title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Matched Filters for Noisy Induced Subgraph Detection
The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to {\it Drosophila} and human connectomes that this approach can achieve good performance.
stat
Projection Pursuit Gaussian Process Regression
A primary goal of computer experiments is to reconstruct the function given by the computer code via scattered evaluations. Traditional isotropic Gaussian process models suffer from the curse of dimensionality, when the input dimension is high. Gaussian process models with additive correlation functions are scalable to dimensionality, but they are very restrictive as they only work for additive functions. In this work, we consider a projection pursuit model, in which the nonparametric part is driven by an additive Gaussian process regression. The dimension of the additive function is chosen to be higher than the original input dimension. We show that this dimension expansion can help approximate more complex functions. A gradient descent algorithm is proposed to maximize the likelihood function. Simulation studies show that the proposed method outperforms the traditional Gaussian process models.
stat
Models Based on Exponential Interarrival Times for Single-Unusual-Event Count Data
At least one unusual event appears in some count datasets. It will lead to a more concentrated (or dispersed) distribution than the Poisson, the gamma, the Weibull, and the Conway-Maxwell-Poisson (CMP) can accommodate. These well-known count models are based on the equal rates of interarrival times between successive events. Under the assumption of unequal rates (one unusual event) and independent exponential interarrival times, a new class of parametric models for single-unusual-event (SUE) count data is proposed. These two models are applied to two empirical applications, the number of births and the number of bids, and yield considerably better results to the above well-known count models.
stat
Sparse and Smooth Functional Data Clustering
A new model-based procedure is developed for sparse clustering of functional data that aims to classify a sample of curves into homogeneous groups while jointly detecting the most informative portions of domain. The proposed method is referred to as sparse and smooth functional clustering (SaS-Funclust) and relies on a general functional Gaussian mixture model whose parameters are estimated by maximizing a log-likelihood function penalized with a functional adaptive pairwise penalty and a roughness penalty. The former allows identifying the noninformative portion of domain by shrinking the means of separated clusters to some common values, whereas the latter improves the interpretability by imposing some degree of smoothing to the estimated cluster means. The model is estimated via an expectation-conditional maximization algorithm paired with a cross-validation procedure. Through a Monte Carlo simulation study, the SaS-Funclust method is shown to outperform other methods already appeared in the literature, both in terms of clustering performance and interpretability. Finally, three real-data examples are presented to demonstrate the favourable performance of the proposed method. The SaS-Funclust method is implemented in the $\textsf{R}$ package $\textsf{sasfunclust}$, available online at https://github.com/unina-sfere/sasfunclust.
stat
Analysis of professional basketball field goal attempts via a Bayesian matrix clustering approach
We propose a Bayesian nonparametric matrix clustering approach to analyze the latent heterogeneity structure in the shot selection data collected from professional basketball players in the National Basketball Association (NBA). The proposed method adopts a mixture of finite mixtures framework and fully utilizes the spatial information via a mixture of matrix normal distribution representation. We propose an efficient Markov chain Monte Carlo algorithm for posterior sampling that allows simultaneous inference on both the number of clusters and the cluster configurations. We also establish large sample convergence properties for the posterior distribution. The excellent empirical performance of the proposed method is demonstrated via simulation studies and an application to shot chart data from selected players in the 2017 18 NBA regular season.
stat
Propensity Score Weighting for Causal Subgroup Analysis
A common goal in comparative effectiveness research is to estimate treatment effects on pre-specified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal subgroup analysis. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we design a new diagnostic graph -- the Connect-S plot -- for visualizing the subgroup covariate balance. Finally, we propose to use the overlap weighting method to achieve exact balance within subgroups. We further propose a method that combines overlap weighting and LASSO, to balance the bias-variance tradeoff in subgroup analysis. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the Patient-centered Results for Uterine Fibroids (COMPARE-UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.
stat
Investigating the Relationship Between Air Quality and COVID-19 Transmission
It is hypothesized that short-term exposure to air pollution may influence the transmission of aerosolized pathogens such as COVID-19. We used data from 23 provinces in Italy to build a generalized additive model to investigate the association between the effective reproductive number of the disease and air quality while controlling for ambient environmental variables and changes in human mobility. The model finds that there is a positive, nonlinear relationship between the density of particulate matter in the air and COVID-19 transmission, which is in alignment with similar studies on other respiratory illnesses.
stat
A Hierarchical Integrative Group LASSO (HiGLASSO) Framework for Analyzing Environmental Mixtures
Environmental health studies are increasingly measuring multiple pollutants to characterize the joint health effects attributable to exposure mixtures. However, the underlying dose-response relationship between toxicants and health outcomes of interest may be highly nonlinear, with possible nonlinear interaction effects. Existing penalized regression methods that account for exposure interactions either cannot accommodate nonlinear interactions while maintaining strong heredity or are computationally unstable in applications with limited sample size. In this paper, we propose a general shrinkage and selection framework to identify noteworthy nonlinear main and interaction effects among a set of exposures. We design hierarchical integrative group LASSO (HiGLASSO) to (a) impose strong heredity constraints on two-way interaction effects (hierarchical), (b) incorporate adaptive weights without necessitating initial coefficient estimates (integrative), and (c) induce sparsity for variable selection while respecting group structure (group LASSO). We prove sparsistency of the proposed method and apply HiGLASSO to an environmental toxicants dataset from the LIFECODES birth cohort, where the investigators are interested in understanding the joint effects of 21 urinary toxicant biomarkers on urinary 8-isoprostane, a measure of oxidative stress. An implementation of HiGLASSO is available in the higlasso R package, accessible through the Comprehensive R Archive Network.
stat
Targeted VAE: Structured Inference and Targeted Learning for Causal Parameter Estimation
Undertaking causal inference with observational data is extremely useful across a wide range of domains including the development of medical treatments, advertisements and marketing, and policy making. There are two main challenges associated with undertaking causal inference using observational data: treatment assignment heterogeneity (i.e., differences between the treated and untreated groups), and an absence of counterfactual data (i.e. not knowing what would have happened if an individual who did get treatment, were instead to have not been treated). We address these two challenges by combining structured inference and targeted learning. To our knowledge, Targeted Variational AutoEncoder (TVAE) is the first method to incorporate targeted learning into deep latent variable models. Results demonstrate competitive and state of the art performance.
stat
Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance
We consider a Metropolis--Hastings method with proposal $\mathcal{N}(x, hG(x)^{-1})$, where $x$ is the current state, and study its ergodicity properties. We show that suitable choices of $G(x)$ can change these compared to the Random Walk Metropolis case $\mathcal{N}(x, h\Sigma)$, either for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails of the distribution then geometric ergodicity can be established when the target distribution for the algorithm has tails that are heavier than exponential, but that the growth rate must be carefully controlled to prevent the rejection rate approaching unity. We also illustrate that a judicious choice of $G(x)$ can result in a geometrically ergodic chain when probability concentrates on an ever narrower ridge in the tails, something that is not true for the Random Walk Metropolis.
stat
Bayesian Inversion Of Generative Models For Geologic Storage Of Carbon Dioxide
Carbon capture and storage (CCS) can aid decarbonization of the atmosphere to limit further global temperature increases. A framework utilizing unsupervised learning is used to generate a range of subsurface geologic volumes to investigate potential sites for long-term storage of carbon dioxide. Generative adversarial networks are used to create geologic volumes, with a further neural network used to sample the posterior distribution of a trained Generator conditional to sparsely sampled physical measurements. These generative models are further conditioned to historic dynamic fluid flow data through Bayesian inversion to improve the resolution of the forecast of the storage capacity of injected carbon dioxide.
stat
A family of smooth piecewise-linear models with probabilistic interpretations
The smooth piecewise-linear models cover a wide range of applications nowadays. Basically, there are two classes of them: models are transitional or hyperbolic according to their behaviour at the phase-transition zones. This study explored three different approaches to build smooth piecewise-linear models, and we analysed their inter-relationships by a unifying modelling framework. We conceived the smoothed phase-transition zones as domains where a mixture process takes place, which ensured probabilistic interpretations for both hyperbolic and transitional models in the light of random thresholds. Many popular models found in the literature are special cases of our methodology. Furthermore, this study introduces novel regression models as alternatives, such as the Epanechnikov, Normal and Skewed-Normal Bent-Cables.
stat
A comment on "New non-parametric inferences for low-income proportions" by Shan Luo and Gengsheng Qin
Shan Luo and Gengsheng Qin published the article "New non-parametric inferences for low-income proportions" Ann Inst Stat Math, 69, 599-626. In the note their approach is compared to Zieli\'nski 2009 approach.
stat
A Bayesian Nonparametric Approach for Inferring Drug Combination Effects on Mental Health in People with HIV
Although combination antiretroviral therapy (ART) is highly effective in suppressing viral load for people with HIV (PWH), many ART agents may exacerbate central nervous system (CNS)-related adverse effects including depression. Therefore, understanding the effects of ART drugs on the CNS function, especially mental health, can help clinicians personalize medicine with less adverse effects for PWH and prevent them from discontinuing their ART to avoid undesirable health outcomes and increased likelihood of HIV transmission. The emergence of electronic health records offers researchers unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is very challenging due to high-dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. We develop a Bayesian nonparametric approach to learn drug combination effect on mental health in PWH adjusting for socio-demographic, behavioral, and clinical factors. The proposed method is built upon the subset-tree kernel method that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance-dependent Chinese restaurant process to cluster heterogeneous population while taking into account individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, yielding interpretable and promising results. Our method has clinical utility in guiding clinicians to prescribe more informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics.
stat
Learning on heterogeneous graphs using high-order relations
A heterogeneous graph consists of different vertices and edges types. Learning on heterogeneous graphs typically employs meta-paths to deal with the heterogeneity by reducing the graph to a homogeneous network, guide random walks or capture semantics. These methods are however sensitive to the choice of meta-paths, with suboptimal paths leading to poor performance. In this paper, we propose an approach for learning on heterogeneous graphs without using meta-paths. Specifically, we decompose a heterogeneous graph into different homogeneous relation-type graphs, which are then combined to create higher-order relation-type representations. These representations preserve the heterogeneity of edges and retain their edge directions while capturing the interaction of different vertex types multiple hops apart. This is then complemented with attention mechanisms to distinguish the importance of the relation-type based neighbors and the relation-types themselves. Experiments demonstrate that our model generally outperforms other state-of-the-art baselines in the vertex classification task on three commonly studied heterogeneous graph datasets.
stat
A Multistep Lyapunov Approach for Finite-Time Analysis of Biased Stochastic Approximation
Motivated by the widespread use of temporal-difference (TD-) and Q-learning algorithms in reinforcement learning, this paper studies a class of biased stochastic approximation (SA) procedures under a mild "ergodic-like" assumption on the underlying stochastic noise sequence. Building upon a carefully designed multistep Lyapunov function that looks ahead to several future updates to accommodate the stochastic perturbations (for control of the gradient bias), we prove a general result on the convergence of the iterates, and use it to derive non-asymptotic bounds on the mean-square error in the case of constant stepsizes. This novel looking-ahead viewpoint renders finite-time analysis of biased SA algorithms under a large family of stochastic perturbations possible. For direct comparison with existing contributions, we also demonstrate these bounds by applying them to TD- and Q-learning with linear function approximation, under the practical Markov chain observation model. The resultant finite-time error bound for both the TD- as well as the Q-learning algorithms is the first of its kind, in the sense that it holds i) for the unmodified versions (i.e., without making any modifications to the parameter updates) using even nonlinear function approximators; as well as for Markov chains ii) under general mixing conditions and iii) starting from any initial distribution, at least one of which has to be violated for existing results to be applicable.
stat
A Bridge Between Hyperparameter Optimization and Learning-to-learn
We consider a class of a nested optimization problems involving inner and outer objectives. We observe that by taking into explicit account the optimization dynamics for the inner objective it is possible to derive a general framework that unifies gradient-based hyperparameter optimization and meta-learning (or learning-to-learn). Depending on the specific setting, the variables of the outer objective take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We show that some recently proposed methods in the latter setting can be instantiated in our framework and tackled with the same gradient-based algorithms. Finally, we discuss possible design patterns for learning-to-learn and present encouraging preliminary experiments for few-shot learning.
stat
Novel Methods for the Analysis of Stepped Wedge Cluster Randomized Trials
Stepped wedge cluster randomized trials (SW-CRTs) have become increasingly popular and are used for a variety of interventions and outcomes, often chosen for their feasibility advantages. SW-CRTs must account for time trends in the outcome because of the staggered rollout of the intervention inherent in the design. Robust inference procedures and non-parametric analysis methods have recently been proposed to handle such trends without requiring strong parametric modeling assumptions, but these are less powerful than model-based approaches. We propose several novel analysis methods that reduce reliance on modeling assumptions while preserving some of the increased power provided by the use of mixed effects models. In one method, we use the synthetic control approach to find the best matching clusters for a given intervention cluster. This approach can improve the power of the analysis but is fully non-parametric. Another method makes use of within-cluster crossover information to construct an overall estimator. We also consider methods that combine these approaches to further improve power. We test these methods on simulated SW-CRTs and identify settings for which these methods gain robustness to model misspecification while retaining some of the power advantages of mixed effects models. Finally, we propose avenues for future research on the use of these methods; motivation for such research arises from their flexibility, which allows the identification of specific causal contrasts of interest, their robustness, and the potential for incorporating covariates to further increase power. Investigators conducting SW-CRTs might well consider such methods when common modeling assumptions may not hold.
stat
Multilevel models for continuous outcomes
Multilevel models (mixed-effect models or hierarchical linear models) are now a standard approach to analysing clustered and longitudinal data in the social, behavioural and medical sciences. This review article focuses on multilevel linear regression models for continuous responses (outcomes or dependent variables). These models can be viewed as an extension of conventional linear regression models to account for and learn from the clustering in the data. Common clustered applications include studies of school effects on student achievement, hospital effects on patient health, and neighbourhood effects on respondent attitudes. In all these examples, multilevel models allow one to study how the regression relationships vary across clusters, to identify those cluster characteristics which predict such variation, to disentangle social processes operating at different levels of analysis, and to make cluster-specific predictions. Common longitudinal applications include studies of growth curves of individual height and weight and developmental trajectories of individual behaviours. In these examples, multilevel models allow one to describe and explain variation in growth rates and to simultaneously explore predictors of both of intra- and inter-individual variation. This article introduces and illustrates this powerful class of model. We start by focusing on the most commonly applied two-level random-intercept and -slope models. We illustrate through two detailed examples how these models can be applied to both clustered and longitudinal data and in both observational and experimental settings. We then review more flexible three-level, cross-classified, multiple membership and multivariate response models. We end by recommending a range of further reading on all these topics.
stat
Randomized Graph Cluster Randomization
The global average treatment effect (GATE) is a primary quantity of interest in the study of causal inference under network interference. With a correctly specified exposure model of the interference, the Horvitz-Thompson (HT) and H\'ajek estimators of the GATE are unbiased and consistent, respectively, yet known to exhibit extreme variance under many designs and in many settings of interest. With a fixed clustering of the interference graph, graph cluster randomization (GCR) designs have been shown to greatly reduce variance compared to node-level random assignment, but even so the variance is still often prohibitively large. In this work we propose a randomized version of the GCR design, descriptively named randomized graph cluster randomization (RGCR), which uses a random clustering rather than a single fixed clustering. By considering an ensemble of many different cluster assignments, this design avoids a key problem with GCR where a given node is sometimes "lucky" or "unlucky" in a given clustering. We propose two randomized graph decomposition algorithms for use with RGCR, randomized 3-net and 1-hop-max, adapted from prior work on multiway graph cut problems. When integrating over their own randomness, these algorithms furnish network exposure probabilities that can be estimated efficiently. We develop upper bounds on the variance of the HT estimator of the GATE under assumptions on the metric structure of the interference graph. Where the best known variance upper bound for the HT estimator under a GCR design is exponential in the parameters of the metric structure, we give a comparable variance upper bound under RGCR that is instead polynomial in the same parameters. We provide extensive simulations comparing RGCR and GCR designs, observing substantial reductions in the mean squared error for both HT and H\'ajek estimators of the GATE in a variety of settings.
stat
Robust and Reproducible Model Selection Using Bagged Posteriors
Bayesian model selection is premised on the assumption that the data are generated from one of the postulated models, however, in many applications, all of these models are incorrect. When two or more models provide a nearly equally good fit to the data, Bayesian model selection can be highly unstable, potentially leading to self-contradictory findings. In this paper, we explore using bagging on the posterior distribution ("BayesBag") when performing model selection -- that is, averaging the posterior model probabilities over many bootstrapped datasets. We provide theoretical results characterizing the asymptotic behavior of the standard posterior and the BayesBag posterior under misspecification, in the model selection setting. We empirically assess the BayesBag approach on synthetic and real-world data in (i) feature selection for linear regression and (ii) phylogenetic tree reconstruction. Our theory and experiments show that in the presence of misspecification, BayesBag provides (a) greater reproducibility and (b) greater accuracy in selecting the correct model, compared to the standard Bayesian posterior; on the other hand, under correct specification, BayesBag is slightly more conservative than the standard posterior. Overall, our results demonstrate that BayesBag provides an easy-to-use and widely applicable approach that improves upon standard Bayesian model selection by making it more stable and reproducible.
stat
Variational Beam Search for Learning with Distribution Shifts
We consider the problem of online learning in the presence of sudden distribution shifts as frequently encountered in applications such as autonomous navigation. Distribution shifts require constant performance monitoring and re-training. They may also be hard to detect and can lead to a slow but steady degradation in model performance. To address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion. The approach uses beam search over multiple change point hypotheses to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.
stat
Inference in Stochastic Epidemic Models via Multinomial Approximations
We introduce a new method for inference in stochastic epidemic models which uses recursive multinomial approximations to integrate over unobserved variables and thus circumvent likelihood intractability. The method is applicable to a class of discrete-time, finite-population compartmental models with partial, randomly under-reported or missing count observations. In contrast to state-of-the-art alternatives such as Approximate Bayesian Computation techniques, no forward simulation of the model is required and there are no tuning parameters. Evaluating the approximate marginal likelihood of model parameters is achieved through a computationally simple filtering recursion. The accuracy of the approximation is demonstrated through analysis of real and simulated data using a model of the 1995 Ebola outbreak in the Democratic Republic of Congo. We show how the method can be embedded within a Sequential Monte Carlo approach to estimating the time-varying reproduction number of COVID-19 in Wuhan, China, recently published by Kucharski et al. 2020.
stat
A Note on Bayesian Modeling Specification of Censored Data in JAGS
Just Another Gibbs Sampling (JAGS) is a convenient tool to draw posterior samples using Markov Chain Monte Carlo for Bayesian modeling. However, the built-in function dinterval() to model censored data misspecifies the computation of deviance function, which may limit its usage to perform likelihood based model comparison. To establish an automatic approach to specify the correct deviance function in JAGS, we propose a simple alternative modeling strategy to implement Bayesian model selection for analysis of censored outcomes. The proposed approach is applicable to a broad spectrum of data types, which include survival data and many other right-, left- and interval-censored Bayesian model structures.
stat
Detection of the number of principal components by extended AIC-type method
Estimating the number of principal components is one of the fundamental problems in many scientific fields such as signal processing (or the spiked covariance model). In this paper, we first demonstrate that, for fixed $p$, any penalty term of the form $k'(p-k'/2+1/2)C_n$ may lead to an asymptotically consistent estimator under the condition that $C_n\to\infty$ and $C_n/n\to0$. We also extend our results to the case $n,p\to\infty$, with $p/n\to c>0$. In this case, for $k=o(n^{\frac{1}{3}})$, we first investigate the limiting laws for the leading eigenvalues of the sample covariance matrix $S_n$ under the condition that $\lambda_k>1+\sqrt{c}$. At low SNR, since the AIC tends to underestimate the number of signals $k$, the AIC should be re-defined in this case. As a natural extension of the AIC for fixed $p$, we propose the extended AIC (EAIC), i.e., the AIC-type method with tuning parameter $\gamma=\varphi(c)=1/2+\sqrt{1/c}-\log(1+\sqrt{c})/c$, and demonstrate that the EAIC-type method, i.e., the AIC-type method with tuning parameter $\gamma>\varphi(c)$, can select the number of signals $k$ consistently. In the following two cases, (1) $p$ fixed, $n\to\infty$, (2) $n,p\to\infty$ with $p/n\to 0$, if the AIC is defined as the degeneration of the EAIC in the case $n,p\to\infty$ with $p/n\to c>0$, i.e., $\gamma=\lim_{c\rightarrow 0+0}\varphi(c)=1$, then we have essentially demonstrated that, to achieve the consistency of the AIC-type method in the above two cases, $\gamma>1$ is required. Moreover, we show that the EAIC-type method is essentially tuning-free and outperforms the well-known KN estimator proposed in Kritchman and Nadler (2008) and the BCF estimator proposed in Bai, Choi and Fujikoshi (2018). Numerical studies indicate that the proposed method works well.
stat
GEE-TGDR: A longitudinal feature selection algorithm and its application to lncRNA expression profiles for psoriasis patients treated with immune therapies
With the fast evolution of high-throughput technology, longitudinal gene expression experiments have become affordable and increasingly common in biomedical fields. Generalized estimating equation (GEE) approach is a widely used statistical method for the analysis of longitudinal data. Feature selection is imperative in longitudinal omics data analysis. Among a variety of existing feature selection methods, an embedded method, namely, threshold gradient descent regularization (TGDR) stands out due to its excellent characteristics. An alignment of GEE with TGDR is a promising area for the purpose of identifying relevant markers that can explain the dynamic changes of outcomes across time. In this study, we proposed a new novel feature selection algorithm for longitudinal outcomes:GEE-TGDR. In the GEE-TGDR method, the corresponding quasi-likelihood function of a GEE model is the objective function to be optimized and the optimization and feature selection are accomplished by the TGDR method. We applied the GEE-TGDR method a longitudinal lncRNA gene expression dataset that examined the treatment response of psoriasis patients to immune therapy. Under different working correlation structures, a list including 10 relevant lncRNAs were identified with a predictive accuracy of 80 % and meaningful biological interpretation. To conclude, a widespread application of the proposed GEE-TGDR method in omics data analysis is anticipated.
stat
Quantile-based clustering
A new cluster analysis method, $K$-quantiles clustering, is introduced. $K$-quantiles clustering can be computed by a simple greedy algorithm in the style of the classical Lloyd's algorithm for $K$-means. It can be applied to large and high-dimensional datasets. It allows for within-cluster skewness and internal variable scaling based on within-cluster variation. Different versions allow for different levels of parsimony and computational efficiency. Although $K$-quantiles clustering is conceived as nonparametric, it can be connected to a fixed partition model of generalized asymmetric Laplace-distributions. The consistency of $K$-quantiles clustering is proved, and it is shown that $K$-quantiles clusters correspond to well separated mixture components in a nonparametric mixture. In a simulation, $K$-quantiles clustering is compared with a number of popular clustering methods with good results. A high-dimensional microarray dataset is clustered by $K$-quantiles.
stat
Decline of COPD exacerbations in clinical trials over two decades -- a systematic review and meta-regression
BACKGROUND: An important goal of chronic obstructive pulmonary disease (COPD) treatment is to reduce the frequency of exacerbations. Some observations suggest a decline in exacerbation rates in clinical trials over time. A more systematic understanding would help to improve the design and interpretation of COPD trials. METHODS: We performed a systematic review and meta-regression of the placebo groups in published randomized controlled trials reporting exacerbations as an outcome. A Bayesian negative binomial model was developed to accommodate results that are reported in different formats; results are reported with credible intervals (CI) and posterior tail probabilities ($p_B$). RESULTS: Of 1114 studies identified by our search, 55 were ultimately included. Exacerbation rates decreased by 6.7% (95% CI (4.4, 9.0); $p_B$ < 0.001) per year, or 50% (95% CI (36, 61)) per decade. Adjusting for available study and baseline characteristics such as forced expiratory volume in 1 s (FEV1) did not alter the observed trend considerably. Two subsets of studies, one using a true placebo group and the other allowing inhaled corticosteroids in the "placebo" group, also yielded consistent results. CONCLUSIONS: In conclusion, this meta-regression indicates that the rate of COPD exacerbations decreased over the past two decades to a clinically relevant extent independent of important prognostic factors. This suggests that care is needed in the design of new trials or when comparing results from older trials with more recent ones. Also a considerable effect of adjunct therapy on COPD exacerbations can be assumed.
stat
The population-attributable fraction for time-dependent exposures using dynamic prediction and landmarking
The public health impact of a harmful exposure can be quantified by the population-attributable fraction (PAF). The PAF describes the attributable risk due to an exposure and is often interpreted as the proportion of preventable cases if the exposure could be extinct. Difficulties in the definition and interpretation of the PAF arise when the exposure of interest depends on time. Then, the definition of exposed and unexposed individuals is not straightforward. We propose dynamic prediction and landmarking to define and estimate a PAF in this data situation. Two estimands are discussed which are based on two hypothetical interventions that could prevent the exposure in different ways. Considering the first estimand, at each landmark the estimation problem is reduced to a time-independent setting. Then, estimation is simply performed by using a generalized-linear model accounting for the current exposure state and further (time-varying) covariates. The second estimand is based on counterfactual outcomes, estimation can be performed using pseudo-values or inverse-probability weights. The approach is explored in a simulation study and applied on two data examples. First, we study a large French database of intensive care unit patients to estimate the population-benefit of a pathogen-specific intervention that could prevent ventilator-associated pneumonia caused by the pathogen Pseudomonas aeruginosa. Moreover, we quantify the population-attributable burden of locoregional and distant recurrence in breast cancer patients.
stat
Switching Linear Dynamics for Variational Bayes Filtering
System identification of complex and nonlinear systems is a central problem for model predictive control and model-based reinforcement learning. Despite their complexity, such systems can often be approximated well by a set of linear dynamical systems if broken into appropriate subsequences. This mechanism not only helps us find good approximations of dynamics, but also gives us deeper insight into the underlying system. Leveraging Bayesian inference, Variational Autoencoders and Concrete relaxations, we show how to learn a richer and more meaningful state space, e.g. encoding joint constraints and collisions with walls in a maze, from partial and high-dimensional observations. This representation translates into a gain of accuracy of learned dynamics showcased on various simulated tasks.
stat
Quickest detection in practice in presence of seasonality: An illustration with call center data
In this chapter, we explain how quickest detection algorithms can be useful for risk management in presence of seasonality. We investigate the problem of detecting fast enough cases when a call center will need extra staff in a near future with a high probability. We illustrate our findings on real data provided by a French insurer. We also discuss the relevance of the CUSUM algorithm and of some machine-learning type competitor for this applied problem.
stat
Quantifying Uncertainty with a Derivative Tracking SDE Model and Application to Wind Power Forecast Data
We develop a data-driven methodology based on parametric It\^{o}'s Stochastic Differential Equations (SDEs) to capture the real asymmetric dynamics of forecast errors. Our SDE framework features time-derivative tracking of the forecast, time-varying mean-reversion parameter, and an improved state-dependent diffusion term. Proofs of the existence, strong uniqueness, and boundedness of the SDE solutions are shown under a principled condition for the time-varying mean-reversion parameter. Inference based on approximate likelihood, constructed through the moment-matching technique both in the original forecast error space and in the Lamperti space, is performed through numerical optimization procedures. We propose another contribution based on the fixed-point likelihood optimization approach in the Lamperti space. All the procedures are agnostic of the forecasting technology, and they enable comparisons between different forecast providers. We apply our SDE framework to model historical Uruguayan normalized wind power production and forecast data between April and December 2019. Sharp empirical confidence bands of future wind power production are obtained for the best-selected model.
stat
Optimized data exploration applied to the simulation of a chemical process
In complex simulation environments, certain parameter space regions may result in non-convergent or unphysical outcomes. All parameters can therefore be labeled with a binary class describing whether or not they lead to valid results. In general, it can be very difficult to determine feasible parameter regions, especially without previous knowledge. We propose a novel algorithm to explore such an unknown parameter space and improve its feasibility classification in an iterative way. Moreover, we include an additional optimization target in the algorithm to guide the exploration towards regions of interest and to improve the classification therein. In our method we make use of well-established concepts from the field of machine learning like kernel support vector machines and kernel ridge regression. From a comparison with a Kriging-based exploration approach based on recently published results we can show the advantages of our algorithm in a binary feasibility classification scenario with a discrete feasibility constraint violation. In this context, we also propose an improvement of the Kriging-based exploration approach. We apply our novel method to a fully realistic, industrially relevant chemical process simulation to demonstrate its practical usability and find a comparably good approximation of the data space topology from relatively few data points.
stat
Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models
Complex computational models are increasingly used by business and governments for making decisions, such as how and where to invest to transition to a low carbon world. Complexity arises with great evidence in the outputs generated by large scale models, and calls for the use of advanced Sensitivity Analysis techniques. To our knowledge, there are no methods able to perform sensitivity analysis for outputs that are more complex than scalar ones and to deal with model uncertainty using a sound statistical framework. The aim of this work is to address these two shortcomings by combining sensitivity and functional data analysis. We express output variables as smooth functions, employing a Functional Data Analysis (FDA) framework. We extend global sensitivity techniques to function-valued responses and perform significance testing over sensitivity indices. We apply the proposed methods to computer models used in climate economics. While confirming the qualitative intuitions of previous works, we are able to test the significance of input assumptions and of their interactions. Moreover, the proposed method allows to identify the time dynamics of sensitivity indices.
stat
Developing Biomarker Combinations in Multicenter Studies via Direct Maximization and Penalization
Motivated by a study of acute kidney injury, we consider the setting of biomarker studies involving patients at multiple centers where the goal is to develop a biomarker combination for diagnosis, prognosis, or screening. As biomarker studies become larger, this type of data structure will be encountered more frequently. In the presence of multiple centers, one way to assess the predictive capacity of a given combination is to consider the center-adjusted AUC (aAUC), a summary of the ability of the combination to discriminate between cases and controls in each center. Rather than using a general method, such as logistic regression, to construct the biomarker combination, we propose directly maximizing the aAUC. Furthermore, it may be desirable to have a biomarker combination with similar performance across centers. To that end, we allow for penalization of the variability in the center-specific AUCs. We demonstrate desirable asymptotic properties of the resulting combinations. Simulations provide small-sample evidence that maximizing the aAUC can lead to combinations with improved performance. We also use simulated data to illustrate the utility of constructing combinations by maximizing the aAUC while penalizing variability. Finally, we apply these methods to data from the study of acute kidney injury.
stat
Using prior expansions for prior-data conflict checking
Any Bayesian analysis involves combining information represented through different model components, and when different sources of information are in conflict it is important to detect this. Here we consider checking for prior-data conflict in Bayesian models by expanding the prior used for the analysis into a larger family of priors, and considering a marginal likelihood score statistic for the expansion parameter. Consideration of different expansions can be informative about the nature of any conflict, and extensions to hierarchically specified priors and connections with other approaches to prior-data conflict checking are discussed. Implementation in complex situations is illustrated with two applications. The first concerns testing for the appropriateness of a LASSO penalty in shrinkage estimation of coefficients in linear regression. Our method is compared with a recent suggestion in the literature designed to be powerful against alternatives in the exponential power family, and we use this family as the prior expansion for constructing our check. A second application concerns a problem in quantum state estimation, where a multinomial model is considered with physical constraints on the model parameters. In this example, the usefulness of different prior expansions is demonstrated for obtaining checks which are sensitive to different aspects of the prior.
stat
Additive quantile regression for clustered data with an application to children's physical activity
Additive models are flexible regression tools that handle linear as well as nonlinear terms. The latter are typically modelled via smoothing splines. Additive mixed models extend additive models to include random terms when the data are sampled according to cluster designs (e.g., longitudinal). These models find applications in the study of phenomena like growth, certain disease mechanisms and energy consumption in humans, when repeated measurements are available. In this paper, we propose a novel additive mixed model for quantile regression. Our methods are motivated by an application to physical activity based on a dataset with more than half million accelerometer measurements in children of the UK Millennium Cohort Study. In a simulation study, we assess the proposed methods against existing alternatives.
stat
Identification of unknown parameters and prediction with hierarchical matrices
Statistical analysis of massive datasets very often implies expensive linear algebra operations with large dense matrices. Typical tasks are an estimation of unknown parameters of the underlying statistical model and prediction of missing values. We developed the H-MLE procedure, which solves these tasks. The unknown parameters can be estimated by maximizing the joint Gaussian log-likelihood function, which depends on a covariance matrix. To decrease high computational cost, we approximate the covariance matrix in the hierarchical (H-) matrix format. The H-matrix technique allows us to work with inhomogeneous covariance matrices and almost arbitrary locations. Especially, H-matrices can be applied in cases when the matrices under consideration are dense and unstructured. For validation purposes, we implemented three machine learning methods: the k-nearest neighbors (kNN), random forest, and deep neural network. The best results (for the given datasets) were obtained by the kNN method with three or seven neighbors depending on the dataset. The results computed with the H-MLE method were compared with the results obtained by the kNN method. The developed H-matrix code and all datasets are freely available online.
stat
Approximate Inference Turns Deep Networks into Gaussian Processes
Deep neural networks (DNN) and Gaussian processes (GP) are two powerful models with several theoretical connections relating them, but the relationship between their training methods is not well understood. In this paper, we show that certain Gaussian posterior approximations for Bayesian DNNs are equivalent to GP posteriors. This enables us to relate solutions and iterations of a deep-learning algorithm to GP inference. As a result, we can obtain a GP kernel and a nonlinear feature map while training a DNN. Surprisingly, the resulting kernel is the neural tangent kernel. We show kernels obtained on real datasets and demonstrate the use of the GP marginal likelihood to tune hyperparameters of DNNs. Our work aims to facilitate further research on combining DNNs and GPs in practical settings.
stat
Rank-deficiencies in a reduced information latent variable model
Latent variable models are well-known to suffer from rank deficiencies, causing problems with convergence and stability. Such problems are compounded in the "reduced-group split-ballot multitrait-multimethod model", which omits a set of moments from the estimation through a planned missing data design. This paper demonstrates the existence of rank deficiencies in this model and give the explicit null space. It also demonstrates that sample size and distance from the rank-deficient point interact in their effects on convergence, causing convergence to improve or worsen depending on both factors simultaneously. Furthermore, it notes that the latent variable correlations in the uncorrelated methods SB-MTMM model remain unaffected by the rank deficiency. I conclude that methodological experiments should be careful to manipulate both distance to known rank-deficiencies and sample size, and report all results, not only the apparently converged ones. Practitioners may consider that, even in the presence of nonconvergence or so-called "inadmissible" estimates, a subset of parameter estimates may still be consistent and stable.
stat
Scalable Thompson Sampling via Optimal Transport
Thompson sampling (TS) is a class of algorithms for sequential decision-making, which requires maintaining a posterior distribution over a model. However, calculating exact posterior distributions is intractable for all but the simplest models. Consequently, efficient computation of an approximate posterior distribution is a crucial problem for scalable TS with complex models, such as neural networks. In this paper, we use distribution optimization techniques to approximate the posterior distribution, solved via Wasserstein gradient flows. Based on the framework, a principled particle-optimization algorithm is developed for TS to approximate the posterior efficiently. Our approach is scalable and does not make explicit distribution assumptions on posterior approximations. Extensive experiments on both synthetic data and real large-scale data demonstrate the superior performance of the proposed methods.
stat
Introduction to Dynamic Linear Models for Time Series Analysis
Dynamic linear models (DLM) offer a very generic framework to analyse time series data. Many classical time series models can be formulated as DLMs, including ARMA models and standard multiple linear regression models. The models can be seen as general regression models where the coefficients can vary in time. In addition, they allow for a state space representation and a formulation as hierarchical statistical models, which in turn is the key for efficient estimation by Kalman formulas and by Markov chain Monte Carlo (MCMC) methods. A dynamic linear model can handle non-stationary processes, missing values and non-uniform sampling as well as observations with varying accuracies. This chapter gives an introduction to DLM and shows how to build various useful models for analysing trends and other sources of variability in geodetic time series.
stat
Functional Group Bridge for Simultaneous Regression and Support Estimation
This article is motivated by studying multisensory effects on brain activities in intracranial electroencephalography (iEEG) experiments. Differential brain activities to multisensory stimulus presentations are zero in most regions and non-zero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast non-convex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the $L_2$ norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the $L_{\infty}$ norm that leads to a sparsistency property under $\delta$-sparsity, and provide a simple sufficient regularity condition under which a strict sparsistency property is established. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulation and an application to a novel iEEG dataset to study multisensory integration. We integrate the proposed method into RAVE, an R package that gains increasing popularity in the iEEG community.
stat
Probabilistic Time Series Forecasting with Structured Shape and Temporal Diversity
Probabilistic forecasting consists in predicting a distribution of possible future outcomes. In this paper, we address this problem for non-stationary time series, which is very challenging yet crucially important. We introduce the STRIPE model for representing structured diversity based on shape and time features, ensuring both probable predictions while being sharp and accurate. STRIPE is agnostic to the forecasting model, and we equip it with a diversification mechanism relying on determinantal point processes (DPP). We introduce two DPP kernels for modeling diverse trajectories in terms of shape and time, which are both differentiable and proved to be positive semi-definite. To have an explicit control on the diversity structure, we also design an iterative sampling mechanism to disentangle shape and time representations in the latent space. Experiments carried out on synthetic datasets show that STRIPE significantly outperforms baseline methods for representing diversity, while maintaining accuracy of the forecasting model. We also highlight the relevance of the iterative sampling scheme and the importance to use different criteria for measuring quality and diversity. Finally, experiments on real datasets illustrate that STRIPE is able to outperform state-of-the-art probabilistic forecasting approaches in the best sample prediction.
stat
Reply to "Issues arising from benchmarking single-cell RNA sequencing imputation methods"
In our Brief Communication (DOI: 10.1038/s41592-018-0033-z), we presented the method SAVER for recovering true gene expression levels in noisy single cell RNA sequencing data. We evaluated the performance of SAVER, along with comparable methods MAGIC and scImpute, in an RNA FISH validation experiment and a data downsampling experiment. In a Comment [arXiv:1908.07084v1], Li & Li were concerned with the use of the downsampled datasets, specifically focusing on clustering results obtained from the Zeisel et al. data. Here, we will address these comments and, furthermore, amend the data downsampling experiment to demonstrate that the findings from the data downsampling experiment in our Brief Communication are valid.
stat
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
This paper studies fixed step-size stochastic approximation (SA) schemes, including stochastic gradient schemes, in a Riemannian framework. It is motivated by several applications, where geodesics can be computed explicitly, and their use accelerates crude Euclidean methods. A fixed step-size scheme defines a family of time-homogeneous Markov chains, parametrized by the step-size. Here, using this formulation, non-asymptotic performance bounds are derived, under Lyapunov conditions. Then, for any step-size, the corresponding Markov chain is proved to admit a unique stationary distribution, and to be geometrically ergodic. This result gives rise to a family of stationary distributions indexed by the step-size, which is further shown to converge to a Dirac measure, concentrated at the solution of the problem at hand, as the step-size goes to 0. Finally, the asymptotic rate of this convergence is established, through an asymptotic expansion of the bias, and a central limit theorem.
stat
Composite likelihood methods for histogram-valued random variables
Symbolic data analysis has been proposed as a technique for summarising large and complex datasets into a much smaller and tractable number of distributions -- such as random rectangles or histograms -- each describing a portion of the larger dataset. Recent work has developed likelihood-based methods that permit fitting models for the underlying data while only observing the distributional summaries. However, while powerful, when working with random histograms this approach rapidly becomes computationally intractable as the dimension of the underlying data increases. We introduce a composite-likelihood variation of this likelihood-based approach for the analysis of random histograms in $K$ dimensions, through the construction of lower-dimensional marginal histograms. The performance of this approach is examined through simulated and real data analysis of max-stable models for spatial extremes using millions of observed datapoints in more than $K=100$ dimensions. Large computational savings are available compared to existing model fitting approaches.
stat
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Compressed sensing techniques enable efficient acquisition and recovery of sparse, high-dimensional data signals via low-dimensional projections. In this work, we propose Uncertainty Autoencoders, a learning framework for unsupervised representation learning inspired by compressed sensing. We treat the low-dimensional projections as noisy latent representations of an autoencoder and directly learn both the acquisition (i.e., encoding) and amortized recovery (i.e., decoding) procedures. Our learning objective optimizes for a tractable variational lower bound to the mutual information between the datapoints and the latent representations. We show how our framework provides a unified treatment to several lines of research in dimensionality reduction, compressed sensing, and generative modeling. Empirically, we demonstrate a 32% improvement on average over competing approaches for the task of statistical compressed sensing of high-dimensional datasets.
stat
Probabilistic reconstruction of truncated particle trajectories on a closed surface
Investigation of dynamic processes in cell biology very often relies on the observation in two dimensions of 3D biological processes. Consequently, the data are partial and statistical methods and models are required to recover the parameters describing the dynamical processes. In the case of molecules moving over the 3D surface, such as proteins on walls of bacteria cell, a large portion of the 3D surface is not observed in 2D-time microscopy. It follows that biomolecules may disappear for a period of time in a region of interest, and then reappear later. Assuming Brownian motion with drift, we address the mathematical problem of the reconstruction of biomolecules trajectories on a cylindrical surface. A subregion of the cylinder is typically recorded during the observation period, and biomolecules may appear or disappear in any place of the 3D surface. The performance of the method is demonstrated on simulated particle trajectories that mimic MreB protein dynamics observed in 2D time-lapse fluorescence microscopy in rod-shaped bacteria.
stat
Estimating spillovers using imprecisely measured networks
In many experimental contexts, whether and how network interactions impact the outcome of interest for both treated and untreated individuals are key concerns. Networks data is often assumed to perfectly represent these possible interactions. This paper considers the problem of estimating treatment effects when measured connections are, instead, a noisy representation of the true spillover pathways. We show that existing methods, using the potential outcomes framework, yield biased estimators in the presence of this mismeasurement. We develop a new method, using a class of mixture models, that can account for missing connections and discuss its estimation via the Expectation-Maximization algorithm. We check our method's performance by simulating experiments on real network data from 43 villages in India. Finally, we use data from a previously published study to show that estimates using our method are more robust to the choice of network measure.
stat
Model combinations through revised base-rates
Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performances of the candidate models. In this paper, we propose a new way to statistical model selection and model combination that incorporates the base-rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of exponential smoothing models and a large number of real time series and we show that our schemes work better than standard statistical benchmarks. We discuss the connection of our approach to other cross-learning approaches and offer insights regarding implications for theory and practice.
stat
Cluster analysis and outlier detection with missing data
A mixture of multivariate contaminated normal (MCN) distributions is a useful model-based clustering technique to accommodate data sets with mild outliers. However, this model only works when fitted to complete data sets, which is often not the case in real applications. In this paper, we develop a framework for fitting a mixture of MCN distributions to incomplete data sets, i.e. data sets with some values missing at random. We employ the expectation-conditional maximization algorithm for parameter estimation. We use a simulation study to compare the results of our model and a mixture of Student's t distributions for incomplete data.
stat
Combining interdependent climate model outputs in CMIP5: A spatial Bayesian approach
Projections of future climate change rely heavily on climate models, and combining climate models through a multi-model ensemble is both more accurate than a single climate model and valuable for uncertainty quantification. However, Bayesian approaches to multi-model ensembles have been criticized for making oversimplified assumptions about bias and variability, as well as treating different models as statistically independent. This paper extends the Bayesian hierarchical approach of Sansom et al. (2017) by explicitly accounting for spatial variability and inter-model dependence. We propose a Bayesian hierarchical model that accounts for bias between climate models and observations, spatial and inter-model dependence, the emergent relationship between historical and future periods, and natural variability. Extensive simulations show that our model provides better estimates and uncertainty quantification than the commonly used simple model mean. These results are illustrated using data from the CMIP5 model archive. As examples, for Central North America our projected mean temperature for 2070--2100 is about 0.8 K lower than the simple model mean, while for East Asia it is about 0.5 K higher; however, in both cases, the widths of the 90% credible intervals are of the order 3--6 K, so the uncertainties overwhelm the relatively small differences in projected mean temperatures.
stat
A Proposed Method for Assessing Cluster Heterogeneity
Assessing how adequate clusters fit a dataset and finding an optimum number of clusters is a difficult process. A membership matrix and the degree of membership matrix is suggested to determine the homogeneity of a cluster fit. Maximisation of the ratio of the overall degree of membership at cluster number lag 1 is also suggested as a method to optimise the number of clusters in a dataset. A threshold factor upon the degree of membership is also suggested for homogeneous clusters. Cluster simulations were given to compare how well the proposed method compares against established methods. This method may be applied to the output of both hierarchical and k-means clustering.
stat
Non-linear Mediation Analysis with High-dimensional Mediators whose Causal Structure is Unknown
With multiple potential mediators on the causal pathway from a treatment to an outcome, we consider the problem of decomposing the effects along multiple possible causal path(s) through each distinct mediator. Under Pearl's path-specific effects framework (Pearl, 2001; Avin et al., 2005), such fine-grained decompositions necessitate stringent assumptions, such as correctly specifying the causal structure among the mediators, and there being no unobserved confounding among the mediators. In contrast, interventional direct and indirect effects for multiple mediators (Vansteelandt and Daniel, 2017) can be identified under much weaker conditions, while providing scientifically relevant causal interpretations. Nonetheless, current estimation approaches require (correctly) specifying a model for the joint mediator distribution, which can be difficult when there is a high-dimensional set of possibly continuous and non-continuous mediators. In this article, we avoid the need to model this distribution, by developing a definition of interventional effects previously suggested by VanderWeele and Tchetgen Tchetgen (2017) for longitudinal mediation. We propose a novel estimation strategy that uses non-parametric estimates of the (counterfactual) mediator distributions. Non-continuous outcomes can be accommodated using non-linear outcome models. Estimation proceeds via Monte Carlo integration. The procedure is illustrated using publicly available genomic data (Huang and Pan, 2016) to assess the causal effect of a microRNA expression on the three-month mortality of brain cancer patients that is potentially mediated by expression values of multiple genes.
stat
Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation
We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting. Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of \ofulq and cast it into a constrained \textit{extended} LQR problem, where an additional control variable implicitly selects the system dynamics within a confidence interval. We then move to the corresponding Lagrangian formulation for which we prove strong duality. As a result, we show that an $\epsilon$-optimistic controller can be computed efficiently by solving at most $O\big(\log(1/\epsilon)\big)$ Riccati equations. Finally, we prove that relaxing the original \ofu problem does not impact the learning performance, thus recovering the $\tilde{O}(\sqrt{T})$ regret of \ofulq. To the best of our knowledge, this is the first computationally efficient confidence-based algorithm for LQR with worst-case optimal regret guarantees.
stat
The Boomerang Sampler
This paper introduces the Boomerang Sampler as a novel class of continuous-time non-reversible Markov chain Monte Carlo algorithms. The methodology begins by representing the target density as a density, $e^{-U}$, with respect to a prescribed (usually) Gaussian measure and constructs a continuous trajectory consisting of a piecewise elliptical path. The method moves from one elliptical orbit to another according to a rate function which can be written in terms of $U$. We demonstrate that the method is easy to implement and demonstrate empirically that it can out-perform existing benchmark piecewise deterministic Markov processes such as the bouncy particle sampler and the Zig-Zag. In the Bayesian statistics context, these competitor algorithms are of substantial interest in the large data context due to the fact that they can adopt data subsampling techniques which are exact (ie induce no error in the stationary distribution). We demonstrate theoretically and empirically that we can also construct a control-variate subsampling boomerang sampler which is also exact, and which possesses remarkable scaling properties in the large data limit. We furthermore illustrate a factorised version on the simulation of diffusion bridges.
stat
Functional Models for Time-Varying Random Objects
In recent years, samples of time-varying object data such as time-varying networks that are not in a vector space have been increasingly collected. These data can be viewed as elements of a general metric space that lacks local or global linear structure and therefore common approaches that have been used with great success for the analysis of functional data, such as functional principal component analysis, cannot be applied. In this paper we propose metric covariance, a novel association measure for paired object data lying in a metric space $(\Omega,d)$ that we use to define a metric auto-covariance function for a sample of random $\Omega$-valued curves, where $\Omega$ generally will not have a vector space or manifold structure. The proposed metric auto-covariance function is non-negative definite when the squared semimetric $d^2$ is of negative type. Then the eigenfunctions of the linear operator with the auto-covariance function as kernel can be used as building blocks for an object functional principal component analysis for $\Omega$-valued functional data, including time-varying probability distributions, covariance matrices and time-dynamic networks. Analogues of functional principal components for time-varying objects are obtained by applying Fr\'echet means and projections of distance functions of the random object trajectories in the directions of the eigenfunctions, leading to real-valued Fr\'echet scores. Using the notion of generalized Fr\'echet integrals, we construct object functional principal components that lie in the metric space $\Omega$.
stat
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. [2017] presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. [2017] is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. [2017] and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA.
stat
Robust penalized empirical likelihood in high dimensional longitudinal data analysis
As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables in the sparse high-dimensional model, we consider a penalized EL method based on robust estimating functions by applying two penalty functions for regularizing the regression parameters and the associated Lagrange multipliers simultaneously, which allows the dimensionalities of both regression parameters and estimating equations to grow exponentially with the sample size. The proposed method can improve the robustness and effectiveness when the data have underlying outliers or heavy tails in the response variables and/or covariates. The oracle properties are also established under some regularity conditions. Extensive simulation studies and a yeast cell data are used to evaluate the performance of the proposed method. The numerical results reveal that robust remedies on estimating equations are needed when the data have heavy tails and/or include underlying outliers.
stat
Graph-aware Modeling of Brain Connectivity Networks
Functional connections in the brain are frequently represented by weighted networks, with nodes representing locations in the brain, and edges representing the strength of connectivity between these locations. One challenge in analyzing such data is that inference at the individual edge level is not particularly biologically meaningful; interpretation is more useful at the level of so-called functional regions, or groups of nodes and connections between them; this is often called "graph-aware" inference in the neuroimaging literature. However, pooling over functional regions leads to significant loss of information and lower accuracy. Another challenge is correlation among edge weights within a subject, which makes inference based on independence assumptions unreliable. We address both these challenges with a linear mixed effects model, which accounts for functional regions and for edge dependence, while still modeling individual edge weights to avoid loss of information. The model allows for comparing two populations, such as patients and healthy controls, both at the functional regions level and at individual edge level, leading to biologically meaningful interpretations. We fit this model to a resting state fMRI data on schizophrenics and healthy controls, obtaining interpretable results consistent with the schizophrenia literature.
stat
Function approximation by deep neural networks with parameters $\{0,\pm \frac{1}{2}, \pm 1, 2\}$
In this paper it is shown that $C_\beta$-smooth functions can be approximated by neural networks with parameters $\{0,\pm \frac{1}{2}, \pm 1, 2\}$. The depth, width and the number of active parameters of constructed networks have, up to a logarithimc factor, the same dependence on the approximation error as the networks with parameters in $[-1,1]$. In particular, this means that the nonparametric regression estimation with constructed networks attain the same convergence rate as with the sparse networks with parameters in $[-1,1]$.
stat
Vertex Nomination Via Seeded Graph Matching
Consider two networks on overlapping, non-identical vertex sets. Given vertices of interest in the first network, we seek to identify the corresponding vertices, if any exist, in the second network. While in moderately sized networks graph matching methods can be applied directly to recover the missing correspondences, herein we present a principled methodology appropriate for situations in which the networks are too large for brute-force graph matching. Our methodology identifies vertices in a local neighborhood of the vertices of interest in the first network that have verifiable corresponding vertices in the second network. Leveraging these known correspondences, referred to as seeds, we match the induced subgraphs in each network generated by the neighborhoods of these verified seeds, and rank the vertices of the second network in terms of the most likely matches to the original vertices of interest. We demonstrate the applicability of our methodology through simulations and real data examples.
stat
Accelerating Kernel Classifiers Through Borders Mapping
Support vector machines (SVM) and other kernel techniques represent a family of powerful statistical classification methods with high accuracy and broad applicability. Because they use all or a significant portion of the training data, however, they can be slow, especially for large problems. Piecewise linear classifiers are similarly versatile, yet have the additional advantages of simplicity, ease of interpretation and, if the number of component linear classifiers is not too large, speed. Here we show how a simple, piecewise linear classifier can be trained from a kernel-based classifier in order to improve the classification speed. The method works by finding the root of the difference in conditional probabilities between pairs of opposite classes to build up a representation of the decision boundary. When tested on 17 different datasets, it succeeded in improving the classification speed of a SVM for 12 of them by up to two orders-of-magnitude. Of these, two were less accurate than a simple, linear classifier. The method is best suited to problems with continuum features data and smooth probability functions. Because the component linear classifiers are built up individually from an existing classifier, rather than through a simultaneous optimization procedure, the classifier is also fast to train.
stat
A latent variable approach to account for correlated inputs in global sensitivity analysis with cases from pharmacological systems modelling
In pharmaceutical research and development decision-making related to drug candidate selection, efficacy and safety is commonly supported through modelling and simulation (M\&S). Among others, physiologically-based pharmacokinetic models are used to describe drug absorption, distribution and metabolism in human. Global sensitivity analysis (GSA) is gaining interest in the pharmacological M\&S community as an important element for quality assessment of model-based inference. Physiological models often present inter-correlated parameters. The inclusion of correlated factors in GSA and the sensitivity indices interpretation has proven an issue for these models. Here we devise and evaluate a latent variable approach for dealing with correlated factors in GSA. This approach describes the correlation between two model inputs through the causal relationship of three independent factors: the latent variable and the unique variances of the two correlated parameters. Then, GSA is performed with the classical variance-based method. We applied the latent variable approach to a set of algebraic models and a case from physiologically-based pharmacokinetics. Then, we compared our approach to Sobol's GSA assuming no correlations, Sobol's GSA with groups and the Kucherenko approach. The relative ease of implementation and interpretation makes this a simple approach for carrying out GSA for models with correlated input factors.
stat
Bayesian analysis of population health data
The analysis of population-wide datasets can provide insight on the health status of large populations so that public health officials can make data-driven decisions. The analysis of such datasets often requires highly parameterized models with different types of fixed and randoms effects to account for risk factors, spatial and temporal variations, multilevel effects and other sources on uncertainty. To illustrate the potential of Bayesian hierarchical models, a dataset of about 500 000 inhabitants released by the Polish National Health Fund containing information about ischemic stroke incidence for a 2-year period is analyzed using different types of models. Spatial logistic regression and survival models are considered for analyzing the individual probabilities of stroke and the times to the occurrence of an ischemic stroke event. Demographic and socioeconomic variables as well as drug prescription information are available at an individual level. Spatial variation is considered by means of region-level random effects.
stat
On the uniqueness and stability of dictionaries for sparse representation of noisy signals
Learning optimal dictionaries for sparse coding has exposed characteristic sparse features of many natural signals. However, universal guarantees of the stability of such features in the presence of noise are lacking. Here, we provide very general conditions guaranteeing when dictionaries yielding the sparsest encodings are unique and stable with respect to measurement or modeling error. We demonstrate that some or all original dictionary elements are recoverable from noisy data even if the dictionary fails to satisfy the spark condition, its size is overestimated, or only a polynomial number of distinct sparse supports appear in the data. Importantly, we derive these guarantees without requiring any constraints on the recovered dictionary beyond a natural upper bound on its size. Our results also yield an effective procedure sufficient to affirm if a proposed solution to the dictionary learning problem is unique within bounds commensurate with the noise. We suggest applications to data analysis, engineering, and neuroscience and close with some remaining challenges left open by our work.
stat
Normalization effects on shallow neural networks and related asymptotic expansions
We consider shallow (single hidden layer) neural networks and characterize their performance when trained with stochastic gradient descent as the number of hidden units $N$ and gradient descent steps grow to infinity. In particular, we investigate the effect of different scaling schemes, which lead to different normalizations of the neural network, on the network's statistical output, closing the gap between the $1/\sqrt{N}$ and the mean-field $1/N$ normalization. We develop an asymptotic expansion for the neural network's statistical output pointwise with respect to the scaling parameter as the number of hidden units grows to infinity. Based on this expansion, we demonstrate mathematically that to leading order in $N$, there is no bias-variance trade off, in that both bias and variance (both explicitly characterized) decrease as the number of hidden units increases and time grows. In addition, we show that to leading order in $N$, the variance of the neural network's statistical output decays as the implied normalization by the scaling parameter approaches the mean field normalization. Numerical studies on the MNIST and CIFAR10 datasets show that test and train accuracy monotonically improve as the neural network's normalization gets closer to the mean field normalization.
stat
Classification of Computer Models with Labelled Outputs
Classification is a vital tool that is important for modelling many complex numerical models. A model or system may be such that, for certain areas of input space, the output either does not exist, or is not in a quantifiable form. Here, we present a new method for classification where the model outputs are given distinct classifying labels, which we model using a latent Gaussian process (GP). The latent variable is estimated using MCMC sampling, a unique likelihood and distinct prior specifications. Our classifier is then verified by calculating a misclassification rate across the input space. Comparisons are made with other existing classification methods including logistic regression, which models the probability of being classified into one of two regions. To make classification predictions we draw from an independent Bernoulli distribution, meaning that distance correlation is lost from the independent draws and so can result in many misclassifications. By modelling the labels using a latent GP, this problem does not occur in our method. We apply our novel method to a range of examples including a motivating example which models the hormones associated with the reproductive system in mammals, where the two labelled outputs are high and low rates of reproduction.
stat
CodedReduce: A Fast and Robust Framework for Gradient Aggregation in Distributed Learning
We focus on the commonly used synchronous Gradient Descent paradigm for large-scale distributed learning, for which there has been a growing interest to develop efficient and robust gradient aggregation strategies that overcome two key system bottlenecks: communication bandwidth and stragglers' delays. In particular, Ring-AllReduce (RAR) design has been proposed to avoid bandwidth bottleneck at any particular node by allowing each worker to only communicate with its neighbors that are arranged in a logical ring. On the other hand, Gradient Coding (GC) has been recently proposed to mitigate stragglers in a master-worker topology by allowing carefully designed redundant allocation of the data set to the workers. We propose a joint communication topology design and data set allocation strategy, named CodedReduce (CR), that combines the best of both RAR and GC. That is, it parallelizes the communications over a tree topology leading to efficient bandwidth utilization, and carefully designs a redundant data set allocation and coding strategy at the nodes to make the proposed gradient aggregation scheme robust to stragglers. In particular, we quantify the communication parallelization gain and resiliency of the proposed CR scheme, and prove its optimality when the communication topology is a regular tree. Furthermore, we empirically evaluate the performance of our proposed CR design over Amazon EC2 and demonstrate that it achieves speedups of up to 27.2x and 7.0x, respectively over the benchmarks GC and RAR.
stat
High-dimensional Bayesian Optimization of Personalized Cardiac Model Parameters via an Embedded Generative Model
The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. However, these tissue properties are spatially varying across the underlying anatomical model, presenting a significance challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the anatomical mesh, either into a fixed small number of segments or a multi-scale hierarchy. This anatomy-based reduction of parameter space presents a fundamental bottleneck to parameter estimation, resulting in solutions that are either too low in resolution to reflect tissue heterogeneity, or too high in dimension to be reliably estimated within feasible computation. In this paper, we present a novel concept that embeds a generative variational auto-encoder (VAE) into the objective function of Bayesian optimization, providing an implicit low-dimensional (LD) search space that represents the generative code of the HD spatially-varying tissue properties. In addition, the VAE-encoded knowledge about the generative code is further used to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model. Synthetic and real-data experiments demonstrate its ability to improve the accuracy of parameter estimation with more than 10x gain in efficiency.
stat
Using clinical trial registries to inform Copas selection model for publication bias in meta-analysis
Prospective registration of study protocols in clinical trial registries is a useful way to minimize the risk of publication bias in meta-analysis, and several clinical trial registries are available nowadays. However, they are mainly used as a tool for searching studies and information submitted to the registries has not been utilized as efficiently as it could. In addressing publication bias in meta-analyses, sensitivity analysis with the Copas selection model is a more objective alternative to widely-used graphical methods such as the funnel-plot and the trim-and-fill method. Despite its ability to quantify the potential impact of publication bias, a drawback of the model is that some parameters not to be specified. This may result in some difficulty in interpreting the results of the sensitivity analysis. In this paper, we propose an alternative inference procedure for the Copas selection model by utilizing information from clinical trial registries. Our method provides a simple and accurate way to estimate all unknown parameters in the Copas selection model. A simulation study revealed that our proposed method resulted in smaller biases and more accurate confidence intervals than existing methods. Furthermore, two published meta-analyses had been re-analysed to demonstrate how to implement the proposed method in practice.
stat
Gaussian Process Model for Estimating Piecewise Continuous Regression Functions
This paper presents a Gaussian process (GP) model for estimating piecewise continuous regression functions. In scientific and engineering applications of regression analysis, the underlying regression functions are piecewise continuous in that data follow different continuous regression models for different regions of the data with possible discontinuities between the regions. However, many conventional GP regression approaches are not designed for piecewise regression analysis. We propose a new GP modeling approach for estimating an unknown piecewise continuous regression function. The new GP model seeks for a local GP estimate of an unknown regression function at each test location, using local data neighboring to the test location. To accommodate the possibilities of the local data from different regions, the local data is partitioned into two sides by a local linear boundary, and only the local data belonging to the same side as the test location is used for the regression estimate. This local split works very well when the input regions are bounded by smooth boundaries, so the local linear approximation of the smooth boundaries works well. We estimate the local linear boundary jointly with the other hyperparameters of the GP model, using the maximum likelihood approach. Its computation time is as low as the local GP's time. The superior numerical performance of the proposed approach over the conventional GP modeling approaches is shown using various simulated piecewise regression functions.
stat
Divergence-based robust inference under proportional hazards model for one-shot device life-test
In this paper, we develop robust estimators and tests for one-shot device testing under proportional hazards assumption based on divergence measures. Through a detailed Monte Carlo simulation study and a numerical example, the developed inferential procedures are shown to be more robust than the classical procedures, based on maximum likelihood estimators.
stat
Ordering Dimensions with Nested Dropout Normalizing Flows
The latent space of normalizing flows must be of the same dimensionality as their output space. This constraint presents a problem if we want to learn low-dimensional, semantically meaningful representations. Recent work has provided compact representations by fitting flows constrained to manifolds, but hasn't defined a density off that manifold. In this work we consider flows with full support in data space, but with ordered latent variables. Like in PCA, the leading latent dimensions define a sequence of manifolds that lie close to the data. We note a trade-off between the flow likelihood and the quality of the ordering, depending on the parameterization of the flow.
stat
High Order Adjusted Block-wise Empirical Likelihood For Weakly Dependent Data
The upper limit on the coverage probability of the empirical likelihood ratio confidence region severely hampers its application in statistical inferences. The root cause of this upper limit is the convex hull of the estimating functions that is used in the construction of the profile empirical likelihood. For i.i.d data, various methods have been proposed to solve this issue by modifying the convex hull, but it is not clear how well these methods perform when the data is no longer independent. In this paper, we consider weakly dependent multivariate data, and we combine the block-wise empirical likelihood with the adjusted empirical likelihood to tackle data dependency and the convex hull constraint simultaneously. We show that our method not only preserves the much celebrated asymptotic $\chi^2-$distribution, but also improves the coverage probability by removing the upper limit. Further, we show that our method is also Bartlett correctable, thus is able to achieve high order asymptotic coverage accuracy.
stat
Discriminator Rejection Sampling
We propose a rejection sampling scheme using the discriminator of a GAN to approximately correct errors in the GAN generator distribution. We show that under quite strict assumptions, this will allow us to recover the data distribution exactly. We then examine where those strict assumptions break down and design a practical algorithm - called Discriminator Rejection Sampling (DRS) - that can be used on real data-sets. Finally, we demonstrate the efficacy of DRS on a mixture of Gaussians and on the SAGAN model, state-of-the-art in the image generation task at the time of developing this work. On ImageNet, we train an improved baseline that increases the Inception Score from 52.52 to 62.36 and reduces the Frechet Inception Distance from 18.65 to 14.79. We then use DRS to further improve on this baseline, improving the Inception Score to 76.08 and the FID to 13.75.
stat
Some Doubly and Multiply Robust Estimators of Controlled Direct Effects
This letter introduces several doubly, triply, and quadruply robust estimators of the controlled direct effect. Among them, the triply and quadruply robust estimators are locally semiparametric efficient, and well suited to the use of data-adaptive methods for estimating their nuisance functions.
stat
Nonstationarity Analysis of Materials Microstructures via Fisher Score Vectors
Microstructures are critical to the physical properties of materials. Stochastic microstructures are commonly observed in many kinds of materials and traditional descriptor-based image analysis of them can be challenging. In this paper, we introduce a powerful and versatile score-based framework for analyzing nonstationarity in stochastic materials microstructures. The framework involves training a parametric supervised learning model to predict a pixel value using neighboring pixels in images of microstructures~(as known as micrographs), and this predictive model provides an implicit characterization of the stochastic nature of the microstructure. The basis for our approach is the Fisher score vector, defined as the gradient of the log-likelihood with respect to the parameters of the predictive model, at each micrograph pixel. A fundamental property of the score vector is that it is zero-mean if the predictive relationship in the vicinity of that pixel remains unchanged, which we equate with the local stochastic nature of the microstructure remaining unchanged. Conversely, if the local stochastic nature changes, then the mean of the score vector generally differs from zero. Our framework analyzes how the local mean of the score vector varies across one or more image samples to: (1) monitor for nonstationarity by indicating whether new samples are statistically different than reference samples and where they may differ and (2) diagnose nonstationarity by identifying the distinct types of stochastic microstructures and labeling accordingly the corresponding regions of the samples. Unlike feature-based methods, our approach is almost completely general and requires no prior knowledge of the nature of the nonstationarities. Using a number of real and simulated micrographs, including polymer composites and multiphase alloys, we demonstrate the power and versatility of the approach.
stat
A unified approach for inference on algorithm-agnostic variable importance
In many applications, it is of interest to assess the relative contribution of features (or subsets of features) toward the goal of predicting a response -- in other words, to gauge the variable importance of features. Most recent work on variable importance assessment has focused on describing the importance of features within the confines of a given prediction algorithm. However, such assessment does not necessarily characterize the prediction potential of features, and may provide a misleading reflection of the intrinsic value of these features. To address this limitation, we propose a general framework for nonparametric inference on interpretable algorithm-agnostic variable importance. We define variable importance as a population-level contrast between the oracle predictiveness of all available features versus all features except those under consideration. We propose a nonparametric efficient estimation procedure that allows the construction of valid confidence intervals, even when machine learning techniques are used. We also outline a valid strategy for testing the null importance hypothesis. Through simulations, we show that our proposal has good operating characteristics, and we illustrate its use with data from a study of an antibody against HIV-1 infection.
stat
Causal discovery in heavy-tailed models
Causal questions are omnipresent in many scientific problems. While much progress has been made in the analysis of causal relationships between random variables, these methods are not well suited if the causal mechanisms only manifest themselves in extremes. This work aims to connect the two fields of causal inference and extreme value theory. We define the causal tail coefficient that captures asymmetries in the extremal dependence of two random variables. In the population case, the causal tail coefficient is shown to reveal the causal structure if the distribution follows a linear structural causal model. This holds even in the presence of latent common causes that have the same tail index as the observed variables. Based on a consistent estimator of the causal tail coefficient, we propose a computationally highly efficient algorithm that estimates the causal structure. We prove that our method consistently recovers the causal order and we compare it to other well-established and non-extremal approaches in causal discovery on synthetic and real data. The code is available as an open-access R package.
stat
On the role of surrogates in the efficient estimation of treatment effects with limited outcome data
We study the problem of estimating treatment effects when the outcome of primary interest (e.g., long-term health status) is only seldom observed but abundant surrogate observations (e.g., short-term health outcomes) are available. To investigate the role of surrogates in this setting, we derive the semiparametric efficiency lower bounds of average treatment effect (ATE) both with and without presence of surrogates, as well as several intermediary settings. These bounds characterize the best-possible precision of ATE estimation in each case, and their difference quantifies the efficiency gains from optimally leveraging the surrogates in terms of key problem characteristics when only limited outcome data are available. We show these results apply in two important regimes: when the number of surrogate observations is comparable to primary-outcome observations and when the former dominates the latter. Importantly, we take a missing-data approach that circumvents strong surrogate conditions which are commonly assumed in previous literature but almost always fail in practice. To show how to leverage the efficiency gains of surrogate observations, we propose ATE estimators and inferential methods based on flexible machine learning methods to estimate nuisance parameters that appear in the influence functions. We show our estimators enjoy efficiency and robustness guarantees under weak conditions.
stat
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
We consider learning two layer neural networks using stochastic gradient descent. The mean-field description of this learning dynamics approximates the evolution of the network weights by an evolution in the space of probability distributions in $R^D$ (where $D$ is the number of parameters associated to each neuron). This evolution can be defined through a partial differential equation or, equivalently, as the gradient flow in the Wasserstein space of probability distributions. Earlier work shows that (under some regularity assumptions), the mean field description is accurate as soon as the number of hidden units is much larger than the dimension $D$. In this paper we establish stronger and more general approximation guarantees. First of all, we show that the number of hidden units only needs to be larger than a quantity dependent on the regularity properties of the data, and independent of the dimensions. Next, we generalize this analysis to the case of unbounded activation functions, which was not covered by earlier bounds. We extend our results to noisy stochastic gradient descent. Finally, we show that kernel ridge regression can be recovered as a special limit of the mean field analysis.
stat
Gaussian Process Assisted Active Learning of Physical Laws
In many areas of science and engineering, discovering the governing differential equations from the noisy experimental data is an essential challenge. It is also a critical step in understanding the physical phenomena and prediction of the future behaviors of the systems. However, in many cases, it is expensive or time-consuming to collect experimental data. This article provides an active learning approach to estimate the unknown differential equations accurately with reduced experimental data size. We propose an adaptive design criterion combining the D-optimality and the maximin space-filling criterion. In contrast to active learning for other regression models, the D-optimality here requires the unknown solution of the differential equations and derivatives of the solution. We estimate the Gaussian process (GP) regression models from the available experimental data and use them as the surrogates of these unknown solution functions. The derivatives of the estimated GP models are derived and used to substitute the derivatives of the solution. Variable selection-based regression methods are used to learn the differential equations from the experimental data. Through multiple case studies, we demonstrate the proposed approach outperforms the D-optimality and the maximin space-filling design alone in terms of model accuracy and data economy.
stat
Stacked Capsule Autoencoders
Objects are composed of a set of geometrically organized parts. We introduce an unsupervised capsule autoencoder (SCAE), which explicitly uses geometric relationships between parts to reason about objects. Since these relationships do not depend on the viewpoint, our model is robust to viewpoint changes. SCAE consists of two stages. In the first stage, the model predicts presences and poses of part templates directly from the image and tries to reconstruct the image by appropriately arranging the templates. In the second stage, SCAE predicts parameters of a few object capsules, which are then used to reconstruct part poses. Inference in this model is amortized and performed by off-the-shelf neural encoders, unlike in previous capsule networks. We find that object capsule presences are highly informative of the object class, which leads to state-of-the-art results for unsupervised classification on SVHN (55%) and MNIST (98.7%). The code is available at https://github.com/google-research/google-research/tree/master/stacked_capsule_autoencoders
stat
Estimation in the Cox Survival Regression Model with Covariate Measurement Error and a Changepoint
The Cox regression model is a popular model for analyzing the relationship between a covariate and a survival endpoint. The standard Cox model assumes a constant covariate effect across the entire covariate domain. However, in many epidemiological and other applications, the covariate of main interest is subject to a threshold effect: a change in the slope at a certain point within the covariate domain. Often, the covariate of interest is subject to some degree of measurement error. In this paper, we study measurement error correction in the case where the threshold is known. Several bias correction methods are examined: two versions of regression calibration (RC1 and RC2, the latter of which is new), two methods based on the induced relative risk under a rare event assumption (RR1 and RR2, the latter of which is new), a maximum pseudo-partial likelihood estimator (MPPLE), and simulation-extrapolation (SIMEX). We develop the theory, present simulations comparing the methods, and illustrate their use on data concerning the relationship between chronic air pollution exposure to particulate matter PM10 and fatal myocardial infarction (Nurses Health Study (NHS)), and on data concerning the effect of a subject's long-term underlying systolic blood pressure level on the risk of cardiovascular disease death (Framingham Heart Study (FHS)). The simulations indicate that the best methods are RR2 and MPPLE.
stat
Numerical computation of triangular complex spherical designs with small mesh ratio
This paper provides triangular spherical designs for the complex unit sphere $\Omega^d$ by exploiting the natural correspondence between the complex unit sphere in $d$ dimensions and the real unit sphere in $2d-1$. The existence of triangular and square complex spherical $t$-designs with the optimal order number of points is established. A variational characterization of triangular complex designs is provided, with particular emphasis on numerical computation of efficient triangular complex designs with good geometric properties as measured by their mesh ratio. We give numerical examples of triangular spherical $t$-designs on complex unit spheres of dimension $d=2$ to $6$.
stat
Inverse probability of censoring weighting for visual predictive checks of time-to-event models with time-varying covariates
When constructing models to summarize clinical data to be used for simulations, it is good practice to evaluate the models for their capacity to reproduce the data. This can be done by means of Visual Predictive Checks (VPC), which consist of (1) several reproductions of the original study by simulation from the model under evaluation, (2) calculating estimates of interest for each simulated study and (3) comparing the distribution of those estimates with the estimate from the original study. This procedure is a generic method that is straightforward to apply, in general. Here we consider the application of the method to time to event data and consider the special case when a time-varying covariate is not known or cannot be approximated after event time. In this case, simulations cannot be conducted beyond the end of the follow-up time (event or censoring time) in the original study. Thus, the simulations must be censored at the end of the follow-up time. Since this censoring is not random, the standard KM estimates from the simulated studies and the resulting VPC will be biased. We propose to use inverse probability of censoring weighting (IPoC) method to correct the KM estimator for the simulated studies and obtain unbiased VPCs. For analyzing the Cantos study, the IPoC weighting as described here proved valuable and enabled the generation of VPCs to qualify PKPD models for simulations. Here, we use a generated data set, which allows illustration of the different situations and evaluation against the known truth.
stat
A Comparison of Aggregation Methods for Probabilistic Forecasts of COVID-19 Mortality in the United States
The COVID-19 pandemic has placed forecasting models at the forefront of health policy making. Predictions of mortality and hospitalization help governments meet planning and resource allocation challenges. In this paper, we consider the weekly forecasting of the cumulative mortality due to COVID-19 at the national and state level in the U.S. Optimal decision-making requires a forecast of a probability distribution, rather than just a single point forecast. Interval forecasts are also important, as they can support decision making and provide situational awareness. We consider the case where probabilistic forecasts have been provided by multiple forecasting teams, and we aggregate the forecasts to extract the wisdom of the crowd. With only limited information available regarding the historical accuracy of the forecasting teams, we consider aggregation (i.e. combining) methods that do not rely on a record of past accuracy. In this empirical paper, we evaluate the accuracy of aggregation methods that have been previously proposed for interval forecasts and predictions of probability distributions. These include the use of the simple average, the median, and trimming methods, which enable robust estimation and allow the aggregate forecast to reduce the impact of a tendency for the forecasting teams to be under- or overconfident. We use data that has been made publicly available from the COVID-19 Forecast Hub. While the simple average performed well for the high mortality series, we obtained greater accuracy using the median and certain trimming methods for the low and medium mortality series. It will be interesting to see if this remains the case as the pandemic evolves.
stat
High-dimensional single-index Bayesian modeling of brain atrophy
We propose a model of brain atrophy as a function of high-dimensional genetic information and low dimensional covariates such as gender, age, APOE gene, and disease status. A nonparametric single-index Bayesian model of high dimension is proposed to model the relationship with B-spline series prior on the unknown functions and Dirichlet process scale mixture of centered normal prior on the distributions of the random effects. The posterior rate of contraction without the random effect is established for a fixed number of regions and time points with increasing sample size. We implement an efficient computation algorithm through a Hamiltonian Monte Carlo (HMC) algorithm. The performance of the proposed Bayesian method is compared with the corresponding least square estimator in the linear model with horseshoe prior, LASSO and SCAD penalization on the high-dimensional covariates. The proposed Bayesian method is applied to a dataset on volumes of brain regions recorded over multiple visits of 748 individuals using 620,901 SNPs and 6 other covariates for each individual, to identify factors associated with brain atrophy.
stat
Modelling High-Dimensional Categorical Data Using Nonconvex Fusion Penalties
We propose a method for estimation in high-dimensional linear models with nominal categorical data. Our estimator, called SCOPE, fuses levels together by making their corresponding coefficients exactly equal. This is achieved using the minimax concave penalty on differences between the order statistics of the coefficients for a categorical variable, thereby clustering the coefficients. We provide an algorithm for exact and efficient computation of the global minimum of the resulting nonconvex objective in the case with a single variable with potentially many levels, and use this within a block coordinate descent procedure in the multivariate case. We show that an oracle least squares solution that exploits the unknown level fusions is a limit point of the coordinate descent with high probability, provided the true levels have a certain minimum separation; these conditions are known to be minimal in the univariate case. We demonstrate the favourable performance of SCOPE across a range of real and simulated datasets. An R package CatReg implementing SCOPE for linear models and also a version for logistic regression is available on CRAN.
stat
Optimizing regularized Cholesky score for order-based learning of Bayesian networks
Bayesian networks are a class of popular graphical models that encode causal and conditional independence relations among variables by directed acyclic graphs (DAGs). We propose a novel structure learning method, annealing on regularized Cholesky score (ARCS), to search over topological sorts, or permutations of nodes, for a high-scoring Bayesian network. Our scoring function is derived from regularizing Gaussian DAG likelihood, and its optimization gives an alternative formulation of the sparse Cholesky factorization problem from a statistical viewpoint, which is of independent interest. We combine global simulated annealing over permutations with a fast proximal gradient algorithm, operating on triangular matrices of edge coefficients, to compute the score of any permutation. Combined, the two approaches allow us to quickly and effectively search over the space of DAGs without the need to verify the acyclicity constraint or to enumerate possible parent sets given a candidate topological sort. The annealing aspect of the optimization is able to consistently improve the accuracy of DAGs learned by local search algorithms. In addition, we develop several techniques to facilitate the structure learning, including pre-annealing data-driven tuning parameter selection and post-annealing constraint-based structure refinement. Through extensive numerical comparisons, we show that ARCS achieves substantial improvements over existing methods, demonstrating its great potential to learn Bayesian networks from both observational and experimental data.
stat
Social Distancing and COVID-19: Randomization Inference for a Structured Dose-Response Relationship
Social distancing is widely acknowledged as an effective public health policy combating the novel coronavirus. But extreme social distancing has costs and it is not clear how much social distancing is needed to achieve public health effects. In this article, we develop a design-based framework to make inference about the dose-response relationship between social distancing and COVID-19 related death toll and case numbers. We first discuss how to embed observational data with a time-independent, continuous treatment dose into an approximate randomized experiment, and develop a randomization-based procedure that tests if a structured dose-response relationship fits the data. We then generalize the design and testing procedure to accommodate a time-dependent, treatment dose trajectory, and generalize a dose-response relationship to a longitudinal setting. Finally, we apply the proposed design and testing procedures to investigate the effect of social distancing during the phased reopening in the United States on public health outcomes using data compiled from sources including Unacast, the United States Census Bureau, and the County Health Rankings and Roadmaps Program. We test a primary analysis hypothesis that states the social distancing from April 27th to June 28th had no effect on the COVID-19-related death toll from June 29th to August 2nd (p-value < 0.001) and conducted extensive secondary analyses that investigate the dose-response relationship between social distancing and COVID-19 case numbers.
stat
BVAR-Connect: A Variational Bayes Approach to Multi-Subject Vector Autoregressive Models for Inference on Brain Connectivity Networks
In this paper we propose BVAR-connect, a variational inference approach to a Bayesian multi-subject vector autoregressive (VAR) model for inference on effective brain connectivity based on resting-state functional MRI data. The modeling framework uses a Bayesian variable selection approach that flexibly integrates multi-modal data, in particular structural diffusion tensor imaging (DTI) data, into the prior construction. The variational inference approach we develop allows scalability of the methods and results in the ability to estimate subject- and group-level brain connectivity networks over whole-brain parcellations of the data. We provide a brief description of a user-friendly MATLAB GUI released for public use. We assess performance on simulated data, where we show that the proposed inference method can achieve comparable accuracy to the sampling-based Markov Chain Monte Carlo approach but at a much lower computational cost. We also address the case of subject groups with imbalanced sample sizes. Finally, we illustrate the methods on resting-state functional MRI and structural DTI data on children with a history of traumatic injury.
stat
G-Formula for Observational Studies with Partial Interference, with Application to Bed Net Use on Malaria
Assessing population-level effects of vaccines and other infectious disease prevention measures is important to the field of public health. In infectious disease studies, one person's treatment may affect another individual's outcome, i.e., there may be interference between units. For example, use of bed nets to prevent malaria by one individual may have an indirect or spillover effect to other individuals living in close proximity. In some settings, individuals may form groups or clusters where interference only occurs within groups, i.e., there is partial interference. Inverse probability weighted estimators have previously been developed for observational studies with partial interference. Unfortunately, these estimators are not well suited for studies with large clusters. Therefore, in this paper, the parametric g-formula is extended to allow for partial interference. G-formula estimators are proposed of overall effects, spillover effects when treated, and spillover effects when untreated. The proposed estimators can accommodate large clusters and do not suffer from the g-null paradox that may occur in the absence of interference. The large sample properties of the proposed estimators are derived, and simulation studies are presented demonstrating the finite-sample performance of the proposed estimators. The Demographic and Health Survey from the Democratic Republic of the Congo is then analyzed using the proposed g-formula estimators to assess the overall and spillover effects of bed net use on malaria.
stat
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
With rapid adoption of deep learning in critical applications, the question of when and how much to trust these models often arises, which drives the need to quantify the inherent uncertainties. While identifying all sources that account for the stochasticity of models is challenging, it is common to augment predictions with confidence intervals to convey the expected variations in a model's behavior. We require prediction intervals to be well-calibrated, reflect the true uncertainties, and to be sharp. However, existing techniques for obtaining prediction intervals are known to produce unsatisfactory results in at least one of these criteria. To address this challenge, we develop a novel approach for building calibrated estimators. More specifically, we use separate models for prediction and interval estimation, and pose a bi-level optimization problem that allows the former to leverage estimates from the latter through an \textit{uncertainty matching} strategy. Using experiments in regression, time-series forecasting, and object localization, we show that our approach achieves significant improvements over existing uncertainty quantification methods, both in terms of model fidelity and calibration error.
stat
The Benefits of Over-parameterization at Initialization in Deep ReLU Networks
It has been noted in existing literature that over-parameterization in ReLU networks generally improves performance. While there could be several factors involved behind this, we prove some desirable theoretical properties at initialization which may be enjoyed by ReLU networks. Specifically, it is known that He initialization in deep ReLU networks asymptotically preserves variance of activations in the forward pass and variance of gradients in the backward pass for infinitely wide networks, thus preserving the flow of information in both directions. Our paper goes beyond these results and shows novel properties that hold under He initialization: i) the norm of hidden activation of each layer is equal to the norm of the input, and, ii) the norm of weight gradient of each layer is equal to the product of norm of the input vector and the error at output layer. These results are derived using the PAC analysis framework, and hold true for finitely sized datasets such that the width of the ReLU network only needs to be larger than a certain finite lower bound. As we show, this lower bound depends on the depth of the network and the number of samples, and by the virtue of being a lower bound, over-parameterized ReLU networks are endowed with these desirable properties. For the aforementioned hidden activation norm property under He initialization, we further extend our theory and show that this property holds for a finite width network even when the number of data samples is infinite. Thus we overcome several limitations of existing papers, and show new properties of deep ReLU networks at initialization.
stat
Learning higher-order sequential structure with cloned HMMs
Variable order sequence modeling is an important problem in artificial and natural intelligence. While overcomplete Hidden Markov Models (HMMs), in theory, have the capacity to represent long-term temporal structure, they often fail to learn and converge to local minima. We show that by constraining HMMs with a simple sparsity structure inspired by biology, we can make it learn variable order sequences efficiently. We call this model cloned HMM (CHMM) because the sparsity structure enforces that many hidden states map deterministically to the same emission state. CHMMs with over 1 billion parameters can be efficiently trained on GPUs without being severely affected by the credit diffusion problem of standard HMMs. Unlike n-grams and sequence memoizers, CHMMs can model temporal dependencies at arbitrarily long distances and recognize contexts with 'holes' in them. Compared to Recurrent Neural Networks and their Long Short-Term Memory extensions (LSTMs), CHMMs are generative models that can natively deal with uncertainty. Moreover, CHMMs return a higher-order graph that represents the temporal structure of the data which can be useful for community detection, and for building hierarchical models. Our experiments show that CHMMs can beat n-grams, sequence memoizers, and LSTMs on character-level language modeling tasks. CHMMs can be a viable alternative to these methods in some tasks that require variable order sequence modeling and the handling of uncertainty.
stat
Improving Spectral Clustering using the Asymptotic Value of the Normalised Cut
Spectral clustering is a popular and versatile clustering method based on a relaxation of the normalised graph cut objective. Despite its popularity, however, there is no single agreed upon method for tuning the important scaling parameter, nor for determining automatically the number of clusters to extract. Popular heuristics exist, but corresponding theoretical results are scarce. In this paper we investigate the asymptotic value of the normalised cut for an increasing sample assumed to arise from an underlying probability distribution, and based on this result provide recommendations for improving spectral clustering methodology. A corresponding algorithm is proposed with strong empirical performance.
stat
casebase: An Alternative Framework For Survival Analysis and Comparison of Event Rates
In epidemiological studies of time-to-event data, a quantity of interest to the clinician and the patient is the risk of an event given a covariate profile. However, methods relying on time matching or risk-set sampling (including Cox regression) eliminate the baseline hazard from the likelihood expression or the estimating function. The baseline hazard then needs to be estimated separately using a non-parametric approach. This leads to step-wise estimates of the cumulative incidence that are difficult to interpret. Using case-base sampling, Hanley & Miettinen (2009) explained how the parametric hazard functions can be estimated using logistic regression. Their approach naturally leads to estimates of the cumulative incidence that are smooth-in-time. In this paper, we present the casebase R package, a comprehensive and flexible toolkit for parametric survival analysis. We describe how the case-base framework can also be used in more complex settings: competing risks, time-varying exposure, and variable selection. Our package also includes an extensive array of visualization tools to complement the analysis of time-to-event data. We illustrate all these features through four different case studies. *SRB and MT contributed equally to this work.
stat