title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
The posterior probability of a null hypothesis given a statistically significant result
When researchers carry out a null hypothesis significance test, it is tempting to assume that a statistically significant result lowers Prob(H0), the probability of the null hypothesis being true. Technically, such a statement is meaningless for various reasons: e.g., the null hypothesis does not have a probability associated with it. However, it is possible to relax certain assumptions to compute the posterior probability Prob(H0) under repeated sampling. We show in a step-by-step guide that the intuitively appealing belief, that Prob(H0) is low when significant results have been obtained under repeated sampling, is in general incorrect and depends greatly on: (a) the prior probability of the null being true; (b) Type I error, and (c) Type II error. Through step-by-step simulations using open-source code in the R System of Statistical Computing, we show that uncertainty about the null hypothesis being true often remains high despite a significant result. To help the reader develop intuitions about this common misconception, we provide a Shiny app (https://danielschad.shinyapps.io/probnull/). We expect that this tutorial will be widely useful for students and researchers in many fields of psychological science and beyond, and will help researchers better understand and judge results from null hypothesis significance tests.
stat
Fully Bayesian Estimation under Dependent and Informative Cluster Sampling
Survey data are often collected under multistage sampling designs where units are binned to clusters that are sampled in a first stage. The unit-indexed population variables of interest are typically dependent within cluster. We propose a Fully Bayesian method that constructs an exact likelihood for the observed sample to incorporate unit-level marginal sampling weights for performing unbiased inference for population parameters while simultaneously accounting for the dependence induced by sampling clusters of units to produce correct uncertainty quantification. Our approach parameterizes cluster-indexed random effects in both a marginal model for the response and a conditional model for published, unit-level sampling weights. We compare our method to plug-in Bayesian and frequentist alternatives in a simulation study and demonstrate that our method most closely achieves correct uncertainty quantification for model parameters, including the generating variances for cluster-indexed random effects. We demonstrate our method in two applications with NHANES data.
stat
cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R
'Optimal cutpoints' for binary classification tasks are often established by testing which cutpoint yields the best discrimination, for example the Youden index, in a specific sample. This results in 'optimal' cutpoints that are highly variable and systematically overestimate the out-of-sample performance. To address these concerns, the cutpointr package offers robust methods for estimating optimal cutpoints and the out-of-sample performance. The robust methods include bootstrapping and smoothing based on kernel estimation, generalized additive models, smoothing splines, and local regression. These methods can be applied to a wide range of binary-classification and cost-based metrics. cutpointr also provides mechanisms to utilize user-defined metrics and estimation methods. The package has capabilities for parallelization of the bootstrapping, including reproducible random number generation. Furthermore, it is pipe-friendly, for example for compatibility with functions from tidyverse. Various functions for plotting receiver operating characteristic curves, precision recall graphs, bootstrap results and other representations of the data are included. The package contains example data from a study on psychological characteristics and suicide attempts suitable for applying binary classification algorithms.
stat
Area-level spatio-temporal Poisson mixed models for predicting domain counts and proportions
This paper introduces area-level Poisson mixed models with temporal and SAR(1) spatially correlated random effects. Small area predictors of the proportions and counts of a dichotomic variable are derived from the new models and the corresponding mean squared errors are estimated by parametric bootstrap. The paper illustrates the introduced methodology with two applications to real data. The first one deals with data of forest fires in Galicia (Spain) during 2007-2008 and the target is modeling and predicting counts of fires. The second one treats data from the Spanish living conditions survey of Galicia of 2013 and the target is the estimation of county proportions of women under the poverty line.
stat
Cross-population coupling of neural activity based on Gaussian process current source densities
Because LFPs arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of areas V1 and LM based on the CSDs.
stat
Optimal block designs for experiments on networks
We propose a method for constructing optimal block designs for experiments on networks. The response model for a given network interference structure extends the linear network effects model to incorporate blocks. The optimality criteria are chosen to reflect the experimental objectives and an exchange algorithm is used to search across the design space for obtaining an efficient design when an exhaustive search is not possible. Our interest lies in estimating the direct comparisons among treatments, in the presence of nuisance network effects that stem from the underlying network interference structure governing the experimental units, or in the network effects themselves. Comparisons of optimal designs under different models, including the standard treatment models, are examined by comparing the variance and bias of treatment effect estimators. We also suggest a way of defining blocks, while taking into account the interrelations of groups of experimental units within a network, using spectral clustering techniques to achieve optimal modularity. We expect connected units within closed-form communities to behave similarly to an external stimulus. We provide evidence that our approach can lead to efficiency gains over conventional designs such as randomized designs that ignore the network structure and we illustrate its usefulness for experiments on networks.
stat
The Importance of Being Correlated: Implications of Dependence in Joint Spectral Inference across Multiple Networks
Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent network realizations can deliver more accurate estimation than individual spectral decompositions of those same networks. Little attention has been paid, however, to the network correlation that such joint embedding procedures necessarily induce. In this paper, we present a detailed analysis of induced correlation in a {\em generalized omnibus} embedding for multiple networks. We show that our embedding procedure is flexible and robust, and, moreover, we prove a central limit theorem for this embedding and explicitly compute the limiting covariance. We examine how this covariance can impact inference in a network time series, and we construct an appropriately calibrated omnibus embedding that can detect changes in real biological networks that previous embedding procedures could not discern. Our analysis confirms that the effect of induced correlation can be both subtle and transformative, with import in theory and practice.
stat
Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds
Most e-commerce product feeds provide blended results of advertised products and recommended products to consumers. The underlying advertising and recommendation platforms share similar if not exactly the same set of candidate products. Consumers' behaviors on the advertised results constitute part of the recommendation model's training data and therefore can influence the recommended results. We refer to this process as Leverage. Considering this mechanism, we propose a novel perspective that advertisers can strategically bid through the advertising platform to optimize their recommended organic traffic. By analyzing the real-world data, we first explain the principles of Leverage mechanism, i.e., the dynamic models of Leverage. Then we introduce a novel Leverage optimization problem and formulate it with a Markov Decision Process. To deal with the sample complexity challenge in model-free reinforcement learning, we propose a novel Hybrid Training Leverage Bidding (HTLB) algorithm which combines the real-world samples and the emulator-generated samples to boost the learning speed and stability. Our offline experiments as well as the results from the online deployment demonstrate the superior performance of our approach.
stat
Estimating the parameters of ocean wave spectra
Wind-generated waves are often treated as stochastic processes. There is particular interest in their spectral density functions, which are often expressed in some parametric form. Such spectral density functions are used as inputs when modelling structural response or other engineering concerns. Therefore, accurate and precise recovery of the parameters of such a form, from observed wave records, is important. Current techniques are known to struggle with recovering certain parameters, especially the peak enhancement factor and spectral tail decay. We introduce an approach from the statistical literature, known as the de-biased Whittle likelihood, and address some practical concerns regarding its implementation in the context of wind-generated waves. We demonstrate, through numerical simulation, that the de-biased Whittle likelihood outperforms current techniques, such as least squares fitting, both in terms of accuracy and precision of the recovered parameters. We also provide a method for estimating the uncertainty of parameter estimates. We perform an example analysis on a data-set recorded off the coast of New Zealand, to illustrate some of the extra practical concerns that arise when estimating the parameters of spectra from observed data.
stat
A Robust Consistent Information Criterion for Model Selection based on Empirical Likelihood
Conventional likelihood-based information criteria for model selection rely on the distribution assumption of data. However, for complex data that are increasingly available in many scientific fields, the specification of their underlying distribution turns out to be challenging, and the existing criteria may be limited and are not general enough to handle a variety of model selection problems. Here, we propose a robust and consistent model selection criterion based upon the empirical likelihood function which is data-driven. In particular, this framework adopts plug-in estimators that can be achieved by solving external estimating equations, not limited to the empirical likelihood, which avoids potential computational convergence issues and allows versatile applications, such as generalized linear models, generalized estimating equations, penalized regressions and so on. The formulation of our proposed criterion is initially derived from the asymptotic expansion of the marginal likelihood under variable selection framework, but more importantly, the consistent model selection property is established under a general context. Extensive simulation studies confirm the out-performance of the proposal compared to traditional model selection criteria. Finally, an application to the Atherosclerosis Risk in Communities Study illustrates the practical value of this proposed framework.
stat
Simultaneous Non-Gaussian Component Analysis (SING) for Data Integration in Neuroimaging
As advances in technology allow the acquisition of complementary information, it is increasingly common for scientific studies to collect multiple datasets. Large-scale neuroimaging studies often include multiple modalities (e.g., task functional MRI, resting-state fMRI, diffusion MRI, and/or structural MRI), with the aim to understand the relationships between datasets. In this study, we seek to understand whether regions of the brain activated in a working memory task relate to resting-state correlations. In neuroimaging, a popular approach uses principal component analysis for dimension reduction prior to canonical correlation analysis with joint independent component analysis, but this may discard biological features with low variance and/or spuriously associate structure unique to a dataset with joint structure. We introduce Simultaneous Non-Gaussian component analysis (SING) in which dimension reduction and feature extraction are achieved simultaneously, and shared information is captured via subject scores. We apply our method to a working memory task and resting-state correlations from the Human Connectome Project. We find joint structure as evident from joint scores whose loadings highlight resting-state correlations involving regions associated with working memory. Moreover, some of the subject scores are related to fluid intelligence.
stat
Spatial Bayesian Hierarchical Modelling with Integrated Nested Laplace Approximation
We consider latent Gaussian fields for modelling spatial dependence in the context of both spatial point patterns and areal data, providing two different applications. The inhomogeneous Log-Gaussian Cox Process model is specified to describe a seismic sequence occurred in Greece, resorting to the Stochastic Partial Differential Equations. The Besag-York-Mollie model is fitted for disease mapping of the Covid-19 infection in the North of Italy. These models both belong to the class of Bayesian hierarchical models with latent Gaussian fields whose posterior is not available in closed form. Therefore, the inference is performed with the Integrated Nested Laplace Approximation, which provides accurate and relatively fast analytical approximations to the posterior quantities of interest.
stat
Bayesian forecasting of multivariate time series: Scalability, structure uncertainty and decisions
I overview recent research advances in Bayesian state-space modeling of multivariate time series. A main focus is on the decouple/recouple concept that enables application of state-space models to increasingly large-scale data, applying to continuous or discrete time series outcomes. The scope includes large-scale dynamic graphical models for forecasting and multivariate volatility analysis in areas such as economics and finance, multi-scale approaches for forecasting discrete/count time series in areas such as commercial sales and demand forecasting, and dynamic network flow models for areas including internet traffic monitoring. In applications, explicit forecasting, monitoring and decision goals are paramount and should factor into model assessment and comparison, a perspective that is highlighted.
stat
Scalable Feature Matching Across Large Data Collections
This paper is concerned with matching feature vectors in a one-to-one fashion across large collections of datasets. Formulating this task as a multidimensional assignment problem with decomposable costs (MDADC), we develop extremely fast algorithms with time complexity linear in the number $n$ of datasets and space complexity a small fraction of the data size. These remarkable properties hinge on using the squared Euclidean distance as dissimilarity function, which can reduce ${n \choose 2}$ matching problems between pairs of datasets to $n$ problems and enable calculating assignment costs on the fly. To our knowledge, no other method applicable to the MDADC possesses these linear scaling and low-storage properties necessary to large-scale applications. In numerical experiments, the novel algorithms outperform competing methods and show excellent computational and optimization performances. An application of feature matching to a large neuroimaging database is presented. The algorithms of this paper are implemented in the R package matchFeat available at https://github.com/ddegras/matchFeat.
stat
Bounds on Bayes Factors for Binomial A/B Testing
Bayes factors, in many cases, have been proven to bridge the classic -value based significance testing and bayesian analysis of posterior odds. This paper discusses this phenomena within the binomial A/B testing setup (applicable for example to conversion testing). It is shown that the bayes factor is controlled by the \emph{Jensen-Shannon divergence} of success ratios in two tested groups, which can be further bounded by the Welch statistic. As a result, bayesian sample bounds almost match frequentionist's sample bounds. The link between Jensen-Shannon divergence and Welch's test as well as the derivation are an elegant application of tools from information geometry.
stat
A Higher-Order Kolmogorov-Smirnov Test
We present an extension of the Kolmogorov-Smirnov (KS) two-sample test, which can be more sensitive to differences in the tails. Our test statistic is an integral probability metric (IPM) defined over a higher-order total variation ball, recovering the original KS test as its simplest case. We give an exact representer result for our IPM, which generalizes the fact that the original KS test statistic can be expressed in equivalent variational and CDF forms. For small enough orders ($k \leq 5$), we develop a linear-time algorithm for computing our higher-order KS test statistic; for all others ($k \geq 6$), we give a nearly linear-time approximation. We derive the asymptotic null distribution for our test, and show that our nearly linear-time approximation shares the same asymptotic null. Lastly, we complement our theory with numerical studies.
stat
Towards Robust Classification with Deep Generative Forests
Decision Trees and Random Forests are among the most widely used machine learning models, and often achieve state-of-the-art performance in tabular, domain-agnostic datasets. Nonetheless, being primarily discriminative models they lack principled methods to manipulate the uncertainty of predictions. In this paper, we exploit Generative Forests (GeFs), a recent class of deep probabilistic models that addresses these issues by extending Random Forests to generative models representing the full joint distribution over the feature space. We demonstrate that GeFs are uncertainty-aware classifiers, capable of measuring the robustness of each prediction as well as detecting out-of-distribution samples.
stat
Finding archetypal patterns for binary questionnaires
Archetypal analysis is an exploratory tool that explains a set of observations as mixtures of pure (extreme) patterns. If the patterns are actual observations of the sample, we refer to them as archetypoids. For the first time, we propose to use archetypoid analysis for binary observations. This tool can contribute to the understanding of a binary data set, as in the multivariate case. We illustrate the advantages of the proposed methodology in a simulation study and two applications, one exploring objects (rows) and the other exploring items (columns). One is related to determining student skill set profiles and the other to describing item response functions.
stat
MAP Clustering under the Gaussian Mixture Model via Mixed Integer Nonlinear Optimization
We present a global optimization approach for solving the maximum a-posteriori (MAP) clustering problem under the Gaussian mixture model.Our approach can accommodate side constraints and it preserves the combinatorial structure of the MAP clustering problem by formulating it asa mixed-integer nonlinear optimization problem (MINLP). We approximate the MINLP through a mixed-integer quadratic program (MIQP) transformation that improves computational aspects while guaranteeing $\epsilon$-global optimality. An important benefit of our approach is the explicit quantification of the degree of suboptimality, via the optimality gap, en route to finding the globally optimal MAP clustering. Numerical experiments comparing our method to other approaches show that our method finds a better solution than standard clustering methods. Finally, we cluster a real breast cancer gene expression data set incorporating intrinsic subtype information; the induced constraints substantially improve the computational performance and produce more coherent and bio-logically meaningful clusters.
stat
Clustering and Prediction with Variable Dimension Covariates
In many applied fields incomplete covariate vectors are commonly encountered. It is well known that this can be problematic when making inference on model parameters, but its impact on prediction performance is less understood. We develop a method based on covariate dependent partition models that seamlessly handles missing covariates while completely avoiding any type of imputation. The method we develop allows in-sample predictions as well as out-of-sample prediction, even if the missing pattern in the new subjects' incomplete covariate vector was not seen in the training data. Any data type, including categorical or continuous covariates are permitted. In simulation studies the proposed method compares favorably. We illustrate the method in two application examples.
stat
Network-based models for social recommender systems
With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modeling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets.
stat
Toward Universal Testing of Dynamic Network Models
Numerous networks in the real world change over time, in the sense that nodes and edges enter and leave the networks. Various dynamic random graph models have been proposed to explain the macroscopic properties of these systems and to provide a foundation for statistical inferences and predictions. It is of interest to have a rigorous way to determine how well these models match observed networks. We thus ask the following goodness of fit question: given a sequence of observations/snapshots of a growing random graph, along with a candidate model M, can we determine whether the snapshots came from M or from some arbitrary alternative model that is well-separated from M in some natural metric? We formulate this problem precisely and boil it down to goodness of fit testing for graph-valued, infinite-state Markov processes and exhibit and analyze a universal test based on non-stationary sampling for a natural class of models.
stat
Inference After Selecting Plausibly Valid Instruments with Application to Mendelian Randomization
Mendelian randomization (MR) is a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome by using genetic instruments. These instruments are often selected from a combination of prior knowledge from genome wide association studies (GWAS) and data-driven instrument selection procedures or tests. Unfortunately, when testing for the exposure effect, the instrument selection process done a priori is not accounted for. This paper studies and highlights the bias resulting from not accounting for the instrument selection process by focusing on a recent data-driven instrument selection procedure, sisVIVE, as an example. We introduce a conditional inference approach that conditions on the instrument selection done a priori and leverage recent advances in selective inference to derive conditional null distributions of popular test statistics for the exposure effect in MR. The null distributions can be characterized with individual-level or summary-level data in MR. We show that our conditional confidence intervals derived from conditional null distributions attain the desired nominal level while typical confidence intervals computed in MR do not. We conclude by reanalyzing the effect of BMI on diastolic blood pressure using summary-level data from the UKBiobank that accounts for instrument selection.
stat
Using Multiple Pre-treatment Periods to Improve Difference-in-Differences and Staggered Adoption Design
While difference-in-differences (DID) was originally developed with one pre- and one post-treatment periods, data from additional pre-treatment periods is often available. How can researchers improve the DID design with such multiple pre-treatment periods under what conditions? We first use potential outcomes to clarify three benefits of multiple pre-treatment periods: (1) assessing the parallel trends assumption, (2) improving estimation accuracy, and (3) allowing for a more flexible parallel trends assumption. We then propose a new estimator, double DID, which combines all the benefits through the generalized method of moments and contains the two-way fixed effects regression as a special case. In a wide range of applications where several pre-treatment periods are available, the double DID improves upon the standard DID both in terms of identification and estimation accuracy. We also generalize the double DID to the staggered adoption design where different units can receive the treatment in different time periods. We illustrate the proposed method with two empirical applications, covering both the basic DID and staggered adoption designs. We offer an open-source R package that implements the proposed methodologies.
stat
Feature Selection for multi-labeled variables via Dependency Maximization
Feature selection and reducing the dimensionality of data is an essential step in data analysis. In this work, we propose a new criterion for feature selection that is formulated as conditional information between features given the labeled variable. Instead of using the standard mutual information measure based on Kullback-Leibler divergence, we use our proposed criterion to filter out redundant features for the purpose of multiclass classification. This approach results in an efficient and fast non-parametric implementation of feature selection as it can be directly estimated using a geometric measure of dependency, the global Friedman-Rafsky (FR) multivariate run test statistic constructed by a global minimal spanning tree (MST). We demonstrate the advantages of our proposed feature selection approach through simulation. In addition the proposed feature selection method is applied to the MNIST data set.
stat
Clustering and Trend Analysis of Global Extreme Droughts from 1900 to 2014
Drought is one of the most devastating environmental disasters. Analyzing historical changes in climate extremes is critical for mitigating its adverse impacts in the future. In the present study, the spatial and temporal characteristics of the global severe droughts using Palmer Drought Intensity Index (PDSI) from 1900 to 2014 are explored. K-means clustering is implemented to partition the extreme negative PDSI values. The global extreme droughts magnitude around the world from 1950 to 1980 were less intense compared to the other decades. In 2012, the largest areas around the world, especially Canada, experienced their most severe historical droughts. Results show that the most recent extreme droughts occurred in some regions such as the North of Canada, central regions of the US, Southwest of Europe and Southeast Asia. We found that after 1980, the spatial extent of the regions that experienced extreme drought have increased substantially.
stat
Multitask learning and benchmarking with clinical time series data
Health care is one of the most exciting frontiers in data mining and machine learning. Successful adoption of electronic health records (EHRs) created an explosion in digital clinical data available for analysis, but progress in machine learning for healthcare research has been difficult to measure because of the absence of publicly available benchmark data sets. To address this problem, we propose four clinical prediction benchmarks using data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database. These tasks cover a range of clinical problems including modeling risk of mortality, forecasting length of stay, detecting physiologic decline, and phenotype classification. We propose strong linear and neural baselines for all four tasks and evaluate the effect of deep supervision, multitask training and data-specific architectural modifications on the performance of neural models.
stat
Measuring Sample Quality with Stein's Method
To improve the efficiency of Monte Carlo estimation, practitioners are turning to biased Markov chain Monte Carlo procedures that trade off asymptotic exactness for computational speed. The reasoning is sound: a reduction in variance due to more rapid sampling can outweigh the bias introduced. However, the inexactness creates new challenges for sampler and parameter selection, since standard measures of sample quality like effective sample size do not account for asymptotic bias. To address these challenges, we introduce a new computable quality measure based on Stein's method that quantifies the maximum discrepancy between sample and target expectations over a large class of test functions. We use our tool to compare exact, biased, and deterministic sample sequences and illustrate applications to hyperparameter selection, convergence rate assessment, and quantifying bias-variance tradeoffs in posterior inference.
stat
Robust Matrix Completion with Mixed Data Types
We consider the matrix completion problem of recovering a structured low rank matrix with partially observed entries with mixed data types. Vast majority of the solutions have proposed computationally feasible estimators with strong statistical guarantees for the case where the underlying distribution of data in the matrix is continuous. A few recent approaches have extended using similar ideas these estimators to the case where the underlying distributions belongs to the exponential family. Most of these approaches assume that there is only one underlying distribution and the low rank constraint is regularized by the matrix Schatten Norm. We propose a computationally feasible statistical approach with strong recovery guarantees along with an algorithmic framework suited for parallelization to recover a low rank matrix with partially observed entries for mixed data types in one step. We also provide extensive simulation evidence that corroborate our theoretical results.
stat
Meta-strategy for Learning Tuning Parameters with Guarantees
Online gradient methods, like the online gradient algorithm (OGA), often depend on tuning parameters that are difficult to set in practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn these parameters from past tasks. Our strategy is based on the minimization of a regret bound. It allows to learn the initialization and the step size in OGA with guarantees. We provide a regret analysis of the strategy in the case of convex losses. It suggests that, when there are parameters $\theta_1,\dots,\theta_T$ solving well tasks $1,\dots,T$ respectively and that are close enough one to each other, our strategy indeed improves on learning each task in isolation.
stat
Non-Negative Networks Against Adversarial Attacks
Adversarial attacks against neural networks are a problem of considerable importance, for which effective defenses are not yet readily available. We make progress toward this problem by showing that non-negative weight constraints can be used to improve resistance in specific scenarios. In particular, we show that they can provide an effective defense for binary classification problems with asymmetric cost, such as malware or spam detection. We also show the potential for non-negativity to be helpful to non-binary problems by applying it to image classification.
stat
Sylvester Normalizing Flows for Variational Inference
Variational inference relies on flexible approximate posterior distributions. Normalizing flows provide a general recipe to construct flexible variational posteriors. We introduce Sylvester normalizing flows, which can be seen as a generalization of planar flows. Sylvester normalizing flows remove the well-known single-unit bottleneck from planar flows, making a single transformation much more flexible. We compare the performance of Sylvester normalizing flows against planar flows and inverse autoregressive flows and demonstrate that they compare favorably on several datasets.
stat
Doubly Robust Inference when Combining Probability and Non-probability Samples with High-dimensional Data
Non-probability samples become increasingly popular in survey statistics but may suffer from selection biases that limit the generalizability of results to the target population. We consider integrating a non-probability sample with a probability sample which provides high-dimensional representative covariate information of the target population. We propose a two-step approach for variable selection and finite population inference. In the first step, we use penalized estimating equations with folded-concave penalties to select important variables for the sampling score of selection into the non-probability sample and the outcome model. We show that the penalized estimating equation approach enjoys the selection consistency property for general probability samples. The major technical hurdle is due to the possible dependence of the sample under the finite population framework. To overcome this challenge, we construct martingales which enable us to apply Bernstein concentration inequality for martingales. In the second step, we focus on a doubly robust estimator of the finite population mean and re-estimate the nuisance model parameters by minimizing the asymptotic squared bias of the doubly robust estimator. This estimating strategy mitigates the possible first-step selection error and renders the doubly robust estimator root-n consistent if either the sampling probability or the outcome model is correctly specified.
stat
Minimum weight norm models do not always generalize well for over-parameterized problems
This work is substituted by the paper in arXiv:2011.14066. Stochastic gradient descent is the de facto algorithm for training deep neural networks (DNNs). Despite its popularity, it still requires fine tuning in order to achieve its best performance. This has led to the development of adaptive methods, that claim automatic hyper-parameter optimization. Recently, researchers have studied both algorithmic classes via toy examples: e.g., for over-parameterized linear regression, Wilson et. al. (2017) shows that, while SGD always converges to the minimum-norm solution, adaptive methods show no such inclination, leading to worse generalization capabilities. Our aim is to study this conjecture further. We empirically show that the minimum weight norm is not necessarily the proper gauge of good generalization in simplified scenaria, and different models found by adaptive methods could outperform plain gradient methods. In practical DNN settings, we observe that adaptive methods can outperform SGD, with larger weight norm output models, but without necessarily reducing the amount of tuning required.
stat
Tensor Programs II: Neural Tangent Kernel for Any Architecture
We prove that a randomly initialized neural network of *any architecture* has its Tangent Kernel (NTK) converge to a deterministic limit, as the network widths tend to infinity. We demonstrate how to calculate this limit. In prior literature, the heuristic study of neural network gradients often assumes every weight matrix used in forward propagation is independent from its transpose used in backpropagation (Schoenholz et al. 2017). This is known as the *gradient independence assumption (GIA)*. We identify a commonly satisfied condition, which we call *Simple GIA Check*, such that the NTK limit calculation based on GIA is correct. Conversely, when Simple GIA Check fails, we show GIA can result in wrong answers. Our material here presents the NTK results of Yang (2019a) in a friendly manner and showcases the *tensor programs* technique for understanding wide neural networks. We provide reference implementations of infinite-width NTKs of recurrent neural network, transformer, and batch normalization at https://github.com/thegregyang/NTK4A.
stat
Physically-Inspired Gaussian Process Models for Post-Transcriptional Regulation in Drosophila
The regulatory process of Drosophila is thoroughly studied for understanding a great variety of biological principles. While pattern-forming gene networks are analysed in the transcription step, post-transcriptional events (e.g. translation, protein processing) play an important role in establishing protein expression patterns and levels. Since the post-transcriptional regulation of Drosophila depends on spatiotemporal interactions between mRNAs and gap proteins, proper physically-inspired stochastic models are required to study the link between both quantities. Previous research attempts have shown that using Gaussian processes (GPs) and differential equations lead to promising predictions when analysing regulatory networks. Here we aim at further investigating two types of physically-inspired GP models based on a reaction-diffusion equation where the main difference lies in where the prior is placed. While one of them has been studied previously using protein data only, the other is novel and yields a simple approach requiring only the differentiation of kernel functions. In contrast to other stochastic frameworks, discretising the spatial space is not required here. Both GP models are tested under different conditions depending on the availability of gap gene mRNA expression data. Finally, their performances are assessed on a high-resolution dataset describing the blastoderm stage of the early embryo of Drosophila melanogaster
stat
Bayesian Image Classification with Deep Convolutional Gaussian Processes
In decision-making systems, it is important to have classifiers that have calibrated uncertainties, with an optimisation objective that can be used for automated model selection and training. Gaussian processes (GPs) provide uncertainty estimates and a marginal likelihood objective, but their weak inductive biases lead to inferior accuracy. This has limited their applicability in certain tasks (e.g. image classification). We propose a translation-insensitive convolutional kernel, which relaxes the translation invariance constraint imposed by previous convolutional GPs. We show how we can use the marginal likelihood to learn the degree of insensitivity. We also reformulate GP image-to-image convolutional mappings as multi-output GPs, leading to deep convolutional GPs. We show experimentally that our new kernel improves performance in both single-layer and deep models. We also demonstrate that our fully Bayesian approach improves on dropout-based Bayesian deep learning methods in terms of uncertainty and marginal likelihood estimates.
stat
Generative Modeling with Denoising Auto-Encoders and Langevin Sampling
We study convergence of a generative modeling method that first estimates the score function of the distribution using Denoising Auto-Encoders (DAE) or Denoising Score Matching (DSM) and then employs Langevin diffusion for sampling. We show that both DAE and DSM provide estimates of the score of the Gaussian smoothed population density, allowing us to apply the machinery of Empirical Processes. We overcome the challenge of relying only on $L^2$ bounds on the score estimation error and provide finite-sample bounds in the Wasserstein distance between the law of the population distribution and the law of this sampling scheme. We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
stat
Active embedding search via noisy paired comparisons
Suppose that we wish to estimate a user's preference vector $w$ from paired comparisons of the form "does user $w$ prefer item $p$ or item $q$?," where both the user and items are embedded in a low-dimensional Euclidean space with distances that reflect user and item similarities. Such observations arise in numerous settings, including psychometrics and psychology experiments, search tasks, advertising, and recommender systems. In such tasks, queries can be extremely costly and subject to varying levels of response noise; thus, we aim to actively choose pairs that are most informative given the results of previous comparisons. We provide new theoretical insights into the benefits and challenges of greedy information maximization in this setting, and develop two novel strategies that maximize lower bounds on information gain and are simpler to analyze and compute respectively. We use simulated responses from a real-world dataset to validate our strategies through their similar performance to greedy information maximization, and their superior preference estimation over state-of-the-art selection methods as well as random queries.
stat
Bayesian Beta-Binomial Prevalence Estimation Using an Imperfect Test
Following [Diggle 2011, Greenland 1995], we give a simple formula for the Bayesian posterior density of a prevalence parameter based on unreliable testing of a population. This problem is of particular importance when the false positive test rate is close to the prevalence in the population being tested. An efficient Monte Carlo algorithm for approximating the posterior density is presented, and applied to estimating the Covid-19 infection rate in Santa Clara county, CA using the data reported in [Bendavid 2020]. We show that the true Bayesian posterior places considerably more mass near zero, resulting in a prevalence estimate of 5,000--70,000 infections (median: 42,000) (2.17% (95CI 0.27%--3.63%)), compared to the estimate of 48,000--81,000 infections derived in [Bendavid 2020] using the delta method. A demonstration, with code and additional examples, is available at testprev.com.
stat
Generalized Maximum Entropy for Supervised Classification
The maximum entropy principle advocates to evaluate events' probabilities using a distribution that maximizes entropy among those that satisfy certain expectations' constraints. Such principle can be generalized for arbitrary decision problems where it corresponds to minimax approaches. This paper establishes a framework for supervised classification based on the generalized maximum entropy principle that leads to minimax risk classifiers (MRCs). We develop learning techniques that determine MRCs for general entropy functions and provide performance guarantees by means of convex optimization. In addition, we describe the relationship of the presented techniques with existing classification methods, and quantify MRCs performance in comparison with the proposed bounds and conventional methods.
stat
Break Point Detection for Functional Covariance
Many experiments record sequential trajectories that oscillate around zero. Such trajectories can be viewed as zero-mean functional data. When there are structural breaks (on the sequence of curves) in higher order moments, it is often difficult to spot these by mere visual inspection. Thus, we propose a detection and testing procedure to find the change-points in functional covariance. The method is fully functional in the sense that no dimension reduction is needed. We establish the asymptotic properties of the estimated change-point. The effectiveness of the proposed method is numerically validated in the simulation studies and an application to study structural changes in rat brain signals in a stroke experiment.
stat
A practical test for a planted community in heterogeneous networks
One of the fundamental task in graph data mining is to find a planted community(dense subgraph), which has wide application in biology, finance, spam detection and so on. For a real network data, the existence of a dense subgraph is generally unknown. Statistical tests have been devised to testing the existence of dense subgraph in a homogeneous random graph. However, many networks present extreme heterogeneity, that is, the degrees of nodes or vertexes don't concentrate on a typical value. The existing tests designed for homogeneous random graph are not straightforwardly applicable to the heterogeneous case. Recently, scan test was proposed for detecting a dense subgraph in heterogeneous(inhomogeneous) graph(\cite{BCHV19}). However, the computational complexity of the scan test is generally not polynomial in the graph size, which makes the test impractical for large or moderate networks. In this paper, we propose a polynomial-time test that has the standard normal distribution as the null limiting distribution. The power of the test is theoretically investigated and we evaluate the performance of the test by simulation and real data example.
stat
Modeling and Forecasting Art Movements with CGANs
Conditional Generative Adversarial Networks~(CGAN) are a recent and popular method for generating samples from a probability distribution conditioned on latent information. The latent information often comes in the form of a discrete label from a small set. We propose a novel method for training CGANs which allows us to condition on a sequence of continuous latent distributions $f^{(1)}, \ldots, f^{(K)}$. This training allows CGANs to generate samples from a sequence of distributions. We apply our method to paintings from a sequence of artistic movements, where each movement is considered to be its own distribution. Exploiting the temporal aspect of the data, a vector autoregressive (VAR) model is fitted to the means of the latent distributions that we learn, and used for one-step-ahead forecasting, to predict the latent distribution of a future art movement $f^{{(K+1)}}$. Realisations from this distribution can be used by the CGAN to generate "future" paintings. In experiments, this novel methodology generates accurate predictions of the evolution of art. The training set consists of a large dataset of past paintings. While there is no agreement on exactly what current art period we find ourselves in, we test on plausible candidate sets of present art, and show that the mean distance to our predictions is small.
stat
Supervised Community Detection with Line Graph Neural Networks
Traditionally, community detection in graphs can be solved using spectral methods or posterior inference under probabilistic graphical models. Focusing on random graph families such as the stochastic block model, recent research has unified both approaches and identified both statistical and computational detection thresholds in terms of the signal-to-noise ratio. By recasting community detection as a node-wise classification problem on graphs, we can also study it from a learning perspective. We present a novel family of Graph Neural Networks (GNNs) for solving community detection problems in a supervised learning setting. We show that, in a data-driven manner and without access to the underlying generative models, they can match or even surpass the performance of the belief propagation algorithm on binary and multi-class stochastic block models, which is believed to reach the computational threshold. In particular, we propose to augment GNNs with the non-backtracking operator defined on the line graph of edge adjacencies. Our models also achieve good performance on real-world datasets. In addition, we perform the first analysis of the optimization landscape of training linear GNNs for community detection problems, demonstrating that under certain simplifications and assumptions, the loss values at local and global minima are not far apart.
stat
Model Selection of Nested and Non-Nested Item Response Models using Vuong Tests
In this paper, we apply Vuong's (1989) general approach of model selection to the comparison of nested and non-nested unidimensional and multidimensional item response theory (IRT) models. Vuong's approach of model selection is useful because it allows for formal statistical tests of both nested and non-nested models. However, only the test of non-nested models has been applied in the context of IRT models to date. After summarizing the statistical theory underlying the tests, we investigate the performance of all three distinct Vuong tests in the context of IRT models using simulation studies and real data. In the non-nested case we observed that the tests can reliably distinguish between the graded response model and the generalized partial credit model. In the nested case, we observed that the tests typically perform as well as or sometimes better than the traditional likelihood ratio test. Based on these results, we argue that Vuong's approach provides a useful set of tools for researchers and practitioners to effectively compare competing nested and non-nested IRT models.
stat
Learning RUMs: Reducing Mixture to Single Component via PCA
We consider the problem of learning a mixture of Random Utility Models (RUMs). Despite the success of RUMs in various domains and the versatility of mixture RUMs to capture the heterogeneity in preferences, there has been only limited progress in learning a mixture of RUMs from partial data such as pairwise comparisons. In contrast, there have been significant advances in terms of learning a single component RUM using pairwise comparisons. In this paper, we aim to bridge this gap between mixture learning and single component learning of RUM by developing a `reduction' procedure. We propose to utilize PCA-based spectral clustering that simultaneously `de-noises' pairwise comparison data. We prove that our algorithm manages to cluster the partial data correctly (i.e., comparisons from the same RUM component are grouped in the same cluster) with high probability even when data is generated from a possibly {\em heterogeneous} mixture of well-separated {\em generic} RUMs. Both the time and the sample complexities scale polynomially in model parameters including the number of items. Two key features in the analysis are in establishing (1) a meaningful upper bound on the sub-Gaussian norm for RUM components embedded into the vector space of pairwise marginals and (2) the robustness of PCA with missing values in the $L_{2, \infty}$ sense, which might be of interest in their own right.
stat
Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data. Following the manifold hypothesis and adopting a generative modelling approach, we construct a data-driven prior that is supported on a sub-manifold of the ambient space, which we can learn from the training data by using a variational autoencoder or a generative adversarial network. We establish the existence and well-posedness of the associated posterior distribution and posterior moments under easily verifiable conditions, providing a rigorous underpinning for Bayesian estimators and uncertainty quantification analyses. Bayesian computation is performed by using a parallel tempered version of the preconditioned Crank-Nicolson algorithm on the manifold, which is shown to be ergodic and robust to the non-convex nature of these data-driven models. In addition to point estimators and uncertainty quantification analyses, we derive a model misspecification test to automatically detect situations where the data-driven prior is unreliable, and explain how to identify the dimension of the latent space directly from the training data. The proposed approach is illustrated with a range of experiments with the MNIST dataset, where it outperforms alternative image reconstruction approaches from the state of the art. A model accuracy analysis suggests that the Bayesian probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition of probability.
stat
Robust penalized spline estimation with difference penalties
Penalized spline estimation with discrete difference penalties (P-splines) is a popular estimation method in semiparametric models, but the classical least-squares estimator is susceptible to gross errors and other model deviations. To remedy this deficiency we introduce and study a broad class of P-spline estimators based on general loss functions. Robust estimators are obtained by well-chosen loss functions, such as the Huber or Tukey loss function. A preliminary scale estimator can also be included in the loss function. We show in this paper that this class of P-spline estimators enjoys the same optimal asymptotic properties as least-squares P-splines, thereby providing strong theoretical motivation for its use. The proposed estimators may be computed very efficiently through a simple adaptation of well-established iterative least squares algorithms and exhibit excellent performance even in finite samples, as evidenced by a numerical study and a real-data example.
stat
Continuous-discrete smoothing of diffusions
Suppose X is a multivariate diffusion process that is observed discretely in time. At each observation time, a linear transformation of the state of the process is observed with noise. The smoothing problem consists of recovering the path of the process, consistent with the observations. We derive a novel Markov Chain Monte Carlo algorithm to sample from the exact smoothing distribution. The resulting algorithm is called the Backward Filtering Forward Guiding (BFFG) algorithm. We extend the algorithm to include parameter estimation. The proposed method relies on guided proposals introduced in Schauer et al. (2017). We illustrate its efficiency in a number of challenging problems.
stat
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
This paper provides a review of Approximate Bayesian Computation (ABC) methods for carrying out Bayesian posterior inference, through the lens of density estimation. We describe several recent algorithms and make connection with traditional approaches. We show advantages and limitations of models based on parametric approaches and we then draw attention to developments in machine learning, which we believe have the potential to make ABC scalable to higher dimensions and may be the future direction for research in this area.
stat
A Bayesian perspective on sampling of alternatives
In this paper, we apply a Bayesian perspective to sampling of alternatives for multinomial logit (MNL) and mixed multinomial logit (MMNL) models. We find three theoretical results -- i) McFadden's correction factor under the uniform sampling protocol can be transferred to the Bayesian context in MNL; ii) the uniform sampling protocol minimises the loss in information on the parameters of interest (i.e. the kernel of the posterior density) and thereby has desirable small sample properties in MNL; and iii) our theoretical results extend to Bayesian MMNL models using data augmentation. Notably, sampling of alternatives in Bayesian MMNL models does not require the inclusion of the additional correction factor, as identified by Guevara and Ben-Akiva (2013a) in classical settings. Accordingly, due to desirable small and large sample properties, uniform sampling is the recommended sampling protocol in MNL and MMNL, irrespective of the estimation framework selected.
stat
Simultaneous Feature Selection and Outlier Detection with Optimality Guarantees
Sparse estimation methods capable of tolerating outliers have been broadly investigated in the last decade. We contribute to this research considering high-dimensional regression problems contaminated by multiple mean-shift outliers which affect both the response and the design matrix. We develop a general framework for this class of problems and propose the use of mixed-integer programming to simultaneously perform feature selection and outlier detection with provably optimal guarantees. We characterize the theoretical properties of our approach, i.e. a necessary and sufficient condition for the robustly strong oracle property, which allows the number of features to exponentially increase with the sample size; the optimal estimation of the parameters; and the breakdown point of the resulting estimates. Moreover, we provide computationally efficient procedures to tune integer constraints and to warm-start the algorithm. We show the superior performance of our proposal compared to existing heuristic methods through numerical simulations and an application investigating the relationships between the human microbiome and childhood obesity.
stat
Logistic Regression with Missing Covariates -- Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework
Logistic regression is a common classification method in supervised learning. Surprisingly, there are very few solutions for performing logistic regression with missing values in the covariates. We suggest a complete approach based on a stochastic approximation version of the EM algorithm to do statistical inference with missing values including the estimation of the parameters and their variance, derivation of confidence intervals and a model selection procedure. We also tackle the problem of prediction for new observations (on a test set) with missing covariate data. The methodology is computationally efficient, and its good coverage and variable selection properties are demonstrated in a simulation study where we contrast its performances to other methods. For instance, the popular approach of multiple imputation by chained equations can lead to estimates that exhibit meaningfully greater biases than the proposed approach. We then illustrate the method on a dataset of severely traumatized patients from Paris hospitals to predict the occurrence of hemorrhagic shock, a leading cause of early preventable death in severe trauma cases. The aim is to consolidate the current red flag procedure, a binary alert identifying patients with a high risk of severe hemorrhage. The methodology is implemented in the R package misaem.
stat
A Bayesian time-to-event pharmacokinetic model for sequential phase I dose-escalation trials with multiple schedules
Phase I dose-escalation trials constitute the first step in investigating the safety of potentially promising drugs in humans. Conventional methods for phase I dose-escalation trials are based on a single treatment schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial. Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the information from both the completed and the ongoing dose-escalation trial to inform decisions on the dose level for the next dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple schedules using a pharmacokinetics (PK) model. In a simulation study, the developed appraoch is compared to the bridging continual reassessment method and the Bayesian logistic regression model using a meta-analytic-prior. TITE-PK results in better performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK displays similar performance with alternatives in terms of acceptable dose recommendations. The \texttt{R} and \texttt{Stan} code for the implementation of an illustrative sequential phase I trial example is publicly available at https://github.com/gunhanb/TITEPK_sequential.
stat
Pair-switching rerandomization
Rerandomization discards assignments with covariates unbalanced in the treatment and control groups to improve the estimation and inference efficiency. However, the acceptance-rejection sampling method used by rerandomization is computationally inefficient. As a result, it is time-consuming for classical rerandomization to draw numerous independent assignments, which are necessary for constructing Fisher randomization tests. To address this problem, we propose a pair-switching rerandomization method to draw balanced assignments much efficiently. We show that the difference-in-means estimator is unbiased for the average treatment effect and the Fisher randomization tests are valid under pair-switching rerandomization. In addition, our method is applicable in both non-sequentially and sequentially randomized experiments. We conduct comprehensive simulation studies to compare the finite-sample performances of the proposed method and classical rerandomization. Simulation results indicate that pair-switching rerandomization leads to comparable power of Fisher randomization tests and is 4-18 times faster than classical rerandomization. Finally, we apply the pair-switching rerandomization method to analyze two clinical trial data sets, both demonstrating the advantages of our method.
stat
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality
In this study, we prove that an intrinsic low dimensionality of covariates is the main factor that determines the performance of deep neural networks (DNNs). DNNs generally provide outstanding empirical performance. Hence, numerous studies have actively investigated the theoretical properties of DNNs to understand their underlying mechanisms. In particular, the behavior of DNNs in terms of high-dimensional data is one of the most critical questions. However, this issue has not been sufficiently investigated from the aspect of covariates, although high-dimensional data have practically low intrinsic dimensionality. In this study, we derive bounds for an approximation error and a generalization error regarding DNNs with intrinsically low dimensional covariates. We apply the notion of the Minkowski dimension and develop a novel proof technique. Consequently, we show that convergence rates of the errors by DNNs do not depend on the nominal high dimensionality of data, but on its lower intrinsic dimension. We further prove that the rate is optimal in the minimax sense. We identify an advantage of DNNs by showing that DNNs can handle a broader class of intrinsic low dimensional data than other adaptive estimators. Finally, we conduct a numerical simulation to validate the theoretical results.
stat
The Political Significance of Social Penumbras
To explain the political clout of different social groups, traditional accounts typically focus on the group's size, resources, or commonality and intensity of its members' interests. We contend that a group's "penumbra"-the set of individuals who are personally familiar with people in that group--is another important explanatory factor that merits systematic analysis. To this end, we designed a panel study that allows us to learn about the characteristics of the penumbras of politically relevant groups such as gay people, the unemployed or recent immigrants. Our study reveals major and systematic differences in the penumbras of various social groups, even ones of similar size. Moreover, we find evidence that entering a group's penumbra is associated with a change in attitude on related political questions. Taken together, our findings suggest that penumbras help account for variation in the political standing of different groups in society.
stat
Bayesian spectral density estimation using P-splines with quantile-based knot placement
This article proposes a Bayesian approach to estimating the spectral density of a stationary time series using a prior based on a mixture of P-spline distributions. Our proposal is motivated by the B-spline Dirichlet process prior of Edwards et al. (2019) in combination with Whittle's likelihood and aims at reducing the high computational complexity of its posterior computations. The strength of the B-spline Dirichlet process prior over the Bernstein-Dirichlet process prior of Choudhuri et al. (2004) lies in its ability to estimate spectral densities with sharp peaks and abrupt changes due to the flexibility of B-splines with variable number and location of knots. Here, we suggest to use P-splines of Eilers and Marx (1996) that combine a B-spline basis with a discrete penalty on the basis coefficients. In addition to equidistant knots, a novel strategy for a more expedient placement of knots is proposed that makes use of the information provided by the periodogram about the steepness of the spectral power distribution. We demonstrate in a simulation study and two real case studies that this approach retains the flexibility of the B-splines, achieves similar ability to accurately estimate peaks due to the new data-driven knot allocation scheme but significantly reduces the computational costs.
stat
False Discovery Rate Control via Debiased Lasso
We consider the problem of variable selection in high-dimensional statistical models where the goal is to report a set of variables, out of many predictors $X_1, \dotsc, X_p$, that are relevant to a response of interest. For linear high-dimensional model, where the number of parameters exceeds the number of samples $(p>n)$, we propose a procedure for variables selection and prove that it controls the "directional" false discovery rate (FDR) below a pre-assigned significance level $q\in [0,1]$. We further analyze the statistical power of our framework and show that for designs with subgaussian rows and a common precision matrix $\Omega\in\mathbb{R}^{p\times p}$, if the minimum nonzero parameter $\theta_{\min}$ satisfies $$\sqrt{n} \theta_{\min} - \sigma \sqrt{2(\max_{i\in [p]}\Omega_{ii})\log\left(\frac{2p}{qs_0}\right)} \to \infty\,,$$ then this procedure achieves asymptotic power one. Our framework is built upon the debiasing approach and assumes the standard condition $s_0 = o(\sqrt{n}/(\log p)^2)$, where $s_0$ indicates the number of true positives among the $p$ features. Notably, this framework achieves exact directional FDR control without any assumption on the amplitude of unknown regression parameters, and does not require any knowledge of the distribution of covariates or the noise level. We test our method in synthetic and real data experiments to assess its performance and to corroborate our theoretical results.
stat
Transporting a prediction model for use in a new target population
We consider methods for transporting a prediction model and assessing its performance for use in a new target population, when outcome and covariate information for model development is available from a simple random sample from the source population, but only covariate information is available on a simple random sample from the target population. We discuss how to tailor the prediction model for use in the target population, how to assess model performance in the target population (e.g., by estimating the target population mean squared error), and how to perform model and tuning parameter selection in the context of the target population. We provide identifiability results for the target population mean squared error of a potentially misspecified prediction model under a sampling design where the source study and the target population samples are obtained separately. We also introduce the concept of prediction error modifiers that can be used to reason about the need for tailoring measures of model performance to the target population and provide an illustration of the methods using simulated data.
stat
Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF
We solve the problem of 6-DoF localisation and 3D dense reconstruction in spatial environments as approximate Bayesian inference in a deep state-space model. Our approach leverages both learning and domain knowledge from multiple-view geometry and rigid-body dynamics. This results in an expressive predictive model of the world, often missing in current state-of-the-art visual SLAM solutions. The combination of variational inference, neural networks and a differentiable raycaster ensures that our model is amenable to end-to-end gradient-based optimisation. We evaluate our approach on realistic unmanned aerial vehicle flight data, nearing the performance of state-of-the-art visual-inertial odometry systems. We demonstrate the applicability of the model to generative prediction and planning.
stat
Deepening Lee-Carter for longevity projections with uncertainty estimation
Undoubtedly, several countries worldwide endure to experience a continuous increase in life expectancy, extending the challenges of life actuaries and demographers in forecasting mortality. Although several stochastic mortality models have been proposed in past literature, the mortality forecasting research remains a crucial task. Recently, various research works encourage the adequacy of deep learning models to extrapolate suitable pattern within mortality data. Such a learning models allow to achieve accurate point predictions, albeit also uncertainty measures are necessary to support both model estimates reliability and risk evaluations. To the best of our knowledge, machine and deep learning literature in mortality forecasting lack for studies about uncertainty estimation. As new advance in mortality forecasting, we formalizes the deep Neural Networks integration within the Lee-Carter framework, posing a first bridge between the deep learning and the mortality density forecasts. We test our model proposal in a numerical application considering three representative countries worldwide and both genders, scrutinizing two different fitting periods. Exploiting the meaning of both biological reasonableness and plausibility of forecasts, as well as performance metrics, our findings confirm the suitability of deep learning models to improve the predictive capacity of the Lee-Carter model, providing more reliable mortality boundaries also on the long-run.
stat
Efficient Estimation and Evaluation of Prediction Rules in Semi-Supervised Settings under Stratified Sampling
In many contemporary applications, large amounts of unlabeled data are readily available while labeled examples are limited. There has been substantial interest in semi-supervised learning (SSL) which aims to leverage unlabeled data to improve estimation or prediction. However, current SSL literature focuses primarily on settings where labeled data is selected randomly from the population of interest. Non-random sampling, while posing additional analytical challenges, is highly applicable to many real world problems. Moreover, no SSL methods currently exist for estimating the prediction performance of a fitted model under non-random sampling. In this paper, we propose a two-step SSL procedure for evaluating a prediction rule derived from a working binary regression model based on the Brier score and overall misclassification rate under stratified sampling. In step I, we impute the missing labels via weighted regression with nonlinear basis functions to account for nonrandom sampling and to improve efficiency. In step II, we augment the initial imputations to ensure the consistency of the resulting estimators regardless of the specification of the prediction model or the imputation model. The final estimator is then obtained with the augmented imputations. We provide asymptotic theory and numerical studies illustrating that our proposals outperform their supervised counterparts in terms of efficiency gain. Our methods are motivated by electronic health records (EHR) research and validated with a real data analysis of an EHR-based study of diabetic neuropathy.
stat
Local Bures-Wasserstein Transport: A Practical and Fast Mapping Approximation
Optimal transport (OT)-based methods have a wide range of applications and have attracted a tremendous amount of attention in recent years. However, most of the computational approaches of OT do not learn the underlying transport map. Although some algorithms have been proposed to learn this map, they rely on kernel-based methods, which makes them prohibitively slow when the number of samples increases. Here, we propose a way to learn an approximate transport map and a parametric approximation of the Wasserstein barycenter. We build an approximated transport mapping by leveraging the closed-form of Gaussian (Bures-Wasserstein) transport; we compute local transport plans between matched pairs of the Gaussian components of each density. The learned map generalizes to out-of-sample examples. We provide experimental results on simulated and real data, comparing our proposed method with other mapping estimation algorithms. Preliminary experiments suggest that our proposed method is not only faster, with a factor 80 overall running time, but it also requires fewer components than state-of-the-art methods to recover the support of the barycenter. From a practical standpoint, it is straightforward to implement and can be used with a conventional machine learning pipeline.
stat
Exact Bootstrap and Permutation Distribution of Wins and Losses in a Hierarchical Trial
Finkelstein-Schoenfeld, Buyse, Pocock, and other authors have developed generalizations of the Mann-Whitney test that allow for pairwise patient comparisons to include a hierarchy of measurements. Various authors present either asymptotic or randomized methods for analyzing the wins. We use graph theory concepts to derive exact means and variances for the number of wins, as a replacement for approximate values obtained from bootstrap analysis or random sampling from the permutation distribution. The time complexity of our algorithm is $O(N^2)$, where $N$ is the total number of patients. In any situation where the mean and variance of a bootstrap sample are used to draw conclusions, our methodology will be faster and more accurate than the randomized bootstrap or permutation test.
stat
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
We offer a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element-wise and spectrum-wise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key observation is that the estimators needs to adapt to the sample size, dimensionality of the data and the noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate their practical use, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.
stat
Gaussian Process Models with Low-Rank Correlation Matrices for Both Continuous and Categorical Inputs
We introduce a method that uses low-rank approximations of cross-correlation matrices in mixed continuous and categorical Gaussian Process models. This new method -- called Low-Rank Correlation (LRC) -- offers the ability to flexibly adapt the number of parameters to the problem at hand by choosing an appropriate rank of the approximation. Furthermore, we present a systematic approach of defining test functions that can be used for assessing the accuracy of models or optimization methods that are concerned with both continuous and categorical inputs. We compare LRC to existing approaches of modeling the cross-correlation matrix. It turns out that the new approach performs well in terms of estimation of cross-correlations and response surface prediction. Therefore, LRC is a flexible and useful addition to existing methods, especially for increasing numbers of combinations of levels of the categorical inputs.
stat
Semisupervised Clustering by Queries and Locally Encodable Source Coding
Source coding is the canonical problem of data compression in information theory. In a locally encodable source coding, each compressed bit depends on only few bits of the input. In this paper, we show that a recently popular model of semi-supervised clustering is equivalent to locally encodable source coding. In this model, the task is to perform multiclass labeling of unlabeled elements. At the beginning, we can ask in parallel a set of simple queries to an oracle who provides (possibly erroneous) binary answers to the queries. The queries cannot involve more than two (or a fixed constant number of) elements. Now the labeling of all the elements (or clustering) must be performed based on the noisy query answers. The goal is to recover all the correct labelings while minimizing the number of such queries. The equivalence to locally encodable source codes leads us to find lower bounds on the number of queries required in a variety of scenarios. We provide querying schemes based on pairwise `same cluster' queries - and pairwise AND queries and show provable performance guarantees for each of the schemes.
stat
Knockoffs for the mass: new feature importance statistics with false discovery guarantees
An important problem in machine learning and statistics is to identify features that causally affect the outcome. This is often impossible to do from purely observational data, and a natural relaxation is to identify features that are correlated with the outcome even conditioned on all other observed features. For example, we want to identify that smoking really is correlated with cancer conditioned on demographics. The knockoff procedure is a recent breakthrough in statistics that, in theory, can identify truly correlated features while guaranteeing that the false discovery is limited. The idea is to create synthetic data -- knockoffs -- that captures correlations amongst the features. However there are substantial computational and practical challenges to generating and using knockoffs. This paper makes several key advances that enable knockoff application to be more efficient and powerful. We develop an efficient algorithm to generate valid knockoffs from Bayesian Networks. Then we systematically evaluate knockoff test statistics and develop new statistics with improved power. The paper combines new mathematical guarantees with systematic experiments on real and synthetic data.
stat
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Adversarial training and its variants have become de facto standards for learning robust deep neural networks. In this paper, we explore the landscape around adversarial training in a bid to uncover its limits. We systematically study the effect of different training losses, model sizes, activation functions, the addition of unlabeled data (through pseudo-labeling) and other factors on adversarial robustness. We discover that it is possible to train robust models that go well beyond state-of-the-art results by combining larger models, Swish/SiLU activations and model weight averaging. We demonstrate large improvements on CIFAR-10 and CIFAR-100 against $\ell_\infty$ and $\ell_2$ norm-bounded perturbations of size $8/255$ and $128/255$, respectively. In the setting with additional unlabeled data, we obtain an accuracy under attack of 65.88% against $\ell_\infty$ perturbations of size $8/255$ on CIFAR-10 (+6.35% with respect to prior art). Without additional data, we obtain an accuracy under attack of 57.20% (+3.46%). To test the generality of our findings and without any additional modifications, we obtain an accuracy under attack of 80.53% (+7.62%) against $\ell_2$ perturbations of size $128/255$ on CIFAR-10, and of 36.88% (+8.46%) against $\ell_\infty$ perturbations of size $8/255$ on CIFAR-100. All models are available at https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness.
stat
Learning an arbitrary mixture of two multinomial logits
In this paper, we consider mixtures of multinomial logistic models (MNL), which are known to $\epsilon$-approximate any random utility model. Despite its long history and broad use, rigorous results are only available for learning a uniform mixture of two MNLs. Continuing this line of research, we study the problem of learning an arbitrary mixture of two MNLs. We show that the identifiability of the mixture models may only fail on an algebraic variety of a negligible measure. This is done by reducing the problem of learning a mixture of two MNLs to the problem of solving a system of univariate quartic equations. We also devise an algorithm to learn any mixture of two MNLs using a polynomial number of samples and a linear number of queries, provided that a mixture of two MNLs over some finite universe is identifiable. Several numerical experiments and conjectures are also presented.
stat
Regret Bounds for Noise-Free Bayesian Optimization
Bayesian optimisation is a powerful method for non-convex black-box optimization in low data regimes. However, the question of establishing tight upper bounds for common algorithms in the noiseless setting remains a largely open question. In this paper, we establish new and tightest bounds for two algorithms, namely GP-UCB and Thompson sampling, under the assumption that the objective function is smooth in terms of having a bounded norm in a Mat\'ern RKHS. Importantly, unlike several related works, we do not consider perfect knowledge of the kernel of the Gaussian process emulator used within the Bayesian optimization loop. This allows us to provide results for practical algorithms that sequentially estimate the Gaussian process kernel parameters from the available data.
stat
Approximating exponential family models (not single distributions) with a two-network architecture
Recently much attention has been paid to deep generative models, since they have been used to great success for variational inference, generation of complex data types, and more. In most all of these settings, the goal has been to find a particular member of that model family: optimized parameters index a distribution that is close (via a divergence or classification metric) to a target distribution. Much less attention, however, has been paid to the problem of learning a model itself. Here we introduce a two-network architecture and optimization procedure for learning intractable exponential family models (not a single distribution from those models). These exponential families are learned accurately, allowing operations like posterior inference to be executed directly and generically with an input choice of natural parameters, rather than performing inference via optimization for each particular distribution within that model.
stat
Log-Linear Bayesian Additive Regression Trees for Multinomial Logistic and Count Regression Models
We introduce Bayesian additive regression trees (BART) for log-linear models including multinomial logistic regression and count regression with zero-inflation and overdispersion. BART has been applied to nonparametric mean regression and binary classification problems in a range of settings. However, existing applications of BART have been limited to models for Gaussian "data", either observed or latent. This is primarily because efficient MCMC algorithms are available for Gaussian likelihoods. But while many useful models are naturally cast in terms of latent Gaussian variables, many others are not -- including models considered in this paper. We develop new data augmentation strategies and carefully specified prior distributions for these new models. Like the original BART prior, the new prior distributions are carefully constructed and calibrated to be flexible while guarding against overfitting. Together the new priors and data augmentation schemes allow us to implement an efficient MCMC sampler outside the context of Gaussian models. The utility of these new methods is illustrated with examples and an application to a previously published dataset.
stat
Robust Causal Inference Under Covariate Shift via Worst-Case Subpopulation Treatment Effects
We propose the worst-case treatment effect (WTE) across all subpopulations of a given size, a conservative notion of topline treatment effect. Compared to the average treatment effect (ATE), whose validity relies on the covariate distribution of collected data, WTE is robust to unanticipated covariate shifts, and positive findings guarantee uniformly valid treatment effects over subpopulations. We develop a semiparametrically efficient estimator for the WTE, leveraging machine learning-based estimates of the heterogeneous treatment effect and propensity score. By virtue of satisfying a key (Neyman) orthogonality property, our estimator enjoys central limit behavior---oracle rates with true nuisance parameters---even when estimates of nuisance parameters converge at slower rates. For both randomized trials and observational studies, we establish a semiparametric efficiency bound, proving that our estimator achieves the optimal asymptotic variance. On real datasets where robustness to covariate shift is of core concern, we illustrate the non-robustness of ATE under even mild distributional shift, and demonstrate that the WTE guards against brittle findings that are invalidated by unanticipated covariate shifts.
stat
A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles
In computed tomography, data consist of measurements of the attenuation of X-rays passing through an object. The goal is to reconstruct the linear attenuation coefficient of the object's interior. For each position of the X-ray source, characterized by its angle with respect to a fixed coordinate system, one measures a set of data referred to as a view. A common assumption is that these view angles are known, but in some applications they are known with imprecision. We propose a framework to solve a Bayesian inverse problem that jointly estimates the view angles and an image of the object's attenuation coefficient. We also include a few hyperparameters that characterize the likelihood and the priors. Our approach is based on a Gibbs sampler where the associated conditional densities are simulated using different sampling schemes - hence the term hybrid. In particular, the conditional distribution associated with the reconstruction is nonlinear in the image pixels, non-Gaussian and high-dimensional. We approach this distribution by constructing a Laplace approximation that represents the target conditional locally at each Gibbs iteration. This enables sampling of the attenuation coefficients in an efficient manner using iterative reconstruction algorithms. The numerical results show that our algorithm is able to jointly identify the image and the view angles, while also providing uncertainty estimates of both. We demonstrate our method with 2D X-ray computed tomography problems using fan beam configurations.
stat
Jenss-Bayley Latent Change Score Model with Individual Ratio of Growth Acceleration in the Framework of Individual Measurement Occasions
Longitudinal analysis has been widely employed to examine between-individual differences in within-individual change. One challenge for such analyses lies in that the rate-of-change is only available indirectly when change patterns are nonlinear with respect to time. Latent change score models (LCSMs), which can be employed to investigate the change in growth rate at the individual level, have been developed to address this challenge. We extend an existing LCSM with the Jenss-Bayley growth curve (Grimm et al., 2016c) and propose a novel expression of change scores that allows for (1) unequally-spaced study waves and (2) individual measurement occasions around each wave. We also extend the existing model to estimate the individual ratio of growth acceleration (that largely determines the trajectory shape and then is viewed as the most important parameter in the Jenss-Bayley model). We present the proposed model by simulation studies and a real-world data analysis. Our simulation studies demonstrate that the proposed model generally estimates the parameters of interest unbiasedly, precisely and exhibits appropriate confidence interval coverage. More importantly, the proposed model with the novel expression of change scores performed better than the existing model shown by simulation studies. An empirical example using longitudinal reading scores shows that the model can estimate the individual ratio of growth acceleration and generate individual growth rate in practice. We also provide the corresponding code for the proposed model.
stat
Informative extended Mallows priors in the Bayesian Mallows model
The aim of this work is to study the problem of prior elicitation for the Mallows model with Spearman's distance, a popular distance-based model for rankings or permutation data. Previous Bayesian inference for such model has been limited to the use of the uniform prior over the space of permutations. We present a novel strategy to elicit subjective prior beliefs on the location parameter of the model, discussing the interpretation of hyper-parameters and the implication of prior choices for the posterior analysis.
stat
Multiple Instance Dictionary Learning for Beat-to-Beat Heart Rate Monitoring from Ballistocardiograms
A multiple instance dictionary learning approach, Dictionary Learning using Functions of Multiple Instances (DL-FUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates a "heartbeat concept" that represents an individual's personal ballistocardiogram heartbeat pattern. DL-FUMI formulates heartbeat detection and heartbeat characterization as a multiple instance learning problem to address the uncertainty inherent in aligning BCG signals with ground truth during training. Experimental results show that the estimated heartbeat concept found by DL-FUMI is an effective heartbeat prototype and achieves superior performance over comparison algorithms.
stat
Parameter Estimation in Abruptly Changing Dynamic Environments
Many real-life dynamical systems change abruptly followed by almost stationary periods. In this paper, we consider streams of data with such abrupt behavior and investigate the problem of tracking their statistical properties in an online manner. We devise a tracking procedure where an estimator that is suitable for a stationary environment is combined together with an event detection method such that the estimator rapidly can jump to a more suitable value if an event is detected. Combining an estimation procedure with detection procedure is commonly known idea in the literature. However, our contribution lies in building the detection procedure based on the difference between the stationary estimator and a Stochastic Learning Weak Estimator (SLWE). The SLWE estimator is known to be the state-of-the art approach to tracking properties of non-stationary environments and thus should be a better choice to detect changes in abruptly changing environments than the far more common sliding window based approaches. To the best of our knowledge, the event detection procedure suggested by Ross et al. (2012) is the only procedure in the literature taking advantage of the powerful tracking properties of the SLWE estimator. The procedure in Ross et al. is however quite complex and not well founded theoretically compared to the procedures in this paper. In this paper, we focus on estimation procedure for the binomial and multinomial distributions, but our approach can be easily generalized to cover other distributions as well. Extensive simulation results based on both synthetic and real-life data related to news classification demonstrate that our estimation procedure is easy to tune and performs well.
stat
Testing the equality of multivariate means when $p>n$ by combining the Hoteling and Simes tests
We propose a method of testing the shift between mean vectors of two multivariate Gaussian random variables in a high-dimensional setting incorporating the possible dependency and allowing $p > n$. This method is a combination of two well-known tests: the Hotelling test and the Simes test. The tests are integrated by sampling several dimensions at each iteration, testing each using the Hotelling test, and combining their results using the Simes test. We prove that this procedure is valid asymptotically. This procedure can be extended to handle non-equal covariance matrices by plugging in the appropriate extension of the Hotelling test. Using a simulation study, we show that the proposed test is advantageous over state-of-the-art tests in many scenarios and robust to violation of the Gaussian assumption.
stat
Deep Structural Causal Models for Tractable Counterfactual Inference
We formulate a general framework for building structural causal models (SCMs) with deep learning components. The proposed approach employs normalising flows and variational inference to enable tractable inference of exogenous noise variables - a crucial step for counterfactual inference that is missing from existing deep causal learning methods. Our framework is validated on a synthetic dataset built on MNIST as well as on a real-world medical dataset of brain MRI scans. Our experimental results indicate that we can successfully train deep SCMs that are capable of all three levels of Pearl's ladder of causation: association, intervention, and counterfactuals, giving rise to a powerful new approach for answering causal questions in imaging applications and beyond. The code for all our experiments is available at https://github.com/biomedia-mira/deepscm.
stat
Estimation for network snowball sampling: Preventing pandemics
Snowball designs are the most natural of the network sampling designs. They have many desirable properties for sampling hidden and hard-to reach populations. They have been under-used in recent years because simple design-based estimators and confidence intervals have not been available for them. The needed estimation methods are supplied in this paper. Snowball sampling methods and accurate estimators with them are needed for sampling of the people exposed to the animals from which new coronavirus outbreaks originate, and to sample the animal populations to which they are exposed. Accurate estimates are needed to evaluate the effectiveness of interventions to reduce the risk to the people exposed to the animals. In this way the frequencies of major outbreaks and pandemics can be reduced. Snowball designs are needed in studies of sexual and opioid networks through which HIV can spread explosively, so that prevention intervention methods can be developed, accurately assessed, and effectively distributed.
stat
Particle filters for data assimilation based on reduced order data models
We introduce a framework for Data Assimilation (DA) in which the data is split into multiple sets corresponding to low-rank projections of the state space. Algorithms are developed that assimilate some or all of the projected data, including an algorithm compatible with any generic DA method. The major application explored here is PROJ-PF, a projected Particle Filter. The PROJ-PF implementation assimilates highly informative but low-dimensional observations. The implementation considered here is based upon using projections corresponding to Assimilation in the Unstable Subspace (AUS). In the context of particle filtering, the projected approach mitigates the collapse of particle ensembles in high dimensional DA problems while preserving as much relevant information as possible, as the unstable and neutral modes correspond to the most uncertain model predictions. In particular we formulate and numerically implement a projected Optimal Proposal Particle Filter (PROJ-OP-PF) and compare to the standard optimal proposal and to the Ensemble Transform Kalman Filter.
stat
Federated Generative Privacy
In this paper, we propose FedGP, a framework for privacy-preserving data release in the federated learning setting. We use generative adversarial networks, generator components of which are trained by FedAvg algorithm, to draw privacy-preserving artificial data samples and empirically assess the risk of information disclosure. Our experiments show that FedGP is able to generate labelled data of high quality to successfully train and validate supervised models. Finally, we demonstrate that our approach significantly reduces vulnerability of such models to model inversion attacks.
stat
Identification of Pediatric Sepsis Subphenotypes for Enhanced Machine Learning Predictive Performance: A Latent Profile Analysis
Background: While machine learning (ML) models are rapidly emerging as promising screening tools in critical care medicine, the identification of homogeneous subphenotypes within populations with heterogeneous conditions such as pediatric sepsis may facilitate attainment of high-predictive performance of these prognostic algorithms. This study is aimed to identify subphenotypes of pediatric sepsis and demonstrate the potential value of partitioned data/subtyping-based training. Methods: This was a retrospective study of clinical data extracted from medical records of 6,446 pediatric patients that were admitted at a major hospital system in the DC area. Vitals and labs associated with patients meeting the diagnostic criteria for sepsis were used to perform latent profile analysis. Modern ML algorithms were used to explore the predictive performance benefits of reduced training data heterogeneity via label profiling. Results: In total 134 (2.1%) patients met the diagnostic criteria for sepsis in this cohort and latent profile analysis identified four profiles/subphenotypes of pediatric sepsis. Profiles 1 and 3 had the lowest mortality and included pediatric patients from different age groups. Profile 2 were characterized by respiratory dysfunction; profile 4 by neurological dysfunction and highest mortality rate (22.2%). Machine learning experiments comparing the predictive performance of models derived without training data profiling against profile targeted models suggest statistically significant improved performance of prediction can be obtained. For example, area under ROC curve (AUC) obtained to predict profile 4 with 24-hour data (AUC = .998, p < .0001) compared favorably with the AUC obtained from the model considering all profiles as a single homogeneous group (AUC = .918) with 24-hour data.
stat
Hybrid Tree-based Models for Insurance Claims
Two-part models and Tweedie generalized linear models (GLMs) have been used to model loss costs for short-term insurance contract. For most portfolios of insurance claims, there is typically a large proportion of zero claims that leads to imbalances resulting in inferior prediction accuracy of these traditional approaches. This article proposes the use of tree-based models with a hybrid structure that involves a two-step algorithm as an alternative approach to these traditional models. The first step is the construction of a classification tree to build the probability model for frequency. In the second step, we employ elastic net regression models at each terminal node from the classification tree to build the distribution model for severity. This hybrid structure captures the benefits of tuning hyperparameters at each step of the algorithm; this allows for improved prediction accuracy and tuning can be performed to meet specific business objectives. We examine and compare the predictive performance of such a hybrid tree-based structure in relation to the traditional Tweedie model using both real and synthetic datasets. Our empirical results show that these hybrid tree-based models produce more accurate predictions without the loss of intuitive interpretation.
stat
New algorithms and goodness-of-fit diagnostics from remarkable properties of ranking models
The forward order assumption postulates that the ranking process of the items is carried out by sequentially assigning the positions from the top (most-liked) to the bottom (least-liked) alternative. This assumption has been recently relaxed with the Extended Plackett-Luce model (EPL) through the introduction of the discrete reference order parameter, describing the rank attribution path. By starting from two formal properties of the EPL, the former related to the inverse ordering of the item probabilities at the first and last stage of the ranking process and the latter well-known as independence of irrelevant alternatives (or Luce's choice axiom), we derive novel diagnostic tools for testing the appropriateness of the EPL assumption as the actual sampling distribution of the observed rankings. Besides contributing to fill the gap of goodness-of-fit methods for the family of multistage models, we also show how one of the two statistics can be conveniently exploited to construct a heuristic method, that surrogates the maximum likelihood approach for inferring the underlying reference order parameter. The relative performance of the proposals compared with more conventional approaches is illustrated by means of extensive simulation studies.
stat
Estimation of ascertainment bias and its effect on power in clinical trials with time-to-event outcomes
While the gold standard for clinical trials is to blind all parties -- participants, researchers, and evaluators -- to treatment assignment, this is not always a possibility. When some or all of the above individuals know the treatment assignment, this leaves the study open to the introduction of post-randomization biases. In the Strategies to Reduce Injuries and Develop Confidence in Elders (STRIDE) trial, we were presented with the potential for the unblinded clinicians administering the treatment, as well as the individuals enrolled in the study, to introduce ascertainment bias into some but not all events comprising the primary outcome. In this manuscript, we present ways to estimate the ascertainment bias for a time-to-event outcome, and discuss its impact on the overall power of a trial versus changing of the outcome definition to a more stringent unbiased definition that restricts attention to measurements less subject to potentially differential assessment. We found that for the majority of situations, it is better to revise the definition to a more stringent definition, as was done in STRIDE, even though fewer events may be observed.
stat
Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model
While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorithmic framework. In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities have forced practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against adversarial attacks. As a result, we now have a plethora of algorithmic approaches that guarantee robustness of distributed and/or decentralized inference and learning under different adversarial threat models. Driven in part by the world's growing appetite for data-driven decision making, however, securing of distributed/decentralized frameworks for inference and learning against adversarial threats remains a rapidly evolving research area. In this article, we provide an overview of some of the most recent developments in this area under the threat model of Byzantine attacks.
stat
A cost-reducing partial labeling estimator in text classification problem
We propose a new approach to address the text classification problems when learning with partial labels is beneficial. Instead of offering each training sample a set of candidate labels, we assign negative-oriented labels to the ambiguous training examples if they are unlikely fall into certain classes. We construct our new maximum likelihood estimators with self-correction property, and prove that under some conditions, our estimators converge faster. Also we discuss the advantages of applying one of our estimator to a fully supervised learning problem. The proposed method has potential applicability in many areas, such as crowdsourcing, natural language processing and medical image analysis.
stat
Discussion of "Unbiased Markov chain Monte Carlo with couplings" by Pierre E. Jacob, John O'Leary and Yves F. Atchad\'e
This is a contribution for the discussion on "Unbiased Markov chain Monte Carlo with couplings" by Pierre E. Jacob, John O'Leary and Yves F. Atchad\'e to appear in the Journal of the Royal Statistical Society Series B.
stat
Stopping criterion for active learning based on deterministic generalization bounds
Active learning is a framework in which the learning machine can select the samples to be used for training. This technique is promising, particularly when the cost of data acquisition and labeling is high. In active learning, determining the timing at which learning should be stopped is a critical issue. In this study, we propose a criterion for automatically stopping active learning. The proposed stopping criterion is based on the difference in the expected generalization errors and hypothesis testing. We derive a novel upper bound for the difference in expected generalization errors before and after obtaining a new training datum based on PAC-Bayesian theory. Unlike ordinary PAC-Bayesian bounds, though, the proposed bound is deterministic; hence, there is no uncontrollable trade-off between the confidence and tightness of the inequality. We combine the upper bound with a statistical test to derive a stopping criterion for active learning. We demonstrate the effectiveness of the proposed method via experiments with both artificial and real datasets.
stat
Intentional Control of Type I Error over Unconscious Data Distortion: a Neyman-Pearson Approach to Text Classification
This paper addresses the challenges in classifying textual data obtained from open online platforms, which are vulnerable to distortion. Most existing classification methods minimize the overall classification error and may yield an undesirably large type I error (relevant textual messages are classified as irrelevant), particularly when available data exhibit an asymmetry between relevant and irrelevant information. Data distortion exacerbates this situation and often leads to fallacious prediction. To deal with inestimable data distortion, we propose the use of the Neyman-Pearson (NP) classification paradigm, which minimizes type II error under a user-specified type I error constraint. Theoretically, we show that the NP oracle is unaffected by data distortion when the class conditional distributions remain the same. Empirically, we study a case of classifying posts about worker strikes obtained from a leading Chinese microblogging platform, which are frequently prone to extensive, unpredictable and inestimable censorship. We demonstrate that, even though the training and test data are susceptible to different distortion and therefore potentially follow different distributions, our proposed NP methods control the type I error on test data at the targeted level. The methods and implementation pipeline proposed in our case study are applicable to many other problems involving data distortion.
stat
Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed Rank Test, and Spearman's $\rho$
Bayesian inference for rank-order problems is frustrated by the absence of an explicit likelihood function. This hurdle can be overcome by assuming a latent normal representation that is consistent with the ordinal information in the data: the observed ranks are conceptualized as an impoverished reflection of an underlying continuous scale, and inference concerns the parameters that govern the latent representation. We apply this generic data-augmentation method to obtain Bayes factors for three popular rank-based tests: the rank sum test, the signed rank test, and Spearman's $\rho_s$.
stat
Probabilistic forecasting approaches for extreme NO$_2$ episodes: a comparison of models
High concentration episodes for NO$_2$ are increasingly dealt with by authorities through traffic restrictions which are activated when air quality deteriorates beyond certain thresholds. Foreseeing the probability that pollutant concentrations reach those thresholds becomes thus a necessity. Probabilistic forecasting is a family of techniques that allow for the prediction of the expected distribution function instead of a single value. In the case of NO$_2$, it allows for the calculation of future chances of exceeding thresholds and to detect pollution peaks. We thoroughly compared 10 state of the art probabilistic predictive models, using them to predict the distribution of NO$_2$ concentrations in a urban location for a set of forecasting horizons (up to 60 hours). Quantile gradient boosted trees shows the best performance, yielding the best results for both the expected value and the forecast full distribution. Furthermore, we show how this approach can be used to detect pollution peaks.
stat
Early features associated with the neurocognitive development at 36 months of age: the AuBE study
Background. Few studies on the relations between sleep quantity and/or quality and cognition were conducted among pre-schoolers from healthy general population. We aimed at identifying, among 3 years old children, early factors associated with intelligence quotient estimated through Weschler Preschool and Primary Scale Intelligence-III test and its indicators: full-scale-, verbal- and performance-intelligence quotients and their sub-scale scores. Methods. We included 194 children from the French birth-cohort AuBE with both available Weschler Preschool and Primary Scale Intelligence-III scores at 3y and sleep data. Information was collected through self-questionnaires at birth, 6, 12, 18 and 24 months. A day/night sleep ratio was calculated. Results. Mean scores were in normal ranges for verbal-, performance- and full-scale-intelligence quotients. In multivariate models, being a $\ge$3 born-child and watching television $\ge$1 hour/day at 24 months were negatively associated with all intelligence quotient scores while collective care arrangement was positively associated. Night waking at 6 and frequent snoring at 18 months were negatively associated with performance intelligence quotient, some subscales and full-scale-intelligence quotient contrary to day/night sleep ratio at 12 months. No association was observed between early sleep characteristics and verbal intelligence quotient. Conclusion. We showed that early features including infant sleep characteristics influence intelligence quotient scores at 3 years old. Some of these may be accessible to prevention.
stat
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
In recent years, the filtering-clustering problems have been a central topic in statistics and machine learning, especially the $\ell_1$-trend filtering and $\ell_2$-convex clustering problems. In practice, such structured problems are typically solved by first-order algorithms despite the extremely ill-conditioned structures of difference operator matrices. Inspired by the desire to analyze the convergence rates of these algorithms, we show that for a large class of filtering-clustering problems, a \textit{global error bound} condition is satisfied for the dual filtering-clustering problems when a certain regularization is chosen. Based on this result, we show that many first-order algorithms attain the \textit{optimal rate of convergence} in different settings. In particular, we establish a generalized dual gradient ascent (GDGA) algorithmic framework with several subroutines. In deterministic setting when the subroutine is accelerated gradient descent (AGD), the resulting algorithm attains the linear convergence. This linear convergence also holds for the finite-sum setting in which the subroutine is the Katyusha algorithm. We also demonstrate that the GDGA with stochastic gradient descent (SGD) subroutine attains the optimal rate of convergence up to the logarithmic factor, shedding the light to the possibility of solving the filtering-clustering problems efficiently in online setting. Experiments conducted on $\ell_1$-trend filtering problems illustrate the favorable performance of our algorithms over other competing algorithms.
stat
Hadamard Wirtinger Flow for Sparse Phase Retrieval
We consider the problem of reconstructing an $n$-dimensional $k$-sparse signal from a set of noiseless magnitude-only measurements. Formulating the problem as an unregularized empirical risk minimization task, we study the sample complexity performance of gradient descent with Hadamard parametrization, which we call Hadamard Wirtinger flow (HWF). Provided knowledge of the signal sparsity $k$, we prove that a single step of HWF is able to recover the support from $k(x^*_{max})^{-2}$ (modulo logarithmic term) samples, where $x^*_{max}$ is the largest component of the signal in magnitude. This support recovery procedure can be used to initialize existing reconstruction methods and yields algorithms with total runtime proportional to the cost of reading the data and improved sample complexity, which is linear in $k$ when the signal contains at least one large component. We numerically investigate the performance of HWF at convergence and show that, while not requiring any explicit form of regularization nor knowledge of $k$, HWF adapts to the signal sparsity and reconstructs sparse signals with fewer measurements than existing gradient based methods.
stat