title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Repeated out of Sample Fusion in the Estimation of Small Tail Probabilities
Often, it is required to estimate the probability that a quantity such as toxicity level, plutonium, temperature, rainfall, damage, wind speed, wave size, earthquake magnitude, risk, etc., exceeds an unsafe high threshold. The probability in question is then very small. To estimate such a probability, information is needed about large values of the quantity of interest. However, in many cases, the data only contain values below or even far below the designated threshold, let alone exceedingly large values. It is shown that by repeated fusion of the data with externally generated random data, more information about small tail probabilities is obtained with the aid of certain new statistical functions. This provides relatively short, yet reliable interval estimates based on moderately large samples. A comparison of the approach with a method from extreme values theory (Peaks over Threshold, or POT), using both artificial and real data, points to the merit of repeated out of sample fusion.
stat
Solving Interpretable Kernel Dimension Reduction
Kernel dimensionality reduction (KDR) algorithms find a low dimensional representation of the original data by optimizing kernel dependency measures that are capable of capturing nonlinear relationships. The standard strategy is to first map the data into a high dimensional feature space using kernels prior to a projection onto a low dimensional space. While KDR methods can be easily solved by keeping the most dominant eigenvectors of the kernel matrix, its features are no longer easy to interpret. Alternatively, Interpretable KDR (IKDR) is different in that it projects onto a subspace \textit{before} the kernel feature mapping, therefore, the projection matrix can indicate how the original features linearly combine to form the new features. Unfortunately, the IKDR objective requires a non-convex manifold optimization that is difficult to solve and can no longer be solved by eigendecomposition. Recently, an efficient iterative spectral (eigendecomposition) method (ISM) has been proposed for this objective in the context of alternative clustering. However, ISM only provides theoretical guarantees for the Gaussian kernel. This greatly constrains ISM's usage since any kernel method using ISM is now limited to a single kernel. This work extends the theoretical guarantees of ISM to an entire family of kernels, thereby empowering ISM to solve any kernel method of the same objective. In identifying this family, we prove that each kernel within the family has a surrogate $\Phi$ matrix and the optimal projection is formed by its most dominant eigenvectors. With this extension, we establish how a wide range of IKDR applications across different learning paradigms can be solved by ISM. To support reproducible results, the source code is made publicly available on \url{https://github.com/chieh-neu/ISM_supervised_DR}.
stat
Functional Ratings in Sports
In this paper, we present a new model for ranking sports teams. Our model uses all scoring data from all games to produce a functional rating by the method of least squares. The functional rating can be interpreted as a teams average point differential adjusted for strength of schedule. Using two team's functional ratings we can predict the expected point differential at any time in the game. We looked at three variations of our model accounting for home-court advantage in different ways. We use the 2018-2019 NCAA Division 1 men's college basketball season to test the models and determined that home-court advantage is statistically important but does not differ between teams.
stat
Reducing Parameter Space for Neural Network Training
For neural networks (NNs) with rectified linear unit (ReLU) or binary activation functions, we show that their training can be accomplished in a reduced parameter space. Specifically, the weights in each neuron can be trained on the unit sphere, as opposed to the entire space, and the threshold can be trained in a bounded interval, as opposed to the real line. We show that the NNs in the reduced parameter space are mathematically equivalent to the standard NNs with parameters in the whole space. The reduced parameter space shall facilitate the optimization procedure for the network training, as the search space becomes (much) smaller. We demonstrate the improved training performance using numerical examples.
stat
Learning Gaussian Graphical Models by symmetric parallel regression technique
In this contribution we deal with the problem of learning an undirected graph which encodes the conditional dependence relationship between variables of a complex system, given a set of observations of this system. This is a very central problem of modern data analysis and it comes out every time we want to investigate a deeper relationship between random variables, which is different from the classical dependence usually measured by the covariance. In particular, in this contribution we deal with the case of Gaussian Graphical Models (GGMs) for which the system of variables has a multivariate gaussian distribution. We study all the existing techniques for such a problem and propose a smart implementation of the symmetric parallel regression technique which turns out to be very competitive for learning sparse GGMs under high dimensional data regime.
stat
Sampling by Divergence Minimization
We introduce a family of Markov Chain Monte Carlo (MCMC) methods designed to sample from target distributions with irregular geometry using an adaptive scheme. In cases where targets exhibit non-Gaussian behaviour, we propose that adaption should be regional in nature as opposed to global. Our algorithms minimize the information projection side of the Kullback-Leibler (KL) divergence between the proposal distribution class and the target to encourage proposals distributed similarly to the regional geometry of the target. Unlike traditional adaptive MCMC, this procedure rapidly adapts to the geometry of the current position as it explores the space without the need for a large batch of samples. We extend this approach to multimodal targets by introducing a heavily tempered chain to enable faster mixing between regions of interest. The divergence minimization algorithms are tested on target distributions with multiple irregularly shaped modes and we provide results demonstrating the effectiveness of our methods.
stat
Time Series Modeling on Dynamic Networks
This paper focuses on modeling the dynamic attributes of a dynamic network with a fixed number of vertices. These attributes are considered as time series which dependency structure is influenced by the underlying network. They are modeled by a multivariate doubly stochastic time series framework, that is we assume linear processes for which the coefficient matrices are stochastic processes themselves. We explicitly allow for dependence in the dynamics of the coefficient matrices as well as between these two stochastic processes. This framework allows for a separate modeling of the attributes and the underlying network. In this setting, we define network autoregressive models and discuss their stationarity conditions. Furthermore, an estimation approach is discussed in a low- and high-dimensional setting and how this can be applied to forecasting. The finite sample behavior of the forecast approach is investigated. This approach is applied to real data whereby the goal is to forecast the GDP of 33 economies.
stat
Meta-learning representations for clustering with infinite Gaussian mixture models
For better clustering performance, appropriate representations are critical. Although many neural network-based metric learning methods have been proposed, they do not directly train neural networks to improve clustering performance. We propose a meta-learning method that train neural networks for obtaining representations such that clustering performance improves when the representations are clustered by the variational Bayesian (VB) inference with an infinite Gaussian mixture model. The proposed method can cluster unseen unlabeled data using knowledge meta-learned with labeled data that are different from the unlabeled data. For the objective function, we propose a continuous approximation of the adjusted Rand index (ARI), by which we can evaluate the clustering performance from soft clustering assignments. Since the approximated ARI and the VB inference procedure are differentiable, we can backpropagate the objective function through the VB inference procedure to train the neural networks. With experiments using text and image data sets, we demonstrate that our proposed method has a higher adjusted Rand index than existing methods do.
stat
New insights for the multivariate square-root lasso
We study the multivariate square-root lasso, a method for fitting the multivariate response (multi-task) linear regression model with dependent errors. This estimator minimizes the nuclear norm of the residual matrix plus a convex penalty. Unlike some existing methods for multivariate response linear regression, which require explicit estimates of the error covariance matrix or its inverse, the multivariate square-root lasso criterion implicitly accounts for error dependence and is convex. To justify the use of this estimator, we establish error bounds which illustrate that like the univariate square-root lasso, the multivariate square-root lasso is pivotal with respect to the unknown error covariance matrix. We propose a new algorithm to compute the estimator: a variation of the alternating direction method of multipliers algorithm; and discuss an accelerated first order algorithm which can be applied in certain cases. In both simulation studies and a genomic data application, we show that the multivariate square-root lasso can outperform more computationally intensive methods which estimate both the regression coefficient matrix and error precision matrix.
stat
ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision
Vision-and-Language Pretraining (VLP) has improved performance on various joint vision-and-language downstream tasks. Current approaches for VLP heavily rely on image feature extraction processes, most of which involve region supervisions (e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more computation than the actual multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive power of the visual encoder and its predefined visual vocabulary. In this paper, we present a minimal VLP model, Vision-and-Language Transformer (ViLT), monolithic in the sense that processing of visual inputs is drastically simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to 60 times faster than previous VLP models, yet with competitive or better downstream task performance.
stat
Machine Learning using Stata/Python
We present two related Stata modules, r_ml_stata and c_ml_stata, for fitting popular Machine Learning (ML) methods both in regression and classification settings. Using the recent Stata/Python integration platform (sfi) of Stata 16, these commands provide hyper-parameters' optimal tuning via K-fold cross-validation using greed search. More specifically, they make use of the Python Scikit-learn API to carry out both cross-validation and outcome/label prediction.
stat
Robust variable selection for model-based learning in presence of adulteration
The problem of identifying the most discriminating features when performing supervised learning has been extensively investigated. In particular, several methods for variable selection in model-based classification have been proposed. Surprisingly, the impact of outliers and wrongly labeled units on the determination of relevant predictors has received far less attention, with almost no dedicated methodologies available in the literature. In the present paper, we introduce two robust variable selection approaches: one that embeds a robust classifier within a greedy-forward selection procedure and the other based on the theory of maximum likelihood estimation and irrelevance. The former recasts the feature identification as a model selection problem, while the latter regards the relevant subset as a model parameter to be estimated. The benefits of the proposed methods, in contrast with non-robust solutions, are assessed via an experiment on synthetic data. An application to a high-dimensional classification problem of contaminated spectroscopic data concludes the paper.
stat
Stormwater on the Margins: Influence of Race, Gender, and Education on Willingness to Participate in Stormwater Management
Stormwater has immense impacts on urban flooding and water quality, leaving the marginalized and the impoverished disproportionately impacted by and vulnerable to stormwater hazards. However, the environmental health concerns of socially and economically marginalized individuals are largely underestimated. Through regression analysis of data from three longitudinal surveys, this article examines how shared experiences of adverse environmental conditions, based on individuals' race, gender, and education level, shape one's concern about and willingness to participate in stormwater management. We found that people of color, women, and less-educated respondents had a greater willingness to participate in stormwater management than White, male, and more-educated respondents, and their concern about local stormwater hazards drove their willingness to participate. This analysis calls attention to how adverse environmental conditions may shape the perspectives of those experiencing them and facilitate a greater willingness to participate.
stat
Higher-Order Orthogonal Causal Learning for Treatment Effect
Most existing studies on the double/debiased machine learning method concentrate on the causal parameter estimation recovering from the first-order orthogonal score function. In this paper, we will construct the $k^{\mathrm{th}}$-order orthogonal score function for estimating the average treatment effect (ATE) and present an algorithm that enables us to obtain the debiased estimator recovered from the score function. Such a higher-order orthogonal estimator is more robust to the misspecification of the propensity score than the first-order one does. Besides, it has the merit of being applicable with many machine learning methodologies such as Lasso, Random Forests, Neural Nets, etc. We also undergo comprehensive experiments to test the power of the estimator we construct from the score function using both the simulated datasets and the real datasets.
stat
Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions
We develop simple methods for constructing parameter priors for model choice among Directed Acyclic Graphical (DAG) models. In particular, we introduce several assumptions that permit the construction of parameter priors for a large number of DAG models from a small set of assessments. We then present a method for directly computing the marginal likelihood of every DAG model given a random sample with no missing observations. We apply this methodology to Gaussian DAG models which consist of a recursive set of linear regression models. We show that the only parameter prior for complete Gaussian DAG models that satisfies our assumptions is the normal-Wishart distribution. Our analysis is based on the following new characterization of the Wishart distribution: let $W$ be an $n \times n$, $n \ge 3$, positive-definite symmetric matrix of random variables and $f(W)$ be a pdf of $W$. Then, f$(W)$ is a Wishart distribution if and only if $W_{11} - W_{12} W_{22}^{-1} W'_{12}$ is independent of $\{W_{12},W_{22}\}$ for every block partitioning $W_{11},W_{12}, W'_{12}, W_{22}$ of $W$. Similar characterizations of the normal and normal-Wishart distributions are provided as well.
stat
TDEFSI: Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic Information
Influenza-like illness (ILI) places a heavy social and economic burden on our society. Traditionally, ILI surveillance data is updated weekly and provided at a spatially coarse resolution. Producing timely and reliable high-resolution spatiotemporal forecasts for ILI is crucial for local preparedness and optimal interventions. We present TDEFSI (Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic Information), an epidemic forecasting framework that integrates the strengths of deep neural networks and high-resolution simulations of epidemic processes over networks. TDEFSI yields accurate high-resolution spatiotemporal forecasts using low-resolution time series data. During the training phase, TDEFSI uses high-resolution simulations of epidemics that explicitly model spatial and social heterogeneity inherent in urban regions as one component of training data. We train a two-branch recurrent neural network model to take both within-season and between-season low-resolution observations as features, and output high-resolution detailed forecasts. The resulting forecasts are not just driven by observed data but also capture the intricate social, demographic and geographic attributes of specific urban regions and mathematical theories of disease propagation over networks. We focus on forecasting the incidence of ILI and evaluate TDEFSI's performance using synthetic and real-world testing datasets at the state and county levels in the USA. The results show that, at the state level, our method achieves comparable/better performance than several state-of-the-art methods. At the county level, TDEFSI outperforms the other methods. The proposed method can be applied to other infectious diseases as well.
stat
Importance Sampling and its Optimality for Stochastic Simulation Models
We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regression estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation.
stat
Robustly estimating the marginal likelihood for cognitive models via importance sampling
Recent advances in Markov chain Monte Carlo (MCMC) extend the scope of Bayesian inference to models for which the likelihood function is intractable. Although these developments allow us to estimate model parameters, other basic problems such as estimating the marginal likelihood, a fundamental tool in Bayesian model selection, remain challenging. This is an important scientific limitation because testing psychological hypotheses with hierarchical models has proven difficult with current model selection methods. We propose an efficient method for estimating the marginal likelihood for models where the likelihood is intractable, but can be estimated unbiasedly. It is based on first running a sampling method such as MCMC to obtain samples for the model parameters, and then using these samples to construct the proposal density in an importance sampling (IS) framework with an unbiased estimate of the likelihood. Our method has several attractive properties: it generates an unbiased estimate of the marginal likelihood, it is robust to the quality and target of the sampling method used to form the IS proposals, and it is computationally cheap to estimate the variance of the marginal likelihood estimator. We also obtain the convergence properties of the method and provide guidelines on maximizing computational efficiency. The method is illustrated in two challenging cases involving hierarchical models: identifying the form of individual differences in an applied choice scenario, and evaluating the best parameterization of a cognitive model in a speeded decision making context. Freely available code to implement the methods is provided. Extensions to posterior moment estimation and parallelization are also discussed.
stat
Collocation-Based Output-Error Method for Aircraft System Identification
The output-error method is a mainstay of aircraft system identification from flight-test data. It is the method of choice for a wide range of applications, from the estimation of stability and control derivatives for aerodynamic database generation to sensor bias estimation in flight-path reconstruction. However, notable limitations of the output-error method are that it requires ad hoc modifications for applications to unstable systems and it is an iterative method which is particularly sensitive to the initial guess. In this paper, we show how to reformulate the estimation as a collocation problem, an approach common in other disciplines but seldomly used in flight vehicle system identification. Both formulations are equivalent in terms of having the same solution, but the collocation-based can be applied without modifications or loss of efficiency to unstable systems. Examples with simulated and real-world flight-test data also show that convergence to the optimum is obtained even with poor initial guesses.
stat
Multi Split Conformal Prediction
Split conformal prediction is a computationally efficient method for performing distribution-free predictive inference in regression. It involves, however, a one-time random split of the data, and the result depends on the particular split. To address this problem, we propose multi split conformal prediction, a simple method based on Markov's inequality to aggregate single split conformal prediction intervals across multiple splits.
stat
DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome
Despite great advances, molecular cancer pathology is often limited to the use of a small number of biomarkers rather than the whole transcriptome, partly due to computational challenges. Here, we introduce a novel architecture of Deep Neural Networks (DNNs) that is capable of simultaneous inference of various properties of biological samples, through multi-task and transfer learning. It encodes the whole transcription profile into a strikingly low-dimensional latent vector of size 8, and then recovers mRNA and miRNA expression profiles, tissue and disease type from this vector. This latent space is significantly better than the original gene expression profiles for discriminating samples based on their tissue and disease. We employed this architecture on mRNA transcription profiles of 10787 clinical samples from 34 classes (one healthy and 33 different types of cancer) from 27 tissues. Our method significantly outperforms prior works and classical machine learning approaches in predicting tissue-of-origin, normal or disease state and cancer type of each sample. For tissues with more than one type of cancer, it reaches 99.4\% accuracy in identifying the correct cancer subtype. We also show this system is very robust against noise and missing values. Collectively, our results highlight applications of artificial intelligence in molecular cancer pathology and oncological research. DeePathology is freely available at \url{https://github.com/SharifBioinf/DeePathology}.
stat
Joint Inference of Multiple Graphs from Matrix Polynomials
Inferring graph structure from observations on the nodes is an important and popular network science task. Departing from the more common inference of a single graph and motivated by social and biological networks, we study the problem of jointly inferring multiple graphs from the observation of signals at their nodes (graph signals), which are assumed to be stationary in the sought graphs. From a mathematical point of view, graph stationarity implies that the mapping between the covariance of the signals and the sparse matrix representing the underlying graph is given by a matrix polynomial. A prominent example is that of Markov random fields, where the inverse of the covariance yields the sparse matrix of interest. From a modeling perspective, stationary graph signals can be used to model linear network processes evolving on a set of (not necessarily known) networks. Leveraging that matrix polynomials commute, a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs are provided when perfect covariance information is available. Particularly important from an empirical viewpoint, we provide high-probability bounds on the recovery error as a function of the number of signals observed and other key problem parameters. Numerical experiments using synthetic and real-world data demonstrate the effectiveness of the proposed method with perfect covariance information as well as its robustness in the noisy regime.
stat
Clustering of Nonnegative Data and an Application to Matrix Completion
In this paper, we propose a simple algorithm to cluster nonnegative data lying in disjoint subspaces. We analyze its performance in relation to a certain measure of correlation between said subspaces. We use our clustering algorithm to develop a matrix completion algorithm which can outperform standard matrix completion algorithms on data matrices satisfying certain natural conditions.
stat
Optimal survival trees ensemble
Recent studies have adopted an approach of selecting accurate and diverse trees based on individual or collective performance within an ensemble for classification and regression problems. This work follows in the wake of these investigations and considers the possibility of growing a forest of optimal survival trees. Initially, a large set of survival trees are grown using the method of random survival forest. The grown trees are then ranked from smallest to highest value of their prediction error using out-of-bag observations for each respective survival tree. The top ranked survival trees are then assessed for their collective performance as an ensemble. This ensemble is initiated with the survival tree which stands first in rank, then further trees are tested one by one by adding them to the ensemble in order of rank. A survival tree is selected for the resultant ensemble if the performance improves after an assessment using independent training data. This ensemble is called an optimal trees ensemble (OSTE). The proposed method is assessed using 17 benchmark datasets and the results are compared with those of random survival forest, conditional inference forest, bagging and a non tree based method, the Cox proportional hazard model. In addition to improve predictive performance, the proposed method reduces the number of survival trees in the ensemble as compared to the other tree based methods. The method is implemented in an R package called "OSTE".
stat
Neyman-Pearson classification: parametrics and sample size requirement
The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error controlled under some user-specified level $\alpha$. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities among the two error types. Recently, Tong, Feng and Li (2018) proposed a nonparametric umbrella algorithm that adapts all scoring-type classification methods (e.g., logistic regression, support vector machines, random forest) to respect the given type I error upper bound $\alpha$ with high probability, without specific distributional assumptions on the features and the responses. Universal the umbrella algorithm is, it demands an explicit minimum sample size requirement on class $0$, which is often the more scarce class, such as in rare disease diagnosis applications. In this work, we employ the parametric linear discriminant analysis (LDA) model and propose a new parametric thresholding algorithm, which does not need the minimum sample size requirements on class $0$ observations and thus is suitable for small sample applications such as rare disease diagnosis. Leveraging both the existing nonparametric and the newly proposed parametric thresholding rules, we propose four LDA-based NP classifiers, for both low- and high-dimensional settings. On the theoretical front, we prove NP oracle inequalities for one proposed classifier, where the rate for excess type II error benefits from the explicit parametric model assumption. Furthermore, as NP classifiers involve a sample splitting step of class $0$ observations, we construct a new adaptive sample splitting scheme that can be applied universally to NP classifiers, and this adaptive strategy reduces the type II error of these classifiers.
stat
Stochastic Convergence Rates and Applications of Adaptive Quadrature in Bayesian Inference
We provide the first stochastic convergence rates for adaptive Gauss--Hermite quadrature applied to normalizing the posterior distribution in Bayesian models. Our results apply to the uniform relative error in the approximate posterior density, the coverage probabilities of approximate credible sets, and approximate moments and quantiles, therefore guaranteeing fast asymptotic convergence of approximate summary statistics used in practice. We demonstrate via simulation a simple model that matches our stochastic upper bound for small sample sizes, and apply the method in two challenging low-dimensional examples. Further, we demonstrate how adaptive quadrature can be used as a crucial component of a complex Bayesian inference procedure for high-dimensional parameters. The method is implemented and made publicly available in the \texttt{aghq} package for the \texttt{R} language.
stat
Verbal Autopsy in Civil Registration and Vital Statistics: The Symptom-Cause Information Archive
The burden of disease is fundamental to understanding, prioritizing, and monitoring public health interventions. Cause of death is required to calculate the burden of disease, but in many parts of the developing world deaths are neither detected nor given a cause. Verbal autopsy is a feasible way of assigning a cause to a death based on an interview with those who cared for the person who died. As civil registration and vital statistics systems improve in the developing world, verbal autopsy is playing and increasingly important role in providing information about cause of death and the burden of disease. This note motivates the creation of a global symptom-cause archive containing reference deaths with both a verbal autopsy and a cause assigned through an independent mechanism. This archive could provide training and validation data for refining, developing, and testing machine-based algorithms to automate cause assignment from verbal autopsy data. This, in turn, would improve the comparability of machine-assigned causes and provide a means to fine-tune individual cause assignment within specific contexts.
stat
Knockoff Boosted Tree for Model-Free Variable Selection
In this article, we propose a novel strategy for conducting variable selection without prior model topology knowledge using the knockoff method with boosted tree models. Our method is inspired by the original knockoff method, where the differences between original and knockoff variables are used for variable selection with false discovery rate control. The original method uses Lasso for regression models and assumes there are more samples than variables. We extend this method to both model-free and high-dimensional variable selection. We propose two new sampling methods for generating knockoffs, namely the sparse covariance and principal component knockoff methods. We test these methods and compare them with the original knockoff method in terms of their ability to control type I errors and power. The boosted tree model is a complex system and has more hyperparameters than models with simpler assumptions. In our framework, these hyperparameters are either tuned through Bayesian optimization or fixed at multiple levels for trend detection. In simulation tests, we also compare the properties and performance of importance test statistics of tree models. The results include combinations of different knockoffs and importance test statistics. We also consider scenarios that include main-effect, interaction, exponential, and second-order models while assuming the true model structures are unknown. We apply our algorithm for tumor purity estimation and tumor classification using the Cancer Genome Atlas (TCGA) gene expression data. The proposed algorithm is included in the KOBT package, available at \url{https://cran.r-project.org/web/packages/KOBT/index.html}.
stat
PAC-Bayesian theory for stochastic LTI systems
In this paper we derive a PAC-Bayesian error bound for autonomous stochastic LTI state-space models. The motivation for deriving such error bounds is that they will allow deriving similar error bounds for more general dynamical systems, including recurrent neural networks. In turn, PACBayesian error bounds are known to be useful for analyzing machine learning algorithms and for deriving new ones.
stat
Determining feature importance for actionable climate change mitigation policies
Given the importance of public support for policy change and implementation, public policymakers and researchers have attempted to understand the factors associated with this support for climate change mitigation policy. In this article, we compare the feasibility of using different supervised learning methods for regression using a novel socio-economic data set which measures public support for potential climate change mitigation policies. Following this model selection, we utilize gradient boosting regression, a well-known technique in the machine learning community, but relatively uncommon in public policy and public opinion research, and seek to understand what factors among the several examined in previous studies are most central to shaping public support for mitigation policies in climate change studies. The use of this method provides novel insights into the most important factors for public support for climate change mitigation policies. Using national survey data, we find that the perceived risks associated with climate change are more decisive for shaping public support for policy options promoting renewable energy and regulating pollutants. However, we observe a very different behavior related to public support for increasing the use of nuclear energy where climate change risk perception is no longer the sole decisive feature. Our findings indicate that public support for renewable energy is inherently different from that for nuclear energy reliance with the risk perception of climate change, dominant for the former, playing a subdued role for the latter.
stat
Deep Generative Quantile-Copula Models for Probabilistic Forecasting
We introduce a new category of multivariate conditional generative models and demonstrate its performance and versatility in probabilistic time series forecasting and simulation. Specifically, the output of quantile regression networks is expanded from a set of fixed quantiles to the whole Quantile Function by a univariate mapping from a latent uniform distribution to the target distribution. Then the multivariate case is solved by learning such quantile functions for each dimension's marginal distribution, followed by estimating a conditional Copula to associate these latent uniform random variables. The quantile functions and copula, together defining the joint predictive distribution, can be parameterized by a single implicit generative Deep Neural Network.
stat
Machine Learning on EPEX Order Books: Insights and Forecasts
This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected demand. Appropriate feature extraction for the order book data is developed. Using cross-validation to optimise hyperparameters, neural networks and random forests are proposed and compared to statistical reference models. The machine learning models outperform traditional approaches.
stat
Tree Tensor Networks for Generative Modeling
Matrix product states (MPS), a tensor network designed for one-dimensional quantum systems, has been recently proposed for generative modeling of natural data (such as images) in terms of `Born machine'. However, the exponential decay of correlation in MPS restricts its representation power heavily for modeling complex data such as natural images. In this work, we push forward the effort of applying tensor networks to machine learning by employing the Tree Tensor Network (TTN) which exhibits balanced performance in expressibility and efficient training and sampling. We design the tree tensor network to utilize the 2-dimensional prior of the natural images and develop sweeping learning and sampling algorithms which can be efficiently implemented utilizing Graphical Processing Units (GPU). We apply our model to random binary patterns and the binary MNIST datasets of handwritten digits. We show that TTN is superior to MPS for generative modeling in keeping correlation of pixels in natural images, as well as giving better log-likelihood scores in standard datasets of handwritten digits. We also compare its performance with state-of-the-art generative models such as the Variational AutoEncoders, Restricted Boltzmann machines, and PixelCNN. Finally, we discuss the future development of Tensor Network States in machine learning problems.
stat
Multiscale stick-breaking mixture models
We introduce a family of multiscale stick-breaking mixture models for Bayesian nonparametric density estimation. The Bayesian nonparametric literature is dominated by single scale methods, exception made for P\`olya trees and allied approaches. Our proposal is based on a mixture specification exploiting an infinitely-deep binary tree of random weights that grows according to a multiscale generalization of a large class of stick-breaking processes; this multiscale stick-breaking is paired with specific stochastic processes generating sequences of parameters that induce stochastically ordered kernel functions. Properties of this family of multiscale stick-breaking mixtures are described. Focusing on a Gaussian specification, a Markov Chain Montecarlo algorithm for posterior computation is introduced. The performance of the method is illustrated analyzing both synthetic and real data sets. The method is well-suited for data living in $\mathbb{R}$ and is able to detect densities with varying degree of smoothness and local features.
stat
Bayesian Quantile Factor Models
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, in some specific cases the interest involves the effects of latent factors not only in the mean, but in the entire response distribution, represented by a quantile. This paper introduces a new class of models, named quantile factor models, which combines factor model theory with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the proposed model is performed using an efficient Markov chain Monte Carlo algorithm. The proposed model is evaluated using synthetic datasets in different settings, in order to evaluate its robustness and performance under different quantiles compared to more usual methods. The model is also applied to a financial sector dataset and a heart disease experiment.
stat
Uncertainty and Sensitivity Analyses Methods for Agent-Based Mathematical Models: An Introductory Review
Multiscale, agent-based mathematical models of biological systems are often associated with model uncertainty and sensitivity to parameter perturbations. Here, three uncertainty and sensitivity analyses methods, that are suitable to use when working with agent-based models, are discussed. These methods are namely Consistency Analysis, Robustness Analysis and Latin Hypercube Analysis. This introductory review discusses origins, conventions, implementation and result interpretation of the aforementioned methods. Information on how to implement the discussed methods in MATLAB is included.
stat
Multi-resolution filters for massive spatio-temporal data
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically noisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
stat
Two-Stage Regularization of Pseudo-Likelihood Estimators with Application to Time Series
Estimators derived from score functions that are not the likelihood are in wide use in practical and modern applications. Their regularization is often carried by pseudo-posterior estimation, equivalently by adding penalty to the score function. We argue that this approach is suboptimal, and propose a two-staged alternative involving estimation of a new score function which better approximates the true likelihood for the purpose of regularization. Our approach typically identifies with maximum a-posteriori estimation if the original score function is in fact the likelihood. We apply our theory to fitting ordinary least squares (OLS) under contemporaneous exogeneity, a setting appearing often in time series and in which OLS is the estimator of choice by practitioners.
stat
Simultaneous Confidence Band for Stationary Covariance Function of Dense Functional Data
Inference via simultaneous confidence band is studied for stationary covariance function of dense functional data. A two-stage estimation procedure is proposed based on spline approximation, the first stage involving estimation of all the individual trajectories and the second stage involving estimation of the covariance function through smoothing the empirical covariance function. The proposed covariance estimator is smooth and as efficient as the oracle estimator when all individual trajectories are known. An asymptotic simultaneous confidence band (SCB) is developed for the true covariance function, and the coverage probabilities are shown to be asymptotically correct. Simulation experiments are conducted on the numerical performance of the proposed estimator and SCB. The proposed method is also illustrated by two real data examples.
stat
Pivotal tests for relevant differences in the second order dynamics of functional time series
Motivated by the need to statistically quantify differences between modern (complex) data-sets which commonly result as high-resolution measurements of stochastic processes varying over a continuum, we propose novel testing procedures to detect relevant differences between the second order dynamics of two functional time series. In order to take the between-function dynamics into account that characterize this type of functional data, a frequency domain approach is taken. Test statistics are developed to compare differences in the spectral density operators and in the primary modes of variation as encoded in the associated eigenelements. Under mild moment conditions, we show convergence of the underlying statistics to Brownian motions and construct pivotal test statistics. The latter is essential because the nuisance parameters can be unwieldy and their robust estimation infeasible, especially if the two functional time series are dependent. Besides from these novel features, the properties of the tests are robust to any choice of frequency band enabling also to compare energy contents at a single frequency. The finite sample performance of the tests are verified through a simulation study and are illustrated with an application to fMRI data.
stat
On choking and ingestion hazards for children in the United States
The risks of Unintentional Suffocation injuries in the U.S. must be reconsidered in view of the existent mortality and morbidity statistics. In particular, fatal injuries due to the Sudden Unexpected Infant Death Syndrome [SUIDS] should be treated on their own and separated from this group. Because of a non-appropriate nomenclature, the risks of injuries due to Aspiration and/or Ingestion of Foreign Bodies have been overestimated in the recent decades, and should be reconsidered by a factual scrutiny of the statistical data.
stat
Analytic Study of Double Descent in Binary Classification: The Impact of Loss
Extensive empirical evidence reveals that, for a wide range of different learning methods and datasets, the risk curve exhibits a double-descent (DD) trend as a function of the model size. In a recent paper [Zeyu,Kammoun,Thrampoulidis,2019] the authors studied binary linear classification models and showed that the test error of gradient descent (GD) with logistic loss undergoes a DD. In this paper, we complement these results by extending them to GD with square loss. We show that the DD phenomenon persists, but we also identify several differences compared to logistic loss. This emphasizes that crucial features of DD curves (such as their transition threshold and global minima) depend both on the training data and on the learning algorithm. We further study the dependence of DD curves on the size of the training set. Similar to our earlier work, our results are analytic: we plot the DD curves by first deriving sharp asymptotics for the test error under Gaussian features. Albeit simple, the models permit a principled study of DD features, the outcomes of which theoretically corroborate related empirical findings occurring in more complex learning tasks.
stat
Discussion of 'Estimating time-varying causal excursion effect in mobile health with binary outcomes' by T. Qian et al
We discuss the recent paper on "excursion effect" by T. Qian et al. (2020). We show that the methods presented have close relationships to others in the literature, in particular to a series of papers by Robins, Hern\'{a}n and collaborators on analyzing observational studies as a series of randomized trials. There is also a close relationship to the history-restricted and the history-adjusted marginal structural models (MSM). Important differences and their methodological implications are clarified. We also demonstrate that the excursion effect can depend on the design and discuss its suitability for modifying the treatment protocol.
stat
The Renyi Gaussian Process: Towards Improved Generalization
We introduce an alternative closed form lower bound on the Gaussian process ($\mathcal{GP}$) likelihood based on the R\'enyi $\alpha$-divergence. This new lower bound can be viewed as a convex combination of the Nystr\"om approximation and the exact $\mathcal{GP}$. The key advantage of this bound, is its capability to control and tune the enforced regularization on the model and thus is a generalization of the traditional variational $\mathcal{GP}$ regression. From a theoretical perspective, we provide the convergence rate and risk bound for inference using our proposed approach. Experiments on real data show that the proposed algorithm may be able to deliver improvement over several $\mathcal{GP}$ inference methods.
stat
Uniformly valid confidence intervals for conditional treatment effects in misspecified high-dimensional models
Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators such as the Lasso, or other regularisation approaches. Naiive use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with sample size, correctly specifying a model for the outcome is non-trivial. In this work, we deal with both of these concerns simultaneously, delivering confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment-selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.
stat
Sequential Importance Sampling With Corrections For Partially Observed States
We consider an evolving system for which a sequence of observations is being made, with each observation revealing additional information about current and past states of the system. We suppose each observation is made without error, but does not fully determine the state of the system at the time it is made. Our motivating example is drawn from invasive species biology, where it is common to know the precise location of invasive organisms that have been detected by a surveillance program, but at any time during the program there are invaders that have not been detected. We propose a sequential importance sampling strategy to infer the state of the invasion under a Bayesian model of such a system. The strategy involves simulating multiple alternative states consistent with current knowledge of the system, as revealed by the observations. However, a difficult problem that arises is that observations made at a later time are invariably incompatible with previously simulated states. To solve this problem, we propose a two-step iterative process in which states of the system are alternately simulated in accordance with past observations, then corrected in light of new observations. We identify criteria under which such corrections can be made while maintaining appropriate importance weights.
stat
A Metropolized adaptive subspace algorithm for high-dimensional Bayesian variable selection
A simple and efficient adaptive Markov Chain Monte Carlo (MCMC) method, called the Metropolized Adaptive Subspace (MAdaSub) algorithm, is proposed for sampling from high-dimensional posterior model distributions in Bayesian variable selection. The MAdaSub algorithm is based on an independent Metropolis-Hastings sampler, where the individual proposal probabilities of the explanatory variables are updated after each iteration using a form of Bayesian adaptive learning, in a way that they finally converge to the respective covariates' posterior inclusion probabilities. We prove the ergodicity of the algorithm and present a parallel version of MAdaSub with an adaptation scheme for the proposal probabilities based on the combination of information from multiple chains. The effectiveness of the algorithm is demonstrated via various simulated and real data examples, including a high-dimensional problem with more than 20,000 covariates.
stat
A sub-critical branching process model for application to analysing Y haplotype DNA mixtures
The treatment of short-tandem-repeat (STR) loci on the Y chromosome presents special problems in the forensic analysis of DNA mixtures, chiefly but not exclusively relating to the linkage of Y-STR loci which precludes the use of the `product rule' for estimating Y-haplotype match probabilities. In recent paper, Andersen and Balding(2017) estimated, via a population simulation model, the distribution of the number of haplotypes sharing a common profile over a set of Y-STR loci, and argued for its use as an alternative to estimating Y-haplotype match probabilities. In this paper we present a sub-critical branching process model that approximates their population model, and show how to estimate the haplotype number distribution numerically using multivariate probability generating functions. It is shown that the approximation provides a good fit to their simulations. The model is extended to propose a new framework for evaluating the weight-of-evidence of Y-STR haplotype mixtures, and it is illustrated with publicly available data of a three person DNA mixture.
stat
Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion
In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.
stat
Fused-Lasso Regularized Cholesky Factors of Large Nonstationary Covariance Matrices of Longitudinal Data
Smoothness of the subdiagonals of the Cholesky factor of large covariance matrices is closely related to the degrees of nonstationarity of autoregressive models for time series and longitudinal data. Heuristically, one expects for a nearly stationary covariance matrix the entries in each subdiagonal of the Cholesky factor of its inverse to be nearly the same in the sense that sum of absolute values of successive terms is small. Statistically such smoothness is achieved by regularizing each subdiagonal using fused-type lasso penalties. We rely on the standard Cholesky factor as the new parameters within a regularized normal likelihood setup which guarantees: (1) joint convexity of the likelihood function, (2) strict convexity of the likelihood function restricted to each subdiagonal even when $n<p$, and (3) positive-definiteness of the estimated covariance matrix. A block coordinate descent algorithm, where each block is a subdiagonal, is proposed and its convergence is established under mild conditions. Lack of decoupling of the penalized likelihood function into a sum of functions involving individual subdiagonals gives rise to some computational challenges and advantages relative to two recent algorithms for sparse estimation of the Cholesky factor which decouple row-wise. Simulation results and real data analysis show the scope and good performance of the proposed methodology.
stat
Information Mandala: Statistical Distance Matrix with Clustering
In machine learning, observation features are measured in a metric space to obtain their distance function for optimization. Given similar features that are statistically sufficient as a population, a statistical distance between two probability distributions can be calculated for more precise learning. Provided the observed features are multi-valued, the statistical distance function is still efficient. However, due to its scalar output, it cannot be applied to represent detailed distances between feature elements. To resolve this problem, this paper extends the traditional statistical distance to a matrix form, called a statistical distance matrix. In experiments, the proposed approach performs well in object recognition tasks and clearly and intuitively represents the dissimilarities between cat and dog images in the CIFAR dataset, even when directly calculated using the image pixels. By using the hierarchical clustering of the statistical distance matrix, the image pixels can be separated into several clusters that are geometrically arranged around a center like a Mandala pattern. The statistical distance matrix with clustering, called the Information Mandala, is beyond ordinary saliency maps and can help to understand the basic principles of the convolution neural network.
stat
An Introduction to Inductive Statistical Inference: from Parameter Estimation to Decision-Making
These lecture notes aim at a post-Bachelor audience with a background at an introductory level in Applied Mathematics and Applied Statistics. They discuss the logic and methodology of the Bayes-Laplace approach to inductive statistical inference that places common sense and the guiding lines of the scientific method at the heart of systematic analyses of quantitative-empirical data. Following an exposition of exactly solvable cases of single- and two-parameter estimation problems, the main focus is laid on Markov Chain Monte Carlo (MCMC) simulations on the basis of Hamiltonian Monte Carlo sampling of posterior joint probability distributions for regression parameters occurring in generalised linear models for a univariate outcome variable. The modelling of fixed effects as well as of correlated varying effects via multi-level models in non-centred parametrisation is considered. The simulation of posterior predictive distributions is outlined. The assessment of a model's relative out-of-sample posterior predictive accuracy with information entropy-based criteria WAIC and LOOIC and model comparison with Bayes factors are addressed. Concluding, a conceptual link to the behavioural subjective expected utility representation of a single decision-maker's choice behaviour in static one-shot decision problems is established. Vectorised codes for MCMC simulations of multi-dimensional posterior joint probability distributions with the Stan probabilistic programming language implemented in the statistical software R are provided. The lecture notes are fully hyperlinked. They direct the reader to original scientific research papers, online resources on inductive statistical inference, and to pertinent biographical information.
stat
Deep Bayesian Nonparametric Factor Analysis
We propose a deep generative factor analysis model with beta process prior that can approximate complex non-factorial distributions over the latent codes. We outline a stochastic EM algorithm for scalable inference in a specific instantiation of this model and present some preliminary results.
stat
More for less: Predicting and maximizing genetic variant discovery via Bayesian nonparametrics
While the cost of sequencing genomes has decreased dramatically in recent years, this expense often remains non-trivial. Under a fixed budget, then, scientists face a natural trade-off between quantity and quality; they can spend resources to sequence a greater number of genomes (quantity) or spend resources to sequence genomes with increased accuracy (quality). Our goal is to find the optimal allocation of resources between quantity and quality. Optimizing resource allocation promises to reveal as many new variations in the genome as possible, and thus as many new scientific insights as possible. In this paper, we consider the common setting where scientists have already conducted a pilot study to reveal variants in a genome and are contemplating a follow-up study. We introduce a Bayesian nonparametric methodology to predict the number of new variants in the follow-up study based on the pilot study. When experimental conditions are kept constant between the pilot and follow-up, we demonstrate on real data from the gnomAD project that our prediction is more accurate than three recent proposals, and competitive with a more classic proposal. Unlike existing methods, though, our method allows practitioners to change experimental conditions between the pilot and the follow-up. We demonstrate how this distinction allows our method to be used for (i) more realistic predictions and (ii) optimal allocation of a fixed budget between quality and quantity.
stat
Conditional Inferences Based on Vine Copulas with Applications to Credit Spread Data of Corporate Bonds
Understanding the dependence relationship of credit spreads of corporate bonds is important for risk management. Vine copula models with tail dependence are used to analyze a credit spread dataset of Chinese corporate bonds, understand the dependence among different sectors and perform conditional inferences. It is shown how the effect of tail dependence affects risk transfer, or the conditional distributions given one variable is extreme. Vine copula models also provide more accurate cross prediction results compared with linear regressions. These conditional inference techniques are a statistical contribution for analysis of bond credit spreads of investment portfolios consisting of corporate bonds from various sectors.
stat
Hard and Soft EM in Bayesian Network Learning from Incomplete Data
Incomplete data are a common feature in many domains, from clinical trials to industrial applications. Bayesian networks (BNs) are often used in these domains because of their graphical and causal interpretations. BN parameter learning from incomplete data is usually implemented with the Expectation-Maximisation algorithm (EM), which computes the relevant sufficient statistics ("soft EM") using belief propagation. Similarly, the Structural Expectation-Maximisation algorithm (Structural EM) learns the network structure of the BN from those sufficient statistics using algorithms designed for complete data. However, practical implementations of parameter and structure learning often impute missing data ("hard EM") to compute sufficient statistics instead of using belief propagation, for both ease of implementation and computational speed. In this paper, we investigate the question: what is the impact of using imputation instead of belief propagation on the quality of the resulting BNs? From a simulation study using synthetic data and reference BNs, we find that it is possible to recommend one approach over the other in several scenarios based on the characteristics of the data. We then use this information to build a simple decision tree to guide practitioners in choosing the EM algorithm best suited to their problem.
stat
Error bounds in estimating the out-of-sample prediction error using leave-one-out cross validation in high-dimensions
We study the problem of out-of-sample risk estimation in the high dimensional regime where both the sample size $n$ and number of features $p$ are large, and $n/p$ can be less than one. Extensive empirical evidence confirms the accuracy of leave-one-out cross validation (LO) for out-of-sample risk estimation. Yet, a unifying theoretical evaluation of the accuracy of LO in high-dimensional problems has remained an open problem. This paper aims to fill this gap for penalized regression in the generalized linear family. With minor assumptions about the data generating process, and without any sparsity assumptions on the regression coefficients, our theoretical analysis obtains finite sample upper bounds on the expected squared error of LO in estimating the out-of-sample error. Our bounds show that the error goes to zero as $n,p \rightarrow \infty$, even when the dimension $p$ of the feature vectors is comparable with or greater than the sample size $n$. One technical advantage of the theory is that it can be used to clarify and connect some results from the recent literature on scalable approximate LO.
stat
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
When a missing process depends on the missing values themselves, it needs to be explicitly modelled and taken into account while doing likelihood-based inference. We present an approach for building and fitting deep latent variable models (DLVMs) in cases where the missing process is dependent on the missing data. Specifically, a deep neural network enables us to flexibly model the conditional distribution of the missingness pattern given the data. This allows for incorporating prior information about the type of missingness (e.g. self-censoring) into the model. Our inference technique, based on importance-weighted variational inference, involves maximising a lower bound of the joint likelihood. Stochastic gradients of the bound are obtained by using the reparameterisation trick both in latent space and data space. We show on various kinds of data sets and missingness patterns that explicitly modelling the missing process can be invaluable.
stat
Unified Rules of Renewable Weighted Sums for Various Online Updating Estimations
This paper establishes unified frameworks of renewable weighted sums (RWS) for various online updating estimations in the models with streaming data sets. The newly defined RWS lays the foundation of online updating likelihood, online updating loss function, online updating estimating equation and so on. The idea of RWS is intuitive and heuristic, and the algorithm is computationally simple. This paper chooses nonparametric model as an exemplary setting. The RWS applies to various types of nonparametric estimators, which include but are not limited to nonparametric likelihood, quasi-likelihood and least squares. Furthermore, the method and the theory can be extended into the models with both parameter and nonparametric function. The estimation consistency and asymptotic normality of the proposed renewable estimator are established, and the oracle property is obtained. Moreover, these properties are always satisfied, without any constraint on the number of data batches, which means that the new method is adaptive to the situation where streaming data sets arrive perpetually. The behavior of the method is further illustrated by various numerical examples from simulation experiments and real data analysis.
stat
Power prior models for treatment effect estimation in a small n, sequential, multiple assignment, randomized trial
A small n, sequential, multiple assignment, randomized trial (snSMART) is a small sample, two-stage design where participants receive up to two treatments sequentially, but the second treatment depends on response to the first treatment. The treatment effect of interest in an snSMART is the first-stage response rate, but outcomes from both stages can be used to obtain more information from a small sample. A novel way to incorporate the outcomes from both stages applies power prior models, in which first stage outcomes from an snSMART are regarded as the primary data and second stage outcomes are regarded as supplemental. We apply existing power prior models to snSMART data, and we also develop new extensions of power prior models. All methods are compared to each other and to the Bayesian joint stage model (BJSM) via simulation studies. By comparing the biases and the efficiency of the response rate estimates among all proposed power prior methods, we suggest application of Fisher's exact test or the Bhattacharyya's overlap measure to an snSMART to estimate the treatment effect in an snSMART, which both have performance mostly as good or better than the BJSM. We describe the situations where each of these suggested approaches is preferred.
stat
Benchmarking Minimax Linkage
Minimax linkage was first introduced by Ao et al. [3] in 2004, as an alternative to standard linkage methods used in hierarchical clustering. Minimax linkage relies on distances to a prototype for each cluster; this prototype can be thought of as a representative object in the cluster, hence improving the interpretability of clustering results. Bien and Tibshirani analyzed properties of this method in 2011 [2], popularizing the method within the statistics community. Additionally, they performed comparisons of minimax linkage to standard linkage methods, making use of five data sets and two different evaluation metrics (distance to prototype and misclassification rate). In an effort to expand upon their work and evaluate minimax linkage more comprehensively, our benchmark study focuses on thorough method evaluation via multiple performance metrics on several well-described data sets. We also make all code and data publicly available through an R package, for full reproducibility. Similarly to [2], we find that minimax linkage often produces the smallest maximum minimax radius of all linkage methods, meaning that minimax linkage produces clusters where objects in a cluster are tightly clustered around their prototype. This is true across a range of values for the total number of clusters (k). However, this is not always the case, and special attention should be paid to the case when k is the true known value. For true k, minimax linkage does not always perform the best in terms of all the evaluation metrics studied, including maximum minimax radius. This paper was motivated by the IFCS Cluster Benchmarking Task Force's call for clustering benchmark studies and the white paper [5], which put forth guidelines and principles for comprehensive benchmarking in clustering. Our work is designed to be a neutral benchmark study of minimax linkage.
stat
Using an online sample to learn about an offline population
Online data sources offer tremendous promise to demography and other social sciences, but researchers worry that the group of people who are represented in online datasets can be different from the general population. We show that by sampling and anonymously interviewing people who are online, researchers can learn about both people who are online and people who are offline. Our approach is based on the insight that people everywhere are connected through in-person social networks, such as kin, friendship, and contact networks. We illustrate how this insight can be used to derive an estimator for tracking the *digital divide* in access to the internet, an increasingly important dimension of population inequality in the modern world. We conducted a large-scale empirical test of our approach, using an online sample to estimate internet adoption in five countries ($n \approx 15,000$). Our test embedded a randomized experiment whose results can help design future studies. Our approach could be adapted to many other settings, offering one way to overcome some of the major challenges facing demographers in the information age.
stat
Orthogonal Impulse Response Analysis in Presence of Time-Varying Covariance
In this paper the orthogonal impulse response functions (OIRF) are studied in the non-standard, though quite common, case where the covariance of the error vector is not constant in time. The usual approach for taking into account such behavior of the covariance consists in applying the standard tools to sub-periods of the whole sample. We underline that such a practice may lead to severe upward bias. We propose a new approach intended to give what we argue to be a more accurate resume of the time-varying OIRF. This consists in averaging the Cholesky decomposition of nonparametric covariance estimators. In addition an index is developed to evaluate the heteroscedasticity effect on the OIRF analysis. The asymptotic behavior of the different estimators considered in the paper is investigated. The theoretical results are illustrated by Monte Carlo experiments. The analysis of the orthogonal response functions of the U.S. inflation to an oil price shock, shows the relevance of the tools proposed herein for an appropriate analysis of economic variables.
stat
Degrees of freedom for off-the-grid sparse estimation
A central question in modern machine learning and imaging sciences is to quantify the number of effective parameters of vastly over-parameterized models. The degrees of freedom is a mathematically convenient way to define this number of parameters. Its computation and properties are well understood when dealing with discretized linear models, possibly regularized using sparsity. In this paper, we argue that this way of thinking is plagued when dealing with models having very large parameter spaces. In this case it makes more sense to consider "off-the-grid" approaches, using a continuous parameter space. This type of approach is the one favoured when training multi-layer perceptrons, and is also becoming popular to solve super-resolution problems in imaging. Training these off-the-grid models with a sparsity inducing prior can be achieved by solving a convex optimization problem over the space of measures, which is often called the Beurling Lasso (Blasso), and is the continuous counterpart of the celebrated Lasso parameter selection method. In previous works, the degrees of freedom for the Lasso was shown to coincide with the size of the smallest solution support. Our main contribution is a proof of a continuous counterpart to this result for the Blasso. Our findings suggest that discretized methods actually vastly over-estimate the number of intrinsic continuous degrees of freedom. Our second contribution is a detailed study of the case of sampling Fourier coefficients in 1D, which corresponds to a super-resolution problem. We show that our formula for the degrees of freedom is valid outside of a set of measure zero of observations, which in turn justifies its use to compute an unbiased estimator of the prediction risk using the Stein Unbiased Risk Estimator (SURE).
stat
Chain effects of clean water: The Mills-Reincke phenomenon in early twentieth-century Japan
This study explores the validity of chain effects of clean water, which are known as the "Mills-Reincke phenomenon," in early twentieth-century Japan. Recent studies have reported that water purifications systems are responsible for huge contributions to human capital. Although some studies have investigated the instantaneous effects of water-supply systems in pre-war Japan, little is known about the chain effects of these systems. By analyzing city-level cause-specific mortality data from 1922-1940, we find that a decline in typhoid deaths by one per 1,000 people decreased the risk of death due to non-waterborne diseases such as tuberculosis and pneumonia by 0.742-2.942 per 1,000 people. Our finding suggests that the observed Mills-Reincke phenomenon could have resulted in the relatively rapid decline in the mortality rate in early twentieth-century Japan.
stat
Sparse Representation Classification Beyond L1 Minimization and the Subspace Assumption
The sparse representation classifier (SRC) has been utilized in various classification problems, which makes use of L1 minimization and works well for image recognition satisfying a subspace assumption. In this paper we propose a new implementation of SRC via screening, establish its equivalence to the original SRC under regularity conditions, and prove its classification consistency under a latent subspace model and contamination. The results are demonstrated via simulations and real data experiments, where the new algorithm achieves comparable numerical performance and significantly faster.
stat
New plans orthogonal through the block factor
In the present paper we construct plans orthogonal through the block factor (POTBs). We describe procedures for adding blocks as well as factors to an initial plan and thus generate a bigger plan. Using these procedures we construct POTBs for symmetrical experiments with factors having three or more levels. We also construct a series of plans inter-class orthogonal through the block factor for two-level factors.
stat
Stochastic Comparison of Parallel Systems with Log-Lindley Distributed Components under Random Shocks
Recently, Chowdhury and Kundu [6] compared two parallel systems of heterogeneous independent log-Lindley distributed components using the concept of vector majorization and related orders. Under the same set-up, this paper derives some results related to usual stochastic ordering between two parallel systems when each component receives a random shock.
stat
BOLT-SSI: A Statistical Approach to Screening Interaction Effects for Ultra-High Dimensional Data
Detecting interaction effects among predictors on the response variable is a crucial step in various applications. In this paper, we first propose a simple method for sure screening interactions (SSI). Although its computation complexity is $O(p^2n)$, SSI works well for problems of moderate dimensionality (e.g., $p=10^3\sim10^4$), without the heredity assumption. To ultra-high dimensional problems (e.g., $p = 10^6$), motivated by discretization associated Boolean representation and operations and the contingency table for discrete variables, we propose a fast algorithm, named "BOLT-SSI". The statistical theory has been established for SSI and BOLT-SSI, guaranteeing their sure screening property. The performance of SSI and BOLT-SSI are evaluated by comprehensive simulation and real case studies. Numerical results demonstrate that SSI and BOLT-SSI can often outperform their competitors in terms of computational efficiency and statistical accuracy. The proposed method can be applied for fully detecting interactions with more than 300,000 predictors. Based on this study, we believe that there is a great need to rethink the relationship between statistical accuracy and computational efficiency. We have shown that the computational performance of a statistical method can often be greatly improved by exploring the advantages of computational architecture with a tolerable loss of statistical accuracy.
stat
Limitations of Pinned AUC for Measuring Unintended Bias
This report examines the Pinned AUC metric introduced and highlights some of its limitations. Pinned AUC provides a threshold-agnostic measure of unintended bias in a classification model, inspired by the ROC-AUC metric. However, as we highlight in this report, there are ways that the metric can obscure different kinds of unintended biases when the underlying class distributions on which bias is being measured are not carefully controlled.
stat
Expected Policy Gradients for Reinforcement Learning
We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussian policies and quadratic critics and then extend it to a universal analytical method, covering a broad class of actors and critics, including Gaussian, exponential families, and policies with bounded support. For Gaussian policies, we introduce an exploration method that uses covariance proportional to the matrix exponential of the scaled Hessian of the critic with respect to the actions. For discrete action spaces, we derive a variant of EPG based on softmax policies. We also establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. Furthermore, we prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and with little computational overhead. Finally, we provide an extensive experimental evaluation of EPG and show that it outperforms existing approaches on multiple challenging control domains.
stat
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
The treatment effects of medications play a key role in guiding medical prescriptions. They are usually assessed with randomized controlled trials (RCTs), which are expensive. Recently, large-scale electronic health records (EHRs) have become available, opening up new opportunities for more cost-effective assessments. However, assessing a treatment effect from EHRs is challenging: it is biased by unobserved confounders, unmeasured variables that affect both patients' medical prescription and their outcome, e.g. the patients' social economic status. To adjust for unobserved confounders, we develop the medical deconfounder, a machine learning algorithm that unbiasedly estimates treatment effects from EHRs. The medical deconfounder first constructs a substitute confounder by modeling which medications were prescribed to each patient; this substitute confounder is guaranteed to capture all multi-medication confounders, observed or unobserved (arXiv:1805.06826). It then uses this substitute confounder to adjust for the confounding bias in the analysis. We validate the medical deconfounder on two simulated and two real medical data sets. Compared to classical approaches, the medical deconfounder produces closer-to-truth treatment effect estimates; it also identifies effective medications that are more consistent with the findings in the medical literature.
stat
Localization for MCMC: sampling high-dimensional posterior distributions with local structure
We investigate how ideas from covariance localization in numerical weather prediction can be used in Markov chain Monte Carlo (MCMC) sampling of high-dimensional posterior distributions arising in Bayesian inverse problems. To localize an inverse problem is to enforce an anticipated "local" structure by (i) neglecting small off-diagonal elements of the prior precision and covariance matrices; and (ii) restricting the influence of observations to their neighborhood. For linear problems we can specify the conditions under which posterior moments of the localized problem are close to those of the original problem. We explain physical interpretations of our assumptions about local structure and discuss the notion of high dimensionality in local problems, which is different from the usual notion of high dimensionality in function space MCMC. The Gibbs sampler is a natural choice of MCMC algorithm for localized inverse problems and we demonstrate that its convergence rate is independent of dimension for localized linear problems. Nonlinear problems can also be tackled efficiently by localization and, as a simple illustration of these ideas, we present a localized Metropolis-within-Gibbs sampler. Several linear and nonlinear numerical examples illustrate localization in the context of MCMC samplers for inverse problems.
stat
Sparse Projection Oblique Randomer Forests
Decision forests, including Random Forests and Gradient Boosting Trees, have recently demonstrated state-of-the-art performance in a variety of machine learning settings. Decision forests are typically ensembles of axis-aligned decision trees; that is, trees that split only along feature dimensions. In contrast, many recent extensions to decision forests are based on axis-oblique splits. Unfortunately, these extensions forfeit one or more of the favorable properties of decision forests based on axis-aligned splits, such as robustness to many noise dimensions, interpretability, or computational efficiency. We introduce yet another decision forest, called "Sparse Projection Oblique Randomer Forests" (SPORF). SPORF uses very sparse random projections, i.e., linear combinations of a small subset of features. SPORF significantly improves accuracy over existing state-of-the-art algorithms on a standard benchmark suite for classification with >100 problems of varying dimension, sample size, and number of classes. To illustrate how SPORF addresses the limitations of both axis-aligned and existing oblique decision forest methods, we conduct extensive simulated experiments. SPORF typically yields improved performance over existing decision forests, while mitigating computational efficiency and scalability and maintaining interpretability. SPORF can easily be incorporated into other ensemble methods such as boosting to obtain potentially similar gains.
stat
Human Action Attribute Learning From Video Data Using Low-Rank Representations
Representation of human actions as a sequence of human body movements or action attributes enables the development of models for human activity recognition and summarization. We present an extension of the low-rank representation (LRR) model, termed the clustering-aware structure-constrained low-rank representation (CS-LRR) model, for unsupervised learning of human action attributes from video data. Our model is based on the union-of-subspaces (UoS) framework, and integrates spectral clustering into the LRR optimization problem for better subspace clustering results. We lay out an efficient linear alternating direction method to solve the CS-LRR optimization problem. We also introduce a hierarchical subspace clustering approach, termed hierarchical CS-LRR, to learn the attributes without the need for a priori specification of their number. By visualizing and labeling these action attributes, the hierarchical model can be used to semantically summarize long video sequences of human actions at multiple resolutions. A human action or activity can also be uniquely represented as a sequence of transitions from one action attribute to another, which can then be used for human action recognition. We demonstrate the effectiveness of the proposed model for semantic summarization and action recognition through comprehensive experiments on five real-world human action datasets.
stat
High-Dimensional Changepoint Detection via a Geometrically Inspired Mapping
High-dimensional changepoint analysis is a growing area of research and has applications in a wide range of fields. The aim is to accurately and efficiently detect changepoints in time series data when both the number of time points and dimensions grow large. Existing methods typically aggregate or project the data to a smaller number of dimensions; usually one. We present a high-dimensional changepoint detection method that takes inspiration from geometry to map a high-dimensional time series to two dimensions. We show theoretically and through simulation that if the input series is Gaussian then the mappings preserve the Gaussianity of the data. Applying univariate changepoint detection methods to both mapped series allows the detection of changepoints that correspond to changes in the mean and variance of the original time series. We demonstrate that this approach outperforms the current state-of-the-art multivariate changepoint methods in terms of accuracy of detected changepoints and computational efficiency. We conclude with applications from genetics and finance.
stat
Tolerance and Prediction Intervals for Non-normal Models
A prediction interval covers a future observation from a random process in repeated sampling, and is typically constructed by identifying a pivotal quantity that is also an ancillary statistic. Analogously, a tolerance interval covers a population percentile in repeated sampling and is often based on a pivotal quantity. One approach we consider in non-normal models leverages a link function resulting in a pivotal quantity that is approximately normally distributed. In settings where this normal approximation does not hold we consider a second approach for tolerance and prediction based on a confidence interval for the mean. These methods are intuitive, simple to implement, have proper operating characteristics, and are computationally efficient compared to Bayesian, re-sampling, and machine learning methods. This is demonstrated in the context of multi-site clinical trial recruitment with staggered site initiation, real-world time on treatment, and end-of-study success for a clinical endpoint.
stat
Forecasting reconciliation with a top-down alignment of independent level forecasts
Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. The overall forecasting performance is heavily affected by the forecasting accuracy of intermittent time series at bottom levels. In this paper, we present a forecasting reconciliation approach that treats the bottom level forecast as latent to ensure higher forecasting accuracy on the upper levels of the hierarchy. We employ a pure deep learning forecasting approach N-BEATS for continuous time series on top levels and a widely used tree-based algorithm LightGBM for the bottom level intermittent time series. The hierarchical forecasting with alignment approach is simple and straightforward to implement in practice. It sheds light on an orthogonal direction for forecasting reconciliation. When there is difficulty finding an optimal reconciliation, allowing suboptimal forecasts at a lower level could retain a high overall performance. The approach in this empirical study was developed by the first author during the M5 Forecasting Accuracy competition ranking second place. The approach is business orientated and could be beneficial for business strategic planning.
stat
Latent Network Structure Learning from High Dimensional Multivariate Point Processes
Learning the latent network structure from large scale multivariate point process data is an important task in a wide range of scientific and business applications. For instance, we might wish to estimate the neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To characterize the complex processes underlying the observed data, we propose a new and flexible class of nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent network structure using an efficient sparse least squares estimation approach. Using a thinning representation, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
stat
Density Estimation by Monte Carlo and Quasi-Monte Carlo
Estimating the density of a continuous random variable X has been studied extensively in statistics, in the setting where n independent observations of X are given a priori and one wishes to estimate the density from that. Popular methods include histograms and kernel density estimators. In this review paper, we are interested instead in the situation where the observations are generated by Monte Carlo simulation from a model. Then, one can take advantage of variance reduction methods such as stratification, conditional Monte Carlo, and randomized quasi-Monte Carlo (RQMC), and obtain a more accurate density estimator than with standard Monte Carlo for a given computing budget. We discuss several ways of doing this, proposed in recent papers, with a focus on methods that exploit RQMC. A first idea is to directly combine RQMC with a standard kernel density estimator. Another one is to adapt a simulation-based derivative estimation method such as smoothed perturbation analysis or the likelihood ratio method to obtain a continuous estimator of the cdf, whose derivative is an unbiased estimator of the density. This can then be combined with RQMC. We summarize recent theoretical results with these approaches and give numerical illustrations of how they improve the convergence of the mean square integrated error.
stat
Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data
A new and an enriched JPEG algorithm is provided for identifying redundancies in a sequence of irregular noisy data points which also accommodates a reference-free criterion function. Our main contribution is by formulating analytically (instead of approximating) the inverse of the transpose of JPEGwavelet transform without involving matrices which are computationally cumbersome. The algorithm is suitable for the widely-spread situations where the original data distribution is unobservable such as in cases where there is deficient representation of the entire population in the training data (in machine learning) and thus the covariate shift assumption is violated. The proposed estimator corrects for both biases, the one generated by endogenous truncation and the one generated by endogenous covariates. Results from utilizing 2,000,000 different distribution functions verify the applicability and high accuracy of our procedure to cases in which the disturbances are neither jointly nor marginally normally distributed.
stat
A Projector-Based Approach to Quantifying Total and Excess Uncertainties for Sketched Linear Regression
Linear regression is a classic method of data analysis. In recent years, sketching -- a method of dimension reduction using random sampling, random projections, or both -- has gained popularity as an effective computational approximation when the number of observations greatly exceeds the number of variables. In this paper, we address the following question: How does sketching affect the statistical properties of the solution and key quantities derived from it? To answer this question, we present a projector-based approach to sketched linear regression that is exact and that requires minimal assumptions on the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design of judicious sketching schemes.
stat
Principal Stratum Strategy: Potential Role in Drug Development
A randomized trial allows estimation of the causal effect of an intervention compared to a control in the overall population and in subpopulations defined by baseline characteristics. Often, however, clinical questions also arise regarding the treatment effect in subpopulations of patients, which would experience clinical or disease related events post-randomization. Events that occur after treatment initiation and potentially affect the interpretation or the existence of the measurements are called {\it intercurrent events} in the ICH E9(R1) guideline. If the intercurrent event is a consequence of treatment, randomization alone is no longer sufficient to meaningfully estimate the treatment effect. Analyses comparing the subgroups of patients without the intercurrent events for intervention and control will not estimate a causal effect. This is well known, but post-hoc analyses of this kind are commonly performed in drug development. An alternative approach is the principal stratum strategy, which classifies subjects according to their potential occurrence of an intercurrent event on both study arms. We illustrate with examples that questions formulated through principal strata occur naturally in drug development and argue that approaching these questions with the ICH E9(R1) estimand framework has the potential to lead to more transparent assumptions as well as more adequate analyses and conclusions. In addition, we provide an overview of assumptions required for estimation of effects in principal strata. Most of these assumptions are unverifiable and should hence be based on solid scientific understanding. Sensitivity analyses are needed to assess robustness of conclusions.
stat
Student Log-Data from a Randomized Evaluation of Educational Technology: A Causal Case Study
Randomized evaluations of educational technology produce log data as a bi-product: highly granular data student and teacher usage. These datasets could shed light on causal mechanisms, effect heterogeneity, or optimal use. However, there are methodological challenges: implementation is not randomized and is only defined for the treatment group, and log datasets have a complex structure. This paper discusses three approaches to help surmount these issues. One approach uses data from the treatment group to estimate the effect of usage on outcomes in an observational study. Another, causal mediation analysis, estimates the role of usage in driving the overall effect. Finally, principal stratification estimates overall effects for groups of students with the same "potential" usage. We analyze hint data from an evaluation of the Cognitive Tutor Algebra I curriculum using these three approaches, with possibly conflicting results: the observational study and mediation analysis suggest that hints reduce posttest scores, while principal stratification finds that treatment effects may be correlated with higher rates of hint requests. We discuss these mixed conclusions and give broader methodological recommendations.
stat
Improved Convergence Speed of Fully Symmetric Learning Rules for Principal Component Analysis
Fully symmetric learning rules for principal component analysis can be derived from a novel objective function suggested in our previous work. We observed that these learning rules suffer from slow convergence for covariance matrices where some principal eigenvalues are close to each other. Here we describe a modified objective function with an additional term which mitigates this convergence problem. We show that the learning rule derived from the modified objective function inherits all fixed points from the original learning rule (but may introduce additional ones). Also the stability of the inherited fixed points remains unchanged. Only the steepness of the objective function is increased in some directions. Simulations confirm that the convergence speed can be noticeably improved, depending on the weight factor of the additional term.
stat
An Efficient Semi-smooth Newton Augmented Lagrangian Method for Elastic Net
Feature selection is an important and active research area in statistics and machine learning. The Elastic Net is often used to perform selection when the features present non-negligible collinearity or practitioners wish to incorporate additional known structure. In this article, we propose a new Semi-smooth Newton Augmented Lagrangian Method to efficiently solve the Elastic Net in ultra-high dimensional settings. Our new algorithm exploits both the sparsity induced by the Elastic Net penalty and the sparsity due to the second order information of the augmented Lagrangian. This greatly reduces the computational cost of the problem. Using simulations on both synthetic and real datasets, we demonstrate that our approach outperforms its best competitors by at least an order of magnitude in terms of CPU time. We also apply our approach to a Genome Wide Association Study on childhood obesity.
stat
"Predicting" after peeking into the future: Correcting a fundamental flaw in the SAOM -- TERGM comparison of Leifeld and Cranmer (2019)
We review the empirical comparison of SAOMs and TERGMs by Leifeld and Cranmer (2019) in Network Science. We note that their model specification uses nodal covariates calculated from observed degrees instead of using structural effects, thus turning endogeneity into circularity. In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information and thereby predict the future using observations from the future. We conclude that their analysis rest on erroneous model specifications that render the article's conclusions meaningless. Consequently, researchers should disregard recommendations from the criticized paper when making informed modelling choices.
stat
Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives
Forecast reconciliation is a post-forecasting process aimed to improve the quality of the base forecasts for a system of hierarchical/grouped time series (Hyndman et al., 2011). Contemporaneous (cross-sectional) and temporal hierarchies have been considered in the literature, but - except for Kourentzes and Athanasopoulos (2019) - generally these two features have not been fully considered together. Adopting a notation able to simultaneously deal with both forecast reconciliation dimensions, the paper shows two new results: (i) an iterative cross-temporal forecast reconciliation procedure which extends, and overcomes some weaknesses of, the two-step procedure by Kourentzes and Athanasopoulos (2019), and (ii) the closed-form expression of the optimal (in least squares sense) point forecasts which fulfill both contemporaneous and temporal constraints. The feasibility of the proposed procedures, along with first evaluations of their performance as compared to the most performing `single dimension' (either cross-sectional or temporal) forecast reconciliation procedures, is studied through a forecasting experiment on the 95 quarterly time series of the Australian GDP from Income and Expenditure sides considered by Athanasopoulos et al. (2019).
stat
New statistic for detecting laboratory effects in ORDANOVA
The present study defines a new statistic for detecting laboratory effects in the analysis of ordinal variation (ORDANOVA). The ORDANOVA is an analysis method similar to one-way analysis of variance for analysing ordinal data obtained from interlaboratory comparison studies. In this paper, we present an approximate continuous distribution for the new statistic for the case of an arbitrary number of ordinal levels, and we demonstrate that $alpha$-percentiles of the distribution are suitable criteria for conducting statistical tests. In addition, a real example involving data from an interlaboratory comparison study is analysed using the proposed statistic.
stat
Accelerating Experimental Design by Incorporating Experimenter Hunches
Experimental design is a process of obtaining a product with target property via experimentation. Bayesian optimization offers a sample-efficient tool for experimental design when experiments are expensive. Often, expert experimenters have 'hunches' about the behavior of the experimental system, offering potentials to further improve the efficiency. In this paper, we consider per-variable monotonic trend in the underlying property that results in a unimodal trend in those variables for a target value optimization. For example, sweetness of a candy is monotonic to the sugar content. However, to obtain a target sweetness, the utility of the sugar content becomes a unimodal function, which peaks at the value giving the target sweetness and falls off both ways. In this paper, we propose a novel method to solve such problems that achieves two main objectives: a) the monotonicity information is used to the fullest extent possible, whilst ensuring that b) the convergence guarantee remains intact. This is achieved by a two-stage Gaussian process modeling, where the first stage uses the monotonicity trend to model the underlying property, and the second stage uses `virtual' samples, sampled from the first, to model the target value optimization function. The process is made theoretically consistent by adding appropriate adjustment factor in the posterior computation, necessitated because of using the `virtual' samples. The proposed method is evaluated through both simulations and real world experimental design problems of a) new short polymer fiber with the target length, and b) designing of a new three dimensional porous scaffolding with a target porosity. In all scenarios our method demonstrates faster convergence than the basic Bayesian optimization approach not using such `hunches'.
stat
Semiparametric Regression for Dual Population Mortality
Parameter shrinkage applied optimally can always reduce error and projection variances from those of maximum likelihood estimation. Many variables that actuaries use are on numerical scales, like age or year, which require parameters at each point. Rather than shrinking these towards zero, nearby parameters are better shrunk towards each other. Semiparametric regression is a statistical discipline for building curves across parameter classes using shrinkage methodology. It is similar to but more parsimonious than cubic splines. We introduce it in the context of Bayesian shrinkage and apply it to joint mortality modeling for related populations. Bayesian shrinkage of slope changes of linear splines is an approach to semiparametric modeling that evolved in the actuarial literature. It has some theoretical and practical advantages, like closed-form curves, direct and transparent determination of degree of shrinkage and of placing knots for the splines, and quantifying goodness of fit. It is also relatively easy to apply to the many nonlinear models that arise in actuarial work. We find that it compares well to a more complex state-of-the-art statistical spline shrinkage approach on a popular example from that literature.
stat
merlin: An R package for Mixed Effects Regression for Linear, Nonlinear and User-defined models
The R package merlin performs flexible joint modelling of hierarchical multi-outcome data. Increasingly, multiple longitudinal biomarker measurements, possibly censored time-to-event outcomes and baseline characteristics are available. However, there is limited software that allows all of this information to be incorporated into one model. In this paper, we present merlin which allows for the estimation of models with unlimited numbers of continuous, binary, count and time-to-event outcomes, with unlimited levels of nested random effects. A wide variety of link functions, including the expected value, the gradient and shared random effects, are available in order to link the different outcomes in a biologically plausible way. The accompanying predict.merlin function allows for individual and population level predictions to be made from even the most complex models. There is the option to specify user-defined families, making merlin ideal for methodological research. The flexibility of merlin is illustrated using an example in patients followed up after heart valve replacement, beginning with a linear model, and finishing with a joint multiple longitudinal and competing risks survival model.
stat
Data-driven confidence bands for distributed nonparametric regression
Gaussian Process Regression and Kernel Ridge Regression are popular nonparametric regression approaches. Unfortunately, they suffer from high computational complexity rendering them inapplicable to the modern massive datasets. To that end a number of approximations have been suggested, some of them allowing for a distributed implementation. One of them is the divide and conquer approach, splitting the data into a number of partitions, obtaining the local estimates and finally averaging them. In this paper we suggest a novel computationally efficient fully data-driven algorithm, quantifying uncertainty of this method, yielding frequentist $L_2$-confidence bands. We rigorously demonstrate validity of the algorithm. Another contribution of the paper is a minimax-optimal high-probability bound for the averaged estimator, complementing and generalizing the known risk bounds.
stat
A computationally efficient neural network for predicting weather forecast probabilities
The success of deep learning techniques over the last decades has opened up a new avenue of research for weather forecasting. Here, we take the novel approach of using a neural network to predict probability density functions rather than a single output value, thus producing a probabilistic weather forecast. This enables the calculation of both uncertainty and skill metrics for the neural network predictions, and overcomes the common difficulty of inferring uncertainty from these predictions. This approach is purely data-driven and the neural network is trained on the WeatherBench dataset (processed ERA5 data) to forecast geopotential and temperature 3 and 5 days ahead. An extensive data exploration leads to the identification of the most important input variables, which are also found to agree with physical reasoning, thereby validating our approach. In order to increase computational efficiency further, each neural network is trained on a small subset of these variables. The outputs are then combined through a stacked neural network, the first time such a technique has been applied to weather data. Our approach is found to be more accurate than some numerical weather prediction models and as accurate as more complex alternative neural networks, with the added benefit of providing key probabilistic information necessary for making informed weather forecasts.
stat
Embarrassingly Parallel Inference for Gaussian Processes
Training Gaussian process-based models typically involves an $ O(N^3)$ computational bottleneck due to inverting the covariance matrix. Popular methods for overcoming this matrix inversion problem cannot adequately model all types of latent functions, and are often not parallelizable. However, judicious choice of model structure can ameliorate this problem. A mixture-of-experts model that uses a mixture of $K$ Gaussian processes offers modeling flexibility and opportunities for scalable inference. Our embarrassingly parallel algorithm combines low-dimensional matrix inversions with importance sampling to yield a flexible, scalable mixture-of-experts model that offers comparable performance to Gaussian process regression at a much lower computational cost.
stat
Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework
Latent variable models have been playing a central role in psychometrics and related fields. In many modern applications, the inference based on latent variable models involves one or several of the following features: (1) the presence of many latent variables, (2) the observed and latent variables being continuous, discrete, or a combination of both, (3) constraints on parameters, and (4) penalties on parameters to impose model parsimony. The estimation often involves maximizing an objective function based on a marginal likelihood/pseudo-likelihood, possibly with constraints and/or penalties on parameters. Solving this optimization problem is highly non-trivial, due to the complexities brought by the features mentioned above. Although several efficient algorithms have been proposed, there lacks a unified computational framework that takes all these features into account. In this paper, we fill the gap. Specifically, we provide a unified formulation for the optimization problem and then propose a quasi-Newton stochastic proximal algorithm. Theoretical properties of the proposed algorithms are established. The computational efficiency and robustness are shown by simulation studies under various settings for latent variable model estimation.
stat
Large Volatility Matrix Prediction with High-Frequency Data
We provide a novel method for large volatility matrix prediction with high-frequency data by applying eigen-decomposition to daily realized volatility matrix estimators and capturing eigenvalue dynamics with ARMA models. Given a sequence of daily volatility matrix estimators, we compute the aggregated eigenvectors and obtain the corresponding eigenvalues. Eigenvalues in the same relative magnitude form a time series and the ARMA models are further employed to model the dynamics within each eigenvalue time series to produce a predictor. We predict future large volatility matrix based on the predicted eigenvalues and the aggregated eigenvectors, and demonstrate the advantages of the proposed method in volatility prediction and portfolio allocation problems.
stat
Rapid Robust Principal Component Analysis: CUR Accelerated Inexact Low Rank Estimation
Robust principal component analysis (RPCA) is a widely used tool for dimension reduction. In this work, we propose a novel non-convex algorithm, coined Iterated Robust CUR (IRCUR), for solving RPCA problems, which dramatically improves the computational efficiency in comparison with the existing algorithms. IRCUR achieves this acceleration by employing CUR decomposition when updating the low rank component, which allows us to obtain an accurate low rank approximation via only three small submatrices. Consequently, IRCUR is able to process only the small submatrices and avoid expensive computing on the full matrix through the entire algorithm. Numerical experiments establish the computational advantage of IRCUR over the state-of-art algorithms on both synthetic and real-world datasets.
stat
Sequential adaptive strategy for population-based sampling of a rare and clustered disease
An innovative sampling strategy is proposed, which applies to large-scale population-based surveys targeting a rare trait that is unevenly spread over a geographical area of interest. Our proposal is characterised by the ability to tailor the data collection to specific features and challenges of the survey at hand. It is based on integrating an adaptive component into a sequential selection, which aims to both intensify detection of positive cases, upon exploiting the spatial clusterisation, and provide a flexible framework for managing logistical and budget constraints. To account for the selection bias, a ready-to-implement weighting system is provided to release unbiased and accurate estimates. Empirical evidence is illustrated from tuberculosis prevalence surveys, which are recommended in many countries and supported by the WHO as an emblematic example of the need for an improved sampling design. Simulation results are also given to illustrate strengths and weaknesses of the proposed sampling strategy with respect to traditional cross-sectional sampling.
stat
The need for adequate sampling in a well-functioning market surveillance system
Adequate sampling is essential for the well-functioning of a market surveillance system. As small as possible statistically significant sample size is the main factor that determines the costs of market surveillance actions. This paper studies various possibilities for calculation of the size of the sample with an emphasis on the method based on the binomial distribution. Examples, comparisons, and conclusions are provided.
stat