title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
R friendly multi-threading in C++
Calling multi-threaded C++ code from R has its perils. Since the R interpreter is single-threaded, one must not check for user interruptions or print to the R console from multiple threads. One can, however, synchronize with R from the main thread. The R package RcppThread (current version 1.0.0) contains a header only C++ library for thread safe communication with R that exploits this fact. It includes C++ classes for threads, a thread pool, and parallel loops that routinely synchronize with R. This article explains the package's functionality and gives examples of its usage. The synchronization mechanism may also apply to other threading frameworks. Benchmarks suggest that, although synchronization causes overhead, the parallel abstractions of RcppThread are competitive with other popular libraries in typical scenarios encountered in statistical computing.
stat
Joint Community Detection and Rotational Synchronization via Semidefinite Programming
In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the joint problem of community detection and synchronization. We propose a series of semidefinite relaxations, and prove their exact recovery when extending the celebrated stochastic block model to this new setting where both rotations and cluster identities are to be determined. Numerical experiments demonstrate the efficacy of our proposed algorithms and confirm our theoretical result which indicates a sharp phase transition for exact recovery.
stat
Efficient Particle Smoothing for Bayesian Inference in Dynamic Survival Models
This article proposes an efficient Bayesian inference for piecewise exponential hazard (PEH) models, which allow the effect of a covariate on the survival time to vary over time. The proposed inference methodology is based on a particle smoothing (PS) algorithm that depends on three particle filters. Efficient proposal (importance) distributions for the particle filters tailored to the nature of survival data and PEH models are developed using the Laplace approximation of the posterior distribution and linear Bayes theory. The algorithm is applied to both simulated and real data, and the results show that it generates an effective sample size that is more than two orders of magnitude larger than a state-of-the-art MCMC sampler for the same computing time, and scales well in high-dimensional and relatively large data.
stat
Multicategory Angle-based Learning for Estimating Optimal Dynamic Treatment Regimes with Censored Data
An optimal dynamic treatment regime (DTR) consists of a sequence of decision rules in maximizing long-term benefits, which is applicable for chronic diseases such as HIV infection or cancer. In this paper, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. The proposed method targets maximization the conditional survival function of patients following a DTR. In contrast to most existing approaches which are designed to maximize the expected survival time under a binary treatment framework, the proposed method solves the multicategory treatment problem given multiple stages for censored data. Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. In theory, we establish Fisher consistency of the proposed method under regularity conditions. Our numerical studies show that the proposed method outperforms competing methods in terms of maximizing the conditional survival function. We apply the proposed method to two real datasets: Framingham heart study data and acquired immunodeficiency syndrome (AIDS) clinical data.
stat
Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors
Machine learning and deep learning have gained popularity and achieved immense success in Drug discovery in recent decades. Historically, machine learning and deep learning models were trained on either structural data or chemical properties by separated model. In this study, we proposed an architecture training simultaneously both type of data in order to improve the overall performance. Given the molecular structure in the form of SMILES notation and their label, we generated the SMILES-based feature matrix and molecular descriptors. These data were trained on a deep learning model which was also integrated with the Attention mechanism to facilitate training and interpreting. Experiments showed that our model could raise the performance of prediction comparing to the reference. With the maximum MCC 0.58 and AUC 90% by cross-validation on EGFR inhibitors dataset, our architecture was outperforming the referring model. We also successfully integrated Attention mechanism into our model, which helped to interpret the contribution of chemical structures on bioactivity.
stat
Designed Quadrature to Approximate Integrals in Maximum Simulated Likelihood Estimation
Maximum simulated likelihood estimation of mixed multinomial logit (MMNL) or probit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as shuffled and scrambled Halton sequences and modified Latin hypercube sampling (MLHS) are workhorse methods for integral approximation. A few earlier studies explored the potential of sparse grid quadrature (SGQ), but this approximation suffers from negative weights. As an alternative to QMC and SGQ, we looked into the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get the same level of accuracy as of QMC and SGQ, is as easy to implement, ensures positivity of weights, and can be created on any general polynomial spaces. We benchmarked DQ against QMC in a Monte Carlo study under different data generating processes with a varying number of random parameters (3, 5, and 10) and variance-covariance structures (diagonal and full). Whereas DQ significantly outperformed QMC in the diagonal variance-covariance scenario, it could also achieve a better model fit and recover true parameters with fewer nodes (i.e., relatively lower computation time) in the full variance-covariance scenario. Finally, we evaluated the performance of DQ in a case study to understand preferences for mobility-on-demand services in New York City. In estimating MMNL with five random parameters, DQ achieved better fit and statistical significance of parameters with just 200 nodes as compared to 1000 QMC draws, making DQ around five times faster than QMC methods.
stat
Towards Deep Learning Models Resistant to Large Perturbations
Adversarial robustness has proven to be a required property of machine learning algorithms. A key and often overlooked aspect of this problem is to try to make the adversarial noise magnitude as large as possible to enhance the benefits of the model robustness. We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude. In this paper, we propose a simple yet effective initialization of the network weights that makes learning on higher levels of noise possible. We next evaluate this idea rigorously on MNIST ($\epsilon$ up to $\approx 0.40$) and CIFAR10 ($\epsilon$ up to $\approx 32/255$) datasets assuming the $\ell_{\infty}$ attack model. Additionally, in order to establish the limits of $\epsilon$ in which the learning is feasible, we study the optimal robust classifier assuming full access to the joint data and label distribution. Then, we provide some theoretical results on the adversarial accuracy for a simple multi-dimensional Bernoulli distribution, which yields some insights on the range of feasible perturbations for the MNIST dataset.
stat
Evolutionary Variational Optimization of Generative Models
We combine two popular optimization approaches to derive learning algorithms for generative models: variational optimization and evolutionary algorithms. The combination is realized for generative models with discrete latents by using truncated posteriors as the family of variational distributions. The variational parameters of truncated posteriors are sets of latent states. By interpreting these states as genomes of individuals and by using the variational lower bound to define a fitness, we can apply evolutionary algorithms to realize the variational loop. The used variational distributions are very flexible and we show that evolutionary algorithms can effectively and efficiently optimize the variational bound. Furthermore, the variational loop is generally applicable ("black box") with no analytical derivations required. To show general applicability, we apply the approach to three generative models (we use noisy-OR Bayes Nets, Binary Sparse Coding, and Spike-and-Slab Sparse Coding). To demonstrate effectiveness and efficiency of the novel variational approach, we use the standard competitive benchmarks of image denoising and inpainting. The benchmarks allow quantitative comparisons to a wide range of methods including probabilistic approaches, deep deterministic and generative networks, and non-local image processing methods. In the category of "zero-shot" learning (when only the corrupted image is used for training), we observed the evolutionary variational algorithm to significantly improve the state-of-the-art in many benchmark settings. For one well-known inpainting benchmark, we also observed state-of-the-art performance across all categories of algorithms although we only train on the corrupted image. In general, our investigations highlight the importance of research on optimization methods for generative models to achieve performance improvements.
stat
A Bayesian Framework for Generation of Fully Synthetic Mixed Datasets
Much of the micro data used for epidemiological studies contain sensitive measurements on real individuals. As a result, such micro data cannot be published out of privacy concerns, rendering any published statistical analyses on them nearly impossible to reproduce. To promote the dissemination of key datasets for analysis without jeopardizing the privacy of individuals, we introduce a cohesive Bayesian framework for the generation of fully synthetic, high dimensional micro datasets of mixed categorical, binary, count, and continuous variables. This process centers around a joint Bayesian model that is simultaneously compatible with all of these data types, enabling the creation of mixed synthetic datasets through posterior predictive sampling. Furthermore, a focal point of epidemiological data analysis is the study of conditional relationships between various exposures and key outcome variables through regression analysis. We design a modified data synthesis strategy to target and preserve these conditional relationships, including both nonlinearities and interactions. The proposed techniques are deployed to create a synthetic version of a confidential dataset containing dozens of health, cognitive, and social measurements on nearly 20,000 North Carolina children.
stat
The Ci3+3 Design for Dual-Agent Combination Dose-Finding Clinical Trials
We propose a rule-based statistical design for combination dose-finding trials with two agents. The Ci3+3 design is an extension of the i3+3 design with simple decision rules comparing the observed toxicity rates and equivalence intervals that define the maximum tolerated dose combination. Ci3+3 consists of two stages to allow fast and efficient exploration of the dose-combination space. Statistical inference is restricted to a beta-binomial model for dose evaluation, and the entire design is built upon a set of fixed rules. We show via simulation studies that the Ci3+3 design exhibits similar and comparable operating characteristics to more complex designs utilizing model-based inferences. We believe that the Ci3+3 design may provide an alternative choice to help simplify the design and conduct of combination dose-finding trials in practice.
stat
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
We propose the factorized action variational autoencoder (FAVAE), a state-of-the-art generative model for learning disentangled and interpretable representations from sequential data via the information bottleneck without supervision. The purpose of disentangled representation learning is to obtain interpretable and transferable representations from data. We focused on the disentangled representation of sequential data since there is a wide range of potential applications if disentanglement representation is extended to sequential data such as video, speech, and stock market. Sequential data are characterized by dynamic and static factors: dynamic factors are time dependent, and static factors are independent of time. Previous models disentangle static and dynamic factors by explicitly modeling the priors of latent variables to distinguish between these factors. However, these models cannot disentangle representations between dynamic factors, such as disentangling "picking up" and "throwing" in robotic tasks. FAVAE can disentangle multiple dynamic factors. Since it does not require modeling priors, it can disentangle "between" dynamic factors. We conducted experiments to show that FAVAE can extract disentangled dynamic factors.
stat
Estimation and Sensitivity Analysis for Causal Decomposition in Heath Disparity Research
In the field of disparities research, there has been growing interest in developing a counterfactual-based decomposition analysis to identify underlying mediating mechanisms that help reduce disparities in populations. Despite rapid development in the area, most prior studies have been limited to regression-based methods, undermining the possibility of addressing complex models with multiple mediators and/or heterogeneous effects. We propose an estimation method that effectively addresses complex models. Moreover, we develop a novel sensitivity analysis for possible violations of identification assumptions. The proposed method and sensitivity analysis are demonstrated with data from the Midlife Development in the US study to investigate the degree to which disparities in cardiovascular health at the intersection of race and gender would be reduced if the distributions of education and perceived discrimination were the same across intersectional groups.
stat
Simple Sensitivity Analysis for Differential Measurement Error
Simple sensitivity analysis results are given for differential measurement error of either the exposure or the outcome. In the case of differential measurement error of the outcome it is shown that the true effect of the exposure on the outcome on the risk ratio scale must be at least as large as the observed association between the exposure and the mis-measured outcome divided by the maximum strength of differential measurement error, assessed as the risk ratio of the controlled direct effect of the exposure on mis-measured outcome not through the true outcome. In the case of differential measurement error of the exposure it is shown that the true effect on the risk ratio scale of the exposure on the outcome must be at least as large as the observed association between the mis-measured exposure measurement and the outcome divided by the maximum strength of differential measurement error, assessed as the risk ratio of the effect of the outcome on mis-measured exposure measurement conditional on the true exposure. The results can also be immediately used to indicate the minimum strength of differential measurement error that would be needed to explain away an observed association between an exposure measurement and an outcome measurement.
stat
Modeling Heterogeneity and Missing Data of Multiple Longitudinal Outcomes in Electronic Health Records
In electronic health records (EHRs), latent subgroups of patients may exhibit distinctive patterning in their longitudinal health trajectories. For such data, growth mixture models (GMMs) enable classifying patients into different latent classes based on individual trajectories and hypothesized risk factors. However, the application of GMMs is hindered by the special missing data problem in EHRs, which manifests two patient-led missing data processes: the visit process and the response process for an EHR variable conditional on a patient visiting the clinic. If either process is associated with the process generating the longitudinal outcomes, then valid inferences require accounting for a nonignorable missing data mechanism. We propose a Bayesian shared parameter model that links GMMs of multiple longitudinal health outcomes, the visit process, and the response process of each outcome given a visit using a discrete latent class variable. Our focus is on multiple longitudinal health outcomes for which there can be a clinically prescribed visit schedule. We demonstrate our model in EHR measurements on early childhood weight and height z-scores. Using data simulations, we illustrate the statistical properties of our method with respect to subgroup-specific or marginal inferences. We built the R package EHRMiss for model fitting, selection, and checking.
stat
Variance Networks: When Expectation Does Not Meet Your Expectations
Ordinary stochastic neural networks mostly rely on the expected values of their weights to make predictions, whereas the induced noise is mostly used to capture the uncertainty, prevent overfitting and slightly boost the performance through test-time averaging. In this paper, we introduce variance layers, a different kind of stochastic layers. Each weight of a variance layer follows a zero-mean distribution and is only parameterized by its variance. We show that such layers can learn surprisingly well, can serve as an efficient exploration tool in reinforcement learning tasks and provide a decent defense against adversarial attacks. We also show that a number of conventional Bayesian neural networks naturally converge to such zero-mean posteriors. We observe that in these cases such zero-mean parameterization leads to a much better training objective than conventional parameterizations where the mean is being learned.
stat
Ultra high dimensional generalized additive model: Unified Theory and Methods
Generalized additive model is a powerful statistical learning and predictive modeling tool that has been applied in a wide range of applications. The need of high-dimensional additive modeling is eminent in the context of dealing with high through-put data such as genetic data analysis. In this article, we studied a two step selection and estimation method for ultra high dimensional generalized additive models. The first step applies group lasso on the expanded bases of the functions. With high probability this selects all nonzero functions without having too much over selection. The second step uses adaptive group lasso with any initial estimators, including the group lasso estimator, that satisfies some regular conditions. The adaptive group lasso estimator is shown to be selection consistent with improved convergence rates. Tuning parameter selection is also discussed and shown to select the true model consistently under GIC procedure. The theoretical properties are supported by extensive numerical study.
stat
Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model
In this work, we estimate extreme sea surface temperature (SST) hotspots, i.e., high threshold exceedance regions, for the Red Sea, a vital region of high biodiversity. We analyze high-resolution satellite-derived SST data comprising daily measurements at 16703 grid cells across the Red Sea over the period 1985-2015. We propose a semiparametric Bayesian spatial mixed-effects linear model with a flexible mean structure to capture spatially-varying trend and seasonality, while the residual spatial variability is modeled through a Dirichlet process mixture (DPM) of low-rank spatial Student-$t$ processes (LTPs). By specifying cluster-specific parameters for each LTP mixture component, the bulk of the SST residuals influence tail inference and hotspot estimation only moderately. Our proposed model has a nonstationary mean, covariance and tail dependence, and posterior inference can be drawn efficiently through Gibbs sampling. In our application, we show that the proposed method outperforms some natural parametric and semiparametric alternatives. Moreover, we show how hotspots can be identified and we estimate extreme SST hotspots for the whole Red Sea, projected until the year 2100, based on the Representative Concentration Pathways 4.5 and 8.5. The estimated 95\% credible region for joint high threshold exceedances include large areas covering major endangered coral reefs in the southern Red Sea.
stat
Best estimator for bivariate Poisson regression
INTRODUCTION: Wald's, the likelihood ratio (LR) and Rao's score tests and their corresponding confidence intervals (CIs), are the three most common estimators of parameters of Generalized Linear Models. On finite samples, these estimators are biased. The objective of this work is to analyze the coverage errors of the CI estimators in small samples for the log-Poisson model (i.e. estimation of incidence rate ratio) with innovative evaluation criteria, taking in account the overestimation/underestimation unbalance of coverage errors and the variable inclusion rate and follow-up in epidemiological studies. METHODS: Exact calculations equivalent to Monte Carlo simulations with an infinite number of simulations have been used. Underestimation errors (due to the upper bound of the CI) and overestimation coverage errors (due to the lower bound of the CI) have been split. The level of confidence has been analyzed from $0.95$ to $1-10^{-6}$, allowing the interpretation of P-values below $10^{-6}$ for hypothesis tests. RESULTS: The LR bias was small (actual coverage errors less than 1.5 times the nominal errors) when the expected number of events in both groups was above 1, even when unbalanced (e.g. 10 events in one group vs 1 in the other). For 95% CI, Wald's and the Score estimators showed high bias even when the number of events was large ($\geq 20$ in both groups) when groups were unbalanced. For small P-values ($<10^{-6}$), the LR kept acceptable bias while Wald's and the score P-values had severely inflated errors ($\times 100$). CONCLUSION: The LR test and LR CI should be used.
stat
A non-autonomous equation discovery method for time signal classification
Certain neural network architectures, in the infinite-layer limit, lead to systems of nonlinear differential equations. Motivated by this idea, we develop a framework for analyzing time signals based on non-autonomous dynamical equations. We view the time signal as a forcing function for a dynamical system that governs a time-evolving hidden variable. As in equation discovery, the dynamical system is represented using a dictionary of functions and the coefficients are learned from data. This framework is applied to the time signal classification problem. We show how gradients can be efficiently computed using the adjoint method, and we apply methods from dynamical systems to establish stability of the classifier. Through a variety of experiments, on both synthetic and real datasets, we show that the proposed method uses orders of magnitude fewer parameters than competing methods, while achieving comparable accuracy. We created the synthetic datasets using dynamical systems of increasing complexity; though the ground truth vector fields are often polynomials, we find consistently that a Fourier dictionary yields the best results. We also demonstrate how the proposed method yields graphical interpretability in the form of phase portraits.
stat
Blindness of score-based methods to isolated components and mixing proportions
A large family of score-based methods are developed recently to solve unsupervised learning problems including density estimation, statistical testing and variational inference. These methods are attractive because they exploit the derivative of the log density, which is independent of the normaliser, and are thus suitable for tasks involving unnormalised densities. Despite the theoretical guarantees on the performance, here we illustrate a common practical issue suffered by these methods when the unnormalised distribution of interest has isolated components. In particular, we study the behaviour of some popular score-based methods on tasks involving 1-D mixture of Gaussian. These methods fail to identify appropriate mixing proportions when the unnormalised distribution is multimodal. Finally, some directions for finding a remedy are discussed in light of recent successes in specific tasks. We hope to bring the attention of theoreticians and practitioners to this issue when developing new algorithms and applications.
stat
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
We might hope that when faced with unexpected inputs, well-designed software systems would fire off warnings. Machine learning (ML) systems, however, which depend strongly on properties of their inputs (e.g. the i.i.d. assumption), tend to fail silently. This paper explores the problem of building ML systems that fail loudly, investigating methods for detecting dataset shift, identifying exemplars that most typify the shift, and quantifying shift malignancy. We focus on several datasets and various perturbations to both covariates and label distributions with varying magnitudes and fractions of data affected. Interestingly, we show that across the dataset shifts that we explore, a two-sample-testing-based approach, using pre-trained classifiers for dimensionality reduction, performs best. Moreover, we demonstrate that domain-discriminating approaches tend to be helpful for characterizing shifts qualitatively and determining if they are harmful.
stat
Riemannian Continuous Normalizing Flows
Normalizing flows have shown great promise for modelling flexible probability distributions in a computationally tractable way. However, whilst data is often naturally described on Riemannian manifolds such as spheres, torii, and hyperbolic spaces, most normalizing flows implicitly assume a flat geometry, making them either misspecified or ill-suited in these situations. To overcome this problem, we introduce Riemannian continuous normalizing flows, a model which admits the parametrization of flexible probability measures on smooth manifolds by defining flows as the solution to ordinary differential equations. We show that this approach can lead to substantial improvements on both synthetic and real-world data when compared to standard flows or previously introduced projected flows.
stat
On the sign recovery by LASSO, thresholded LASSO and thresholded Basis Pursuit Denoising
We consider the regression model, when the number of observations is smaller than the number of explicative variables. It is well known that the popular Least Absolute Shrinkage and Selection Operator (LASSO) can recover the sign of regression coefficients only if a very stringent irrepresentable condition is satisfied. We extend this result by providing a tight upper bound for the probability of LASSO sign recovery. The bound depends on the tuning parameter and is attained when non-null components of the vector of regression coefficients tend to infinity. In this situation it can be used to select the value of the tuning parameter so as to control the probability of at least one false discovery. Next, we revisit properties of thresholded LASSO and thresholded Basis Pursuit Denoising (BPDN) and provide new theoretical results in the asymptotic setup under which the design matrix is fixed and the magnitudes of nonzero regression coefficients tend to infinity. We formulate an easy identifiability condition which turns out to be sufficient and necessary for thresholded LASSO and thresholded BPDN to recover the sign of the sufficiently large signal. Our simulation study illustrates the large difference between the irrepresentability and the identifiability condition, especially when the entries in each row of the design matrix are strongly correlated. Finally, we illustrate how the knockoff methodology allows to select an appropriate threshold and that thresholded BPDN and thresholded LASSO can recover the sign of the vector of regression coefficients with a larger probability than adaptive LASSO.
stat
A High-Dimensional Particle Filter Algorithm
Online data assimilation in time series models over a large spatial extent is an important problem in both geosciences and robotics. Such models are intrinsically high-dimensional, rendering traditional particle filter algorithms ineffective. Though methods that begin to address this problem exist, they either rely on additional assumptions or lead to error that is spatially inhomogeneous. I present a novel particle-based algorithm for online approximation of the filtering problem on such models, using the fact that each locus affects only nearby loci at the next time step. The algorithm is based on a Metropolis-Hastings-like MCMC for creating hybrid particles at each step. I show simulation results that suggest the error of this algorithm is uniform in both space and time, with a lower bias, though higher variance, as compared to a previously-proposed algorithm.
stat
Synthesizing Property & Casualty Ratemaking Datasets using Generative Adversarial Networks
Due to confidentiality issues, it can be difficult to access or share interesting datasets for methodological development in actuarial science, or other fields where personal data are important. We show how to design three different types of generative adversarial networks (GANs) that can build a synthetic insurance dataset from a confidential original dataset. The goal is to obtain synthetic data that no longer contains sensitive information but still has the same structure as the original dataset and retains the multivariate relationships. In order to adequately model the specific characteristics of insurance data, we use GAN architectures adapted for multi-categorical data: a Wassertein GAN with gradient penalty (MC-WGAN-GP), a conditional tabular GAN (CTGAN) and a Mixed Numerical and Categorical Differentially Private GAN (MNCDP-GAN). For transparency, the approaches are illustrated using a public dataset, the French motor third party liability data. We compare the three different GANs on various aspects: ability to reproduce the original data structure and predictive models, privacy, and ease of use. We find that the MC-WGAN-GP synthesizes the best data, the CTGAN is the easiest to use, and the MNCDP-GAN guarantees differential privacy.
stat
Optimal Nested Simulation Experiment Design via Likelihood Ratio Method
Nested simulation arises frequently in financial or input uncertainty quantification problems, where the performance measure is defined as a function of the simulation output mean conditional on the outer scenario. The standard nested simulation samples $M$ outer scenarios and runs $N$ inner replications at each. We propose a new experiment design framework for a problem whose inner replication's inputs are generated from probability distribution functions parameterized by the outer scenario. This structure lets us pool replications from an outer scenario to estimate another scenario's conditional mean via the likelihood ratio method. We formulate a bi-level optimization problem to decide not only which of $M$ outer scenarios to simulate and how many times to replicate at each, but also how to pool these replications such that the total simulation effort is minimized while achieving the same estimation error as the standard nested simulation. The resulting optimal design requires far less simulation effort than $MN$. We provide asymptotic analyses on the convergence rates of the performance measure estimators computed from the experiment design. Empirical results show that our experiment design significantly reduces the simulation cost compared to the standard nested simulation as well as a state-of-the-art design that pools replications via regressions.
stat
Robust Principal Component Analysis: A Median of Means Approach
Principal Component Analysis (PCA) is a fundamental tool for data visualization, denoising, and dimensionality reduction. It is widely popular in Statistics, Machine Learning, Computer Vision, and related fields. However, PCA is well known to fall prey to the presence of outliers and often fails to detect the true underlying low-dimensional structure within the dataset. Recent supervised learning methods, following the Median of Means (MoM) philosophy, have shown great success in dealing with outlying observations without much compromise to their large sample theoretical properties. In this paper, we propose a PCA procedure based on the MoM principle. Called the Median of Means Principal Component Analysis (MoMPCA), the proposed method is not only computationally appealing but also achieves optimal convergence rates under minimal assumptions. In particular, we explore the non-asymptotic error bounds of the obtained solution via the aid of Vapnik-Chervonenkis theory and Rademacher complexity, while granting absolutely no assumption on the outlying observations. The efficacy of the proposal is also thoroughly showcased through simulations and real data applications.
stat
Should we Reload Time Series Classification Performance Evaluation ? (a position paper)
Since the introduction and the public availability of the \textsc{ucr} time series benchmark data sets, numerous Time Series Classification (TSC) methods has been designed, evaluated and compared to each others. We suggest a critical view of TSC performance evaluation protocols put in place in recent TSC literature. The main goal of this `position' paper is to stimulate discussion and reflexion about performance evaluation in TSC literature.
stat
Enabling Personalized Decision Support with Patient-Generated Data and Attributable Components
Decision-making related to health is complex. Machine learning (ML) and patient generated data can identify patterns and insights at the individual level, where human cognition falls short, but not all ML-generated information is of equal utility for making health-related decisions. We develop and apply attributable components analysis (ACA), a method inspired by optimal transport theory, to type 2 diabetes self-monitoring data to identify patterns of association between nutrition and blood glucose control. In comparison with linear regression, we found that ACA offers a number of characteristics that make it promising for use in decision support applications. For example, ACA was able to identify non-linear relationships, was more robust to outliers, and offered broader and more expressive uncertainty estimates. In addition, our results highlight a tradeoff between model accuracy and interpretability, and we discuss implications for ML-driven decision support systems.
stat
Towards a global dynamic wind atlas: A multi-country validation of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the Global Wind Atlas
Reanalysis data are widely used for simulating renewable energy and in particular wind power generation. While MERRA-2 has been a de-facto standard in many studies, the newer ERA5- reanalysis recently gained importance. Here, we use these two datasets to simulate wind power generation and evaluate the respective quality in terms of correlations and errors when validated against historical wind power generation. However, due to their coarse spatial resolution, reanalyses fail to adequately represent local climatic conditions. We therefore additionally apply mean bias correction with two versions of the Global Wind Atlas (GWA) and assess the respective quality of resulting simulations. Potential users of the dataset can also benefit from our analysis of the impact of spatial and temporal aggregation on simulation quality indicators. While similar studies have been conducted, they mainly cover limited areas in Europe. In contrast, we look into regions, which globally differ significantly in terms of the prevailing climate: the US, Brazil, South-Africa, and New Zealand. Our principal findings are that (i) ERA5 outperforms MERRA-2, (ii) no major improvements can be expected by using bias-correction with GWA2, while GWA3 even reduces simulation quality, and (iii) temporal aggregation increases correlations and reduces errors, while spatial aggregation does so only consistently when comparing very low and very high aggregation levels.
stat
Global consensus Monte Carlo
To conduct Bayesian inference with large data sets, it is often convenient or necessary to distribute the data across multiple machines. We consider a likelihood function expressed as a product of terms, each associated with a subset of the data. Inspired by global variable consensus optimisation, we introduce an instrumental hierarchical model associating auxiliary statistical parameters with each term, which are conditionally independent given the top-level parameters. One of these top-level parameters controls the unconditional strength of association between the auxiliary parameters. This model leads to a distributed MCMC algorithm on an extended state space yielding approximations of posterior expectations. A trade-off between computational tractability and fidelity to the original model can be controlled by changing the association strength in the instrumental model. We further propose the use of a SMC sampler with a sequence of association strengths, allowing both the automatic determination of appropriate strengths and for a bias correction technique to be applied. In contrast to similar distributed Monte Carlo algorithms, this approach requires few distributional assumptions. The performance of the algorithms is illustrated with a number of simulated examples.
stat
Likelihood-free approximate Gibbs sampling
Likelihood-free methods such as approximate Bayesian computation (ABC) have extended the reach of statistical inference to problems with computationally intractable likelihoods. Such approaches perform well for small-to-moderate dimensional problems, but suffer a curse of dimensionality in the number of model parameters. We introduce a likelihood-free approximate Gibbs sampler that naturally circumvents the dimensionality issue by focusing on lower-dimensional conditional distributions. These distributions are estimated by flexible regression models either before the sampler is run, or adaptively during sampler implementation. As a result, and in comparison to Metropolis-Hastings based approaches, we are able to fit substantially more challenging statistical models than would otherwise be possible. We demonstrate the sampler's performance via two simulated examples, and a real analysis of Airbnb rental prices using a intractable high-dimensional multivariate non-linear state space model containing 13,140 parameters, which presents a real challenge to standard ABC techniques.
stat
An Algorithmic Inference Approach to Learn Copulas
We introduce a new method for estimating the parameter of the bivariate Clayton copulas within the framework of Algorithmic Inference. The method consists of a variant of the standard boot-strapping procedure for inferring random parameters, which we expressly devise to bypass the two pitfalls of this specific instance: the non independence of the Kendall statistics, customarily at the basis of this inference task, and the absence of a sufficient statistic w.r.t. \alpha. The variant is rooted on a numerical procedure in order to find the \alpha estimate at a fixed point of an iterative routine. Although paired with the customary complexity of the program which computes them, numerical results show an outperforming accuracy of the estimates.
stat
Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modelling
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the (aggregate) posterior to encourage statistical independence of the latent factors. This approach introduces a trade-off between disentangled representation learning and reconstruction quality since the model does not have enough capacity to learn correlated latent variables that capture detail information present in most image data. To overcome this trade-off, we present a novel multi-stage modelling approach where the disentangled factors are first learned using a preexisting disentangled representation learning method (such as $\beta$-TCVAE); then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables, adding detail information while maintaining conditioning on the previously learned disentangled factors. Taken together, our multi-stage modelling approach results in a single, coherent probabilistic model that is theoretically justified by the principal of D-separation and can be realized with a variety of model classes including likelihood-based models such as variational autoencoders, implicit models such as generative adversarial networks, and tractable models like normalizing flows or mixtures of Gaussians. We demonstrate that our multi-stage model has much higher reconstruction quality than current state-of-the-art methods with equivalent disentanglement performance across multiple standard benchmarks.
stat
Towards the interpretation of time-varying regularization parameters in streaming penalized regression models
High-dimensional, streaming datasets are ubiquitous in modern applications. Examples range from finance and e-commerce to the study of biomedical and neuroimaging data. As a result, many novel algorithms have been proposed to address challenges posed by such datasets. In this work, we focus on the use of $\ell_1$ regularized linear models in the context of (possibly non-stationary) streaming data Recently, it has been noted that the choice of the regularization parameter is fundamental in such models and several methods have been proposed which iteratively tune such a parameter in a~time-varying manner; thereby allowing the underlying sparsity of estimated models to vary. Moreover, in many applications, inference on the regularization parameter may itself be of interest, as such a parameter is related to the underlying \textit{sparsity} of the model. However, in this work, we highlight and provide extensive empirical evidence regarding how various (often unrelated) statistical properties in the data can lead to changes in the regularization parameter. In particular, through various synthetic experiments, we demonstrate that changes in the regularization parameter may be driven by changes in the true underlying sparsity, signal-to-noise ratio or even model misspecification. The purpose of this letter is, therefore, to highlight and catalog various statistical properties which induce changes in the associated regularization parameter. We conclude by presenting two applications: one relating to financial data and another to neuroimaging data, where the aforementioned discussion is relevant.
stat
Revisiting the balance heuristic for estimating normalising constants
Multiple importance sampling estimators are widely used for computing intractable constants due to its reliability and robustness. The celebrated balance heuristic estimator belongs to this class of methods and has proved very successful in computer graphics. The basic ingredients for computing the estimator are: a set of proposal distributions, indexed by some discrete label, and a predetermined number of draws from each of these proposals. However, if the number of available proposals is much larger than the number of permitted importance points, one needs to select, possibly at random, which of these distributions will be used. The focus of this work lies within the previous context, exploring some improvements and variations of the balance heuristic via a novel extended-space representation of the estimator, leading to straightforward annealing schemes for variance reduction purposes. In addition, we also look at the intractable scenario where the proposal density is only available as a joint function with the discrete label, as may be encountered in problems where an ordering is imposed. For this case, we look at combinations of correlated unbiased estimators which also fit into the extended-space representation and, in turn, will provide other interesting solutions.
stat
Infinite Arms Bandit: Optimality via Confidence Bounds
Berry et al. (1997) initiated the development of the infinite arms bandit problem. They derived a regret lower bound of all allocation strategies for Bernoulli rewards with uniform priors, and proposed strategies based on success runs. Bonald and Prouti\`{e}re (2013) proposed a two-target algorithm that achieves the regret lower bound, and extended optimality to Bernoulli rewards with general priors. We present here a confidence bound target (CBT) algorithm that achieves optimality for rewards that are bounded above. For each arm we construct a confidence bound and compare it against each other and a target value to determine if the arm should be sampled further. The target value depends on the assumed priors of the arm means. In the absence of information on the prior, the target value is determined empirically. Numerical studies here show that CBT is versatile and outperforms its competitors.
stat
Distribution Calibration for Regression
We are concerned with obtaining well-calibrated output distributions from regression models. Such distributions allow us to quantify the uncertainty that the model has regarding the predicted target value. We introduce the novel concept of distribution calibration, and demonstrate its advantages over the existing definition of quantile calibration. We further propose a post-hoc approach to improving the predictions from previously trained regression models, using multi-output Gaussian Processes with a novel Beta link function. The proposed method is experimentally verified on a set of common regression models and shows improvements for both distribution-level and quantile-level calibration.
stat
Efficient Bayesian PARCOR Approaches for Dynamic Modeling of Multivariate Time Series
A Bayesian lattice filtering and smoothing approach is proposed for fast and accurate modeling and inference in multivariate non-stationary time series. This approach offers computational feasibility and interpretable time-frequency analysis in the multivariate context. The proposed framework allows us to obtain posterior estimates of the time-varying spectral densities of individual time series components, as well as posterior measurements of the time-frequency relationships across multiple components, such as time-varying coherence and partial coherence. The proposed formulation considers multivariate dynamic linear models (MDLMs) on the forward and backward time-varying partial autocorrelation coefficients (TV-VPARCOR). Computationally expensive schemes for posterior inference on the multivariate dynamic PARCOR model are avoided using approximations in the MDLM context. Approximate inference on the corresponding time-varying vector autoregressive (TV-VAR) coefficients is obtained via Whittle's algorithm. A key aspect of the proposed TV-VPARCOR representations is that they are of lower dimension, and therefore more efficient, than TV-VAR representations. The performance of the TV-VPARCOR models is illustrated in simulation studies and in the analysis of multivariate non-stationary temporal data arising in neuroscience and environmental applications. Model performance is evaluated using goodness-of-fit measurements in the time-frequency domain and also by assessing the quality of short-term forecasting.
stat
The Effect of Medicaid Expansion on Non-Elderly Adult Uninsurance Rates Among States that did not Expand Medicaid
We estimate the effect of Medicaid expansion on the adult uninsurance rate in states that did not expand Medicaid in 2014. Using data from the American Community Survey (ACS), we estimate this effect - the treatment effect on the controls (ETC) - by re-weighting expansion regions to approximately balance the covariates from non-expansion regions using an extension of the stable balancing weights objective function (Zubizaretta (2015)). We contribute to the balancing weights literature by accounting for hierarchical data structure and covariate measurement error when calculating our weights, and to the synthetic controls literature (see, e.g. Abadie et al 2010) by outlining a set of assumptions that identifies the ETC using time-series cross-sectional data. We estimate that Medicaid expansion would have changed the uninsurance rate by -2.33 (-3.49, -1.16) percentage points. These results are smaller in absolute magnitude than existing estimates of the treatment effect on the treated (ETT), though may not be directly comparable due to the study design, target population, and level of analysis. Regardless, we caution against making inferences about the ETC using estimates of the ETT, and emphasize the need to directly estimate the appropriate counterfactual when they are the quantity of interest.
stat
Bayesian Deep Ensembles via the Neural Tangent Kernel
We explore the link between deep ensembles and Gaussian processes (GPs) through the lens of the Neural Tangent Kernel (NTK): a recent development in understanding the training dynamics of wide neural networks (NNs). Previous work has shown that even in the infinite width limit, when NNs become GPs, there is no GP posterior interpretation to a deep ensemble trained with squared error loss. We introduce a simple modification to standard deep ensembles training, through addition of a computationally-tractable, randomised and untrainable function to each ensemble member, that enables a posterior interpretation in the infinite width limit. When ensembled together, our trained NNs give an approximation to a posterior predictive distribution, and we prove that our Bayesian deep ensembles make more conservative predictions than standard deep ensembles in the infinite width limit. Finally, using finite width NNs we demonstrate that our Bayesian deep ensembles faithfully emulate the analytic posterior predictive when available, and can outperform standard deep ensembles in various out-of-distribution settings, for both regression and classification tasks.
stat
Automatic model training under restrictive time constraints
We develop a hyperparameter optimisation algorithm, Automated Budget Constrained Training (AutoBCT), which balances the quality of a model with the computational cost required to tune it. The relationship between hyperparameters, model quality and computational cost must be learnt and this learning is incorporated directly into the optimisation problem. At each training epoch, the algorithm decides whether to terminate or continue training, and, in the latter case, what values of hyperparameters to use. This decision weighs optimally potential improvements in the quality with the additional training time and the uncertainty about the learnt quantities. The performance of our algorithm is verified on a number of machine learning problems encompassing random forests and neural networks. Our approach is rooted in the theory of Markov decision processes with partial information and we develop a numerical method to compute the value function and an optimal strategy.
stat
Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data
Policy measures and management decisions aiming at enhancing the role of forests in mitigating climate-change require reliable estimates of C-stock dynamics in greenhouse gas inventories (GHGIs). Aim of this study was to assemble design-based estimators to provide estimates relevant for GHGIs using national forest inventory (NFI) data. We improve basic expansion (BE) estimates of living-biomass C-stock loss using field-data only, by leveraging with remotely-sensed auxiliary data in model-assisted (MA) estimates. Our case studies from Norway, Sweden, Denmark, and Latvia covered an area of >70 Mha. Landsat-based Forest Cover Loss (FCL) and one-time wall-to-wall airborne laser scanning (ALS) data served as auxiliary data. ALS provided information on the C-stock before a potential disturbance indicated by FCL. The use of FCL in MA estimators resulted in considerable efficiency gains which in most cases were further increased by using ALS in addition. A doubling of efficiency was possible for national estimates and even larger efficiencies were observed at the sub-national level. Average annual estimates were considerably more precise than pooled estimates using NFI data from all years at once. The combination of remotely-sensed with NFI field data yields reliable estimates which is not necessarily the case when using remotely-sensed data without reference observations.
stat
Long-term Spatial Modeling for Characteristics of Extreme Heat Events
There is increasing evidence that global warming manifests itself in more frequent warm days and that heat waves will become more frequent. Presently, a formal definition of a heat wave is not agreed upon in the literature. To avoid this debate, we consider extreme heat events, which, at a given location, are well-defined as a run of consecutive days above an associated local threshold. Characteristics of EHEs are of primary interest, such as incidence and duration, as well as the magnitude of the average exceedance and maximum exceedance above the threshold during the EHE. Using approximately 60-year time series of daily maximum temperature data collected at 18 locations in a given region, we propose a spatio-temporal model to study the characteristics of EHEs over time. The model enables prediction of the behavior of EHE characteristics at unobserved locations within the region. Specifically, our approach employs a two-state space-time model for EHEs with local thresholds where one state defines above threshold daily maximum temperatures and the other below threshold temperatures. We show that our model is able to recover the EHE characteristics of interest and outperforms a corresponding autoregressive model that ignores thresholds based on out-of-sample prediction.
stat
Differential analysis in Transcriptomic: The strength of randomly picking 'reference' genes
Transcriptomic analysis are characterized by being not directly quantitative and only providing relative measurements of expression levels up to an unknown individual scaling factor. This difficulty is enhanced for differential expression analysis. Several methods have been proposed to circumvent this lack of knowledge by estimating the unknown individual scaling factors however, even the most used one, are suffering from being built on hardly justifiable biological hypotheses or from having weak statistical background. Only two methods withstand this analysis: one based on largest connected graph component hardly usable for large amount of expressions like in NGS, the second based on $\log$-linear fits which unfortunately require a first step which uses one of the methods described before. We introduce a new procedure for differential analysis in the context of transcriptomic data. It is the result of pooling together several differential analyses each based on randomly picked genes used as reference genes. It provides a differential analysis free from the estimation of the individual scaling factors or any other knowledge. Theoretical properties are investigated both in term of FWER and power. Moreover in the context of Poisson or negative binomial modelization of the transcriptomic expressions, we derived a test with non asymptotic control of its bounds. We complete our study by some empirical simulations and apply our procedure to a real data set of hepatic miRNA expressions from a mouse model of non-alcoholic steatohepatitis (NASH), the CDAHFD model. This study on real data provides new hits with good biological explanations.
stat
Multiscale Gaussian Process Level Set Estimation
In this paper, the problem of estimating the level set of a black-box function from noisy and expensive evaluation queries is considered. A new algorithm for this problem in the Bayesian framework with a Gaussian Process (GP) prior is proposed. The proposed algorithm employs a hierarchical sequence of partitions to explore different regions of the search space at varying levels of detail depending upon their proximity to the level set boundary. It is shown that this approach results in the algorithm having a low complexity implementation whose computational cost is significantly smaller than the existing algorithms for higher dimensional search space $\X$. Furthermore, high probability bounds on a measure of discrepancy between the estimated level set and the true level set for the the proposed algorithm are obtained, which are shown to be strictly better than the existing guarantees for a large class of GPs. In the process, a tighter characterization of the information gain of the proposed algorithm is obtained which takes into account the structured nature of the evaluation points. This approach improves upon the existing technique of bounding the information gain with maximum information gain.
stat
ABCMETAapp: R Shiny Application for Simulation-based Estimation of Mean and Standard Deviation for Meta-analysis via Approximate Bayesian Computation (ABC)
Background and Objective: In meta-analysis based on continuous outcome, estimated means and corresponding standard deviations from the selected studies are key inputs to obtain a pooled estimate of the mean and its confidence interval. We often encounter the situation that these quantities are not directly reported in the literatures. Instead, other summary statistics are reported such as median, minimum, maximum, quartiles, and study sample size. Based on available summary statistics, we need to estimate estimates of mean and standard deviation for meta-analysis. Methods: We developed a R Shiny code based on approximate Bayesian computation (ABC), ABCMETA, to deal with this situation. Results: In this article, we present an interactive and user-friendly R Shiny application for implementing the proposed method (named ABCMETAapp). In ABCMETAapp, users can choose an underlying outcome distribution other than the normal distribution when the distribution of the outcome variable is skewed or heavy tailed. We show how to run ABCMETAapp with examples. Conclusions: ABCMETAapp provides a R Shiny implementation. This method is more flexible than the existing analytical methods since estimation can be based on five different distribution (Normal, Lognormal, Exponential, Weibull, and Beta) for the outcome variable.
stat
A selective review on calibration information from similar studies based on parametric likelihood or empirical likelihood
In multi-center clinical trials, due to various reasons, the individual-level data are strictly restricted to be assessed publicly. Instead, the summarized information is widely available from published results. With the advance of computational technology, it has become very common in data analyses to run on hundreds or thousands of machines simultaneous, with the data distributed across those machines and no longer available in a single central location. How to effectively assemble the summarized clinical data information or information from each machine in parallel computation has become a challenging task for statisticians and computer scientists. In this paper, we selectively review some recently-developed statistical methods, including communication efficient distributed statistical inference, and renewal estimation and incremental inference, which can be regarded as the latest development of calibration information methods in the era of big data. Even though those methods were developed in different fields and in different statistical frameworks, in principle, they are asymptotically equivalent to those well known methods developed in meta analysis. Almost no or little information is lost compared with the case when full data are available. As a general tool to integrate information, we also review the generalized method of moments and estimating equations approach by using empirical likelihood method.
stat
Estimation of subgraph density in noisy networks
While it is common practice in applied network analysis to report various standard network summary statistics, these numbers are rarely accompanied by uncertainty quantification. Yet any error inherent in the measurements underlying the construction of the network, or in the network construction procedure itself, necessarily must propagate to any summary statistics reported. Here we study the problem of estimating the density of an arbitrary subgraph, given a noisy version of some underlying network as data. Under a simple model of network error, we show that consistent estimation of such densities is impossible when the rates of error are unknown and only a single network is observed. Accordingly, we develop method-of-moment estimators of network subgraph densities and error rates for the case where a minimal number of network replicates are available. These estimators are shown to be asymptotically normal as the number of vertices increases to infinity. We also provide confidence intervals for quantifying the uncertainty in these estimates based on the asymptotic normality. To construct the confidence intervals, a new and non-standard bootstrap method is proposed to compute asymptotic variances, which is infeasible otherwise. We illustrate the proposed methods in the context of gene coexpression networks.
stat
Forecasting model based on information-granulated GA-SVR and ARIMA for producer price index
The accuracy of predicting the Producer Price Index (PPI) plays an indispensable role in government economic work. However, it is difficult to forecast the PPI. In our research, we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA (Autoregressive Integrated Moving Average Model) models. The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation. The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI, and produced three different sequences of fuzzy information granules, whose Support Vector Regression (SVR) machine forecast models were separately established for their Genetic Algorithm (GA) optimization parameters. Finally, the residual errors of the GA-SVR model were rectified through ARIMA modeling, and the PPI estimate was reached. Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models, including ARIMA, GRNN, and GA-SVR, following several comparative experiments. Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.
stat
Estimation of Semi-Markov Multi-state Models: A Comparison of the Sojourn Times and Transition Intensities Approaches
Semi-Markov models are widely used for survival analysis and reliability analysis. In general, there are two competing parameterizations and each entails its own interpretation and inference properties. On the one hand, a semi-Markov process can be defined based on the distribution of sojourn times, often via hazard rates, together with transition probabilities of an embedded Markov chain. On the other hand, intensity transition functions may be used, often referred to as the hazard rates of the semi-Markov process. We summarize and contrast these two parameterizations both from a probabilistic and an inference perspective, and we highlight relationships between the two approaches. In general, the intensity transition based approach allows the likelihood to be split into likelihoods of two-state models having fewer parameters, allowing efficient computation and usage of many survival analysis tools. {Nevertheless, in certain cases the sojourn time based approach is natural and has been exploited extensively in applications.} In contrasting the two approaches and contemporary relevant R packages used for inference, we use two real datasets highlighting the probabilistic and inference properties of each approach. This analysis is accompanied by an R vignette.
stat
NVAE: A Deep Hierarchical Variational Autoencoder
Normalizing flows, autoregressive models, variational autoencoders (VAEs), and deep energy-based models are among competing likelihood-based frameworks for deep generative learning. Among them, VAEs have the advantage of fast and tractable sampling and easy-to-access encoding networks. However, they are currently outperformed by other models such as normalizing flows and autoregressive models. While the majority of the research in VAEs is focused on the statistical challenges, we explore the orthogonal direction of carefully designing neural architectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierarchical VAE built for image generation using depth-wise separable convolutions and batch normalization. NVAE is equipped with a residual parameterization of Normal distributions and its training is stabilized by spectral regularization. We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality images on CelebA HQ. To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256$\times$256 pixels. The source code is available at https://github.com/NVlabs/NVAE .
stat
The Study of Urban Residential's Public Space Activeness using Space-centric Approach
With the advancement of the Internet of Things (IoT) and communication platform, large scale sensor deployment can be easily implemented in an urban city to collect various information. To date, there are only a handful of research studies about understanding the usage of urban public spaces. Leveraging IoT, various sensors have been deployed in an urban residential area to monitor and study public space utilization patterns. In this paper, we propose a data processing system to generate space-centric insights about the utilization of an urban residential region of multiple points of interest (PoIs) that consists of 190,000m$^2$ real estate. We identify the activeness of each PoI based on the spectral clustering, and then study their corresponding static features, which are composed of transportation, commercial facilities, population density, along with other characteristics. Through the heuristic features inferring, the residential density and commercial facilities are the most significant factors affecting public place utilization.
stat
Expectation propagation on the diluted Bayesian classifier
Efficient feature selection from high-dimensional datasets is a very important challenge in many data-driven fields of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the problem of sparse feature selection in the context of binary classification by leveraging a computational scheme known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron learning a classification rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm in terms of variable selection properties, estimation accuracy and computational complexity, especially when the student perceptron is trained from correlated patterns that prevent other iterative methods from converging. Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that consists in minimizing the free energy associated with the EP algorithm.
stat
Reducing bias in difference-in-differences models using entropy balancing
This paper illustrates the use of entropy balancing in difference-in-differences analyses when pre-intervention outcome trends suggest a possible violation of the parallel trends assumption. We describe a set of assumptions under which weighting to balance intervention and comparison groups on pre-intervention outcome trends leads to consistent difference-in-differences estimates even when pre-intervention outcome trends are not parallel. Simulated results verify that entropy balancing of pre-intervention outcomes trends can remove bias when the parallel trends assumption is not directly satisfied, and thus may enable researchers to use difference-in-differences designs in a wider range of observational settings than previously acknowledged.
stat
Reservoir Computing meets Recurrent Kernels and Structured Transforms
Reservoir Computing is a class of simple yet efficient Recurrent Neural Networks where internal weights are fixed at random and only a linear output layer is trained. In the large size limit, such random neural networks have a deep connection with kernel methods. Our contributions are threefold: a) We rigorously establish the recurrent kernel limit of Reservoir Computing and prove its convergence. b) We test our models on chaotic time series prediction, a classic but challenging benchmark in Reservoir Computing, and show how the Recurrent Kernel is competitive and computationally efficient when the number of data points remains moderate. c) When the number of samples is too large, we leverage the success of structured Random Features for kernel approximation by introducing Structured Reservoir Computing. The two proposed methods, Recurrent Kernel and Structured Reservoir Computing, turn out to be much faster and more memory-efficient than conventional Reservoir Computing.
stat
Where Bayes tweaks Gauss: Conditionally Gaussian priors for stable multi-dipole estimation
We present a very simple yet powerful generalization of a previously described model and algorithm for estimation of multiple dipoles from magneto/electro-encephalographic data. Specifically, the generalization consists in the introduction of a log-uniform hyperprior on the standard deviation of a set of conditionally linear/Gaussian variables. We use numerical simulations and an experimental dataset to show that the approximation to the posterior distribution remains extremely stable under a wide range of values of the hyperparameter, virtually removing the dependence on the hyperparameter.
stat
Multiple repairable systems under dependent competing risks with nonparametric Frailty
The aim of this article is to analyze data from multiple repairable systems under the presence of dependent competing risks. In order to model this dependence structure, we adopted the well-known shared frailty model. This model provides a suitable theoretical basis for generating dependence between the components failure times in the dependent competing risks model. It is known that the dependence effect in this scenario influences the estimates of the model parameters. Hence, under the assumption that the cause-specific intensities follow a PLP, we propose a frailty-induced dependence approach to incorporate the dependence among the cause-specific recurrent processes. Moreover, the misspecification of the frailty distribution may lead to errors when estimating the parameters of interest. Because of this, we considered a Bayesian nonparametric approach to model the frailty density in order to offer more flexibility and to provide consistent estimates for the PLP model, as well as insights about heterogeneity among the systems. Both simulation studies and real case studies are provided to illustrate the proposed approaches and demonstrate their validity.
stat
Multiscale Influenza Forecasting
Influenza forecasting in the United States (US) is complex and challenging for reasons including substantial spatial and temporal variability, nested geographic scales of forecast interest, and heterogeneous surveillance participation. Here we present a flexible influenza forecasting model called Dante, a multiscale flu forecasting model that learns rather than prescribes spatial, temporal, and surveillance data structure. Forecasts at the Health and Human Services (HHS) regional and national scales are generated as linear combinations of state forecasts with weights proportional to US Census population estimates, resulting in coherent forecasts across nested geographic scales. We retrospectively compare Dante's short-term and seasonal forecasts at the state, regional, and national scales for the 2012 through 2017 flu seasons in the US to the Dynamic Bayesian Model (DBM), a leading flu forecasting model. Dante outperformed DBM for nearly all spatial units, flu seasons, geographic scales, and forecasting targets. The improved performance is due to Dante making forecasts, especially short-term forecasts, more confidently and accurately than DBM, suggesting Dante's improved forecast scores will also translate to more useful forecasts for the public health sector. Dante participated in the prospective 2018/19 FluSight challenge hosted by the Centers for Disease Control and Prevention and placed 1st in both the national and regional competition and the state competition. The methodology underpinning Dante can be used in other disease forecasting contexts where nested geographic scales of interest exist.
stat
On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle
Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.
stat
An Optimistic Acceleration of AMSGrad for Nonconvex Optimization
We propose a new variant of AMSGrad, a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive mini-batch gradients and leverages its underlying structure making the gradients sequentially predictable. By exploiting the predictability and ideas from optimistic online learning, the proposed algorithm can accelerate the convergence and increase sample efficiency. After establishing a tighter upper bound under some convexity conditions on the regret, we offer a complimentary view of our algorithm which generalizes the offline and stochastic version of nonconvex optimization. In the nonconvex case, we establish a non-asymptotic convergence bound independently of the initialization. We illustrate the practical speedup on several deep learning models via numerical experiments.
stat
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
We study sampling from a target distribution ${\nu_* = e^{-f}}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm. For any potential function $f$ whose tails behave like ${\|x\|^\alpha}$ for ${\alpha \in [1,2]}$, and has $\beta$-H\"older continuous gradient, we prove that ${\widetilde{\mathcal{O}} \Big(d^{\frac{1}{\beta}+\frac{1+\beta}{\beta}(\frac{2}{\alpha} - \boldsymbol{1}_{\{\alpha \neq 1\}})} \epsilon^{-\frac{1}{\beta}}\Big)}$ steps are sufficient to reach the $\epsilon $-neighborhood of a $d$-dimensional target distribution $\nu_*$ in KL-divergence. This convergence rate, in terms of $\epsilon$ dependency, is not directly influenced by the tail growth rate $\alpha$ of the potential function as long as its growth is at least linear, and it only relies on the order of smoothness $\beta$. One notable consequence of this result is that for potentials with Lipschitz gradient, i.e. $\beta=1$, our rate recovers the best known rate ${\widetilde{\mathcal{O}}(d\epsilon^{-1})}$ which was established for strongly convex potentials in terms of $\epsilon$ dependency, but we show that the same rate is achievable for a wider class of potentials that are degenerately convex at infinity. The growth rate $\alpha$ starts to have an effect on the established rate in high dimensions where $d$ is large; furthermore, it recovers the best-known dimension dependency when the tail growth of the potential is quadratic, i.e. ${\alpha = 2}$, in the current setup. Our framework allows for finite perturbations, and any order of smoothness ${\beta\in(0,1]}$; consequently, our results are applicable to a wide class of non-convex potentials that are weakly smooth and exhibit at least linear tail growth.
stat
The Universal model and prior: multinomial GLMs
This paper generalises the exponential family GLM to allow arbitrary distributions for the response variable. This is achieved by combining the model-assisted regression approach from survey sampling with the GLM scoring algorithm, weighted by random draws from the posterior Dirichlet distribution of the support point probabilities of the multinomial distribution. The generalisation provides fully Bayesian analyses from the posterior sampling, without MCMC. Several examples are given, of published GLM data sets. The approach can be extended widely: an example of a GLMM extension is given.
stat
Inductive Mutual Information Estimation: A Convex Maximum-Entropy Copula Approach
We propose a novel estimator of the mutual information between two ordinal vectors $x$ and $y$. Our approach is inductive (as opposed to deductive) in that it depends on the data generating distribution solely through some nonparametric properties revealing associations in the data, and does not require having enough data to fully characterize the true joint distributions $P_{x, y}$. Specifically, our approach consists of (i) noting that $I\left(y; x\right) = I\left(u_y; u_x\right)$ where $u_y$ and $u_x$ are the copula-uniform dual representations of $y$ and $x$ (i.e. their images under the probability integral transform), and (ii) estimating the copula entropies $h\left(u_y\right)$, $h\left(u_x\right)$ and $h\left(u_y, u_x\right)$ by solving a maximum-entropy problem over the space of copula densities under a constraint of the type $\alpha_m = E\left[\phi_m(u_y, u_x)\right]$. We prove that, so long as the constraint is feasible, this problem admits a unique solution, it is in the exponential family, and it can be learned by solving a convex optimization problem. The resulting estimator, which we denote MIND, is marginal-invariant, always non-negative, unbounded for any sample size $n$, consistent, has MSE rate $O(1/n)$, and is more data-efficient than competing approaches. Beyond mutual information estimation, we illustrate that our approach may be used to mitigate mode collapse in GANs by maximizing the entropy of the copula of fake samples, a model we refer to as Copula Entropy Regularized GAN (CER-GAN).
stat
A generalization of regularized dual averaging and its dynamics
Excessive computational cost for learning large data and streaming data can be alleviated by using stochastic algorithms, such as stochastic gradient descent and its variants. Recent advances improve stochastic algorithms on convergence speed, adaptivity and structural awareness. However, distributional aspects of these new algorithms are poorly understood, especially for structured parameters. To develop statistical inference in this case, we propose a class of generalized regularized dual averaging (gRDA) algorithms with constant step size, which improves RDA (Xiao, 2010; Flammarion and Bach, 2017). Weak convergence of gRDA trajectories are studied, and as a consequence, for the first time in the literature, the asymptotic distributions for online l1 penalized problems become available. These general results apply to both convex and non-convex differentiable loss functions, and in particular, recover the existing regret bound for convex losses (Nemirovski et al., 2009). As important applications, statistical inferential theory on online sparse linear regression and online sparse principal component analysis are developed, and are supported by extensive numerical analysis. Interestingly, when gRDA is properly tuned, support recovery and central limiting distribution (with mean zero) hold simultaneously in the online setting, which is in contrast with the biased central limiting distribution of batch Lasso (Knight and Fu, 2000). Technical devices, including weak convergence of stochastic mirror descent, are developed as by-products with independent interest. Preliminary empirical analysis of modern image data shows that learning very sparse deep neural networks by gRDA does not necessarily sacrifice testing accuracy.
stat
An Empirical Bayes Approach to Graphon Estimation
The graphon (W-graph), including the stochastic block model as a special case, has been widely used in modeling and analyzing network data. This random graph model is well-characterized by its graphon function, and estimation of the graphon function has gained a lot of recent research interests. Most existing works focus on community detection in the latent space of the model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the identified communities. In this work, we propose a hierarchical Binomial model and develop a novel empirical Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function. Based on the likelihood of our hierarchical model, we further introduce a model selection criterion for choosing the number of communities. Numerical results on extensive simulations and two well-annotated social networks demonstrate the superiority of our approach in terms of estimation accuracy and model selection.
stat
Gaussian DAGs on network data
The traditional directed acyclic graph (DAG) model assumes data are generated independently from the underlying joint distribution defined by the DAG. In many applications, however, individuals are linked via a network and thus the independence assumption does not hold. We propose a novel Gaussian DAG model for network data, where the dependence among individual data points (row covariance) is modeled by an undirected graph. Under this model, we develop a maximum penalized likelihood method to estimate the DAG structure and the row correlation matrix. The algorithm iterates between a decoupled lasso regression step and a graphical lasso step. We show with extensive simulated and real network data, that our algorithm improves the accuracy of DAG structure learning by leveraging the information from the estimated row correlations. Moreover, we demonstrate that the performance of existing DAG learning methods can be substantially improved via de-correlation of network data with the estimated row correlation matrix from our algorithm.
stat
GAN-based Priors for Quantifying Uncertainty
Bayesian inference is used extensively to quantify the uncertainty in an inferred field given the measurement of a related field when the two are linked by a mathematical model. Despite its many applications, Bayesian inference faces challenges when inferring fields that have discrete representations of large dimension, and/or have prior distributions that are difficult to characterize mathematically. In this work we demonstrate how the approximate distribution learned by a deep generative adversarial network (GAN) may be used as a prior in a Bayesian update to address both these challenges. We demonstrate the efficacy of this approach on two distinct, and remarkably broad, classes of problems. The first class leads to supervised learning algorithms for image classification with superior out of distribution detection and accuracy, and for image inpainting with built-in variance estimation. The second class leads to unsupervised learning algorithms for image denoising and for solving physics-driven inverse problems.
stat
A simple algorithm for global sensitivity analysis with Shapley effects
Global sensitivity analysis aims at measuring the relative importance of different variables or groups of variables for the variability of a quantity of interest. Among several sensitivity indices, so-called Shapley effects have recently gained popularity mainly because the Shapley effects for all the individual variables are summed up to the overall variance, which gives a better interpretability than the classical sensitivity indices called main effects and total effects. In this paper, assuming that all the input variables are independent, we introduce a quite simple Monte Carlo algorithm to estimate the Shapley effects for all the individual variables simultaneously, which drastically simplifies the existing algorithms proposed in the literature. We present a short Matlab implementation of our algorithm and show some numerical results. A possible extension to the case where the input variables are dependent is also discussed.
stat
Warped Input Gaussian Processes for Time Series Forecasting
We introduce a Gaussian process-based model for handling of non-stationarity. The warping is achieved non-parametrically, through imposing a prior on the relative change of distance between subsequent observation inputs. The model allows the use of general gradient optimization algorithms for training and incurs only a small computational overhead on training and prediction. The model finds its applications in forecasting in non-stationary time series with either gradually varying volatility, presence of change points, or a combination thereof. We evaluate the model on synthetic and real-world time series data comparing against both baseline and known state-of-the-art approaches and show that the model exhibits state-of-the-art forecasting performance at a lower implementation and computation cost.
stat
State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data
Recently, to account for low-frequency market dynamics, several volatility models, employing high-frequency financial data, have been developed. However, in financial markets, we often observe that financial volatility processes depend on economic states, so they have a state heterogeneous structure. In this paper, to study state heterogeneous market dynamics based on high-frequency data, we introduce a novel volatility model based on a continuous Ito diffusion process whose intraday instantaneous volatility process evolves depending on the exogenous state variable, as well as its integrated volatility. We call it the state heterogeneous GARCH-Ito (SG-Ito) model. We suggest a quasi-likelihood estimation procedure with the realized volatility proxy and establish its asymptotic behaviors. Moreover, to test the low-frequency state heterogeneity, we develop a Wald test-type hypothesis testing procedure. The results of empirical studies suggest the existence of leverage, investor attention, market illiquidity, stock market comovement, and post-holiday effect in S&P 500 index volatility.
stat
Convex Fairness Constrained Model Using Causal Effect Estimators
Recent years have seen much research on fairness in machine learning. Here, mean difference (MD) or demographic parity is one of the most popular measures of fairness. However, MD quantifies not only discrimination but also explanatory bias which is the difference of outcomes justified by explanatory features. In this paper, we devise novel models, called FairCEEs, which remove discrimination while keeping explanatory bias. The models are based on estimators of causal effect utilizing propensity score analysis. We prove that FairCEEs with the squared loss theoretically outperform a naive MD constraint model. We provide an efficient algorithm for solving FairCEEs in regression and binary classification tasks. In our experiment on synthetic and real-world data in these two tasks, FairCEEs outperformed an existing model that considers explanatory bias in specific cases.
stat
Imbalanced classification: an objective-oriented review
A common issue for classification in scientific research and industry is the existence of imbalanced classes. When sample sizes of different classes are imbalanced in training data, naively implementing a classification method often leads to unsatisfactory prediction results on test data. Multiple resampling techniques have been proposed to address the class imbalance issues. Yet, there is no general guidance on when to use each technique. In this article, we provide an objective-oriented review of the common resampling techniques for binary classification under imbalanced class sizes. The learning objectives we consider include the classical paradigm that minimizes the overall classification error, the cost-sensitive learning paradigm that minimizes a cost-adjusted weighted type I and type II errors, and the Neyman-Pearson paradigm that minimizes the type II error subject to a type I error constraint. Under each paradigm, we investigate the combination of the resampling techniques and a few state-of-the-art classification methods. For each pair of resampling techniques and classification methods, we use simulation studies to study the performance under different evaluation metrics. From these extensive simulation experiments, we demonstrate under each classification paradigm, the complex dynamics among resampling techniques, base classification methods, evaluation metrics, and imbalance ratios. For practitioners, the take-away message is that with imbalanced data, one usually should consider all the combinations of resampling techniques and the base classification methods.
stat
Optimal Projections in the Distance-Based Statistical Methods
This paper introduces a new way to calculate distance-based statistics, particularly when the data are multivariate. The main idea is to pre-calculate the optimal projection directions given the variable dimension, and to project multidimensional variables onto these pre-specified projection directions; by subsequently utilizing the fast algorithm that is developed in Huo and Sz\'ekely [2016] for the univariate variables, the computational complexity can be improved from $O(m^2)$ to $O(n m \cdot \mbox{log}(m))$, where $n$ is the number of projection directions and $m$ is the sample size. When $n \ll m/\log(m)$, computational savings can be achieved. The key challenge is how to find the optimal pre-specified projection directions. This can be obtained by minimizing the worse-case difference between the true distance and the approximated distance, which can be formulated as a nonconvex optimization problem in a general setting. In this paper, we show that the exact solution of the nonconvex optimization problem can be derived in two special cases: the dimension of the data is equal to either $2$ or the number of projection directions. In the generic settings, we propose an algorithm to find some approximate solutions. Simulations confirm the advantage of our method, in comparison with the pure Monte Carlo approach, in which the directions are randomly selected rather than pre-calculated.
stat
Copula Flows for Synthetic Data Generation
The ability to generate high-fidelity synthetic data is crucial when available (real) data is limited or where privacy and data protection standards allow only for limited use of the given data, e.g., in medical and financial data-sets. Current state-of-the-art methods for synthetic data generation are based on generative models, such as Generative Adversarial Networks (GANs). Even though GANs have achieved remarkable results in synthetic data generation, they are often challenging to interpret.Furthermore, GAN-based methods can suffer when used with mixed real and categorical variables.Moreover, loss function (discriminator loss) design itself is problem specific, i.e., the generative model may not be useful for tasks it was not explicitly trained for. In this paper, we propose to use a probabilistic model as a synthetic data generator. Learning the probabilistic model for the data is equivalent to estimating the density of the data. Based on the copula theory, we divide the density estimation task into two parts, i.e., estimating univariate marginals and estimating the multivariate copula density over the univariate marginals. We use normalising flows to learn both the copula density and univariate marginals. We benchmark our method on both simulated and real data-sets in terms of density estimation as well as the ability to generate high-fidelity synthetic data
stat
Approximate Cross-validation: Guarantees for Model Assessment and Selection
Cross-validation (CV) is a popular approach for assessing and selecting predictive models. However, when the number of folds is large, CV suffers from a need to repeatedly refit a learning procedure on a large number of training datasets. Recent work in empirical risk minimization (ERM) approximates the expensive refitting with a single Newton step warm-started from the full training set optimizer. While this can greatly reduce runtime, several open questions remain including whether these approximations lead to faithful model selection and whether they are suitable for non-smooth objectives. We address these questions with three main contributions: (i) we provide uniform non-asymptotic, deterministic model assessment guarantees for approximate CV; (ii) we show that (roughly) the same conditions also guarantee model selection performance comparable to CV; (iii) we provide a proximal Newton extension of the approximate CV framework for non-smooth prediction problems and develop improved assessment guarantees for problems such as l1-regularized ERM.
stat
An n-dimensional Rosenbrock Distribution for MCMC Testing
The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.
stat
Learn-By-Calibrating: Using Calibration as a Training Objective
Calibration error is commonly adopted for evaluating the quality of uncertainty estimators in deep neural networks. In this paper, we argue that such a metric is highly beneficial for training predictive models, even when we do not explicitly measure the uncertainties. This is conceptually similar to heteroscedastic neural networks that produce variance estimates for each prediction, with the key difference that we do not place a Gaussian prior on the predictions. We propose a novel algorithm that performs simultaneous interval estimation for different calibration levels and effectively leverages the intervals to refine the mean estimates. Our results show that, our approach is consistently superior to existing regularization strategies in deep regression models. Finally, we propose to augment partial dependence plots, a model-agnostic interpretability tool, with expected prediction intervals to reveal interesting dependencies between data and the target.
stat
KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints
In the context of K-armed stochastic bandits with distribution only assumed to be supported by [0,1], we introduce the first algorithm, called KL-UCB-switch, that enjoys simultaneously a distribution-free regret bound of optimal order $\sqrt{KT}$ and a distribution-dependent regret bound of optimal order as well, that is, matching the $\kappa\ln T$ lower bound by Lai & Robbins (1985) and Burnetas & Katehakis (1996). This self-contained contribution simultaneously presents state-of-the-art techniques for regret minimization in bandit models, and an elementary construction of non-asymptotic confidence bounds based on the empirical likelihood method for bounded distributions.
stat
When does gradient descent with logistic loss interpolate using deep networks with smoothed ReLU activations?
We establish conditions under which gradient descent applied to fixed-width deep networks drives the logistic loss to zero, and prove bounds on the rate of convergence. Our analysis applies for smoothed approximations to the ReLU, such as Swish and the Huberized ReLU, proposed in previous applied work. We provide two sufficient conditions for convergence. The first is simply a bound on the loss at initialization. The second is a data separation condition used in prior analyses.
stat
BOCK : Bayesian Optimization with Cylindrical Kernels
A major challenge in Bayesian Optimization is the boundary issue (Swersky, 2017) where an algorithm spends too many evaluations near the boundary of its search space. In this paper, we propose BOCK, Bayesian Optimization with Cylindrical Kernels, whose basic idea is to transform the ball geometry of the search space using a cylindrical transformation. Because of the transformed geometry, the Gaussian Process-based surrogate model spends less budget searching near the boundary, while concentrating its efforts relatively more near the center of the search region, where we expect the solution to be located. We evaluate BOCK extensively, showing that it is not only more accurate and efficient, but it also scales successfully to problems with a dimensionality as high as 500. We show that the better accuracy and scalability of BOCK even allows optimizing modestly sized neural network layers, as well as neural network hyperparameters.
stat
Self-Regularity of Non-Negative Output Weights for Overparameterized Two-Layer Neural Networks
We consider the problem of finding a two-layer neural network with sigmoid, rectified linear unit (ReLU), or binary step activation functions that "fits" a training data set as accurately as possible as quantified by the training error; and study the following question: \emph{does a low training error guarantee that the norm of the output layer (outer norm) itself is small?} We answer affirmatively this question for the case of non-negative output weights. Using a simple covering number argument, we establish that under quite mild distributional assumptions on the input/label pairs; any such network achieving a small training error on polynomially many data necessarily has a well-controlled outer norm. Notably, our results (a) have a polynomial (in $d$) sample complexity, (b) are independent of the number of hidden units (which can potentially be very high), (c) are oblivious to the training algorithm; and (d) require quite mild assumptions on the data (in particular the input vector $X\in\mathbb{R}^d$ need not have independent coordinates). We then leverage our bounds to establish generalization guarantees for such networks through \emph{fat-shattering dimension}, a scale-sensitive measure of the complexity class that the network architectures we investigate belong to. Notably, our generalization bounds also have good sample complexity (polynomials in $d$ with a low degree), and are in fact near-linear for some important cases of interest.
stat
Design-unbiased statistical learning in survey sampling
Design-consistent model-assisted estimation has become the standard practice in survey sampling. However, a general theory is lacking so far, which allows one to incorporate modern machine-learning techniques that can lead to potentially much more powerful assisting models. We propose a subsampling Rao-Blackwell method, and develop a statistical learning theory for exactly design-unbiased estimation with the help of linear or non-linear prediction models. Our approach makes use of classic ideas from Statistical Science as well as the rapidly growing field of Machine Learning. Provided rich auxiliary information, it can yield considerable efficiency gains over standard linear model-assisted methods, while ensuring valid estimation for the given target population, which is robust against potential mis-specifications of the assisting model at the individual level.
stat
Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model
Uncertainty estimations are presented of the response of a multiscale in-stent restenosis model, as obtained by both non-intrusive and semi-intrusive uncertainty quantification. The in-stent restenosis model is a fully coupled multiscale simulation of post-stenting tissue growth, in which the most costly submodel is the blood flow simulation. Surrogate modeling for non-intrusive uncertainty quantification takes the whole model as a black-box and maps directly from the three uncertain inputs to the quantity of interest, the neointimal area. The corresponding uncertain estimates matched the results from quasi-Monte Carlo simulations well. In the semi-intrusive uncertainty quantification, the most expensive submodel is replaced with a surrogate model. We developed a surrogate model for the blood flow simulation by using a convolutional neural network. The semi-intrusive method with the new surrogate model offered efficient estimates of uncertainty and sensitivity while keeping relatively high accuracy. It outperformed the result obtained with earlier surrogate models. It also achieved the estimates comparable to the non-intrusive method with similar efficiency. Presented results on uncertainty propagation with non-intrusive and semi-intrusive metamodeling methods allow us to draw some conclusions on the advantages and limitations of these methods.
stat
Spectral embedding of weighted graphs
This paper concerns the statistical analysis of a weighted graph through spectral embedding. Under a latent position model in which the expected adjacency matrix has low rank, we prove uniform consistency and a central limit theorem for the embedded nodes, treated as latent position estimates. In the special case of a weighted stochastic block model, this result implies that the embedding follows a Gaussian mixture model with each component representing a community. We exploit this to formally evaluate different weight representations of the graph using Chernoff information. For example, in a network anomaly detection problem where we observe a p-value on each edge, we recommend against directly embedding the matrix of p-values, and instead using threshold or log p-values, depending on network sparsity and signal strength.
stat
Efficient estimation of the ANOVA mean dimension, with an application to neural net classification
The mean dimension of a black box function of $d$ variables is a convenient way to summarize the extent to which it is dominated by high or low order interactions. It is expressed in terms of $2^d-1$ variance components but it can be written as the sum of $d$ Sobol' indices that can be estimated by leave one out methods. We compare the variance of these leave one out methods: a Gibbs sampler called winding stairs, a radial sampler that changes each variable one at a time from a baseline, and a naive sampler that never reuses function evaluations and so costs about double the other methods. For an additive function the radial and winding stairs are most efficient. For a multiplicative function the naive method can easily be most efficient if the factors have high kurtosis. As an illustration we consider the mean dimension of a neural network classifier of digits from the MNIST data set. The classifier is a function of $784$ pixels. For that problem, winding stairs is the best algorithm. We find that inputs to the final softmax layer have mean dimensions ranging from $1.35$ to $2.0$.
stat
Variational Bayesian Decision-making for Continuous Utilities
Bayesian decision theory outlines a rigorous framework for making optimal decisions based on maximizing expected utility over a model posterior. However, practitioners often do not have access to the full posterior and resort to approximate inference strategies. In such cases, taking the eventual decision-making task into account while performing the inference allows for calibrating the posterior approximation to maximize the utility. We present an automatic pipeline that co-opts continuous utilities into variational inference algorithms to account for decision-making. We provide practical strategies for approximating and maximizing the gain, and empirically demonstrate consistent improvement when calibrating approximations for specific utilities.
stat
A Bayesian semi-parametric hybrid model for spatial extremes with unknown dependence structure
The max-stable process is an asymptotically justified model for spatial extremes. In particular, we focus on the hierarchical extreme-value process (HEVP), which is a particular max-stable process that is conducive to Bayesian computing. The HEVP and all max-stable process models are parametric and impose strong assumptions including that all marginal distributions belong to the generalized extreme value family and that nearby sites are asymptotically dependent. We generalize the HEVP by relaxing these assumptions to provide a wider class of marginal distributions via a Dirichlet process prior for the spatial random effects distribution. In addition, we present a hybrid max-mixture model that combines the strengths of the parametric and semi-parametric models. We show that this versatile max-mixture model accommodates both asymptotic independence and dependence and can be fit using standard Markov chain Monte Carlo algorithms. The utility of our model is evaluated in Monte Carlo simulation studies and application to Netherlands wind gust data.
stat
Truncated Variational Expectation Maximization
We derive a novel variational expectation maximization approach based on truncated posterior distributions. Truncated distributions are proportional to exact posteriors within subsets of a discrete state space and equal zero otherwise. The treatment of the distributions' subsets as variational parameters distinguishes the approach from previous variational approaches. The specific structure of truncated distributions allows for deriving novel and mathematically grounded results, which in turn can be used to formulate novel efficient algorithms to optimize the parameters of probabilistic generative models. Most centrally, we find the variational lower bounds that correspond to truncated distributions to be given by very concise and efficiently computable expressions, while update equations for model parameters remain in their standard form. Based on these findings, we show how efficient and easily applicable meta-algorithms can be formulated that guarantee a monotonic increase of the variational bound. Example applications of the here derived framework provide novel theoretical results and learning procedures for latent variable models as well as mixture models. Furthermore, we show that truncated variation EM naturally interpolates between standard EM with full posteriors and EM based on the maximum a-posteriori state (MAP). The approach can, therefore, be regarded as a generalization of the popular `hard EM' approach towards a similarly efficient method which can capture more of the true posterior structure.
stat
Resource-Efficient Neural Networks for Embedded Systems
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into every day's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We substantiate our discussion with experiments on well-known benchmark data sets to showcase the difficulty of finding good trade-offs between resource-efficiency and predictive performance.
stat
Adversarial training for predictive tasks: theoretical analysis and limitations in the deterministic case
To train a deep neural network to mimic the outcomes of processing sequences, a version of Conditional Generalized Adversarial Network (CGAN) can be used. It has been observed by others that CGAN can help to improve the results even for deterministic sequences, where only one output is associated with the processing of a given input. Surprisingly, our CGAN-based tests on deterministic geophysical processing sequences did not produce a real improvement compared to the use of an $L_p$ loss; we here propose a first theoretical explanation why. Our analysis goes from the non-deterministic case to the deterministic one. It led us to develop an adversarial way to train a content loss that gave better results on our data.
stat
Minibatch optimal transport distances; analysis and applications
Optimal transport distances have become a classic tool to compare probability distributions and have found many applications in machine learning. Yet, despite recent algorithmic developments, their complexity prevents their direct use on large scale datasets. To overcome this challenge, a common workaround is to compute these distances on minibatches i.e. to average the outcome of several smaller optimal transport problems. We propose in this paper an extended analysis of this practice, which effects were previously studied in restricted cases. We first consider a large variety of Optimal Transport kernels. We notably argue that the minibatch strategy comes with appealing properties such as unbiased estimators, gradients and a concentration bound around the expectation, but also with limits: the minibatch OT is not a distance. To recover some of the lost distance axioms, we introduce a debiased minibatch OT function and study its statistical and optimisation properties. Along with this theoretical analysis, we also conduct empirical experiments on gradient flows, generative adversarial networks (GANs) or color transfer that highlight the practical interest of this strategy.
stat
Bayesian structure learning and sampling of Bayesian networks with the R package BiDAG
The R package BiDAG implements Markov chain Monte Carlo (MCMC) methods for structure learning and sampling of Bayesian networks. The package includes tools to search for a maximum a posteriori (MAP) graph and to sample graphs from the posterior distribution given the data. A new hybrid approach to structure learning enables inference in large graphs. In the first step, we define a reduced search space by means of the PC algorithm or based on prior knowledge. In the second step, an iterative order MCMC scheme proceeds to optimize within the restricted search space and estimate the MAP graph. Sampling from the posterior distribution is implemented using either order or partition MCMC. The models and algorithms can handle both discrete and continuous data. The BiDAG package also provides an implementation of MCMC schemes for structure learning and sampling of dynamic Bayesian networks.
stat
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
We present a framework that allows for the non-asymptotic study of the $2$-Wasserstein distance between the invariant distribution of an ergodic stochastic differential equation and the distribution of its numerical approximation in the strongly log-concave case. This allows us to study in a unified way a number of different integrators proposed in the literature for the overdamped and underdamped Langevin dynamics. In addition, we analyse a novel splitting method for the underdamped Langevin dynamics which only requires one gradient evaluation per time step. Under an additional smoothness assumption on a $d$--dimensional strongly log-concave distribution with condition number $\kappa$, the algorithm is shown to produce with an $\mathcal{O}\big(\kappa^{5/4} d^{1/4}\epsilon^{-1/2} \big)$ complexity samples from a distribution that, in Wasserstein distance, is at most $\epsilon>0$ away from the target distribution.
stat
Testing nonparametric shape restrictions
We describe and examine a test for a general class of shape constraints, such as constraints on the signs of derivatives, U-(S-)shape, symmetry, quasi-convexity, log-convexity, $r$-convexity, among others, in a nonparametric framework using partial sums empirical processes. We show that, after a suitable transformation, its asymptotic distribution is a functional of the standard Brownian motion, so that critical values are available. However, due to the possible poor approximation of the asymptotic critical values to the finite sample ones, we also describe a valid bootstrap algorithm.
stat
Anomaly detection with superexperts under delayed feedback
The increasing connectivity of data and cyber-physical systems has resulted in a growing number of cyber-attacks. Real-time detection of such attacks, through the identification of anomalous activity, is required so that mitigation and contingent actions can be effectively and rapidly deployed. We propose a new approach for aggregating unsupervised anomaly detection algorithms and incorporating feedback when it becomes available. We apply this approach to open-source real datasets and show that both aggregating models, which we call experts, and incorporating feedback significantly improve the performance. An important property of the proposed approaches is their theoretical guarantees that they perform close to the best superexpert, which can switch between the best performing experts, in terms of the cumulative average losses.
stat
Winning the Big Data Technologies Horizon Prize: Fast and reliable forecasting of electricity grid traffic by identification of recurrent fluctuations
This paper provides a description of the approach and methodology I used in winning the European Union Big Data Technologies Horizon Prize on data-driven prediction of electricity grid traffic. The methodology relies on identifying typical short-term recurrent fluctuations, which is subsequently refined through a regression-of-fluctuations approach. The key points and strategic considerations that led to selecting or discarding different methodological aspects are also discussed. The criteria include adaptability to changing conditions, reliability with outliers and missing data, robustness to noise, and efficiency in implementation.
stat
Deep ReLU Networks Preserve Expected Length
Assessing the complexity of functions computed by a neural network helps us understand how the network will learn and generalize. One natural measure of complexity is how the network distorts length -- if the network takes a unit-length curve as input, what is the length of the resulting curve of outputs? It has been widely believed that this length grows exponentially in network depth. We prove that in fact this is not the case: the expected length distortion does not grow with depth, and indeed shrinks slightly, for ReLU networks with standard random initialization. We also generalize this result by proving upper bounds both for higher moments of the length distortion and for the distortion of higher-dimensional volumes. These theoretical results are corroborated by our experiments, which indicate that length distortion remains modest even after training.
stat
Sensitivity analysis based dimension reduction of multiscale models
In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the input dimensionality of the related multiscale model, in this way, improving the efficiency of its uncertainty estimation. The approach is illustrated with two examples: a reaction model and the standard Ornstein-Uhlenbeck process. Additionally, a counterexample shows that an uncertain input should not be excluded from uncertainty quantification without estimating the response sensitivity to this parameter. In particular, an analysis of the function defining the relation between single scale components is required to understand whether single scale sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model input space.
stat
Implicit Regularization of Random Feature Models
Random Feature (RF) models are used as efficient parametric approximations of kernel methods. We investigate, by means of random matrix theory, the connection between Gaussian RF models and Kernel Ridge Regression (KRR). For a Gaussian RF model with $P$ features, $N$ data points, and a ridge $\lambda$, we show that the average (i.e. expected) RF predictor is close to a KRR predictor with an effective ridge $\tilde{\lambda}$. We show that $\tilde{\lambda} > \lambda$ and $\tilde{\lambda} \searrow \lambda$ monotonically as $P$ grows, thus revealing the implicit regularization effect of finite RF sampling. We then compare the risk (i.e. test error) of the $\tilde{\lambda}$-KRR predictor with the average risk of the $\lambda$-RF predictor and obtain a precise and explicit bound on their difference. Finally, we empirically find an extremely good agreement between the test errors of the average $\lambda$-RF predictor and $\tilde{\lambda}$-KRR predictor.
stat