title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Space Partitioning and Regression Mode Seeking via a Mean-Shift-Inspired Algorithm
The mean shift (MS) algorithm is a nonparametric method used to cluster sample points and find the local modes of kernel density estimates, using an idea based on iterative gradient ascent. In this paper we develop a mean-shift-inspired algorithm to estimate the modes of regression functions and partition the sample points in the input space. We prove convergence of the sequences generated by the algorithm and derive the non-asymptotic rates of convergence of the estimated local modes for the underlying regression model. We also demonstrate the utility of the algorithm for data-enabled discovery through an application on biomolecular structure data. An extension to subspace constrained mean shift (SCMS) algorithm used to extract ridges of regression functions is briefly discussed.
stat
Geographic ratemaking with spatial embeddings
Spatial data is a rich source of information for actuarial applications: knowledge of a risk's location could improve an insurance company's ratemaking, reserving or risk management processes. Insurance companies with high exposures in a territory typically have a competitive advantage since they may use historical losses in a region to model spatial risk non-parametrically. Relying on geographic losses is problematic for areas where past loss data is unavailable. This paper presents a method based on data (instead of smoothing historical insurance claim losses) to construct a geographic ratemaking model. In particular, we construct spatial features within a complex representation model, then use the features as inputs to a simpler predictive model (like a generalized linear model). Our approach generates predictions with smaller bias and smaller variance than other spatial interpolation models such as bivariate splines in most situations. This method also enables us to generate rates in territories with no historical experience.
stat
Functional time series forecasting of extreme values
We consider forecasting functional time series of extreme values within a generalised extreme value distribution (GEV). The GEV distribution can be characterised using the three parameters (location, scale and shape). As a result, the forecasts of the GEV density can be accomplished by forecasting these three latent parameters. Depending on the underlying data structure, some of the three parameters can either be modelled as scalars or functions. We provide two forecasting algorithms to model and forecast these parameters. To assess the forecast uncertainty, we apply a sieve bootstrap method to construct pointwise and simultaneous prediction intervals of the forecasted extreme values. Illustrated by a daily maximum temperature dataset, we demonstrate the advantages of modelling these parameters as functions. Further, the finite-sample performance of our methods is quantified using several Monte-Carlo simulated data under a range of scenarios.
stat
Notes on Exact Power Calculations for t Tests and Analysis of Covariance
Tang derived the exact power formulae for t tests and analysis of covariance (ANCOVA) in superiority, noninferiority and equivalence trials. The power calculation in equivalence trials can be simplified by using Owen's Q function, which is available in standard statistical software. We extend the exact power determination method for ANCOVA to unstratified and stratified multi-arm randomized trials. The method is applied to the design of multi-arm trials and gold standard noninferiority trials.
stat
Adaptive Frequency Band Analysis for Functional Time Series
The frequency-domain properties of nonstationary functional time series often contain valuable information. These properties are characterized through its time-varying power spectrum. Practitioners seeking low-dimensional summary measures of the power spectrum often partition frequencies into bands and create collapsed measures of power within bands. However, standard frequency bands have largely been developed through manual inspection of time series data and may not adequately summarize power spectra. In this article, we propose a framework for adaptive frequency band estimation of nonstationary functional time series that optimally summarizes the time-varying dynamics of the series. We develop a scan statistic and search algorithm to detect changes in the frequency domain. We establish theoretical properties of this framework and develop a computationally-efficient implementation. The validity of our method is also justified through numerous simulation studies and an application to analyzing electroencephalogram data in participants alternating between eyes open and eyes closed conditions.
stat
Identifying relationships between cognitive processes across tasks, contexts, and time
It is commonly assumed that a specific testing occasion (task, design, procedure, etc.) provides insights that generalise beyond that occasion. This assumption is infrequently carefully tested in data. We develop a statistically principled method to directly estimate the correlation between latent components of cognitive processing across tasks, contexts, and time. This method simultaneously estimates individual-participant parameters of a cognitive model at each testing occasion, group-level parameters representing across-participant parameter averages and variances, and across-task correlations. The approach provides a natural way to "borrow" strength across testing occasions, which can increase the precision of parameter estimates across all testing occasions. Two example applications demonstrate that the method is practical in standard designs. The examples, and a simulation study, also provide evidence about the reliability and validity of parameter estimates from the linear ballistic accumulator model. We conclude by highlighting the potential of the parameter-correlation method to provide an "assumption-light" tool for estimating the relatedness of cognitive processes across tasks, contexts, and time.
stat
The Mathematics Behind Spectral Clustering And The Equivalence To PCA
Spectral clustering is a popular algorithm that clusters points using the eigenvalues and eigenvectors of Laplacian matrices derived from the data. For years, spectral clustering has been working mysteriously. This paper explains spectral clustering by dividing it into two categories based on whether the graph Laplacian is fully connected or not. For a fully connected graph, this paper demonstrates the dimension reduction part by offering an objective function: the covariance between the original data points' similarities and the mapped data points' similarities. For a multi-connected graph, this paper proves that with a proper $k$, the first $k$ eigenvectors are the indicators of the connected components. This paper also proves there is an equivalence between spectral embedding and PCA.
stat
A modified weighted log-rank test for confirmatory trials with a high proportion of treatment switching
In confirmatory cancer clinical trials, overall survival (OS) is normally a primary endpoint in the intention-to-treat (ITT) analysis under regulatory standards. After the tumor progresses, it is common that patients allocated to the control group switch to the experimental treatment, or another drug in the same class. Such treatment switching may dilute the relative efficacy of the new drug compared to the control group, leading to lower statistical power. It would be possible to decrease the estimation bias by shortening the follow-up period but this may lead to a loss of information and power. Instead we propose a modified weighted log-rank test (mWLR) that aims at balancing these factors by down-weighting events occurring when many patients have switched treatment. As the weighting should be pre-specified and the impact of treatment switching is unknown, we predict the hazard ratio function and use it to compute the weights of the mWLR. The method may incorporate information from previous trials regarding the potential hazard ratio function over time. We are motivated by the RECORD-1 trial of everolimus against placebo in patients with metastatic renal-cell carcinoma where almost 80\% of the patients in the placebo group received everolimus after disease progression. Extensive simulations show that the new test gives considerably higher efficiency than the standard log-rank test in realistic scenarios.
stat
$M$-estimation in a diffusion model with application to biosensor transdermal blood alcohol monitoring
With the goal of well-founded statistical inference on an individual's blood alcohol level based on noisy measurements of their skin alcohol content, we develop $M$-estimation methodology in a general setting. We then apply it to a diffusion equation-based model for the blood/skin alcohol relationship thereby establishing existence, consistency, and asymptotic normality of the nonlinear least squares estimator of the diffusion model's parameter. Simulation studies show agreement between the estimator's performance and its asymptotic distribution, and it is applied to a real skin alcohol data set collected via biosensor.
stat
Privacy-Preserving Distributed SVD via Federated Power
Singular value decomposition (SVD) is one of the most fundamental tools in machine learning and statistics.The modern machine learning community usually assumes that data come from and belong to small-scale device users. The low communication and computation power of such devices, and the possible privacy breaches of users' sensitive data make the computation of SVD challenging. Federated learning (FL) is a paradigm enabling a large number of devices to jointly learn a model in a communication-efficient way without data sharing. In the FL framework, we develop a class of algorithms called FedPower for the computation of partial SVD in the modern setting. Based on the well-known power method, the local devices alternate between multiple local power iterations and one global aggregation to improve communication efficiency. In the aggregation, we propose to weight each local eigenvector matrix with Orthogonal Procrustes Transformation (OPT). Considering the practical stragglers' effect, the aggregation can be fully participated or partially participated, where for the latter we propose two sampling and aggregation schemes. Further, to ensure strong privacy protection, we add Gaussian noise whenever the communication happens by adopting the notion of differential privacy (DP). We theoretically show the convergence bound for FedPower. The resulting bound is interpretable with each part corresponding to the effect of Gaussian noise, parallelization, and random sampling of devices, respectively. We also conduct experiments to demonstrate the merits of FedPower. In particular, the local iterations not only improve communication efficiency but also reduce the chance of privacy breaches.
stat
Joint Mean-Covariance Estimation via the Horseshoe with an Application in Genomic Data Analysis
Seemingly unrelated regression is a natural framework for regressing multiple correlated responses on multiple predictors. The model is very flexible, with multiple linear regression and covariance selection models being special cases. However, its practical deployment in genomic data analysis under a Bayesian framework is limited due to both statistical and computational challenges. The statistical challenge is that one needs to infer both the mean vector and the inverse covariance matrix, a problem inherently more complex than separately estimating each. The computational challenge is due to the dimensionality of the parameter space that routinely exceeds the sample size. We propose the use of horseshoe priors on both the mean vector and the inverse covariance matrix. This prior has demonstrated excellent performance when estimating a mean vector or inverse covariance matrix separately. The current work shows these advantages are also present when addressing both simultaneously. A full Bayesian treatment is proposed, with a sampling algorithm that is linear in the number of predictors. MATLAB code implementing the algorithm is freely available from github at https://github.com/liyf1988/HS_GHS. Extensive performance comparisons are provided with both frequentist and Bayesian alternatives, and both estimation and prediction performances are verified on a genomic data set.
stat
Bayes Optimal Informer Sets for Early-Stage Drug Discovery
An important experimental design problem in early-stage drug discovery is how to prioritize available compounds for testing when very little is known about the target protein. Informer based ranking (IBR) methods address the prioritization problem when the compounds have provided bioactivity data on other potentially relevant targets. An IBR method selects an informer set of compounds, and then prioritizes the remaining compounds on the basis of new bioactivity experiments performed with the informer set on the target. We formalize the problem as a two-stage decision problem and introduce the Bayes Optimal Informer SEt (BOISE) method for its solution. BOISE leverages a flexible model of the initial bioactivity data, a relevant loss function, and effective computational schemes to resolve the two-step design problem. We evaluate BOISE and compare it to other IBR strategies in two retrospective studies, one on protein-kinase inhibition and the other on anti-cancer drug sensitivity. In both empirical settings BOISE exhibits better predictive performance than available methods. It also behaves well with missing data, where methods that use matrix completion show worse predictive performance. We provide an R implementation of BOISE at https://github.com/wiscstatman/esdd/BOISE
stat
Sparse Nonnegative Tensor Factorization and Completion with Noisy Observations
In this paper, we study the sparse nonnegative tensor factorization and completion problem from partial and noisy observations for third-order tensors. Because of sparsity and nonnegativity, the underling tensor is decomposed into the tensor-tensor product of one sparse nonnegative tensor and one nonnegative tensor. We propose to minimize the sum of the maximum likelihood estimate for the observations with nonnegativity constraints and the tensor $\ell_0$ norm for the sparse factor. We show that the error bounds of the estimator of the proposed model can be established under general noise observations. The detailed error bounds under specific noise distributions including additive Gaussian noise, additive Laplace noise, and Poisson observations can be derived. Moreover, the minimax lower bounds are shown to be matched with the established upper bounds up to a logarithmic factor of the sizes of the underlying tensor. These theoretical results for tensors are better than those obtained for matrices, and this illustrates the advantage of the use of nonnegative sparse tensor models for completion and denoising. Numerical experiments are provided to validate the superiority of the proposed tensor-based method compared with the matrix-based approach.
stat
An Intrinsic Geometrical Approach for Statistical Process Control of Surface and Manifold Data
We present a new method for statistical process control (SPC) of a discrete part manufacturing system based on intrinsic geometrical properties of the parts, estimated from three-dimensional sensor data. An intrinsic method has the computational advantage of avoiding the difficult part registration problem, necessary in previous SPC approaches of three-dimensional geometrical data, but inadequate if noncontact sensors are used. The approach estimates the spectrum of the Laplace-Beltrami (LB) operator of the scanned parts and uses a multivariate nonparametric control chart for online process control. Our proposal brings SPC closer to computer vision and computer graphics methods aimed to detect large differences in shape (but not in size). However, the SPC problem differs in that small changes in either shape or size of the parts need to be detected, keeping a controllable false alarm rate and without completely filtering noise. An online or "Phase II" method and a scheme for starting up in the absence of prior data ("Phase I") are presented. Comparison with earlier approaches that require registration shows the LB spectrum method to be more sensitive to rapidly detect small changes in shape and size, including the practical case when the sequence of part datasets is in the form of large, unequal size meshes. A post-alarm diagnostic method to investigate the location of defects on the surface of a part is also presented. While we focus in this article on surface (triangulation) data, the methods can also be applied to point cloud and voxel metrology data.
stat
Adjusting the Benjamini-Hochberg method for controlling the false discovery rate in knockoff assisted variable selection
This paper revisits the knockoff-based multiple testing setup considered in Barber & Candes (2015) for variable selection applied to a linear regression model with $n\ge 2d$, where $n$ is the sample size and $d$ is the number of explanatory variables. The BH method based on ordinary least squares estimates of the regressions coefficients is adjusted to this setup, making it a valid $p$-value based FDR controlling method that does not rely on any specific correlation structure of the explanatory variables. Simulations and real data applications demonstrate that our proposed method in its original form and its data-adaptive version incorporating estimated proportion of truly unimportant explanatory variables are powerful competitors of the FDR controlling methods in Barber & Candes (2015).
stat
An extension of the angular synchronization problem to the heterogeneous setting
Given an undirected measurement graph $G = ([n], E)$, the classical angular synchronization problem consists of recovering unknown angles $\theta_1,\dots,\theta_n$ from a collection of noisy pairwise measurements of the form $(\theta_i - \theta_j) \mod 2\pi$, for each $\{i,j\} \in E$. This problem arises in a variety of applications, including computer vision, time synchronization of distributed networks, and ranking from preference relationships. In this paper, we consider a generalization to the setting where there exist $k$ unknown groups of angles $\theta_{l,1}, \dots,\theta_{l,n}$, for $l=1,\dots,k$. For each $ \{i,j\} \in E$, we are given noisy pairwise measurements of the form $\theta_{\ell,i} - \theta_{\ell,j}$ for an unknown $\ell \in \{1,2,\ldots,k\}$. This can be thought of as a natural extension of the angular synchronization problem to the heterogeneous setting of multiple groups of angles, where the measurement graph has an unknown edge-disjoint decomposition $G = G_1 \cup G_2 \ldots \cup G_k$, where the $G_i$'s denote the subgraphs of edges corresponding to each group. We propose a probabilistic generative model for this problem, along with a spectral algorithm for which we provide a detailed theoretical analysis in terms of robustness against both sampling sparsity and noise. The theoretical findings are complemented by a comprehensive set of numerical experiments, showcasing the efficacy of our algorithm under various parameter regimes. Finally, we consider an application of bi-synchronization to the graph realization problem, and provide along the way an iterative graph disentangling procedure that uncovers the subgraphs $G_i$, $i=1,\ldots,k$ which is of independent interest, as it is shown to improve the final recovery accuracy across all the experiments considered.
stat
False Discovery Rate Computation: Illustrations and Modifications
False discovery rates (FDR) are an essential component of statistical inference, representing the propensity for an observed result to be mistaken. FDR estimates should accompany observed results to help the user contextualize the relevance and potential impact of findings. This paper introduces a new user-friendly R package for computing FDRs and adjusting p-values for FDR control. These tools respect the critical difference between the adjusted p-value and the estimated FDR for a particular finding, which are sometimes numerically identical but are often confused in practice. Newly augmented methods for estimating the null proportion of findings - an important part of the FDR estimation procedure - are proposed and evaluated. The package is broad, encompassing a variety of methods for FDR estimation and FDR control, and includes plotting functions for easy display of results. Through extensive illustrations, we strongly encourage wider reporting of false discovery rates for observed findings.
stat
Center-specific causal inference with multicenter trials: reinterpreting trial evidence in the context of each participating center
In multicenter randomized trials, when effect modifiers have a different distribution across centers, comparisons between treatment groups that average over centers may not apply to any of the populations underlying the individual centers. Here, we describe methods for reinterpreting the evidence produced by a multicenter trial in the context of the population underlying each center. We describe how to identify center-specific effects under identifiability conditions that are largely supported by the study design and when associations between center membership and the outcome may be present, given baseline covariates and treatment ("center-outcome associations"). We then consider an additional condition of no center-outcome associations given baseline covariates and treatment. We show that this condition can be assessed using the trial data; when it holds, center-specific treatment effects can be estimated using analyses that completely pool information across centers. We propose methods for estimating center-specific average treatment effects, when center-outcome associations may be present and when they are absent, and describe approaches for assessing whether center-specific treatment effects are homogeneous. We evaluate the performance of the methods in a simulation study and illustrate their implementation using data from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis trial.
stat
Bayesian Nonparametric Multivariate Spatial Mixture Mixed Effects Models with Application to American Community Survey Special Tabulations
Leveraging multivariate spatial dependence to improve the precision of estimates using American Community Survey data and other sample survey data has been a topic of recent interest among data-users and federal statistical agencies. One strategy is to use a multivariate spatial mixed effects model with a Gaussian observation model and latent Gaussian process model. In practice, this works well for a wide range of tabulations. Nevertheless, in situations that exhibit heterogeneity among geographies and/or sparsity in the data, the Gaussian assumptions may be problematic and lead to underperformance. To remedy these situations, we propose a multivariate hierarchical Bayesian nonparametric mixed effects spatial mixture model to increase model flexibility. The number of clusters is chosen automatically in a data-driven manner. The effectiveness of our approach is demonstrated through a simulation study and motivating application of special tabulations for American Community Survey data.
stat
Using Learning Dynamics to Explore the Role of Implicit Regularization in Adversarial Examples
Recent work (Ilyas et al., 2019) suggests that adversarial examples are features not bugs. If adversarial perturbations are indeed useful but non-robust features, what is their origin? To answer this question, we performed a novel analysis of the learning dynamics of adversarial perturbations, both in pixel and frequency domains, and a systematic steganography experiment to explore the implicit bias induced by different model parametrizations. We find that: (1) adversarial examples are not present at initialization but instead emerge during training; (2) the frequency-based nature of common adversarial perturbations in natural images is critically dependent on an implicit bias towards L1-sparsity in the frequency domain; and (3) the origin of this bias is the locality and translation invariance of convolutional filters, along with (4) the existence of useful frequency-based features in the datasets. We propose a simple theoretical explanation for these findings, providing a clear and minimalist target for theorists in future work. Looking forward, our work shows that analyzing the learning dynamics of perturbations can provide useful insights for understanding the origin of adversarial sensitivities and developing robust solutions.
stat
Covariate powered cross-weighted multiple testing
A fundamental task in the analysis of datasets with many variables is screening for associations. This can be cast as a multiple testing task, where the objective is achieving high detection power while controlling type I error. We consider $m$ hypothesis tests represented by pairs $((P_i, X_i))_{1\leq i \leq m}$ of p-values $P_i$ and covariates $X_i$, such that $P_i \perp X_i$ if $H_i$ is null. Here, we show how to use information potentially available in the covariates about heterogeneities among hypotheses to increase power compared to conventional procedures that only use the $P_i$. To this end, we upgrade existing weighted multiple testing procedures through the Independent Hypothesis Weighting (IHW) framework to use data-driven weights that are calculated as a function of the covariates. Finite sample guarantees, e.g., false discovery rate (FDR) control, are derived from cross-weighting, a data-splitting approach that enables learning the weight-covariate function without overfitting as long as the hypotheses can be partitioned into independent folds, with arbitrary within-fold dependence. IHW has increased power compared to methods that do not use covariate information. A key implication of IHW is that hypothesis rejection in common multiple testing setups should not proceed according to the ranking of the p-values, but by an alternative ranking implied by the covariate-weighted p-values.
stat
Hierarchical spline for time series forecasting: An application to Naval ship engine failure rate
Predicting equipment failure is important because it could improve availability and cut down the operating budget. Previous literature has attempted to model failure rate with bathtub-formed function, Weibull distribution, Bayesian network, or AHP. But these models perform well with a sufficient amount of data and could not incorporate the two salient characteristics; imbalanced category and sharing structure. Hierarchical model has the advantage of partial pooling. The proposed model is based on Bayesian hierarchical B-spline. Time series of the failure rate of 99 Republic of Korea Naval ships are modeled hierarchically, where each layer corresponds to ship engine, engine type, and engine archetype. As a result of the analysis, the suggested model predicted the failure rate of an entire lifetime accurately in multiple situational conditions, such as prior knowledge of the engine.
stat
A framework for automated anomaly detection in high frequency water-quality data from in situ sensors
River water-quality monitoring is increasingly conducted using automated in situ sensors, enabling timelier identification of unexpected values. However, anomalies caused by technical issues confound these data, while the volume and velocity of data prevent manual detection. We present a framework for automated anomaly detection in high-frequency water-quality data from in situ sensors, using turbidity, conductivity and river level data. After identifying end-user needs and defining anomalies, we ranked their importance and selected suitable detection methods. High priority anomalies included sudden isolated spikes and level shifts, most of which were classified correctly by regression-based methods such as autoregressive integrated moving average models. However, using other water-quality variables as covariates reduced performance due to complex relationships among variables. Classification of drift and periods of anomalously low or high variability improved when we applied replaced anomalous measurements with forecasts, but this inflated false positive rates. Feature-based methods also performed well on high priority anomalies, but were also less proficient at detecting lower priority anomalies, resulting in high false negative rates. Unlike regression-based methods, all feature-based methods produced low false positive rates, but did not and require training or optimization. Rule-based methods successfully detected impossible values and missing observations. Thus, we recommend using a combination of methods to improve anomaly detection performance, whilst minimizing false detection rates. Furthermore, our framework emphasizes the importance of communication between end-users and analysts for optimal outcomes with respect to both detection performance and end-user needs. Our framework is applicable to other types of high frequency time-series data and anomaly detection applications.
stat
Maximum Likelihood Estimation and Graph Matching in Errorfully Observed Networks
Given a pair of graphs with the same number of vertices, the inexact graph matching problem consists in finding a correspondence between the vertices of these graphs that minimizes the total number of induced edge disagreements. We study this problem from a statistical framework in which one of the graphs is an errorfully observed copy of the other. We introduce a corrupting channel model, and show that in this model framework, the solution to the graph matching problem is a maximum likelihood estimator. Necessary and sufficient conditions for consistency of this MLE are presented, as well as a relaxed notion of consistency in which a negligible fraction of the vertices need not be matched correctly. The results are used to study matchability in several families of random graphs, including edge independent models, random regular graphs and small-world networks. We also use these results to introduce measures of matching feasibility, and experimentally validate the results on simulated and real-world networks.
stat
Preferential sampling for presence/absence data and for fusion of presence/absence data with presence-only data
Presence/absence data and presence-only data are the two customary sources for learning about species distributions over a region. We illuminate the fundamental modeling differences between the two types of data. Most simply, locations are considered as fixed under presence/absence data; locations are random under presence-only data. The definition of "probability of presence" is incompatible between the two. So, we take issue with modeling strategies in the literature which ignore this incompatibility, which assume that presence/absence modeling can be induced from presence-only specifications and therefore, that fusion of presence-only and presence/absence data sources is routine. We argue that presence/absence data should be modeled at point level. That is, we need to specify a surface which provides the probability of presence at any location in the region. A realization from this surface is a binary map yielding the results of Bernoulli trials across all locations. Presence-only data should be modeled as a point pattern driven by specification of an intensity function. We further argue that, with just presence/absence data, preferential sampling, using a shared process perspective, can improve our estimated presence/absence surface and prediction of presence. We also argue that preferential sampling can enable a probabilistically coherent fusion of the two data types. We illustrate with two real datasets, one presence/absence, one presence-only for invasive species presence in New England in the United States. We demonstrate that potential bias in sampling locations can affect inference with regard to presence/absence and show that inference can be improved with preferential sampling ideas. We also provide a probabilistically coherent fusion of the two datasets to again improve inference with regard to presence/absence.
stat
Specification Tests for the Propensity Score
This paper proposes new nonparametric diagnostic tools to assess the asymptotic validity of different treatment effects estimators that rely on the correct specification of the propensity score. We derive a particular restriction relating the propensity score distribution of treated and control groups, and develop specification tests based upon it. The resulting tests do not suffer from the "curse of dimensionality" when the vector of covariates is high-dimensional, are fully data-driven, do not require tuning parameters such as bandwidths, and are able to detect a broad class of local alternatives converging to the null at the parametric rate $n^{-1/2}$, with $n$ the sample size. We show that the use of an orthogonal projection on the tangent space of nuisance parameters facilitates the simulation of critical values by means of a multiplier bootstrap procedure, and can lead to power gains. The finite sample performance of the tests is examined by means of a Monte Carlo experiment and an empirical application. Open-source software is available for implementing the proposed tests.
stat
Privacy for Spatial Point Process Data
In this work we develop methods for privatizing spatial location data, such as spatial locations of individual disease cases. We propose two novel Bayesian methods for generating synthetic location data based on log-Gaussian Cox processes (LGCPs). We show that conditional predictive ordinate (CPO) estimates can easily be obtained for point process data. We construct a novel risk metric that utilizes CPO estimates to evaluate individual disclosure risks. We adapt the propensity mean square error (pMSE) data utility metric for LGCPs. We demonstrate that our synthesis methods offer an improved risk vs. utility balance in comparison to radial synthesis with a case study of Dr. John Snow's cholera outbreak data.
stat
Propensity score weighting under limited overlap and model misspecification
Propensity score (PS) weighting methods are often used in non-randomized studies to adjust for confounding and assess treatment effects. The most popular among them, the inverse probability weighting (IPW), assigns weights that are proportional to the inverse of the conditional probability of a specific treatment assignment, given observed covariates. A key requirement for IPW estimation is the positivity assumption, i.e., the PS must be bounded away from 0 and 1. In practice, violations of the positivity assumption often manifest by the presence of limited overlap in the PS distributions between treatment groups. When these practical violations occur, a small number of highly influential IPW weights may lead to unstable IPW estimators, with biased estimates and large variances. To mitigate these issues, a number of alternative methods have been proposed, including IPW trimming, overlap weights (OW), matching weights (MW), and entropy weights (EW). Because OW, MW, and EW target the population for whom there is equipoise (and with adequate overlap) and their estimands depend on the true PS, a common criticism is that these estimators may be more sensitive to misspecifications of the PS model. In this paper, we conduct extensive simulation studies to compare the performances of IPW and IPW trimming against those of OW, MW, and EW under limited overlap and misspecified propensity score models. Across the wide range of scenarios we considered, OW, MW, and EW consistently outperform IPW in terms of bias, root mean squared error, and coverage probability.
stat
Joint Quantile Regression for Spatial Data
Linear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. For analyzing spatially indexed data, we address this difficulty by generalizing the joint quantile regression model of Yang and Tokdar (2017) and characterizing spatial dependence via a Gaussian or $t$ copula process on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out spatial quantile smoothing. An effective model comparison criteria is provided, particularly for selecting between different model specifications of tail heaviness and tail dependence. Extensive simulation studies and an application to particulate matter concentration in northeast US are presented to illustrate substantial gains in inference quality, accuracy and uncertainty quantification over existing alternatives.
stat
Performance metrics for intervention-triggering prediction models do not reflect an expected reduction in outcomes from using the model
Clinical researchers often select among and evaluate risk prediction models using standard machine learning metrics based on confusion matrices. However, if these models are used to allocate interventions to patients, standard metrics calculated from retrospective data are only related to model utility (in terms of reductions in outcomes) under certain assumptions. When predictions are delivered repeatedly throughout time (e.g. in a patient encounter), the relationship between standard metrics and utility is further complicated. Several kinds of evaluations have been used in the literature, but it has not been clear what the target of estimation is in each evaluation. We synthesize these approaches, determine what is being estimated in each of them, and discuss under what assumptions those estimates are valid. We demonstrate our insights using simulated data as well as real data used in the design of an early warning system. Our theoretical and empirical results show that evaluations without interventional data either do not estimate meaningful quantities, require strong assumptions, or are limited to estimating best-case scenario bounds.
stat
Tractable Bayes of Skew-Elliptical Link Models for Correlated Binary Data
Correlated binary response data with covariates are ubiquitous in longitudinal or spatial studies. Among the existing statistical models the most well-known one for this type of data is the multivariate probit model, which uses a Gaussian link to model dependence at the latent level. However, a symmetric link may not be appropriate if the data are highly imbalanced. Here, we propose a multivariate skew-elliptical link model for correlated binary responses, which includes the multivariate probit model as a special case. Furthermore, we perform Bayesian inference for this new model and prove that the regression coefficients have a closed-form unified skew-elliptical posterior. The new methodology is illustrated by application to COVID-19 pandemic data from three different counties of the state of California, USA. By jointly modeling extreme spikes in weekly new cases, our results show that the spatial dependence cannot be neglected. Furthermore, the results also show that the skewed latent structure of our proposed model improves the flexibility of the multivariate probit model and provides better fit to our highly imbalanced dataset.
stat
Factorisable Multitask Quantile Regression
A multivariate quantile regression model with a factor structure is proposed to study data with many responses of interest. The factor structure is allowed to vary with the quantile levels, which makes our framework more flexible than the classical factor models. The model is estimated with the nuclear norm regularization in order to accommodate the high dimensionality of data, but the incurred optimization problem can only be efficiently solved in an approximate manner by off-the-shelf optimization methods. Such a scenario is often seen when the empirical risk is non-smooth or the numerical procedure involves expensive subroutines such as singular value decomposition. To ensure that the approximate estimator accurately estimates the model, non-asymptotic bounds on error of the the approximate estimator is established. For implementation, a numerical procedure that provably marginalizes the approximate error is proposed. The merits of our model and the proposed numerical procedures are demonstrated through Monte Carlo experiments and an application to finance involving a large pool of asset returns.
stat
Fr\'echet random forests for metric space valued regression with non euclidean predictors
Random forests are a statistical learning method widely used in many areas of scientific research because of its ability to learn complex relationships between input and output variables and also their capacity to handle high-dimensional data. However, current random forest approaches are not flexible enough to handle heterogeneous data such as curves, images and shapes. In this paper, we introduce Fr\'echet trees and Fr\'echet random forests, which allow to handle data for which input and output variables take values in general metric spaces (which can be unordered). To this end, a new way of splitting the nodes of trees is introduced and the prediction procedures of trees and forests are generalized. Then, random forests out-of-bag error and variable importance score are naturally adapted. A consistency theorem for Fr\'echet regressogram predictor using data-driven partitions is given and applied to Fr\'echet purely uniformly random trees. The method is studied through several simulation scenarios on heterogeneous data combining longitudinal, image and scalar data. Finally, two real datasets from HIV vaccine trials are analyzed with the proposed method.
stat
High-dimensional structure learning of sparse vector autoregressive models using fractional marginal pseudo-likelihood
Learning vector autoregressive models from multivariate time series is conventionally approached through least squares or maximum likelihood estimation. These methods typically assume a fully connected model which provides no direct insight to the model structure and may lead to highly noisy estimates of the parameters. Because of these limitations, there has been an increasing interest towards methods that produce sparse estimates through penalized regression. However, such methods are computationally intensive and may become prohibitively time-consuming when the number of variables in the model increases. In this paper we adopt an approximate Bayesian approach to the learning problem by combining fractional marginal likelihood and pseudo-likelihood. We propose a novel method, PLVAR, that is both faster and produces more accurate estimates than the state-of-the-art methods based on penalized regression. We prove the consistency of the PLVAR estimator and demonstrate the attractive performance of the method on both simulated and real-world data.
stat
Robustness of Model Predictions under Extension
Often, mathematical models of the real world are simplified representations of complex systems. A caveat to using models for analysis is that predicted causal effects and conditional independences may not be robust under model extensions, and therefore applicability of such models is limited. In this work, we consider conditions under which qualitative model predictions are preserved when two models are combined. We show how to use the technique of causal ordering to efficiently assess the robustness of qualitative model predictions and characterize a large class of model extensions that preserve these predictions. For dynamical systems at equilibrium, we demonstrate how novel insights help to select appropriate model extensions and to reason about the presence of feedback loops. We apply our ideas to a viral infection model with immune responses.
stat
MetAL: Active Semi-Supervised Learning on Graphs via Meta Learning
The objective of active learning (AL) is to train classification models with less number of labeled instances by selecting only the most informative instances for labeling. The AL algorithms designed for other data types such as images and text do not perform well on graph-structured data. Although a few heuristics-based AL algorithms have been proposed for graphs, a principled approach is lacking. In this paper, we propose MetAL, an AL approach that selects unlabeled instances that directly improve the future performance of a classification model. For a semi-supervised learning problem, we formulate the AL task as a bilevel optimization problem. Based on recent work in meta-learning, we use the meta-gradients to approximate the impact of retraining the model with any unlabeled instance on the model performance. Using multiple graph datasets belonging to different domains, we demonstrate that MetAL efficiently outperforms existing state-of-the-art AL algorithms.
stat
Efficient sampling of conditioned Markov jump processes
We consider the task of generating draws from a Markov jump process (MJP) between two time-points at which the process is known. Resulting draws are typically termed bridges and the generation of such bridges plays a key role in simulation-based inference algorithms for MJPs. The problem is challenging due to the intractability of the conditioned process, necessitating the use of computationally intensive methods such as weighted resampling or Markov chain Monte Carlo. An efficient implementation of such schemes requires an approximation of the intractable conditioned hazard/propensity function that is both cheap and accurate. In this paper, we review some existing approaches to this problem before outlining our novel contribution. Essentially, we leverage the tractability of a Gaussian approximation of the MJP and suggest a computationally efficient implementation of the resulting conditioned hazard approximation. We compare and contrast our approach with existing methods using three examples.
stat
Multiple Changepoint Detection with Partial Information on Changepoint Times
This paper proposes a new minimum description length procedure to detect multiple changepoints in time series data when some times are a priori thought more likely to be changepoints. This scenario arises with temperature time series homogenization pursuits, our focus here. Our Bayesian procedure constructs a natural prior distribution for the situation, and is shown to estimate the changepoint locations consistently, with an optimal convergence rate. Our methods substantially improve changepoint detection power when prior information is available. The methods are also tailored to bivariate data, allowing changes to occur in one or both component series.
stat
Time-Varying Gaussian-Cauchy Mixture Models for Financial Risk Management
There are various metrics for financial risk, such as value at risk (VaR), expected shortfall, expected/unexpected loss, etc. When estimating these metrics, it was very common to assume Gaussian distribution for the asset returns, which may underestimate the real risk of the market, especially during the financial crisis. In this paper, we propose a series of time-varying mixture models for risk analysis and management. These mixture models contain two components: one component with Gaussian distribution, and the other one with a fat-tailed Cauchy distribution. We allow the distribution parameters and component weights to change over time to increase the flexibility of the models. Monte Carlo Expectation-Maximization algorithm is utilized to estimate the parameters. To verify the good performance of our models, we conduct some simulation studies, and implement our models to the real stock market. Based on these studies, our models are appropriate under different economic conditions, and the component weights can capture the correct pattern of the market volatility.
stat
Linear Bandits with Stochastic Delayed Feedback
Stochastic linear bandits are a natural and well-studied model for structured exploration/exploitation problems and are widely used in applications such as online marketing and recommendation. One of the main challenges faced by practitioners hoping to apply existing algorithms is that usually the feedback is randomly delayed and delays are only partially observable. For example, while a purchase is usually observable some time after the display, the decision of not buying is never explicitly sent to the system. In other words, the learner only observes delayed positive events. We formalize this problem as a novel stochastic delayed linear bandit and propose ${\tt OTFLinUCB}$ and ${\tt OTFLinTS}$, two computationally efficient algorithms able to integrate new information as it becomes available and to deal with the permanently censored feedback. We prove optimal $\tilde O(\smash{d\sqrt{T}})$ bounds on the regret of the first algorithm and study the dependency on delay-dependent parameters. Our model, assumptions and results are validated by experiments on simulated and real data.
stat
Grouped Variable Selection with Discrete Optimization: Computational and Statistical Perspectives
We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization. While there exist several appealing approaches based on convex relaxations and nonconvex heuristics, we focus on optimal solutions for the $\ell_0$-regularized formulation, a problem that is relatively unexplored due to computational challenges. Our methodology covers both high-dimensional linear regression and nonparametric sparse additive modeling with smooth components. Our algorithmic framework consists of approximate and exact algorithms. The approximate algorithms are based on coordinate descent and local search, with runtimes comparable to popular sparse learning algorithms. Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer programming (MIP) problem to certified optimality. By exploiting the problem structure, our custom BnB algorithm can solve to optimality problem instances with $5 \times 10^6$ features in minutes to hours -- over $1000$ times larger than what is currently possible using state-of-the-art commercial MIP solvers. We also explore statistical properties of the $\ell_0$-based estimators. We demonstrate, theoretically and empirically, that our proposed estimators have an edge over popular group-sparse estimators in terms of statistical performance in various regimes.
stat
MALTS: Matching After Learning to Stretch
We introduce a flexible framework that produces high-quality almost-exact matches for causal inference. Most prior work in matching uses ad-hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates. In this work, we learn an interpretable distance metric for matching, which leads to substantially higher quality matches. The learned distance metric stretches the covariates according to their contribution to outcome prediction. The framework is flexible in that the user can choose the form of the distance metric and the type of optimization algorithm. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for the estimation of conditional average treatment effects.
stat
Null Models and Community Detection in Multi-Layer Networks
Multi-layer networks are networks on a set of entities (nodes) with multiple types of relations (edges) among them where each type of relation/interaction is represented as a network layer. As with single layer networks, community detection is an important task in multi-layer networks. A large group of popular community detection methods in networks are based on optimizing a quality function known as the modularity score, which is a measure of presence of modules or communities in networks. Hence a first step in community detection is defining a suitable modularity score that is appropriate for the network in question. Here we introduce several multi-layer network modularity measures under different null models of the network, motivated by empirical observations in networks from a diverse field of applications. In particular we define the multi-layer configuration model, the multi-layer expected degree model and their various modifications as null models for multi-layer networks to derive different modularities. The proposed modularities are grouped into two categories. The first category, which is based on degree corrected multi-layer stochastic block model, has the multi-layer expected degree model as their null model. The second category, which is based on multi-layer extensions of Newman-Girvan modularity, has the multi-layer configuration model as their null model. These measures are then optimized to detect the optimal community assignment of nodes. We compare the effectiveness of the measures in community detection in simulated networks and then apply them to four real networks.
stat
Bayesian wavelet de-noising with the caravan prior
According to both domain expert knowledge and empirical evidence, wavelet coefficients of real signals tend to exhibit clustering patterns, in that they contain connected regions of coefficients of similar magnitude (large or small). A wavelet de-noising approach that takes into account such a feature of the signal may in practice outperform other, more vanilla methods, both in terms of the estimation error and visual appearance of the estimates. Motivated by this observation, we present a Bayesian approach to wavelet de-noising, where dependencies between neighbouring wavelet coefficients are a priori modelled via a Markov chain-based prior, that we term the caravan prior. Posterior computations in our method are performed via the Gibbs sampler. Using representative synthetic and real data examples, we conduct a detailed comparison of our approach with a benchmark empirical Bayes de-noising method (due to Johnstone and Silverman). We show that the caravan prior fares well and is therefore a useful addition to the wavelet de-noising toolbox.
stat
SPlit: An Optimal Method for Data Splitting
In this article we propose an optimal method referred to as SPlit for splitting a dataset into training and testing sets. SPlit is based on the method of Support Points (SP), which was initially developed for finding the optimal representative points of a continuous distribution. We adapt SP for subsampling from a dataset using a sequential nearest neighbor algorithm. We also extend SP to deal with categorical variables so that SPlit can be applied to both regression and classification problems. The implementation of SPlit on real datasets shows substantial improvement in the worst-case testing performance for several modeling methods compared to the commonly used random splitting procedure.
stat
Variational inequalities and mean-field approximations for partially observed systems of queueing networks
Queueing networks are systems of theoretical interest that find widespread use in the performance evaluation of interconnected resources. In comparison to counterpart models in genetics or mathematical biology, the stochastic (jump) processes induced by queueing networks have distinctive coupling and synchronization properties. This has prevented the derivation of variational approximations for conditional representations of transient dynamics, which rely on simplifying independence assumptions. Here, we present a model augmentation to a multivariate counting process for interactions across service stations, and we enable the variational evaluation of mean-field measures for partially-observed multi-class networks. We also show that our framework offers an efficient and improved alternative for inference tasks, where existing variational or numerically intensive solutions do not work.
stat
Defence Against the Modern Arts: the Curse of Statistics "Score-based likelihood ratios"
For several decades, legal and scientific scholars have argued that conclusions from forensic examinations should be supported by statistical data and reported within a probabilistic framework. Multiple models have been proposed to quantify the probative value of forensic evidence. Unfortunately, several of these models rely on ad-hoc strategies that are not scientifically sound. The opacity of the technical jargon used to present these models and their results, and the complexity of the techniques involved make it very difficult for the untrained user to separate the wheat from the chaff. This series of papers is intended to help forensic scientists and lawyers recognise limitations and issues in tools proposed to interpret the results of forensic examinations. This paper focuses on tools that have been proposed to leverage the use of similarity scores to assess the probative value of forensic findings. We call this family of tools "score-based likelihood ratios". In this paper, we present the fundamental concepts on which these tools are built, we describe some specific members of this family of tools, and we explore their convergence to the Bayes factor through an intuitive geometrical approach and through simulations. Finally, we discuss their validation and their potential usefulness as a decision-making tool in forensic science.
stat
System modeling of a health issue: the case of preterm birth in Ohio
Preterm birth rate (PBR) stands out as a major public health concern in the U.S. However, effective policies for mitigating the problem is largely unknown. The complexities of the problem raise critical questions: Why is PBR increasing despite the massive investment for reducing it? What policies can decrease it? To address these questions, we develop a causal loop diagram to investigate mechanisms underlying high preterm rate in a community. Our boundary is broad and includes medical and education systems, as well as living conditions such as crime rate and housing price. Then, we built a simulation model and divided the population into two groups based on their chance of delivering a preterm baby. We calibrated the model using the historical data of a case study, Cuyahoga Ohio, from 1995 to 2017. Prior studies mostly applied reductionist approaches to determine factors associated with high preterm rate at the individual level. Our simulation model examines the reciprocal influences of multiple factors and investigates the effect of different resource allocation scenarios on the PBR. Results show that, in the case of Cuyahoga county with one of the highest rates of PBR in the U.S., estimated preterm birth rates will not be lower than the rates of 1995 during the next five years.
stat
Spectral estimation for spatial point patterns
This article determines how to implement spatial spectral analysis of point processes (in two dimensions or more), by establishing the moments of raw spectral summaries of point processes. We establish the first moments of raw direct spectral estimates such as the discrete Fourier transform of a point pattern. These have a number of surprising features that departs from the properties of raw spectral estimates of random fields and time series. As for random fields, the special case of isotropic processes warrants special attention, which we discuss. For time series and random fields white noise plays a special role, mirrored by the Poisson processes in the case of the point process. For random fields bilinear estimators are prevalent in spectral analysis. We discuss how to smooth any bilinear spectral estimator for a point process. We also determine how to taper this bilinear spectral estimator, how to calculate the periodogram, sample the wavenumbers and discuss the correlation of the periodogram. In parts this corresponds to recommending suitable separable as well as isotropic tapers in d dimensions. This, in aggregation, establishes the foundations for spectral analysis of point processes.
stat
Three-Dimensional Swarming Using Cyclic Stochastic Optimization
In this paper we simulate an ensemble of cooperating, mobile sensing agents that implement the cyclic stochastic optimization (CSO) algorithm in an attempt to survey and track multiple targets. In the CSO algorithm proposed, each agent uses its sensed measurements, its shared information, and its predictions of others' future motion to decide on its next action. This decision is selected to minimize a loss function that decreases as the uncertainty in the targets' state estimates decreases. Only noisy measurements of this loss function are available to each agent, and in this study, each agent attempts to minimize this function by calculating its stochastic gradient. This paper examines, via simulation-based experiments, the implications and applicability of CSO convergence in three dimensions.
stat
Meta-analysis of dichotomous and polytomous diagnostic tests without a gold standard
Standard methods for the meta-analysis of diagnostic tests without a gold standard are limited to dichotomous data. Multivariate probit models are used to analyze correlated binary data, and can be extended to multivariate ordered probit models to model polytomous (i.e. non-binary) data. Within the context of an imperfect gold standard, they have previously been used for the analysis of dichotomous and polytomous diagnostic tests in a single study, and for the meta-analysis of dichotomous tests. In this paper, we developed a hierarchical, latent class multivariate probit model for the meta-analysis of polytomous and dichotomous diagnostic tests without a gold standard. The model can accommodate a hierarchical partial pooling model on the conditional within-study correlations, which allow us to obtain summary estimates of joint test accuracy. Dichotomous tests use probit regression likelihoods and polytomous tests use ordinal probit regression likelihoods. We fitted the models using Stan, which uses a state-of-the-art Hamiltonian Monte Carlo algorithm. We applied the models to a dataset in which studies evaluated the accuracy of tests, and combinations of tests, for deep vein thrombosis. We first demonstrate the issues with dichotomising test accuracy data a priori without a gold standard, and then we apply a model which does not dichotomise the data. We fitted models assuming conditional independence and dependence between tests, as well as models assuming a perfect gold standard, and compared model fit and summary estimates.
stat
A generalization of the symmetrical and optimal probability-to-possibility transformations
Possibility and probability theories are alternative and complementary ways to deal with uncertainty, which has motivated over the last years an interest for the study of ways to transform probability distributions into possibility distributions and conversely. This paper studies the advantages and shortcomings of two well-known discrete probability to possibility transformations: the optimal transformation and the symmetrical transformation, and presents a novel parametric family of probability to possibility transformations which generalizes them and alleviate their shortcomings, showing a big potential for practical application. The paper also introduces a novel fuzzy measure of specificity for probability distributions based on the concept of fuzzy subsethood and presents a empirical validation of the generalized transformation usefulness applying it to the text authorship attribution problem.
stat
Rotting bandits are not harder than stochastic ones
In stochastic multi-armed bandits, the reward distribution of each arm is assumed to be stationary. This assumption is often violated in practice (e.g., in recommendation systems), where the reward of an arm may change whenever is selected, i.e., rested bandit setting. In this paper, we consider the non-parametric rotting bandit setting, where rewards can only decrease. We introduce the filtering on expanding window average (FEWA) algorithm that constructs moving averages of increasing windows to identify arms that are more likely to return high rewards when pulled once more. We prove that for an unknown horizon $T$, and without any knowledge on the decreasing behavior of the $K$ arms, FEWA achieves problem-dependent regret bound of $\widetilde{\mathcal{O}}(\log{(KT)}),$ and a problem-independent one of $\widetilde{\mathcal{O}}(\sqrt{KT})$. Our result substantially improves over the algorithm of Levine et al. (2017), which suffers regret $\widetilde{\mathcal{O}}(K^{1/3}T^{2/3})$. FEWA also matches known bounds for the stochastic bandit setting, thus showing that the rotting bandits are not harder. Finally, we report simulations confirming the theoretical improvements of FEWA.
stat
A Simple Approach to Online Sparse Sliced Inverse Regression
Sliced inverse regression is an efficient approach to estimate the central subspace for sufficient dimension reduction. Due to the demand for tackling the problem of sparse high dimensional data, several methods of online sufficient dimension reduction has been proposed. However, as far as we know, all of these methods are not well suitable for high dimensional and sparse data. Hence, the purpose of this paper is to propose a simple and efficient approach to online sparse sliced inverse regression (OSSIR). Motivated by Lasso-SIR and online SIR, we implement the Lasso-SIR in an online fashion. There are two important steps in our method, one is to iteratively obtain the eigenvalues and eigenvectors of matrix $\operatorname{cov}(E(x|Y))$, the other is the online $L_{1}$ regularization. For the former problem, we expand the online principal component analysis and summarize four different ways. While in the online fashion, truncated gradient has been shown to be an online counterpart of $L_{1}$ regularization in the batch setting, so we apply the truncated gradient in the online sliced inverse regression for the latter problem. The theoretical properties of this online learner are established. By comparing with several existing methods in the simulations and real data applications, we demonstrate the effectiveness and efficiency of our algorithm.
stat
Constraining Logits by Bounded Function for Adversarial Robustness
We propose a method for improving adversarial robustness by addition of a new bounded function just before softmax. Recent studies hypothesize that small logits (inputs of softmax) by logit regularization can improve adversarial robustness of deep learning. Following this hypothesis, we analyze norms of logit vectors at the optimal point under the assumption of universal approximation and explore new methods for constraining logits by addition of a bounded function before softmax. We theoretically and empirically reveal that small logits by addition of a common activation function, e.g., hyperbolic tangent, do not improve adversarial robustness since input vectors of the function (pre-logit vectors) can have large norms. From the theoretical findings, we develop the new bounded function. The addition of our function improves adversarial robustness because it makes logit and pre-logit vectors have small norms. Since our method only adds one activation function before softmax, it is easy to combine our method with adversarial training. Our experiments demonstrate that our method is comparable to logit regularization methods in terms of accuracies on adversarially perturbed datasets without adversarial training. Furthermore, it is superior or comparable to logit regularization methods and a recent defense method (TRADES) when using adversarial training.
stat
Conditional canonical correlation estimation based on covariates with random forests
Investigating the relationships between two sets of variables helps to understand their interactions and can be done with canonical correlation analysis (CCA). However, the correlation between the two sets can sometimes depend on a third set of covariates, often subject-related ones such as age, gender, or other clinical measures. In this case, applying CCA to the whole population is not optimal and methods to estimate conditional CCA, given the covariates, can be useful. We propose a new method called Random Forest with Canonical Correlation Analysis (RFCCA) to estimate the conditional canonical correlations between two sets of variables given subject-related covariates. The individual trees in the forest are built with a splitting rule specifically designed to partition the data to maximize the canonical correlation heterogeneity between child nodes. We also propose a significance test to detect the global effect of the covariates on the relationship between two sets of variables. The performance of the proposed method and the global significance test is evaluated through simulation studies that show it provides accurate canonical correlation estimations and well-controlled Type-1 error. We also show an application of the proposed method with EEG data.
stat
Confidence Intervals for Nonparametric Empirical Bayes Analysis
In an empirical Bayes analysis, we use data from repeated sampling to imitate inferences made by an oracle Bayesian with extensive knowledge of the data-generating distribution. Existing results provide a comprehensive characterization of when and why empirical Bayes point estimates accurately recover oracle Bayes behavior. In this paper, we develop flexible and practical confidence intervals that provide asymptotic frequentist coverage of empirical Bayes estimands, such as the posterior mean or the local false sign rate. The coverage statements hold even when the estimands are only partially identified or when empirical Bayes point estimates converge very slowly.
stat
Network modelling of topological domains using Hi-C data
Chromosome conformation capture experiments such as Hi-C are used to map the three-dimensional spatial organization of genomes. One specific feature of the 3D organization is known as topologically associating domains (TADs), which are densely interacting, contiguous chromatin regions playing important roles in regulating gene expression. A few algorithms have been proposed to detect TADs. In particular, the structure of Hi-C data naturally inspires application of community detection methods. However, one of the drawbacks of community detection is that most methods take exchangeability of the nodes in the network for granted; whereas the nodes in this case, i.e. the positions on the chromosomes, are not exchangeable. We propose a network model for detecting TADs using Hi-C data that takes into account this non-exchangeability. In addition, our model explicitly makes use of cell-type specific CTCF binding sites as biological covariates and can be used to identify conserved TADs across multiple cell types. The model leads to a likelihood objective that can be efficiently optimized via relaxation. We also prove that when suitably initialized, this model finds the underlying TAD structure with high probability. Using simulated data, we show the advantages of our method and the caveats of popular community detection methods, such as spectral clustering, in this application. Applying our method to real Hi-C data, we demonstrate the domains identified have desirable epigenetic features and compare them across different cell types.
stat
Specification tests in semiparametric transformation models - a multiplier bootstrap approach
We consider semiparametric transformation models, where after pre-estimation of a parametric transformation of the response the data are modeled by means of nonparametric regression. We suggest subsequent procedures for testing lack-of-fit of the regression function and for significance of covariables, which - in contrast to procedures from the literature - are asymptotically not influenced by the pre-estimation of the transformation. The test statistics are asymptotically pivotal and have the same asymptotic distribution as in regression models without transformation. We show validity of a multiplier bootstrap procedure which is easier to implement and much less computationally demanding than bootstrap procedures based on the transformation model. In a simulation study we demonstrate the superior performance of the procedure in comparison with the competitors from the literature.
stat
Clustered active-subspace based local Gaussian Process emulator for high-dimensional and complex computer models
Quantifying uncertainties in physical or engineering systems often requires a large number of simulations of the underlying computer models that are computationally intensive. Emulators or surrogate models are often used to accelerate the computation in such problems, and in this regard the Gaussian Process (GP) emulator is a popular choice for its ability to quantify the approximation error in the emulator itself. However, a major limitation of the GP emulator is that it can not handle problems of very high dimensions, which is often addressed with dimension reduction techniques. In this work we hope to address an issue that the models of interest are so complex that they admit different low dimensional structures in different parameter regimes. Building upon the active subspace method for dimension reduction, we propose a clustered active subspace method which identifies the local low-dimensional structures as well as the parameter regimes they are in (represented as clusters), and then construct low dimensional and local GP emulators within the clusters. Specifically we design a clustering method based on the gradient information to identify these clusters, and a local GP construction procedure to construct the GP emulator within a local cluster. With numerical examples, we demonstrate that the proposed method is effective when the underlying models are of complex low-dimensional structures.
stat
Adaptive Covariate Acquisition for Minimizing Total Cost of Classification
In some applications, acquiring covariates comes at a cost which is not negligible. For example in the medical domain, in order to classify whether a patient has diabetes or not, measuring glucose tolerance can be expensive. Assuming that the cost of each covariate, and the cost of misclassification can be specified by the user, our goal is to minimize the (expected) total cost of classification, i.e. the cost of misclassification plus the cost of the acquired covariates. We formalize this optimization goal using the (conditional) Bayes risk and describe the optimal solution using a recursive procedure. Since the procedure is computationally infeasible, we consequently introduce two assumptions: (1) the optimal classifier can be represented by a generalized additive model, (2) the optimal sets of covariates are limited to a sequence of sets of increasing size. We show that under these two assumptions, a computationally efficient solution exists. Furthermore, on several medical datasets, we show that the proposed method achieves in most situations the lowest total costs when compared to various previous methods. Finally, we weaken the requirement on the user to specify all misclassification costs by allowing the user to specify the minimally acceptable recall (target recall). Our experiments confirm that the proposed method achieves the target recall while minimizing the false discovery rate and the covariate acquisition costs better than previous methods.
stat
Median regression with differential privacy
Median regression analysis has robustness properties which make it attractive compared with regression based on the mean, while differential privacy can protect individual privacy during statistical analysis of certain datasets. In this paper, three privacy preserving methods are proposed for median regression. The first algorithm is based on a finite smoothing method, the second provides an iterative way and the last one further employs the greedy coordinate descent approach. Privacy preserving properties of these three methods are all proved. Accuracy bound or convergence properties of these algorithms are also provided. Numerical calculation shows that the first method has better accuracy than the others when the sample size is small. When the sample size becomes larger, the first method needs more time while the second method needs less time with well-matched accuracy. For the third method, it costs less time in both cases, while it highly depends on step size.
stat
Robust Function-on-Function Regression
Functional linear regression is a widely used approach to model functional responses with respect to functional inputs. However, classical functional linear regression models can be severely affected by outliers. We therefore introduce a Fisher-consistent robust functional linear regression model that is able to effectively fit data in the presence of outliers. The model is built using robust functional principal component and least squares regression estimators. The performance of the functional linear regression model depends on the number of principal components used. We therefore introduce a consistent robust model selection procedure to choose the number of principal components. Our robust functional linear regression model can be used alongside an outlier detection procedure to effectively identify abnormal functional responses. A simulation study shows our method is able to effectively capture the regression behaviour in the presence of outliers, and is able to find the outliers with high accuracy. We demonstrate the usefulness of our method on jet engine sensor data. We identify outliers that would not be found if the functional responses were modelled independently of the functional input, or using non-robust methods.
stat
Parallel subgroup analysis of high-dimensional data via M-regression
It becomes an interesting problem to identify subgroup structures in data analysis as populations are probably heterogeneous in practice. In this paper, we consider M-estimators together with both concave and pairwise fusion penalties, which can deal with high-dimensional data containing some outliers. The penalties are applied both on covariates and treatment effects, where the estimation is expected to achieve both variable selection and data clustering simultaneously. An algorithm is proposed to process relatively large datasets based on parallel computing. We establish the convergence analysis of the proposed algorithm, the oracle property of the penalized M-estimators, and the selection consistency of the proposed criterion. Our numerical study demonstrates that the proposed method is promising to efficiently identify subgroups hidden in high-dimensional data.
stat
Ensemble Kalman Variational Objectives: Nonlinear Latent Trajectory Inference with A Hybrid of Variational Inference and Ensemble Kalman Filter
Variational Inference (VI) combined with Bayesian nonlinear filtering produces the state-of-the-art results for latent trajectory inference. A body of recent works focused on Sequential Monte Carlo (SMC) and its expansion, e.g., Forward Filtering Backward Simulation (FFBSi). These studies achieved a great success, however, remain a serious problem for particle degeneracy. In this paper, we propose Ensemble Kalman Objectives (EnKOs), the hybrid method of VI and Ensemble Kalman Filter (EnKF), to infer the State Space Models (SSMs). Unlike the SMC based methods, the our proposed method can identify the latent dynamics given fewer particles because of its rich particle diversity. We demonstrate that EnKOs outperform the SMC based methods in terms of predictive ability for three benchmark nonlinear dynamics systems tasks.
stat
AVaN Pack: An Analytical/Numerical Solution for Variance-Based Sensitivity Analysis
Sensitivity analysis is an important concept to analyze the influences of parameters in a system, an equation or a collection of data. The methods used for sensitivity analysis are divided into deterministic and statistical techniques. Generally, deterministic techniques analyze fixed points of a model whilst stochastic techniques analyze a range of values. Deterministic methods fail in analyze the entire range of input values and stochastic methods generate outcomes with random errors. In this manuscript, we are interested in stochastic methods, mainly in variance-based techniques such as Variance and Sobol indices, since this class of techniques is largely used on literature. The objective of this manuscript is to present an analytical solution for variance based sensitive analysis. As a result of this research, two small programs were developed in Javascript named as AVaN Pack (Analysis of Variance through Numerical solution). These programs allow users to find the contribution of each individual parameter in any function by means of a mathematical solution, instead of sampling-based ones.
stat
Minimum adjusted Rand index for two clusterings of a given size
The adjusted Rand index (ARI) is commonly used in cluster analysis to measure the degree of agreement between two data partitions. Since its introduction, exploring the situations of extreme agreement and disagreement under different circumstances has been a subject of interest, in order to achieve a better understanding of this index. Here, an explicit formula for the lowest possible value of the ARI for two clusterings of given sizes is shown, and moreover a specific pair of clusterings achieving such a bound is provided.
stat
Asymptotic distribution-free change-point detection for data with repeated observations
In the regime of change-point detection, a nonparametric framework based on scan statistics utilizing graphs representing similarities among observations is gaining attention due to its flexibility and good performances for high-dimensional and non-Euclidean data sequences, which are ubiquitous in this big data era. However, this graph-based framework encounters problems when there are repeated observations in the sequence, which often happens for discrete data, such as network data. In this work, we extend the graph-based framework to solve this problem by averaging or taking union of all possible "optimal" graphs resulted from repeated observations. We consider both the single change-point alternative and the changed-interval alternative, and derive analytic formulas to control the type I error for the new methods, making them fast applicable to large data sets. The extended methods are illustrated on an application in detecting changes in a sequence of dynamic networks over time.
stat
Robust Sparse Reduced Rank Regression in High Dimensions
We propose robust sparse reduced rank regression for analyzing large and complex high-dimensional data with heavy-tailed random noise. The proposed method is based on a convex relaxation of a rank- and sparsity-constrained non-convex optimization problem, which is then solved using the alternating direction method of multipliers algorithm. We establish non-asymptotic estimation error bounds under both Frobenius and nuclear norms in the high-dimensional setting. This is a major contribution over existing results in reduced rank regression, which mainly focus on rank selection and prediction consistency. Our theoretical results quantify the tradeoff between heavy-tailedness of the random noise and statistical bias. For random noise with bounded $(1+\delta)$th moment with $\delta \in (0,1)$, the rate of convergence is a function of $\delta$, and is slower than the sub-Gaussian-type deviation bounds; for random noise with bounded second moment, we obtain a rate of convergence as if sub-Gaussian noise were assumed. Furthermore, the transition between the two regimes is smooth. We illustrate the performance of the proposed method via extensive numerical studies and a data application.
stat
Efficient Bayesian synthetic likelihood with whitening transformations
Likelihood-free methods are an established approach for performing approximate Bayesian inference for models with intractable likelihood functions. However, they can be computationally demanding. Bayesian synthetic likelihood (BSL) is a popular such method that approximates the likelihood function of the summary statistic with a known, tractable distribution -- typically Gaussian -- and then performs statistical inference using standard likelihood-based techniques. However, as the number of summary statistics grows, the number of model simulations required to accurately estimate the covariance matrix for this likelihood rapidly increases. This poses significant challenge for the application of BSL, especially in cases where model simulation is expensive. In this article we propose whitening BSL (wBSL) -- an efficient BSL method that uses approximate whitening transformations to decorrelate the summary statistics at each algorithm iteration. We show empirically that this can reduce the number of model simulations required to implement BSL by more than an order of magnitude, without much loss of accuracy. We explore a range of whitening procedures and demonstrate the performance of wBSL on a range of simulated and real modelling scenarios from ecology and biology.
stat
Online Particle Smoothing with Application to Map-matching
We introduce a novel method for online smoothing in state-space models based on a fixed-lag approximation. Unlike classical fixed-lag smoothing we approximate the joint posterior distribution rather than just the marginals. By only partially resampling particles, our online particle smoothing technique avoids path degeneracy as the length of the state-space model increases. We demonstrate the utility of our method in the context of map-matching, the task of inferring a vehicle's trajectory given a road network and noisy GPS observations.
stat
Risk Bounds for Learning Multiple Components with Permutation-Invariant Losses
This paper proposes a simple approach to derive efficient error bounds for learning multiple components with sparsity-inducing regularization. We show that for such regularization schemes, known decompositions of the Rademacher complexity over the components can be used in a more efficient manner to result in tighter bounds without too much effort. We give examples of application to switching regression and center-based clustering/vector quantization. Then, the complete workflow is illustrated on the problem of subspace clustering, for which decomposition results were not previously available. For all these problems, the proposed approach yields risk bounds with mild dependencies on the number of components and completely removes this dependence for nonconvex regularization schemes that could not be handled by previous methods.
stat
Distributionally Robust Bayesian Optimization
Robustness to distributional shift is one of the key challenges of contemporary machine learning. Attaining such robustness is the goal of distributionally robust optimization, which seeks a solution to an optimization problem that is worst-case robust under a specified distributional shift of an uncontrolled covariate. In this paper, we study such a problem when the distributional shift is measured via the maximum mean discrepancy (MMD). For the setting of zeroth-order, noisy optimization, we present a novel distributionally robust Bayesian optimization algorithm (DRBO). Our algorithm provably obtains sub-linear robust regret in various settings that differ in how the uncertain covariate is observed. We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
stat
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Generative flows are promising tractable models for density modeling that define probabilistic distributions with invertible transformations. However, tractability imposes architectural constraints on generative flows, making them less expressive than other types of generative models. In this work, we study a previously overlooked constraint that all the intermediate representations must have the same dimensionality with the original data due to invertibility, limiting the width of the network. We tackle this constraint by augmenting the data with some extra dimensions and jointly learning a generative flow for augmented data as well as the distribution of augmented dimensions under a variational inference framework. Our approach, VFlow, is a generalization of generative flows and therefore always performs better. Combining with existing generative flows, VFlow achieves a new state-of-the-art 2.98 bits per dimension on the CIFAR-10 dataset and is more compact than previous models to reach similar modeling quality.
stat
Empirical Risk Minimization and Stochastic Gradient Descent for Relational Data
Empirical risk minimization is the main tool for prediction problems, but its extension to relational data remains unsolved. We solve this problem using recent ideas from graph sampling theory to (i) define an empirical risk for relational data and (ii) obtain stochastic gradients for this empirical risk that are automatically unbiased. This is achieved by considering the method by which data is sampled from a graph as an explicit component of model design. By integrating fast implementations of graph sampling schemes with standard automatic differentiation tools, we provide an efficient turnkey solver for the risk minimization problem. We establish basic theoretical properties of the procedure. Finally, we demonstrate relational ERM with application to two non-standard problems: one-stage training for semi-supervised node classification, and learning embedding vectors for vertex attributes. Experiments confirm that the turnkey inference procedure is effective in practice, and that the sampling scheme used for model specification has a strong effect on model performance. Code is available at https://github.com/wooden-spoon/relational-ERM.
stat
Selective Inference for Latent Block Models
Model selection in latent block models has been a challenging but important task in the field of statistics. Specifically, a major challenge is encountered when constructing a test on a block structure obtained by applying a specific clustering algorithm to a finite size matrix. In this case, it becomes crucial to consider the selective bias in the block structure, that is, the block structure is selected from all the possible cluster memberships based on some criterion by the clustering algorithm. To cope with this problem, this study provides a selective inference method for latent block models. Specifically, we construct a statistical test on a set of row and column cluster memberships of a latent block model, which is given by a squared residue minimization algorithm. The proposed test, by its nature, includes and thus can also be used as the test on the set of row and column cluster numbers. We also propose an approximated version of the test based on simulated annealing to avoid combinatorial explosion in searching the optimal block structure. The results show that the proposed exact and approximated tests work effectively, compared to the naive test that did not take the selective bias into account.
stat
Simultaneous Confidence Tubes for Comparison of Several Multivariate Linear Regression Models
Much of the research on multiple comparison and simultaneous inference in the past sixty years or so has been for the comparisons of several population means. Spurrier (1999) seems to be the first to study the multiple comparison of several simple linear regression lines by using simultaneous confidence bands. In this paper, the work of Liu et al. (2004) for finite comparisons of several univariate linear regression models by using simultaneous confidence bands has been extended to finite comparison of several multivariate linear regression models by using simultaneous confidence tubes. We show how simultaneous confidence tubes can be constructed to allow more informative inferences for the comparison of several multivariate linear regression models than the current approach of hypotheses testing. The methodologies are illustrated with examples.
stat
Learning Sparse Nonparametric DAGs
We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous program for score-based learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. Unlike existing approaches that require specific modeling choices, loss functions, or algorithms, we present a completely general framework that can be applied to general nonlinear models (e.g. without additive noise), general differentiable loss functions, and generic black-box optimization routines. The code is available at https://github.com/xunzheng/notears.
stat
Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing
A trade-off between accuracy and fairness is almost taken as a given in the existing literature on fairness in machine learning. Yet, it is not preordained that accuracy should decrease with increased fairness. Novel to this work, we examine fair classification through the lens of mismatched hypothesis testing: trying to find a classifier that distinguishes between two ideal distributions when given two mismatched distributions that are biased. Using Chernoff information, a tool in information theory, we theoretically demonstrate that, contrary to popular belief, there always exist ideal distributions such that optimal fairness and accuracy (with respect to the ideal distributions) are achieved simultaneously: there is no trade-off. Moreover, the same classifier yields the lack of a trade-off with respect to ideal distributions while yielding a trade-off when accuracy is measured with respect to the given (possibly biased) dataset. To complement our main result, we formulate an optimization to find ideal distributions and derive fundamental limits to explain why a trade-off exists on the given biased dataset. We also derive conditions under which active data collection can alleviate the fairness-accuracy trade-off in the real world. Our results lead us to contend that it is problematic to measure accuracy with respect to data that reflects bias, and instead, we should be considering accuracy with respect to ideal, unbiased data.
stat
Estimation of local treatment under the binary instrumental variable model
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifiable under mild conditions. In this paper, we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges for causal estimation with a binary outcome, and show that surprisingly, it can be more difficult than the case with a continuous outcome. We propose novel modeling and estimating procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness or efficiency. Our approach is illustrated via simulation studies and a real data analysis.
stat
An Extreme Value Bayesian Lasso for the Conditional Bulk and Tail
We introduce a novel regression model for the conditional bulk and conditional tail of a possibly heavy-tailed response. The proposed model can be used to learn the effect of covariates on an extreme value setting via a Lasso-type specification based on a Lagrangian restriction. Our model can be used to track if some covariates are significant for the bulk, but not for the tail---and vice-versa; in addition to this, the proposed model bypasses the need for conditional threshold selection in an extreme value theory framework. We assess the finite-sample performance of the proposed methods through a simulation study that reveals that our method recovers the true conditional distribution over a variety of simulation scenarios, along with being accurate on variable selection. Rainfall data are used to showcase how the proposed method can learn to distinguish between key drivers of moderate rainfall, against those of extreme rainfall.
stat
Sensitivity Analysis of Error-Contaminated Time Series Data under Autoregressive Models with Application of COVID-19 Data
Autoregressive (AR) models are useful tools in time series analysis. Inferences under such models are distorted in the presence of measurement error, which is very common in practice. In this article, we establish analytical results for quantifying the biases of the parameter estimation in AR models if the measurement error effects are neglected. We propose two measurement error models to describe different processes of data contamination. An estimating equation approach is proposed for the estimation of the model parameters with measurement error effects accounted for. We further discuss forecasting using the proposed method. Our work is inspired by COVID-19 data, which are error-contaminated due to multiple reasons including the asymptomatic cases and varying incubation periods. We implement our proposed method by conducting sensitivity analyses and forecasting of the mortality rate of COVID-19 over time for the four most populated provinces in Canada. The results suggest that incorporating or not incorporating measurement error effects yields rather different results for parameter estimation and forecasting.
stat
Generalized Elliptical Slice Sampling with Regional Pseudo-priors
In this paper, we propose a MCMC algorithm based on elliptical slice sampling with the purpose to improve sampling efficiency. During sampling, a mixture distribution is fitted periodically to previous samples. The components of the mixture distribution are called regional pseudo-priors because each component serves as the pseudo-prior for a subregion of the sampling space. Expectation maximization algorithm, variational inference algorithm and stochastic approximation algorithm are used to estimate the parameters. Meanwhile, parallel computing is used to relieve the burden of computation. Ergodicity of the proposed algorithm is proven mathematically. Experimental results on one synthetic and two real-world dataset show that the proposed algorithm has the following advantages: with the same starting points, the proposed algorithm can find more distant modes; the proposed algorithm has lower rejection rates; when doing Bayesian inference for uni-modal posterior distributions, the proposed algorithm can give more accurate estimations; when doing Bayesian inference for multi-modal posterior distributions, the proposed algorithm can find different modes well, and the estimated means of the mixture distribution can provide additional information for the location of modes.
stat
A survey on natural language processing (nlp) and applications in insurance
Text is the most widely used means of communication today. This data is abundant but nevertheless complex to exploit within algorithms. For years, scientists have been trying to implement different techniques that enable computers to replicate some mechanisms of human reading. During the past five years, research disrupted the capacity of the algorithms to unleash the value of text data. It brings today, many opportunities for the insurance industry.Understanding those methods and, above all, knowing how to apply them is a major challenge and key to unleash the value of text data that have been stored for many years. Processing language with computer brings many new opportunities especially in the insurance sector where reports are central in the information used by insurers. SCOR's Data Analytics team has been working on the implementation of innovative tools or products that enable the use of the latest research on text analysis. Understanding text mining techniques in insurance enhances the monitoring of the underwritten risks and many processes that finally benefit policyholders.This article proposes to explain opportunities that Natural Language Processing (NLP) are providing to insurance. It details different methods used today in practice traces back the story of them. We also illustrate the implementation of certain methods using open source libraries and python codes that we have developed to facilitate the use of these techniques.After giving a general overview on the evolution of text mining during the past few years,we share about how to conduct a full study with text mining and share some examples to serve those models into insurance products or services. Finally, we explained in more details every step that composes a Natural Language Processing study to ensure the reader can have a deep understanding on the implementation.
stat
Predication of Inflection Point and Outbreak Size of COVID-19 in New Epicentres
The coronavirus disease 2019 (COVID-19) had caused more that 8 million infections as of middle June 2020. Recently, Brazil has become a new epicentre of COVID-19, while India and African region are potential epicentres. This study aims to predict the inflection point and outbreak size of these new/potential epicentres at the early phase of the epidemics by borrowing information from more `mature' curves from other countries. We modeled the cumulative cases to the well-known sigmoid growth curves to describe the epidemic trends under the mixed-effect models and using the four-parameter logistic model after power transformations. African region is predicted to have the largest total outbreak size of 3.9 million cases (2.2 to 6 million), and the inflection will come around September 13, 2020. Brazil and India are predicted to have a similar final outbreak size of around 2.5 million cases (1.1 to 4.3 million), with the inflection points arriving June 23 and July 26, respectively. We conclude in Brazil, India, and African the epidemics of COVI19 have not yet passed the inflection points; these regions potentially can take over USA in terms of outbreak size
stat
Encouraging Equitable Bikeshare: Implications of Docked and Dockless Models for Spatial Equity
The last decade has seen a rapid rise in the number of bikeshare programs, where bikes are made available throughout a community on an as-needed basis. Given that many of these programs are at least partially publicly funded, a central concern of operators and investors is whether these systems operate equitably. Though spatial equity has been well-studied under the docked model, where bikes are picked up and dropped off at prespecified docking stations, there has been little work examining that of the increasingly popular dockless model, where bikes can be picked up and dropped off from anywhere within an operating area. We explore comparative equity in spatial access to bikeshare services under these two models by collecting spatial data on 45,935 bikes from 73 bikeshare systems using a novel querying approach (with generalizable and freely available source code), and joining this data with newly-available sociodemographic data at the census tract level. Using Poisson count regression, we perform the first comparative analysis of the two docking approaches, finding that dockless systems operate more equitably than docked systems by education, but do not differ in spatial access by socioeconomic class.
stat
Moderating effects of retail operations and hard-sell sales techniques on salesperson's interpersonal skills and customer repurchase intention
Salesperson's interpersonal skills have always played an important role in influencing various stages of customer's purchase decision. With the increase in retail outlets and merchandisers, retail operations have taken a pivotal role in influencing the salesperson's sales practices and customer's purchase decisions.This study tries to examine the influence of retail operations and hard-selling startegies on the relationship between salesperson's interpersonal skills and customer repurchase intention. Salesperson's interpersonal skills are the trained and tacit competencies that a salesperson employs to improve customer relationship and sales performance. Many organizations prefer skill training fails to attract repetitive purchases due to unavoidable extraneous factors. It has become a necessity to understand the role of extraneous factors like retail operations on the relationship between salesperson's interpersonal skills and customer repurchase intention. The findings suggest that retail operations significantly moderate the relationship between salesperson's interpersonal skills and customer repurchase intention. We also find that hard-sell sales techniques play a significant moderating role in negatively infleuncing customer repurchase intention . This study has important implications for retailers and sales managers.
stat
Graph-Based Continual Learning
Despite significant advances, continual learning models still suffer from catastrophic forgetting when exposed to incrementally available data from non-stationary distributions. Rehearsal approaches alleviate the problem by maintaining and replaying a small episodic memory of previous samples, often implemented as an array of independent memory slots. In this work, we propose to augment such an array with a learnable random graph that captures pairwise similarities between its samples, and use it not only to learn new tasks but also to guard against forgetting. Empirical results on several benchmark datasets show that our model consistently outperforms recently proposed baselines for task-free continual learning.
stat
Nonparametric estimation of highest density regions for COVID-19
Highest density regions refer to level sets containing points of relatively high density. Their estimation from a random sample, generated from the underlying density, allows to determine the clusters of the corresponding distribution. This task can be accomplished considering different nonparametric perspectives. From a practical point of view, reconstructing highest density regions can be interpreted as a way of determining hot-spots, a crucial task for understanding COVID-19 space-time evolution. In this work, we compare the behavior of classical plug-in methods and a recently proposed hybrid algorithm for highest density regions estimation through an extensive simulation study. Both methodologies are applied to analyze a real data set about COVID-19 cases in the United States.
stat
Learning Energy-based Model with Flow-based Backbone by Neural Transport MCMC
Learning energy-based model (EBM) requires MCMC sampling of the learned model as the inner loop of the learning algorithm. However, MCMC sampling of EBM in data space is generally not mixing, because the energy function, which is usually parametrized by deep network, is highly multi-modal in the data space. This is a serious handicap for both the theory and practice of EBM. In this paper, we propose to learn EBM with a flow-based model serving as a backbone, so that the EBM is a correction or an exponential tilting of the flow-based model. We show that the model has a particularly simple form in the space of the latent variables of the flow-based model, and MCMC sampling of the EBM in the latent space, which is a simple special case of neural transport MCMC, mixes well and traverses modes in the data space. This enables proper sampling and learning of EBM.
stat
Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative Chaos
We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrized by a fractality parameter $\nu$ which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We asymptotically characterize the expected number of edges and triangle in FGNs. We then examine the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data, in addition to fundamental properties of the FGN as a random graph model. We also explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs.
stat
Bagging cross-validated bandwidth selection in nonparametric regression estimation with applications to large-sized samples
Cross-validation is a well-known and widely used bandwidth selection method in nonparametric regression estimation. However, this technique has two remarkable drawbacks: (i) the large variability of the selected bandwidths, and (ii) the inability to provide results in a reasonable time for very large sample sizes. To overcome these problems, bagging cross-validation bandwidths are analyzed in this paper. This approach consists in computing the cross-validation bandwidths for a finite number of subsamples and then rescaling the averaged smoothing parameters to the original sample size. Under a random-design regression model, asymptotic expressions up to a second-order for the bias and variance of the leave-one-out cross-validation bandwidth for the Nadaraya--Watson estimator are obtained. Subsequently, the asymptotic bias and variance and the limit distribution are derived for the bagged cross-validation selector. Suitable choices of the number of subsamples and the subsample size lead to an $n^{-1/2}$ rate for the convergence in distribution of the bagging cross-validation selector, outperforming the rate $n^{-3/10}$ of leave-one-out cross-validation. Several simulations and an illustration on a real dataset related to the COVID-19 pandemic show the behavior of our proposal and its better performance, in terms of statistical efficiency and computing time, when compared to leave-one-out cross-validation.
stat
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in data sampled from the nodes of a network, motivated by social network applications. We demonstrate that our proposed statistic for categorical variables can both be used in the spatial and network setting.
stat
CauchyCP: a powerful test under non-proportional hazards using Cauchy combination of change-point Cox regressions
Non-proportional hazards data are routinely encountered in randomized clinical trials. In such cases, classic Cox proportional hazards model can suffer from severe power loss, with difficulty in interpretation of the estimated hazard ratio since the treatment effect varies over time. We propose CauchyCP, an omnibus test of change-point Cox regression models, to overcome both challenges while detecting signals of non-proportional hazards patterns. Extensive simulation studies demonstrate that, compared to existing treatment comparison tests under non-proportional hazards, the proposed CauchyCP test 1) controls the type I error better at small $\alpha$ levels ($< 0.01$); 2) increases the power of detecting time-varying effects; and 3) is more computationally efficient. The superior performance of CauchyCP is further illustrated using retrospective analyses of two randomized clinical trial datasets and a pharmacogenetic biomarker study dataset. The R package $\textit{CauchyCP}$ is publicly available on CRAN.
stat
Split regression modeling
In this note we study the benefits of splitting variables variables for reducing the variance of linear functions of the regression coefficient estimate. We show that splitting combined with shrinkage can result in estimators with smaller mean squared error compared to popular shrinkage estimators such as Lasso, ridge regression and garrote.
stat
On Deep Set Learning and the Choice of Aggregations
Recently, it has been shown that many functions on sets can be represented by sum decompositions. These decompositons easily lend themselves to neural approximations, extending the applicability of neural nets to set-valued inputs---Deep Set learning. This work investigates a core component of Deep Set architecture: aggregation functions. We suggest and examine alternatives to commonly used aggregation functions, including learnable recurrent aggregation functions. Empirically, we show that the Deep Set networks are highly sensitive to the choice of aggregation functions: beyond improved performance, we find that learnable aggregations lower hyper-parameter sensitivity and generalize better to out-of-distribution input size.
stat
A Hybrid Approximation to the Marginal Likelihood
Computing the marginal likelihood or evidence is one of the core challenges in Bayesian analysis. While there are many established methods for estimating this quantity, they predominantly rely on using a large number of posterior samples obtained from a Markov Chain Monte Carlo (MCMC) algorithm. As the dimension of the parameter space increases, however, many of these methods become prohibitively slow and potentially inaccurate. In this paper, we propose a novel method in which we use the MCMC samples to learn a high probability partition of the parameter space and then form a deterministic approximation over each of these partition sets. This two-step procedure, which constitutes both a probabilistic and a deterministic component, is termed a Hybrid approximation to the marginal likelihood. We demonstrate its versatility in a plethora of examples with varying dimension and sample size, and we also highlight the Hybrid approximation's effectiveness in situations where there is either a limited number or only approximate MCMC samples available.
stat
The causal effect of a timeout at stopping an opposing run in the NBA
In the summer of 2017, the National Basketball Association reduced the number of total timeouts, along with other rule changes, to regulate the flow of the game. With these rule changes, it becomes increasingly important for coaches to effectively manage their timeouts. Understanding the utility of a timeout under various game scenarios, e.g., during an opposing team's run, is of the utmost importance. There are two schools of thought when the opposition is on a run: (1) call a timeout and allow your team to rest and regroup, or (2) save a timeout and hope your team can make corrections during play. This paper investigates the credence of these tenets using the Rubin causal model framework to quantify the causal effect of a timeout in the presence of an opposing team's run. Too often overlooked, we carefully consider the stable unit-treatment-value assumption (SUTVA) in this context and use SUTVA to motivate our definition of units. To measure the effect of a timeout, we introduce a novel, interpretable outcome based on the score difference to describe broad changes in the scoring dynamics. This outcome is well-suited for situations where the quantity of interest fluctuates frequently, a commonality in many sports analytics applications. We conclude from our analysis that while comebacks frequently occur after a run, it is slightly disadvantageous to call a timeout during a run by the opposing team and further demonstrate that the magnitude of this effect varies by franchise.
stat
Classifying histograms of medical data using information geometry of beta distributions
In this paper, we use tools of information geometry to compare, average and classify histograms. Beta distributions are fitted to the histograms and the corresponding Fisher information geometry is used for comparison. We show that this geometry is negatively curved, which guarantees uniqueness of the notion of mean, and makes it suitable to classify histograms through the popular K-means algorithm. We illustrate the use of these geometric tools in supervised and unsupervised classification procedures of two medical data-sets, cardiac shape deformations for the detection of pulmonary hypertension and brain cortical thickness for the diagnosis of Alzheimer's disease.
stat
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference. Existing approaches require density estimation as a post-processing step building upon deterministic neural networks, and do not take network prediction uncertainty into account. This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions. An adaptive sampling scheme selects simulation locations to efficiently and iteratively refine the predictive posterior of the network conditioned on observations. This allows for more efficient and robust convergence on comparatively large prior spaces. We demonstrate our approach on benchmark examples and compare against related methods.
stat