor model. We then show how this approach can be applied to large medical datasets to provide insights into questions of interest to the medical community. We also conduct a simulation study, comparing two posterior combination algorithms with a mean-field stochastic variational approach, showing that divide-and-conquer MCMC should be preferred over variational inference when estimating the latent correlation structure between binary responses is of primary interest.
stat
Phylogenetically informed Bayesian truncated copula graphical models for microbial association networks
Microorganisms play a critical role in host health. The advancement of high-throughput sequencing technology provides opportunities for a deeper understanding of microbial interactions. However, due to the limitations of 16S ribosomal RNA sequencing, microbiome data are zero-inflated, and a quantitative comparison of microbial abundances cannot be made across subjects. By leveraging a recent microbiome profiling technique that quantifies 16S ribosomal RNA microbial counts, we propose a novel Bayesian graphical model that incorporates microorganisms' evolutionary history through a phylogenetic tree prior and explicitly accounts for zero-inflation using the truncated Gaussian copula. Our simulation study reveals that the evolutionary information substantially improves the network estimation accuracy. We apply the proposed model to the quantitative gut microbiome data of 106 healthy subjects, and identify three distinct microbial communities that are not determined by existing microbial network estimation models. We further find that these communities are discriminated based on microorganisms' ability to utilize oxygen as an energy source.
stat
Investigating Sprawl using AIC and Recursive Partitioning Trees: A Machine Learning Approach to Assessing the Association between Poverty and Commute Time
Sprawl, according to Glaeser and Kahn, is the 21st century phenomenon that some people are not dependent on city-living due to automobiles and therefore can live outside public transportation spheres and cities. This is usually seen as pleasant and accompanied by improved qualities of life, but as they addressed, the problem remains that sprawl causes loss of jobs for those who cannot afford luxurious alternatives but only inferior substitutes (Glaeser and Kahn 2004). Therefore, through our question, we hope to suggest that sprawl has occurred in the U.S. and poverty is one of the consequences.
stat
A Data-Driven Approach for Discovering Stochastic Dynamical Systems with Non-Gaussian Levy Noise
With the rapid increase of valuable observational, experimental and simulating data for complex systems, great efforts are being devoted to discovering governing laws underlying the evolution of these systems. However, the existing techniques are limited to extract governing laws from data as either deterministic differential equations or stochastic differential equations with Gaussian noise. In the present work, we develop a new data-driven approach to extract stochastic dynamical systems with non-Gaussian symmetric L\'evy noise, as well as Gaussian noise. First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure (i.e., anomalous diffusion) for the underlying stochastic dynamical system in terms of sample paths data. We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing stochastic differential equation with Gaussian and non-Gaussian noise. Finally, we demonstrate the efficacy and accuracy of our approach by applying to several prototypical one-, two- and three-dimensional systems. This new approach will become a tool in discovering governing dynamical laws from noisy data sets, from observing or simulating complex phenomena, such as rare events triggered by random fluctuations with heavy as well as light tail statistical features.
stat
GSSMD: New metric for robust and interpretable assay quality assessment and hit selection
In the high-throughput screening (HTS) campaigns, the Z'-factor and strictly standardized mean difference (SSMD) are commonly used to assess the quality of assays and to select hits. However, these measures are vulnerable to outliers and their performances are highly sensitive to background distributions. Here, we propose an alternative measure for assay quality assessment and hit selection. The proposed method is a non-parametric generalized variant of SSMD (GSSMD). In this paper, we have shown that the proposed method provides more robust and intuitive way of assay quality assessment and hit selection.
stat
A Generalization of Spatial Monte Carlo Integration
Spatial Monte Carlo integration (SMCI) is an extension of standard Monte Carlo integration and can approximate expectations on Markov random fields with high accuracy. SMCI was applied to pairwise Boltzmann machine (PBM) learning, with superior results to those from some existing methods. The approximation level of SMCI can be changed, and it was proved that a higher-order approximation of SMCI is statistically more accurate than a lower-order approximation. However, SMCI as proposed in the previous studies suffers from a limitation that prevents the application of a higher-order method to dense systems. This study makes two different contributions as follows. A generalization of SMCI (called generalized SMCI (GSMCI)) is proposed, which allows relaxation of the above-mentioned limitation; moreover, a statistical accuracy bound of GSMCI is proved. This is the first contribution of this study. A new PBM learning method based on SMCI is proposed, which is obtained by combining SMCI and the persistent contrastive divergence. The proposed learning method greatly improves the accuracy of learning. This is the second contribution of this study.
stat