title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Semiparametric inference on general functionals of two semicontinuous populations
In this paper, we propose new semiparametric procedures for making inference on linear functionals and their functions of two semicontinuous populations. The distribution of each population is usually characterized by a mixture of a discrete point mass at zero and a continuous skewed positive component, and hence such distribution is semicontinuous in the nature. To utilize the information from both populations, we model the positive components of the two mixture distributions via a semiparametric density ratio model. Under this model setup, we construct the maximum empirical likelihood estimators of the linear functionals and their functions, and establish the asymptotic normality of the proposed estimators. We show the proposed estimators of the linear functionals are more efficient than the fully nonparametric ones. The developed asymptotic results enable us to construct confidence regions and perform hypothesis tests for the linear functionals and their functions. We further apply these results to several important summary quantities such as the moments, the mean ratio, the coefficient of variation, and the generalized entropy class of inequality measures. Simulation studies demonstrate the advantages of our proposed semiparametric method over some existing methods. Two real data examples are provided for illustration.
stat
An information criterion for auxiliary variable selection in incomplete data analysis
Statistical inference is considered for variables of interest, called primary variables, when auxiliary variables are observed along with the primary variables. We consider the setting of incomplete data analysis, where some primary variables are not observed. Utilizing a parametric model of joint distribution of primary and auxiliary variables, it is possible to improve the estimation of parametric model for the primary variables when the auxiliary variables are closely related to the primary variables. However, the estimation accuracy reduces when the auxiliary variables are irrelevant to the primary variables. For selecting useful auxiliary variables, we formulate the problem as model selection, and propose an information criterion for predicting primary variables by leveraging auxiliary variables. The proposed information criterion is an asymptotically unbiased estimator of the Kullback-Leibler divergence for complete data of primary variables under some reasonable conditions. We also clarify an asymptotic equivalence between the proposed information criterion and a variant of leave-one-out cross validation. Performance of our method is demonstrated via a simulation study and a real data example.
stat
Visualizing and Understanding Large-Scale Assessments in Mathematics through Dimensionality Reduction
In this paper, we apply the Logistic PCA (LPCA) as a dimensionality reduction tool for visualizing patterns and characterizing the relevance of mathematics abilities from a given population measured by a large-scale assessment. We establish an equivalence of parameters between LPCA, Inner Product Representation (IPR) and the two paramenter logistic model (2PL) from the Item Response Theory (IRT). This equivalence provides three complemetary ways of looking at data that assists professionals in education to perform in-context interpretations. Particularly, we analyse the data collected from SPAECE, a large-scale assessment in Mathematics that has been applied yearly in the public educational system of the state of Cear\'a, Brazil. As the main result, we show that the the poor performance of examinees in the end of middle school is primarily caused by their disabilities in number sense.
stat
A unified model of inspection and monitoring quality
Non-destructive evaluation (NDE) through inspection and monitoring is an integral part of asset integrity management. The relationship between the condition of interest and the quantity measured by NDE is described with probabilistic models such as PoD or ROC curves. These models are used to assess the quality of the information provided by NDE systems, which is affected by factors such as the experience of the inspector, environmental conditions, ease of access, or imprecision in the measuring device. In this paper, we show how the different probabilistic models of NDE are connected within a unifying framework. Using this framework, we derive insights into how these models should be learned, calibrated, and applied. We investigate how the choice of the model can affect the maintenance decisions taken on the basis of NDE results. In addition, we analyze the impact of experimental design on the performance of a given NDE system in a decision-making context.
stat
Synthetic learner: model-free inference on treatments over time
Understanding of the effect of a particular treatment or a policy pertains to many areas of interest -- ranging from political economics, marketing to health-care and personalized treatment studies. In this paper, we develop a non-parametric, model-free test for detecting the effects of treatment over time that extends widely used Synthetic Control tests. The test is built on counterfactual predictions arising from many learning algorithms. In the Neyman-Rubin potential outcome framework with possible carry-over effects, we show that the proposed test is asymptotically consistent for stationary, beta mixing processes. We do not assume that class of learners captures the correct model necessarily. We also discuss estimates of the average treatment effect, and we provide regret bounds on the predictive performance. To the best of our knowledge, this is the first set of results that allow for example any Random Forest to be useful for provably valid statistical inference in the Synthetic Control setting. In experiments, we show that our Synthetic Learner is substantially more powerful than classical methods based on Synthetic Control or Difference-in-Differences, especially in the presence of non-linear outcome models.
stat
Quaternion Recurrent Neural Networks
Recurrent neural networks (RNNs) are powerful architectures to model sequential data, due to their capability to learn short and long-term dependencies between the basic elements of a sequence. Nonetheless, popular tasks such as speech or images recognition, involve multi-dimensional input features that are characterized by strong internal dependencies between the dimensions of the input vector. We propose a novel quaternion recurrent neural network (QRNN), alongside with a quaternion long-short term memory neural network (QLSTM), that take into account both the external relations and these internal structural dependencies with the quaternion algebra. Similarly to capsules, quaternions allow the QRNN to code internal dependencies by composing and processing multidimensional features as single entities, while the recurrent operation reveals correlations between the elements composing the sequence. We show that both QRNN and QLSTM achieve better performances than RNN and LSTM in a realistic application of automatic speech recognition. Finally, we show that QRNN and QLSTM reduce by a maximum factor of 3.3x the number of free parameters needed, compared to real-valued RNNs and LSTMs to reach better results, leading to a more compact representation of the relevant information.
stat
Langevin Markov Chain Monte Carlo with stochastic gradients
Monte Carlo sampling techniques have broad applications in machine learning, Bayesian posterior inference, and parameter estimation. Often the target distribution takes the form of a product distribution over a dataset with a large number of entries. For sampling schemes utilizing gradient information it is cheaper for the derivative to be approximated using a random small subset of the data, introducing extra noise into the system. We present a new discretization scheme for underdamped Langevin dynamics when utilizing a stochastic (noisy) gradient. This scheme is shown to bias computed averages to second order in the stepsize while giving exact results in the special case of sampling a Gaussian distribution with a normally distributed stochastic gradient.
stat
The multilayer random dot product graph
We present a comprehensive extension of the latent position network model known as the random dot product graph to accommodate multiple graphs -- both undirected and directed -- which share a common subset of nodes, and propose a method for jointly embedding the associated adjacency matrices, or submatrices thereof, into a suitable latent space. Theoretical results concerning the asymptotic behaviour of the node representations thus obtained are established, showing that after the application of a linear transformation these converge uniformly in the Euclidean norm to the latent positions with Gaussian error. Within this framework, we present a generalisation of the stochastic block model to a number of different multiple graph settings, and demonstrate the effectiveness of our joint embedding method through several statistical inference tasks in which we achieve comparable or better results than rival spectral methods. Empirical improvements in link prediction over single graph embeddings are exhibited in a cyber-security example.
stat
A Generalization Error Bound for Multi-class Domain Generalization
Domain generalization is the problem of assigning labels to an unlabeled data set, given several similar data sets for which labels have been provided. Despite considerable interest in this problem over the last decade, there has been no theoretical analysis in the setting of multi-class classification. In this work, we study a kernel-based learning algorithm and establish a generalization error bound that scales logarithmically in the number of classes, matching state-of-the-art bounds for multi-class classification in the conventional learning setting. We also demonstrate empirically that the proposed algorithm achieves significant performance gains compared to a pooling strategy.
stat
Nonparametric goodness-of-fit testing for parametric covariate models in pharmacometric analyses
The characterization of covariate effects on model parameters is a crucial step during pharmacokinetic/pharmacodynamic analyses. While covariate selection criteria have been studied extensively, the choice of the functional relationship between covariates and parameters, however, has received much less attention. Often, a simple particular class of covariate-to-parameter relationships (linear, exponential, etc.) is chosen ad hoc or based on domain knowledge, and a statistical evaluation is limited to the comparison of a small number of such classes. Goodness-of-fit testing against a nonparametric alternative provides a more rigorous approach to covariate model evaluation, but no such test has been proposed so far. In this manuscript, we derive and evaluate nonparametric goodness-of-fit tests for parametric covariate models, the null hypothesis, against a kernelized Tikhonov regularized alternative, transferring concepts from statistical learning to the pharmacological setting. The approach is evaluated in a simulation study on the estimation of the age-dependent maturation effect on the clearance of a monoclonal antibody. Scenarios of varying data sparsity and residual error are considered. The goodness-of-fit test correctly identified misspecified parametric models with high power for relevant scenarios. The case study provides proof-of-concept of the feasibility of the proposed approach, which is envisioned to be beneficial for applications that lack well-founded covariate models.
stat
Conditional Monte Carlo revisited
Conditional Monte Carlo refers to sampling from the conditional distribution of a random vector X given the value T(X) = t for a function T(X). Classical conditional Monte Carlo methods were designed for estimating conditional expectations of functions of X by sampling from unconditional distributions obtained by certain weighting schemes. The basic ingredients were the use of importance sampling and change of variables. In the present paper we reformulate the problem by introducing an artificial parametric model, representing the conditional distribution of X given T(X)=t within this new model. The key is to provide the parameter of the artificial model by a distribution. The approach is illustrated by several examples, which are particularly chosen to illustrate conditional sampling in cases where such sampling is not straightforward. A simulation study and an application to goodness-of-fit testing of real data are also given.
stat
Orthogonal Statistical Inference for Multimodal Data Analysis
Multimodal imaging has transformed neuroscience research. While it presents unprecedented opportunities, it also imposes serious challenges. Particularly, it is difficult to combine the merits of interpretability attributed to a simple association model and flexibility achieved by a highly adaptive nonlinear model. In this article, we propose an orthogonal statistical inferential framework, built upon the Neyman orthogonality and a form of decomposition orthogonality, for multimodal data analysis. We target the setting that naturally arises in almost all multimodal studies, where there is a primary modality of interest, plus additional auxiliary modalities. We successfully establish the root-$N$-consistency and asymptotic normality of the estimated primary parameter, the semi-parametric estimation efficiency, and the asymptotic honesty of the confidence interval of the predicted primary modality effect. Our proposal enjoys, to a good extent, both model interpretability and model flexibility. It is also considerably different from the existing statistical methods for multimodal data integration, as well as the orthogonality-based methods for high-dimensional inferences. We demonstrate the efficacy of our method through both simulations and an application to a multimodal neuroimaging study of Alzheimer's disease.
stat
Network Mediation Analysis Using Model-based Eigenvalue Decomposition
This paper proposes a new two-stage network mediation method based on the use of a latent network approach -- model-based eigenvalue decomposition -- for analyzing social network data with nodal covariates. In the decomposition stage of the observed network, no assumption on the metric of the latent space structure is required. In the mediation stage, the most important eigenvectors of a network are used as mediators. This method further offers an innovative way for controlling for the conditional covariates and it only considers the information left in the network. We demonstrate this approach in a detailed tutorial R code provided for four separate cases -- unconditional and conditional model-based eigenvalue decompositions for either a continuous outcome or a binary outcome -- to show its applicability to empirical network data.
stat
A test for comparing conditional ROC curves with multidimensional covariates
The comparison of Receiver Operating Characteristic (ROC) curves is frequently used in the literature to compare the discriminatory capability of different classification procedures based on diagnostic variables. The performance of these variables can be sometimes influenced by the presence of other covariates, and thus they should be taken into account when making the comparison. A new non-parametric test is proposed here for testing the equality of two or more dependent ROC curves conditioned to the value of a multidimensional covariate. Projections are used for transforming the problem into a one-dimensional approach easier to handle. Simulations are carried out to study the practical performance of the new methodology. A real data set of patients with Pleural Effusion is analysed to illustrate this procedure.
stat
Robust Wald-type test in GLM with random design based on minimum density power divergence estimators
We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum density power divergence estimator of the parameters in GLM with random design and use this estimator to propose robust Wald-type tests for testing any general composite null hypothesis about the GLM. The asymptotic and robustness properties of the proposed tests are also examined for the GLM with random design. Application of the proposed robust inference procedures to the popular Poisson regression model for analyzing count data is discussed in detail both theoretically and numerically through simulation studies and real data examples.
stat
Heterogeneity-aware and communication-efficient distributed statistical inference
In multicenter research, individual-level data are often protected against sharing across sites. To overcome the barrier of data sharing, many distributed algorithms, which only require sharing aggregated information, have been developed. The existing distributed algorithms usually assume the data are homogeneously distributed across sites. This assumption ignores the important fact that the data collected at different sites may come from various sub-populations and environments, which can lead to heterogeneity in the distribution of the data. Ignoring the heterogeneity may lead to erroneous statistical inference. In this paper, we propose distributed algorithms which account for the heterogeneous distributions by allowing site-specific nuisance parameters. The proposed methods extend the surrogate likelihood approach to the heterogeneous setting by applying a novel density ratio tilting method to the efficient score function. The proposed algorithms maintain the same communication cost as the existing communication-efficient algorithms. We establish a non-asymptotic risk bound for the proposed distributed estimator and its limiting distribution in the two-index asymptotic setting which allows both sample size per site and the number of sites to go to infinity. In addition, we show that the asymptotic variance of the estimator attains the Cram\'er-Rao lower bound when the number of sites is in rate smaller than the sample size at each site. Finally, we use simulation studies and a real data application to demonstrate the validity and feasibility of the proposed methods.
stat
Causal Inference from Possibly Unbalanced Split-Plot Designs: A Randomization-based Perspective
Split-plot designs find wide applicability in multifactor experiments with randomization restrictions. Practical considerations often warrant the use of unbalanced designs. This paper investigates randomization based causal inference in split-plot designs that are possibly unbalanced. Extension of ideas from the recently studied balanced case yields an expression for the sampling variance of a treatment contrast estimator as well as a conservative estimator of the sampling variance. However, the bias of this variance estimator does not vanish even when the treatment effects are strictly additive. A careful and involved matrix analysis is employed to overcome this difficulty, resulting in a new variance estimator, which becomes unbiased under milder conditions. A construction procedure that generates such an estimator with minimax bias is proposed.
stat
NCVis: Noise Contrastive Approach for Scalable Visualization
Modern methods for data visualization via dimensionality reduction, such as t-SNE, usually have performance issues that prohibit their application to large amounts of high-dimensional data. In this work, we propose NCVis -- a high-performance dimensionality reduction method built on a sound statistical basis of noise contrastive estimation. We show that NCVis outperforms state-of-the-art techniques in terms of speed while preserving the representation quality of other methods. In particular, the proposed approach successfully proceeds a large dataset of more than 1 million news headlines in several minutes and presents the underlying structure in a human-readable way. Moreover, it provides results consistent with classical methods like t-SNE on more straightforward datasets like images of hand-written digits. We believe that the broader usage of such software can significantly simplify the large-scale data analysis and lower the entry barrier to this area.
stat
Risk-Efficient Bayesian Data Synthesis for Privacy Protection
Statistical agencies utilize models to synthesize respondent-level data for release to the public for privacy protection. In this work, we efficiently induce privacy protection into any Bayesian synthesis model by employing a pseudo likelihood that exponentiates each likelihood contribution by an observation record-indexed weight in [0, 1], defined to be inversely proportional to the identification risk for that record. We start with the marginal probability of identification risk for a record, which is composed as the probability that the identity of the record may be disclosed. Our application to the Consumer Expenditure Surveys (CE) of the U.S. Bureau of Labor Statistics demonstrates that the marginally risk-adjusted synthesizer provides an overall improved privacy protection; however, the identification risks actually increase for some moderate-risk records after risk-adjusted pseudo posterior estimation synthesis due to increased isolation after weighting; a phenomenon we label "whack-a-mole". We proceed to construct a weight for each record from a collection of pairwise identification risk probabilities with other records, where each pairwise probability measures the joint probability of re-identification of the pair of records, which mitigates the whack-a-mole issue and produces a more efficient set of synthetic data with lower risk and higher utility for the CE data.
stat
A Twin Neural Model for Uplift
Uplift is a particular case of conditional treatment effect modeling. Such models deal with cause-and-effect inference for a specific factor, such as a marketing intervention or a medical treatment. In practice, these models are built on individual data from randomized clinical trials where the goal is to partition the participants into heterogeneous groups depending on the uplift. Most existing approaches are adaptations of random forests for the uplift case. Several split criteria have been proposed in the literature, all relying on maximizing heterogeneity. However, in practice, these approaches are prone to overfitting. In this work, we bring a new vision to uplift modeling. We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk. Our solution is developed for a specific twin neural network architecture allowing to jointly optimize the marginal probabilities of success for treated and control individuals. We show that this model is a generalization of the uplift logistic interaction model. We modify the stochastic gradient descent algorithm to allow for structured sparse solutions. This helps training our uplift models to a great extent. We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
stat
Unbiased Implicit Variational Inference
We develop unbiased implicit variational inference (UIVI), a method that expands the applicability of variational inference by defining an expressive variational family. UIVI considers an implicit variational distribution obtained in a hierarchical manner using a simple reparameterizable distribution whose variational parameters are defined by arbitrarily flexible deep neural networks. Unlike previous works, UIVI directly optimizes the evidence lower bound (ELBO) rather than an approximation to the ELBO. We demonstrate UIVI on several models, including Bayesian multinomial logistic regression and variational autoencoders, and show that UIVI achieves both tighter ELBO and better predictive performance than existing approaches at a similar computational cost.
stat
Towards Deep Learning Models Resistant to Adversarial Attacks
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples---inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at https://github.com/MadryLab/mnist_challenge and https://github.com/MadryLab/cifar10_challenge.
stat
The Fuzzy ROC
The fuzzy ROC extends Receiver Operating Curve (ROC) visualization to the situation where some data points, falling in an indeterminacy region, are not classified. It addresses two challenges: definition of sensitivity and specificity bounds under indeterminacy; and visual summarization of the large number of possibilities arising from different choices of indeterminacy zones.
stat
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
We introduce AutoGluon-Tabular, an open-source AutoML framework that requires only a single line of Python to train highly accurate machine learning models on an unprocessed tabular dataset such as a CSV file. Unlike existing AutoML frameworks that primarily focus on model/hyperparameter selection, AutoGluon-Tabular succeeds by ensembling multiple models and stacking them in multiple layers. Experiments reveal that our multi-layer combination of many models offers better use of allocated training time than seeking out the best. A second contribution is an extensive evaluation of public and commercial AutoML platforms including TPOT, H2O, AutoWEKA, auto-sklearn, AutoGluon, and Google AutoML Tables. Tests on a suite of 50 classification and regression tasks from Kaggle and the OpenML AutoML Benchmark reveal that AutoGluon is faster, more robust, and much more accurate. We find that AutoGluon often even outperforms the best-in-hindsight combination of all of its competitors. In two popular Kaggle competitions, AutoGluon beat 99% of the participating data scientists after merely 4h of training on the raw data.
stat
Incorporating Posterior-Informed Approximation Errors into a Hierarchical Framework to Facilitate Out-of-the-Box MCMC Sampling for Geothermal Inverse Problems and Uncertainty Quantification
We consider geothermal inverse problems and uncertainty quantification from a Bayesian perspective. Our main goal is to make standard, `out-of-the-box' Markov chain Monte Carlo (MCMC) sampling more feasible for complex simulation models by using suitable approximations. To do this, we first show how to pose both the inverse and prediction problems in a hierarchical Bayesian framework. We then show how to incorporate so-called posterior-informed model approximation error into this hierarchical framework, using a modified form of the Bayesian approximation error (BAE) approach. This enables the use of a `coarse', approximate model in place of a finer, more expensive model, while accounting for the additional uncertainty and potential bias that this can introduce. Our method requires only simple probability modelling, a relatively small number of fine model simulations, and only modifies the target posterior -- any standard MCMC sampling algorithm can be used to sample the new posterior. These corrections can also be used in methods that are not based on MCMC sampling. We show that our approach can achieve significant computational speed-ups on two geothermal test problems. We also demonstrate the dangers of naively using coarse, approximate models in place of finer models, without accounting for the induced approximation errors. The naive approach tends to give overly confident and biased posteriors while incorporating BAE into our hierarchical framework corrects for this while maintaining computational efficiency and ease-of-use.
stat
Parallel Markov Chain Monte Carlo for Bayesian Hierarchical Models with Big Data, in Two Stages
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group-specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.
stat
Random Machines Regression Approach: an ensemble support vector regression model with free kernel choice
Machine learning techniques always aim to reduce the generalized prediction error. In order to reduce it, ensemble methods present a good approach combining several models that results in a greater forecasting capacity. The Random Machines already have been demonstrated as strong technique, i.e: high predictive power, to classification tasks, in this article we propose an procedure to use the bagged-weighted support vector model to regression problems. Simulation studies were realized over artificial datasets, and over real data benchmarks. The results exhibited a good performance of Regression Random Machines through lower generalization error without needing to choose the best kernel function during tuning process.
stat
The Hellinger Correlation
In this paper, the defining properties of a valid measure of the dependence between two random variables are reviewed and complemented with two original ones, shown to be more fundamental than other usual postulates. While other popular choices are proved to violate some of these requirements, a class of dependence measures satisfying all of them is identified. One particular measure, that we call the Hellinger correlation, appears as a natural choice within that class due to both its theoretical and intuitive appeal. A simple and efficient nonparametric estimator for that quantity is proposed. Synthetic and real-data examples finally illustrate the descriptive ability of the measure, which can also be used as test statistic for exact independence testing.
stat
Handling Missingness Value on Jointly Measured Time-Course and Time-to-event Data
Joint modeling technique is a recent advancement in effectively analyzing the longitudinal history of patients with the occurrence of an event of interest attached to it. This procedure is successfully implemented in biomarker studies to examine parents with the occurrence of tumor. One of the typical problem that influences the necessary inference is the presence of missing values in the longitudinal responses as well as in covariates. The occurrence of missingness is very common due to the dropout of patients from the study. This article presents an effective and detailed way to handle the missing values in the covariates and response variable. This study discusses the effect of different multiple imputation techniques on the inferences of joint modeling implemented on imputed datasets. A simulation study is carried out to replicate the complex data structures and conveniently perform our analysis to show its efficacy in terms of parameter estimation. This analysis is further illustrated with the longitudinal and survival outcomes of biomarkers' study by assessing proper codes in R programming language.
stat
Estimating uncertainty of earthquake rupture using Bayesian neural network
Bayesian neural networks (BNN) are the probabilistic model that combines the strengths of both neural network (NN) and stochastic processes. As a result, BNN can combat overfitting and perform well in applications where data is limited. Earthquake rupture study is such a problem where data is insufficient, and scientists have to rely on many trial and error numerical or physical models. Lack of resources and computational expenses, often, it becomes hard to determine the reasons behind the earthquake rupture. In this work, a BNN has been used (1) to combat the small data problem and (2) to find out the parameter combinations responsible for earthquake rupture and (3) to estimate the uncertainty associated with earthquake rupture. Two thousand rupture simulations are used to train and test the model. A simple 2D rupture geometry is considered where the fault has a Gaussian geometric heterogeneity at the center, and eight parameters vary in each simulation. The test F1-score of BNN (0.8334), which is 2.34% higher than plain NN score. Results show that the parameters of rupture propagation have higher uncertainty than the rupture arrest. Normal stresses play a vital role in determining rupture propagation and are also the highest source of uncertainty, followed by the dynamic friction coefficient. Shear stress has a moderate role, whereas the geometric features such as the width and height of the fault are least significant and uncertain.
stat
Optimizing the allocation of trials to sub-regions in multi-environment crop variety testing
New crop varieties are extensively tested in multi-environment trials in order to obtain a solid empirical basis for recommendations to farmers. When the target population of environments is large and heterogeneous, a division into sub-regions is often advantageous. When designing such trials, the question arises how to allocate trials to the different subregions. We consider a solution to this problem assuming a linear mixed model. We propose an analytical approach for computation of optimal designs for best linear unbiased prediction of genotype effects and pairwise linear contrasts and illustrate the obtained results by a real data example from Indian nation-wide maize variety trials. It is shown that, except in simple cases such as a compound symmetry model, the optimal allocation depends on the variance-covariance structure for genotypic effects nested within sub-regions.
stat
Gaussian Markov Random Fields versus Linear Mixed Models for satellite-based PM2.5 assessment: Evidence from the Northeastern USA
Studying the effects of air-pollution on health is a key area in environmental epidemiology. An accurate estimation of air-pollution effects requires spatio-temporally resolved datasets of air-pollution, especially, Fine Particulate Matter (PM). Satellite-based technology has greatly enhanced the ability to provide PM assessments in locations where direct measurement is impossible. Indirect PM measurement is a statistical prediction problem. The spatio-temporal statistical literature offer various predictive models: Gaussian Random Fields (GRF) and Linear Mixed Models (LMM), in particular. GRF emphasize the spatio-temporal structure in the data, but are computationally demanding to fit. LMMs are computationally easier to fit, but require some tampering to deal with space and time. Recent advances in the spatio-temporal statistical literature propose to alleviate the computation burden of GRFs by approximating them with Gaussian Markov Random Fields (GMRFs). Since LMMs and GMRFs are both computationally feasible, the question arises: which is statistically better? We show that despite the great popularity of LMMs in environmental monitoring and pollution assessment, LMMs are statistically inferior to GMRF for measuring PM in the Northeastern USA.
stat
Keyword-based Topic Modeling and Keyword Selection
Certain type of documents such as tweets are collected by specifying a set of keywords. As topics of interest change with time it is beneficial to adjust keywords dynamically. The challenge is that these need to be specified ahead of knowing the forthcoming documents and the underlying topics. The future topics should mimic past topics of interest yet there should be some novelty in them. We develop a keyword-based topic model that dynamically selects a subset of keywords to be used to collect future documents. The generative process first selects keywords and then the underlying documents based on the specified keywords. The model is trained by using a variational lower bound and stochastic gradient optimization. The inference consists of finding a subset of keywords where given a subset the model predicts the underlying topic-word matrix for the unknown forthcoming documents. We compare the keyword topic model against a benchmark model using viral predictions of tweets combined with a topic model. The keyword-based topic model outperforms this sophisticated baseline model by 67%.
stat
Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles
We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELCO
stat
Corruption-Tolerant Gaussian Process Bandit Optimization
We consider the problem of optimizing an unknown (typically non-convex) function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS), based on noisy bandit feedback. We consider a novel variant of this problem in which the point evaluations are not only corrupted by random noise, but also adversarial corruptions. We introduce an algorithm Fast-Slow GP-UCB based on Gaussian process methods, randomized selection between two instances labeled "fast" (but non-robust) and "slow" (but robust), enlarged confidence bounds, and the principle of optimism under uncertainty. We present a novel theoretical analysis upper bounding the cumulative regret in terms of the corruption level, the time horizon, and the underlying kernel, and we argue that certain dependencies cannot be improved. We observe that distinct algorithmic ideas are required depending on whether one is required to perform well in both the corrupted and non-corrupted settings, and whether the corruption level is known or not.
stat
Cost-sensitive Multi-class AdaBoost for Understanding Driving Behavior with Telematics
Powered with telematics technology, insurers can now capture a wide range of data, such as distance traveled, how drivers brake, accelerate or make turns, and travel frequency each day of the week, to better decode driver's behavior. Such additional information helps insurers improve risk assessments for usage-based insurance (UBI), an increasingly popular industry innovation. In this article, we explore how to integrate telematics information to better predict claims frequency. For motor insurance during a policy year, we typically observe a large proportion of drivers with zero claims, a less proportion with exactly one claim, and far lesser with two or more claims. We introduce the use of a cost-sensitive multi-class adaptive boosting (AdaBoost) algorithm, which we call SAMME.C2, to handle such imbalances. To calibrate SAMME.C2 algorithm, we use empirical data collected from a telematics program in Canada and we find improved assessment of driving behavior with telematics relative to traditional risk variables. We demonstrate our algorithm can outperform other models that can handle class imbalances: SAMME, SAMME with SMOTE, RUSBoost, and SMOTEBoost. The sampled data on telematics were observations during 2013-2016 for which 50,301 are used for training and another 21,574 for testing. Broadly speaking, the additional information derived from vehicle telematics helps refine risk classification of drivers of UBI.
stat
On Disentanglement in Gaussian Process Variational Autoencoders
Complex multivariate time series arise in many fields, ranging from computer vision to robotics or medicine. Often we are interested in the independent underlying factors that give rise to the high-dimensional data we are observing. While many models have been introduced to learn such disentangled representations, only few attempt to explicitly exploit the structure of sequential data. We investigate the disentanglement properties of Gaussian process variational autoencoders, a class of models recently introduced that have been successful in different tasks on time series data. Our model exploits the temporal structure of the data by modeling each latent channel with a GP prior and employing a structured variational distribution that can capture dependencies in time. We demonstrate the competitiveness of our approach against state-of-the-art unsupervised and weakly-supervised disentanglement methods on a benchmark task. Moreover, we provide evidence that we can learn meaningful disentangled representations on real-world medical time series data.
stat
Anytime Parallel Tempering
Developing efficient MCMC algorithms is indispensable in Bayesian inference. In parallel tempering, multiple interacting MCMC chains run to more efficiently explore the state space and improve performance. The multiple chains advance independently through local moves, and the performance enhancement steps are exchange moves, where the chains pause to exchange their current sample amongst each other. To accelerate the independent local moves, they may be performed simultaneously on multiple processors. Another problem is then encountered: depending on the MCMC implementation and inference problem, local moves can take a varying and random amount of time to complete. There may also be infrastructure-induced variations, such as competing jobs on the same processors, which arises in cloud computing. Before exchanges can occur, all chains must complete the local moves they are engaged in to avoid introducing a potentially substantial bias (Proposition 2.1). To solve this issue of randomly varying local move completion times in multi-processor parallel tempering, we adopt the Anytime Monte Carlo framework of Murray et al. (2016): we impose real-time deadlines on the parallel local moves and perform exchanges at these deadlines without any processor idling. We show our methodology for exchanges at real-time deadlines does not introduce a bias and leads to significant performance enhancements over the na\"ive approach of idling until every processor's local moves complete. The methodology is then applied in an ABC setting, where an Anytime ABC parallel tempering algorithm is derived for the difficult task of estimating the parameters of a Lotka-Volterra predator-prey model, and similar efficiency enhancements are observed.
stat
A Kernel-based Consensual Aggregation for Regression
In this article, we introduce a kernel-based consensual aggregation method for regression problems. We aim to flexibly combine individual regression estimators $r_1, r_2, \ldots, r_M$ using a weighted average where the weights are defined based on some kernel function to build a target prediction. This work extends the context of Biau et al. (2016) to a more general kernel-based framework. We show that this more general configuration also inherits the consistency of the basic consistent estimators. Moreover, an optimization method based on gradient descent algorithm is proposed to efficiently and rapidly estimate the key parameter of the strategy. The numerical experiments carried out on several simulated and real datasets are also provided to illustrate the speed-up of gradient descent algorithm in estimating the key parameter and the improvement of overall performance of the method with the introduction of smoother kernel functions.
stat
Invariant Risk Minimization
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.
stat
Hamiltonian Assisted Metropolis Sampling
Various Markov chain Monte Carlo (MCMC) methods are studied to improve upon random walk Metropolis sampling, for simulation from complex distributions. Examples include Metropolis-adjusted Langevin algorithms, Hamiltonian Monte Carlo, and other recent algorithms related to underdamped Langevin dynamics. We propose a broad class of irreversible sampling algorithms, called Hamiltonian assisted Metropolis sampling (HAMS), and develop two specific algorithms with appropriate tuning and preconditioning strategies. Our HAMS algorithms are designed to achieve two distinctive properties, while using an augmented target density with momentum as an auxiliary variable. One is generalized detailed balance, which induces an irreversible exploration of the target. The other is a rejection-free property, which allows our algorithms to perform satisfactorily with relatively large step sizes. Furthermore, we formulate a framework of generalized Metropolis--Hastings sampling, which not only highlights our construction of HAMS at a more abstract level, but also facilitates possible further development of irreversible MCMC algorithms. We present several numerical experiments, where the proposed algorithms are found to consistently yield superior results among existing ones.
stat
Dynamic principal component regression: Application to age-specific mortality forecasting
In areas of application, including actuarial science and demography, it is increasingly common to consider a time series of curves; an example of this is age-specific mortality rates observed over a period of years. Given that age can be treated as a discrete or continuous variable, a dimension reduction technique, such as principal component analysis, is often implemented. However, in the presence of moderate to strong temporal dependence, static principal component analysis commonly used for analyzing independent and identically distributed data may not be adequate. As an alternative, we consider a \textit{dynamic} principal component approach to model temporal dependence in a time series of curves. Inspired by Brillinger's (1974) theory of dynamic principal components, we introduce a dynamic principal component analysis, which is based on eigen-decomposition of estimated long-run covariance. Through a series of empirical applications, we demonstrate the potential improvement of one-year-ahead point and interval forecast accuracies that the dynamic principal component regression entails when compared with the static counterpart.
stat
Automatic, Dynamic, and Nearly Optimal Learning Rate Specification by Local Quadratic Approximation
In deep learning tasks, the learning rate determines the update step size in each iteration, which plays a critical role in gradient-based optimization. However, the determination of the appropriate learning rate in practice typically replies on subjective judgement. In this work, we propose a novel optimization method based on local quadratic approximation (LQA). In each update step, given the gradient direction, we locally approximate the loss function by a standard quadratic function of the learning rate. Then, we propose an approximation step to obtain a nearly optimal learning rate in a computationally efficient way. The proposed LQA method has three important features. First, the learning rate is automatically determined in each update step. Second, it is dynamically adjusted according to the current loss function value and the parameter estimates. Third, with the gradient direction fixed, the proposed method leads to nearly the greatest reduction in terms of the loss function. Extensive experiments have been conducted to prove the strengths of the proposed LQA method.
stat
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Bayesian interpretations of neural network have a long history, dating back to early work in the 1990's and have recently regained attention because of their desirable properties like uncertainty estimation, model robustness and regularisation. We want to discuss here the application of Bayesian models to knowledge sharing between neural networks. Knowledge sharing comes in different facets, such as transfer learning, model distillation and shared embeddings. All of these tasks have in common that learned "features" ought to be shared across different networks. Theoretically rooted in the concepts of Bayesian neural networks this work has widespread application to general deep learning.
stat
Simultaneous comparisons of treatments versus control (Dunnett-type tests) for location-scale alternatives
Commonly, the comparisons of treatment groups versus a control is performed for location effects only where possible scale effects are considered as disturbing. Sometimes scale effects are also relevant, as a kind of early indicator for changes. Here several approaches for Dunnett-type tests for location or scale effects are proposed and compared by a simulation study. Two real data examples are analysed accordingly and the related R-code is available in the Appendix.
stat
Bayes' Theorem under Conditional Independence
In this article we provide a substantial discussion on the statistical concept of conditional independence, which is not routinely mentioned in most elementary statistics and mathematical statistics textbooks. Under the assumption of conditional independence, an extended version of Bayes' Theorem is then proposed with illustrations from both hypothetical and real-world examples of disease diagnosis.
stat
Pathological spectra of the Fisher information metric and its variants in deep neural networks
The Fisher information matrix (FIM) plays an essential role in statistics and machine learning as a Riemannian metric tensor or a component of the Hessian matrix of loss functions. Focusing on the FIM and its variants in deep neural networks (DNNs), we reveal their characteristic scale dependence on the network width, depth and sample size when the network has random weights and is sufficiently wide. This study covers two widely-used FIMs for regression with linear output and for classification with softmax output. Both FIMs asymptotically show pathological eigenvalue spectra in the sense that a small number of eigenvalues become large outliers depending the width or sample size while the others are much smaller. It implies that the local shape of the parameter space or loss landscape is very sharp in a few specific directions while almost flat in the other directions. In particular, the softmax output disperses the outliers and makes a tail of the eigenvalue density spread from the bulk. We also show that pathological spectra appear in other variants of FIMs: one is the neural tangent kernel; another is a metric for the input signal and feature space that arises from feedforward signal propagation. Thus, we provide a unified perspective on the FIM and its variants that will lead to more quantitative understanding of learning in large-scale DNNs.
stat
Multi-resolution Super Learner for Voxel-wise Classification of Prostate Cancer Using Multi-parametric MRI
While current research has shown the importance of Multi-parametric MRI (mpMRI) in diagnosing prostate cancer (PCa), further investigation is needed for how to incorporate the specific structures of the mpMRI data, such as the regional heterogeneity and between-voxel correlation within a subject. This paper proposes a machine learning-based method for improved voxel-wise PCa classification by taking into account the unique structures of the data. We propose a multi-resolution modeling approach to account for regional heterogeneity, where base learners trained locally at multiple resolutions are combined using the super learner, and account for between-voxel correlation by efficient spatial Gaussian kernel smoothing. The method is flexible in that the super learner framework allows implementation of any classifier as the base learner, and can be easily extended to classifying cancer into more sub-categories. We describe detailed classification algorithm for the binary PCa status, as well as the ordinal clinical significance of PCa for which a weighted likelihood approach is implemented to enhance the detection of the less prevalent cancer categories. We illustrate the advantages of the proposed approach over conventional modeling and machine learning approaches through simulations and application to in vivo data.
stat
Normalization of regressor excitation as a part of dynamic regressor extension and mixing procedure
The method of excitation normalization of the regressor, which is used in the estimation loop to solve the plant identification problem, is proposed. It is based on the dynamic regressor extension and mixing procedure. Its application allows to obtain the same upper bound of the parameter identification error for the scalar regressors with different excitation level, using a constant value of the adaptation rate for all of them. This fact is a significant advantage from the practical point of view. Comparison of the developed method with the known one of the regressor amplitude normalization is conducted. It is shown that the classical approach does not have the above-stated property. To validate the theoretical conclusions made, the results of the comparative mathematical modeling of three loops are presented: 1) the classical gradient one, 2) the one with the normalization of the regressor amplitude, 3) the proposed one with the normalization of the regressor excitation.
stat
Preventing Failures Due to Dataset Shift: Learning Predictive Models That Transport
Classical supervised learning produces unreliable models when training and target distributions differ, with most existing solutions requiring samples from the target domain. We propose a proactive approach which learns a relationship in the training domain that will generalize to the target domain by incorporating prior knowledge of aspects of the data generating process that are expected to differ as expressed in a causal selection diagram. Specifically, we remove variables generated by unstable mechanisms from the joint factorization to yield the Surgery Estimator---an interventional distribution that is invariant to the differences across environments. We prove that the surgery estimator finds stable relationships in strictly more scenarios than previous approaches which only consider conditional relationships, and demonstrate this in simulated experiments. We also evaluate on real world data for which the true causal diagram is unknown, performing competitively against entirely data-driven approaches.
stat
Spatio-Temporal Change of Support Modeling with R
Spatio-temporal change of support methods are designed for statistical analysis on spatial and temporal domains which can differ from those of the observed data. Previous work introduced a parsimonious class of Bayesian hierarchical spatio-temporal models, which we refer to as STCOS, for the case of Gaussian outcomes. Application of STCOS methodology from this literature requires a level of proficiency with spatio-temporal methods and statistical computing which may be a hurdle for potential users. The present work seeks to bridge this gap by guiding readers through STCOS computations. We focus on the R computing environment because of its popularity, free availability, and high quality contributed packages. The stcos package is introduced to facilitate computations for the STCOS model. A motivating application is the American Community Survey (ACS), an ongoing survey administered by the U.S. Census Bureau that measures key socioeconomic and demographic variables for various populations in the United States. The STCOS methodology offers a principled approach to compute model-based estimates and associated measures of uncertainty for ACS variables on customized geographies and/or time periods. We present a detailed case study with ACS data as a guide for change of support analysis in R, and as a foundation which can be customized to other applications.
stat
Assessing the accuracy of individual link with varying block sizes and cut-off values using MaCSim approach
Record linkage is the process of matching together records from different data sources that belong to the same entity. Record linkage is increasingly being used by many organizations including statistical, health, government etc. to link administrative, survey, and other files to create a robust file for more comprehensive analysis. Therefore, it becomes necessary to assess the ability of a linking method to achieve high accuracy or compare between methods with respect to accuracy. In this paper, we evaluate the accuracy of individual link using varying block sizes and different cut-off values by utilizing a Markov Chain based Monte Carlo simulation approach (MaCSim). MaCSim utilizes two linked files to create an agreement matrix. The agreement matrix is simulated to generate re-sampled versions of the agreement matrix. A defined linking method is used in each simulation to link the files and the accuracy of the linking method is assessed. The aim of this paper is to facilitate optimal choice of block size and cut-off value to achieve high accuracy in terms of minimizing average False Discovery Rate and False Negative Rate. The analyses have been performed using a synthetic dataset provided by the Australian Bureau of Statistics (ABS) and indicated promising results.
stat
An empirical analysis of the spatial variability of fuel prices in the United States
In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.
stat
Generalized Doubly Reparameterized Gradient Estimators
Efficient low-variance gradient estimation enabled by the reparameterization trick (RT) has been essential to the success of variational autoencoders. Doubly-reparameterized gradients (DReGs) improve on the RT for multi-sample variational bounds by applying reparameterization a second time for an additional reduction in variance. Here, we develop two generalizations of the DReGs estimator and show that they can be used to train conditional and hierarchical VAEs on image modelling tasks more effectively. We first extend the estimator to hierarchical models with several stochastic layers by showing how to treat additional score function terms due to the hierarchical variational posterior. We then generalize DReGs to score functions of arbitrary distributions instead of just those of the sampling distribution, which makes the estimator applicable to the parameters of the prior in addition to those of the posterior.
stat
Scanner data in inflation measurement: from raw data to price indices
Scanner data offer new opportunities for CPI or HICP calculation. They can be obtained from a~wide variety of~retailers (supermarkets, home electronics, Internet shops, etc.) and provide information at the level of~the barcode. One of~advantages of~using scanner data is the fact that they contain complete transaction information, i.e. prices and quantities for every sold item. To use scanner data, it must be carefully processed. After clearing data and unifying product names, products should be carefully classified (e.g. into COICOP 5 or below), matched, filtered and aggregated. These procedures often require creating new IT or writing custom scripts (R, Python, Mathematica, SAS, others). One of~new challenges connected with scanner data is the appropriate choice of~the index formula. In this article we present a~proposal for the implementation of~individual stages of~handling scanner data. We also point out potential problems during scanner data processing and their solutions. Finally, we compare a~large number of~price index methods based on real scanner datasets and we verify their sensitivity on adopted data filtering and aggregating methods.
stat
Testing For a Parametric Baseline-Intensity in Dynamic Interaction Networks
In statistical network analysis it is common to observe so called interaction data. Such data is characterized by the actors who form the vertices of a network. These are able to interact with each other along the edges of the network. One usually assumes that the edges in the network are randomly formed and dissolved over the observation horizon. In addition covariates are observed and the interest is to model the impact of the covariates on the interactions. In this paper we develop a framework to test if a non-parametric form of the baseline intensity allows for more flexibility than a baseline which is parametrically dependent on system-wide covariates (i.e. covariates which take the same value for all individuals, e.g. time). This allows to test if certain seasonality effects can be explained by simple covariates like the time. The procedure is applied to modeling the baseline intensity in a bike-sharing network by using weather and time information.
stat
Bayesian Inference of a Finite Population Mean Under Length-Biased Sampling
We present a robust Bayesian method to analyze forestry data when samples are selected with probability proportional to length from a finite population of unknown size. Specifically, we use Bayesian predictive inference to estimate the finite population mean of shrub widths in a limestone quarry dominated by re-growth of mountain mahogany. The data on shrub widths are collected using transect sampling and it is assumed that the probability that a shrub is selected is proportional to its width; this is length-biased sampling. In this type of sampling, the population size is also unknown and this creates an additional challenge. The quantity of interest is average finite population shrub width and the total shrub area of the quarry can be estimated. Our method is assisted by using the three-parameter generalized gamma distribution, thereby robustifying our procedure against a possible model failure. Using conditional predictive ordinates, we show that the model, which accommodates length bias, performs better than the model that does not. In the Bayesian computation, we overcome a technical problem associated with Gibbs sampling by using a random sampler.
stat
StateSpaceModels.jl: a Julia Package for Time-Series Analysis in a State-Space Framework
StateSpaceModels.jl is an open-source Julia package for modeling, forecasting and simulating time series in a state-space framework. The package represents a straightforward tool that can be useful for a wide range of applications that deal with time series. In addition, it contains features that are not present in related commercial software, such as Monte Carlo simulation and the possibility of setting any user-defined linear model.
stat
Robust Generalised Bayesian Inference for Intractable Likelihoods
Generalised Bayesian inference updates prior beliefs using a loss function, rather than a likelihood, and can therefore be used to confer robustness against possible misspecification of the likelihood. Here we consider generalised Bayesian inference with a Stein discrepancy as a loss function, motivated by applications in which the likelihood contains an intractable normalisation constant. In this context, the Stein discrepancy circumvents evaluation of the normalisation constant and produces generalised posteriors that are either closed form or accessible using standard Markov chain Monte Carlo. On a theoretical level, we show consistency, asymptotic normality, and bias-robustness of the generalised posterior, highlighting how these properties are impacted by the choice of Stein discrepancy. Then, we provide numerical experiments on a range of intractable distributions, including applications to kernel-based exponential family models and non-Gaussian graphical models.
stat
Particulate Matter Exposure and Lung Cancer: A Review of two Meta-Analysis Studies
The current regulatory paradigm is that PM2.5, over time causes lung cancer. This claim is based on cohort studies and meta-analysis that use cohort studies as their base studies. There is a need to evaluate the reliability of this causal claim. Our idea is to examine the base studies with respect to multiple testing and multiple modeling and to look closer at the meta-analysis using p-value plots. For two meta-analysis we investigated, some extremely small p-values were observed in some of the base studies, which we think are due to a combination of bias and small standard errors. The p-value plot for one meta-analysis indicates no effect. For the other meta-analysis, we note the p-value plot is consistent with a two-component mixture. Small p-values might be real or due to some combination of p-hacking, publication bias, covariate problems, etc. The large p-values could indicate no real effect, or be wrong due to low power, missing covariates, etc. We conclude that the results are ambiguous at best. These meta-analyses do not establish that PM2.5 is causal of lung tumors.
stat
SPONGE: A generalized eigenproblem for clustering signed networks
We introduce a principled and theoretically sound spectral method for $k$-way clustering in signed graphs, where the affinity measure between nodes takes either positive or negative values. Our approach is motivated by social balance theory, where the task of clustering aims to decompose the network into disjoint groups, such that individuals within the same group are connected by as many positive edges as possible, while individuals from different groups are connected by as many negative edges as possible. Our algorithm relies on a generalized eigenproblem formulation inspired by recent work on constrained clustering. We provide theoretical guarantees for our approach in the setting of a signed stochastic block model, by leveraging tools from matrix perturbation theory and random matrix theory. An extensive set of numerical experiments on both synthetic and real data shows that our approach compares favorably with state-of-the-art methods for signed clustering, especially for large number of clusters and sparse measurement graphs.
stat
Inferring UK COVID-19 fatal infection trajectories from daily mortality data: were infections already in decline before the UK lockdowns?
The number of new infections per day is a key quantity for effective epidemic management. It can be estimated relatively directly by testing of random population samples. Without such direct epidemiological measurement, other approaches are required to infer whether the number of new cases is likely to be increasing or decreasing: for example, estimating the pathogen effective reproduction number, R, using data gathered from the clinical response to the disease. For Covid-19 (SARS-CoV-2) such R estimation is heavily dependent on modelling assumptions, because the available clinical case data are opportunistic observational data subject to severe temporal confounding. Given this difficulty it is useful to retrospectively reconstruct the time course of infections from the least compromised available data, using minimal prior assumptions. A Bayesian inverse problem approach applied to UK data on first wave Covid-19 deaths and the disease duration distribution suggests that fatal infections were in decline before full UK lockdown (24 March 2020), and that fatal infections in Sweden started to decline only a day or two later. An analysis of UK data using the model of Flaxman et al. (2020, Nature 584) gives the same result under relaxation of its prior assumptions on R, suggesting an enhanced role for non pharmaceutical interventions (NPIs) short of full lock down in the UK context. Similar patterns appear to have occurred in the subsequent two lockdowns.
stat
Sample size planning for pilot studies
Pilot studies are often the first step of experimental research. It is usually on a smaller scale and the results can inform intervention development, study feasibility and how the study implementation will play out, if such a larger main study is undertaken. This paper illustrates the relationship between pilot study sample size and the performance study design of main studies. We present two simple sample size calculation methods to ensure adequate study planning for main studies. We use numerical examples and simulations to demonstrate the use and performance of proposed methods. Practical heuristic guidelines are provided based on the results.
stat
On spike-and-slab priors for Bayesian equation discovery of nonlinear dynamical systems via sparse linear regression
This paper presents the use of spike-and-slab (SS) priors for discovering governing differential equations of motion of nonlinear structural dynamic systems. The problem of discovering governing equations is cast as that of selecting relevant variables from a predetermined dictionary of basis variables and solved via sparse Bayesian linear regression. The SS priors, which belong to a class of discrete-mixture priors and are known for their strong sparsifying (or shrinkage) properties, are employed to induce sparse solutions and select relevant variables. Three different variants of SS priors are explored for performing Bayesian equation discovery. As the posteriors with SS priors are analytically intractable, a Markov chain Monte Carlo (MCMC)-based Gibbs sampler is employed for drawing posterior samples of the model parameters; the posterior samples are used for variable selection and parameter estimation in equation discovery. The proposed algorithm has been applied to four systems of engineering interest, which include a baseline linear system, and systems with cubic stiffness, quadratic viscous damping, and Coulomb damping. The results demonstrate the effectiveness of the SS priors in identifying the presence and type of nonlinearity in the system. Additionally, comparisons with the Relevance Vector Machine (RVM) - that uses a Student's-t prior - indicate that the SS priors can achieve better model selection consistency, reduce false discoveries, and derive models that have superior predictive accuracy. Finally, the Silverbox experimental benchmark is used to validate the proposed methodology.
stat
On Kernel Derivative Approximation with Random Fourier Features
Random Fourier features (RFF) represent one of the most popular and wide-spread techniques in machine learning to scale up kernel algorithms. Despite the numerous successful applications of RFFs, unfortunately, quite little is understood theoretically on their optimality and limitations of their performance. Only recently, precise statistical-computational trade-offs have been established for RFFs in the approximation of kernel values, kernel ridge regression, kernel PCA and SVM classification. Our goal is to spark the investigation of optimality of RFF-based approximations in tasks involving not only function values but derivatives, which naturally lead to optimization problems with kernel derivatives. Particularly, in this paper, we focus on the approximation quality of RFFs for kernel derivatives and prove that the existing finite-sample guarantees can be improved exponentially in terms of the domain where they hold, using recent tools from unbounded empirical process theory. Our result implies that the same approximation guarantee is attainable for kernel derivatives using RFF as achieved for kernel values.
stat
Supervised clustering of high dimensional data using regularized mixture modeling
Identifying relationships between molecular variations and their clinical presentations has been challenged by the heterogeneous causes of a disease. It is imperative to unveil the relationship between the high dimensional molecular manifestations and the clinical presentations, while taking into account the possible heterogeneity of the study subjects. We proposed a novel supervised clustering algorithm using penalized mixture regression model, called CSMR, to deal with the challenges in studying the heterogeneous relationships between high dimensional molecular features to a phenotype. The algorithm was adapted from the classification expectation maximization algorithm, which offers a novel supervised solution to the clustering problem, with substantial improvement on both the computational efficiency and biological interpretability. Experimental evaluation on simulated benchmark datasets demonstrated that the CSMR can accurately identify the subspaces on which subset of features are explanatory to the response variables, and it outperformed the baseline methods. Application of CSMR on a drug sensitivity dataset again demonstrated the superior performance of CSMR over the others, where CSMR is powerful in recapitulating the distinct subgroups hidden in the pool of cell lines with regards to their coping mechanisms to different drugs. CSMR represents a big data analysis tool with the potential to resolve the complexity of translating the clinical manifestations of the disease to the real causes underpinning it. We believe that it will bring new understanding to the molecular basis of a disease, and could be of special relevance in the growing field of personalized medicine.
stat
Universal Boosting Variational Inference
Boosting variational inference (BVI) approximates an intractable probability density by iteratively building up a mixture of simple component distributions one at a time, using techniques from sparse convex optimization to provide both computational scalability and approximation error guarantees. But the guarantees have strong conditions that do not often hold in practice, resulting in degenerate component optimization problems; and we show that the ad-hoc regularization used to prevent degeneracy in practice can cause BVI to fail in unintuitive ways. We thus develop universal boosting variational inference (UBVI), a BVI scheme that exploits the simple geometry of probability densities under the Hellinger metric to prevent the degeneracy of other gradient-based BVI methods, avoid difficult joint optimizations of both component and weight, and simplify fully-corrective weight optimizations. We show that for any target density and any mixture component family, the output of UBVI converges to the best possible approximation in the mixture family, even when the mixture family is misspecified. We develop a scalable implementation based on exponential family mixture components and standard stochastic optimization techniques. Finally, we discuss statistical benefits of the Hellinger distance as a variational objective through bounds on posterior probability, moment, and importance sampling errors. Experiments on multiple datasets and models show that UBVI provides reliable, accurate posterior approximations.
stat
Evaluating real-time probabilistic forecasts with application to National Basketball Association outcome prediction
Motivated by the goal of evaluating real-time forecasts of home team win probabilities in the National Basketball Association, we develop new tools for measuring the quality of continuously updated probabilistic forecasts. This includes introducing calibration surface plots, and simple graphical summaries of them, to evaluate at a glance whether a given continuously updated probability forecasting method is well-calibrated, as well as developing statistical tests and graphical tools to evaluate the skill, or relative performance, of two competing continuously updated forecasting methods. These tools are studied by means of a Monte Carlo simulation study of simulated basketball games, and demonstrated in an application to evaluate the continuously updated forecasts published by the United States-based multinational sports network ESPN on its principle webpage {\tt espn.com}. This application lends statistical evidence that the forecasts published there are well-calibrated, and exhibit improved skill over several na\"ive models, but do not demonstrate significantly improved skill over simple logistic regression models based solely on a measurement of each teams' relative strength, and the evolving score difference throughout the game.
stat
Design aspects of COVID-19 treatment trials: Improving probability and time of favourable events
As a reaction to the pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a multitude of clinical trials for the treatment of SARS-CoV-2 or the resulting corona disease (COVID-19) are globally at various stages from planning to completion. Although some attempts were made to standardize study designs, this was hindered by the ferocity of the pandemic and the need to set up trials quickly. We take the view that a successful treatment of COVID-19 patients (i) increases the probability of a recovery or improvement within a certain time interval, say 28 days; (ii) aims to expedite favourable events within this time frame; and (iii) does not increase mortality over this time period. On this background we discuss the choice of endpoint and its analysis. Furthermore, we consider consequences of this choice for other design aspects including sample size and power and provide some guidance on the application of adaptive designs in this particular context.
stat
Decline of war or end of positive check? Analysis of change in war size distribution between 1816-2007
This study examines whether there has been a decline in the risk of death by battle during wars, testing the 'long peace' hypothesis. The analysis relies on the Expanded War Dataset (Gleditsch, 2004) covering intra- and inter-state wars between 1816-2007. Using untransformed data on war sizes, the estimates do not provide empirical evidence for a decline in war over time. However, normalising the data for global human population does illustrate a likely decline in war from 1947 onward. The results indicate that despite strong population growth wars have not become more severe.
stat
Theoretical Guarantees for Model Auditing with Finite Adversaries
Privacy concerns have led to the development of privacy-preserving approaches for learning models from sensitive data. Yet, in practice, even models learned with privacy guarantees can inadvertently memorize unique training examples or leak sensitive features. To identify such privacy violations, existing model auditing techniques use finite adversaries defined as machine learning models with (a) access to some finite side information (e.g., a small auditing dataset), and (b) finite capacity (e.g., a fixed neural network architecture). Our work investigates the requirements under which an unsuccessful attempt to identify privacy violations by a finite adversary implies that no stronger adversary can succeed at such a task. We do so via parameters that quantify the capabilities of the finite adversary, including the size of the neural network employed by such an adversary and the amount of side information it has access to as well as the regularity of the (perhaps privacy-guaranteeing) audited model.
stat
The EAS approach for graphical selection consistency in vector autoregression models
As evidenced by various recent and significant papers within the frequentist literature, along with numerous applications in macroeconomics, genomics, and neuroscience, there continues to be substantial interest to understand the theoretical estimation properties of high-dimensional vector autoregression (VAR) models. To date, however, while Bayesian VAR (BVAR) models have been developed and studied empirically (primarily in the econometrics literature) there exist very few theoretical investigations of the repeated sampling properties for BVAR models in the literature. In this direction, we construct methodology via the $\varepsilon$-$admissible$ subsets (EAS) approach for posterior-like inference based on a generalized fiducial distribution of relative model probabilities over all sets of active/inactive components (graphs) of the VAR transition matrix. We provide a mathematical proof of $pairwise$ and $strong$ graphical selection consistency for the EAS approach for stable VAR(1) models which is robust to model misspecification, and demonstrate numerically that it is an effective strategy in high-dimensional settings.
stat
Goodness of Causal Fit
We propose a Goodness of Causal Fit (GCF) measure which depends on Pearl "do" interventions. This is different from a measure of Goodness of Fit (GF), which does not use interventions. Given a DAG set ${\cal G}$, to find a good $G\in {\cal G}$, we propose plotting $GCF(G)$ versus $GF(G)$ for all $G\in {\cal G}$, and finding a graph $G\in {\cal G}$ with a large amount of both types of goodness.
stat
Variable fusion for Bayesian linear regression via spike-and-slab priors
In linear regression models, fusion of coefficients is used to identify predictors having similar relationships with a response. This is called variable fusion. This paper presents a novel variable fusion method in terms of Bayesian linear regression models. We focus on hierarchical Bayesian models based on a spike-and-slab prior approach. A spike-and-slab prior is tailored to perform variable fusion. To obtain estimates of the parameters, we develop a Gibbs sampler for the parameters. Simulation studies and a real data analysis show that our proposed method achieves better performance than previous methods.
stat
Exponential Dispersion Models for Overdispersed Zero-Inflated Count Data
We consider three new classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. In a previous paper (Bar-Lev and Ridder, 2020a), we have developed the framework of these classes and proved that they have some desirable properties. Each of these classes was shown to be overdispersed and zero inflated in ascending order, making them as competitive statistical models for those in use in statistical modeling. In this paper we elaborate on the computational aspects of their probability mass functions. Furthermore, we apply these classes for fitting real data sets having overdispersed and zero-inflated statistics. Classic models based on Poisson or negative binomial distributions show poor fits, and therefore many alternatives have already proposed in recent years. We execute an extensive comparison with these other proposals, from which we may conclude that our framework is a flexible tool that gives excellent results in all cases. Moreover, in most cases our model gives the best fit.
stat
Two-block vs. Multi-block ADMM: An empirical evaluation of convergence
Alternating Direction Method of Multipliers (ADMM) has become a widely used optimization method for convex problems, particularly in the context of data mining in which large optimization problems are often encountered. ADMM has several desirable properties, including the ability to decompose large problems into smaller tractable sub-problems and ease of parallelization, that are essential in these scenarios. The most common form of ADMM is the two-block, in which two sets of primal variables are updated alternatingly. Recent years have seen advances in multi-block ADMM, which update more than two blocks of primal variables sequentially. In this paper, we study the empirical question: {\em Is two-block ADMM always comparable with sequential multi-block ADMM solving an equivalent problem?} In the context of optimization problems arising in multi-task learning, through a comprehensive set of experiments we surprisingly show that multi-block ADMM consistently outperformed two-block ADMM on optimization performance, and as a consequence on prediction performance, across all datasets and for the entire range of dual step sizes. Our results have an important practical implication: rather than simply using the popular two-block ADMM, one may considerably benefit from experimenting with multi-block ADMM applied to an equivalent problem.
stat
Monte Carlo simulation on the Stiefel manifold via polar expansion
Motivated by applications to Bayesian inference for statistical models with orthogonal matrix parameters, we present $\textit{polar expansion},$ a general approach to Monte Carlo simulation from probability distributions on the Stiefel manifold. To bypass many of the well-established challenges of simulating from the distribution of a random orthogonal matrix $\boldsymbol{Q},$ we construct a distribution for an unconstrained random matrix $\boldsymbol{X}$ such that $\boldsymbol{Q}_X,$ the orthogonal component of the polar decomposition of $\boldsymbol{X},$ is equal in distribution to $\boldsymbol{Q}.$ The distribution of $\boldsymbol{X}$ is amenable to Markov chain Monte Carlo (MCMC) simulation using standard methods, and an approximation to the distribution of $\boldsymbol{Q}$ can be recovered from a Markov chain on the unconstrained space. When combined with modern MCMC software, polar expansion allows for routine and flexible posterior inference in models with orthogonal matrix parameters. We find that polar expansion with adaptive Hamiltonian Monte Carlo is an order of magnitude more efficient than competing MCMC approaches in a benchmark protein interaction network application. We also propose a new approach to Bayesian functional principal components analysis which we illustrate in a meteorological time series application.
stat
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
stat
Intraday Retail Sales Forecast: An Efficient Algorithm for Quantile Additive Modeling
With the ever increasing prominence of data in retail operations, sales forecasting has become an essential pillar in the efficient management of inventories. When facing high demand, the use of backroom storage and intraday shelf replenishment is necessary to avoid stock-out. In that context, the mandatory input for any successful replenishment policy to be implemented is access to reliable forecasts for the sales at an intraday granularity. To that end, we use quantile regression to adapt different patterns from one product to the other, and we develop a stable and efficient quantile additive model algorithm to compute sales forecasts in an intradaily context. Our algorithm is computationally fast and is therefore suitable for use in real-time dynamic shelf replenishment. As an illustration, we examine the case of a highly frequented store, where the demand for various alimentary products is accurately estimated over the day with the help of the proposed algorithm.
stat
Anchor regression: heterogeneous data meets causality
We consider the problem of predicting a response variable from a set of covariates on a data set that differs in distribution from the training data. Causal parameters are optimal in terms of predictive accuracy if in the new distribution either many variables are affected by interventions or only some variables are affected, but the perturbations are strong. If the training and test distributions differ by a shift, causal parameters might be too conservative to perform well on the above task. This motivates anchor regression, a method that makes use of exogeneous variables to solve a relaxation of the causal minimax problem by considering a modification of the least-squares loss. The procedure naturally provides an interpolation between the solutions of ordinary least squares and two-stage least squares. We prove that the estimator satisfies predictive guarantees in terms of distributional robustness against shifts in a linear class; these guarantees are valid even if the instrumental variables assumptions are violated. If anchor regression and least squares provide the same answer (anchor stability), we establish that OLS parameters are invariant under certain distributional changes. Anchor regression is shown empirically to improve replicability and protect against distributional shifts.
stat
Clarifying causal mediation analysis for the applied researcher: Defining effects based on what we want to learn
The incorporation of causal inference in mediation analysis has led to theoretical and methodological advancements -- effect definitions with causal interpretation, clarification of assumptions required for effect identification, and an expanding array of options for effect estimation. However, the literature on these results is fast-growing and complex, which may be confusing to researchers unfamiliar with causal inference or unfamiliar with mediation. The goal of this paper is to help ease the understanding and adoption of causal mediation analysis. It starts by highlighting a key difference between the causal inference and traditional approaches to mediation analysis and making a case for the need for explicit causal thinking and the causal inference approach in mediation analysis. It then explains in as-plain-as-possible language existing effect types, paying special attention to motivating these effects with different types of research questions, and using concrete examples for illustration. This presentation differentiates two perspectives (or purposes of analysis): the explanatory perspective (aiming to explain the total effect) and the interventional perspective (asking questions about hypothetical interventions on the exposure and mediator, or hypothetically modified exposures). For the latter perspective, the paper proposes tapping into a general class of interventional effects that contains as special cases most of the usual effect types -- interventional direct and indirect effects, controlled direct effects and also a generalized interventional direct effect type, as well as the total effect and overall effect. This general class allows flexible effect definitions which better match many research questions than the standard interventional direct and indirect effects.
stat
Conditional Path Analysis in Singly-Connected Path Diagrams
We extend the classical path analysis by showing that, for a singly-connected path diagram, the partial covariance of two random variables factorizes over the nodes and edges in the path between the variables. This result allows us to show that Simpson's paradox cannot occur in singly-connected path diagrams.
stat
Receiver operating characteristic (ROC) movies, universal ROC (UROC) curves, and coefficient of predictive ability (CPA)
Throughout science and technology, receiver operating characteristic (ROC) curves and associated area under the curve (AUC) measures constitute powerful tools for assessing the predictive abilities of features, markers and tests in binary classification problems. Despite its immense popularity, ROC analysis has been subject to a fundamental restriction, in that it applies to dichotomous (yes or no) outcomes only. Here we introduce ROC movies and universal ROC (UROC) curves that apply to just any ordinal or real-valued outcome, along with a new, asymmetric coefficient of predictive ability (CPA) measure. CPA equals the area under the UROC curve, and admits appealing interpretations in terms of probabilities and rank based covariances. For binary outcomes CPA equals AUC, and for pairwise distinct outcomes CPA relates linearly to Spearman's rank correlation coefficient. ROC movies, UROC curves, and CPA nest and generalize the tools of classical ROC analysis, and are bound to supersede them in a wealth of applications. Their usage is illustrated in data examples from biomedicine and meteorology, where CPA yields new insights in the WeatherBench comparison of the predictive performance of convolutional neural networks and physical-numerical models for weather prediction.
stat
Learning deep kernels for exponential family densities
The kernel exponential family is a rich class of distributions, which can be fit efficiently and with statistical guarantees by score matching. Being required to choose a priori a simple kernel such as the Gaussian, however, limits its practical applicability. We provide a scheme for learning a kernel parameterized by a deep network, which can find complex location-dependent local features of the data geometry. This gives a very rich class of density models, capable of fitting complex structures on moderate-dimensional problems. Compared to deep density models fit via maximum likelihood, our approach provides a complementary set of strengths and tradeoffs: in empirical studies, the former can yield higher likelihoods, whereas the latter gives better estimates of the gradient of the log density, the score, which describes the distribution's shape.
stat
Taylor Moment Expansion for Continuous-Discrete Gaussian Filtering and Smoothing
The paper is concerned with non-linear Gaussian filtering and smoothing in continuous-discrete state-space models, where the dynamic model is formulated as an It\^{o} stochastic differential equation (SDE), and the measurements are obtained at discrete time instants. We propose novel Taylor moment expansion (TME) Gaussian filter and smoother which approximate the moments of the SDE with a temporal Taylor expansion. Differently from classical linearisation or It\^{o}--Taylor approaches, the Taylor expansion is formed for the moment functions directly and in time variable, not by using a Taylor expansion on the non-linear functions in the model. We analyse the theoretical properties, including the positive definiteness of the covariance estimate and stability of the TME Gaussian filter and smoother. By numerical experiments, we demonstrate that the proposed TME Gaussian filter and smoother significantly outperform the state-of-the-art methods in terms of estimation accuracy and numerical stability.
stat
Compressive Sensing Using Iterative Hard Thresholding with Low Precision Data Representation: Theory and Applications
Modern scientific instruments produce vast amounts of data, which can overwhelm the processing ability of computer systems. Lossy compression of data is an intriguing solution, but comes with its own drawbacks, such as potential signal loss, and the need for careful optimization of the compression ratio. In this work, we focus on a setting where this problem is especially acute: compressive sensing frameworks for interferometry and medical imaging. We ask the following question: can the precision of the data representation be lowered for all inputs, with recovery guarantees and practical performance? Our first contribution is a theoretical analysis of the normalized Iterative Hard Thresholding (IHT) algorithm when all input data, meaning both the measurement matrix and the observation vector are quantized aggressively. We present a variant of low precision normalized {IHT} that, under mild conditions, can still provide recovery guarantees. The second contribution is the application of our quantization framework to radio astronomy and magnetic resonance imaging. We show that lowering the precision of the data can significantly accelerate image recovery. We evaluate our approach on telescope data and samples of brain images using CPU and FPGA implementations achieving up to a 9x speed-up with negligible loss of recovery quality.
stat
Advances in Statistical Modeling of Spatial Extremes
The classical modeling of spatial extremes relies on asymptotic models (i.e., max-stable processes or $r$-Pareto processes) for block maxima or peaks over high thresholds, respectively. However, at finite levels, empirical evidence often suggests that such asymptotic models are too rigidly constrained, and that they do not adequately capture the frequent situation where more severe events tend to be spatially more localized. In other words, these asymptotic models have a strong tail dependence that persists at increasingly high levels, while data usually suggest that it should weaken instead. Another well-known limitation of classical spatial extremes models is that they are either computationally prohibitive to fit in high dimensions, or they need to be fitted using less efficient techniques. In this review paper, we describe recent progress in the modeling and inference for spatial extremes, focusing on new models that have more flexible tail structures that can bridge asymptotic dependence classes, and that are more easily amenable to likelihood-based inference for large datasets. In particular, we discuss various types of random scale constructions, as well as the conditional spatial extremes model, which have recently been getting increasing attention within the statistics of extremes community. We illustrate some of these new spatial models on two different environmental applications.
stat
More Data Can Hurt for Linear Regression: Sample-wise Double Descent
In this expository note we describe a surprising phenomenon in overparameterized linear regression, where the dimension exceeds the number of samples: there is a regime where the test risk of the estimator found by gradient descent increases with additional samples. In other words, more data actually hurts the estimator. This behavior is implicit in a recent line of theoretical works analyzing "double-descent" phenomenon in linear models. In this note, we isolate and understand this behavior in an extremely simple setting: linear regression with isotropic Gaussian covariates. In particular, this occurs due to an unconventional type of bias-variance tradeoff in the overparameterized regime: the bias decreases with more samples, but variance increases.
stat
Bayesian semiparametric modelling of phase-varying point processes
We propose a Bayesian semiparametric approach for registration of multiple point processes. Our approach entails modelling the mean measures of the phase-varying point processes with a Bernstein-Dirichlet prior, which induces a prior on the space of all warp functions. Theoretical results on the support of the induced priors are derived, and posterior consistency is obtained under mild conditions. Numerical experiments suggest a good performance of the proposed methods, and a climatology real-data example is used to showcase how the method can be employed in practice.
stat
Bayesian Experimental Design for Finding Reliable Level Set under Input Uncertainty
In the manufacturing industry, it is often necessary to repeat expensive operational testing of machine in order to identify the range of input conditions under which the machine operates properly. Since it is often difficult to accurately control the input conditions during the actual usage of the machine, there is a need to guarantee the performance of the machine after properly incorporating the possible variation in input conditions. In this paper, we formulate this practical manufacturing scenario as an Input Uncertain Reliable Level Set Estimation (IU-rLSE) problem, and provide an efficient algorithm for solving it. The goal of IU-rLSE is to identify the input range in which the outputs smaller/greater than a desired threshold can be obtained with high probability when the input uncertainty is properly taken into consideration. We propose an active learning method to solve the IU-rLSE problem efficiently, theoretically analyze its accuracy and convergence, and illustrate its empirical performance through numerical experiments on artificial and real data.
stat
A Case Study of Promoting Informal Inferential Reasoning in Learning Sampling Distribution for High School Students
Drawing inference from data is an important skill for students to understand their everyday life, so that the sampling distribution as a central topic in statistical inference is necessary to be learned by the students. However, little is known about how to teach the topic for high school students, especially in Indonesian context. Therefore, the present study provides a teaching experiment to support the students' informal inferential reasoning in understanding the sampling distribution, as well as the students' perceptions toward the teaching experiment. The subjects in the present study were three 11th-grader of one private school in Yogyakarta majoring in mathematics and natural science. The method of data collection was direct observation of sampling distribution learning process, interviews, and documentation. The present study found that that informal inferential reasoning with problem-based learning using contextual problems and real data could support the students to understand the sampling distribution, and they also gave positive responses about their learning experience.
stat
Boosting Local Causal Discovery in High-Dimensional Expression Data
We study the performance of Local Causal Discovery (LCD), a simple and efficient constraint-based method for causal discovery, in predicting causal effects in large-scale gene expression data. We construct practical estimators specific to the high-dimensional regime. Inspired by the ICP algorithm, we use an optional preselection method and two different statistical tests. Empirically, the resulting LCD estimator is seen to closely approach the accuracy of ICP, the state-of-the-art method, while it is algorithmically simpler and computationally more efficient.
stat
The R Package stagedtrees for Structural Learning of Stratified Staged Trees
stagedtrees is an R package which includes several algorithms for learning the structure of staged trees and chain event graphs from data. Score-based and clustering-based algorithms are implemented, as well as various functionalities to plot the models and perform inference. The capabilities of stagedtrees are illustrated using mainly two datasets both included in the package or bundled in R.
stat
Docs are ROCs: A simple off-the-shelf approach for estimating average human performance in diagnostic studies
Estimating average human performance has been performed inconsistently in research in diagnostic medicine. This has been particularly apparent in the field of medical artificial intelligence, where humans are often compared against AI models in multi-reader multi-case studies, and commonly reported metrics such as the pooled or average human sensitivity and specificity will systematically underestimate the performance of human experts. We present the use of summary receiver operating characteristic curve analysis, a technique commonly used in the meta-analysis of diagnostic test accuracy studies, as a sensible and methodologically robust alternative. We describe the motivation for using these methods and present results where we apply these meta-analytic techniques to a handful of prominent medical AI studies.
stat
Effect heterogeneity and variable selection for standardizing causal effects to a target population
The participants in randomized trials and other studies used for causal inference are often not representative of the populations seen by clinical decision-makers. To account for differences between populations, researchers may consider standardizing results to a target population. We discuss several different types of homogeneity conditions that are relevant for standardization: Homogeneity of effect measures, homogeneity of counterfactual outcome state transition parameters, and homogeneity of counterfactual distributions. Each of these conditions can be used to show that a particular standardization procedure will result in unbiased estimates of the effect in the target population, given assumptions about the relevant scientific context. We compare and contrast the homogeneity conditions, in particular their implications for selection of covariates for standardization and their implications for how to compute the standardized causal effect in the target population. While some of the recently developed counterfactual approaches to generalizability rely upon homogeneity conditions that avoid many of the problems associated with traditional approaches, they often require adjustment for a large (and possibly unfeasible) set of covariates.
stat
Tables of Quantiles of the Distribution of the Empirical Chiral Index in the Case of the Uniform Law and in the Case of the Normal Law
The empirical distribution of the chiral index is simulated for various sample sizes for the uniform law and and for the normal law. The estimated quantiles $K_{0.90}$, $K_{0.95}$, $K_{0.98}$, and $K_{0.99}$, are tabulated for use in symmetry testing in the uniform case and in the normal case.
stat
Assessing Bayes factor surfaces using interactive visualization and computer surrogate modeling
Bayesian model selection provides a natural alternative to classical hypothesis testing based on p-values. While many papers mention that Bayesian model selection is frequently sensitive to prior specification on the parameters, there are few practical strategies to assess and report this sensitivity. This article has two goals. First, we aim educate the broader statistical community about the extent of potential sensitivity through visualization of the Bayes factor surface. The Bayes factor surface shows the value a Bayes factor takes (usually on the log scale) as a function of user-specified hyperparameters. We provide interactive visualization through an R shiny application that allows the user to explore sensitivity in Bayes factor over a range of hyperparameter settings in a familiar regression setting. We compare the surface with three automatic procedures. Second, we suggest surrogate modeling via Gaussian processes (GPs) to visualize the Bayes factor surface in situations where computation of Bayes factors is expensive. That is, we treat Bayes factor calculation as a computer simulation experiment. In this context, we provide a fully reproducible example using accessible GP libraries to augment an important study of the influence of outliers in empirical finance. We suggest Bayes factor surfaces are valuable for scientific reporting since they (i) increase transparency, making potential instability in Bayes factors easy to visualize, (ii) generalize to simple and more complicated examples, and (iii) provide a path for researchers to assess the impact of prior choice on modeling decisions in a wide variety research areas.
stat
The global optimum of shallow neural network is attained by ridgelet transform
We prove that the global minimum of the backpropagation (BP) training problem of neural networks with an arbitrary nonlinear activation is given by the ridgelet transform. A series of computational experiments show that there exists an interesting similarity between the scatter plot of hidden parameters in a shallow neural network after the BP training and the spectrum of the ridgelet transform. By introducing a continuous model of neural networks, we reduce the training problem to a convex optimization in an infinite dimensional Hilbert space, and obtain the explicit expression of the global optimizer via the ridgelet transform.
stat
Bayesian waveform-based calibration of high-pressure acoustic emission systems with ball drop measurements
Acoustic emission (AE) is a widely used technology to study source mechanisms and material properties during high-pressure rock failure experiments. It is important to understand the physical quantities that acoustic emission sensors measure, as well as the response of these sensors as a function of frequency. This study calibrates the newly built AE system in the MIT Rock Physics Laboratory using a ball-bouncing system. Full waveforms of multi-bounce events due to ball drops are used to infer the transfer function of lead zirconate titanate (PZT) sensors in high pressure environments. Uncertainty in the sensor transfer functions is quantified using a waveform-based Bayesian approach. The quantification of \textit{in situ} sensor transfer functions makes it possible to apply full waveform analysis for acoustic emissions at high pressures.
stat
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
We make inroads into understanding the robustness of Variational Autoencoders (VAEs) to adversarial attacks and other input perturbations. While previous work has developed algorithmic approaches to attacking and defending VAEs, there remains a lack of formalization for what it means for a VAE to be robust. To address this, we develop a novel criterion for robustness in probabilistic models: $r$-robustness. We then use this to construct the first theoretical results for the robustness of VAEs, deriving margins in the input space for which we can provide guarantees about the resulting reconstruction. Informally, we are able to define a region within which any perturbation will produce a reconstruction that is similar to the original reconstruction. To support our analysis, we show that VAEs trained using disentangling methods not only score well under our robustness metrics, but that the reasons for this can be interpreted through our theoretical results.
stat