title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Partial Identifiability in Discrete Data With Measurement Error
When data contains measurement errors, it is necessary to make assumptions relating the observed, erroneous data to the unobserved true phenomena of interest. These assumptions should be justifiable on substantive grounds, but are often motivated by mathematical convenience, for the sake of exactly identifying the target of inference. We adopt the view that it is preferable to present bounds under justifiable assumptions than to pursue exact identification under dubious ones. To that end, we demonstrate how a broad class of modeling assumptions involving discrete variables, including common measurement error and conditional independence assumptions, can be expressed as linear constraints on the parameters of the model. We then use linear programming techniques to produce sharp bounds for factual and counterfactual distributions under measurement error in such models. We additionally propose a procedure for obtaining outer bounds on non-linear models. Our method yields sharp bounds in a number of important settings -- such as the instrumental variable scenario with measurement error -- for which no bounds were previously known.
stat
Spatio-Temporal Mixed Models to Predict Coverage Error Rates at Local Areas
Despite of the great efforts during the censuses, occurrence of some nonsampling errors such as coverage error is inevitable. Coverage error which can be classified into two types of under-count and overcount occurs when there is no unique bijective (one-to-one) mapping between the individuals from the census count and the target population -- individuals who usually reside in the country (de jure residences). There are variety of reasons make the coverage error happens including deficiencies in the census maps, errors in the field operations or disinclination of people for participation in the undercount situation and multiple enumeration of individuals or those who do not belong to the scope of the census in the overcount situation. A routine practice for estimating the net coverage error is subtracting the census count from the estimated true population, which obtained from a dual system (or capture-recapture) technique. Estimated coverage error usually suffers from significant uncertainty of the direct estimate of true population or other errors such as matching error. To rectify the above-mentioned problem and predict a more reliable coverage error rate, we propose a set of spatio-temporal mixed models. In an illustrative study on the 2010 census coverage error rate of the U.S. counties with population more than 100,000, we select the best mixed model for prediction by deviance information criteria (DIC) and conditional predictive ordinate (CPO). Our proposed approach for predicting coverage error rate and its measure of uncertainty is a full Bayesian approach, which leads to a reasonable improvement over the direct coverage error rate in terms of mean squared error (MSE) and confidence interval (CI) as provided by the U.S. Census Bureau.
stat
Factor Analysis on Citation, Using a Combined Latent and Logistic Regression Model
We propose a combined model, which integrates the latent factor model and the logistic regression model, for the citation network. It is noticed that neither a latent factor model nor a logistic regression model alone is sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represents the main technological trends (a.k.a., factors), and adds a sparse component that captures the remaining ad-hoc dependence. Parameter estimation is carried out through the construction of a joint-likelihood function of edges and properly chosen penalty terms. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards a low-dimensional latent component and a sparse graphical structure. Simulation results show that the proposed method works well in practical situations. The proposed method has been applied to a real application, which contains a citation network of statisticians (Ji and Jin, 2016). Some interesting findings are reported.
stat
A Bayesian approach to regional decadal predictability: Sparse parameter estimation in high-dimensional linear inverse models of high-latitude sea surface temperature variability
Stochastic reduced models are an important tool in climate systems whose many spatial and temporal scales cannot be fully discretized or underlying physics may not be fully accounted for. One form of reduced model, the linear inverse model (LIM), has been widely used for regional climate predictability studies - typically focusing more on tropical or mid-latitude studies. However, most LIM fitting techniques rely on point estimation techniques deriving from fluctuation-dissipation theory. In this methodological study we explore the use of Bayesian inference techniques for LIM parameter estimation of sea surface temperature (SST), to quantify the skillful decadal predictability of Bayesian LIM models at high latitudes. We show that Bayesian methods, when compared to traditional point estimation methods for LIM-type models, provide better calibrated probabilistic skill, while simultaneously providing better point estimates due to the regularization effect of the prior distribution in high-dimensional problems. We compare the effect of several priors, as well as maximum likelihood estimates, on (1) estimating parameter values on a perfect model experiment and (2) producing calibrated 1-year SST anomaly forecast distributions using a pre-industrial control run of the Community Earth System Model (CESM). Finally, we employ a host of probabilistic skill metrics to determine the extent to which a LIM can forecast SST anomalies at high latitudes. We find that the choice of prior distribution has an appreciable impact on estimation outcomes, and priors that emphasize physically relevant properties enhance the model's ability to capture variability of SST anomalies.
stat
Causal Mediation Analysis with Multiple Treatments and Latent Confounders
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the mediator cannot be randomly assigned in many real applications. In this article, we consider a causal model including latent confounders between the mediator and the outcome. We present sufficient conditions for identifying the direct and indirect effects and propose an approach for estimating them. The performance of the proposed approach is evaluated by simulation studies. Finally, we apply the approach to a data set of the customer loyalty survey by a telecom company.
stat
A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy
Detecting changes in COVID-19 disease transmission over time is a key indicator of epidemic growth. Near real-time monitoring of the pandemic growth is crucial for policy makers and public health officials who need to make informed decisions about whether to enforce lockdowns or allow certain activities. The effective reproduction number Rt is the standard index used in many countries for this goal. However, it is known that due to the delays between infection and case registration, its use for decision making is somewhat limited. In this paper a near real-time COVINDEX is proposed for monitoring the evolution of the pandemic. The index is computed from predictions obtained from a GAM beta regression for modelling the test positive rate as a function of time. The proposal is illustrated using data on COVID-19 pandemic in Italy and compared with Rt. A simple chart is also proposed for monitoring local and national outbreaks by policy makers and public health officials.
stat
A Selective Review of Negative Control Methods in Epidemiology
Purpose of Review: Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework. Recent Findings: We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject matter knowledge to perform negative control analyses. We also review existing statistical methodologies for detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double negative control design. Summary: There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
stat
Classifier uncertainty: evidence, potential impact, and probabilistic treatment
Classifiers are often tested on relatively small data sets, which should lead to uncertain performance metrics. Nevertheless, these metrics are usually taken at face value. We present an approach to quantify the uncertainty of classification performance metrics, based on a probability model of the confusion matrix. Application of our approach to classifiers from the scientific literature and a classification competition shows that uncertainties can be surprisingly large and limit performance evaluation. In fact, some published classifiers are likely to be misleading. The application of our approach is simple and requires only the confusion matrix. It is agnostic of the underlying classifier. Our method can also be used for the estimation of sample sizes that achieve a desired precision of a performance metric.
stat
Topic Diffusion Discovery Based on Deep Non-negative Autoencoder
Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help researchers identify potential research topics and keep up with recent progress on research of interests. However, it is still difficult for researchers to keep track of the research topic diffusion and evolution without spending a large amount of time reviewing numerous relevant and irrelevant articles. In this paper, we consider a novel topic diffusion discovery technique. Specifically, we propose using a Deep Non-negative Autoencoder with information divergence measurement that monitors evolutionary distance of the topic diffusion to understand how research topics change with time. The experimental results show that the proposed approach is able to identify the evolution of research topics as well as to discover topic diffusions in online fashions.
stat
Instrumental variables, spatial confounding and interference
Unobserved spatial confounding variables are prevalent in environmental and ecological applications where the system under study is complex and the data are often observational. Instrumental variables (IVs) are a common way to address unobserved confounding; however, the efficacy of using IVs on spatial confounding is largely unknown. This paper explores the effectiveness of IVs in this situation -- with particular attention paid to the spatial scale of the instrument. We show that, in case of spatially-dependent treatments, IVs are most effective when they vary at a finer spatial resolution than the treatment. We investigate IV performance in extensive simulations and apply the model in the example of long term trends in the air pollution and cardiovascular mortality in the United States over 1990-2010. Finally, the IV approach is also extended to the spatial interference setting, in which treatments can affect nearby responses.
stat
Nonparametric Bayes Differential Analysis for Dependent Multigroup Data with Application to DNA Methylation Analyses in Cancer
Modern cancer genomics datasets involve widely varying sizes and scales, measurement variables, and correlation structures. A fundamental analytical goal in these high-throughput studies is the development of general statistical techniques that can cleanly sift the signal from noise in identifying disease-specific genomic signatures across a set of experimental or biological conditions. We propose BayesDiff, a nonparametric Bayesian approach based on a novel class of first order mixture models, called the Sticky Poisson-Dirichlet process or multicuisine restaurant franchise. The BayesDiff methodology flexibly utilizes information from all the measurements and adaptively accommodates any serial dependence in the data, accounting for the inter-probe distances, to perform simultaneous inferences on the variables. The technique is applied to analyze a DNA methylation gastrointestinal (GI) cancer dataset, which displays both serial correlations and complex interaction patterns. Our analyses and results both support and complement known aspects of DNA methylation and gene association in upper GI cancers. In simulation studies, we demonstrate the effectiveness of the BayesDiff procedure relative to existing techniques for differential DNA methylation.
stat
The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions
Discovering interaction effects on a response of interest is a fundamental problem faced in biology, medicine, economics, and many other scientific disciplines. In theory, Bayesian methods for discovering pairwise interactions enjoy many benefits such as coherent uncertainty quantification, the ability to incorporate background knowledge, and desirable shrinkage properties. In practice, however, Bayesian methods are often computationally intractable for even moderate-dimensional problems. Our key insight is that many hierarchical models of practical interest admit a particular Gaussian process (GP) representation; the GP allows us to capture the posterior with a vector of O(p) kernel hyper-parameters rather than O(p^2) interactions and main effects. With the implicit representation, we can run Markov chain Monte Carlo (MCMC) over model hyper-parameters in time and memory linear in p per iteration. We focus on sparsity-inducing models and show on datasets with a variety of covariate behaviors that our method: (1) reduces runtime by orders of magnitude over naive applications of MCMC, (2) provides lower Type I and Type II error relative to state-of-the-art LASSO-based approaches, and (3) offers improved computational scaling in high dimensions relative to existing Bayesian and LASSO-based approaches.
stat
Spurious Vanishing Problem in Approximate Vanishing Ideal
Approximate vanishing ideal is a concept from computer algebra that studies the algebraic varieties behind perturbed data points. To capture the nonlinear structure of perturbed points, the introduction of approximation to exact vanishing ideals plays a critical role. However, such an approximation also gives rise to a theoretical problem---the spurious vanishing problem---in the basis construction of approximate vanishing ideals; namely, obtained basis polynomials can be approximately vanishing simply because of the small coefficients. In this paper, we propose a first general method that enables various basis construction algorithms to overcome the spurious vanishing problem. In particular, we integrate coefficient normalization with polynomial-based basis constructions, which do not need the proper ordering of monomials to process for basis constructions. We further propose a method that takes advantage of the iterative nature of basis construction so that computationally costly operations for coefficient normalization can be circumvented. Moreover, a coefficient truncation method is proposed for further accelerations. From the experiments, it can be shown that the proposed method overcomes the spurious vanishing problem, resulting in shorter feature vectors while sustaining comparable or even lower classification error.
stat
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to \textit{explain} black box models, rather than creating models that are \textit{interpretable} in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward -- it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.
stat
Bayesian matrix completion with a spectral scaled Student prior: theoretical guarantee and efficient sampling
We study the problem of matrix completion in this paper. A spectral scaled Student prior is exploited to favour the underlying low-rank structure of the data matrix. Importantly, we provide a thorough theoretical investigation for our approach, while such an analysis is hard to obtain and limited in theoretical understanding of Bayesian matrix completion. More precisely, we show that our Bayesian approach enjoys a minimax-optimal oracle inequality which guarantees that our method works well under model misspecification and under general sampling distribution. Interestingly, we also provide efficient gradient-based sampling implementations for our approach by using Langevin Monte Carlo which is novel in Bayesian matrix completion. More specifically, we show that our algorithms are significantly faster than Gibbs sampler in this problem. To illustrate the attractive features of our inference strategy, some numerical simulations are conducted and an application to image inpainting is demonstrated.
stat
Depth Uncertainty in Neural Networks
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes, making them unsuitable for applications where computational resources are limited. To solve this, we perform probabilistic reasoning over the depth of neural networks. Different depths correspond to subnetworks which share weights and whose predictions are combined via marginalisation, yielding model uncertainty. By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass. We validate our approach on real-world regression and image classification tasks. Our approach provides uncertainty calibration, robustness to dataset shift, and accuracies competitive with more computationally expensive baselines.
stat
Model-based Clustering using Automatic Differentiation: Confronting Misspecification and High-Dimensional Data
We study two practically important cases of model based clustering using Gaussian Mixture Models: (1) when there is misspecification and (2) on high dimensional data, in the light of recent advances in Gradient Descent (GD) based optimization using Automatic Differentiation (AD). Our simulation studies show that EM has better clustering performance, measured by Adjusted Rand Index, compared to GD in cases of misspecification, whereas on high dimensional data GD outperforms EM. We observe that both with EM and GD there are many solutions with high likelihood but poor cluster interpretation. To address this problem we design a new penalty term for the likelihood based on the Kullback Leibler divergence between pairs of fitted components. Closed form expressions for the gradients of this penalized likelihood are difficult to derive but AD can be done effortlessly, illustrating the advantage of AD-based optimization. Extensions of this penalty for high dimensional data and for model selection are discussed. Numerical experiments on synthetic and real datasets demonstrate the efficacy of clustering using the proposed penalized likelihood approach.
stat
The Unusual Effectiveness of Averaging in GAN Training
We examine two different techniques for parameter averaging in GAN training. Moving Average (MA) computes the time-average of parameters, whereas Exponential Moving Average (EMA) computes an exponentially discounted sum. Whilst MA is known to lead to convergence in bilinear settings, we provide the -- to our knowledge -- first theoretical arguments in support of EMA. We show that EMA converges to limit cycles around the equilibrium with vanishing amplitude as the discount parameter approaches one for simple bilinear games and also enhances the stability of general GAN training. We establish experimentally that both techniques are strikingly effective in the non-convex-concave GAN setting as well. Both improve inception and FID scores on different architectures and for different GAN objectives. We provide comprehensive experimental results across a range of datasets -- mixture of Gaussians, CIFAR-10, STL-10, CelebA and ImageNet -- to demonstrate its effectiveness. We achieve state-of-the-art results on CIFAR-10 and produce clean CelebA face images.\footnote{~The code is available at \url{https://github.com/yasinyazici/EMA_GAN}}
stat
User-Dependent Neural Sequence Models for Continuous-Time Event Data
Continuous-time event data are common in applications such as individual behavior data, financial transactions, and medical health records. Modeling such data can be very challenging, in particular for applications with many different types of events, since it requires a model to predict the event types as well as the time of occurrence. Recurrent neural networks that parameterize time-varying intensity functions are the current state-of-the-art for predictive modeling with such data. These models typically assume that all event sequences come from the same data distribution. However, in many applications event sequences are generated by different sources, or users, and their characteristics can be very different. In this paper, we extend the broad class of neural marked point process models to mixtures of latent embeddings, where each mixture component models the characteristic traits of a given user. Our approach relies on augmenting these models with a latent variable that encodes user characteristics, represented by a mixture model over user behavior that is trained via amortized variational inference. We evaluate our methods on four large real-world datasets and demonstrate systematic improvements from our approach over existing work for a variety of predictive metrics such as log-likelihood, next event ranking, and source-of-sequence identification.
stat
DINA: Estimating Heterogenous Treatment Effects in Exponential Family and Cox Model
We propose to use the difference in natural parameters (DINA) to quantify the heterogeneous treatment effect for the exponential family, a.k.a. the hazard ratio for the Cox model, in contrast to the difference in means. For responses such as binary outcome and survival time, DINA is of more practical interest and convenient for modeling the covariates' influences on the treatment effect. We introduce a DINA estimator that is insensitive to confounding and non-collapsibility issues, and allows practitioners to use powerful off-the-shelf machine learning tools for nuisance estimation. We use extensive simulations to demonstrate the efficacy of the proposed method with various response distributions and censoring mechanisms. We also apply the proposed method to the SPRINT dataset to estimate the heterogeneous treatment effect, testify the method's robustness to nuisance estimation, and conduct placebo evaluation.
stat
Statistical inference for Axiom A attractors
From the climate system to the effect of the internet on society, chaotic systems appear to have a significant role in our future. Here a method of statistical learning for a class of chaotic systems is described along with underlying theory that can be used not only for predicting those systems a short time ahead, but also as a basis for statistical inference about their dynamics. The method is applied to prediction of 3 different systems. The statistical inference aspect can be applied to explore and enhance computer models of such systems which in turn can provide feedback for even better prediction and more precise inference.
stat
Ultimate P\'olya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical data
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarity with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on P\'olya Gamma random variables for a range of commonly encountered discrete choice models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial and multinomial logistic regression models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straight-forward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, MCMC boosting strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and a real data application.
stat
Estimating the Efficiency Gain of Covariate-Adjusted Analyses in Future Clinical Trials Using External Data
We present a general framework for using existing data to estimate the efficiency gain from using a covariate-adjusted estimator of a marginal treatment effect in a future randomized trial. We describe conditions under which it is possible to define a mapping from the distribution that generated the existing external data to the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator. Under conditions, these relative efficiencies approximate the ratio of sample size needed to achieve a desired power. We consider two situations where the outcome is either fully or partially observed and several treatment effect estimands that are of particular interest in most trials. For each such estimand, we develop a semiparametrically efficient estimator of the relative efficiency that allows for the application of flexible statistical learning tools to estimate the nuisance functions and an analytic form of a corresponding Wald-type confidence interval. We also propose a double bootstrap scheme for constructing confidence intervals. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to data to estimate the relative efficiency of using covariate adjustment in Covid-19 therapeutic trials.
stat
Learning Overlapping Representations for the Estimation of Individualized Treatment Effects
The choice of making an intervention depends on its potential benefit or harm in comparison to alternatives. Estimating the likely outcome of alternatives from observational data is a challenging problem as all outcomes are never observed, and selection bias precludes the direct comparison of differently intervened groups. Despite their empirical success, we show that algorithms that learn domain-invariant representations of inputs (on which to make predictions) are often inappropriate, and develop generalization bounds that demonstrate the dependence on domain overlap and highlight the need for invertible latent maps. Based on these results, we develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
stat
Can we disregard the whole model? Omnibus non-inferiority testing for $R^{2}$ in multivariable linear regression and $\hat{\eta}^{2}$ in ANOVA
Determining a lack of association between an outcome variable and a number of different explanatory variables is frequently necessary in order to disregard a proposed model (i.e., to confirm the lack of an association between an outcome and predictors). Despite this, the literature rarely offers information about, or technical recommendations concerning, the appropriate statistical methodology to be used to accomplish this task. This paper introduces non-inferiority tests for ANOVA and linear regression analyses, that correspond to the standard widely used $F$-test for $\hat{\eta}^2$ and $R^{2}$, respectively. A simulation study is conducted to examine the type I error rates and statistical power of the tests, and a comparison is made with an alternative Bayesian testing approach. The results indicate that the proposed non-inferiority test is a potentially useful tool for 'testing the null.'
stat
Designing group sequential clinical trials when a delayed effect is anticipated: A practical guidance
A common feature of many recent trials evaluating the effects of immunotherapy on survival is that non-proportional hazards can be anticipated at the design stage. This raises the possibility to use a statistical method tailored towards testing the purported long-term benefit, rather than applying the more standard log-rank test and/or Cox model. Many such proposals have been made in recent years, but there remains a lack of practical guidance on implementation, particularly in the context of group-sequential designs. In this article, we aim to fill this gap. We discuss how the POPLAR trial, which compared immunotherapy versus chemotherapy in non-small-cell lung cancer, might have been re-designed to be more robust to the presence of a delayed effect. We then provide step-by-step instructions on how to analyse a hypothetical realisation of the trial, based on this new design. Basic theory on weighted log-rank tests and group-sequential methods is covered, and an accompanying R package (including vignette) is provided.
stat
Meta-Learning Deep Energy-Based Memory Models
We study the problem of learning associative memory -- a system which is able to retrieve a remembered pattern based on its distorted or incomplete version. Attractor networks provide a sound model of associative memory: patterns are stored as attractors of the network dynamics and associative retrieval is performed by running the dynamics starting from a query pattern until it converges to an attractor. In such models the dynamics are often implemented as an optimization procedure that minimizes an energy function, such as in the classical Hopfield network. In general it is difficult to derive a writing rule for a given dynamics and energy that is both compressive and fast. Thus, most research in energy-based memory has been limited either to tractable energy models not expressive enough to handle complex high-dimensional objects such as natural images, or to models that do not offer fast writing. We present a novel meta-learning approach to energy-based memory models (EBMM) that allows one to use an arbitrary neural architecture as an energy model and quickly store patterns in its weights. We demonstrate experimentally that our EBMM approach can build compressed memories for synthetic and natural data, and is capable of associative retrieval that outperforms existing memory systems in terms of the reconstruction error and compression rate.
stat
varstan: An R package for Bayesian analysis of structured time series models with Stan
varstan is an \proglang{R} package for Bayesian analysis of time series models using \proglang{Stan}. The package offers a dynamic way to choose a model, define priors in a wide range of distributions, check model's fit, and forecast with the m-steps ahead predictive distribution. The users can widely choose between implemented models such as \textit{multiplicative seasonal ARIMA, dynamic regression, random walks, GARCH, dynamic harmonic regressions,VARMA, stochastic Volatility Models, and generalized t-student with unknown degree freedom GARCH models}. Every model constructor in \pkg{varstan} defines weakly informative priors, but prior specifications can be changed in a dynamic and flexible way, so the prior distributions reflect the parameter's initial beliefs. For model selection, the package offers the classical information criteria: AIC, AICc, BIC, DIC, Bayes factor. And more recent criteria such as Widely-applicable information criteria (\textit{WAIC}), and the Bayesian leave one out cross-validation (\textit{loo}). In addition, a Bayesian version for automatic order selection in seasonal ARIMA and dynamic regression models can be used as an initial step for the time series analysis.
stat
TRAP: A Predictive Framework for Trail Running Assessment of Performance
Trail running is an endurance sport in which athletes face severe physical challenges. Due to the growing number of participants, the organization of limited staff, equipment, and medical support in these races now plays a key role. Monitoring runner's performance is a difficult task that requires knowledge of the terrain and of the runner's ability. In the past, choices were solely based on the organizers' experience without reliance on data. However, this approach is neither scalable nor transferable. Instead, we propose a firm statistical methodology to perform this task, both before and during the race. Our proposed framework, Trail Running Assessment of Performance (TRAP), studies (1) the the assessment of the runner's ability to reach the next checkpoint, (2) the prediction of the runner's expected passage time at the next checkpoint, and (3) corresponding prediction intervals for the passage time. To obtain data on the ability of runners, we introduce a Python package, ScrapITRA, to access the race history of runners from the International Trail Running Association (ITRA). We apply our methodology, using the ITRA data along with checkpoint and terrain-level information, to the "holy grail" of ultra-trail running, the Ultra-Trail du Mont-Blanc (UTMB) race, demonstrating the predictive power of our methodology.
stat
Bayesian Evidential Deep Learning with PAC Regularization
We propose a novel method for closed-form predictive distribution modeling with neural nets. In quantifying prediction uncertainty, we build on Evidential Deep Learning, which has been impactful as being both simple to implement and giving closed-form access to predictive uncertainty. We employ it to model aleatoric uncertainty and extend it to account also for epistemic uncertainty by converting it to a Bayesian Neural Net. While extending its uncertainty quantification capabilities, we maintain its analytically accessible predictive distribution model by performing progressive moment matching for the first time for approximate weight marginalization. The eventual model introduces a prohibitively large number of hyperparameters for stable training. We overcome this drawback by deriving a vacuous PAC bound that comprises the marginal likelihood of the predictor and a complexity penalty. We observe on regression, classification, and out-of-domain detection benchmarks that our method improves model fit and uncertainty quantification.
stat
Implicit Hamiltonian Monte Carlo for Sampling Multiscale Distributions
Hamiltonian Monte Carlo (HMC) has been widely adopted in the statistics community because of its ability to sample high-dimensional distributions much more efficiently than other Metropolis-based methods. Despite this, HMC often performs sub-optimally on distributions with high correlations or marginal variances on multiple scales because the resulting stiffness forces the leapfrog integrator in HMC to take an unreasonably small stepsize. We provide intuition as well as a formal analysis showing how these multiscale distributions limit the stepsize of leapfrog and we show how the implicit midpoint method can be used, together with Newton-Krylov iteration, to circumvent this limitation and achieve major efficiency gains. Furthermore, we offer practical guidelines for when to choose between implicit midpoint and leapfrog and what stepsize to use for each method, depending on the distribution being sampled. Unlike previous modifications to HMC, our method is generally applicable to highly non-Gaussian distributions exhibiting multiple scales. We illustrate how our method can provide a dramatic speedup over leapfrog in the context of the No-U-Turn sampler (NUTS) applied to several examples.
stat
How much baseline correction do we need in ERP research? Extended GLM model can replace baseline correction while lifting its limits
Baseline correction plays an important role in past and current methodological debates in ERP research (e.g. the Tanner v. Maess debate in Journal of Neuroscience Methods), serving as a potential alternative to strong highpass filtering. However, the very assumptions that underlie traditional baseline also undermine it, making it statistically unnecessary and even undesirable and reducing signal-to-noise ratio. Including the baseline interval as a predictor in a GLM-based statistical approach allows the data to determine how much baseline correction is needed, including both full traditional and no baseline correction as subcases, while reducing the amount of variance in the residual error term and thus potentially increasing statistical power.
stat
Functional Peaks-over-threshold Analysis
Peaks-over-threshold analysis using the generalized Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks-over-threshold analysis to extremes of functional data. Threshold exceedances defined using a functional $r$ are modelled by the generalized $r$-Pareto process, a functional generalization of the generalized Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for $r$-exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalized $r$-Pareto processes, discuss model validation, and use the new methodology to study extreme European windstorms and heavy spatial rainfall.
stat
Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis
A number of parametric and nonparametric methods for estimating cognitive diagnosis models (CDMs) have been developed and applied in a wide range of contexts. However, in the literature, a wide chasm exists between these two families of methods, and their relationship to each other is not well understood. In this paper, we propose a unified estimation framework to bridge the divide between parametric and nonparametric methods in cognitive diagnosis to better understand their relationship. We also develop iterative joint estimation algorithms and establish consistency properties within the proposed framework. Lastly, we present comprehensive simulation results to compare different methods, and provide practical recommendations on the appropriate use of the proposed framework in various CDM contexts.
stat
Context-specific volume-delay curves by combining crowd-sourced traffic data with Automated Traffic Counters (ATC): a case study for London
Traffic congestion across the world has reached chronic levels. Despite many technological disruptions, one of the most fundamental and widely used functions within traffic modelling, the volume delay function, has seen little in the way of change since it was developed in the 1960's. Traditionally macroscopic methods have been employed to relate traffic volume to vehicular journey time. The general nature of these functions enables their ease of use and gives widespread applicability. However, they lack the ability to consider individual road characteristics (i.e. geometry, presence of traffic furniture, road quality and surrounding environment). This research investigates the feasibility to reconstruct the model using two different data sources, namely the traffic speed from Google Maps' Directions Application Programming Interface (API) and traffic volume data from automated traffic counters (ATC). Google's traffic speed data are crowd-sourced from the smartphone Global Positioning System (GPS) of road users, able to reflect real-time, context-specific traffic condition of a road. On the other hand, the ATCs enable the harvesting of the vehicle volume data over equally fine temporal resolutions (hourly or less). By combining them for different road types in London, new context-specific volume-delay functions can be generated. This method shows promise in selected locations with the generation of robust functions. In other locations it highlights the need to better understand other influencing factors, such as the presence of on road parking or weather events.
stat
Efficient Designs of SLOPE Penalty Sequences in Finite Dimension
In linear regression, SLOPE is a new convex analysis method that generalizes the Lasso via the sorted L1 penalty: larger fitted coefficients are penalized more heavily. This magnitude-dependent regularization requires an input of penalty sequence $\lambda$, instead of a scalar penalty as in the Lasso case, thus making the design extremely expensive in computation. In this paper, we propose two efficient algorithms to design the possibly high-dimensional SLOPE penalty, in order to minimize the mean squared error. For Gaussian data matrices, we propose a first order Projected Gradient Descent (PGD) under the Approximate Message Passing regime. For general data matrices, we present a zero-th order Coordinate Descent (CD) to design a sub-class of SLOPE, referred to as the k-level SLOPE. Our CD allows a useful trade-off between the accuracy and the computation speed. We demonstrate the performance of SLOPE with our designs via extensive experiments on synthetic data and real-world datasets.
stat
Preparing Weather Data for Real-Time Building Energy Simulation
This study introduces a framework for quality control of measured weather data, including anomaly detection, and infilling missing values. Weather data is a fundamental input to building performance simulations, in which anomalous values defect the results while missing data lead to an unexpected termination of the simulation process. Traditionally, infilling missing values in weather data is performed through periodic or linear interpolations. However, when missing values exceed many consecutive hours, the accuracy of traditional methods is subject to debate. This study demonstrates how Neural Networks can increase the accuracy of data imputation when compared to other supervised learning methods. The framework is validated by predicting missing temperature and relative humidity data for an observation site, through a network of nearby weather stations in Milan, Italy. Results show that the proposed method can facilitate real-time building simulations with accurate and rapid quality control.
stat
Forward Stability and Model Path Selection
Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.
stat
Integrated causal-predictive machine learning models for tropical cyclone epidemiology
Strategic preparedness has been shown to reduce the adverse health impacts of hurricanes and tropical storms, referred to collectively as tropical cyclones (TCs), but its protective impact could be enhanced by a more comprehensive and rigorous characterization of TC epidemiology. To generate the insights and tools necessary for high-precision TC preparedness, we develop and apply a novel Bayesian machine learning approach that standardizes estimation of historic TC health impacts, discovers common patterns and sources of heterogeneity in those health impacts, and enables identification of communities at highest health risk for future TCs. The model integrates (1) a causal inference component to quantify the immediate health impacts of recent historic TCs at high spatial resolution and (2) a predictive component that captures how TC meteorological features and socioeconomic/demographic characteristics of impacted communities are associated with health impacts. We apply it to a rich data platform containing detailed historic TC exposure information and Medicare claims data. The health outcomes used in our analyses are all-cause mortality and cardiovascular- and respiratory-related hospitalizations. We report a high degree of heterogeneity in the acute health impacts of historic TCs at both the TC level and the community level, with substantial increases in respiratory hospitalizations, on average, during a two-week period surrounding TCs. TC sustained windspeeds are found to be the primary driver of increased mortality and respiratory risk. Our modeling approach has broader utility for predicting the health impacts of many types of extreme climate events.
stat
Large Scale Tensor Regression using Kernels and Variational Inference
We outline an inherent weakness of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this weakness. We coin our method \textit{Kernel Fried Tensor}(KFT) and present it as a large scale forecasting tool for high dimensional data. Our results show superior performance against \textit{LightGBM} and \textit{Field Aware Factorization Machines}(FFM), two algorithms with proven track records widely used in industrial forecasting. We also develop a variational inference framework for KFT and associate our forecasts with calibrated uncertainty estimates on three large scale datasets. Furthermore, KFT is empirically shown to be robust against uninformative side information in terms of constants and Gaussian noise.
stat
A Spatially Discrete Approximation to Log-Gaussian Cox Processes for Modelling Aggregated Disease Count Data
In this paper, we develop a computationally efficient discrete approximation to log-Gaussian Cox process (LGCP) models for the analysis of spatially aggregated disease count data. Our approach overcomes an inherent limitation of spatial models based on Markov structures, namely that each such model is tied to a specific partition of the study area, and allows for spatially continuous prediction. We compare the predictive performance of our modelling approach with LGCP through a simulation study and an application to primary biliary cirrhosis incidence data in Newcastle-Upon-Tyne, UK. Our results suggest that when disease risk is assumed to be a spatially continuous process, the proposed approximation to LGCP provides reliable estimates of disease risk both on spatially continuous and aggregated scales. The proposed methodology is implemented in the open-source R package SDALGCP.
stat
Bayesian Neural Networks at Finite Temperature
We recapitulate the Bayesian formulation of neural network based classifiers and show that, while sampling from the posterior does indeed lead to better generalisation than is obtained by standard optimisation of the cost function, even better performance can in general be achieved by sampling finite temperature ($T$) distributions derived from the posterior. Taking the example of two different deep (3 hidden layers) classifiers for MNIST data, we find quite different $T$ values to be appropriate in each case. In particular, for a typical neural network classifier a clear minimum of the test error is observed at $T>0$. This suggests an early stopping criterion for full batch simulated annealing: cool until the average validation error starts to increase, then revert to the parameters with the lowest validation error. As $T$ is increased classifiers transition from accurate classifiers to classifiers that have higher training error than assigning equal probability to each class. Efficient studies of these temperature-induced effects are enabled using a replica-exchange Hamiltonian Monte Carlo simulation technique. Finally, we show how thermodynamic integration can be used to perform model selection for deep neural networks. Similar to the Laplace approximation, this approach assumes that the posterior is dominated by a single mode. Crucially, however, no assumption is made about the shape of that mode and it is not required to precisely compute and invert the Hessian.
stat
Modeling semi-competing risks data as a longitudinal bivariate process
The Adult Changes in Thought (ACT) study is a long-running prospective study of incident all-cause dementia and Alzheimer's disease (AD). As the cohort ages, death (a terminal event) is a prominent competing risk for AD (a non-terminal event), although the reverse is not the case. As such, analyses of data from ACT can be placed within the semi-competing risks framework. Central to semi-competing risks, and in contrast to standard competing risks, is that one can learn about the dependence structure between the two events. To-date, however, most methods for semi-competing risks treat dependence as a nuisance and not a potential source of new clinical knowledge. We propose a novel regression-based framework that views the two time-to-event outcomes through the lens of a longitudinal bivariate process on a partition of the time scale. A key innovation of the framework is that dependence is represented in two distinct forms, $\textit{local}$ and $\textit{global}$ dependence, both of which have intuitive clinical interpretations. Estimation and inference are performed via penalized maximum likelihood, and can accommodate right censoring, left truncation and time-varying covariates. The framework is used to investigate the role of gender and having $\ge$1 APOE-$\epsilon4$ allele on the joint risk of AD and death.
stat
Sufficient Dimension Reduction for Average Causal Effect Estimation
Having a large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the samples available. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. We develop an algorithm which employs a supervised kernel dimension reduction method to search for a lower dimensional representation for the original covariates, and then utilizes nearest neighbor matching in the reduced covariate space to impute the counterfactual outcomes to avoid large-sized covariate set problem. The proposed algorithm is evaluated on two semi-synthetic and three real-world datasets and the results have demonstrated the effectiveness of the algorithm.
stat
Multiplicity for a Group Sequential Trial with Biomarker Subpopulations
Biomarker subpopulations have become increasingly important for drug development in targeted therapies. The use of biomarkers has the potential to facilitate more effective outcomes by guiding patient selection appropriately, thus enhancing the benefit-risk profile and improving trial power. Studying a broad population simultaneously with a more targeted one allows the trial to determine the population for which a treatment is effective and allows a goal of making approved regulatory labeling as inclusive as is appropriate. We examine new methods accounting for the complete correlation structure in group sequential designs with hypotheses in nested subgroups. The designs provide full control of family-wise Type I error rate. This extension of previous methods accounting for either group sequential design or correlation between subgroups improves efficiency (power or sample size) over a typical Bonferroni approach for testing nested populations.
stat
Learning the Hypotheses Space from data Part II: Convergence and Feasibility
In part \textit{I} we proposed a structure for a general Hypotheses Space $\mathcal{H}$, the Learning Space $\mathbb{L}(\mathcal{H})$, which can be employed to avoid \textit{overfitting} when estimating in a complex space with relative shortage of examples. Also, we presented the U-curve property, which can be taken advantage of in order to select a Hypotheses Space without exhaustively searching $\mathbb{L}(\mathcal{H})$. In this paper, we carry further our agenda, by showing the consistency of a model selection framework based on Learning Spaces, in which one selects from data the Hypotheses Space on which to learn. The method developed in this paper adds to the state-of-the-art in model selection, by extending Vapnik-Chervonenkis Theory to \textit{random} Hypotheses Spaces, i.e., Hypotheses Spaces learned from data. In this framework, one estimates a random subspace $\hat{\mathcal{M}} \in \mathbb{L}(\mathcal{H})$ which converges with probability one to a target Hypotheses Space $\mathcal{M}^{\star} \in \mathbb{L}(\mathcal{H})$ with desired properties. As the convergence implies asymptotic unbiased estimators, we have a consistent framework for model selection, showing that it is feasible to learn the Hypotheses Space from data. Furthermore, we show that the generalization errors of learning on $\hat{\mathcal{M}}$ are lesser than those we commit when learning on $\mathcal{H}$, so it is more efficient to learn on a subspace learned from data.
stat
A pragmatic adaptive enrichment design for selecting the right target population for cancer immunotherapies
One of the challenges in the design of confirmatory trials is to deal with uncertainties regarding the optimal target population for a novel drug. Adaptive enrichment designs (AED) which allow for a data-driven selection of one or more pre-specified biomarker subpopulations at an interim analysis have been proposed in this setting but practical case studies of AEDs are still relatively rare. We present the design of an AED with a binary endpoint in the highly dynamic setting of cancer immunotherapy. The trial was initiated as a conventional trial in early triple-negative breast cancer but amended to an AED based on emerging data external to the trial suggesting that PD-L1 status could be a predictive biomarker. Operating characteristics are discussed including the concept of a minimal detectable difference, that is, the smallest observed treatment effect that would lead to a statistically significant result in at least one of the target populations at the interim or the final analysis, respectively, in the setting of AED.
stat
A Particle Method for Solving Fredholm Equations of the First Kind
Fredholm integral equations of the first kind are the prototypical example of ill-posed linear inverse problems. They model, among other things, reconstruction of distorted noisy observations and indirect density estimation and also appear in instrumental variable regression. However, their numerical solution remains a challenging problem. Many techniques currently available require a preliminary discretization of the domain of the solution and make strong assumptions about its regularity. For example, the popular expectation maximization smoothing (EMS) scheme requires the assumption of piecewise constant solutions which is inappropriate for most applications. We propose here a novel particle method that circumvents these two issues. This algorithm can be thought of as a Monte Carlo approximation of the EMS scheme which not only performs an adaptive stochastic discretization of the domain but also results in smooth approximate solutions. We analyze the theoretical properties of the EMS iteration and of the corresponding particle algorithm. Compared to standard EMS, we show experimentally that our novel particle method provides state-of-the-art performance for realistic systems, including motion deblurring and reconstruction of cross-section images of the brain from positron emission tomography.
stat
Binacox: automatic cut-point detection in high-dimensional Cox model with applications in genetics
We introduce the binacox, a prognostic method to deal with the problem of detecting multiple cut-points per features in a multivariate setting where a large number of continuous features are available. The method is based on the Cox model and combines one-hot encoding with the binarsity penalty, which uses total-variation regularization together with an extra linear constraint, and enables feature selection. Original nonasymptotic oracle inequalities for prediction (in terms of Kullback-Leibler divergence) and estimation with a fast rate of convergence are established. The statistical performance of the method is examined in an extensive Monte Carlo simulation study, and then illustrated on three publicly available genetic cancer datasets. On these high-dimensional datasets, our proposed method significantly outperforms state-of-the-art survival models regarding risk prediction in terms of the C-index, with a computing time orders of magnitude faster. In addition, it provides powerful interpretability from a clinical perspective by automatically pinpointing significant cut-points in relevant variables.
stat
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments
Many imaging problems require solving an inverse problem that is ill-conditioned or ill-posed. Imaging methods typically address this difficulty by regularising the estimation problem to make it well-posed. This often requires setting the value of the so-called regularisation parameters that control the amount of regularisation enforced. These parameters are notoriously difficult to set a priori, and can have a dramatic impact on the recovered estimates. In this work, we propose a general empirical Bayesian method for setting regularisation parameters in imaging problems that are convex w.r.t. the unknown image. Our method calibrates regularisation parameters directly from the observed data by maximum marginal likelihood estimation, and can simultaneously estimate multiple regularisation parameters. Furthermore, the proposed algorithm uses the same basic operators as proximal optimisation algorithms, namely gradient and proximal operators, and it is therefore straightforward to apply to problems that are currently solved by using proximal optimisation techniques. Our methodology is demonstrated with a range of experiments and comparisons with alternative approaches from the literature. The considered experiments include image denoising, non-blind image deconvolution, and hyperspectral unmixing, using synthesis and analysis priors involving the L1, total-variation, total-variation and L1, and total-generalised-variation pseudo-norms. A detailed theoretical analysis of the proposed method is presented in the companion paper arXiv:2008.05793.
stat
Optimal Stopping via Randomized Neural Networks
This paper presents new machine learning approaches to approximate the solution of optimal stopping problems. The key idea of these methods is to use neural networks, where the hidden layers are generated randomly and only the last layer is trained, in order to approximate the continuation value. Our approaches are applicable for high dimensional problems where the existing approaches become increasingly impractical. In addition, since our approaches can be optimized using a simple linear regression, they are very easy to implement and theoretical guarantees can be provided. In Markovian examples our randomized reinforcement learning approach and in non-Markovian examples our randomized recurrent neural network approach outperform the state-of-the-art and other relevant machine learning approaches.
stat
Robust Empirical Bayes Small Area Estimation with Density Power Divergence
A two-stage normal hierarchical model called the Fay--Herriot model and the empirical Bayes estimator are widely used to provide indirect and model-based estimates of means in small areas. However, the performance of the empirical Bayes estimator might be poor when the assumed normal distribution is misspecified. In this article, we propose a simple modification by using density power divergence and suggest a new robust empirical Bayes small area estimator. The mean squared error and estimated mean squared error of the proposed estimator are derived based on the asymptotic properties of the robust estimator of the model parameters. We investigate the numerical performance of the proposed method through simulations and an application to survey data.
stat
Fast ABC with joint generative modelling and subset simulation
We propose a novel approach for solving inverse-problems with high-dimensional inputs and an expensive forward mapping. It leverages joint deep generative modelling to transfer the original problem spaces to a lower dimensional latent space. By jointly modelling input and output variables and endowing the latent with a prior distribution, the fitted probabilistic model indirectly gives access to the approximate conditional distributions of interest. Since model error and observational noise with unknown distributions are common in practice, we resort to likelihood-free inference with Approximate Bayesian Computation (ABC). Our method calls on ABC by Subset Simulation to explore the regions of the latent space with dissimilarities between generated and observed outputs below prescribed thresholds. We diagnose the diversity of approximate posterior solutions by monitoring the probability content of these regions as a function of the threshold. We further analyze the curvature of the resulting diagnostic curve to propose an adequate ABC threshold. When applied to a cross-borehole tomography example from geophysics, our approach delivers promising performance without using prior knowledge of the forward nor of the noise distribution.
stat
Integrating overlapping datasets using bivariate causal discovery
Causal knowledge is vital for effective reasoning in science, as causal relations, unlike correlations, allow one to reason about the outcomes of interventions. Algorithms that can discover causal relations from observational data are based on the assumption that all variables have been jointly measured in a single dataset. In many cases this assumption fails. Previous approaches to overcoming this shortcoming devised algorithms that returned all joint causal structures consistent with the conditional independence information contained in each individual dataset. But, as conditional independence tests only determine causal structure up to Markov equivalence, the number of consistent joint structures returned by these approaches can be quite large. The last decade has seen the development of elegant algorithms for discovering causal relations beyond conditional independence, which can distinguish among Markov equivalent structures. In this work we adapt and extend these so-called bivariate causal discovery algorithms to the problem of learning consistent causal structures from multiple datasets with overlapping variables belonging to the same generating process, providing a sound and complete algorithm that outperforms previous approaches on synthetic and real data.
stat
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
An important feature of Bayesian statistics is the opportunity to do sequential inference: the posterior distribution obtained after seeing a dataset can be used as prior for a second inference. However, when Monte Carlo sampling methods are used for inference, we only have a set of samples from the posterior distribution. To do sequential inference, we then either have to evaluate the second posterior at only these locations and reweight the samples accordingly, or we can estimate a functional description of the posterior probability distribution from the samples and use that as prior for the second inference. Here, we investigated to what extent we can obtain an accurate joint posterior from two datasets if the inference is done sequentially rather than jointly, under the condition that each inference step is done using Monte Carlo sampling. To test this, we evaluated the accuracy of kernel density estimates, Gaussian mixtures, vine copulas and Gaussian processes in approximating posterior distributions, and then tested whether these approximations can be used in sequential inference. In low dimensionality, Gaussian processes are more accurate, whereas in higher dimensionality Gaussian mixtures or vine copulas perform better. In our test cases, posterior approximations are preferable over direct sample reweighting, although joint inference is still preferable over sequential inference. Since the performance is case-specific, we provide an R package mvdens with a unified interface for the density approximation methods.
stat
Anomaly Detection in Stationary Settings: A Permutation-Based Higher Criticism Approach
Anomaly detection when observing a large number of data streams is essential in a variety of applications, ranging from epidemiological studies to monitoring of complex systems. High-dimensional scenarios are usually tackled with scan-statistics and related methods, requiring stringent modeling assumptions for proper calibration. In this work we take a non-parametric stance, and propose a permutation-based variant of the higher criticism statistic not requiring knowledge of the null distribution. This results in an exact test in finite samples which is asymptotically optimal in the wide class of exponential models. We demonstrate the power loss in finite samples is minimal with respect to the oracle test. Furthermore, since the proposed statistic does not rely on asymptotic approximations it typically performs better than popular variants of higher criticism that rely on such approximations. We include recommendations such that the test can be readily applied in practice, and demonstrate its applicability in monitoring the daily number of COVID-19 cases in the Netherlands.
stat
MCMC for Bayesian uncertainty quantification from time-series data
Many problems in science and engineering require uncertainty quantification that accounts for observed data. For example, in computational neuroscience, Neural Population Models (NPMs) are mechanistic models that describe brain physiology in a range of different states. Within computational neuroscience there is growing interest in the inverse problem of inferring NPM parameters from recordings such as the EEG (Electroencephalogram). Uncertainty quantification is essential in this application area in order to infer the mechanistic effect of interventions such as anaesthesia. This paper presents C++ software for Bayesian uncertainty quantification in the parameters of NPMs from approximately stationary data using Markov Chain Monte Carlo (MCMC). Modern MCMC methods require first order (and in some cases higher order) derivatives of the posterior density. The software presented offers two distinct methods of evaluating derivatives: finite differences and exact derivatives obtained through Algorithmic Differentiation (AD). For AD, two different implementations are used: the open source Stan Math Library and the commercially licenced dco/c++ tool distributed by NAG (Numerical Algorithms Group). The use of derivative information in MCMC sampling is demonstrated through a simple example, the noise-driven harmonic oscillator. And different methods for computing derivatives are compared. The software is written in a modular object-oriented way such that it can be extended to derivative based MCMC for other scientific domains.
stat
Multivariate Convolutional Sparse Coding with Low Rank Tensor
This paper introduces a new multivariate convolutional sparse coding based on tensor algebra with a general model enforcing both element-wise sparsity and low-rankness of the activations tensors. By using the CP decomposition, this model achieves a significantly more efficient encoding of the multivariate signal-particularly in the high order/ dimension setting-resulting in better performance. We prove that our model is closely related to the Kruskal tensor regression problem, offering interesting theoretical guarantees to our setting. Furthermore, we provide an efficient optimization algorithm based on alternating optimization to solve this model. Finally, we evaluate our algorithm with a large range of experiments, highlighting its advantages and limitations.
stat
Approximate Factor Models with Strongly Correlated Idiosyncratic Errors
We consider the estimation of approximate factor models for time series data, where strong serial and cross-sectional correlations amongst the idiosyncratic component are present. This setting comes up naturally in many applications, but existing approaches in the literature rely on the assumption that such correlations are weak, leading to mis-specification of the number of factors selected and consequently inaccurate inference. In this paper, we explicitly incorporate the dependent structure present in the idiosyncratic component through lagged values of the observed multivariate time series. We formulate a constrained optimization problem to estimate the factor space and the transition matrices of the lagged values {\em simultaneously}, wherein the constraints reflect the low rank nature of the common factors and the sparsity of the transition matrices. We establish theoretical properties of the obtained estimates, and introduce an easy-to-implement computational procedure for empirical work. The performance of the model and the implementation procedure is evaluated on synthetic data and compared with competing approaches, and further illustrated on a data set involving weekly log-returns of 75 US large financial institutions for the 2001-2016 period.
stat
A note of feature screening via rank-based coefficient of correlation
Feature screening is useful and popular to detect informative predictors for ultrahigh-dimensional data before developing proceeding statistical analysis or constructing statistical models. While a large body of feature screening procedures has been developed, most of them are restricted on examining either continuous or discrete responses. Moreover, even though many model-free feature screening methods have been proposed, additional assumptions are imposed in those methods to ensure their theoretical results. To address those difficulties and provide simple implementation, in this paper we extend the rank-based coefficient of correlation proposed by Chatterjee (2020) to develop feature screening procedure. We show that this new screening criterion is able to deal with continuous and discrete responses. Theoretically, sure screening property is established to justify the proposed method. Simulation studies demonstrate that the predictors with nonlinear and oscillatory trajectory are successfully detected regardless of the distribution of the response.
stat
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Tree ensembles, such as random forests and AdaBoost, are ubiquitous machine learning models known for achieving strong predictive performance across a wide variety of domains. However, this strong performance comes at the cost of interpretability (i.e. users are unable to understand the relationships a trained random forest has learned and why it is making its predictions). In particular, it is challenging to understand how the contribution of a particular feature, or group of features, varies as their value changes. To address this, we introduce Disentangled Attribution Curves (DAC), a method to provide interpretations of tree ensemble methods in the form of (multivariate) feature importance curves. For a given variable, or group of variables, DAC plots the importance of a variable(s) as their value changes. We validate DAC on real data by showing that the curves can be used to increase the accuracy of logistic regression while maintaining interpretability, by including DAC as an additional feature. In simulation studies, DAC is shown to out-perform competing methods in the recovery of conditional expectations. Finally, through a case-study on the bike-sharing dataset, we demonstrate the use of DAC to uncover novel insights into a dataset.
stat
Deep Gaussian Markov Random Fields
Gaussian Markov random fields (GMRFs) are probabilistic graphical models widely used in spatial statistics and related fields to model dependencies over spatial structures. We establish a formal connection between GMRFs and convolutional neural networks (CNNs). Common GMRFs are special cases of a generative model where the inverse mapping from data to latent variables is given by a 1-layer linear CNN. This connection allows us to generalize GMRFs to multi-layer CNN architectures, effectively increasing the order of the corresponding GMRF in a way which has favorable computational scaling. We describe how well-established tools, such as autodiff and variational inference, can be used for simple and efficient inference and learning of the deep GMRF. We demonstrate the flexibility of the proposed model and show that it outperforms the state-of-the-art on a dataset of satellite temperatures, in terms of prediction and predictive uncertainty.
stat
SQL-Rank: A Listwise Approach to Collaborative Ranking
In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking.
stat
Approximation of Functions over Manifolds: A Moving Least-Squares Approach
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated directly on that point. We prove that our construction yields a smooth function, and in case of noiseless samples the approximation order is $\mathcal{O}(h^{m+1})$, where $h$ is a local density of sample parameter (i.e., the fill distance) and $m$ is the degree of a local polynomial approximation, used in our algorithm. In addition, the proposed algorithm has linear time complexity with respect to the ambient-space's dimension. Thus, we are able to avoid the computational complexity, commonly encountered in high dimensional approximations, without having to perform non-linear dimension reduction, which inevitably introduces distortions to the geometry of the data. Additionaly, we show numerical experiments that the proposed approach compares favorably to statistical approaches for regression over manifolds and show its potential.
stat
Robust real-time monitoring of high-dimensional data streams
Robust real-time monitoring of high-dimensional data streams has many important real-world applications such as industrial quality control, signal detection, biosurveillance, but unfortunately it is highly non-trivial to develop efficient schemes due to two challenges: (1) the unknown sparse number or subset of affected data streams and (2) the uncertainty of model specification for high-dimensional data. In this article, motivated by the detection of smaller persistent changes in the presence of larger transient outliers, we develop a family of efficient real-time robust detection schemes for high-dimensional data streams through monitoring feature spaces such as PCA or wavelet coefficients when the feature coefficients are from Tukey-Huber's gross error models with outliers. We propose to construct a new local detection statistic for each feature called $L_{\alpha}$-CUSUM statistic that can reduce the effect of outliers by using the Box-Cox transformation of the likelihood function, and then raise a global alarm based upon the sum of the soft-thresholding transformation of these local $L_{\alpha}$-CUSUM statistics so that to filter out unaffected features. In addition, we propose a new concept called false alarm breakdown point to measure the robustness of online monitoring schemes, and also characterize the breakdown point of our proposed schemes. Asymptotic analysis, extensive numerical simulations and case study of nonlinear profile monitoring are conducted to illustrate the robustness and usefulness of our proposed schemes.
stat
A folded model for compositional data analysis
A folded type model is developed for analyzing compositional data. The proposed model involves an extension of the $\alpha$-transformation for compositional data and provides a new and flexible class of distributions for modeling data defined on the simplex sample space. Despite its rather seemingly complex structure, employment of the EM algorithm guarantees efficient parameter estimation. The model is validated through simulation studies and examples which illustrate that the proposed model performs better in terms of capturing the data structure, when compared to the popular logistic normal distribution, and can be advantageous over a similar model without folding.
stat
Beyond the Signs: Nonparametric Tensor Completion via Sign Series
We consider the problem of tensor estimation from noisy observations with possibly missing entries. A nonparametric approach to tensor completion is developed based on a new model which we coin as sign representable tensors. The model represents the signal tensor of interest using a series of structured sign tensors. Unlike earlier methods, the sign series representation effectively addresses both low- and high-rank signals, while encompassing many existing tensor models -- including CP models, Tucker models, single index models, several hypergraphon models -- as special cases. We show that the sign tensor series is theoretically characterized, and computationally estimable, via classification tasks with carefully-specified weights. Excess risk bounds, estimation error rates, and sample complexities are established. We demonstrate the outperformance of our approach over previous methods on two datasets, one on human brain connectivity networks and the other on topic data mining.
stat
Black-Box Inference for Non-Linear Latent Force Models
Latent force models are systems whereby there is a mechanistic model describing the dynamics of the system state, with some unknown forcing term that is approximated with a Gaussian process. If such dynamics are non-linear, it can be difficult to estimate the posterior state and forcing term jointly, particularly when there are system parameters that also need estimating. This paper uses black-box variational inference to jointly estimate the posterior, designing a multivariate extension to local inverse autoregressive flows as a flexible approximater of the system. We compare estimates on systems where the posterior is known, demonstrating the effectiveness of the approximation, and apply to problems with non-linear dynamics, multi-output systems and models with non-Gaussian likelihoods.
stat
MetaFun: Meta-Learning with Iterative Functional Updates
We develop a functional encoder-decoder approach to supervised meta-learning, where labeled data is encoded into an infinite-dimensional functional representation rather than a finite-dimensional one. Furthermore, rather than directly producing the representation, we learn a neural update rule resembling functional gradient descent which iteratively improves the representation. The final representation is used to condition the decoder to make predictions on unlabeled data. Our approach is the first to demonstrates the success of encoder-decoder style meta-learning methods like conditional neural processes on large-scale few-shot classification benchmarks such as miniImageNet and tieredImageNet, where it achieves state-of-the-art performance.
stat
Bias in the estimation of cumulative viremia in cohort studies of HIV-infected individuals
Purpose: The use of cumulative measures of exposure to raised HIV viral load (viremia copy-years) is an increasingly common in HIV prevention and treatment epidemiology due to the high biological plausibility. We sought to estimate the magnitude and direction of bias in a cumulative measure of viremia caused by different frequency of sampling and duration of follow-up. Methods: We simulated longitudinal viral load measures and reanalysed cohort study datasets with longitudinal viral load measurements under different sampling strategies to estimate cumulative viremia. Results: In both simulated and observed data, estimates of cumulative viremia by the trapezoidal rule show systematic upward bias when there are fewer sampling time points and/or increased duration between sampling time points, compared to estimation of full time series. Absolute values of cumulative viremia vary appreciably by the patterns of viral load over time, even after adjustment for total duration of follow up. Conclusions: Sampling bias due to differential frequency of sampling appears extensive and of meaningful magnitude in measures of cumulative viremia. Cumulative measures of viremia should be used only in studies with sufficient frequency of viral load measures and always as relative measures.
stat
Detecting Abrupt Changes in the Presence of Local Fluctuations and Autocorrelated Noise
Whilst there are a plethora of algorithms for detecting changes in mean in univariate time-series, almost all struggle in real applications where there is autocorrelated noise or where the mean fluctuates locally between the abrupt changes that one wishes to detect. In these cases, default implementations, which are often based on assumptions of a constant mean between changes and independent noise, can lead to substantial over-estimation of the number of changes. We propose a principled approach to detect such abrupt changes that models local fluctuations as a random walk process and autocorrelated noise via an AR(1) process. We then estimate the number and location of changepoints by minimising a penalised cost based on this model. We develop a novel and efficient dynamic programming algorithm, DeCAFS, that can solve this minimisation problem; despite the additional challenge of dependence across segments, due to the autocorrelated noise, which makes existing algorithms inapplicable. Theory and empirical results show that our approach has greater power at detecting abrupt changes than existing approaches. We apply our method to measuring gene expression levels in bacteria.
stat
Bayes Calculations from Quantile Implied Likelihood
In statistical practice, a realistic Bayesian model for a given data set can be defined by a likelihood function that is analytically or computationally intractable, due to large data sample size, high parameter dimensionality, or complex likelihood functional form. This in turn poses challenges to the computation and inference of the posterior distribution of the model parameters. For such a model, a tractable likelihood function is introduced which approximates the exact likelihood through its quantile function. It is defined by an asymptotic chi-square confidence distribution for a pivotal quantity, which is generated by the asymptotic normal distribution of the sample quantiles given model parameters. This Quantile Implied Likelihood (QIL) gives rise to an approximate posterior distribution which can be estimated by using penalized log-likelihood maximization or any suitable Monte Carlo algorithm. The QIL approach to Bayesian Computation is illustrated through the Bayesian analysis of simulated and real data sets having sample sizes that reach the millions. The analyses involve various models for univariate or multivariate iid or non-iid data, with low or high parameter dimensionality, many of which are defined by intractable likelihoods. The probability models include the Student's t, g-and-h, and g-and-k distributions; the Bayesian logit regression model with many covariates; exponential random graph model, a doubly-intractable model for networks; the multivariate skew normal model, for robust inference of the inverse-covariance matrix when it is large relative to the sample size; and the Wallenius distribution model.
stat
Reflection on modern methods: Good practices for applied statistical learning in epidemiology
Statistical learning (SL) includes methods that extract knowledge from complex data. SL methods beyond generalized linear models are being increasingly implemented in public health research and epidemiology because they can perform better in instances with complex or high-dimensional data---settings when traditional statistical methods fail. These novel methods, however, often include random sampling which may induce variability in results. Best practices in data science can help to ensure robustness. As a case study, we included four SL models that have been applied previously to analyze the relationship between environmental mixtures and health outcomes. We ran each model across 100 initializing values for random number generation, or "seeds," and assessed variability in resulting estimation and inference. All methods exhibited some seed-dependent variability in results. The degree of variability differed across methods and exposure of interest. Any SL method reliant on a random seed will exhibit some degree of seed sensitivity. We recommend that researchers repeat their analysis with various seeds as a sensitivity analysis when implementing these methods to enhance interpretability and robustness of results.
stat
The role of regularization in classification of high-dimensional noisy Gaussian mixture
We consider a high-dimensional mixture of two Gaussians in the noisy regime where even an oracle knowing the centers of the clusters misclassifies a small but finite fraction of the points. We provide a rigorous analysis of the generalization error of regularized convex classifiers, including ridge, hinge and logistic regression, in the high-dimensional limit where the number $n$ of samples and their dimension $d$ go to infinity while their ratio is fixed to $\alpha= n/d$. We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances. We also illustrate the interpolation peak at low regularization, and analyze the role of the respective sizes of the two clusters.
stat
Estimating regression errors without ground truth values
Regression analysis is a standard supervised machine learning method used to model an outcome variable in terms of a set of predictor variables. In most real-world applications we do not know the true value of the outcome variable being predicted outside the training data, i.e., the ground truth is unknown. It is hence not straightforward to directly observe when the estimate from a model potentially is wrong, due to phenomena such as overfitting and concept drift. In this paper we present an efficient framework for estimating the generalization error of regression functions, applicable to any family of regression functions when the ground truth is unknown. We present a theoretical derivation of the framework and empirically evaluate its strengths and limitations. We find that it performs robustly and is useful for detecting concept drift in datasets in several real-world domains.
stat
Screening Rules and its Complexity for Active Set Identification
Screening rules were recently introduced as a technique for explicitly identifying active structures such as sparsity, in optimization problem arising in machine learning. This has led to new methods of acceleration based on a substantial dimension reduction. We show that screening rules stem from a combination of natural properties of subdifferential sets and optimality conditions, and can hence be understood in a unified way. Under mild assumptions, we analyze the number of iterations needed to identify the optimal active set for any converging algorithm. We show that it only depends on its convergence rate.
stat
A Brief Note on the Convergence of Langevin Monte Carlo in Chi-Square Divergence
We study sampling from a target distribution $\nu_* \propto e^{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm when the target $\nu_*$ satisfies the Poincar\'e inequality, and the potential $f$ is first-order smooth and dissipative. Under an opaque uniform warmness condition on the LMC iterates, we establish that $\widetilde{\mathcal{O}}(\epsilon^{-1})$ steps are sufficient for LMC to reach $\epsilon$ neighborhood of the target in Chi-square divergence. We hope that this note serves as a step towards establishing a complete convergence analysis of LMC under Chi-square divergence.
stat
An adequacy approach for deciding the number of clusters for OTRIMLE robust Gaussian mixture based clustering
We introduce a new approach to deciding the number of clusters. The approach is applied to Optimally Tuned Robust Improper Maximum Likelihood Estimation (OTRIMLE; Coretto and Hennig 2016) of a Gaussian mixture model allowing for observations to be classified as "noise", but it can be applied to other clustering methods as well. The quality of a clustering is assessed by a statistic $Q$ that measures how close the within-cluster distributions are to elliptical unimodal distributions that have the only mode in the mean. This nonparametric measure allows for non-Gaussian clusters as long as they have a good quality according to $Q$. The simplicity of a model is assessed by a measure $S$ that prefers a smaller number of clusters unless additional clusters can reduce the estimated noise proportion substantially. The simplest model is then chosen that is adequate for the data in the sense that its observed value of $Q$ is not significantly larger than what is expected for data truly generated from the fitted model, as can be assessed by parametric bootstrap. The approach is compared with model-based clustering using the Bayesian Information Criterion (BIC) and the Integrated Complete Likelihood (ICL) in a simulation study and on two datasets of scientific interest. Keywords: parametric bootstrap; noise component; unimodality; model-based clustering
stat
Solving Optimal Experimental Design with Sequential Quadratic Programming and Chebyshev Interpolation
We propose an optimization algorithm to compute the optimal sensor locations in experimental design in the formulation of Bayesian inverse problems, where the parameter-to-observable mapping is described through an integral equation and its discretization results in a continuously indexed matrix whose size depends on the mesh size n. By approximating the gradient and Hessian of the objective design criterion from Chebyshev interpolation, we solve a sequence of quadratic programs and achieve the complexity $\mathcal{O}(n\log^2(n))$. An error analysis guarantees the integrality gap shrinks to zero as $n\to\infty$, and we apply the algorithm on a two-dimensional advection-diffusion equation, to determine the LIDAR's optimal sensing directions for data collection.
stat
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve $\epsilon$ accuracy in 2-Wasserstein distance, our algorithm achieves $\tilde O(n+\kappa^{2}d^{1/2}/\epsilon+\kappa^{4/3}d^{1/3}n^{2/3}/\epsilon^{2/3})$ gradient complexity (i.e., number of component gradient evaluations), which outperforms the state-of-the-art HMC and stochastic gradient HMC methods in a wide regime. We also extend our algorithm for sampling from smooth and general log-concave distributions, and prove the corresponding gradient complexity as well. Experiments on both synthetic and real data demonstrate the superior performance of our algorithm.
stat
A Bayesian semi-parametric approach for inference on the population partly conditional mean from longitudinal data with dropout
Studies of memory trajectories using longitudinal data often result in highly non-representative samples due to selective study enrollment and attrition. An additional bias comes from practice effects that result in improved or maintained performance due to familiarity with test content or context. These challenges may bias study findings and severely distort the ability to generalize to the target population. In this study we propose an approach for estimating the finite population mean of a longitudinal outcome conditioning on being alive at a specific time point. We develop a flexible Bayesian semi-parametric predictive estimator for population inference when longitudinal auxiliary information is known for the target population. We evaluate sensitivity of the results to untestable assumptions and further compare our approach to other methods used for population inference in a simulation study. The proposed approach is motivated by 15-year longitudinal data from the Betula longitudinal cohort study. We apply our approach to estimate lifespan trajectories in episodic memory, with the aim to generalize findings to a target population.
stat
Active Learning for Deep Gaussian Process Surrogates
Deep Gaussian processes (DGPs) are increasingly popular as predictive models in machine learning (ML) for their non-stationary flexibility and ability to cope with abrupt regime changes in training data. Here we explore DGPs as surrogates for computer simulation experiments whose response surfaces exhibit similar characteristics. In particular, we transport a DGP's automatic warping of the input space and full uncertainty quantification (UQ), via a novel elliptical slice sampling (ESS) Bayesian posterior inferential scheme, through to active learning (AL) strategies that distribute runs non-uniformly in the input space -- something an ordinary (stationary) GP could not do. Building up the design sequentially in this way allows smaller training sets, limiting both expensive evaluation of the simulator code and mitigating cubic costs of DGP inference. When training data sizes are kept small through careful acquisition, and with parsimonious layout of latent layers, the framework can be both effective and computationally tractable. Our methods are illustrated on simulation data and two real computer experiments of varying input dimensionality. We provide an open source implementation in the "deepgp" package on CRAN.
stat
Evaluation of Logistic Regression Applied to Respondent-Driven Samples: Simulated and Real Data
Objective: To investigate the impact of different logistic regression estimators applied to RDS samples obtained by simulation and real data. Methods: Four simulated populations were created combining different connectivity models, levels of clusterization and infection processes. Each subject in the population received two attributes, only one of them related to the infection process. From each population, RDS samples with different sizes were obtained. Similarly, RDS samples were obtained from a real-world dataset. Three logistic regression estimators were applied to assess the association between the attributes and the infection status, and subsequently the observed coverage of each was measured. Results: The type of connectivity had more impact on estimators performance than the clusterization level. In simulated datasets, unweighted logistic regression estimators emerged as the best option, although all estimators showed a fairly good performance. In the real dataset, the performance of weighted estimators presented some instabilities, making them a risky option. Conclusion: An unweighted logistic regression estimator is a reliable option to be applied to RDS samples, with similar performance to random samples and, therefore, should be the preferred option.
stat
Six-Day Footraces in the Post-Pedestrianism Era
In a six-day footrace, competitors accumulate as much distance as possible on foot over 144 consecutive hours by circumambulating a loop course. Now an obscure event on the fringe of ultra running and contested by amateurs, six-day races and the associated sport of pedestrianism used to be a lucrative professional athletic endeavor. Indeed, pedestrianism was the most popular spectator sport in America c. 1874-c. 1881. We analyzed data from 277 six-day races spanning 37 years in the post-pedestrianism era (1981-2018). Men outnumber women 3:1 in six-day race participation. The men's (women's) six-day world record is 644.2 (549.1) miles and the top 4% achieve 500 (450) miles. Adopting the forecasting model of Godsey (2012), we predict a 53% (21%) probability that the men's (women's) world record will be broken within the next decade.
stat
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Fast machine learning-based surrogate models are trained to emulate slow, high-fidelity engineering simulation models to accelerate engineering design tasks. This introduces uncertainty as the surrogate is only an approximation of the original model. Bayesian methods can quantify that uncertainty, and deep learning models exist that follow the Bayesian paradigm. These models, namely Bayesian neural networks and Gaussian process models, enable us to give predictions together with an estimate of the model's uncertainty. As a result we can derive uncertainty-aware surrogate models that can automatically suspect unseen design samples that cause large emulation errors. For these samples, the high-fidelity model can be queried instead. This outlines how the Bayesian paradigm allows us to hybridize fast, but approximate, and slow, but accurate models. In this paper, we train two types of Bayesian models, dropout neural networks and stochastic variational Gaussian Process models, to emulate a complex high dimensional building energy performance simulation problem. The surrogate model processes 35 building design parameters (inputs) to estimate 12 different performance metrics (outputs). We benchmark both approaches, prove their accuracy to be competitive, and show that errors can be reduced by up to 30% when the 10% of samples with the highest uncertainty are transferred to the high-fidelity model.
stat
A Bayesian Mixture Modelling of Stop Signal Reaction Time Distributions
The distribution of single Stop Signal Reaction Times (SSRT) in the stop signal task (SST) as a measurement of the latency of the unobservable stopping process has been modeled with a nonparametric method by Hans Colonius (1990) and with a Bayesian parametric method by Eric-Jan Wagenmakers and colleagues (2012). These methods assume equal impact of the preceding trial type (go/stop) in the SST trials on the SSRT distributional estimation without addressing the case of the violated assumption. This study presents the required model by considering two-state mixture model for the SSRT distribution. It then compares the Bayesian parametric single SSRT and mixture SSRT distributions in the usual stochastic order at the individual and the population level under the ex-Gaussian distributional format. It shows that compared to a single SSRT distribution, the mixture SSRT distribution is more diverse, more positively skewed, more leptokurtic, and larger in stochastic order. The size of the disparities in the results also depends on the choice of weights in the mixture SSRT distribution. This study confirms that mixture SSRT indices as a constant or distribution are significantly larger than their single SSRT counterparts in the related order. This offers a vital improvement in the SSRT estimations.
stat
Bipartisan politics and poverty as a risk factor for contagion and mortality from SARS-CoV-2 virus in the United States of America
In the United States, from the start of the COVID-19 pandemic to December 31, 2020, 341,199 deaths and more than 19,663,976 infections were recorded. Recent literature establishes that communities with poverty-related health problems, such as obesity, cardiovascular disease, diabetes, and hypertension, are more susceptible to mortality from SARS-CoV-2 infection. Additionally, controversial public health policies implemented by the nation's political leaders have highlighted the socioeconomic inequalities of minorities. Therefore, through multivariate correlational analysis using machine learning techniques and structural equations, we measure whether social determinants are associated with increased infection and death from COVID-19 disease. The PLS least squares regression analysis allowed identifying a significant impact between social determinants and COVID-19 disease through a predictive value of R2 = .916, \b{eta} = .836, p =. 000 (t-value = 66,137) shows that for each unit of increase in social determinants, COVID-19 disease increases by 91.6%. The clustering index used for correlational analysis generated a new data set comprising three groups: C1 Republicans, C2 and C3 Democrats from California, New York, Texas, and Florida. This analysis made it possible to identify the poverty variable as the main risk factor related to the high rates of infection in Republican states and a high positive correlation between the population not insured with a medical plan and high levels of virus contagion in the states of group C3. These findings explain the argument that poverty and lack of economic security put the public or private health system at risk and calamity.
stat
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting uncertainty estimates from differentiable probabilistic models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold, such that a BNN becomes more confident about the input's prediction. We validate CLUE through 1) a novel framework for evaluating counterfactual explanations of uncertainty, 2) a series of ablation experiments, and 3) a user study. Our experiments show that CLUE outperforms baselines and enables practitioners to better understand which input patterns are responsible for predictive uncertainty.
stat
An Optimal Policy for Dynamic Assortment Planning Under Uncapacitated Multinomial Logit Models
We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Since all the utility parameters of MNL are unknown, the seller needs to simultaneously learn customers' choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products $N$. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model---MNL model is still open. By carefully analyzing a revenue potential function, we develop a trisection based policy combined with adaptive confidence bound construction, which achieves an {item-independent} regret bound of $O(\sqrt{T})$, where $T$ is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on $N$. Second, our policies are almost assumption free: there is no assumption on mean utility nor any "separability" condition on the expected revenues for different assortments. Our result also extends the unimodal bandit literature.
stat
An Approximate Bayesian Approach to Model-assisted Survey Estimation with Many Auxiliary Variables
Model-assisted estimation with complex survey data is an important practical problem in survey sampling. When there are many auxiliary variables, selecting significant variables associated with the study variable would be necessary to achieve efficient estimation of population parameters of interest. In this paper, we formulate a regularized regression estimator in the framework of Bayesian inference using the penalty function as the shrinkage prior for model selection. The proposed Bayesian approach enables us to get not only efficient point estimates but also reasonable credible intervals. Results from two limited simulation studies are presented to facilitate comparison with existing frequentist methods.
stat
Debiased Sinkhorn barycenters
Entropy regularization in optimal transport (OT) has been the driver of many recent interests for Wasserstein metrics and barycenters in machine learning. It allows to keep the appealing geometrical properties of the unregularized Wasserstein distance while having a significantly lower complexity thanks to Sinkhorn's algorithm. However, entropy brings some inherent smoothing bias, resulting for example in blurred barycenters. This side effect has prompted an increasing temptation in the community to settle for a slower algorithm such as log-domain stabilized Sinkhorn which breaks the parallel structure that can be leveraged on GPUs, or even go back to unregularized OT. Here we show how this bias is tightly linked to the reference measure that defines the entropy regularizer and propose debiased Wasserstein barycenters that preserve the best of both worlds: fast Sinkhorn-like iterations without entropy smoothing. Theoretically, we prove that the entropic OT barycenter of univariate Gaussians is a Gaussian and quantify its variance bias. This result is obtained by extending the differentiability and convexity of entropic OT to sub-Gaussian measures with unbounded supports. Empirically, we illustrate the reduced blurring and the computational advantage on various applications.
stat
Preprocessing noisy functional data using factor models
We consider functional data which are measured on a discrete set of observation points. Often such data are measured with noise, and then the target is to recover the underlying signal. Most commonly, practitioners use some smoothing approach, e.g.,\ kernel smoothing or spline fitting towards this goal. The drawback of such curve fitting techniques is that they act function by function, and don't take into account information from the entire sample. In this paper we argue that signal and noise can be naturally represented as the common and idiosyncratic component, respectively, of a factor model. Accordingly, we propose to an estimation scheme which is based on factor models. The purpose of this paper is to explain the reasoning behind our approach and to compare its performance on simulated and on real data to competing methods.
stat
A review of Bayesian perspectives on sample size derivation for confirmatory trials
Sample size derivation is a crucial element of the planning phase of any confirmatory trial. A sample size is typically derived based on constraints on the maximal acceptable type I error rate and a minimal desired power. Here, power depends on the unknown true effect size. In practice, power is typically calculated either for the smallest relevant effect size or a likely point alternative. The former might be problematic if the minimal relevant effect is close to the null, thus requiring an excessively large sample size. The latter is dubious since it does not account for the a priori uncertainty about the likely alternative effect size. A Bayesian perspective on the sample size derivation for a frequentist trial naturally emerges as a way of reconciling arguments about the relative a priori plausibility of alternative effect sizes with ideas based on the relevance of effect sizes. Many suggestions as to how such `hybrid' approaches could be implemented in practice have been put forward in the literature. However, key quantities such as assurance, probability of success, or expected power are often defined in subtly different ways in the literature. Starting from the traditional and entirely frequentist approach to sample size derivation, we derive consistent definitions for the most commonly used `hybrid' quantities and highlight connections, before discussing and demonstrating their use in the context of sample size derivation for clinical trials.
stat
Protocol for an Observational Study on the Effects of Early-Life Participation in Contact Sports on Later-Life Cognition in a Sample of Monozygotic and Dizygotic Swedish Twins Reared Together and Twins Reared Apart
A large body of work links traumatic brain injury (TBI) in adulthood to the onset of Alzheimer's disease (AD). AD is the chief cause of dementia, leading to reduced cognitive capacity and autonomy and increased mortality risk. More recently, researchers have sought to investigate whether TBI experienced in early-life may influence trajectories of cognitive dysfunction in adulthood. It has been speculated that early-life participation in collision sports may lead to poor cognitive and mental health outcomes. However, to date, the few studies to investigate this relationship have produced mixed results. We propose to extend this literature by conducting a prospective study on the effects of early-life participation in collision sports on later-life cognitive health using the Swedish Adoption/Twin Study on Aging (SATSA). The SATSA is unique in its sampling of monozygotic and dizygotic twins reared together (respectively MZT, DZT) and twins reared apart (respectively MZA, DZA). The proposed analysis is a prospective study of 660 individuals comprised of 270 twin pairs and 120 singletons. Seventy-eight (11.8% individuals reported participation in collision sports. Our primary outcome will be an indicator of cognitive impairment determined by scores on the Mini-Mental State Examination (MMSE). We will also consider several secondary cognitive outcomes including verbal and spatial ability, memory, and processing speed. Our sample will be restricted to individuals with at least one MMSE score out of seven repeated assessments spaced approximately three years apart. We will adjust for age, sex, and education in each of our models.
stat
On choosing mixture components via non-local priors
Choosing the number of mixture components remains an elusive challenge. Model selection criteria can be either overly liberal or conservative and return poorly-separated components of limited practical use. We formalize non-local priors (NLPs) for mixtures and show how they lead to well-separated components with non-negligible weight, interpretable as distinct subpopulations. We also propose an estimator for posterior model probabilities under local and non-local priors, showing that Bayes factors are ratios of posterior to prior empty-cluster probabilities. The estimator is widely applicable and helps set thresholds to drop unoccupied components in overfitted mixtures. We suggest default prior parameters based on multi-modality for Normal/T mixtures and minimal informativeness for categorical outcomes. We characterise theoretically the NLP-induced sparsity, derive tractable expressions and algorithms. We fully develop Normal, Binomial and product Binomial mixtures but the theory, computation and principles hold more generally. We observed a serious lack of sensitivity of the Bayesian information criterion (BIC), insufficient parsimony of the AIC and a local prior, and a mixed behavior of the singular BIC. We also considered overfitted mixtures, their performance was competitive but depended on tuning parameters. Under our default prior elicitation NLPs offered a good compromise between sparsity and power to detect meaningfully-separated components.
stat
Combining Cox Regressions Across a Heterogeneous Distributed Research Network Facing Small and Zero Counts
Studies of the effects of medical interventions increasingly take place in distributed research settings using data from multiple clinical data sources including electronic health records and administrative claims. In such settings, privacy concerns typically prohibit sharing of individual patient data, and instead, analyses can only utilize summary statistics from the individual databases. In the specific but very common context of the Cox proportional hazards model, we show that standard meta analysis methods then lead to substantial bias when outcome counts are small. This bias derives primarily from the normal approximations that the methods utilize. Here we propose and evaluate methods that eschew normal approximations in favor of three more flexible approximations: a skew-normal, a one-dimensional grid, and a custom parametric function that mimics the behavior of the Cox likelihood function. In extensive simulation studies we demonstrate how these approximations impact bias in the context of both fixed-effects and (Bayesian) random-effects models. We then apply these approaches to three real-world studies of the comparative safety of antidepressants, each using data from four observational healthcare databases.
stat
Approximation Algorithms for D-optimal Design
Experimental design is a classical statistics problem and its aim is to estimate an unknown $m$-dimensional vector $\beta$ from linear measurements where a Gaussian noise is introduced in each measurement. For the combinatorial experimental design problem, the goal is to pick $k$ out of the given $n$ experiments so as to make the most accurate estimate of the unknown parameters, denoted as $\hat{\beta}$. In this paper, we will study one of the most robust measures of error estimation - $D$-optimality criterion, which corresponds to minimizing the volume of the confidence ellipsoid for the estimation error $\beta-\hat{\beta}$. The problem gives rise to two natural variants depending on whether repetitions of experiments are allowed or not. We first propose an approximation algorithm with a $\frac1e$-approximation for the $D$-optimal design problem with and without repetitions, giving the first constant factor approximation for the problem. We then analyze another sampling approximation algorithm and prove that it is $(1-\epsilon)$-approximation if $k\geq \frac{4m}{\epsilon}+\frac{12}{\epsilon^2}\log(\frac{1}{\epsilon})$ for any $\epsilon \in (0,1)$. Finally, for $D$-optimal design with repetitions, we study a different algorithm proposed by literature and show that it can improve this asymptotic approximation ratio.
stat
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural networks
We present Ordinary Differential Equation Variational Auto-Encoder (ODE$^2$VAE), a latent second order ODE model for high-dimensional sequential data. Leveraging the advances in deep generative models, ODE$^2$VAE can simultaneously learn the embedding of high dimensional trajectories and infer arbitrarily complex continuous-time latent dynamics. Our model explicitly decomposes the latent space into momentum and position components and solves a second order ODE system, which is in contrast to recurrent neural network (RNN) based time series models and recently proposed black-box ODE techniques. In order to account for uncertainty, we propose probabilistic latent ODE dynamics parameterized by deep Bayesian neural networks. We demonstrate our approach on motion capture, image rotation and bouncing balls datasets. We achieve state-of-the-art performance in long term motion prediction and imputation tasks.
stat
Yield forecasting with machine learning and small data: what gains for grains?
Forecasting crop yields is important for food security, in particular to predict where crop production is likely to drop. Climate records and remotely-sensed data have become instrumental sources of data for crop yield forecasting systems. Similarly, machine learning methods are increasingly used to process big Earth observation data. However, access to data necessary to train such algorithms is often limited in food-insecure countries. Here, we evaluate the performance of machine learning algorithms and small data to forecast yield on a monthly basis between the start and the end of the growing season. To do so, we developed a robust and automated machine-learning pipeline which selects the best features and model for prediction. Taking Algeria as case study, we predicted national yields for barley, soft wheat and durum wheat with an accuracy of 0.16-0.2 t/ha (13-14 % of mean yield) within the season. The best machine-learning models always outperformed simple benchmark models. This was confirmed in low-yielding years, which is particularly relevant for early warning. Nonetheless, the differences in accuracy between machine learning and benchmark models were not always of practical significance. Besides, the benchmark models outperformed up to 60% of the machine learning models that were tested, which stresses the importance of proper model calibration and selection. For crop yield forecasting, like for many application domains, machine learning has delivered significant improvement in predictive power. Nonetheless, superiority over simple benchmarks is often fully achieved after extensive calibration, especially when dealing with small data.
stat
Bayesian Analysis of Social Influence
The network influence model is a model for binary outcome variables that accounts for dependencies between outcomes for units that are relationally tied. The basic influence model was previously extended to afford a suite of new dependence assumptions and because of its relation to traditional Markov random field models it is often referred to as the auto logistic actor-attribute model (ALAAM). We extend on current approaches for fitting ALAAMs by presenting a comprehensive Bayesian inference scheme that supports testing of dependencies across subsets of data and the presence of missing data. We illustrate different aspects of the procedures through three empirical examples: masculinity attitudes in an all-male Australian school class, educational progression in Swedish schools, and un-employment among adults in a community sample in Australia.
stat