title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
We consider probabilistic programming for birth-death models of evolution and introduce a new widely-applicable inference method that combines an extension of the alive particle filter (APF) with automatic Rao-Blackwellization via delayed sampling. Birth-death models of evolution are an important family of phylogenetic models of the diversification processes that lead to evolutionary trees. Probabilistic programming languages (PPLs) give phylogeneticists a new and exciting tool: their models can be implemented as probabilistic programs with just a basic knowledge of programming. The general inference methods in PPLs reduce the need for external experts, allow quick prototyping and testing, and accelerate the development and deployment of new models. We show how these birth-death models can be implemented as simple programs in existing PPLs, and demonstrate the usefulness of the proposed inference method for such models. For the popular BiSSE model the method yields an increase of the effective sample size and the conditional acceptance rate by a factor of 30 in comparison with a standard bootstrap particle filter. Although concentrating on phylogenetics, the extended APF is a general inference method that shows its strength in situations where particles are often assigned zero weight. In the case when the weights are always positive, the extra cost of using the APF rather than the bootstrap particle filter is negligible, making our method a suitable drop-in replacement for the bootstrap particle filter in probabilistic programming inference.
stat
Spatial Multivariate Trees for Big Data Bayesian Regression
High resolution geospatial data are challenging because standard geostatistical models based on Gaussian processes are known to not scale to large data sizes. While progress has been made towards methods that can be computed more efficiently, considerably less attention has been devoted to big data methods that allow the description of complex relationships between several outcomes recorded at high resolutions by different sensors. Our Bayesian multivariate regression models based on spatial multivariate trees (SpamTrees) achieve scalability via conditional independence assumptions on latent random effects following a treed directed acyclic graph. Information-theoretic arguments and considerations on computational efficiency guide the construction of the tree and the related efficient sampling algorithms in imbalanced multivariate settings. In addition to simulated data examples, we illustrate SpamTrees using a large climate data set which combines satellite data with land-based station data. Source code is available at https://github.com/mkln/spamtree
stat
Almost-Matching-Exactly for Treatment Effect Estimation under Network Interference
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network, and units that share edges can potentially influence each others' outcomes. Traditional treatment effect estimators for randomized experiments are biased and error prone in this setting. Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs. The matches that we construct are interpretable and high-quality. Our method can be extended easily to accommodate additional unit-level covariate information. We show empirically that our method performs better than other existing methodologies for this problem, while producing meaningful, interpretable results.
stat
Predicting Shot Making in Basketball Learnt from Adversarial Multiagent Trajectories
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain specific knowledge. Although intuitive, recent work in deep learning has shown this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multi-channel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories we "fade" the player trajectories. We find that this approach is superior to a traditional FFN model. By using gradient ascent to create images using an already trained CNN, we discover what features the CNN filters learn. Last, we find that a combined CNN+FFN is the best performing network with an error rate of 39%.
stat
Deductron -- A Recurrent Neural Network
The current paper is a study in Recurrent Neural Networks (RNN), motivated by the lack of examples simple enough so that they can be thoroughly understood theoretically, but complex enough to be realistic. We constructed an example of structured data, motivated by problems from image-to-text conversion (OCR), which requires long-term memory to decode. Our data is a simple writing system, encoding characters 'X' and 'O' as their upper halves, which is possible due to symmetry of the two characters. The characters can be connected, as in some languages using cursive, such as Arabic (abjad). The string 'XOOXXO' may be encoded as '${\vee}{\wedge}\kern-1.5pt{\wedge}{\vee}\kern-1.5pt{\vee}{\wedge}$'. It follows that we may need to know arbitrarily long past to decode a current character, thus requiring long-term memory. Subsequently we constructed an RNN capable of decoding sequences encoded in this manner. Rather than by training, we constructed our RNN "by inspection", i.e. we guessed its weights. This involved a sequence of steps. We wrote a conventional program which decodes the sequences as the example above. Subsequently, we interpreted the program as a neural network (the only example of this kind known to us). Finally, we generalized this neural network to discover a new RNN architecture whose instance is our handcrafted RNN. It turns out to be a 3 layer network, where the middle layer is capable of performing simple logical inferences; thus the name "deductron". It is demonstrated that it is possible to train our network by simulated annealing. Also, known variants of stochastic gradient descent (SGD) methods are shown to work.
stat
Subsidising Inclusive Insurance to Reduce Poverty
In this article, we consider a compound Poisson-type model for households' capital. Using risk theory techniques, we determine the probability of a household falling under the poverty line. Microinsurance is then introduced to analyse its impact as an insurance solution for the lower income class. Our results validate those previously obtained with this type of model, showing that microinsurance alone is not sufficient to reduce the probability of falling into the area of poverty for specific groups of people, since premium payments constrain households' capital growth. This indicates the need for additional aid particularly from the government. As such, we propose several premium subsidy strategies and discuss the role of government in subsidising microinsurance to help reduce poverty.
stat
Stability and Generalization of the Decentralized Stochastic Gradient Descent
The stability and generalization of stochastic gradient-based methods provide valuable insights into understanding the algorithmic performance of machine learning models. As the main workhorse for deep learning, stochastic gradient descent has received a considerable amount of studies. Nevertheless, the community paid little attention to its decentralized variants. In this paper, we provide a novel formulation of the decentralized stochastic gradient descent. Leveraging this formulation together with (non)convex optimization theory, we establish the first stability and generalization guarantees for the decentralized stochastic gradient descent. Our theoretical results are built on top of a few common and mild assumptions and reveal that the decentralization deteriorates the stability of SGD for the first time. We verify our theoretical findings by using a variety of decentralized settings and benchmark machine learning models.
stat
Estimating the Variance of Measurement Errors in Running Variables of Sharp Regression Discontinuity Designs
Estimation of a treatment effect by a regression discontinuity design faces a severe challenge when the running variable contains measurement errors since the errors smoothen the discontinuity on which the identification depends. The existing studies show that the variance of the measurement errors plays a vital role in both bias correction and identification under such situations. However, the methodologies to estimate the variance from data are relatively undeveloped. This paper proposes two estimators for the variance of measurement errors of running variables of sharp regression continuity designs. The proposed estimators can be constructed merely from data of observed running variable and treatment assignment, and do not require any other external source of information.
stat
Are Clusterings of Multiple Data Views Independent?
In the Pioneer 100 (P100) Wellness Project (Price and others, 2017), multiple types of data are collected on a single set of healthy participants at multiple timepoints in order to characterize and optimize wellness. One way to do this is to identify clusters, or subgroups, among the participants, and then to tailor personalized health recommendations to each subgroup. It is tempting to cluster the participants using all of the data types and timepoints, in order to fully exploit the available information. However, clustering the participants based on multiple data views implicitly assumes that a single underlying clustering of the participants is shared across all data views. If this assumption does not hold, then clustering the participants using multiple data views may lead to spurious results. In this paper, we seek to evaluate the assumption that there is some underlying relationship among the clusterings from the different data views, by asking the question: are the clusters within each data view dependent or independent? We develop a new test for answering this question, which we then apply to clinical, proteomic, and metabolomic data, across two distinct timepoints, from the P100 study. We find that while the subgroups of the participants defined with respect to any single data type seem to be dependent across time, the clustering among the participants based on one data type (e.g. proteomic data) appears not to be associated with the clustering based on another data type (e.g. clinical data).
stat
Bayesian inference for transportation origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures
In this paper we present Poisson mixture approaches for origin-destination (OD) modeling in transportation analysis. We introduce covariate-based models which incorporate different transport modeling phases and also allow for direct probabilistic inference on link traffic based on Bayesian predictions. Emphasis is placed on the Poisson-inverse Gaussian as an alternative to the commonly-used Poisson-gamma and Poisson-lognormal models. We present a first full Bayesian formulation and demonstrate that the Poisson-inverse Gaussian is particularly suited for OD analysis due to desirable marginal and hierarchical properties. In addition, the integrated nested Laplace approximation (INLA) is considered as an alternative to Markov chain Monte Carlo and the two methodologies are compared under specific modeling assumptions. The case study is based on 2001 Belgian census data and focuses on a large, sparsely-distributed OD matrix containing trip information for 308 Flemish municipalities.
stat
A new Bayesian two-sample t-test for effect size estimation under uncertainty based on a two-component Gaussian mixture with known allocations and the region of practical equivalence
Testing differences between a treatment and control group is common practice in biomedical research like randomized controlled trials (RCT). The standard two-sample t-test relies on null hypothesis significance testing (NHST) via p-values, which has several drawbacks. Bayesian alternatives were recently introduced using the Bayes factor, which has its own limitations. This paper introduces an alternative to current Bayesian two-sample t-tests by interpreting the underlying model as a two-component Gaussian mixture in which the effect size is the quantity of interest, which is most relevant in clinical research. Unlike p-values or the Bayes factor, the proposed method focusses on estimation under uncertainty instead of explicit hypothesis testing. Therefore, via a Gibbs sampler the posterior of the effect size is produced, which is used subsequently for either estimation under uncertainty or explicit hypothesis testing based on the region of practical equivalence (ROPE). An illustrative example, theoretical results and a simulation study show the usefulness of the proposed method, and the test is made available in the R package bayest.
stat
Assessing and Visualizing Simultaneous Simulation Error
Monte Carlo experiments produce samples in order to estimate features of a given distribution. However, simultaneous estimation of means and quantiles has received little attention, despite being common practice. In this setting we establish a multivariate central limit theorem for any finite combination of sample means and quantiles under the assumption of a strongly mixing process, which includes the standard Monte Carlo and Markov chain Monte Carlo settings. We build on this to provide a fast algorithm for constructing hyperrectangular confidence regions having the desired simultaneous coverage probability and a convenient marginal interpretation. The methods are incorporated into standard ways of visualizing the results of Monte Carlo experiments enabling the practitioner to more easily assess the reliability of the results. We demonstrate the utility of this approach in various Monte Carlo settings including simulation studies based on independent and identically distributed samples and Bayesian analyses using Markov chain Monte Carlo sampling.
stat
Variational Inference for Stochastic Block Models from Sampled Data
This paper deals with non-observed dyads during the sampling of a network and consecutive issues in the inference of the Stochastic Block Model (SBM). We review sampling designs and recover Missing At Random (MAR) and Not Missing At Random (NMAR) conditions for the SBM. We introduce variants of the variational EM algorithm for inferring the SBM under various sampling designs (MAR and NMAR) all available as an R package. Model selection criteria based on Integrated Classification Likelihood are derived for selecting both the number of blocks and the sampling design. We investigate the accuracy and the range of applicability of these algorithms with simulations. We explore two real-world networks from ethnology (seed circulation network) and biology (protein-protein interaction network), where the interpretations considerably depends on the sampling designs considered.
stat
Deep Direct Likelihood Knockoffs
Predictive modeling often uses black box machine learning methods, such as deep neural networks, to achieve state-of-the-art performance. In scientific domains, the scientist often wishes to discover which features are actually important for making the predictions. These discoveries may lead to costly follow-up experiments and as such it is important that the error rate on discoveries is not too high. Model-X knockoffs enable important features to be discovered with control of the FDR. However, knockoffs require rich generative models capable of accurately modeling the knockoff features while ensuring they obey the so-called "swap" property. We develop Deep Direct Likelihood Knockoffs (DDLK), which directly minimizes the KL divergence implied by the knockoff swap property. DDLK consists of two stages: it first maximizes the explicit likelihood of the features, then minimizes the KL divergence between the joint distribution of features and knockoffs and any swap between them. To ensure that the generated knockoffs are valid under any possible swap, DDLK uses the Gumbel-Softmax trick to optimize the knockoff generator under the worst-case swap. We find DDLK has higher power than baselines while controlling the false discovery rate on a variety of synthetic and real benchmarks including a task involving a large dataset from one of the epicenters of COVID-19.
stat
Stochastic filters based on hybrid approximations of multiscale stochastic reaction networks
We consider the problem of estimating the dynamic latent states of an intracellular multiscale stochastic reaction network from time-course measurements of fluorescent reporters. We first prove that accurate solutions to the filtering problem can be constructed by solving the filtering problem for a reduced model that represents the dynamics as a hybrid process. The model reduction is based on exploiting the time-scale separations in the original network, and it can greatly reduce the computational effort required to simulate the dynamics. This enables us to develop efficient particle filters to solve the filtering problem for the original model by applying particle filters to the reduced model. We illustrate the accuracy and the computational efficiency of our approach using a numerical example.
stat
A Bayesian Redesign of the First Probability/Statistics Course
The traditional calculus-based introduction to statistical inference consists of a semester of probability followed by a semester of frequentist inference. Cobb (2015) challenges the statistical education community to rethink the undergraduate statistics curriculum. In particular, he suggests that we should focus on two goals: making fundamental concepts accessible and minimizing prerequisites to research. Using five underlying principles of Cobb, we describe a new calculus-based introduction to statistics based on simulation-based Bayesian computation.
stat
Stable Rank Normalization for Improved Generalization in Neural Networks and GANs
Exciting new work on the generalization bounds for neural networks (NN) given by Neyshabur et al. , Bartlett et al. closely depend on two parameter-depenedent quantities: the Lipschitz constant upper-bound and the stable rank (a softer version of the rank operator). This leads to an interesting question of whether controlling these quantities might improve the generalization behaviour of NNs. To this end, we propose stable rank normalization (SRN), a novel, optimal, and computationally efficient weight-normalization scheme which minimizes the stable rank of a linear operator. Surprisingly we find that SRN, inspite of being non-convex problem, can be shown to have a unique optimal solution. Moreover, we show that SRN allows control of the data-dependent empirical Lipschitz constant, which in contrast to the Lipschitz upper-bound, reflects the true behaviour of a model on a given dataset. We provide thorough analyses to show that SRN, when applied to the linear layers of a NN for classification, provides striking improvements-11.3% on the generalization gap compared to the standard NN along with significant reduction in memorization. When applied to the discriminator of GANs (called SRN-GAN) it improves Inception, FID, and Neural divergence scores on the CIFAR 10/100 and CelebA datasets, while learning mappings with low empirical Lipschitz constants.
stat
Co-clustering of time-dependent data via Shape Invariant Model
Multivariate time-dependent data, where multiple features are observed over time for a set of individuals, are increasingly widespread in many application domains. To model these data we need to account for relations among both time instants and variables and, at the same time, for subjects heterogeneity. We propose a new co-clustering methodology for clustering individuals and variables simultaneously that is designed to handle both functional and longitudinal data. Our approach borrows some concepts from the curve registration framework by embedding the Shape Invariant Model in the Latent Block Model, estimated via a suitable modification of the SEM-Gibbs algorithm. The resulting procedure allows for several user-defined specifications of the notion of cluster that could be chosen on substantive grounds and provides parsimonious summaries of complex longitudinal or functional data by partitioning data matrices into homogeneous blocks.
stat
Metrics for Graph Comparison: A Practitioner's Guide
Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as $\lambda$ distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work.
stat
Timber Volume Estimation Based on Airborne Laser Scanning -- Comparing the Use of National Forest Inventory and Forest Management Inventory Data
Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. We aim to 1) compare a timber volume model used in a NFI-based map and models used in a FMI, and 2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map.The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.
stat
Application of Deep Learning-based Interpolation Methods to Nearshore Bathymetry
Nearshore bathymetry, the topography of the ocean floor in coastal zones, is vital for predicting the surf zone hydrodynamics and for route planning to avoid subsurface features. Hence, it is increasingly important for a wide variety of applications, including shipping operations, coastal management, and risk assessment. However, direct high resolution surveys of nearshore bathymetry are rarely performed due to budget constraints and logistical restrictions. Another option when only sparse observations are available is to use Gaussian Process regression (GPR), also called Kriging. But GPR has difficulties recognizing patterns with sharp gradients, like those found around sand bars and submerged objects, especially when observations are sparse. In this work, we present several deep learning-based techniques to estimate nearshore bathymetry with sparse, multi-scale measurements. We propose a Deep Neural Network (DNN) to compute posterior estimates of the nearshore bathymetry, as well as a conditional Generative Adversarial Network (cGAN) that samples from the posterior distribution. We train our neural networks based on synthetic data generated from nearshore surveys provided by the U.S.\ Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We compare our methods with Kriging on real surveys as well as surveys with artificially added sharp gradients. Results show that direct estimation by DNN gives better predictions than Kriging in this application. We use bootstrapping with DNN for uncertainty quantification. We also propose a method, named DNN-Kriging, that combines deep learning with Kriging and shows further improvement of the posterior estimates.
stat
Multi-scale graph principal component analysis for connectomics
In brain connectomics, the cortical surface is parcellated into different regions of interest (ROIs) prior to statistical analysis. The brain connectome for each individual can then be represented as a graph, with the nodes corresponding to ROIs and edges to connections between ROIs. Such a graph can be summarized as an adjacency matrix, with each cell containing the strength of connection between a pair of ROIs. These matrices are symmetric with the diagonal elements corresponding to self-connections typically excluded. A major disadvantage of such representations of the connectome is their sensitivity to the chosen ROIs, including critically the number of ROIs and hence the scale of the graph. As the scale becomes finer and more ROIs are used, graphs become increasingly sparse. Clearly, the results of downstream statistical analyses can be highly dependent on the chosen parcellation. To solve this problem, we propose a multi-scale graph factorization, which links together scale-specific factorizations through a common set of individual-specific scores. These scores summarize an individual's brain structure combining information across measurement scales. We obtain a simple and efficient algorithm for implementation, and illustrate substantial advantages over single scale approaches in simulations and analyses of the Human Connectome Project dataset.
stat
Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation
The increased usage of solar energy places additional importance on forecasts of solar radiation. Solar panel power production is primarily driven by the amount of solar radiation and it is therefore important to have accurate forecasts of solar radiation. Accurate forecasts that also give information on the forecast uncertainties can help users of solar energy to make better solar radiation based decisions related to the stability of the electrical grid. To achieve this, we apply statistical post-processing techniques that determine relationships between observations of global radiation (made within the KNMI network of automatic weather stations in the Netherlands) and forecasts of various meteorological variables from the numerical weather prediction (NWP) model HARMONIE-AROME (HA) and the atmospheric composition model CAMS. Those relationships are used to produce probabilistic forecasts of global radiation. We compare 7 different statistical post-processing methods, consisting of two parametric and five non-parametric methods. We find that all methods are able to generate probabilistic forecasts that improve the raw global radiation forecast from HA according to the root mean squared error (on the median) and the potential economic value. Additionally, we show how important the predictors are in the different regression methods. We also compare the regression methods using various probabilistic scoring metrics, namely the continuous ranked probability skill score, the Brier skill score and reliability diagrams. We find that quantile regression and generalized random forests generally perform best. In (near) clear sky conditions the non-parametric methods have more skill than the parametric ones.
stat
Horseshoe Regularization for Machine Learning in Complex and Deep Models
Since the advent of the horseshoe priors for regularization, global-local shrinkage methods have proved to be a fertile ground for the development of Bayesian methodology in machine learning, specifically for high-dimensional regression and classification problems. They have achieved remarkable success in computation, and enjoy strong theoretical support. Most of the existing literature has focused on the linear Gaussian case; see Bhadra et al. (2019b) for a systematic survey. The purpose of the current article is to demonstrate that the horseshoe regularization is useful far more broadly, by reviewing both methodological and computational developments in complex models that are more relevant to machine learning applications. Specifically, we focus on methodological challenges in horseshoe regularization in nonlinear and non-Gaussian models; multivariate models; and deep neural networks. We also outline the recent computational developments in horseshoe shrinkage for complex models along with a list of available software implementations that allows one to venture out beyond the comfort zone of the canonical linear regression problems.
stat
A generalised OMP algorithm for feature selection with application to gene expression data
Feature selection for predictive analytics is the problem of identifying a minimal-size subset of features that is maximally predictive of an outcome of interest. To apply to molecular data, feature selection algorithms need to be scalable to tens of thousands of available features. In this paper, we propose gOMP, a highly-scalable generalisation of the Orthogonal Matching Pursuit feature selection algorithm to several directions: (a) different types of outcomes, such as continuous, binary, nominal, and time-to-event, (b) different types of predictive models (e.g., linear least squares, logistic regression), (c) different types of predictive features (continuous, categorical), and (d) different, statistical-based stopping criteria. We compare the proposed algorithm against LASSO, a prototypical, widely used algorithm for high-dimensional data. On dozens of simulated datasets, as well as, real gene expression datasets, gOMP is on par, or outperforms LASSO for case-control binary classification, quantified outcomes (regression), and (censored) survival times (time-to-event) analysis. gOMP has also several theoretical advantages that are discussed. While gOMP is based on quite simple and basic statistical ideas, easy to implement and to generalize, we also show in an extensive evaluation that it is also quite effective in bioinformatics analysis settings.
stat
Predicting the outputs of finite networks trained with noisy gradients
A recent line of works studied wide deep neural networks (DNNs) by approximating them as Gaussian Processes (GPs). A DNN trained with gradient flow was shown to map to a GP governed by the Neural Tangent Kernel (NTK), whereas earlier works showed that a DNN with an i.i.d. prior over its weights maps to the so-called Neural Network Gaussian Process (NNGP). Here we consider a DNN training protocol, involving noise, weight decay and finite width, whose outcome corresponds to a certain non-Gaussian stochastic process. An analytical framework is then introduced to analyze this non-Gaussian process, whose deviation from a GP is controlled by the finite width. Our contribution is three-fold: (i) In the infinite width limit, we establish a correspondence between DNNs trained with noisy gradients and the NNGP, not the NTK. (ii) We provide a general analytical form for the finite width correction (FWC) for DNNs with arbitrary activation functions and depth and use it to predict the outputs of empirical finite networks with high accuracy. Analyzing the FWC behavior as a function of $n$, the training set size, we find that it is negligible for both the very small $n$ regime, and, surprisingly, for the large $n$ regime (where the GP error scales as $O(1/n)$). (iii) We flesh-out algebraically how these FWCs can improve the performance of finite convolutional neural networks (CNNs) relative to their GP counterparts on image classification tasks.
stat
Ongoing Vaccine and Monoclonal Antibody HIV Prevention Efficacy Trials and Considerations for Sequel Efficacy Trial Designs
Four randomized placebo-controlled efficacy trials of a candidate vaccine or passively infused monoclonal antibody for prevention of HIV-1 infection are underway (HVTN 702 in South African men and women; HVTN 705 in sub-Saharan African women; HVTN 703/HPTN 081 in sub-Saharan African women; HVTN 704/HPTN 085 in U.S., Peruvian, Brazilian, and Swiss men or transgender persons who have sex with men). Several challenges are posed to the optimal design of the sequel efficacy trials, including: (1) how to account for the evolving mosaic of effective prevention interventions that may be part of the trial design or standard of prevention; (2) how to define viable and optimal sequel trial designs depending on the primary efficacy results and secondary 'correlates of protection' results of each of the ongoing trials; and (3) how to define the primary objective of sequel efficacy trials if HIV-1 incidence is expected to be very low in all study arms such that a standard trial design has a steep opportunity cost. After summarizing the ongoing trials, I discuss statistical science considerations for sequel efficacy trial designs, both generally and specifically to each trial listed above. One conclusion is that the results of 'correlates of protection' analyses, which ascertain how different host immunological markers and HIV-1 viral features impact HIV-1 risk and prevention efficacy, have an important influence on sequel trial design. This influence is especially relevant for the monoclonal antibody trials because of the focused pre-trial hypothesis that potency and coverage of serum neutralization constitutes a surrogate endpoint for HIV-1 infection... (see manuscript for the full abstract)
stat
Bayesian generalized linear model for over and under dispersed counts
Bayesian models that can handle both over and under dispersed counts are rare in the literature, perhaps because full probability distributions for dispersed counts are rather difficult to construct. This note takes a first look at Bayesian Conway-Maxwell-Poisson generalized linear models that can handle both over and under dispersion yet retain the parsimony and interpretability of classical count regression models. The focus is on providing an explicit demonstration of Bayesian regression inferences for dispersed counts via a Metropolis-Hastings algorithm. We illustrate the approach on two data analysis examples and demonstrate some favourable frequentist properties via a simulation study.
stat
A Parsimonious Tour of Bayesian Model Uncertainty
Modern statistical software and machine learning libraries are enabling semi-automated statistical inference. Within this context, it appears easier and easier to try and fit many models to the data at hand, reversing thereby the Fisherian way of conducting science by collecting data after the scientific hypothesis (and hence the model) has been determined. The renewed goal of the statistician becomes to help the practitioner choose within such large and heterogeneous families of models, a task known as model selection. The Bayesian paradigm offers a systematized way of assessing this problem. This approach, launched by Harold Jeffreys in his 1935 book Theory of Probability, has witnessed a remarkable evolution in the last decades, that has brought about several new theoretical and methodological advances. Some of these recent developments are the focus of this survey, which tries to present a unifying perspective on work carried out by different communities. In particular, we focus on non-asymptotic out-of-sample performance of Bayesian model selection and averaging techniques, and draw connections with penalized maximum likelihood. We also describe recent extensions to wider classes of probabilistic frameworks including high-dimensional, unidentifiable, or likelihood-free models.
stat
Kaplan-Meier based tests for exponentiality in the presence of censoring
In this paper we test the composite hypothesis that lifetimes follow an exponential distribution based on observed randomly right censored data. Testing this hypothesis is complicated by the presence of this censoring, due to the fact that not all lifetimes are observed. To account for this complication, we propose modifications to tests based on the empirical characteristic function and Laplace transform. In the full sample case these empirical functions can be expressed as integrals with respect to the empirical distribution function of the lifetimes. We propose replacing this estimate of the distribution function by the Kaplan-Meier estimate. The resulting test statistics can be expressed in easily calculable forms in terms of summations of functionals of the observed data. Additionally, a general framework for goodness-of-fit testing, in the presence of random right censoring, is outlined. A Monte Carlo study is performed, the results of which indicate that the newly modified tests generally outperform the existing tests. A practical application, concerning initial remission times of leukemia patients, is discussed along with some concluding remarks and avenues for future research.
stat
An Alternative Data-Driven Prediction Approach Based on Real Option Theories
This paper presents a new prediction model for time series data by integrating a time-varying Geometric Brownian Motion model with a pricing mechanism used in financial engineering. Typical time series models such as Auto-Regressive Integrated Moving Average assumes a linear correlation structure in time series data. When a stochastic process is highly volatile, such an assumption can be easily violated, leading to inaccurate predictions. We develop a new prediction model that can flexibly characterize a time-varying volatile process without assuming linearity. We formulate the prediction problem as an optimization problem with unequal overestimation and underestimation costs. Based on real option theories developed in finance, we solve the optimization problem and obtain a predicted value, which can minimize the expected prediction cost. We evaluate the proposed approach using multiple datasets obtained from real-life applications including manufacturing, finance, and environment. The numerical results demonstrate that the proposed model shows competitive prediction capability, compared with alternative approaches.
stat
Lower-bounded proper losses for weakly supervised classification
This paper discusses the problem of weakly supervised learning of classification, in which instances are given weak labels that are produced by some label-corruption process. The goal is to derive conditions under which loss functions for weak-label learning are proper and lower-bounded -- two essential requirements for the losses used in class-probability estimation. To this end, we derive a representation theorem for proper losses in supervised learning, which dualizes the Savage representation. We use this theorem to characterize proper weak-label losses and find a condition for them to be lower-bounded. Based on these theoretical findings, we derive a novel regularization scheme called generalized logit squeezing, which makes any proper weak-label loss bounded from below, without losing properness. Furthermore, we experimentally demonstrate the effectiveness of our proposed approach, as compared to improper or unbounded losses. Those results highlight the importance of properness and lower-boundedness. The code is publicly available at https://github.com/yoshum/lower-bounded-proper-losses.
stat
Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme
Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of $N$ interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of the state-space. We provide here a new perspective on these highly parallel algorithms and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of reversible versus non-reversible PT schemes. We show theoretically and empirically that a class of non-reversible PT methods dominates its reversible counterparts and identify distinct scaling limits for the non-reversible and reversible schemes, the former being a piecewise-deterministic Markov process and the latter a diffusion. These results are exploited to identify the optimal annealing schedule for non-reversible PT and to develop an iterative scheme approximating this schedule. We provide a wide range of numerical examples supporting our theoretical and methodological contributions. The proposed methodology is applicable to sample from a distribution $\pi$ with a density $L$ with respect to a reference distribution $\pi_0$ and compute the normalizing constant. A typical use case is when $\pi_0$ is a prior distribution, $L$ a likelihood function and $\pi$ the corresponding posterior.
stat
Pseudo-Marginal Hamiltonian Monte Carlo
Bayesian inference in the presence of an intractable likelihood function is computationally challenging. When following a Markov chain Monte Carlo (MCMC) approach to approximate the posterior distribution in this context, one typically either uses MCMC schemes which target the joint posterior of the parameters and some auxiliary latent variables, or pseudo-marginal Metropolis--Hastings (MH) schemes. The latter mimic a MH algorithm targeting the marginal posterior of the parameters by approximating unbiasedly the intractable likelihood. However, in scenarios where the parameters and auxiliary variables are strongly correlated under the posterior and/or this posterior is multimodal, Gibbs sampling or Hamiltonian Monte Carlo (HMC) will perform poorly and the pseudo-marginal MH algorithm, as any other MH scheme, will be inefficient for high dimensional parameters. We propose here an original MCMC algorithm, termed pseudo-marginal HMC, which combines the advantages of both HMC and pseudo-marginal schemes. Specifically, the pseudo-marginal HMC method is controlled by a precision parameter N, controlling the approximation of the likelihood and, for any N, it samples the marginal posterior of the parameters. Additionally, as N tends to infinity, its sample trajectories and acceptance probability converge to those of an ideal, but intractable, HMC algorithm which would have access to the marginal posterior of parameters and its gradient. We demonstrate through experiments that pseudo-marginal HMC can outperform significantly both standard HMC and pseudo-marginal MH schemes.
stat
Estimating the Optimal Linear Combination of Biomarkers using Spherically Constrained Optimization
In the context of a binary classification problem, the optimal linear combination of continuous predictors can be estimated by maximizing an empirical estimate of the area under the receiver operating characteristic (ROC) curve (AUC). For multi-category responses, the optimal predictor combination can similarly be obtained by maximization of the empirical hypervolume under the manifold (HUM). This problem is particularly relevant to medical research, where it may be of interest to diagnose a disease with various subtypes or predict a multi-category outcome. Since the empirical HUM is discontinuous, non-differentiable, and possibly multi-modal, solving this maximization problem requires a global optimization technique. Estimation of the optimal coefficient vector using existing global optimization techniques is computationally expensive, becoming prohibitive as the number of predictors and the number of outcome categories increases. We propose an efficient derivative-free black-box optimization technique based on pattern search to solve this problem. Through extensive simulation studies, we demonstrate that the proposed method achieves better performance compared to existing methods including the step-down algorithm. Finally, we illustrate the proposed method to predict swallowing difficulty after radiation therapy for oropharyngeal cancer based on radiation dose to various structures in the head and neck.
stat
Predictive Inference Based on Markov Chain Monte Carlo Output
In Bayesian inference, predictive distributions are typically in the form of samples generated via Markov chain Monte Carlo (MCMC) or related algorithms. In this paper, we conduct a systematic analysis of how to make and evaluate probabilistic forecasts from such simulation output. Based on proper scoring rules, we develop a notion of consistency that allows to assess the adequacy of methods for estimating the stationary distribution underlying the simulation output. We then provide asymptotic results that account for the salient features of Bayesian posterior simulators, and derive conditions under which choices from the literature satisfy our notion of consistency. Importantly, these conditions depend on the scoring rule being used, such that the choices of approximation method and scoring rule are intertwined. While the logarithmic rule requires fairly stringent conditions, the continuous ranked probability score (CRPS) yields consistent approximations under minimal assumptions. These results are illustrated in a simulation study and an economic data example. Overall, mixture-of-parameters approximations which exploit the parametric structure of Bayesian models perform particularly well. Under the CRPS, the empirical distribution function is a simple and appealing alternative option.
stat
Double-Robust Estimation in Difference-in-Differences with an Application to Traffic Safety Evaluation
Difference-in-differences (DID) is a widely used approach for drawing causal inference from observational panel data. Two common estimation strategies for DID are outcome regression and propensity score weighting. In this paper, motivated by a real application in traffic safety research, we propose a new double-robust DID estimator that hybridizes regression and propensity score weighting. We particularly focus on the case of discrete outcomes. We show that the proposed double-robust estimator possesses the desirable large-sample robustness property. We conduct a simulation study to examine its finite-sample performance and compare with alternative methods. Our empirical results from a Pennsylvania Department of Transportation data suggest that rumble strips are marginally effective in reducing vehicle crashes.
stat
A reproducing kernel Hilbert space framework for functional data classification
We encounter a bottleneck when we try to borrow the strength of classical classifiers to classify functional data. The major issue is that functional data are intrinsically infinite dimensional, thus classical classifiers cannot be applied directly or have poor performance due to the curse of dimensionality. To address this concern, we propose to project functional data onto one specific direction, and then a distance-weighted discrimination DWD classifier is built upon the projection score. The projection direction is identified through minimizing an empirical risk function that contains the particular loss function in a DWD classifier, over a reproducing kernel Hilbert space. Hence our proposed classifier can avoid overfitting and enjoy appealing properties of DWD classifiers. This framework is further extended to accommodate functional data classification problems where scalar covariates are involved. In contrast to previous work, we establish a non-asymptotic estimation error bound on the relative misclassification rate. In finite sample case, we demonstrate that the proposed classifiers compare favorably with some commonly used functional classifiers in terms of prediction accuracy through simulation studies and a real-world application.
stat
Splitting strategies for post-selection inference
We consider the problem of providing valid inference for a selected parameter in a sparse regression setting. It is well known that classical regression tools can be unreliable in this context due to the bias generated in the selection step. Many approaches have been proposed in recent years to ensure inferential validity. Here, we consider a simple alternative to data splitting based on randomising the response vector, which allows for higher selection and inferential power than the former and is applicable with an arbitrary selection rule. We provide a theoretical and empirical comparison of both methods and extend the randomisation approach to non-normal settings. Our investigations show that the gain in power can be substantial.
stat
High-resolution Spatio-temporal Model for County-level COVID-19 Activity in the U.S
We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together with confirmed cases one-week ahead of the current time, at the county-level and weekly aggregated, in the United States. A notable feature of our spatio-temporal model is that it considers the (a) temporal auto- and pairwise correlation of the two local time series (confirmed cases and death of the COVID-19), (b) dynamics between locations (propagation between counties), and (c) covariates such as local within-community mobility and social demographic factors. The within-community mobility and demographic factors, such as total population and the proportion of the elderly, are included as important predictors since they are hypothesized to be important in determining the dynamics of COVID-19. To reduce the model's high-dimensionality, we impose sparsity structures as constraints and emphasize the impact of the top ten metropolitan areas in the nation, which we refer (and treat within our models) as hubs in spreading the disease. Our retrospective out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity accurately. The proposed multi-variate predictive models were designed to be highly interpretable, with clear identification and quantification of the most important factors that determine the dynamics of COVID-19. Ongoing work involves incorporating more covariates, such as education and income, to improve prediction accuracy and model interpretability.
stat
Pixelate to communicate: visualising uncertainty in maps of disease risk and other spatial continua
Maps have long been been used to visualise estimates of spatial variables, in particular disease burden and risk. Predictions made using a geostatistical model have uncertainty that typically varies spatially. However, this uncertainty is difficult to map with the estimate itself and is often not included as a result, thereby generating a potentially misleading sense of certainty about disease burden or other important variables. To remedy this, we propose simultaneously visualising predictions and their associated uncertainty within a single map by varying pixel size. We illustrate our approach using examples of malaria incidence, but the method could be applied to predictions of any spatial continua with associated uncertainty.
stat
DeepHoops: Evaluating Micro-Actions in Basketball Using Deep Feature Representations of Spatio-Temporal Data
How much is an on-ball screen worth? How much is a backdoor cut away from the ball worth? Basketball is one of a number of sports which, within the past decade, have seen an explosion in quantitative metrics and methods for evaluating players and teams. However, it is still challenging to evaluate individual off-ball events in terms of how they contribute to the success of a possession. In this study, we develop an end-to-end deep learning architecture DeepHoops to process a unique dataset composed of spatio-temporal tracking data from NBA games in order to generate a running stream of predictions on the expected points to be scored as a possession progresses. We frame the problem as a multi-class sequence classification problem in which our model estimates probabilities of terminal actions taken by players (e.g. take field goal, turnover, foul etc.) at each moment of a possession based on a sequence of ball and player court locations preceding the said moment. Each of these terminal actions is associated with an expected point value, which is used to estimate the expected points to be scored. One of the challenges associated with this problem is the high imbalance in the action classes. To solve this problem, we parameterize a downsampling scheme for the training phase. We demonstrate that DeepHoops is well-calibrated, estimating accurately the probabilities of each terminal action and we further showcase the model's capability to evaluate individual actions (potentially off-ball) within a possession that are not captured by boxscore statistics.
stat
Parsimony in Model Selection: Tools for Assessing Fit Propensity
Theories can be represented as statistical models for empirical testing. There is a vast literature on model selection and multimodel inference that focuses on how to assess which statistical model, and therefore which theory, best fits the available data. For example, given some data, one can compare models on various information criterion or other fit statistics. However, what these indices fail to capture is the full range of counterfactuals. That is, some models may fit the given data better not because they represent a more correct theory, but simply because these models have more fit propensity - a tendency to fit a wider range of data, even nonsensical data, better. Current approaches fall short in considering the principle of parsimony (Occam's Razor), often equating it with the number of model parameters. Here we offer a toolkit for researchers to better study and understand parsimony through the fit propensity of Structural Equation Models. We provide an R package (ockhamSEM) built on the popular lavaan package. To illustrate the importance of evaluating fit propensity, we use ockhamSEM to investigate the factor structure of the Rosenberg Self-Esteem Scale.
stat
A Two-Stage Variable Selection Approach for Correlated High Dimensional Predictors
When fitting statistical models, some predictors are often found to be correlated with each other, and functioning together. Many group variable selection methods are developed to select the groups of predictors that are closely related to the continuous or categorical response. These existing methods usually assume the group structures are well known. For example, variables with similar practical meaning, or dummy variables created by categorical data. However, in practice, it is impractical to know the exact group structure, especially when the variable dimensional is large. As a result, the group variable selection results may be selected. To solve the challenge, we propose a two-stage approach that combines a variable clustering stage and a group variable stage for the group variable selection problem. The variable clustering stage uses information from the data to find a group structure, which improves the performance of the existing group variable selection methods. For ultrahigh dimensional data, where the predictors are much larger than observations, we incorporated a variable screening method in the first stage and shows the advantages of such an approach. In this article, we compared and discussed the performance of four existing group variable selection methods under different simulation models, with and without the variable clustering stage. The two-stage method shows a better performance, in terms of the prediction accuracy, as well as in the accuracy to select active predictors. An athlete's data is also used to show the advantages of the proposed method.
stat
An Empirical Study of Invariant Risk Minimization
Invariant risk minimization (IRM) (Arjovsky et al., 2019) is a recently proposed framework designed for learning predictors that are invariant to spurious correlations across different training environments. Yet, despite its theoretical justifications, IRM has not been extensively tested across various settings. In an attempt to gain a better understanding of the framework, we empirically investigate several research questions using IRMv1, which is the first practical algorithm proposed to approximately solve IRM. By extending the ColoredMNIST experiment in different ways, we find that IRMv1 (i) performs better as the spurious correlation varies more widely between training environments, (ii) learns an approximately invariant predictor when the underlying relationship is approximately invariant, and (iii) can be extended to an analogous setting for text classification.
stat
Designing efficient randomized trials: power and sample size calculation when using semiparametric efficient estimators
Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the "design" (and subsequent reanalysis) of a real clinical trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.
stat
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
Improving and optimizing oceanographic sampling is a crucial task for marine science and maritime resource management. Faced with limited resources in understanding processes in the water-column, the combination of statistics and autonomous systems provide new opportunities for experimental design. In this work we develop efficient spatial sampling methods for characterizing regions defined by simultaneous exceedances above prescribed thresholds of several responses, with an application focus on mapping coastal ocean phenomena based on temperature and salinity measurements. Specifically, we define a design criterion based on uncertainty in the excursions of vector-valued Gaussian random fields, and derive tractable expressions for the expected integrated Bernoulli variance reduction in such a framework. We demonstrate how this criterion can be used to prioritize sampling efforts at locations that are ambiguous, making exploration more effective. We use simulations to study and compare properties of the considered approaches, followed by results from field deployments with an autonomous underwater vehicle as part of a study mapping the boundary of a river plume. The results demonstrate the potential of combining statistical methods and robotic platforms to effectively inform and execute data-driven environmental sampling.
stat
Efficient implementation of median bias reduction with applications to general regression models
In numerous regular statistical models, median bias reduction (Kenne Pagui et al., 2017) has proven to be a noteworthy improvement over maximum likelihood, alternative to mean bias reduction. The estimator is obtained as solution to a modified score equation ensuring smaller asymptotic median bias than the maximum likelihood estimator. This paper provides a simplified algebraic form of the adjustment term for general regular models. With the new formula, the estimation procedure benefits from a considerable computational gain by avoiding multiple summations and thus allows an efficient implementation. More importantly, the new formulation allows to highlight how the median bias reduction adjustment can be obtained by adding an extra term to the mean bias reduction adjustment. Illustrations are provided through new applications of median bias reduction to two regression models not belonging to the generalized linear models class, extended beta regression and beta-binomial regression. Mean bias reduction is also provided here for the latter model. Simulation studies show remarkable componentwise median centering of the median bias reduced estimator, while variability and coverage of related confidence intervals are comparable with those of mean bias reduction. Moreover, empirical results for the beta-binomial model show that the method is successful in solving maximum likelihood boundary estimate problem.
stat
A Tropical Approach to Neural Networks with Piecewise Linear Activations
We present a new, unifying approach following some recent developments on the complexity of neural networks with piecewise linear activations. We treat neural network layers with piecewise linear activations as tropical polynomials, which generalize polynomials in the so-called $(\max, +)$ or tropical algebra, with possibly real-valued exponents. Motivated by the discussion in (arXiv:1402.1869), this approach enables us to refine their upper bounds on linear regions of layers with ReLU or leaky ReLU activations to $\min\left\{ 2^m, \sum_{j=0}^n \binom{m}{j} \right\}$, where $n, m$ are the number of inputs and outputs, respectively. Additionally, we recover their upper bounds on maxout layers. Our work follows a novel path, exclusively under the lens of tropical geometry, which is independent of the improvements reported in (arXiv:1611.01491, arXiv:1711.02114). Finally, we present a geometric approach for effective counting of linear regions using random sampling in order to avoid the computational overhead of exact counting approaches
stat
Grouped Heterogeneous Mixture Modeling for Clustered Data
Clustered data is ubiquitous in a variety of scientific fields. In this paper, we propose a flexible and interpretable modeling approach, called grouped heterogenous mixture modeling, for clustered data, which models cluster-wise conditional distributions by mixtures of latent conditional distributions common to all the clusters. In the model, we assume that clusters are divided into a finite number of groups and mixing proportions are the same within the same group. We provide a simple generalized EM algorithm for computing the maximum likelihood estimator, and an information criterion to select the numbers of groups and latent distributions. We also propose structured grouping strategies by introducing penalties on grouping parameters in the likelihood function. Under the settings where both the number of clusters and cluster sizes tend to infinity, we present asymptotic properties of the maximum likelihood estimator and the information criterion. We demonstrate the proposed method through simulation studies and an application to crime risk modeling in Tokyo.
stat
Bayesian geoacoustic inversion using mixture density network
Bayesian geoacoustic inversion problems are conventionally solved by Markov chain Monte Carlo methods or its variants, which are computationally expensive. This paper extends the classic Bayesian geoacoustic inversion framework by deriving important geoacoustic statistics of Bayesian geoacoustic inversion from the multidimensional posterior probability density (PPD) using the mixture density network (MDN) theory. These statistics make it convenient to train the network directly on the whole parameter space and get the multidimensional PPD of model parameters. The present approach provides a much more efficient way to solve geoacoustic inversion problems in Bayesian inference framework. The network is trained on a simulated dataset of surface-wave dispersion curves with shear-wave velocities as labels and tested on both synthetic and real data cases. The results show that the network gives reliable predictions and has good generalization performance on unseen data. Once trained, the network can rapidly (within seconds) give a fully probabilistic solution which is comparable to Monte Carlo methods. It provides an promising approach for real-time inversion.
stat
Optimal design of experiments to identify latent behavioral types
Bayesian optimal experiments that maximize the information gained from collected data are critical to efficiently identify behavioral models. We extend a seminal method for designing Bayesian optimal experiments by introducing two computational improvements that make the procedure tractable: (1) a search algorithm from artificial intelligence that efficiently explores the space of possible design parameters, and (2) a sampling procedure which evaluates each design parameter combination more efficiently. We apply our procedure to a game of imperfect information to evaluate and quantify the computational improvements. We then collect data across five different experimental designs to compare the ability of the optimal experimental design to discriminate among competing behavioral models against the experimental designs chosen by a "wisdom of experts" prediction experiment. We find that data from the experiment suggested by the optimal design approach requires significantly less data to distinguish behavioral models (i.e., test hypotheses) than data from the experiment suggested by experts. Substantively, we find that reinforcement learning best explains human decision-making in the imperfect information game and that behavior is not adequately described by the Bayesian Nash equilibrium. Our procedure is general and computationally efficient and can be applied to dynamically optimize online experiments.
stat
Adaptive Function-on-Scalar Regression with a Smoothing Elastic Net
This paper presents a new methodology, called AFSSEN, to simultaneously select significant predictors and produce smooth estimates in a high-dimensional function-on-scalar linear model with a sub-Gaussian errors. Outcomes are assumed to lie in a general real separable Hilbert space, H, while parameters lie in a subspace known as a Cameron Martin space, K, which are closely related to Reproducing Kernel Hilbert Spaces, so that parameter estimates inherit particular properties, such as smoothness or periodicity, without enforcing such properties on the data. We propose a regularization method in the style of an adaptive Elastic Net penalty that involves mixing two types of functional norms, providing a fine tune control of both the smoothing and variable selection in the estimated model. Asymptotic theory is provided in the form of a functional oracle property, and the paper concludes with a simulation study demonstrating the advantage of using AFSSEN over existing methods in terms of prediction error and variable selection.
stat
Efficient generation of random derangements with the expected distribution of cycle lengths
We show how to generate random derangements efficiently by two different techniques: random restricted transpositions and sequential importance sampling. The algorithm employing restricted transpositions can also be used to generate random fixed-point-free involutions only, a.k.a. random perfect matchings on the complete graph. Our data indicate that the algorithms generate random samples with the expected distribution of cycle lengths, which we derive, and for relatively small samples, which can actually be very large in absolute numbers, we argue that they generate samples indistinguishable from the uniform distribution. Both algorithms are simple to understand and implement and possess a performance comparable to or better than those of currently known methods. Simulations suggest that the mixing time of the algorithm based on random restricted transpositions (in the total variance distance with respect to the distribution of cycle lengths) is $O(n^{a}\log{n}^{2})$ with $a \simeq \frac{1}{2}$ and $n$ the length of the derangement. We prove that the sequential importance sampling algorithm generates random derangements in $O(n)$ time with probability $O(1/n)$ of failing.
stat
Gaussian mixture model decomposition of multivariate signals
We propose a greedy variational method for decomposing a non-negative multivariate signal as a weighted sum of Gaussians, which, borrowing the terminology from statistics, we refer to as a Gaussian mixture model. Notably, our method has the following features: (1) It accepts multivariate signals, i.e. sampled multivariate functions, histograms, time series, images, etc. as input. (2) The method can handle general (i.e. ellipsoidal) Gaussians. (3) No prior assumption on the number of mixture components is needed. To the best of our knowledge, no previous method for Gaussian mixture model decomposition simultaneously enjoys all these features. We also prove an upper bound, which cannot be improved by a global constant, for the distance from any mode of a Gaussian mixture model to the set of corresponding means. For mixtures of spherical Gaussians with common variance $\sigma^2$, the bound takes the simple form $\sqrt{n}\sigma$. We evaluate our method on one- and two-dimensional signals. Finally, we discuss the relation between clustering and signal decomposition, and compare our method to the baseline expectation maximization algorithm.
stat
The Tajima heterochronous n-coalescent: inference from heterochronously sampled molecular data
The observed sequence variation at a locus informs about the evolutionary history of the sample and past population size dynamics. The standard Kingman coalescent model on genealogies - timed trees that represent the ancestry of the sample - is used in a generative model of molecular sequence variation to infer evolutionary parameters. However, the state space of Kingman's genealogies grows superexponentially with sample size n, making inference computationally unfeasible already for small n. We introduce a new coalescent model called Tajima heterochronous n-coalescent with a substantially smaller cardinality of the genealogical space. This process allows to analyze samples collected at different times, a situation that in applications is both met (e.g. ancient DNA and RNA from rapidly evolving pathogens like viruses) and statistically desirable (variance reduction and parameter identifiability). We propose an algorithm to calculate the likelihood efficiently and present a Bayesian nonparametric procedure to infer the population size trajectory. We provide a new MCMC sampler to explore the space of Tajima's genealogies and model parameters. We compare our procedure with state-of-the-art methodologies in simulations and applications. We use our method to re-examine the scientific question of how Beringian bison went extinct analyzing modern and ancient molecular sequences of bison in North America, and to reconstruct population size trajectory of SARS-CoV-2 from viral sequences collected in France and Germany.
stat
A Bayesian spatio-temporal abundance model for surveillance of the opioid epidemic
Opioid misuse is a national epidemic and a significant drug related threat to the United States. While the scale of the problem is undeniable, estimates of the local prevalence of opioid misuse are lacking, despite their importance to policy-making and resource allocation. This is due, in part, to the challenge of directly measuring opioid misuse at a local level. In this paper, we develop a Bayesian hierarchical spatio-temporal abundance model that integrates indirect county-level data on opioid overdose deaths and treatment admissions with state-level survey estimates on prevalence of opioid misuse to estimate the latent county-level prevalence and counts of people who misuse opioids. A simulation study shows that our joint model accurately recovers the latent counts and prevalence and thus overcomes known limitations with identifiability in abundance models with non-replicated observations. We apply our model to county-level surveillance data from the state of Ohio. Our proposed framework can be applied to other applications of small area estimation for hard to reach populations, which is a common occurrence with many health conditions such as those related to illicit behaviors.
stat
An\'alisis estad\'istico ex post del conteo r\'apido institucional de la elecci\'on de gobernador del Estado de M\'exico en 2017
A statistical analysis of an electoral quick count based on the total count of votes in the election of the State of Mexico's governor in 2017 is performed in order to verify precision, confidence level of interval estimations, possible bias and derived conclusions therein, with the main purpose of checking compliance with the objectives of such statistical procedure. ----- Se realiza un an\'alisis estad\'istico de las estimaciones del conteo r\'apido institucional desde la perspectiva ideal de los resultados de los c\'omputos distritales de la elecci\'on de gobernador del Estado de M\'exico del a\~no 2017, particularmente aspectos como la precisi\'on de las estimaciones, el nivel de confianza de los intervalos, el posible sesgo respecto al c\'omputo distrital y las conclusiones que se derivaron y reportaron, con el objetivo de determinar el grado de cumplimiento de los objetivos de este ejercicio estad\'istico de car\'acter informativo.
stat
The MCC-F1 curve: a performance evaluation technique for binary classification
Many fields use the ROC curve and the PR curve as standard evaluations of binary classification methods. Analysis of ROC and PR, however, often gives misleading and inflated performance evaluations, especially with an imbalanced ground truth. Here, we demonstrate the problems with ROC and PR analysis through simulations, and propose the MCC-F1 curve to address these drawbacks. The MCC-F1 curve combines two informative single-threshold metrics, MCC and the F1 score. The MCC-F1 curve more clearly differentiates good and bad classifiers, even with imbalanced ground truths. We also introduce the MCC-F1 metric, which provides a single value that integrates many aspects of classifier performance across the whole range of classification thresholds. Finally, we provide an R package that plots MCC-F1 curves and calculates related metrics.
stat
Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias
We prove the main rules of causal calculus (also called do-calculus) for i/o structural causal models (ioSCMs), a generalization of a recently proposed general class of non-/linear structural causal models that allow for cycles, latent confounders and arbitrary probability distributions. We also generalize adjustment criteria and formulas from the acyclic setting to the general one (i.e. ioSCMs). Such criteria then allow to estimate (conditional) causal effects from observational data that was (partially) gathered under selection bias and cycles. This generalizes the backdoor criterion, the selection-backdoor criterion and extensions of these to arbitrary ioSCMs. Together, our results thus enable causal reasoning in the presence of cycles, latent confounders and selection bias. Finally, we extend the ID algorithm for the identification of causal effects to ioSCMs.
stat
Variational Laplace for Bayesian neural networks
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. Variational Laplace performs better on image classification tasks than MAP inference and far better than standard variational inference with stochastic sampling despite using the same mean-field Gaussian approximate posterior. The Variational Laplace objective is simple to evaluate, as it is (in essence) the log-likelihood, plus weight-decay, plus a squared-gradient regularizer. Finally, we emphasise care needed in benchmarking standard VI as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
stat
Power and sample size for cluster randomized and stepped wedge trials: Comparing estimates obtained by applying design effects or by direct estimation in GLMM
When observations are independent, formulae and software are readily available to plan and design studies of appropriate size and power to detect important associations. When observations are correlated or clustered, results obtained from the standard software require adjustment. This tutorial compares two approaches, using examples that illustrate various designs for both independent and clustered data. One approach obtains initial estimates using software that assume independence among observations, then adjusts these estimates using a design effect (DE), also called a variance inflation factor (VIF). A second approach generates estimates using generalized linear mixed models (GLMM) that account directly for patterns of clustering and correlation. The two approaches generally produce similar estimates and so validate one another. For certain clustered designs, small differences in power estimates emphasize the importance of specifying an alternative hypothesis in terms of means but also in terms of expected variances and covariances. Both approaches to power estimation are sensitive to assumptions concerning the structure or pattern of independence or correlation among clustered outcomes.
stat
Evaluating A Key Instrumental Variable Assumption Using Randomization Tests
Instrumental variable (IV) analyses are becoming common in health services research and epidemiology. Most IV analyses use naturally occurring instruments, such as distance to a hospital. In these analyses, investigators must assume the instrument is as-if randomly assigned. This assumption cannot be tested directly, but it can be falsified. Most falsification tests in the literature compare relative prevalence or bias in observed covariates between the instrument and the exposure. These tests require investigators to make a covariate-by-covariate judgment about the validity of the IV design. Often, only some of the covariates are well-balanced, making it unclear if as-if randomization can be assumed for the instrument across all covariates. We propose an alternative falsification test that compares IV balance or bias to the balance or bias that would have been produced under randomization. A key advantage of our test is that it allows for global balance measures as well as easily interpretable graphical comparisons. Furthermore, our test does not rely on any parametric assumptions and can be used to validly assess if the instrument is significantly closer to being as-if randomized than the exposure. We demonstrate our approach on a recent IV application that uses bed availability in the intensive care unit (ICU) as an instrument for admission to the ICU.
stat
Neural Program Synthesis with a Differentiable Fixer
We present a new program synthesis approach that combines an encoder-decoder based synthesis architecture with a differentiable program fixer. Our approach is inspired from the fact that human developers seldom get their program correct on the first attempt, and perform iterative testing-based program fixing to get to the desired program functionality. Similarly, our approach first learns a distribution over programs conditioned on an encoding of a set of input-output examples, and then iteratively performs fix operations using the differentiable fixer. The fixer takes as input the original examples and the current program's outputs on example inputs, and generates a new distribution over the programs with the goal of reducing the discrepancies between the current program outputs and the desired example outputs. We train our architecture end-to-end on the RobustFill domain, and show that the addition of the fixer module leads to a significant improvement on synthesis accuracy compared to using beam search.
stat
Effective Data Augmentation with Multi-Domain Learning GANs
For deep learning applications, the massive data development (e.g., collecting, labeling), which is an essential process in building practical applications, still incurs seriously high costs. In this work, we propose an effective data augmentation method based on generative adversarial networks (GANs), called Domain Fusion. Our key idea is to import the knowledge contained in an outer dataset to a target model by using a multi-domain learning GAN. The multi-domain learning GAN simultaneously learns the outer and target dataset and generates new samples for the target tasks. The simultaneous learning process makes GANs generate the target samples with high fidelity and variety. As a result, we can obtain accurate models for the target tasks by using these generated samples even if we only have an extremely low volume target dataset. We experimentally evaluate the advantages of Domain Fusion in image classification tasks on 3 target datasets: CIFAR-100, FGVC-Aircraft, and Indoor Scene Recognition. When trained on each target dataset reduced the samples to 5,000 images, Domain Fusion achieves better classification accuracy than the data augmentation using fine-tuned GANs. Furthermore, we show that Domain Fusion improves the quality of generated samples, and the improvements can contribute to higher accuracy.
stat
Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption
Matrix completion is often applied to data with entries missing not at random (MNAR). For example, consider a recommendation system where users tend to only reveal ratings for items they like. In this case, a matrix completion method that relies on entries being revealed at uniformly sampled row and column indices can yield overly optimistic predictions of unseen user ratings. Recently, various papers have shown that we can reduce this bias in MNAR matrix completion if we know the probabilities of different matrix entries being missing. These probabilities are typically modeled using logistic regression or naive Bayes, which make strong assumptions and lack guarantees on the accuracy of the estimated probabilities. In this paper, we suggest a simple approach to estimating these probabilities that avoids these shortcomings. Our approach follows from the observation that missingness patterns in real data often exhibit low nuclear norm structure. We can then estimate the missingness probabilities by feeding the (always fully-observed) binary matrix specifying which entries are revealed or missing to an existing nuclear-norm-constrained matrix completion algorithm by Davenport et al. [2014]. Thus, we tackle MNAR matrix completion by solving a different matrix completion problem first that recovers missingness probabilities. We establish finite-sample error bounds for how accurate these probability estimates are and how well these estimates debias standard matrix completion losses for the original matrix to be completed. Our experiments show that the proposed debiasing strategy can improve a variety of existing matrix completion algorithms, and achieves downstream matrix completion accuracy at least as good as logistic regression and naive Bayes debiasing baselines that require additional auxiliary information.
stat
Tensor Estimation with Nearly Linear Samples
There is a conjectured computational-statistical gap in terms of the number of samples needed to perform tensor estimation. In particular, for a low rank 3-order tensor with $\Theta(n)$ parameters, Barak and Moitra conjectured that $\Omega(n^{3/2})$ samples are needed for polynomial time computation based on a reduction of a specific hard instance of a rank 1 tensor to the random 3-XOR distinguishability problem. In this paper, we take a complementary perspective and characterize a subclass of tensor instances that can be estimated with only $O(n^{1+\kappa})$ observations for any arbitrarily small constant $\kappa > 0$, nearly linear. If one considers the class of tensors with constant orthogonal CP-rank, the "hardness" of the instance can be parameterized by the minimum absolute value of the sum of latent factor vectors. If the sum of each latent factor vector is bounded away from zero, we present an algorithm that can perform tensor estimation with $O(n^{1+\kappa})$ samples for a $t$-order tensor, significantly less than the previous achievable bound of $O(n^{t/2})$, and close to the lower bound of $\Omega(n)$. This result suggests that amongst constant orthogonal CP-rank tensors, the set of computationally hard instances to estimate are in fact a small subset of all possible tensors.
stat
Generalizing trial findings using nested trial designs with sub-sampling of non-randomized individuals
To generalize inferences from a randomized trial to the target population of all trial-eligible individuals, investigators can use nested trial designs, where the randomized individuals are nested within a cohort of trial-eligible individuals, including those who are not offered or refuse randomization. In these designs, data on baseline covariates are collected from the entire cohort, and treatment and outcome data need only be collected from randomized individuals. In this paper, we describe nested trial designs that improve research economy by collecting additional baseline covariate data after sub-sampling non-randomized individuals (i.e., a two-stage design), using sampling probabilities that may depend on the initial set of baseline covariates available from all individuals in the cohort. We propose an estimator for the potential outcome mean in the target population of all trial-eligible individuals and show that our estimator is doubly robust, in the sense that it is consistent when either the model for the conditional outcome mean among randomized individuals or the model for the probability of trial participation is correctly specified. We assess the impact of sub-sampling on the asymptotic variance of our estimator and examine the estimator's finite-sample performance in a simulation study. We illustrate the methods using data from the Coronary Artery Surgery Study (CASS).
stat
The Chi-Square Test of Distance Correlation
Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to test any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, we propose a centered chi-square distribution, demonstrate it well-approximates the limiting null distribution of unbiased distance correlation, and prove upper tail dominance and distribution bound. The resulting distance correlation chi-square test is a nonparametric test for independence, is valid and universally consistent using any strong negative type metric or characteristic kernel, enjoys a similar finite-sample testing power as the standard permutation test, is provably most powerful among all valid tests of distance correlation using known distributions, and is also applicable to K-sample and partial testing.
stat
Direct statistical inference for finite Markov jump processes via the matrix exponential
Given noisy, partial observations of a time-homogeneous, finite-statespace Markov chain, conceptually simple, direct statistical inference is available, in theory, via its rate matrix, or infinitesimal generator, $\mathsf{Q}$, since $\exp (\mathsf{Q}t)$ is the transition matrix over time $t$. However, perhaps because of inadequate tools for matrix exponentiation in programming languages commonly used amongst statisticians or a belief that the necessary calculations are prohibitively expensive, statistical inference for continuous-time Markov chains with a large but finite state space is typically conducted via particle MCMC or other relatively complex inference schemes. When, as in many applications $\mathsf{Q}$ arises from a reaction network, it is usually sparse. We describe variations on known algorithms which allow fast, robust and accurate evaluation of the product of a non-negative vector with the exponential of a large, sparse rate matrix. Our implementation uses relatively recently developed, efficient, linear algebra tools that take advantage of such sparsity. We demonstrate the straightforward statistical application of the key algorithm on a model for the mixing of two alleles in a population and on the Susceptible-Infectious-Removed epidemic model.
stat
Measuring Within and Between Group Inequality in Early-Life Mortality Over Time: A Bayesian Approach with Application to India
Most studies on inequality in infant and child mortality compare average mortality rates between large groups of births, for example, comparing births from different countries, income groups, ethnicities, or different times. These studies do not measure within-group disparities. The few studies that have measured within-group variability in infant and child mortality have used tools from the income inequality literature, such as Gini indices. We show that the latter are inappropriate for infant and child mortality. We develop novel tools that are appropriate for analyzing infant and child mortality inequality, including inequality measures, covariate adjustments, and ANOVA methods. We illustrate how to handle uncertainty about complex inference targets, including ensembles of probabilities and kernel density estimates. We illustrate our methodology using a large data set from India, where we estimate infant and child mortality risk for over 400,000 births using a Bayesian hierarchical model. We show that most of the variance in mortality risk exists within groups of births, not between them, and thus that within-group mortality needs to be taken into account when assessing inequality in infant and child mortality. Our approach has broad applicability to many health indicators.
stat
Modeling random and non-random decision uncertainty in ratings data: A fuzzy beta model
Modeling human ratings data subject to raters' decision uncertainty is an attractive problem in applied statistics. In view of the complex interplay between emotion and decision making in rating processes, final raters' choices seldom reflect the true underlying raters' responses. Rather, they are imprecisely observed in the sense that they are subject to a non-random component of uncertainty, namely the decision uncertainty. The purpose of this article is to illustrate a statistical approach to analyse ratings data which integrates both random and non-random components of the rating process. In particular, beta fuzzy numbers are used to model raters' non-random decision uncertainty and a variable dispersion beta linear model is instead adopted to model the random counterpart of rating responses. The main idea is to quantify characteristics of latent and non-fuzzy rating responses by means of random observations subject to fuzziness. To do so, a fuzzy version of the Expectation-Maximization algorithm is adopted to both estimate model's parameters and compute their standard errors. Finally, the characteristics of the proposed fuzzy beta model are investigated by means of a simulation study as well as two case studies from behavioral and social contexts.
stat
A Bayesian Zero-Inflated Negative Binomial Regression Model for the Integrative Analysis of Microbiome Data
Microbiome `omics approaches can reveal intriguing relationships between the human microbiome and certain disease states. Along with the identification of specific bacteria taxa associated with diseases, recent scientific advancements provide mounting evidence that metabolism, genetics and environmental factors can all modulate these microbial effects. However, the current methods for integrating microbiome data and other covariates are severely lacking. Hence, we present an integrative Bayesian zero-inflated negative binomial regression model that can both distinguish differentially abundant taxa with distinct phenotypes and quantify covariate-taxa effects. Our model demonstrates good performance using simulated data. Furthermore, we successfully integrated microbiome taxonomies and metabolomics in two real microbiome datasets to provide biologically interpretable findings. In all, we proposed a novel integrative Bayesian regression model that features bacterial differential abundance analysis and microbiome-covariate effects quantifications, which makes it suitable for general microbiome studies.
stat
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Deep neural networks achieve stellar generalisation even when they have enough parameters to easily fit all their training data. We study this phenomenon by analysing the dynamics and the performance of over-parameterised two-layer neural networks in the teacher-student setup, where one network, the student, is trained on data generated by another network, called the teacher. We show how the dynamics of stochastic gradient descent (SGD) is captured by a set of differential equations and prove that this description is asymptotically exact in the limit of large inputs. Using this framework, we calculate the final generalisation error of student networks that have more parameters than their teachers. We find that the final generalisation error of the student increases with network size when training only the first layer, but stays constant or even decreases with size when training both layers. We show that these different behaviours have their root in the different solutions SGD finds for different activation functions. Our results indicate that achieving good generalisation in neural networks goes beyond the properties of SGD alone and depends on the interplay of at least the algorithm, the model architecture, and the data set.
stat
Excess risk bounds in robust empirical risk minimization
This paper investigates robust versions of the general empirical risk minimization algorithm, one of the core techniques underlying modern statistical methods. Success of the empirical risk minimization is based on the fact that for a "well-behaved" stochastic process $\left\{ f(X), \ f\in \mathcal F\right\}$ indexed by a class of functions $f\in \mathcal F$, averages $\frac{1}{N}\sum_{j=1}^N f(X_j)$ evaluated over a sample $X_1,\ldots,X_N$ of i.i.d. copies of $X$ provide good approximation to the expectations $\mathbb E f(X)$ uniformly over large classes $f\in \mathcal F$. However, this might no longer be true if the marginal distributions of the process are heavy-tailed or if the sample contains outliers. We propose a version of empirical risk minimization based on the idea of replacing sample averages by robust proxies of the expectation, and obtain high-confidence bounds for the excess risk of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to $0$ at fast rates with respect to the sample size. We discuss implications of the main results to the linear and logistic regression problems, and evaluate the numerical performance of proposed methods on simulated and real data.
stat
Application of the Cox Regression Model for Analysis of Railway Safety Performance
The assessment of in-service safety performance is an important task, not only in railways. For example it is important to identify deviations early, in particular possible deterioration of safety performance, so that corrective actions can be applied early. On the other hand the assessment should be fair and objective and rely on sound and proven statistical methods. A popular means for this task is trend analysis. This paper defines a model for trend analysis and compares different approaches, e. g. classical and Bayes approaches, on real data. The examples show that in particular for small sample sizes, e. g. when railway operators shall be assessed, the Bayesian prior may influence the results significantly.
stat
Privacy-preserving data sharing via probabilistic modelling
Differential privacy allows quantifying privacy loss resulting from accessing sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation, but would leave open the problem of designing what kind of synthetic data. We propose formulating the problem of private data release through probabilistic modelling. This approach transforms the problem of designing the synthetic data into choosing a model for the data, allowing also including prior knowledge, which improves the quality of the synthetic data. We demonstrate empirically, in an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We expect the method to have broad use in creating high-quality anonymized data twins of key data sets for research.
stat
Technical efficiency and inefficiency: SFA misspecification
The effect of external factors $z$ on technical inefficiency ($TI$) in stochastic frontier (SF) production models is often specified through the variance of inefficiency term $u$. In this setup the signs of marginal effects of $z$ on $TI$ and technical efficiency $TE$ identify how one should control $z$ to increase $TI$ or decrease $TE$. We prove that these signs for $TI$ and $TE$ are opposite for typical setups with normally distributed random error $v$ and exponentially or half-normally distributed $u$ for both conditional and unconditional cases. On the other hand, we give an example to show that signs of the marginal effects of $z$ on $TI$ and $TE$ may coincide, at least for some ranges of $z$. In our example, the distribution of $u$ is a mixture of two distributions, and the proportion of the mixture is a function of $z$. Thus if the real data comes from this mixture distribution, and we estimate model parameters with an exponential or half-normal distribution for $u$, the estimated efficiency and the marginal effect of $z$ on $TE$ would be wrong. Moreover, for a misspecified model, the rank correlations between the true and the estimated values of TE could be small and even negative for some subsamples of data. These results are demonstrated by simulations.
stat
Subgroup-based Rank-1 Lattice Quasi-Monte Carlo
Quasi-Monte Carlo (QMC) is an essential tool for integral approximation, Bayesian inference, and sampling for simulation in science, etc. In the QMC area, the rank-1 lattice is important due to its simple operation, and nice properties for point set construction. However, the construction of the generating vector of the rank-1 lattice is usually time-consuming because of an exhaustive computer search. To address this issue, we propose a simple closed-form rank-1 lattice construction method based on group theory. Our method reduces the number of distinct pairwise distance values to generate a more regular lattice. We theoretically prove a lower and an upper bound of the minimum pairwise distance of any non-degenerate rank-1 lattice. Empirically, our methods can generate a near-optimal rank-1 lattice compared with the Korobov exhaustive search regarding the $l_1$-norm and $l_2$-norm minimum distance. Moreover, experimental results show that our method achieves superior approximation performance on benchmark integration test problems and kernel approximation problems.
stat
Variational Discriminant Analysis with Variable Selection
A fast Bayesian method that seamlessly fuses classification and hypothesis testing via discriminant analysis is developed. Building upon the original discriminant analysis classifier, modelling components are added to identify discriminative variables. A combination of cake priors and a novel form of variational Bayes we call reverse collapsed variational Bayes gives rise to variable selection that can be directly posed as a multiple hypothesis testing approach using likelihood ratio statistics. Some theoretical arguments are presented showing that Chernoff-consistency (asymptotically zero type I and type II error) is maintained across all hypotheses. We apply our method on some publicly available genomics datasets and show that our method performs well in practice for its computational cost. An R package VaDA has also been made available on Github.
stat
Medium-Term Load Forecasting Using Support Vector Regression, Feature Selection, and Symbiotic Organism Search Optimization
An accurate load forecasting has always been one of the main indispensable parts in the operation and planning of power systems. Among different time horizons of forecasting, while short-term load forecasting (STLF) and long-term load forecasting (LTLF) have respectively got benefits of accurate predictors and probabilistic forecasting, medium-term load forecasting (MTLF) demands more attention due to its vital role in power system operation and planning such as optimal scheduling of generation units, robust planning program for customer service, and economic supply. In this study, a hybrid method, composed of Support Vector Regression (SVR) and Symbiotic Organism Search Optimization (SOSO) method, is proposed for MTLF. In the proposed forecasting model, SVR is the main part of the forecasting algorithm while SOSO is embedded into it to optimize the parameters of SVR. In addition, a minimum redundancy-maximum relevance feature selection algorithm is used to in the preprocessing of input data. The proposed method is tested on EUNITE competition dataset to demonstrate its proper performance. Furthermore, it is compared with some previous works to show eligibility of our method.
stat
A 1000-fold Acceleration of Hidden Markov Model Fitting using Graphical Processing Units, with application to Nonvolcanic Tremor Classification
Hidden Markov models (HMMs) are general purpose models for time-series data widely used across the sciences because of their flexibility and elegance. However fitting HMMs can often be computationally demanding and time consuming, particularly when the the number of hidden states is large or the Markov chain itself is long. Here we introduce a new Graphical Processing Unit (GPU) based algorithm designed to fit long chain HMMs, applying our approach to an HMM for nonvolcanic tremor events developed by Wang et al.(2018). Even on a modest GPU, our implementation resulted in a 1000-fold increase in speed over the standard single processor algorithm, allowing a full Bayesian inference of uncertainty related to model parameters. Similar improvements would be expected for HMM models given large number of observations and moderate state spaces (<80 states with current hardware). We discuss the model, general GPU architecture and algorithms and report performance of the method on a tremor dataset from the Shikoku region, Japan.
stat
BRIDGE: Byzantine-resilient Decentralized Gradient Descent
Decentralized optimization techniques are increasingly being used to learn machine learning models from data distributed over multiple locations without gathering the data at any one location. Unfortunately, methods that are designed for faultless networks typically fail in the presence of node failures. In particular, Byzantine failures---corresponding to the scenario in which faulty/compromised nodes are allowed to arbitrarily deviate from an agreed-upon protocol---are the hardest to safeguard against in decentralized settings. This paper introduces a Byzantine-resilient decentralized gradient descent (BRIDGE) method for decentralized learning that, when compared to existing works, is more efficient and scalable in higher-dimensional settings and that is deployable in networks having topologies that go beyond the star topology. The main contributions of this work include theoretical analysis of BRIDGE for strongly convex learning objectives and numerical experiments demonstrating the efficacy of BRIDGE for both convex and nonconvex learning tasks.
stat
The Age-Period-Cohort-Interaction Model for Describing and Investigating Inter-Cohort Deviations and Intra-Cohort Life-Course Dynamics
Social scientists have frequently sought to understand the distinct effects of age, period, and cohort, but disaggregation of the three dimensions is difficult because cohort = period - age. We argue that this technical difficulty reflects a disconnection between how cohort effect is conceptualized and how it is modeled in the traditional age-period-cohort framework. We propose a new method, called the age-period-cohort-interaction (APC-I) model, that is qualitatively different from previous methods in that it represents Ryder's (1965) theoretical account about the conditions under which cohort differentiation may arise. This APC-I model does not require problematic statistical assumptions and the interpretation is straightforward. It quantifies inter-cohort deviations from the age and period main effects and also permits hypothesis testing about intra-cohort life-course dynamics. We demonstrate how this new model can be used to examine age, period, and cohort patterns in women's labor force participation.
stat
What do AI algorithms actually learn? - On false structures in deep learning
There are two big unsolved mathematical questions in artificial intelligence (AI): (1) Why is deep learning so successful in classification problems and (2) why are neural nets based on deep learning at the same time universally unstable, where the instabilities make the networks vulnerable to adversarial attacks. We present a solution to these questions that can be summed up in two words; false structures. Indeed, deep learning does not learn the original structures that humans use when recognising images (cats have whiskers, paws, fur, pointy ears, etc), but rather different false structures that correlate with the original structure and hence yield the success. However, the false structure, unlike the original structure, is unstable. The false structure is simpler than the original structure, hence easier to learn with less data and the numerical algorithm used in the training will more easily converge to the neural network that captures the false structure. We formally define the concept of false structures and formulate the solution as a conjecture. Given that trained neural networks always are computed with approximations, this conjecture can only be established through a combination of theoretical and computational results similar to how one establishes a postulate in theoretical physics (e.g. the speed of light is constant). Establishing the conjecture fully will require a vast research program characterising the false structures. We provide the foundations for such a program establishing the existence of the false structures in practice. Finally, we discuss the far reaching consequences the existence of the false structures has on state-of-the-art AI and Smale's 18th problem.
stat
Estimation Methods for Cluster Randomized Trials with Noncompliance: A Study of A Biometric Smartcard Payment System in India
Many policy evaluations occur in settings where treatment is randomized at the cluster level, and there is treatment noncompliance within each cluster. For example, villages might be assigned to treatment and control, but residents in each village may choose to comply or not with their assigned treatment status. When noncompliance is present, the instrumental variables framework can be used to identify and estimate causal effects. While a large literature exists on instrumental variables estimation methods, relatively little work has been focused on settings with clustered treatments. Here, we review extant methods for instrumental variable estimation in clustered designs and derive both the finite and asymptotic properties of these estimators. We prove that the properties of current estimators depend on unrealistic assumptions. We then develop a new IV estimation method for cluster randomized trials and study its formal properties. We prove that our IV estimator allows for possible treatment effect heterogeneity that is correlated with cluster size and is robust to low compliance rates within clusters. We evaluate these methods using simulations and apply them to data from a randomized intervention in India.
stat
Bayesian Deconditional Kernel Mean Embeddings
Conditional kernel mean embeddings form an attractive nonparametric framework for representing conditional means of functions, describing the observation processes for many complex models. However, the recovery of the original underlying function of interest whose conditional mean was observed is a challenging inference task. We formalize deconditional kernel mean embeddings as a solution to this inverse problem, and show that it can be naturally viewed as a nonparametric Bayes' rule. Critically, we introduce the notion of task transformed Gaussian processes and establish deconditional kernel means as their posterior predictive mean. This connection provides Bayesian interpretations and uncertainty estimates for deconditional kernel mean embeddings, explains their regularization hyperparameters, and reveals a marginal likelihood for kernel hyperparameter learning. These revelations further enable practical applications such as likelihood-free inference and learning sparse representations for big data.
stat
Estimation of a Low-rank Topic-Based Model for Information Cascades
We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.
stat
Optimal transport for vector Gaussian mixture models
Vector Gaussian mixture models form an important special subset of vector-valued distributions. Any physical entity that can mutate or transit among alternative manifestations distributed in a given space falls into this category. A key example is color imagery. In this note, we vectorize the Gaussian mixture model and study different optimal mass transport related problems for such models. The benefits of using vector Gaussian mixture for optimal mass transport include computational efficiency and the ability to preserve structure.
stat
Comparison of plotting system outputs in beginner analysts
The R programming language is built on an ecosystem of packages, some that allow analysts to accomplish the same tasks. For example, there are at least two clear workflows for creating data visualizations in R: using the base graphics package (referred to as "base R") and the ggplot2 add-on package based on the grammar of graphics. Here we perform an empirical study of the quality of scientific graphics produced by beginning R users. In our experiment, learners taking a data science course on the Coursera platform were randomized to complete identical plotting exercises in either the base R or the ggplot2 system. Learners were then asked to evaluate their peers in terms of visual characteristics key to scientific cognition. We observed that graphics created with the two systems rated similarly on many characteristics. However, ggplot2 graphics were generally judged to be more visually pleasing and, in the case of faceted scientific plots, easier to understand. Our results suggest that while both graphic systems are useful in the hands of beginning users, ggplot2's natural faceting system may be easier to use by beginning users for displaying more complex relationships.
stat
Making the most of imprecise measurements: Changing patterns of arsenic concentrations in shallow wells of Bangladesh from laboratory and field data
Millions of people in Bangladesh drink well water contaminated with arsenic. Despite the severity of this heath crisis, little is known about the extent to which groundwater arsenic concentrations change over time: Are concentrations generally rising, or is arsenic being flushed out of aquifers? Are spatially patterns of high and low concentrations across wells homogenizing over time, or are these spatial gradients becoming more pronounced? To address these questions, we analyze a large set of arsenic concentrations that were sampled within a 25 km$^2$ area of Bangladesh over time. We compare two blanket survey collected in 2000/2001 and 2012/2013 from the same villages but relying on a largely different set of wells. The early set consists of 4574 accurate laboratory measurements, but the later set poses a challenge for analysis because it is composed of 8229 less accurate categorical measurements conducted in the field with a kit. We construct a Bayesian model that jointly calibrates the measurement errors, applies spatial smoothing, and describes the spatiotemporal dynamic with a diffusion-like process model. Our statistical analysis reveals that arsenic concentrations change over time and that their mean dropped from 110 to 96 $\mu$g/L over 12 years, although one quarter of individual wells are inferred to see an increase. The largest decreases occurred at the wells with locally high concentrations where the estimated Laplacian indicated that the arsenic surface was strongly concave. However, well with initially low concentrations were unlikely to be contaminated by nearby high concentration wells over a decade. We validate the model using a posterior predictive check on an external subset of laboratory measurements from the same 271 wells in the same study area available for 2000, 2014, and 2015.
stat
A Continuous-Time Dynamic Choice Measurement Model for Problem-Solving Process Data
Problem solving has been recognized as a central skill that today's students need to thrive and shape their world. As a result, the measurement of problem-solving competency has received much attention in education in recent years. A popular tool for the measurement of problem solving is simulated interactive tasks, which require students to uncover some of the information needed to solve the problem through interactions with a computer-simulated environment. A computer log file records a student's problem-solving process in details, including his/her actions and the time stamps of these actions. It thus provides rich information for the measurement of students' problem-solving competency. On the other hand, extracting useful information from log files is a challenging task, due to its complex data structure. In this paper, we show how log file process data can be viewed as a marked point process, based on which we propose a continuous-time dynamic choice model. The proposed model can serve as a measurement model for scaling students along the latent traits of problem-solving competency and action speed, based on data from one or multiple tasks. A real data example is given based on data from Program for International Student Assessment 2012.
stat
Whitening and Coloring batch transform for GANs
Batch Normalization (BN) is a common technique used to speed-up and stabilize training. On the other hand, the learnable parameters of BN are commonly used in conditional Generative Adversarial Networks (cGANs) for representing class-specific information using conditional Batch Normalization (cBN). In this paper we propose to generalize both BN and cBN using a Whitening and Coloring based batch normalization. We show that our conditional Coloring can represent categorical conditioning information which largely helps the cGAN qualitative results. Moreover, we show that full-feature whitening is important in a general GAN scenario in which the training process is known to be highly unstable. We test our approach on different datasets and using different GAN networks and training protocols, showing a consistent improvement in all the tested frameworks. Our CIFAR-10 conditioned results are higher than all previous works on this dataset.
stat
LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data
One fundamental statistical task in microbiome data analysis is differential abundance analysis, which aims to identify microbial taxa whose abundance covaries with a variable of interest. Although the main interest is on the change in the absolute abundance, i.e., the number of microbial cells per unit area/volume at the ecological site such as the human gut, the data from a sequencing experiment reflects only the taxa relative abundances in a sample. Thus, microbiome data are compositional in nature. Analysis of such compositional data is challenging since the change in the absolute abundance of one taxon will lead to changes in the relative abundances of other taxa, making false positive control difficult. Here we present a simple, yet robust and highly scalable approach to tackle the compositional effects in differential abundance analysis. The method only requires the application of established statistical tools. It fits linear regression models on the centered log-ratio transformed data, identifies a bias term due to the transformation and compositional effect, and corrects the bias using the mode of the regression coefficients. Due to the algorithmic simplicity, our method is 100-1000 times faster than the state-of-the-art method ANCOM-BC. Under mild assumptions, we prove its asymptotic FDR control property, making it the first differential abundance method that enjoys a theoretical FDR control guarantee. The proposed method is very flexible and can be extended to mixed-effect models for the analysis of correlated microbiome data. Using comprehensive simulations and real data applications, we demonstrate that our method has overall the best performance in terms of FDR control and power among the competitors. We implemented the proposed method in the R package LinDA (https://github.com/zhouhj1994/LinDA).
stat
Forecasting, Causality, and Impulse Response with Neural Vector Autoregressions
Incorporating nonlinearity is paramount to predicting the future states of a dynamical system, its response to shocks, and its underlying causal network. However, most existing methods for causality detection and impulse response, such as Vector Autoregression (VAR), assume linearity and are thus unable to capture the complexity. Here, we introduce a vector autoencoder nonlinear autoregression neural network (VANAR) capable of both automatic time series feature extraction for its inputs and functional form estimation. We evaluate VANAR in three ways: first in terms of pure forecast accuracy, second in terms of detecting the correct causality between variables, and lastly in terms of impulse response where we model trajectories given external shocks. These tests were performed on a simulated nonlinear chaotic system and an empirical system using Philippine macroeconomic data. Results show that VANAR significantly outperforms VAR in the forecast and causality tests. VANAR has consistently superior accuracy even over state of the art models such as SARIMA and TBATS. For the impulse response test, both models fail to predict the shocked trajectories of the nonlinear chaotic system. VANAR was robust in its ability to model a wide variety of dynamics, from chaotic, high noise, and low data environments to macroeconomic systems.
stat
Sparse Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
This paper develops a sparsity-inducing version of Bayesian Causal Forests, a recently proposed nonparametric causal regression model that employs Bayesian Additive Regression Trees and is specifically designed to estimate heterogeneous treatment effects using observational data. The sparsity-inducing component we introduce is motivated by empirical studies where the number of pre-treatment covariates available is non-negligible, leading to different degrees of sparsity underlying the surfaces of interest in the estimation of individual treatment effects. The extended version presented in this work, which we name Sparse Bayesian Causal Forest, is equipped with an additional pair of priors allowing the model to adjust the weight of each covariate through the corresponding number of splits in the tree ensemble. These priors improve the model's adaptability to sparse settings and allow to perform fully Bayesian variable selection in a framework for treatment effects estimation, and thus to uncover the moderating factors driving heterogeneity. In addition, the method allows prior knowledge about the relevant confounding pre-treatment covariates and the relative magnitude of their impact on the outcome to be incorporated in the model. We illustrate the performance of our method in simulated studies, in comparison to Bayesian Causal Forest and other state-of-the-art models, to demonstrate how it scales up with an increasing number of covariates and how it handles strongly confounded scenarios. Finally, we also provide an example of application using real-world data.
stat
Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting
In order to enable the transition towards renewable energy sources, probabilistic energy forecasting is of critical importance for incorporating volatile power sources such as solar energy into the electrical grid. Solar energy forecasting methods often aim to provide probabilistic predictions of solar irradiance. In particular, many hybrid approaches combine physical information from numerical weather prediction models with statistical methods. Even though the physical models can provide useful information at intra-day and day-ahead forecast horizons, ensemble weather forecasts from multiple model runs are often not calibrated and show systematic biases. We propose a post-processing model for ensemble weather predictions of solar irradiance at temporal resolutions between 30 minutes and 6 hours. The proposed models provide probabilistic forecasts in the form of a censored logistic probability distribution for lead times up to 5 days and are evaluated in two case studies covering distinct physical models, geographical regions, temporal resolutions, and types of solar irradiance. We find that post-processing consistently and significantly improves the forecast performance of the ensemble predictions for lead times up to at least 48 hours and is well able to correct the systematic lack of calibration.
stat
CoolMomentum: A Method for Stochastic Optimization by Langevin Dynamics with Simulated Annealing
Deep learning applications require optimization of nonconvex objective functions. These functions have multiple local minima and their optimization is a challenging problem. Simulated Annealing is a well-established method for optimization of such functions, but its efficiency depends on the efficiency of the adapted sampling methods. We explore relations between the Langevin dynamics and stochastic optimization. By combining the Momentum optimizer with Simulated Annealing, we propose CoolMomentum - a prospective stochastic optimization method. Empirical results confirm the efficiency of the proposed theoretical approach.
stat
Calibrated Top-1 Uncertainty estimates for classification by score based models
While the accuracy of modern deep learning models has significantly improved in recent years, the ability of these models to generate uncertainty estimates has not progressed to the same degree. Uncertainty methods are designed to provide an estimate of class probabilities when predicting class assignment. While there are a number of proposed methods for estimating uncertainty, they all suffer from a lack of calibration: predicted probabilities can be off from empirical ones by a few percent or more. By restricting the scope of our predictions to only the probability of Top-1 error, we can decrease the calibration error of existing methods to less than one percent. As a result, the scores of the methods also improve significantly over benchmarks.
stat
Applying Machine Learning To Maize Traits Prediction
Heterosis is the improved or increased function of any biological quality in a hybrid offspring. We have studied yet the largest maize SNP dataset for traits prediction. We develop linear and non-linear models which consider relationships between different hybrids as well as other effect. Specially designed model proved to be efficient and robust in prediction maize's traits.
stat