title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A Simplified Stochastic EM Algorithm for Negative Binomial Cure Rate Model and Comparison with EM Algorithm
In this paper, a long-term survival model under competing risks is considered. The unobserved number of competing risks is assumed to follow a negative binomial distribution that can capture both over- and under-dispersion. Considering the latent competing risks as missing data, a variation of the well-known expectation maximization (EM) algorithm, called the stochastic EM algorithm (SEM), is developed. It is shown that the SEM algorithm avoids calculation of complicated expectations, which is a major advantage of the SEM algorithm over the EM algorithm. The proposed procedure also allows the objective function to be split into two simpler functions, one corresponding to the parameters associated with the cure rate and the other corresponding to the parameters associated with the progression times. The advantage of this approach is that each simple function, with lower parameter dimension, can be maximized independently. An extensive Monte Carlo simulation study is carried out to compare the performances of the SEM and EM algorithms. Finally, a breast cancer survival data is analyzed and it is shown that the SEM algorithm performs better than the EM algorithm.
stat
Solar Radiation Anomaly Events Modeling Using Spatial-Temporal Mutually Interactive Processes
Modeling and predicting solar events, in particular, the solar ramping event is critical for improving situational awareness for solar power generation systems. Solar ramping events are significantly impacted by weather conditions such as temperature, humidity, and cloud density. Discovering the correlation between different locations and times is a highly challenging task since the system is complex and noisy. We propose a novel method to model and predict ramping events from spatial-temporal sequential solar radiation data based on a spatio-temporal interactive Bernoulli process. We demonstrate the good performance of our approach on real solar radiation datasets.
stat
Directed Graphical Models and Causal Discovery for Zero-Inflated Data
Modern RNA sequencing technologies provide gene expression measurements from single cells that promise refined insights on regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. However, statistical analyses of single cell data are complicated by the fact that the data often show zero-inflated expression patterns. To address this challenge, we propose directed graphical models that are based on Hurdle conditional distributions parametrized in terms of polynomials in parent variables and their 0/1 indicators of being zero or nonzero. While directed graphs for Gaussian models are only identifiable up to an equivalence class in general, we show that, under a natural and weak assumption, the exact directed acyclic graph of our zero-inflated models can be identified. We propose methods for graph recovery, apply our model to real single-cell RNA-seq data on T helper cells, and show simulated experiments that validate the identifiability and graph estimation methods in practice.
stat
Noisy and Incomplete Boolean Matrix Factorizationvia Expectation Maximization
Probabilistic approach to Boolean matrix factorization can provide solutions robustagainst noise and missing values with linear computational complexity. However,the assumption about latent factors can be problematic in real world applications.This study proposed a new probabilistic algorithm free of assumptions of latentfactors, while retaining the advantages of previous algorithms. Real data experimentshowed that our algorithm was favourably compared with current state-of-the-artprobabilistic algorithms.
stat
Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection
In recent years, there have been many practical applications of anomaly detection such as in predictive maintenance, detection of credit fraud, network intrusion, and system failure. The goal of anomaly detection is to identify in the test data anomalous behaviors that are either rare or unseen in the training data. This is a common goal in predictive maintenance, which aims to forecast the imminent faults of an appliance given abundant samples of normal behaviors. Local outlier factor (LOF) is one of the state-of-the-art models used for anomaly detection, but the predictive performance of LOF depends greatly on the selection of hyperparameters. In this paper, we propose a novel, heuristic methodology to tune the hyperparameters in LOF. A tuned LOF model that uses the proposed method shows good predictive performance in both simulations and real data sets.
stat
Tree-Projected Gradient Descent for Estimating Gradient-Sparse Parameters on Graphs
We study estimation of a gradient-sparse parameter vector $\boldsymbol{\theta}^* \in \mathbb{R}^p$, having strong gradient-sparsity $s^*:=\|\nabla_G \boldsymbol{\theta}^*\|_0$ on an underlying graph $G$. Given observations $Z_1,\ldots,Z_n$ and a smooth, convex loss function $\mathcal{L}$ for which $\boldsymbol{\theta}^*$ minimizes the population risk $\mathbb{E}[\mathcal{L}(\boldsymbol{\theta};Z_1,\ldots,Z_n)]$, we propose to estimate $\boldsymbol{\theta}^*$ by a projected gradient descent algorithm that iteratively and approximately projects gradient steps onto spaces of vectors having small gradient-sparsity over low-degree spanning trees of $G$. We show that, under suitable restricted strong convexity and smoothness assumptions for the loss, the resulting estimator achieves the squared-error risk $\frac{s^*}{n} \log (1+\frac{p}{s^*})$ up to a multiplicative constant that is independent of $G$. In contrast, previous polynomial-time algorithms have only been shown to achieve this guarantee in more specialized settings, or under additional assumptions for $G$ and/or the sparsity pattern of $\nabla_G \boldsymbol{\theta}^*$. As applications of our general framework, we apply our results to the examples of linear models and generalized linear models with random design.
stat
Generalised Bayesian Structural Equation Modelling
We propose a generalised framework for Bayesian Structural Equation Modelling (SEM) that can be applied to a variety of data types. The introduced framework focuses on the approximate zero approach, according to which a hypothesised structure is formulated with approximate rather than exact zero. It extends previously suggested models by \citeA{MA12} and can handle continuous, binary, and ordinal data. Moreover, we propose a novel model assessment paradigm aiming to address shortcomings of posterior predictive $p-$values, which provide the default metric of fit for Bayesian SEM. The introduced model assessment procedure monitors the out-of-sample predictive performance of the model in question, and draws from a list of principles to answer whether the hypothesised theory is supported by the data. We incorporate scoring rules and cross-validation to supplement existing model assessment metrics for Bayesian SEM. The methodology is illustrated in continuous and categorical data examples via simulation experiments as well as real-world applications on the `Big-5' personality scale and the Fagerstrom test for nicotine dependence.
stat
The probability of a robust inference for internal validity and its applications in regression models
The internal validity of observational study is often subject to debate. In this study, we define the unobserved sample based on the counterfactuals and formalize its relationship with the null hypothesis statistical testing (NHST) for regression models. The probability of a robust inference for internal validity, i.e., the PIV, is the probability of rejecting the null hypothesis again based on the ideal sample which is defined as the combination of the observed and unobserved samples, provided the same null hypothesis has already been rejected for the observed sample. When the unconfoundedness assumption is dubious, one can bound the PIV of an inference based on bounded belief about the mean counterfactual outcomes, which is often needed in this case. Essentially, the PIV is statistical power of the NHST that is thought to be built on the ideal sample. We summarize the process of evaluating internal validity with the PIV into a six-step procedure and illustrate it with an empirical example (i.e., Hong and Raudenbush (2005)).
stat
Seemingly Unrelated Regression with Measurement Error: Estimation via Markov chain Monte Carlo and Mean Field Variational Bayes Approximation
Linear regression with measurement error in the covariates is a heavily studied topic, however, the statistics/econometrics literature is almost silent to estimating a multi-equation model with measurement error. This paper considers a seemingly unrelated regression model with measurement error in the covariates and introduces two novel estimation methods: a pure Bayesian algorithm (based on Markov chain Monte Carlo techniques) and its mean field variational Bayes (MFVB) approximation. The MFVB method has the added advantage of being computationally fast and can handle big data. An issue pertinent to measurement error models is parameter identification, and this is resolved by employing a prior distribution on the measurement error variance. The methods are shown to perform well in multiple simulation studies, where we analyze the impact on posterior estimates arising due to different values of reliability ratio or variance of the true unobserved quantity used in the data generating process. The paper further implements the proposed algorithms in an application drawn from the health literature and shows that modeling measurement error in the data can improve model fitting.
stat
Randomization tests for peer effects in group formation experiments
Measuring the effect of peers on individual outcomes is a challenging problem, in part because individuals often select peers who are similar in both observable and unobservable ways. Group formation experiments avoid this problem by randomly assigning individuals to groups and observing their responses; for example, do first-year students have better grades when they are randomly assigned roommates who have stronger academic backgrounds? Standard approaches for analyzing these experiments, however, are heavily model-dependent and generally fail to exploit the randomized design. In this paper, we extend methods from randomization-based testing under interference to group formation experiments. The proposed tests are justified by the randomization itself, require relatively few assumptions, and are exact in finite samples. First, we develop procedures that yield valid tests for arbitrary group formation designs. Second, we derive sufficient conditions on the design such that the randomization test can be implemented via simple random permutations. We apply this approach to two recent group formation experiments and implement the proposed method in the new RGroupFormation R package.
stat
Adaptive surrogate models for parametric studies
The computational effort for the evaluation of numerical simulations based on e.g. the finite-element method is high. Metamodels can be utilized to create a low-cost alternative. However the number of required samples for the creation of a sufficient metamodel should be kept low, which can be achieved by using adaptive sampling techniques. In this Master thesis adaptive sampling techniques are investigated for their use in creating metamodels with the Kriging technique, which interpolates values by a Gaussian process governed by prior covariances. The Kriging framework with extension to multifidelity problems is presented and utilized to compare adaptive sampling techniques found in the literature for benchmark problems as well as applications for contact mechanics. This thesis offers the first comprehensive comparison of a large spectrum of adaptive techniques for the Kriging framework. Furthermore a multitude of adaptive techniques is introduced to multifidelity Kriging as well as well as to a Kriging model with reduced hyperparameter dimension called partial least squares Kriging. In addition, an innovative adaptive scheme for binary classification is presented and tested for identifying chaotic motion of a Duffing's type oscillator.
stat
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. More precisely, we interpret a large class of stochastic optimization methods as procedures that iteratively minimize a surrogate of the objective, which covers the stochastic gradient descent method and variants of the incremental approaches SAGA, SVRG, and MISO/Finito/SDCA. This point of view has several advantages: (i) we provide a simple generic proof of convergence for all of the aforementioned methods; (ii) we naturally obtain new algorithms with the same guarantees; (iii) we derive generic strategies to make these algorithms robust to stochastic noise, which is useful when data is corrupted by small random perturbations. Finally, we propose a new accelerated stochastic gradient descent algorithm and an accelerated SVRG algorithm with optimal complexity that is robust to stochastic noise.
stat
Evaluating epidemic forecasts in an interval format
For practical reasons, many forecasts of case, hospitalization and death counts in the context of the current COVID-19 pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction.
stat
Information Geometry of Orthogonal Initializations and Training
Recently mean field theory has been successfully used to analyze properties of wide, random neural networks. It gave rise to a prescriptive theory for initializing feed-forward neural networks with orthogonal weights, which ensures that both the forward propagated activations and the backpropagated gradients are near $\ell_2$ isometries and as a consequence training is orders of magnitude faster. Despite strong empirical performance, the mechanisms by which critical initializations confer an advantage in the optimization of deep neural networks are poorly understood. Here we show a novel connection between the maximum curvature of the optimization landscape (gradient smoothness) as measured by the Fisher information matrix (FIM) and the spectral radius of the input-output Jacobian, which partially explains why more isometric networks can train much faster. Furthermore, given that orthogonal weights are necessary to ensure that gradient norms are approximately preserved at initialization, we experimentally investigate the benefits of maintaining orthogonality throughout training, from which we conclude that manifold optimization of weights performs well regardless of the smoothness of the gradients. Moreover, motivated by experimental results we show that a low condition number of the FIM is not predictive of faster learning.
stat
Fast Maximum Likelihood Estimation and Supervised Classification for the Beta-Liouville Multinomial
The multinomial and related distributions have long been used to model categorical, count-based data in fields ranging from bioinformatics to natural language processing. Commonly utilized variants include the standard multinomial and the Dirichlet multinomial distributions due to their computational efficiency and straightforward parameter estimation process. However, these distributions make strict assumptions about the mean, variance, and covariance between the categorical features being modeled. If these assumptions are not met by the data, it may result in poor parameter estimates and loss in accuracy for downstream applications like classification. Here, we explore efficient parameter estimation and supervised classification methods using an alternative distribution, called the Beta-Liouville multinomial, which relaxes some of the multinomial assumptions. We show that the Beta-Liouville multinomial is comparable in efficiency to the Dirichlet multinomial for Newton-Raphson maximum likelihood estimation, and that its performance on simulated data matches or exceeds that of the multinomial and Dirichlet multinomial distributions. Finally, we demonstrate that the Beta-Liouville multinomial outperforms the multinomial and Dirichlet multinomial on two out of four gold standard datasets, supporting its use in modeling data with low to medium class overlap in a supervised classification context.
stat
BUDD: Multi-modal Bayesian Updating Deforestation Detections
The global phenomenon of forest degradation is a pressing issue with severe implications for climate stability and biodiversity protection. In this work we generate Bayesian updating deforestation detection (BUDD) algorithms by incorporating Sentinel-1 backscatter and interferometric coherence with Sentinel-2 normalized vegetation index data. We show that the algorithm provides good performance in validation AOIs. We compare the effectiveness of different combinations of the three data modalities as inputs into the BUDD algorithm and compare against existing benchmarks based on optical imagery.
stat
Scalable Panel Fusion Using Distributed Min Cost Flow
Modern audience measurement requires combining observations from disparate panel datasets. Connecting and relating such panel datasets is a process termed panel fusion. This paper formalizes the panel fusion problem and presents a novel approach to solve it. We cast the panel fusion as a network flow problem, allowing the application of a rich body of research. In the context of digital audience measurement, where panel sizes can grow into the tens of millions, we propose an efficient algorithm to partition the network into sub-problems. While the algorithm solves a relaxed version of the original problem, we provide conditions under which it guarantees optimality. We demonstrate our approach by fusing two real-world panel datasets in a distributed computing environment.
stat
Nonparametric Density Estimation from Markov Chains
We introduce a new nonparametric density estimator inspired by Markov Chains, and generalizing the well-known Kernel Density Estimator (KDE). Our estimator presents several benefits with respect to the usual ones and can be used straightforwardly as a foundation in all density-based algorithms. We prove the consistency of our estimator and we find it typically outperforms KDE in situations of large sample size and high dimensionality. We also employ our density estimator to build a local outlier detector, showing very promising results when applied to some realistic datasets.
stat
Statistical Inference for Polyak-Ruppert Averaged Zeroth-order Stochastic Gradient Algorithm
As machine learning models are deployed in critical applications, it becomes important to not just provide point estimators of the model parameters (or subsequent predictions), but also quantify the uncertainty associated with estimating the model parameters via confidence sets. In the last decade, estimating or training in several machine learning models has become synonymous with running stochastic gradient algorithms. However, computing the stochastic gradients in several settings is highly expensive or even impossible at times. An important question which has thus far not been addressed sufficiently in the statistical machine learning literature is that of equipping zeroth-order stochastic gradient algorithms with practical yet rigorous inferential capabilities. Towards this, in this work, we first establish a central limit theorem for Polyak-Ruppert averaged stochastic gradient algorithm in the zeroth-order setting. We then provide online estimators of the asymptotic covariance matrix appearing in the central limit theorem, thereby providing a practical procedure for constructing asymptotically valid confidence sets (or intervals) for parameter estimation (or prediction) in the zeroth-order setting.
stat
Spatially dependent mixture models via the Logistic Multivariate CAR prior
We consider the problem of spatially dependent areal data, where for each area independent observations are available, and propose to model the density of each area through a finite mixture of Gaussian distributions. The spatial dependence is introduced via a novel joint distribution for a collection of vectors in the simplex, that we term logisticMCAR. We show that salient features of the logisticMCAR distribution can be described analytically, and that a suitable augmentation scheme based on the P\'olya-Gamma identity allows to derive an efficient Markov Chain Monte Carlo algorithm. When compared to competitors, our model has proved to better estimate densities in different (disconnected) areal locations when they have different characteristics. We discuss an application on a real dataset of Airbnb listings in the city of Amsterdam, also showing how to easily incorporate for additional covariate information in the model.
stat
Adversarial Optimal Transport Through The Convolution Of Kernels With Evolving Measures
A novel algorithm is proposed to solve the sample-based optimal transport problem. An adversarial formulation of the push-forward condition uses a test function built as a convolution between an adaptive kernel and an evolving probability distribution $\nu$ over a latent variable $b$. Approximating this convolution by its simulation over evolving samples $b^i(t)$ of $\nu$, the parameterization of the test function reduces to determining the flow of these samples. This flow, discretized over discrete time steps $t_n$, is built from the composition of elementary maps. The optimal transport also follows a flow that, by duality, must follow the gradient of the test function. The representation of the test function as the Monte Carlo simulation of a distribution makes the algorithm robust to dimensionality, and its evolution under a memory-less flow produces rich, complex maps from simple parametric transformations. The algorithm is illustrated with numerical examples.
stat
High-dimensional Gaussian sampling: a review and a unifying approach based on a stochastic proximal point algorithm
Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have been proposed from different communities ranging from iterative numerical linear algebra to Markov chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these methods have been conducted. This paper aims at reviewing all these approaches by pointing out their differences, close relations, benefits and limitations. In addition to this state of the art, this paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed and illustrated with numerical examples.
stat
Testing and Support Recovery of Correlation Structures for Matrix-Valued Observations with an Application to Stock Market Data
Estimation of the covariance matrix of asset returns is crucial to portfolio construction. As suggested by economic theories, the correlation structure among assets differs between emerging markets and developed countries. It is therefore imperative to make rigorous statistical inference on correlation matrix equality between the two groups of countries. However, if the traditional vector-valued approach is undertaken, such inference is either infeasible due to limited number of countries comparing to the relatively abundant assets, or invalid due to the violations of temporal independence assumption. This highlights the necessity of treating the observations as matrix-valued rather than vector-valued. With matrix-valued observations, our problem of interest can be formulated as statistical inference on covariance structures under matrix normal distributions, i.e., testing independence and correlation equality, as well as the corresponding support estimations. We develop procedures that are asymptotically optimal under some regularity conditions. Simulation results demonstrate the computational and statistical advantages of our procedures over certain existing state-of-the-art methods. Application of our procedures to stock market data validates several economic propositions.
stat
Deep Importance Sampling based on Regression for Model Inversion and Emulation
Understanding systems by forward and inverse modeling is a recurrent topic of research in many domains of science and engineering. In this context, Monte Carlo methods have been widely used as powerful tools for numerical inference and optimization. They require the choice of a suitable proposal density that is crucial for their performance. For this reason, several adaptive importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e., an emulator), which mimics the posterior distribution and hence minimizes the mismatch between proposal and target densities. RADIS is based on a deep architecture of two (or more) nested IS schemes, in order to draw samples from the constructed emulator. The algorithm is highly efficient since employs the posterior approximation as proposal density, which can be improved adding more support points. As a consequence, RADIS asymptotically converges to an exact sampler under mild conditions. Additionally, the emulator produced by RADIS can be in turn used as a cheap surrogate model for further studies. We introduce two specific RADIS implementations that use Gaussian Processes (GPs) and Nearest Neighbors (NN) for constructing the emulator. Several numerical experiments and comparisons show the benefits of the proposed schemes. A real-world application in remote sensing model inversion and emulation confirms the validity of the approach.
stat
Robust subspace recovery by Tyler's M-estimator
This paper considers the problem of robust subspace recovery: given a set of $N$ points in $\mathbb{R}^D$, if many lie in a $d$-dimensional subspace, then can we recover the underlying subspace? We show that Tyler's M-estimator can be used to recover the underlying subspace, if the percentage of the inliers is larger than $d/D$ and the data points lie in general position. Empirically, Tyler's M-estimator compares favorably with other convex subspace recovery algorithms in both simulations and experiments on real data sets.
stat
Improvement of Batch Normalization in Imbalanced Data
In this study, we consider classification problems based on neural networks in data-imbalanced environment. Learning from an imbalanced data set is one of the most important and practical problems in the field of machine learning. A weighted loss function based on cost-sensitive approach is a well-known effective method for imbalanced data sets. We consider a combination of weighted loss function and batch normalization (BN) in this study. BN is a powerful standard technique in the recent developments in deep learning. A simple combination of both methods leads to a size-mismatch problem due to a mismatch between interpretations of effective size of data set in both methods. We propose a simple modification to BN to correct the size-mismatch and demonstrate that this modified BN is effective in data-imbalanced environment.
stat
Frequentism-as-model
Most statisticians are aware that probability models interpreted in a frequentist manner are not really true in objective reality, but only idealisations. I argue that this is often ignored when actually applying frequentist methods and interpreting the results, and that keeping up the awareness for the essential difference between reality and models can lead to a more appropriate use and interpretation of frequentist models and methods, called frequentism-as-model. This is elaborated showing connections to existing work, appreciating the special role of i.i.d. models and subject matter knowledge, giving an account of how and under what conditions models that are not true can be useful, giving detailed interpretations of tests and confidence intervals, confronting their implicit compatibility logic with the inverse probability logic of Bayesian inference, re-interpreting the role of model assumptions, appreciating robustness, and the role of ``interpretative equivalence'' of models. Epistemic (often referred to as Bayesian) probability shares the issue that its models are only idealisations and not really true for modelling reasoning about uncertainty, meaning that it does not have an essential advantage over frequentism, as is often claimed. Bayesian statistics can be combined with frequentism-as-model, leading to what Gelman and Hennig (2017) call ``falsificationist Bayes''.
stat
Doubly Stochastic Generative Arrivals Modeling
We propose a new framework named DS-WGAN that integrates the doubly stochastic (DS) structure and the Wasserstein generative adversarial networks (WGAN) to model, estimate, and simulate a wide class of arrival processes with general non-stationary and random arrival rates. Regarding statistical properties, we prove consistency and convergence rate for the estimator solved by the DS-WGAN framework under a non-parametric smoothness condition. Regarding computational efficiency and tractability, we address a challenge in gradient evaluation and model estimation, arised from the discontinuity in the simulator. We then show that the DS-WGAN framework can conveniently facilitate what-if simulation and predictive simulation for future scenarios that are different from the history. Numerical experiments with synthetic and real data sets are implemented to demonstrate the performance of DS-WGAN. The performance is measured from both a statistical perspective and an operational performance evaluation perspective. Numerical experiments suggest that, in terms of performance, the successful model estimation for DS-WGAN only requires a moderate size of representative data, which can be appealing in many contexts of operational management.
stat
Bayesian Hierarchical Models for the Prediction of Volleyball Results
Statistical modelling of sports data has become more and more popular in the recent years and different types of models have been proposed to achieve a variety of objectives: from identifying the key characteristics which lead a team to win or lose to predicting the outcome of a game or the team rankings in national leagues. Although not as popular as football or basketball, volleyball is a team sport with both national and international level competitions in almost every country. However, there is almost no study investigating the prediction of volleyball game outcomes and team rankings in national leagues. We propose a Bayesian hierarchical model for the prediction of the rankings of volleyball national teams, which also allows to estimate the results of each match in the league. We consider two alternative model specifications of different complexity which are validated using data from the women's volleyball Italian Serie A1 2017-2018 season.
stat
Causal Inference in Geoscience and Remote Sensing from Observational Data
Establishing causal relations between random variables from observational data is perhaps the most important challenge in today's \blue{science}. In remote sensing and geosciences this is of special relevance to better understand the Earth's system and the complex interactions between the governing processes. In this paper, we focus on observational causal inference, thus we try to estimate the correct direction of causation using a finite set of empirical data. In addition, we focus on the more complex bivariate scenario that requires strong assumptions and no conditional independence tests can be used. In particular, we explore the framework of (non-deterministic) additive noise models, which relies on the principle of independence between the cause and the generating mechanism. A practical algorithmic instantiation of such principle only requires 1) two regression models in the forward and backward directions, and 2) the estimation of {\em statistical independence} between the obtained residuals and the observations. The direction leading to more independent residuals is decided to be the cause. We instead propose a criterion that uses the {\em sensitivity} (derivative) of the dependence estimator, the sensitivity criterion allows to identify samples most affecting the dependence measure, and hence the criterion is robust to spurious detections. We illustrate performance in a collection of 28 geoscience causal inference problems, in a database of radiative transfer models simulations and machine learning emulators in vegetation parameter modeling involving 182 problems, and in assessing the impact of different regression models in a carbon cycle problem. The criterion achieves state-of-the-art detection rates in all cases, it is generally robust to noise sources and distortions.
stat
Classifying Treatment Responders Under Causal Effect Monotonicity
In the context of individual-level causal inference, we study the problem of predicting whether someone will respond or not to a treatment based on their features and past examples of features, treatment indicator (e.g., drug/no drug), and a binary outcome (e.g., recovery from disease). As a classification task, the problem is made difficult by not knowing the example outcomes under the opposite treatment indicators. We assume the effect is monotonic, as in advertising's effect on a purchase or bail-setting's effect on reappearance in court: either it would have happened regardless of treatment, not happened regardless, or happened only depending on exposure to treatment. Predicting whether the latter is latently the case is our focus. While previous work focuses on conditional average treatment effect estimation, formulating the problem as a classification task rather than an estimation task allows us to develop new tools more suited to this problem. By leveraging monotonicity, we develop new discriminative and generative algorithms for the responder-classification problem. We explore and discuss connections to corrupted data and policy learning. We provide an empirical study with both synthetic and real datasets to compare these specialized algorithms to standard benchmarks.
stat
An algorithm for non-parametric estimation in state-space models
State-space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state-space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state-space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state-space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation-Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state-space models. The performance of the proposed algorithm is assessed through simulations on toy models and an application to environmental data is discussed.
stat
Validating Bayesian Inference Algorithms with Simulation-Based Calibration
Verifying the correctness of Bayesian computation is challenging. This is especially true for complex models that are common in practice, as these require sophisticated model implementations and algorithms. In this paper we introduce \emph{simulation-based calibration} (SBC), a general procedure for validating inferences from Bayesian algorithms capable of generating posterior samples. This procedure not only identifies inaccurate computation and inconsistencies in model implementations but also provides graphical summaries that can indicate the nature of the problems that arise. We argue that SBC is a critical part of a robust Bayesian workflow, as well as being a useful tool for those developing computational algorithms and statistical software.
stat
Exact high-dimensional asymptotics for Support Vector Machine
The Support Vector Machine (SVM) is one of the most widely used classification methods. In this paper, we consider the soft-margin SVM used on data points with independent features, where the sample size $n$ and the feature dimension $p$ grows to $\infty$ in a fixed ratio $p/n\rightarrow \delta$. We propose a set of equations that exactly characterizes the asymptotic behavior of support vector machine. In particular, we give exact formulas for (1) the variability of the optimal coefficients, (2) the proportion of data points lying on the margin boundary (i.e. number of support vectors), (3) the final objective function value, and (4) the expected misclassification error on new data points, which in particular implies the exact formula for the optimal tuning parameter given a data generating mechanism. We first establish these formulas in the case where the label $y\in\{+1,-1\}$ is independent of the feature $x$. Then the results are generalized to the case where the label $y\in\{+1,-1\}$ is allowed to have a general dependence on the feature $x$ through a linear combination $a_0^Tx$. These formulas for the non-smooth hinge loss are analogous to the recent results in \citep{sur2018modern} for smooth logistic loss. Our approach is based on heuristic leave-one-out calculations.
stat
Selection Induced Contrast Estimate (SICE) Effect: An Attempt to Quantify the Impact of Some Patient Selection Criteria in Randomized Clinical Trials
Defining the Inclusion/Exclusion (I/E) criteria of a trial is one of the most important steps during a trial design. Increasingly complex I/E criteria potentially create information imbalance and transparency issues between the people who design and run the trials and those who consume the information produced by the trials. In order to better understand and quantify the impact of a category of I/E criteria on observed treatment effects, a concept, named the Selection Induced Contrast Estimate (SICE) effect, is introduced and formulated in this paper. The SICE effect can exist in controlled clinical trials when treatment affects the correlation between a marker used for selection and the response of interest. This effect is demonstrated with both simulations and real clinical trial data. Although the statistical elements behind the SICE effect have been well studied, explicitly formulating and studying this effect can benefit several areas, including better transparency in I/E criteria, meta-analysis of multiple clinical trials, treatment effect interpretation in real-world medical practice, etc.
stat
Exponential inequalities for nonstationary Markov Chains
Exponential inequalities are main tools in machine learning theory. To prove exponential inequalities for non i.i.d random variables allows to extend many learning techniques to these variables. Indeed, much work has been done both on inequalities and learning theory for time series, in the past 15 years. However, for the non independent case, almost all the results concern stationary time series. This excludes many important applications: for example any series with a periodic behavior is non-stationary. In this paper, we extend the basic tools of Dedecker and Fan (2015) to nonstationary Markov chains. As an application, we provide a Bernstein-type inequality, and we deduce risk bounds for the prediction of periodic autoregressive processes with an unknown period.
stat
FACT: Fast closed testing for exchangeable local tests
Multiple hypothesis testing problems arise naturally in science. In this paper, we introduce the new Fast Closed Testing (FACT) method for multiple testing, controlling the family-wise error rate. This error rate is state of the art in many important application areas, and is preferred to false discovery rate control for many reasons, including that it leads to stronger reproducibility. The closure principle rejects an individual hypothesis if all global nulls of subsets containing it are rejected using some test statistics. It takes exponential time in the worst case. When the tests are symmetric and monotone, our method is an exact algorithm for computing the closure, quadratic in the number of tests, and linear in the number of discoveries. Our framework generalizes most examples of closed testing such as Holm's and the Bonferroni method. As a special case of our method, we propose the Simes-higher criticism fusion test, which is powerful for detecting both a few strong signals, and also many moderate signals.
stat
Asymptotically exact data augmentation: models, properties and algorithms
Data augmentation, by the introduction of auxiliary variables, has become an ubiquitous technique to improve convergence properties, simplify the implementation or reduce the computational time of inference methods such as Markov chain Monte Carlo ones. Nonetheless, introducing appropriate auxiliary variables while preserving the initial target probability distribution and offering a computationally efficient inference cannot be conducted in a systematic way. To deal with such issues, this paper studies a unified framework, coined asymptotically exact data augmentation (AXDA), which encompasses both well-established and more recent approximate augmented models. In a broader perspective, this paper shows that AXDA models can benefit from interesting statistical properties and yield efficient inference algorithms. In non-asymptotic settings, the quality of the proposed approximation is assessed with several theoretical results. The latter are illustrated on standard statistical problems. Supplementary materials including computer code for this paper are available online.
stat
Modeling and Probababilistic Forecasting of Natural Gas Prices
In this paper, we examine the problem of modeling and forecasting European Day-Ahead and Month-Ahead natural gas prices. For this, we propose two distinct probabilistic models that can be utilized in risk- and portfolio management. We use daily pricing data ranging from 2011 to 2020. Extensive descriptive data analysis shows that both time series feature heavy tails, conditional heteroscedasticity, and show asymmetric behavior in their differences. We propose state-space time series models under skewed, heavy-tailed distribution to capture all stylized facts in the data. They include the impact of autocorrelation, seasonality, risk premia, temperature, storage levels, the price of European Emission Allowances, and related fuel prices of oil, coal, and electricity. We provide a rigorous model diagnostic and interpret all model components in detail. Additionally, we conduct a probabilistic forecasting study with significance test and compare the predictive performance against literature benchmarks. The proposed Day-Ahead (Month-Ahead) model leads to a $13\%$ ($9$\%) reduction in out of sample CRPS compared to the best performing benchmark model, mainly due to adequate modeling of the volatility and heavy tails.
stat
Bivariate Analysis of Birth Weight and Gestational Age Depending on Environmental Exposures: Bayesian Distributional Regression with Copulas
In this article, we analyze perinatal data with birth weight (BW) as primarily interesting response variable. Gestational age (GA) is usually an important covariate and included in polynomial form. However, in opposition to this univariate regression, bivariate modeling of BW and GA is recommended to distinguish effects on each, on both, and between them. Rather than a parametric bivariate distribution, we apply conditional copula regression, where marginal distributions of BW and GA (not necessarily of the same form) can be estimated independently, and where the dependence structure is modeled conditional on the covariates separately from these marginals. In the resulting distributional regression models, all parameters of the two marginals and the copula parameter are observation-specific. Besides biometric and obstetric information, data on drinking water contamination and maternal smoking are included as environmental covariates. While the Gaussian distribution is suitable for BW, the skewed GA data are better modeled by the three-parametric Dagum distribution. The Clayton copula performs better than the Gumbel and the symmetric Gaussian copula, indicating lower tail dependence (stronger dependence when both variables are low), although this non-linear dependence between BW and GA is surprisingly weak and only influenced by Cesarean section. A non-linear trend of BW on GA is detected by a classical univariate model that is polynomial with respect to the effect of GA. Linear effects on BW mean are similar in both models, while our distributional copula regression also reveals covariates' effects on all other parameters.
stat
Bayesian Computation in Dynamic Latent Factor Models
Bayesian computation for filtering and forecasting analysis is developed for a broad class of dynamic models. The ability to scale-up such analyses in non-Gaussian, nonlinear multivariate time series models is advanced through the introduction of a novel copula construction in sequential filtering of coupled sets of dynamic generalized linear models. The new copula approach is integrated into recently introduced multiscale models in which univariate time series are coupled via nonlinear forms involving dynamic latent factors representing cross-series relationships. The resulting methodology offers dramatic speed-up in online Bayesian computations for sequential filtering and forecasting in this broad, flexible class of multivariate models. Two examples in nonlinear models for very heterogeneous time series of non-negative counts demonstrate massive computational efficiencies relative to existing simulation-based methods, while defining similar filtering and forecasting outcomes.
stat
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
This work studies an explicit embedding of the set of probability measures into a Hilbert space, defined using optimal transport maps from a reference probability density. This embedding linearizes to some extent the 2-Wasserstein space, and enables the direct use of generic supervised and unsupervised learning algorithms on measure data. Our main result is that the embedding is (bi-)H\"older continuous, when the reference density is uniform over a convex set, and can be equivalently phrased as a dimension-independent H\"older-stability results for optimal transport maps.
stat
Regional economic convergence and spatial quantile regression
The presence of \b{eta}-convergence in European regions is an important issue to be analyzed. In this paper, we adopt a quantile regression approach in analyzing economic convergence. While previous work has performed quantile regression at the national level, we focus on 187 European NUTS2 regions for the period 1981-2009 and use spatial quantile regression to account for spatial dependence.
stat
A database of travel-related behaviors and attitudes before, during, and after COVID-19 in the United States
The COVID-19 pandemic has impacted billions of people around the world. To capture some of these impacts in the United States, we are conducting a nationwide longitudinal survey collecting information about travel-related behaviors and attitudes before, during, and after the COVID-19 pandemic. The survey questions cover a wide range of topics including commuting, daily travel, air travel, working from home, online learning, shopping, and risk perception, along with attitudinal, socioeconomic, and demographic information. Version 1.0 of the survey contains 8,723 responses that are publicly available. The survey is deployed over multiple waves to the same respondents to monitor how behaviors and attitudes evolve over time. This article details the methodology adopted for the collection, cleaning, and processing of the data. In addition, the data are weighted to be representative of national and regional demographics. This survey dataset can aid researchers, policymakers, businesses, and government agencies in understanding both the extent of behavioral shifts and the likelihood that these changes will persist after COVID-19.
stat
Parametric and non-parametric estimation of extreme earthquake event: the joint tail inference for mainshocks and aftershocks
In an earthquake event, the combination of a strong mainshock and damaging aftershocks is often the cause of severe structural damages and/or high death tolls. The objective of this paper is to provide estimation for the probability of such extreme events where the mainshock and the largest aftershocks exceed certain thresholds. Two approaches are illustrated and compared -- a parametric approach based on previously observed stochastic laws in earthquake data, and a non-parametric approach based on bivariate extreme value theory. We analyze the earthquake data from the North Anatolian Fault Zone (NAFZ) in Turkey during 1965-2018 and show that the two approaches provide unifying results.
stat
Substitutes for the non-existent square lattice designs for 36 varieties
Square lattice designs are often used in trials of new varieties of various agricultural crops. However, there are no square lattice designs for 36 varieties in blocks of size six for four or more replicates. Here we use three different approaches to construct designs for up to eight replicates. All the designs perform well in terms of giving a low average variance of variety contrasts. Supplementary materials are available online.
stat
Online Regularization for High-Dimensional Dynamic Pricing Algorithms
We propose a novel \textit{online regularization} scheme for revenue-maximization in high-dimensional dynamic pricing algorithms. The online regularization scheme equips the proposed optimistic online regularized maximum likelihood pricing (\texttt{OORMLP}) algorithm with three major advantages: encode market noise knowledge into pricing process optimism; empower online statistical learning with always-validity over all decision points; envelop prediction error process with time-uniform non-asymptotic oracle inequalities. This type of non-asymptotic inference results allows us to design safer and more robust dynamic pricing algorithms in practice. In theory, the proposed \texttt{OORMLP} algorithm exploits the sparsity structure of high-dimensional models and obtains a logarithmic regret in a decision horizon. These theoretical advances are made possible by proposing an optimistic online LASSO procedure that resolves dynamic pricing problems at the \textit{process} level, based on a novel use of non-asymptotic martingale concentration. In experiments, we evaluate \texttt{OORMLP} in different synthetic pricing problem settings and observe that \texttt{OORMLP} performs better than \texttt{RMLP} proposed in \cite{javanmard2019dynamic}.
stat
Comparison of Bayesian Nonparametric Density Estimation Methods
In this paper, we propose a nonparametric Bayesian approach for Lindsey and penalized Gaussian mixtures methods. We compare these methods with the Dirichlet process mixture model. Our approach is a Bayesian nonparametric method not based solely on a parametric family of probability distributions. Thus, the fitted models are more robust to model misspecification. Also, with the Bayesian approach, we have the entire posterior distribution of our parameter of interest; it can be summarized through credible intervals, mean, median, standard deviation, quantiles, etc. The Lindsey, penalized Gaussian mixtures, and Dirichlet process mixture methods are reviewed. The estimations are performed via Markov chain Monte Carlo (MCMC) methods. The penalized Gaussian mixtures method is implemented via Hamiltonian Monte Carlo (HMC). We show that under certain regularity conditions, and as n increases, the posterior distribution of the weights converges to a Normal distribution. Simulation results and data analysis are reported.
stat
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling
Monte Carlo sampling for Bayesian posterior inference is a common approach used in machine learning. The Markov Chain Monte Carlo procedures that are used are often discrete-time analogues of associated stochastic differential equations (SDEs). These SDEs are guaranteed to leave invariant the required posterior distribution. An area of current research addresses the computational benefits of stochastic gradient methods in this setting. Existing techniques rely on estimating the variance or covariance of the subsampling error, and typically assume constant variance. In this article, we propose a covariance-controlled adaptive Langevin thermostat that can effectively dissipate parameter-dependent noise while maintaining a desired target distribution. The proposed method achieves a substantial speedup over popular alternative schemes for large-scale machine learning applications.
stat
Geometric mean extension for data sets with zeros
There are numerous examples in different research fields where the use of the geometric mean is more appropriate than the arithmetic mean. However, the geometric mean has a serious limitation in comparison with the arithmetic mean. Means are used to summarize the information in a large set of values in a single number; yet, the geometric mean of a data set with at least one zero is always zero. As a result, the geometric mean does not capture any information about the non-zero values. The purpose of this short contribution is to review solutions proposed in the literature that enable the computation of the geometric mean of data sets containing zeros and to show that they do not fulfil the `recovery' or `monotonicity' conditions that we define. The standard geometric mean should be recovered from the modified geometric mean if the data set does not contain any zeros (recovery condition). Also, if the values of an ordered data set are greater one by one than the values of another data set then the modified geometric mean of the first data set must be greater than the modified geometric mean of the second data set (monotonicity condition). We then formulate a modified version of the geometric mean that can handle zeros while satisfying both desired conditions.
stat
Sparse Gaussian Process Variational Autoencoders
Large, multi-dimensional spatio-temporal datasets are omnipresent in modern science and engineering. An effective framework for handling such data are Gaussian process deep generative models (GP-DGMs), which employ GP priors over the latent variables of DGMs. Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on inducing points, which are essential for the computational efficiency of GPs, nor do they handle missing data -- a natural occurrence in many spatio-temporal datasets -- in a principled manner. We address these shortcomings with the development of the sparse Gaussian process variational autoencoder (SGP-VAE), characterised by the use of partial inference networks for parameterising sparse GP approximations. Leveraging the benefits of amortised variational inference, the SGP-VAE enables inference in multi-output sparse GPs on previously unobserved data with no additional training. The SGP-VAE is evaluated in a variety of experiments where it outperforms alternative approaches including multi-output GPs and structured VAEs.
stat
Fairness Assessment for Artificial Intelligence in Financial Industry
Artificial Intelligence (AI) is an important driving force for the development and transformation of the financial industry. However, with the fast-evolving AI technology and application, unintentional bias, insufficient model validation, immature contingency plan and other underestimated threats may expose the company to operational and reputational risks. In this paper, we focus on fairness evaluation, one of the key components of AI Governance, through a quantitative lens. Statistical methods are reviewed for imbalanced data treatment and bias mitigation. These methods and fairness evaluation metrics are then applied to a credit card default payment example.
stat
Behavior Associations in Lone-Actor Terrorists
Terrorist attacks carried out by individuals or single cells have significantly accelerated over the last 20 years. This type of terrorism, defined as lone-actor (LA) terrorism, stands as one of the greatest security threats of our time. Research on LA behavior and characteristics has emerged and accelerated over the last decade. While these studies have produced valuable information on demographics, behavior, classifications, and warning signs, the relationship among these characters are yet to be addressed. Moreover, the means of radicalization and attacking have changed over decades. This study first identifies 25 binary behavioral characteristics of LAs and analyzes 192 LAs recorded on three different databases. Next, the classification is carried out according to first ideology, then to incident scene behavior via a virtual attacker-defender game, and, finally, according to the clusters obtained from the data. In addition, within each class, statistically significant associations and temporal relations are extracted using the A-priori algorithm. These associations would be instrumental in identifying the attacker type and intervene at the right time. The results indicate that while pre-9/11 LAs were mostly radicalized by the people in their environment, post-9/11 LAs are more diverse. Furthermore, the association chains for different LA types present unique characteristic pathways to violence and after-attack behavior.
stat
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
stat
Probabilistic Detection and Estimation of Conic Sections from Noisy Data
Inferring unknown conic sections on the basis of noisy data is a challenging problem with applications in computer vision. A major limitation of the currently available methods for conic sections is that estimation methods rely on the underlying shape of the conics (being known to be ellipse, parabola or hyperbola). A general purpose Bayesian hierarchical model is proposed for conic sections and corresponding estimation method based on noisy data is shown to work even when the specific nature of the conic section is unknown. The model, thus, provides probabilistic detection of the underlying conic section and inference about the associated parameters of the conic section. Through extensive simulation studies where the true conics may not be known, the methodology is demonstrated to have practical and methodological advantages relative to many existing techniques. In addition, the proposed method provides probabilistic measures of uncertainty of the estimated parameters. Furthermore, we observe high fidelity to the true conics even in challenging situations, such as data arising from partial conics in arbitrarily rotated and non-standard form, and where a visual inspection is unable to correctly identify the type of conic section underlying the data.
stat
The SIR-P Model: An Illustration of the Screening Paradox
In previous work by this author, the screening paradox - the loss of predictive power of screening tests over time $t$ - was mathematically formalized using Bayesian theory. Where $J$ is Youden's statistic, $b$ is the specificity of the screening test and $\phi$ is the prevalence of disease, the ratio of positive predictive values at subsequent time $k$, $\rho(\phi_{k})$, over the original $\rho(\phi_{0})$ at $t_0$ is given by: $\zeta(\phi_{0},k) = \frac{\rho(\phi_{k})}{\rho(\phi_{0})} =\frac{\phi_k(1-b)+J\phi_0\phi_k}{\phi_0(1-b)+J\phi_0\phi_k}$ Herein, we modify the traditional Kermack-McKendrick SIR Model to include the fluctuation of the positive predictive value $\rho(\phi)$ (PPV) of a screening test over time as a function of the prevalence threshold $\phi_e$. We term this modified model the SIR-P model. Where a = sensitivity, b = specificity, $S$ = number susceptible, $I$ = number infected, $R$ = number recovered/dead, $\beta$ = infectious rate, $\gamma$ = recovery rate, and $N$ is the total number in the population, the predictive value $\rho(\phi,t)$ over time $t$ is given by: $\rho(\phi,t) = \frac{a[\frac{\beta IS}{N}-\gamma I]}{ a[\frac{\beta IS}{N}-\gamma I]+(1-b)(1-[\frac{\beta IS}{N}-\gamma I])}$ Otherwise stated: $\rho(\phi,t) = \frac{a\frac{dI}{dt}}{ a\frac{dI}{dt}+(1-b)(1-\frac{dI}{dt})}$ where $\frac{dI}{dt}$ is the fluctuation of infected individuals over time $t$.
stat
Protocol for an Observational Study of the Association of High School Football Participation on Health in Late Adulthood
American football is the most popular high school sport and is among the leading cause of injury among adolescents. While there has been considerable recent attention on the link between football and cognitive decline, there is also evidence of higher than expected rates of pain, obesity, and lower quality of life among former professional players, either as a result of repetitive head injury or through different mechanisms. Previously hidden downstream effects of playing football may have far-reaching public health implications for participants in youth and high school football programs. Our proposed study is a retrospective observational study that compares 1,153 high school males who played varsity football with 2,751 male students who did not. 1,951 of the control subjects did not play any sport and the remaining 800 controls played a non-contact sport. Our primary outcome is self-rated health measured at age 65. To control for potential confounders, we adjust for pre-exposure covariates with matching and model-based covariance adjustment. We will conduct an ordered testing procedure designed to use the full pool of 2,751 controls while also controlling for possible unmeasured differences between students who played sports and those who did not. We will quantitatively assess the sensitivity of the results to potential unmeasured confounding. The study will also assess secondary outcomes of pain, difficulty with activities of daily living, and obesity, as these are both important to individual well-being and have public health relevance.
stat
Efficient and Robust Propensity-Score-Based Methods for Population Inference using Epidemiologic Cohorts
Most epidemiologic cohorts are composed of volunteers who do not represent the general population. To enable population inference from cohorts, we and others have proposed utilizing probability survey samples as external references to develop a propensity score (PS) for membership in the cohort versus survey. Herein we develop a unified framework for PS-based weighting (such as inverse PS weighting (IPSW)) and matching methods (such as kernel-weighting (KW) method). We identify a fundamental Strong Exchangeability Assumption (SEA) underlying existing PS-based matching methods whose failure invalidates inference even if the PS-model is correctly specified. We relax the SEA to a Weak Exchangeability Assumption (WEA) for the matching method. Also, we propose IPSW.S and KW.S methods that reduce the variance of PS-based estimators by scaling the survey weights used in the PS estimation. We prove consistency of the IPSW.S and KW.S estimators of population means and prevalences under WEA, and provide asymptotic variances and consistent variance estimators. In simulations, the KW.S and IPSW.S estimators had smallest MSE. In our data example, the original KW estimates had large bias, whereas the KW.S estimates had the smallest MSE.
stat
Learning Latent Dynamics for Partially-Observed Chaotic Systems
This paper addresses the data-driven identification of latent dynamical representations of partially-observed systems, i.e., dynamical systems for which some components are never observed, with an emphasis on forecasting applications, including long-term asymptotic patterns. Whereas state-of-the-art data-driven approaches rely on delay embeddings and linear decompositions of the underlying operators, we introduce a framework based on the data-driven identification of an augmented state-space model using a neural-network-based representation. For a given training dataset, it amounts to jointly learn an ODE (Ordinary Differential Equation) representation in the latent space and reconstructing latent states. Through numerical experiments, we demonstrate the relevance of the proposed framework w.r.t. state-of-the-art approaches in terms of short-term forecasting performance and long-term behaviour. We further discuss how the proposed framework relates to Koopman operator theory and Takens' embedding theorem.
stat
Kernel Ridge Regression with kernel Laplacian Regularization
Laplacian regularization is a popular smoothing technique in machine learning. It is particularly useful in situations where ambiguity of the data imposes the use of a criterion to disambiguate between potential functions explaining data, could it be spectral clustering or semi-supervised learning. While Laplacian regularization is usually approached through neighborhood graph diffusion, we present an approach through kernel methods, based on derivative evaluation maps. We derive an analytical solution of the empirical risk minimization with kernel Laplacian regularization. We prove strong consistency of our estimate when the number of data goes towards infinity. Moreover, we show that, under regularity assumptions, our kernel method bypasses the curse of dimensionality, hence providing a strong alternative to neighborhood graph methods that do not avoid it.
stat
Conditionally Gaussian Random Sequences for an Integrated Variance Estimator with Correlation between Noise and Returns
Correlation between microstructure noise and latent financial logarithmic returns is an empirically relevant phenomenon with sound theoretical justification. With few notable exceptions, all integrated variance estimators proposed in the financial literature are not designed to explicitly handle such a dependence, or handle it only in special settings. We provide an integrated variance estimator that is robust to correlated noise and returns. For this purpose, a generalization of the Forward Filtering Backward Sampling algorithm is proposed, to provide a sampling technique for a latent conditionally Gaussian random sequence. We apply our methodology to intra-day Microsoft prices, and compare it in a simulation study with established alternatives, showing an advantage in terms of root mean square error and dispersion.
stat
Building a COVID-19 Vulnerability Index
COVID-19 is an acute respiratory disease that has been classified as a pandemic by the World Health Organization. Characterization of this disease is still in its early stages. However, it is known to have high mortality rates, particularly among individuals with preexisting medical conditions. Creating models to identify individuals who are at the greatest risk for severe complications due to COVID-19 will be useful for outreach campaigns to help mitigate the disease's worst effects. While information specific to COVID-19 is limited, a model using complications due to other upper respiratory infections can be used as a proxy to help identify those individuals who are at the greatest risk. We present the results for three models predicting such complications, with each model increasing predictive effectiveness at the expense of ease of implementation.
stat
Model-Independent Detection of New Physics Signals Using Interpretable Semi-Supervised Classifier Tests
A central goal in experimental high energy physics is to detect new physics signals that are not explained by known physics. In this paper, we aim to search for new signals that appear as deviations from known Standard Model physics in high-dimensional particle physics data. To do this, we determine whether there is any statistically significant difference between the distribution of Standard Model background samples and the distribution of the experimental observations, which are a mixture of the background and a potential new signal. Traditionally, one also assumes access to a sample from a model for the hypothesized signal distribution. Here we instead investigate a model-independent method that does not make any assumptions about the signal and uses a semi-supervised classifier to detect the presence of the signal in the experimental data. We construct three test statistics using the classifier: an estimated likelihood ratio test (LRT) statistic, a test based on the area under the ROC curve (AUC), and a test based on the misclassification error (MCE). Additionally, we propose a method for estimating the signal strength parameter and explore active subspace methods to interpret the proposed semi-supervised classifier in order to understand the properties of the detected signal. We investigate the performance of the methods on a data set related to the search for the Higgs boson at the Large Hadron Collider at CERN. We demonstrate that the semi-supervised tests have power competitive with the classical supervised methods for a well-specified signal, but much higher power for an unexpected signal which might be entirely missed by the supervised tests.
stat
B-Value and Empirical Equivalence Bound: A New Procedure of Hypothesis Testing
In this study, we propose a two-stage procedure for hypothesis testing, where the first stage is conventional hypothesis testing and the second is an equivalence testing procedure using an introduced Empirical Equivalence Bound. In 2016, the American Statistical Association released a policy statement on P-values to clarify the proper use and interpretation in response to the criticism of reproducibility and replicability in scientific findings. A recent solution to improve reproducibility and transparency in statistical hypothesis testing is to integrate P-values (or confidence intervals) with practical or scientific significance. Similar ideas have been proposed via the equivalence test, where the goal is to infer equality under a presumption (null) of inequality of parameters. However, in these testing procedures, the definition of scientific significance/equivalence can be subjective. To circumvent this drawback, we introduce a B-value and the Empirical Equivalence Bound, which are both estimated from the data. Performing a second-stage equivalence test, our procedure offers an opportunity to correct for false positive discoveries and improve the reproducibility in findings across studies.
stat
Does hospital cooperation increase the quality of healthcare?
Motivated by reasons such as altruism, managers from different hospitals may engage in cooperative behaviours, which shape the networked healthcare economy. In this paper we study the determinants of hospital cooperation and its association with the quality delivered by hospitals, using Italian administrative data. We explore the impact on patient transfers between hospitals (cooperation/network) of a set of demand-supply factors, as well as distance-based centrality measures. We then use this framework to assess how such cooperation is related to the overall quality for the hospital of origin and of destination of the patient transfer. The over-dispersed Poisson mixed model that we propose, inspired by the literature on social relations models, is suitably defined to handle network data, which are rarely used in health economics. The results show that distance plays an important role in hospital cooperation, though there are other factors that matter such as geographical centrality. Another empirical finding is the existence of a positive relationship between hospital cooperation and the overall quality of the connected hospitals. The absence of a source of information on the quality of hospitals accessible to all providers, such as in the form of star ratings, may prevent some hospitals to engage and cooperate with other hospitals of potentially higher quality. This may result in a lower degree of cooperation among hospitals and a reduction in quality overall.
stat
Scalable Online Survey Framework: from Sampling to Analysis
With the advancement in technology, raw event data generated by the digital world have grown tremendously. However, such data tend to be insufficient and noisy when it comes to measuring user intention or satisfaction. One effective way to measure user experience directly is through surveys. In particular, with the popularity of online surveys, extensive work has been put in to study this field. Surveys at LinkedIn play a major role in influencing product and marketing decisions and supporting our sales efforts. We run an increasing number of surveys that help us understand shifts in awareness and perceptions with regards to our own products and also to peer companies. As the need to survey grows, both sampling and analysis of surveys have become more challenging. Instead of simply multiplying the number of surveys each user takes, we need a scalable approach to collect enough and representative samples for each survey analysis while maintaining good user experience. In this paper, we start with discussions on how we handle multiple email surveys under such constraints. We then shift our discussions to challenges of in-product surveys and how we address them at LinkedIn through a survey study conducted across two mobile apps. Finally, we share how in-product surveys can be utilized as monitoring tools and connect surveys with A/B testing.
stat
On Target Shift in Adversarial Domain Adaptation
Discrepancy between training and testing domains is a fundamental problem in the generalization of machine learning techniques. Recently, several approaches have been proposed to learn domain invariant feature representations through adversarial deep learning. However, label shift, where the percentage of data in each class is different between domains, has received less attention. Label shift naturally arises in many contexts, especially in behavioral studies where the behaviors are freely chosen. In this work, we propose a method called Domain Adversarial nets for Target Shift (DATS) to address label shift while learning a domain invariant representation. This is accomplished by using distribution matching to estimate label proportions in a blind test set. We extend this framework to handle multiple domains by developing a scheme to upweight source domains most similar to the target domain. Empirical results show that this framework performs well under large label shift in synthetic and real experiments, demonstrating the practical importance.
stat
Diagnosing model misspecification and performing generalized Bayes' updates via probabilistic classifiers
Model misspecification is a long-standing enigma of the Bayesian inference framework as posteriors tend to get overly concentrated on ill-informed parameter values towards the large sample limit. Tempering of the likelihood has been established as a safer way to do updates from prior to posterior in the presence of model misspecification. At one extreme tempering can ignore the data altogether and at the other extreme it provides the standard Bayes' update when no misspecification is assumed to be present. However, it is an open issue how to best recognize misspecification and choose a suitable level of tempering without access to the true generating model. Here we show how probabilistic classifiers can be employed to resolve this issue. By training a probabilistic classifier to discriminate between simulated and observed data provides an estimate of the ratio between the model likelihood and the likelihood of the data under the unobserved true generative process, within the discriminatory abilities of the classifier. The expectation of the logarithm of a ratio with respect to the data generating process gives an estimation of the negative Kullback-Leibler divergence between the statistical generative model and the true generative distribution. Using a set of canonical examples we show that this divergence provides a useful misspecification diagnostic, a model comparison tool, and a method to inform a generalised Bayesian update in the presence of misspecification for likelihood-based models.
stat
Efficient Path Algorithms for Clustered Lasso and OSCAR
In high dimensional regression, feature clustering by their effects on outcomes is often as important as feature selection. For that purpose, clustered Lasso and octagonal shrinkage and clustering algorithm for regression (OSCAR) are used to make feature groups automatically by pairwise $L_1$ norm and pairwise $L_\infty$ norm, respectively. This paper proposes efficient path algorithms for clustered Lasso and OSCAR to construct solution paths with respect to their regularization parameters. Despite too many terms in exhaustive pairwise regularization, their computational costs are reduced by using symmetry of those terms. Simple equivalent conditions to check subgradient equations in each feature group are derived by some graph theories. The proposed algorithms are shown to be more efficient than existing algorithms in numerical experiments.
stat
Designing a statistical procedure for monitoring global carbon dioxide emissions
Following the Paris Agreement of $2015$, most countries have agreed to reduce their carbon dioxide (CO$_2$) emissions according to individually set Nationally Determined Contributions. However, national CO$_2$ emissions are reported by individual countries and cannot be directly measured or verified by third parties. Inherent weaknesses in the reporting methodology may misrepresent, typically an under-reporting of, the total national emissions. This paper applies the theory of sequential testing to design a statistical monitoring procedure that can be used to detect systematic under-reportings of CO$_2$ emissions. Using simulations, we investigate how the proposed sequential testing procedure can be expected to work in practice. We find that, if emissions are reported faithfully, the test is correctly sized, while, if emissions are under-reported, detection time can be sufficiently fast to help inform the $5$ yearly global "stocktake" of the Paris Agreement. We recommend the monitoring procedure be applied going forward as part of a larger portfolio of methods designed to verify future global CO$_2$ emissions.
stat
Embedding and learning with signatures
Sequential and temporal data arise in many fields of research, such as quantitative finance, medicine, or computer vision. A novel approach for sequential learning, called the signature method and rooted in rough path theory, is considered. Its basic principle is to represent multidimensional paths by a graded feature set of their iterated integrals, called the signature. This approach relies critically on an embedding principle, which consists in representing discretely sampled data as paths, i.e., functions from $[0,1]$ to $\mathbb{R}^d$. After a survey of machine learning methodologies for signatures, the influence of embeddings on prediction accuracy is investigated with an in-depth study of three recent and challenging datasets. It is shown that a specific embedding, called lead-lag, is systematically the strongest performer across all datasets and algorithms considered. Moreover, an empirical study reveals that computing signatures over the whole path domain does not lead to a loss of local information. It is concluded that, with a good embedding, combining signatures with other simple algorithms achieves results competitive with state-of-the-art, domain-specific approaches.
stat
Stochastic Gradient MCMC for State Space Models
State space models (SSMs) are a flexible approach to modeling complex time series. However, inference in SSMs is often computationally prohibitive for long time series. Stochastic gradient MCMC (SGMCMC) is a popular method for scalable Bayesian inference for large independent data. Unfortunately when applied to dependent data, such as in SSMs, SGMCMC's stochastic gradient estimates are biased as they break crucial temporal dependencies. To alleviate this, we propose stochastic gradient estimators that control this bias by performing additional computation in a `buffer' to reduce breaking dependencies. Furthermore, we derive error bounds for this bias and show a geometric decay under mild conditions. Using these estimators, we develop novel SGMCMC samplers for discrete, continuous and mixed-type SSMs with analytic message passing. Our experiments on real and synthetic data demonstrate the effectiveness of our SGMCMC algorithms compared to batch MCMC, allowing us to scale inference to long time series with millions of time points.
stat
Identification of high-energy astrophysical point sources via hierarchical Bayesian nonparametric clustering
The light we receive from distant astrophysical objects carries information about their origins and the physical mechanisms that power them. The study of these signals, however, is complicated by the fact that observations are often a mixture of the light emitted by multiple localized sources situated in a spatially-varying background. A general algorithm to achieve robust and accurate source identification in this case remains an open question in astrophysics. This paper focuses on high-energy light (such as X-rays and gamma-rays), for which observatories can detect individual photons (quanta of light), measuring their incoming direction, arrival time, and energy. Our proposed Bayesian methodology uses both the spatial and energy information to identify point sources, that is, separate them from the spatially-varying background, to estimate their number, and to compute the posterior probabilities that each photon originated from each identified source. This is accomplished via a Dirichlet process mixture while the background is simultaneously reconstructed via a flexible Bayesian nonparametric model based on B-splines. Our proposed method is validated with a suite of simulation studies and illustrated with an application to a complex region of the sky observed by the \emph{Fermi} Gamma-ray Space Telescope.
stat
A Tool for Custom Construction of QMC and RQMC Point Sets
We present LatNet Builder, a software tool to find good parameters for lattice rules, polynomial lattice rules, and digital nets in base 2, for quasi-Monte Carlo (QMC) and randomized quasi-Monte Carlo (RQMC) sampling over the $s$-dimensional unit hypercube. The selection criteria are figures of merit that give different weights to different subsets of coordinates. They are upper bounds on the worst-case error (for QMC) or variance (for RQMC) for integrands rescaled to have a norm of at most one in certain Hilbert spaces of functions. Various Hilbert spaces, figures of merit, types of constructions, and search methods are covered by the tool. We provide simple illustrations of what it can do.
stat
Parallel Bayesian Global Optimization of Expensive Functions
We consider parallel global optimization of derivative-free expensive-to-evaluate functions, and propose an efficient method based on stochastic approximation for implementing a conceptual Bayesian optimization algorithm proposed by Ginsbourger et al. (2007). At the heart of this algorithm is maximizing the information criterion called the "multi-points expected improvement'', or the q-EI. To accomplish this, we use infinitessimal perturbation analysis (IPA) to construct a stochastic gradient estimator and show that this estimator is unbiased. We also show that the stochastic gradient ascent algorithm using the constructed gradient estimator converges to a stationary point of the q-EI surface, and therefore, as the number of multiple starts of the gradient ascent algorithm and the number of steps for each start grow large, the one-step Bayes optimal set of points is recovered. We show in numerical experiments that our method for maximizing the q-EI is faster than methods based on closed-form evaluation using high-dimensional integration, when considering many parallel function evaluations, and is comparable in speed when considering few. We also show that the resulting one-step Bayes optimal algorithm for parallel global optimization finds high-quality solutions with fewer evaluations than a heuristic based on approximately maximizing the q-EI. A high-quality open source implementation of this algorithm is available in the open source Metrics Optimization Engine (MOE).
stat
Clarifying species dependence under joint species distribution modeling
Joint species distribution modeling is attracting increasing attention these days, acknowledging the fact that individual level modeling fails to take into account expected dependence/interaction between species. These models attempt to capture species dependence through an associated correlation matrix arising from a set of latent multivariate normal variables. However, these associations offer little insight into dependence behavior between species at sites. We focus on presence/absence data using joint species modeling which incorporates spatial dependence between sites. For pairs of species, we emphasize the induced odds ratios (along with the joint probabilities of occurrence); they provide much clearer understanding of joint presence/absence behavior. In fact, we propose a spatial odds ratio surface over the region of interest to capture how dependence varies over the region. We illustrate with a dataset from the Cape Floristic Region of South Africa consisting of more than 600 species at more than 600 sites. We present the spatial distribution of odds ratios for pairs of species that are positively correlated and pairs that are negatively correlated under the joint species distribution model. The multivariate normal covariance matrix associated with a collection of species is only a device for creating dependence among species but it lacks interpretation. By considering odds ratios, the quantitative ecologist will be able to better appreciate the practical dependence between species that is implicit in these joint species distribution modeling specifications.
stat
A kernel test for quasi-independence
We consider settings in which the data of interest correspond to pairs of ordered times, e.g, the birth times of the first and second child, the times at which a new user creates an account and makes the first purchase on a website, and the entry and survival times of patients in a clinical trial. In these settings, the two times are not independent (the second occurs after the first), yet it is still of interest to determine whether there exists significant dependence {\em beyond} their ordering in time. We refer to this notion as "quasi-(in)dependence". For instance, in a clinical trial, to avoid biased selection, we might wish to verify that recruitment times are quasi-independent of survival times, where dependencies might arise due to seasonal effects. In this paper, we propose a nonparametric statistical test of quasi-independence. Our test considers a potentially infinite space of alternatives, making it suitable for complex data where the nature of the possible quasi-dependence is not known in advance. Standard parametric approaches are recovered as special cases, such as the classical conditional Kendall's tau, and log-rank tests. The tests apply in the right-censored setting: an essential feature in clinical trials, where patients can withdraw from the study. We provide an asymptotic analysis of our test-statistic, and demonstrate in experiments that our test obtains better power than existing approaches, while being more computationally efficient.
stat
Rectangular Bounding Process
Stochastic partition models divide a multi-dimensional space into a number of rectangular regions, such that the data within each region exhibit certain types of homogeneity. Due to the nature of their partition strategy, existing partition models may create many unnecessary divisions in sparse regions when trying to describe data in dense regions. To avoid this problem we introduce a new parsimonious partition model -- the Rectangular Bounding Process (RBP) -- to efficiently partition multi-dimensional spaces, by employing a bounding strategy to enclose data points within rectangular bounding boxes. Unlike existing approaches, the RBP possesses several attractive theoretical properties that make it a powerful nonparametric partition prior on a hypercube. In particular, the RBP is self-consistent and as such can be directly extended from a finite hypercube to infinite (unbounded) space. We apply the RBP to regression trees and relational models as a flexible partition prior. The experimental results validate the merit of the RBP {in rich yet parsimonious expressiveness} compared to the state-of-the-art methods.
stat
Spatio-Temporal Reconstructions of Global CO2-Fluxes using Gaussian Markov Random Fields
Atmospheric inverse modelling is a method for reconstructing historical fluxes of green-house gas between land and atmosphere, using observed atmospheric concentrations and an atmospheric tracer transport model. The small number of observed atmospheric concentrations in relation to the number of unknown flux components makes the inverse problem ill-conditioned, and assumptions on the fluxes are needed to constrain the solution. A common practise is to model the fluxes using latent Gaussian fields with a mean structure based on estimated fluxes from combinations of process modelling (natural fluxes) and statistical bookkeeping (anthropogenic emissions). Here, we reconstruct global \CO flux fields by modelling fluxes using Gaussian Markov Random Fields (GMRF), resulting in a flexible and computational beneficial model with a Mat\'ern-like spatial covariance, and a temporal covariance defined through an auto-regressive model with seasonal dependence. In contrast to previous inversions, the flux is defined on a spatially continuous domain, and the traditionally discrete flux representation is replaced by integrated fluxes at the resolution specified by the transport model. This formulation removes aggregation errors in the flux covariance, due to the traditional representation of area integrals by fluxes at discrete points, and provides a model closer resembling real-life space-time continuous fluxes.
stat
Extreme expectile estimation for heavy-tailed time series
Expectiles are a least squares analogue of quantiles which have lately received substantial attention in actuarial and financial risk management contexts. Unlike quantiles, expectiles define coherent risk measures and are determined by tail expectations rather than tail probabilities; unlike the Expected Shortfall, they define elicitable risk measures. This has motivated recent studies of the behaviour and estimation of extreme expectile-based risk measures. The case of stationary but weakly dependent observations has, however, been left largely untouched, even though correctly accounting for the uncertainty present in typical financial applications requires the consideration of dependent data. We investigate the estimation of, and construction of accurate confidence intervals for, extreme expectiles and expectile-based Marginal Expected Shortfall in a general $\beta-$mixing context, containing the classes of ARMA, ARCH and GARCH models with heavy-tailed innovations that are of interest in financial applications. The methods are showcased in a numerical simulation study and on real financial data.
stat
A Quadratic Programming Solution to the FICO Credit Scoring Problem
After decades of experience in developing credit scores, the FICO corporation has formulated the FICO Credit Scoring Problem as follows: Find the Generalized Additive Model (GAM), with component step functions, that maximizes divergence subject to the PILE (Palatability, Interpretability, Legal, Explain-ability) constraints. The PILE constraints are also called shape constraints, and satisfying them is called score engineering. Before 2003, FICO used an algorithm, based on Linear Programing, to approximately solve the FICO Credit Scoring Problem. In this paper, I develop an exact solution to the FICO Credit Scoring Problem. Finding the exact solution has eluded FICO for years. Divergence is a ratio of quadratic functions of the score weights. I show that the max divergence problem can be transformed into a quadratic program. The quadratic programming formulation allows one to handle the PILE constraints very easily. FICO currently uses aspects of this technology to develop the famous FICO Credit Score.
stat
Coloring Panchromatic Nighttime Satellite Images: Comparing the Performance of Several Machine Learning Methods
Artificial light-at-night (ALAN), emitted from the ground and visible from space, marks human presence on Earth. Since the launch of the Suomi National Polar Partnership satellite with the Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB) onboard, global nighttime images have significantly improved; however, they remained panchromatic. Although multispectral images are also available, they are either commercial or free of charge, but sporadic. In this paper, we use several machine learning techniques, such as linear, kernel, random forest regressions, and elastic map approach, to transform panchromatic VIIRS/DBN into Red Green Blue (RGB) images. To validate the proposed approach, we analyze RGB images for eight urban areas worldwide. We link RGB values, obtained from ISS photographs, to panchromatic ALAN intensities, their pixel-wise differences, and several land-use type proxies. Each dataset is used for model training, while other datasets are used for the model validation. The analysis shows that model-estimated RGB images demonstrate a high degree of correspondence with the original RGB images from the ISS database. Yet, estimates, based on linear, kernel and random forest regressions, provide better correlations, contrast similarity and lower WMSEs levels, while RGB images, generated using elastic map approach, provide higher consistency of predictions.
stat
Bayesian Model Calibration for Extrapolative Prediction via Gibbs Posteriors
The current standard Bayesian approach to model calibration, which assigns a Gaussian process prior to the discrepancy term, often suffers from issues of unidentifiability and computational complexity and instability. When the goal is to quantify uncertainty in physical parameters for extrapolative prediction, then there is no need to perform inference on the discrepancy term. With this in mind, we introduce Gibbs posteriors as an alternative Bayesian method for model calibration, which updates the prior with a loss function connecting the data to the parameter. The target of inference is the physical parameter value which minimizes the expected loss. We propose to tune the loss scale of the Gibbs posterior to maintain nominal frequentist coverage under assumptions of the form of model discrepancy, and present a bootstrap implementation for approximating coverage rates. Our approach is highly modular, allowing an analyst to easily encode a wide variety of such assumptions. Furthermore, we provide a principled method of combining posteriors calculated from data subsets. We apply our methods to data from an experiment measuring the material properties of tantalum.
stat
Compound vectors of subordinators and their associated positive L\'evy copulas
L\'evy copulas are an important tool which can be used to build dependent L\'evy processes. In a classical setting, they have been used to model financial applications. In a Bayesian framework they have been employed to introduce dependent nonparametric priors which allow to model heterogeneous data. This paper focuses on introducing a new class of L\'evy copulas based on a class of subordinators recently appeared in the literature, called \textit{Compound Random Measures}. The well-known Clayton L\'evy copula is a special case of this new class. Furthermore, we provide some novel results about the underlying vector of subordinators such as a series representation and relevant moments. The article concludes with an application to a Danish fire dataset.
stat
A Particle Filter for Stochastic Advection by Lie Transport (SALT): A case study for the damped and forced incompressible 2D Euler equation
In this work, we combine a stochastic model reduction with a particle filter augmented with tempering and jittering, and apply the combined algorithm to a damped and forced incompressible 2D Euler dynamics defined on a simply connected bounded domain. We show that using the combined algorithm, we are able to assimilate data from a reference system state (the ``truth") modelled by a highly resolved numerical solution of the flow that has roughly $3.1\times10^6$ degrees of freedom, into a stochastic system having two orders of magnitude less degrees of freedom, which is able to approximate the true state reasonably accurately for $5$ large scale eddy turnover times, using modest computational hardware. The model reduction is performed through the introduction of a stochastic advection by Lie transport (SALT) model as the signal on a coarser resolution. The SALT approach was introduced as a general theory using a geometric mechanics framework from Holm, Proc. Roy. Soc. A (2015). This work follows on the numerical implementation for SALT presented by Cotter et al, SIAM Multiscale Model. Sim. (2019) for the flow in consideration. The model reduction is substantial: The reduced SALT model has $4.9\times 10^4$ degrees of freedom. Results from reliability tests on the assimilated system are also presented.
stat
Exact risk improvement of bandwidth selectors for kernel density estimation with directional data
New bandwidth selectors for kernel density estimation with directional data are presented in this work. These selectors are based on asymptotic and exact error expressions for the kernel density estimator combined with mixtures of von Mises distributions. The performance of the proposed selectors is investigated in a simulation study and compared with other existing rules for a large variety of directional scenarios, sample sizes and dimensions. The selector based on the exact error expression turns out to have the best behaviour of the studied selectors for almost all the situations. This selector is illustrated with real data for the circular and spherical cases.
stat
Supervised Autoencoders Learn Robust Joint Factor Models of Neural Activity
Factor models are routinely used for dimensionality reduction in modeling of correlated, high-dimensional data. We are particularly motivated by neuroscience applications collecting high-dimensional `predictors' corresponding to brain activity in different regions along with behavioral outcomes. Joint factor models for the predictors and outcomes are natural, but maximum likelihood estimates of these models can struggle in practice when there is model misspecification. We propose an alternative inference strategy based on supervised autoencoders; rather than placing a probability distribution on the latent factors, we define them as an unknown function of the high-dimensional predictors. This mapping function, along with the loadings, can be optimized to explain variance in brain activity while simultaneously being predictive of behavior. In practice, the mapping function can range in complexity from linear to more complex forms, such as splines or neural networks, with the usual tradeoff between bias and variance. This approach yields distinct solutions from a maximum likelihood inference strategy, as we demonstrate by deriving analytic solutions for a linear Gaussian factor model. Using synthetic data, we show that this function-based approach is robust against multiple types of misspecification. We then apply this technique to a neuroscience application resulting in substantial gains in predicting behavioral tasks from electrophysiological measurements in multiple factor models.
stat
Multi-fidelity Gaussian Process Bandit Optimisation
In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function $f$. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to $f$ may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of $f$ in a small but promising region and speedily identify the optimum. We formalise this task as a \emph{multi-fidelity} bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.
stat
Non-parametric efficient causal mediation with intermediate confounders
Interventional effects for mediation analysis were proposed as a solution to the lack of identifiability of natural (in)direct effects in the presence of a mediator-outcome confounder affected by exposure. We present a theoretical and computational study of the properties of the interventional (in)direct effect estimands based on the efficient influence fucntion (EIF) in the non-parametric statistical model. We use the EIF to develop two asymptotically optimal, non-parametric estimators that leverage data-adaptive regression for estimation of the nuisance parameters: a one-step estimator and a targeted minimum loss estimator. A free and open source \texttt{R} package implementing our proposed estimators is made available on GitHub. We further present results establishing the conditions under which these estimators are consistent, multiply robust, $n^{1/2}$-consistent and efficient. We illustrate the finite-sample performance of the estimators and corroborate our theoretical results in a simulation study. We also demonstrate the use of the estimators in our motivating application to elucidate the mechanisms behind the unintended harmful effects that a housing intervention had on adolescent girls' risk behavior.
stat
Replication or exploration? Sequential design for stochastic simulation experiments
We investigate the merits of replication, and provide methods for optimal design (including replicates), with the goal of obtaining globally accurate emulation of noisy computer simulation experiments. We first show that replication can be beneficial from both design and computational perspectives, in the context of Gaussian process surrogate modeling. We then develop a lookahead based sequential design scheme that can determine if a new run should be at an existing input location (i.e., replicate) or at a new one (explore). When paired with a newly developed heteroskedastic Gaussian process model, our dynamic design scheme facilitates learning of signal and noise relationships which can vary throughout the input space. We show that it does so efficiently, on both computational and statistical grounds. In addition to illustrative synthetic examples, we demonstrate performance on two challenging real-data simulation experiments, from inventory management and epidemiology.
stat
Powering population health research: Considerations for plausible and actionable effect sizes
Evidence for Action (E4A), a signature program of the Robert Wood Johnson Foundation, funds investigator-initiated research on the impacts of social programs and policies on population health and health inequities. Across thousands of letters of intent and full proposals E4A has received since 2015, one of the most common methodological challenges faced by applicants is selecting realistic effect sizes to inform power and sample size calculations. E4A prioritizes health studies that are both (1) adequately powered to detect effect sizes that may reasonably be expected for the given intervention and (2) likely to achieve intervention effects sizes that, if demonstrated, correspond to actionable evidence for population health stakeholders. However, little guidance exists to inform the selection of effect sizes for population health research proposals. We draw on examples of five rigorously evaluated population health interventions. These examples illustrate considerations for selecting realistic and actionable effect sizes as inputs to power and sample size calculations for research proposals to study population health interventions. We show that plausible effects sizes for population health inteventions may be smaller than commonly cited guidelines suggest. Effect sizes achieved with population health interventions depend on the characteristics of the intervention, the target population, and the outcomes studied. Population health impact depends on the proportion of the population receiving the intervention. When adequately powered, even studies of interventions with small effect sizes can offer valuable evidence to inform population health if such interventions can be implemented broadly. Demonstrating the effectiveness of such interventions, however, requires large sample sizes.
stat
Multiscale Non-stationary Stochastic Bandits
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB can scale linearly with time. In this paper, we propose a novel multiscale changepoint detection method for the non-stationary linear bandit problems, called Multiscale-LinUCB, which actively adapts to the changing environment. We also provide theoretical analysis of regret bound for Multiscale-LinUCB algorithm. Experimental results show that our proposed Multiscale-LinUCB algorithm outperforms other state-of-the-art algorithms in non-stationary contextual environments.
stat
Estimation of Partially Conditional Average Treatment Effect by Hybrid Kernel-covariate Balancing
We study nonparametric estimation for the partially conditional average treatment effect, defined as the treatment effect function over an interested subset of confounders. We propose a hybrid kernel weighting estimator where the weights aim to control the balancing error of any function of the confounders from a reproducing kernel Hilbert space after kernel smoothing over the subset of interested variables. In addition, we present an augmented version of our estimator which can incorporate estimations of outcome mean functions. Based on the representer theorem, gradient-based algorithms can be applied for solving the corresponding infinite-dimensional optimization problem. Asymptotic properties are studied without any smoothness assumptions for propensity score function or the need of data splitting, relaxing certain existing stringent assumptions. The numerical performance of the proposed estimator is demonstrated by a simulation study and an application to the effect of a mother's smoking on a baby's birth weight conditioned on the mother's age.
stat
Quantile Graphical Models: Bayesian Approaches
Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset wherein multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.
stat
Modelling provincial Covid-19 epidemic data in Italy using an adjusted time-dependent SIRD model
In this paper we develop a predictive model for the spread of COVID-19 infection at a provincial (i.e. EU NUTS-3) level in Italy by using official data from the Italian Ministry of Health integrated with data extracted from daily official press conferences of regional authorities and from local newspaper websites. This integration is mainly concerned with COVID-19 cause specific death data which are not available at NUTS-3 level from open official data data channels. An adjusted time-dependent SIRD model is used to predict the behavior of the epidemic, specifically the number of susceptible, infected, deceased and recovered people. Predictive model performance is evaluated using comparison with real data.
stat
Radioactive data: tracing through training
We want to detect whether a particular image dataset has been used to train a model. We propose a new technique, \emph{radioactive data}, that makes imperceptible changes to this dataset such that any model trained on it will bear an identifiable mark. The mark is robust to strong variations such as different architectures or optimization methods. Given a trained model, our technique detects the use of radioactive data and provides a level of confidence (p-value). Our experiments on large-scale benchmarks (Imagenet), using standard architectures (Resnet-18, VGG-16, Densenet-121) and training procedures, show that we can detect usage of radioactive data with high confidence (p<10^-4) even when only 1% of the data used to trained our model is radioactive. Our method is robust to data augmentation and the stochasticity of deep network optimization. As a result, it offers a much higher signal-to-noise ratio than data poisoning and backdoor methods.
stat
An Approach to Statistical Process Control that is New, Nonparametric, Simple, and Powerful
To maintain the desired quality of a product or service it is necessary to monitor the process that results in the product or service. This monitoring method is called Statistical Process Management, or Statistical Process Control. It is in widespread usage in industry. Extensive statistical methodology has been developed to make it possible to detect when a process goes out of control while allowing for natural variability that occurs when the process is in control. This paper introduces nonparametric methods for monitoring data, whether it is univariate or multivariate, and whether the interest is in detecting a change of location or scale or both. These methods, based on sequential normal scores, are much simpler than the most popular nonparametric methods currently in use and have good power for detecting out of control observations. Sixteen new statistical tests are introduced for the first time in this paper, with 17 examples, 33 tables, and 48 figures to complete the instructions for their application.
stat
The Illusion of the Illusion of Sparsity: An exercise in prior sensitivity
The emergence of Big Data raises the question of how to model economic relations when there is a large number of possible explanatory variables. We revisit the issue by comparing the possibility of using dense or sparse models in a Bayesian approach, allowing for variable selection and shrinkage. More specifically, we discuss the results reached by Giannone, Lenza, and Primiceri (2020) through a "Spike-and-Slab" prior, which suggest an "illusion of sparsity" in economic data, as no clear patterns of sparsity could be detected. We make a further revision of the posterior distributions of the model, and propose three experiments to evaluate the robustness of the adopted prior distribution. We find that the pattern of sparsity is sensitive to the prior distribution of the regression coefficients, and present evidence that the model indirectly induces variable selection and shrinkage, which suggests that the "illusion of sparsity" could be, itself, an illusion. Code is available on github.com/bfava/IllusionOfIllusion.
stat
The economic value of additional airport departure capacity
This article presents a model for the economic value of extra capacity at an airport. The model is based on a series of functional relationships linking the benefits of extra capacity and the associated costs. It takes into account the cost of delay for airlines and its indirect consequences on the airport, through the loss or gain of aeronautical and non-aeronautical revenues. The model is highly data-driven and to this end a number of data sources have been used. In particular, special care has been used to take into account the full distribution of delay at the airports rather than its average only. The results with the simple version of the model show the existence of a unique maximum for the operating profit of the airport in terms of capacity. The position of this maximum is clearly dependent on the airport and also has an interesting behaviour with the average number of passenger per aircraft at the airport and the predictability of the flight departure times. In addition, we also show that there exists an important trade-off between an increased predictability and the punctuality at the airport. Finally, it is shown that a more complex behavioural model for passengers can introduce several local maxima in the airport profit and thus drive the airport towards suboptimal decisions.
stat
Q-FIT: The Quantifiable Feature Importance Technique for Explainable Machine Learning
We introduce a novel framework to quantify the importance of each input feature for model explainability. A user of our framework can choose between two modes: (a) global explanation: providing feature importance globally across all the data points; and (b) local explanation: providing feature importance locally for each individual data point. The core idea of our method comes from utilizing the Dirichlet distribution to define a distribution over the importance of input features. This particular distribution is useful in ranking the importance of the input features as a sample from this distribution is a probability vector (i.e., the vector components sum to 1), Thus, the ranking uncovered by our framework which provides a \textit{quantifiable explanation} of how significant each input feature is to a model's output. This quantifiable explainability differentiates our method from existing feature-selection methods, which simply determine whether a feature is relevant or not. Furthermore, a distribution over the explanation allows to define a closed-form divergence to measure the similarity between learned feature importance under different models. We use this divergence to study how the feature importance trade-offs with essential notions in modern machine learning, such as privacy and fairness. We show the effectiveness of our method on a variety of synthetic and real datasets, taking into account both tabular and image datasets.
stat