Unnamed: 0
int64
0
10k
repository_name
stringlengths
7
54
func_path_in_repository
stringlengths
5
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
100
30.3k
language
stringclasses
1 value
func_code_string
stringlengths
100
30.3k
func_code_tokens
stringlengths
138
33.2k
func_documentation_string
stringlengths
1
15k
func_documentation_tokens
stringlengths
5
5.14k
split_name
stringclasses
1 value
func_code_url
stringlengths
91
315
1,900
shawnsilva/steamwebapi
steamwebapi/api.py
ISteamUser.get_player_bans
def get_player_bans(self, steamIDS, format=None): """Request the communities a steam id is banned in. steamIDS: Comma-delimited list of SteamIDs format: Return format. None defaults to json. (json, xml, vdf) """ parameters = {'steamids' : steamIDS} if format is not None: parameters['format'] = format url = self.create_request_url(self.interface, 'GetPlayerBans', 1, parameters) data = self.retrieve_request(url) return self.return_data(data, format=format)
python
def get_player_bans(self, steamIDS, format=None): """Request the communities a steam id is banned in. steamIDS: Comma-delimited list of SteamIDs format: Return format. None defaults to json. (json, xml, vdf) """ parameters = {'steamids' : steamIDS} if format is not None: parameters['format'] = format url = self.create_request_url(self.interface, 'GetPlayerBans', 1, parameters) data = self.retrieve_request(url) return self.return_data(data, format=format)
['def', 'get_player_bans', '(', 'self', ',', 'steamIDS', ',', 'format', '=', 'None', ')', ':', 'parameters', '=', '{', "'steamids'", ':', 'steamIDS', '}', 'if', 'format', 'is', 'not', 'None', ':', 'parameters', '[', "'format'", ']', '=', 'format', 'url', '=', 'self', '.', 'create_request_url', '(', 'self', '.', 'interface', ',', "'GetPlayerBans'", ',', '1', ',', 'parameters', ')', 'data', '=', 'self', '.', 'retrieve_request', '(', 'url', ')', 'return', 'self', '.', 'return_data', '(', 'data', ',', 'format', '=', 'format', ')']
Request the communities a steam id is banned in. steamIDS: Comma-delimited list of SteamIDs format: Return format. None defaults to json. (json, xml, vdf)
['Request', 'the', 'communities', 'a', 'steam', 'id', 'is', 'banned', 'in', '.']
train
https://github.com/shawnsilva/steamwebapi/blob/dc16538ebe985cc7ea170f660169ebc2366efbf2/steamwebapi/api.py#L122-L135
1,901
mailgun/expiringdict
expiringdict/__init__.py
ExpiringDict.values
def values(self): """ Return a copy of the dictionary's list of values. See the note for dict.items(). """ r = [] for key in self._safe_keys(): try: r.append(self[key]) except KeyError: pass return r
python
def values(self): """ Return a copy of the dictionary's list of values. See the note for dict.items(). """ r = [] for key in self._safe_keys(): try: r.append(self[key]) except KeyError: pass return r
['def', 'values', '(', 'self', ')', ':', 'r', '=', '[', ']', 'for', 'key', 'in', 'self', '.', '_safe_keys', '(', ')', ':', 'try', ':', 'r', '.', 'append', '(', 'self', '[', 'key', ']', ')', 'except', 'KeyError', ':', 'pass', 'return', 'r']
Return a copy of the dictionary's list of values. See the note for dict.items().
['Return', 'a', 'copy', 'of', 'the', 'dictionary', 's', 'list', 'of', 'values', '.', 'See', 'the', 'note', 'for', 'dict', '.', 'items', '()', '.']
train
https://github.com/mailgun/expiringdict/blob/750048022cde40d35721253a88fbaa2df1781e94/expiringdict/__init__.py#L129-L138
1,902
dlecocq/nsq-py
nsq/response.py
Error.exception
def exception(self): '''Return an instance of the corresponding exception''' code, _, message = self.data.partition(' ') return self.find(code)(message)
python
def exception(self): '''Return an instance of the corresponding exception''' code, _, message = self.data.partition(' ') return self.find(code)(message)
['def', 'exception', '(', 'self', ')', ':', 'code', ',', '_', ',', 'message', '=', 'self', '.', 'data', '.', 'partition', '(', "' '", ')', 'return', 'self', '.', 'find', '(', 'code', ')', '(', 'message', ')']
Return an instance of the corresponding exception
['Return', 'an', 'instance', 'of', 'the', 'corresponding', 'exception']
train
https://github.com/dlecocq/nsq-py/blob/3ecacf6ab7719d38031179277113d875554a0c16/nsq/response.py#L147-L150
1,903
leonidessaguisagjr/pseudol10nutil
pseudol10nutil/pseudol10nutil.py
PseudoL10nUtil.pseudolocalize
def pseudolocalize(self, s): """ Performs pseudo-localization on a string. The specific transforms to be applied to the string is defined in the transforms field of the object. :param s: String to pseudo-localize. :returns: Copy of the string s with the transforms applied. If the input string is an empty string or None, an empty string is returned. """ if not s: # If the string is empty or None return u"" if not isinstance(s, six.text_type): raise TypeError("String to pseudo-localize must be of type '{0}'.".format(six.text_type.__name__)) # If no transforms are defined, return the string as-is. if not self.transforms: return s fmt_spec = re.compile( r"""( {.*?} # https://docs.python.org/3/library/string.html#formatstrings | %(?:\(\w+?\))?.*?[acdeEfFgGiorsuxX%] # https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting )""", re.VERBOSE) # If we don't find any format specifiers in the input string, just munge the entire string at once. if not fmt_spec.search(s): result = s for munge in self.transforms: result = munge(result) # If there are format specifiers, we do transliterations on the sections of the string that are not format # specifiers, then do any other munging (padding the length, adding brackets) on the entire string. else: substrings = fmt_spec.split(s) for munge in self.transforms: if munge in transforms._transliterations: for idx in range(len(substrings)): if not fmt_spec.match(substrings[idx]): substrings[idx] = munge(substrings[idx]) else: continue else: continue result = u"".join(substrings) for munge in self.transforms: if munge not in transforms._transliterations: result = munge(result) return result
python
def pseudolocalize(self, s): """ Performs pseudo-localization on a string. The specific transforms to be applied to the string is defined in the transforms field of the object. :param s: String to pseudo-localize. :returns: Copy of the string s with the transforms applied. If the input string is an empty string or None, an empty string is returned. """ if not s: # If the string is empty or None return u"" if not isinstance(s, six.text_type): raise TypeError("String to pseudo-localize must be of type '{0}'.".format(six.text_type.__name__)) # If no transforms are defined, return the string as-is. if not self.transforms: return s fmt_spec = re.compile( r"""( {.*?} # https://docs.python.org/3/library/string.html#formatstrings | %(?:\(\w+?\))?.*?[acdeEfFgGiorsuxX%] # https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting )""", re.VERBOSE) # If we don't find any format specifiers in the input string, just munge the entire string at once. if not fmt_spec.search(s): result = s for munge in self.transforms: result = munge(result) # If there are format specifiers, we do transliterations on the sections of the string that are not format # specifiers, then do any other munging (padding the length, adding brackets) on the entire string. else: substrings = fmt_spec.split(s) for munge in self.transforms: if munge in transforms._transliterations: for idx in range(len(substrings)): if not fmt_spec.match(substrings[idx]): substrings[idx] = munge(substrings[idx]) else: continue else: continue result = u"".join(substrings) for munge in self.transforms: if munge not in transforms._transliterations: result = munge(result) return result
['def', 'pseudolocalize', '(', 'self', ',', 's', ')', ':', 'if', 'not', 's', ':', '# If the string is empty or None', 'return', 'u""', 'if', 'not', 'isinstance', '(', 's', ',', 'six', '.', 'text_type', ')', ':', 'raise', 'TypeError', '(', '"String to pseudo-localize must be of type \'{0}\'."', '.', 'format', '(', 'six', '.', 'text_type', '.', '__name__', ')', ')', '# If no transforms are defined, return the string as-is.', 'if', 'not', 'self', '.', 'transforms', ':', 'return', 's', 'fmt_spec', '=', 're', '.', 'compile', '(', 'r"""(\n {.*?} # https://docs.python.org/3/library/string.html#formatstrings\n |\n %(?:\\(\\w+?\\))?.*?[acdeEfFgGiorsuxX%] # https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting\n )"""', ',', 're', '.', 'VERBOSE', ')', "# If we don't find any format specifiers in the input string, just munge the entire string at once.", 'if', 'not', 'fmt_spec', '.', 'search', '(', 's', ')', ':', 'result', '=', 's', 'for', 'munge', 'in', 'self', '.', 'transforms', ':', 'result', '=', 'munge', '(', 'result', ')', '# If there are format specifiers, we do transliterations on the sections of the string that are not format', '# specifiers, then do any other munging (padding the length, adding brackets) on the entire string.', 'else', ':', 'substrings', '=', 'fmt_spec', '.', 'split', '(', 's', ')', 'for', 'munge', 'in', 'self', '.', 'transforms', ':', 'if', 'munge', 'in', 'transforms', '.', '_transliterations', ':', 'for', 'idx', 'in', 'range', '(', 'len', '(', 'substrings', ')', ')', ':', 'if', 'not', 'fmt_spec', '.', 'match', '(', 'substrings', '[', 'idx', ']', ')', ':', 'substrings', '[', 'idx', ']', '=', 'munge', '(', 'substrings', '[', 'idx', ']', ')', 'else', ':', 'continue', 'else', ':', 'continue', 'result', '=', 'u""', '.', 'join', '(', 'substrings', ')', 'for', 'munge', 'in', 'self', '.', 'transforms', ':', 'if', 'munge', 'not', 'in', 'transforms', '.', '_transliterations', ':', 'result', '=', 'munge', '(', 'result', ')', 'return', 'result']
Performs pseudo-localization on a string. The specific transforms to be applied to the string is defined in the transforms field of the object. :param s: String to pseudo-localize. :returns: Copy of the string s with the transforms applied. If the input string is an empty string or None, an empty string is returned.
['Performs', 'pseudo', '-', 'localization', 'on', 'a', 'string', '.', 'The', 'specific', 'transforms', 'to', 'be', 'applied', 'to', 'the', 'string', 'is', 'defined', 'in', 'the', 'transforms', 'field', 'of', 'the', 'object', '.']
train
https://github.com/leonidessaguisagjr/pseudol10nutil/blob/39cb0ae8cc5c1df5690816a18472e0366a49ab8d/pseudol10nutil/pseudol10nutil.py#L33-L77
1,904
spacetelescope/stsci.tools
lib/stsci/tools/wcsutil.py
WCSObject.createReferenceWCS
def createReferenceWCS(self,refname,overwrite=yes): """ Write out the values of the WCS keywords to the NEW specified image 'fitsname'. """ hdu = self.createWcsHDU() # If refname already exists, delete it to make way for new file if os.path.exists(refname): if overwrite==yes: # Remove previous version and re-create with new header os.remove(refname) hdu.writeto(refname) else: # Append header to existing file wcs_append = True oldhdu = fits.open(refname, mode='append') for e in oldhdu: if 'extname' in e.header and e.header['extname'] == 'WCS': wcs_append = False if wcs_append == True: oldhdu.append(hdu) oldhdu.close() del oldhdu else: # No previous file, so generate new one from scratch hdu.writeto(refname) # Clean up del hdu
python
def createReferenceWCS(self,refname,overwrite=yes): """ Write out the values of the WCS keywords to the NEW specified image 'fitsname'. """ hdu = self.createWcsHDU() # If refname already exists, delete it to make way for new file if os.path.exists(refname): if overwrite==yes: # Remove previous version and re-create with new header os.remove(refname) hdu.writeto(refname) else: # Append header to existing file wcs_append = True oldhdu = fits.open(refname, mode='append') for e in oldhdu: if 'extname' in e.header and e.header['extname'] == 'WCS': wcs_append = False if wcs_append == True: oldhdu.append(hdu) oldhdu.close() del oldhdu else: # No previous file, so generate new one from scratch hdu.writeto(refname) # Clean up del hdu
['def', 'createReferenceWCS', '(', 'self', ',', 'refname', ',', 'overwrite', '=', 'yes', ')', ':', 'hdu', '=', 'self', '.', 'createWcsHDU', '(', ')', '# If refname already exists, delete it to make way for new file', 'if', 'os', '.', 'path', '.', 'exists', '(', 'refname', ')', ':', 'if', 'overwrite', '==', 'yes', ':', '# Remove previous version and re-create with new header', 'os', '.', 'remove', '(', 'refname', ')', 'hdu', '.', 'writeto', '(', 'refname', ')', 'else', ':', '# Append header to existing file', 'wcs_append', '=', 'True', 'oldhdu', '=', 'fits', '.', 'open', '(', 'refname', ',', 'mode', '=', "'append'", ')', 'for', 'e', 'in', 'oldhdu', ':', 'if', "'extname'", 'in', 'e', '.', 'header', 'and', 'e', '.', 'header', '[', "'extname'", ']', '==', "'WCS'", ':', 'wcs_append', '=', 'False', 'if', 'wcs_append', '==', 'True', ':', 'oldhdu', '.', 'append', '(', 'hdu', ')', 'oldhdu', '.', 'close', '(', ')', 'del', 'oldhdu', 'else', ':', '# No previous file, so generate new one from scratch', 'hdu', '.', 'writeto', '(', 'refname', ')', '# Clean up', 'del', 'hdu']
Write out the values of the WCS keywords to the NEW specified image 'fitsname'.
['Write', 'out', 'the', 'values', 'of', 'the', 'WCS', 'keywords', 'to', 'the', 'NEW', 'specified', 'image', 'fitsname', '.']
train
https://github.com/spacetelescope/stsci.tools/blob/9a022503ad24ca54ce83331482dfa3ff6de9f403/lib/stsci/tools/wcsutil.py#L1025-L1053
1,905
kensho-technologies/graphql-compiler
graphql_compiler/compiler/sql_context_helpers.py
get_node_at_path
def get_node_at_path(query_path, context): """Return the SqlNode associated with the query path.""" if query_path not in context.query_path_to_node: raise AssertionError( u'Unable to find SqlNode for query path {} with context {}.'.format( query_path, context)) node = context.query_path_to_node[query_path] return node
python
def get_node_at_path(query_path, context): """Return the SqlNode associated with the query path.""" if query_path not in context.query_path_to_node: raise AssertionError( u'Unable to find SqlNode for query path {} with context {}.'.format( query_path, context)) node = context.query_path_to_node[query_path] return node
['def', 'get_node_at_path', '(', 'query_path', ',', 'context', ')', ':', 'if', 'query_path', 'not', 'in', 'context', '.', 'query_path_to_node', ':', 'raise', 'AssertionError', '(', "u'Unable to find SqlNode for query path {} with context {}.'", '.', 'format', '(', 'query_path', ',', 'context', ')', ')', 'node', '=', 'context', '.', 'query_path_to_node', '[', 'query_path', ']', 'return', 'node']
Return the SqlNode associated with the query path.
['Return', 'the', 'SqlNode', 'associated', 'with', 'the', 'query', 'path', '.']
train
https://github.com/kensho-technologies/graphql-compiler/blob/f6079c6d10f64932f6b3af309b79bcea2123ca8f/graphql_compiler/compiler/sql_context_helpers.py#L27-L34
1,906
materialsproject/pymatgen
pymatgen/analysis/molecule_matcher.py
InchiMolAtomMapper._group_centroid
def _group_centroid(mol, ilabels, group_atoms): """ Calculate the centroids of a group atoms indexed by the labels of inchi Args: mol: The molecule. OpenBabel OBMol object ilabel: inchi label map Returns: Centroid. Tuple (x, y, z) """ c1x, c1y, c1z = 0.0, 0.0, 0.0 for i in group_atoms: orig_idx = ilabels[i-1] oa1 = mol.GetAtom(orig_idx) c1x += float(oa1.x()) c1y += float(oa1.y()) c1z += float(oa1.z()) num_atoms = len(group_atoms) c1x /= num_atoms c1y /= num_atoms c1z /= num_atoms return c1x, c1y, c1z
python
def _group_centroid(mol, ilabels, group_atoms): """ Calculate the centroids of a group atoms indexed by the labels of inchi Args: mol: The molecule. OpenBabel OBMol object ilabel: inchi label map Returns: Centroid. Tuple (x, y, z) """ c1x, c1y, c1z = 0.0, 0.0, 0.0 for i in group_atoms: orig_idx = ilabels[i-1] oa1 = mol.GetAtom(orig_idx) c1x += float(oa1.x()) c1y += float(oa1.y()) c1z += float(oa1.z()) num_atoms = len(group_atoms) c1x /= num_atoms c1y /= num_atoms c1z /= num_atoms return c1x, c1y, c1z
['def', '_group_centroid', '(', 'mol', ',', 'ilabels', ',', 'group_atoms', ')', ':', 'c1x', ',', 'c1y', ',', 'c1z', '=', '0.0', ',', '0.0', ',', '0.0', 'for', 'i', 'in', 'group_atoms', ':', 'orig_idx', '=', 'ilabels', '[', 'i', '-', '1', ']', 'oa1', '=', 'mol', '.', 'GetAtom', '(', 'orig_idx', ')', 'c1x', '+=', 'float', '(', 'oa1', '.', 'x', '(', ')', ')', 'c1y', '+=', 'float', '(', 'oa1', '.', 'y', '(', ')', ')', 'c1z', '+=', 'float', '(', 'oa1', '.', 'z', '(', ')', ')', 'num_atoms', '=', 'len', '(', 'group_atoms', ')', 'c1x', '/=', 'num_atoms', 'c1y', '/=', 'num_atoms', 'c1z', '/=', 'num_atoms', 'return', 'c1x', ',', 'c1y', ',', 'c1z']
Calculate the centroids of a group atoms indexed by the labels of inchi Args: mol: The molecule. OpenBabel OBMol object ilabel: inchi label map Returns: Centroid. Tuple (x, y, z)
['Calculate', 'the', 'centroids', 'of', 'a', 'group', 'atoms', 'indexed', 'by', 'the', 'labels', 'of', 'inchi']
train
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/analysis/molecule_matcher.py#L237-L259
1,907
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
EngineCreator.create_mysql
def create_mysql(self, **kwargs): """ :rtype: Engine """ return self._ce( self._ccs(self.DialectAndDriver.mysql), **kwargs )
python
def create_mysql(self, **kwargs): """ :rtype: Engine """ return self._ce( self._ccs(self.DialectAndDriver.mysql), **kwargs )
['def', 'create_mysql', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'return', 'self', '.', '_ce', '(', 'self', '.', '_ccs', '(', 'self', '.', 'DialectAndDriver', '.', 'mysql', ')', ',', '*', '*', 'kwargs', ')']
:rtype: Engine
[':', 'rtype', ':', 'Engine']
train
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L362-L368
1,908
mwouts/jupytext
jupytext/cell_metadata.py
json_options_to_metadata
def json_options_to_metadata(options, add_brackets=True): """Read metadata from its json representation""" try: options = loads('{' + options + '}' if add_brackets else options) return options except ValueError: return {}
python
def json_options_to_metadata(options, add_brackets=True): """Read metadata from its json representation""" try: options = loads('{' + options + '}' if add_brackets else options) return options except ValueError: return {}
['def', 'json_options_to_metadata', '(', 'options', ',', 'add_brackets', '=', 'True', ')', ':', 'try', ':', 'options', '=', 'loads', '(', "'{'", '+', 'options', '+', "'}'", 'if', 'add_brackets', 'else', 'options', ')', 'return', 'options', 'except', 'ValueError', ':', 'return', '{', '}']
Read metadata from its json representation
['Read', 'metadata', 'from', 'its', 'json', 'representation']
train
https://github.com/mwouts/jupytext/blob/eb7d6aee889f80ad779cfc53441c648f0db9246d/jupytext/cell_metadata.py#L333-L339
1,909
tjcsl/ion
intranet/apps/announcements/views.py
add_announcement_view
def add_announcement_view(request): """Add an announcement.""" if request.method == "POST": form = AnnouncementForm(request.POST) logger.debug(form) if form.is_valid(): obj = form.save() obj.user = request.user # SAFE HTML obj.content = safe_html(obj.content) obj.save() announcement_posted_hook(request, obj) messages.success(request, "Successfully added announcement.") return redirect("index") else: messages.error(request, "Error adding announcement") else: form = AnnouncementForm() return render(request, "announcements/add_modify.html", {"form": form, "action": "add"})
python
def add_announcement_view(request): """Add an announcement.""" if request.method == "POST": form = AnnouncementForm(request.POST) logger.debug(form) if form.is_valid(): obj = form.save() obj.user = request.user # SAFE HTML obj.content = safe_html(obj.content) obj.save() announcement_posted_hook(request, obj) messages.success(request, "Successfully added announcement.") return redirect("index") else: messages.error(request, "Error adding announcement") else: form = AnnouncementForm() return render(request, "announcements/add_modify.html", {"form": form, "action": "add"})
['def', 'add_announcement_view', '(', 'request', ')', ':', 'if', 'request', '.', 'method', '==', '"POST"', ':', 'form', '=', 'AnnouncementForm', '(', 'request', '.', 'POST', ')', 'logger', '.', 'debug', '(', 'form', ')', 'if', 'form', '.', 'is_valid', '(', ')', ':', 'obj', '=', 'form', '.', 'save', '(', ')', 'obj', '.', 'user', '=', 'request', '.', 'user', '# SAFE HTML', 'obj', '.', 'content', '=', 'safe_html', '(', 'obj', '.', 'content', ')', 'obj', '.', 'save', '(', ')', 'announcement_posted_hook', '(', 'request', ',', 'obj', ')', 'messages', '.', 'success', '(', 'request', ',', '"Successfully added announcement."', ')', 'return', 'redirect', '(', '"index"', ')', 'else', ':', 'messages', '.', 'error', '(', 'request', ',', '"Error adding announcement"', ')', 'else', ':', 'form', '=', 'AnnouncementForm', '(', ')', 'return', 'render', '(', 'request', ',', '"announcements/add_modify.html"', ',', '{', '"form"', ':', 'form', ',', '"action"', ':', '"add"', '}', ')']
Add an announcement.
['Add', 'an', 'announcement', '.']
train
https://github.com/tjcsl/ion/blob/5d722b0725d572039bb0929fd5715a4070c82c72/intranet/apps/announcements/views.py#L268-L286
1,910
Capitains/MyCapytain
MyCapytain/resources/texts/local/capitains/cts.py
CapitainsCtsPassage.next
def next(self): """ Next CapitainsCtsPassage (Interactive CapitainsCtsPassage) """ if self.nextId is not None: return super(CapitainsCtsPassage, self).getTextualNode(subreference=self.nextId)
python
def next(self): """ Next CapitainsCtsPassage (Interactive CapitainsCtsPassage) """ if self.nextId is not None: return super(CapitainsCtsPassage, self).getTextualNode(subreference=self.nextId)
['def', 'next', '(', 'self', ')', ':', 'if', 'self', '.', 'nextId', 'is', 'not', 'None', ':', 'return', 'super', '(', 'CapitainsCtsPassage', ',', 'self', ')', '.', 'getTextualNode', '(', 'subreference', '=', 'self', '.', 'nextId', ')']
Next CapitainsCtsPassage (Interactive CapitainsCtsPassage)
['Next', 'CapitainsCtsPassage', '(', 'Interactive', 'CapitainsCtsPassage', ')']
train
https://github.com/Capitains/MyCapytain/blob/b11bbf6b6ae141fc02be70471e3fbf6907be6593/MyCapytain/resources/texts/local/capitains/cts.py#L672-L676
1,911
sepandhaghighi/art
art/art.py
tsave
def tsave( text, font=DEFAULT_FONT, filename="art", chr_ignore=True, print_status=True): r""" Save ascii art (support \n). :param text: input text :param font: input font :type font:str :type text:str :param filename: output file name :type filename:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :param print_status : save message print flag :type print_status:bool :return: None """ try: if isinstance(text, str) is False: raise Exception(TEXT_TYPE_ERROR) files_list = os.listdir(os.getcwd()) extension = ".txt" splitted_filename = filename.split(".") name = splitted_filename[0] if len(splitted_filename) > 1: extension = "." + splitted_filename[1] index = 2 test_name = name while(True): if test_name + extension in files_list: test_name = name + str(index) index = index + 1 else: break if font.lower() in TEST_FILTERED_FONTS: file = codecs.open(test_name + extension, "w", encoding='utf-8') else: file = open(test_name + extension, "w") result = text2art(text, font=font, chr_ignore=chr_ignore) file.write(result) file.close() if print_status: print("Saved! \nFilename: " + test_name + extension) return {"Status": True, "Message": "OK"} except Exception as e: return {"Status": False, "Message": str(e)}
python
def tsave( text, font=DEFAULT_FONT, filename="art", chr_ignore=True, print_status=True): r""" Save ascii art (support \n). :param text: input text :param font: input font :type font:str :type text:str :param filename: output file name :type filename:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :param print_status : save message print flag :type print_status:bool :return: None """ try: if isinstance(text, str) is False: raise Exception(TEXT_TYPE_ERROR) files_list = os.listdir(os.getcwd()) extension = ".txt" splitted_filename = filename.split(".") name = splitted_filename[0] if len(splitted_filename) > 1: extension = "." + splitted_filename[1] index = 2 test_name = name while(True): if test_name + extension in files_list: test_name = name + str(index) index = index + 1 else: break if font.lower() in TEST_FILTERED_FONTS: file = codecs.open(test_name + extension, "w", encoding='utf-8') else: file = open(test_name + extension, "w") result = text2art(text, font=font, chr_ignore=chr_ignore) file.write(result) file.close() if print_status: print("Saved! \nFilename: " + test_name + extension) return {"Status": True, "Message": "OK"} except Exception as e: return {"Status": False, "Message": str(e)}
['def', 'tsave', '(', 'text', ',', 'font', '=', 'DEFAULT_FONT', ',', 'filename', '=', '"art"', ',', 'chr_ignore', '=', 'True', ',', 'print_status', '=', 'True', ')', ':', 'try', ':', 'if', 'isinstance', '(', 'text', ',', 'str', ')', 'is', 'False', ':', 'raise', 'Exception', '(', 'TEXT_TYPE_ERROR', ')', 'files_list', '=', 'os', '.', 'listdir', '(', 'os', '.', 'getcwd', '(', ')', ')', 'extension', '=', '".txt"', 'splitted_filename', '=', 'filename', '.', 'split', '(', '"."', ')', 'name', '=', 'splitted_filename', '[', '0', ']', 'if', 'len', '(', 'splitted_filename', ')', '>', '1', ':', 'extension', '=', '"."', '+', 'splitted_filename', '[', '1', ']', 'index', '=', '2', 'test_name', '=', 'name', 'while', '(', 'True', ')', ':', 'if', 'test_name', '+', 'extension', 'in', 'files_list', ':', 'test_name', '=', 'name', '+', 'str', '(', 'index', ')', 'index', '=', 'index', '+', '1', 'else', ':', 'break', 'if', 'font', '.', 'lower', '(', ')', 'in', 'TEST_FILTERED_FONTS', ':', 'file', '=', 'codecs', '.', 'open', '(', 'test_name', '+', 'extension', ',', '"w"', ',', 'encoding', '=', "'utf-8'", ')', 'else', ':', 'file', '=', 'open', '(', 'test_name', '+', 'extension', ',', '"w"', ')', 'result', '=', 'text2art', '(', 'text', ',', 'font', '=', 'font', ',', 'chr_ignore', '=', 'chr_ignore', ')', 'file', '.', 'write', '(', 'result', ')', 'file', '.', 'close', '(', ')', 'if', 'print_status', ':', 'print', '(', '"Saved! \\nFilename: "', '+', 'test_name', '+', 'extension', ')', 'return', '{', '"Status"', ':', 'True', ',', '"Message"', ':', '"OK"', '}', 'except', 'Exception', 'as', 'e', ':', 'return', '{', '"Status"', ':', 'False', ',', '"Message"', ':', 'str', '(', 'e', ')', '}']
r""" Save ascii art (support \n). :param text: input text :param font: input font :type font:str :type text:str :param filename: output file name :type filename:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :param print_status : save message print flag :type print_status:bool :return: None
['r', 'Save', 'ascii', 'art', '(', 'support', '\\', 'n', ')', '.']
train
https://github.com/sepandhaghighi/art/blob/c5b0409de76464b0714c377f8fca17716f3a9482/art/art.py#L197-L246
1,912
twilio/twilio-python
twilio/rest/authy/v1/service/entity/factor/__init__.py
FactorPage.get_instance
def get_instance(self, payload): """ Build an instance of FactorInstance :param dict payload: Payload response from the API :returns: twilio.rest.authy.v1.service.entity.factor.FactorInstance :rtype: twilio.rest.authy.v1.service.entity.factor.FactorInstance """ return FactorInstance( self._version, payload, service_sid=self._solution['service_sid'], identity=self._solution['identity'], )
python
def get_instance(self, payload): """ Build an instance of FactorInstance :param dict payload: Payload response from the API :returns: twilio.rest.authy.v1.service.entity.factor.FactorInstance :rtype: twilio.rest.authy.v1.service.entity.factor.FactorInstance """ return FactorInstance( self._version, payload, service_sid=self._solution['service_sid'], identity=self._solution['identity'], )
['def', 'get_instance', '(', 'self', ',', 'payload', ')', ':', 'return', 'FactorInstance', '(', 'self', '.', '_version', ',', 'payload', ',', 'service_sid', '=', 'self', '.', '_solution', '[', "'service_sid'", ']', ',', 'identity', '=', 'self', '.', '_solution', '[', "'identity'", ']', ',', ')']
Build an instance of FactorInstance :param dict payload: Payload response from the API :returns: twilio.rest.authy.v1.service.entity.factor.FactorInstance :rtype: twilio.rest.authy.v1.service.entity.factor.FactorInstance
['Build', 'an', 'instance', 'of', 'FactorInstance']
train
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/authy/v1/service/entity/factor/__init__.py#L211-L225
1,913
SpamScope/mail-parser
mailparser/utils.py
fingerprints
def fingerprints(data): """ This function return the fingerprints of data. Args: data (string): raw data Returns: namedtuple: fingerprints md5, sha1, sha256, sha512 """ Hashes = namedtuple('Hashes', "md5 sha1 sha256 sha512") if six.PY2: if not isinstance(data, str): data = data.encode("utf-8") elif six.PY3: if not isinstance(data, bytes): data = data.encode("utf-8") # md5 md5 = hashlib.md5() md5.update(data) md5 = md5.hexdigest() # sha1 sha1 = hashlib.sha1() sha1.update(data) sha1 = sha1.hexdigest() # sha256 sha256 = hashlib.sha256() sha256.update(data) sha256 = sha256.hexdigest() # sha512 sha512 = hashlib.sha512() sha512.update(data) sha512 = sha512.hexdigest() return Hashes(md5, sha1, sha256, sha512)
python
def fingerprints(data): """ This function return the fingerprints of data. Args: data (string): raw data Returns: namedtuple: fingerprints md5, sha1, sha256, sha512 """ Hashes = namedtuple('Hashes', "md5 sha1 sha256 sha512") if six.PY2: if not isinstance(data, str): data = data.encode("utf-8") elif six.PY3: if not isinstance(data, bytes): data = data.encode("utf-8") # md5 md5 = hashlib.md5() md5.update(data) md5 = md5.hexdigest() # sha1 sha1 = hashlib.sha1() sha1.update(data) sha1 = sha1.hexdigest() # sha256 sha256 = hashlib.sha256() sha256.update(data) sha256 = sha256.hexdigest() # sha512 sha512 = hashlib.sha512() sha512.update(data) sha512 = sha512.hexdigest() return Hashes(md5, sha1, sha256, sha512)
['def', 'fingerprints', '(', 'data', ')', ':', 'Hashes', '=', 'namedtuple', '(', "'Hashes'", ',', '"md5 sha1 sha256 sha512"', ')', 'if', 'six', '.', 'PY2', ':', 'if', 'not', 'isinstance', '(', 'data', ',', 'str', ')', ':', 'data', '=', 'data', '.', 'encode', '(', '"utf-8"', ')', 'elif', 'six', '.', 'PY3', ':', 'if', 'not', 'isinstance', '(', 'data', ',', 'bytes', ')', ':', 'data', '=', 'data', '.', 'encode', '(', '"utf-8"', ')', '# md5', 'md5', '=', 'hashlib', '.', 'md5', '(', ')', 'md5', '.', 'update', '(', 'data', ')', 'md5', '=', 'md5', '.', 'hexdigest', '(', ')', '# sha1', 'sha1', '=', 'hashlib', '.', 'sha1', '(', ')', 'sha1', '.', 'update', '(', 'data', ')', 'sha1', '=', 'sha1', '.', 'hexdigest', '(', ')', '# sha256', 'sha256', '=', 'hashlib', '.', 'sha256', '(', ')', 'sha256', '.', 'update', '(', 'data', ')', 'sha256', '=', 'sha256', '.', 'hexdigest', '(', ')', '# sha512', 'sha512', '=', 'hashlib', '.', 'sha512', '(', ')', 'sha512', '.', 'update', '(', 'data', ')', 'sha512', '=', 'sha512', '.', 'hexdigest', '(', ')', 'return', 'Hashes', '(', 'md5', ',', 'sha1', ',', 'sha256', ',', 'sha512', ')']
This function return the fingerprints of data. Args: data (string): raw data Returns: namedtuple: fingerprints md5, sha1, sha256, sha512
['This', 'function', 'return', 'the', 'fingerprints', 'of', 'data', '.']
train
https://github.com/SpamScope/mail-parser/blob/814b56d0b803feab9dea04f054b802ce138097e2/mailparser/utils.py#L161-L201
1,914
edx/edx-val
edxval/models.py
ListField.get_prep_value
def get_prep_value(self, value): """ Converts a list to its json representation to store in database as text. """ if value and not isinstance(value, list): raise ValidationError(u'ListField value {} is not a list.'.format(value)) return json.dumps(self.validate_list(value) or [])
python
def get_prep_value(self, value): """ Converts a list to its json representation to store in database as text. """ if value and not isinstance(value, list): raise ValidationError(u'ListField value {} is not a list.'.format(value)) return json.dumps(self.validate_list(value) or [])
['def', 'get_prep_value', '(', 'self', ',', 'value', ')', ':', 'if', 'value', 'and', 'not', 'isinstance', '(', 'value', ',', 'list', ')', ':', 'raise', 'ValidationError', '(', "u'ListField value {} is not a list.'", '.', 'format', '(', 'value', ')', ')', 'return', 'json', '.', 'dumps', '(', 'self', '.', 'validate_list', '(', 'value', ')', 'or', '[', ']', ')']
Converts a list to its json representation to store in database as text.
['Converts', 'a', 'list', 'to', 'its', 'json', 'representation', 'to', 'store', 'in', 'database', 'as', 'text', '.']
train
https://github.com/edx/edx-val/blob/30df48061e77641edb5272895b7c7f7f25eb7aa7/edxval/models.py#L233-L239
1,915
PyHDI/Pyverilog
pyverilog/vparser/parser.py
VerilogParser.p_generate_named_block
def p_generate_named_block(self, p): 'generate_block : BEGIN COLON ID generate_items END' p[0] = Block(p[4], p[3], lineno=p.lineno(1)) p.set_lineno(0, p.lineno(1))
python
def p_generate_named_block(self, p): 'generate_block : BEGIN COLON ID generate_items END' p[0] = Block(p[4], p[3], lineno=p.lineno(1)) p.set_lineno(0, p.lineno(1))
['def', 'p_generate_named_block', '(', 'self', ',', 'p', ')', ':', 'p', '[', '0', ']', '=', 'Block', '(', 'p', '[', '4', ']', ',', 'p', '[', '3', ']', ',', 'lineno', '=', 'p', '.', 'lineno', '(', '1', ')', ')', 'p', '.', 'set_lineno', '(', '0', ',', 'p', '.', 'lineno', '(', '1', ')', ')']
generate_block : BEGIN COLON ID generate_items END
['generate_block', ':', 'BEGIN', 'COLON', 'ID', 'generate_items', 'END']
train
https://github.com/PyHDI/Pyverilog/blob/b852cc5ed6a7a2712e33639f9d9782d0d1587a53/pyverilog/vparser/parser.py#L1938-L1941
1,916
pypa/pipenv
pipenv/vendor/distlib/database.py
InstalledDistribution.exports
def exports(self): """ Return the information exported by this distribution. :return: A dictionary of exports, mapping an export category to a dict of :class:`ExportEntry` instances describing the individual export entries, and keyed by name. """ result = {} r = self.get_distinfo_resource(EXPORTS_FILENAME) if r: result = self.read_exports() return result
python
def exports(self): """ Return the information exported by this distribution. :return: A dictionary of exports, mapping an export category to a dict of :class:`ExportEntry` instances describing the individual export entries, and keyed by name. """ result = {} r = self.get_distinfo_resource(EXPORTS_FILENAME) if r: result = self.read_exports() return result
['def', 'exports', '(', 'self', ')', ':', 'result', '=', '{', '}', 'r', '=', 'self', '.', 'get_distinfo_resource', '(', 'EXPORTS_FILENAME', ')', 'if', 'r', ':', 'result', '=', 'self', '.', 'read_exports', '(', ')', 'return', 'result']
Return the information exported by this distribution. :return: A dictionary of exports, mapping an export category to a dict of :class:`ExportEntry` instances describing the individual export entries, and keyed by name.
['Return', 'the', 'information', 'exported', 'by', 'this', 'distribution', '.', ':', 'return', ':', 'A', 'dictionary', 'of', 'exports', 'mapping', 'an', 'export', 'category', 'to', 'a', 'dict', 'of', ':', 'class', ':', 'ExportEntry', 'instances', 'describing', 'the', 'individual', 'export', 'entries', 'and', 'keyed', 'by', 'name', '.']
train
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/distlib/database.py#L604-L615
1,917
TkTech/Jawa
jawa/attributes/code.py
CodeAttribute.disassemble
def disassemble(self, *, transforms=None) -> Iterator[Instruction]: """ Disassembles this method, yielding an iterable of :class:`~jawa.util.bytecode.Instruction` objects. """ if transforms is None: if self.cf.classloader: transforms = self.cf.classloader.bytecode_transforms else: transforms = [] transforms = [self._bind_transform(t) for t in transforms] with io.BytesIO(self._code) as code: ins_iter = iter(lambda: read_instruction(code, code.tell()), None) for ins in ins_iter: for transform in transforms: ins = transform(ins) yield ins
python
def disassemble(self, *, transforms=None) -> Iterator[Instruction]: """ Disassembles this method, yielding an iterable of :class:`~jawa.util.bytecode.Instruction` objects. """ if transforms is None: if self.cf.classloader: transforms = self.cf.classloader.bytecode_transforms else: transforms = [] transforms = [self._bind_transform(t) for t in transforms] with io.BytesIO(self._code) as code: ins_iter = iter(lambda: read_instruction(code, code.tell()), None) for ins in ins_iter: for transform in transforms: ins = transform(ins) yield ins
['def', 'disassemble', '(', 'self', ',', '*', ',', 'transforms', '=', 'None', ')', '->', 'Iterator', '[', 'Instruction', ']', ':', 'if', 'transforms', 'is', 'None', ':', 'if', 'self', '.', 'cf', '.', 'classloader', ':', 'transforms', '=', 'self', '.', 'cf', '.', 'classloader', '.', 'bytecode_transforms', 'else', ':', 'transforms', '=', '[', ']', 'transforms', '=', '[', 'self', '.', '_bind_transform', '(', 't', ')', 'for', 't', 'in', 'transforms', ']', 'with', 'io', '.', 'BytesIO', '(', 'self', '.', '_code', ')', 'as', 'code', ':', 'ins_iter', '=', 'iter', '(', 'lambda', ':', 'read_instruction', '(', 'code', ',', 'code', '.', 'tell', '(', ')', ')', ',', 'None', ')', 'for', 'ins', 'in', 'ins_iter', ':', 'for', 'transform', 'in', 'transforms', ':', 'ins', '=', 'transform', '(', 'ins', ')', 'yield', 'ins']
Disassembles this method, yielding an iterable of :class:`~jawa.util.bytecode.Instruction` objects.
['Disassembles', 'this', 'method', 'yielding', 'an', 'iterable', 'of', ':', 'class', ':', '~jawa', '.', 'util', '.', 'bytecode', '.', 'Instruction', 'objects', '.']
train
https://github.com/TkTech/Jawa/blob/94c8424e699029ac33fbc0e866fff0ecb2742289/jawa/attributes/code.py#L123-L141
1,918
ejeschke/ginga
ginga/Bindings.py
BindingMapper.mode_key_up
def mode_key_up(self, viewer, keyname): """This method is called when a key is pressed in a mode and was not handled by some other handler with precedence, such as a subcanvas. """ # Is this a mode key? if keyname not in self.mode_map: # <== no return False bnch = self.mode_map[keyname] if self._kbdmode == bnch.name: # <-- the current mode key is being released if bnch.type == 'held': if self._button == 0: # if no button is being held, then reset mode self.reset_mode(viewer) else: self._delayed_reset = True return True return False
python
def mode_key_up(self, viewer, keyname): """This method is called when a key is pressed in a mode and was not handled by some other handler with precedence, such as a subcanvas. """ # Is this a mode key? if keyname not in self.mode_map: # <== no return False bnch = self.mode_map[keyname] if self._kbdmode == bnch.name: # <-- the current mode key is being released if bnch.type == 'held': if self._button == 0: # if no button is being held, then reset mode self.reset_mode(viewer) else: self._delayed_reset = True return True return False
['def', 'mode_key_up', '(', 'self', ',', 'viewer', ',', 'keyname', ')', ':', '# Is this a mode key?', 'if', 'keyname', 'not', 'in', 'self', '.', 'mode_map', ':', '# <== no', 'return', 'False', 'bnch', '=', 'self', '.', 'mode_map', '[', 'keyname', ']', 'if', 'self', '.', '_kbdmode', '==', 'bnch', '.', 'name', ':', '# <-- the current mode key is being released', 'if', 'bnch', '.', 'type', '==', "'held'", ':', 'if', 'self', '.', '_button', '==', '0', ':', '# if no button is being held, then reset mode', 'self', '.', 'reset_mode', '(', 'viewer', ')', 'else', ':', 'self', '.', '_delayed_reset', '=', 'True', 'return', 'True', 'return', 'False']
This method is called when a key is pressed in a mode and was not handled by some other handler with precedence, such as a subcanvas.
['This', 'method', 'is', 'called', 'when', 'a', 'key', 'is', 'pressed', 'in', 'a', 'mode', 'and', 'was', 'not', 'handled', 'by', 'some', 'other', 'handler', 'with', 'precedence', 'such', 'as', 'a', 'subcanvas', '.']
train
https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/Bindings.py#L2706-L2727
1,919
roaet/eh
eh/mdv/tabulate.py
_main
def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_booktabs, tsv (default: simple) """ import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1o:s:F:f:", ["help", "header", "output", "sep=", "float=", "format="]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] floatfmt = "g" tablefmt = "simple" sep = r"\s+" outfile = "-" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-o", "--output"]: outfile = value elif opt in ["-F", "--float"]: floatfmt = value elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args with (sys.stdout if outfile == "-" else open(outfile, "w")) as out: for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out) else: with open(f) as fobj: _pprint_file(fobj, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out)
python
def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_booktabs, tsv (default: simple) """ import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1o:s:F:f:", ["help", "header", "output", "sep=", "float=", "format="]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] floatfmt = "g" tablefmt = "simple" sep = r"\s+" outfile = "-" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-o", "--output"]: outfile = value elif opt in ["-F", "--float"]: floatfmt = value elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args with (sys.stdout if outfile == "-" else open(outfile, "w")) as out: for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out) else: with open(f) as fobj: _pprint_file(fobj, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out)
['def', '_main', '(', ')', ':', 'import', 'getopt', 'import', 'sys', 'import', 'textwrap', 'usage', '=', 'textwrap', '.', 'dedent', '(', '_main', '.', '__doc__', ')', 'try', ':', 'opts', ',', 'args', '=', 'getopt', '.', 'getopt', '(', 'sys', '.', 'argv', '[', '1', ':', ']', ',', '"h1o:s:F:f:"', ',', '[', '"help"', ',', '"header"', ',', '"output"', ',', '"sep="', ',', '"float="', ',', '"format="', ']', ')', 'except', 'getopt', '.', 'GetoptError', 'as', 'e', ':', 'print', '(', 'e', ')', 'print', '(', 'usage', ')', 'sys', '.', 'exit', '(', '2', ')', 'headers', '=', '[', ']', 'floatfmt', '=', '"g"', 'tablefmt', '=', '"simple"', 'sep', '=', 'r"\\s+"', 'outfile', '=', '"-"', 'for', 'opt', ',', 'value', 'in', 'opts', ':', 'if', 'opt', 'in', '[', '"-1"', ',', '"--header"', ']', ':', 'headers', '=', '"firstrow"', 'elif', 'opt', 'in', '[', '"-o"', ',', '"--output"', ']', ':', 'outfile', '=', 'value', 'elif', 'opt', 'in', '[', '"-F"', ',', '"--float"', ']', ':', 'floatfmt', '=', 'value', 'elif', 'opt', 'in', '[', '"-f"', ',', '"--format"', ']', ':', 'if', 'value', 'not', 'in', 'tabulate_formats', ':', 'print', '(', '"%s is not a supported table format"', '%', 'value', ')', 'print', '(', 'usage', ')', 'sys', '.', 'exit', '(', '3', ')', 'tablefmt', '=', 'value', 'elif', 'opt', 'in', '[', '"-s"', ',', '"--sep"', ']', ':', 'sep', '=', 'value', 'elif', 'opt', 'in', '[', '"-h"', ',', '"--help"', ']', ':', 'print', '(', 'usage', ')', 'sys', '.', 'exit', '(', '0', ')', 'files', '=', '[', 'sys', '.', 'stdin', ']', 'if', 'not', 'args', 'else', 'args', 'with', '(', 'sys', '.', 'stdout', 'if', 'outfile', '==', '"-"', 'else', 'open', '(', 'outfile', ',', '"w"', ')', ')', 'as', 'out', ':', 'for', 'f', 'in', 'files', ':', 'if', 'f', '==', '"-"', ':', 'f', '=', 'sys', '.', 'stdin', 'if', '_is_file', '(', 'f', ')', ':', '_pprint_file', '(', 'f', ',', 'headers', '=', 'headers', ',', 'tablefmt', '=', 'tablefmt', ',', 'sep', '=', 'sep', ',', 'floatfmt', '=', 'floatfmt', ',', 'file', '=', 'out', ')', 'else', ':', 'with', 'open', '(', 'f', ')', 'as', 'fobj', ':', '_pprint_file', '(', 'fobj', ',', 'headers', '=', 'headers', ',', 'tablefmt', '=', 'tablefmt', ',', 'sep', '=', 'sep', ',', 'floatfmt', '=', 'floatfmt', ',', 'file', '=', 'out', ')']
\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_booktabs, tsv (default: simple)
['\\', 'Usage', ':', 'tabulate', '[', 'options', ']', '[', 'FILE', '...', ']']
train
https://github.com/roaet/eh/blob/9370864a9f1d65bb0f822d0aea83f1169c98f3bd/eh/mdv/tabulate.py#L1056-L1124
1,920
blockstack/virtualchain
virtualchain/lib/indexer.py
get_index_range
def get_index_range(blockchain_name, blockchain_client, impl, working_dir): """ Get the range of block numbers that we need to fetch from the blockchain. Requires virtualchain to have been configured with setup_virtualchain() if impl=None Return None, None if we fail to connect to the blockchain """ start_block = config.get_first_block_id(impl) try: current_block = get_blockchain_height(blockchain_name, blockchain_client) except Exception, e: log.exception(e) return None, None saved_block = StateEngine.get_lastblock(impl, working_dir) if saved_block is None: saved_block = 0 elif saved_block == current_block: start_block = saved_block elif saved_block < current_block: start_block = saved_block + 1 return start_block, current_block
python
def get_index_range(blockchain_name, blockchain_client, impl, working_dir): """ Get the range of block numbers that we need to fetch from the blockchain. Requires virtualchain to have been configured with setup_virtualchain() if impl=None Return None, None if we fail to connect to the blockchain """ start_block = config.get_first_block_id(impl) try: current_block = get_blockchain_height(blockchain_name, blockchain_client) except Exception, e: log.exception(e) return None, None saved_block = StateEngine.get_lastblock(impl, working_dir) if saved_block is None: saved_block = 0 elif saved_block == current_block: start_block = saved_block elif saved_block < current_block: start_block = saved_block + 1 return start_block, current_block
['def', 'get_index_range', '(', 'blockchain_name', ',', 'blockchain_client', ',', 'impl', ',', 'working_dir', ')', ':', 'start_block', '=', 'config', '.', 'get_first_block_id', '(', 'impl', ')', 'try', ':', 'current_block', '=', 'get_blockchain_height', '(', 'blockchain_name', ',', 'blockchain_client', ')', 'except', 'Exception', ',', 'e', ':', 'log', '.', 'exception', '(', 'e', ')', 'return', 'None', ',', 'None', 'saved_block', '=', 'StateEngine', '.', 'get_lastblock', '(', 'impl', ',', 'working_dir', ')', 'if', 'saved_block', 'is', 'None', ':', 'saved_block', '=', '0', 'elif', 'saved_block', '==', 'current_block', ':', 'start_block', '=', 'saved_block', 'elif', 'saved_block', '<', 'current_block', ':', 'start_block', '=', 'saved_block', '+', '1', 'return', 'start_block', ',', 'current_block']
Get the range of block numbers that we need to fetch from the blockchain. Requires virtualchain to have been configured with setup_virtualchain() if impl=None Return None, None if we fail to connect to the blockchain
['Get', 'the', 'range', 'of', 'block', 'numbers', 'that', 'we', 'need', 'to', 'fetch', 'from', 'the', 'blockchain', '.', 'Requires', 'virtualchain', 'to', 'have', 'been', 'configured', 'with', 'setup_virtualchain', '()', 'if', 'impl', '=', 'None', 'Return', 'None', 'None', 'if', 'we', 'fail', 'to', 'connect', 'to', 'the', 'blockchain']
train
https://github.com/blockstack/virtualchain/blob/fcfc970064ca7dfcab26ebd3ab955870a763ea39/virtualchain/lib/indexer.py#L1617-L1641
1,921
google/prettytensor
prettytensor/recurrent_networks.py
RecurrentRunner.run
def run(self, fetch_list, feed_dict=None, sess=None): """Runs the graph with the provided feeds and fetches. This function wraps sess.Run(), but takes care of state saving and restoring by feeding in states and storing the new state values. Args: fetch_list: A list of requested output tensors. feed_dict: A dictionary of feeds - see Session.Run(). Optional. sess: The Tensorflow session to run. Can be None. Returns: The requested tensors as numpy arrays. Raises: ValueError: If the default graph during object construction was different from the current default graph. """ if tf.get_default_graph() != self._graph: raise ValueError('The current default graph is different from the graph' ' used at construction time of RecurrentRunner.') if feed_dict is None: all_feeds_dict = {} else: all_feeds_dict = dict(feed_dict) all_feeds_dict.update(self._state_feeds) all_fetches_list = list(fetch_list) all_fetches_list += self._state_fetches sess = sess or tf.get_default_session() # Run the compute graph. fetches = sess.run(all_fetches_list, all_feeds_dict) # Update the feeds for the next time step. states = fetches[len(fetch_list):] for i, s in enumerate(states): self._state_feeds[self._state_feed_names[i]] = s return fetches[:len(fetch_list)]
python
def run(self, fetch_list, feed_dict=None, sess=None): """Runs the graph with the provided feeds and fetches. This function wraps sess.Run(), but takes care of state saving and restoring by feeding in states and storing the new state values. Args: fetch_list: A list of requested output tensors. feed_dict: A dictionary of feeds - see Session.Run(). Optional. sess: The Tensorflow session to run. Can be None. Returns: The requested tensors as numpy arrays. Raises: ValueError: If the default graph during object construction was different from the current default graph. """ if tf.get_default_graph() != self._graph: raise ValueError('The current default graph is different from the graph' ' used at construction time of RecurrentRunner.') if feed_dict is None: all_feeds_dict = {} else: all_feeds_dict = dict(feed_dict) all_feeds_dict.update(self._state_feeds) all_fetches_list = list(fetch_list) all_fetches_list += self._state_fetches sess = sess or tf.get_default_session() # Run the compute graph. fetches = sess.run(all_fetches_list, all_feeds_dict) # Update the feeds for the next time step. states = fetches[len(fetch_list):] for i, s in enumerate(states): self._state_feeds[self._state_feed_names[i]] = s return fetches[:len(fetch_list)]
['def', 'run', '(', 'self', ',', 'fetch_list', ',', 'feed_dict', '=', 'None', ',', 'sess', '=', 'None', ')', ':', 'if', 'tf', '.', 'get_default_graph', '(', ')', '!=', 'self', '.', '_graph', ':', 'raise', 'ValueError', '(', "'The current default graph is different from the graph'", "' used at construction time of RecurrentRunner.'", ')', 'if', 'feed_dict', 'is', 'None', ':', 'all_feeds_dict', '=', '{', '}', 'else', ':', 'all_feeds_dict', '=', 'dict', '(', 'feed_dict', ')', 'all_feeds_dict', '.', 'update', '(', 'self', '.', '_state_feeds', ')', 'all_fetches_list', '=', 'list', '(', 'fetch_list', ')', 'all_fetches_list', '+=', 'self', '.', '_state_fetches', 'sess', '=', 'sess', 'or', 'tf', '.', 'get_default_session', '(', ')', '# Run the compute graph.', 'fetches', '=', 'sess', '.', 'run', '(', 'all_fetches_list', ',', 'all_feeds_dict', ')', '# Update the feeds for the next time step.', 'states', '=', 'fetches', '[', 'len', '(', 'fetch_list', ')', ':', ']', 'for', 'i', ',', 's', 'in', 'enumerate', '(', 'states', ')', ':', 'self', '.', '_state_feeds', '[', 'self', '.', '_state_feed_names', '[', 'i', ']', ']', '=', 's', 'return', 'fetches', '[', ':', 'len', '(', 'fetch_list', ')', ']']
Runs the graph with the provided feeds and fetches. This function wraps sess.Run(), but takes care of state saving and restoring by feeding in states and storing the new state values. Args: fetch_list: A list of requested output tensors. feed_dict: A dictionary of feeds - see Session.Run(). Optional. sess: The Tensorflow session to run. Can be None. Returns: The requested tensors as numpy arrays. Raises: ValueError: If the default graph during object construction was different from the current default graph.
['Runs', 'the', 'graph', 'with', 'the', 'provided', 'feeds', 'and', 'fetches', '.']
train
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/recurrent_networks.py#L599-L634
1,922
tensorflow/tensor2tensor
tensor2tensor/models/revnet.py
revnet_cifar_base
def revnet_cifar_base(): """Tiny hparams suitable for CIFAR/etc.""" hparams = revnet_base() hparams.num_channels_init_block = 32 hparams.first_batch_norm = [False, True, True] hparams.init_stride = 1 hparams.init_kernel_size = 3 hparams.init_maxpool = False hparams.strides = [1, 2, 2] hparams.batch_size = 128 hparams.weight_decay = 1e-4 hparams.learning_rate = 0.1 hparams.learning_rate_cosine_cycle_steps = 5000 return hparams
python
def revnet_cifar_base(): """Tiny hparams suitable for CIFAR/etc.""" hparams = revnet_base() hparams.num_channels_init_block = 32 hparams.first_batch_norm = [False, True, True] hparams.init_stride = 1 hparams.init_kernel_size = 3 hparams.init_maxpool = False hparams.strides = [1, 2, 2] hparams.batch_size = 128 hparams.weight_decay = 1e-4 hparams.learning_rate = 0.1 hparams.learning_rate_cosine_cycle_steps = 5000 return hparams
['def', 'revnet_cifar_base', '(', ')', ':', 'hparams', '=', 'revnet_base', '(', ')', 'hparams', '.', 'num_channels_init_block', '=', '32', 'hparams', '.', 'first_batch_norm', '=', '[', 'False', ',', 'True', ',', 'True', ']', 'hparams', '.', 'init_stride', '=', '1', 'hparams', '.', 'init_kernel_size', '=', '3', 'hparams', '.', 'init_maxpool', '=', 'False', 'hparams', '.', 'strides', '=', '[', '1', ',', '2', ',', '2', ']', 'hparams', '.', 'batch_size', '=', '128', 'hparams', '.', 'weight_decay', '=', '1e-4', 'hparams', '.', 'learning_rate', '=', '0.1', 'hparams', '.', 'learning_rate_cosine_cycle_steps', '=', '5000', 'return', 'hparams']
Tiny hparams suitable for CIFAR/etc.
['Tiny', 'hparams', 'suitable', 'for', 'CIFAR', '/', 'etc', '.']
train
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/revnet.py#L386-L400
1,923
openid/python-openid
openid/oidutil.py
importElementTree
def importElementTree(module_names=None): """Find a working ElementTree implementation, trying the standard places that such a thing might show up. >>> ElementTree = importElementTree() @param module_names: The names of modules to try to use as ElementTree. Defaults to C{L{elementtree_modules}} @returns: An ElementTree module """ if module_names is None: module_names = elementtree_modules for mod_name in module_names: try: ElementTree = __import__(mod_name, None, None, ['unused']) except ImportError: pass else: # Make sure it can actually parse XML try: ElementTree.XML('<unused/>') except (SystemExit, MemoryError, AssertionError): raise except: logging.exception('Not using ElementTree library %r because it failed to ' 'parse a trivial document: %s' % mod_name) else: return ElementTree else: raise ImportError('No ElementTree library found. ' 'You may need to install one. ' 'Tried importing %r' % (module_names,) )
python
def importElementTree(module_names=None): """Find a working ElementTree implementation, trying the standard places that such a thing might show up. >>> ElementTree = importElementTree() @param module_names: The names of modules to try to use as ElementTree. Defaults to C{L{elementtree_modules}} @returns: An ElementTree module """ if module_names is None: module_names = elementtree_modules for mod_name in module_names: try: ElementTree = __import__(mod_name, None, None, ['unused']) except ImportError: pass else: # Make sure it can actually parse XML try: ElementTree.XML('<unused/>') except (SystemExit, MemoryError, AssertionError): raise except: logging.exception('Not using ElementTree library %r because it failed to ' 'parse a trivial document: %s' % mod_name) else: return ElementTree else: raise ImportError('No ElementTree library found. ' 'You may need to install one. ' 'Tried importing %r' % (module_names,) )
['def', 'importElementTree', '(', 'module_names', '=', 'None', ')', ':', 'if', 'module_names', 'is', 'None', ':', 'module_names', '=', 'elementtree_modules', 'for', 'mod_name', 'in', 'module_names', ':', 'try', ':', 'ElementTree', '=', '__import__', '(', 'mod_name', ',', 'None', ',', 'None', ',', '[', "'unused'", ']', ')', 'except', 'ImportError', ':', 'pass', 'else', ':', '# Make sure it can actually parse XML', 'try', ':', 'ElementTree', '.', 'XML', '(', "'<unused/>'", ')', 'except', '(', 'SystemExit', ',', 'MemoryError', ',', 'AssertionError', ')', ':', 'raise', 'except', ':', 'logging', '.', 'exception', '(', "'Not using ElementTree library %r because it failed to '", "'parse a trivial document: %s'", '%', 'mod_name', ')', 'else', ':', 'return', 'ElementTree', 'else', ':', 'raise', 'ImportError', '(', "'No ElementTree library found. '", "'You may need to install one. '", "'Tried importing %r'", '%', '(', 'module_names', ',', ')', ')']
Find a working ElementTree implementation, trying the standard places that such a thing might show up. >>> ElementTree = importElementTree() @param module_names: The names of modules to try to use as ElementTree. Defaults to C{L{elementtree_modules}} @returns: An ElementTree module
['Find', 'a', 'working', 'ElementTree', 'implementation', 'trying', 'the', 'standard', 'places', 'that', 'such', 'a', 'thing', 'might', 'show', 'up', '.']
train
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/oidutil.py#L55-L89
1,924
antiboredom/videogrep
videogrep/tools/getyoutubecc.py
getyoutubecc._parseXml
def _parseXml(self,cc): """ INPUT: XML file with captions OUTPUT: parsed object like: [{'texlines': [u"So, I'm going to rewrite this", 'in a more concise form as'], 'time': {'hours':'1', 'min':'2','sec':44,'msec':232} }] """ htmlpar = HTMLParser.HTMLParser() cc = cc.split("</text>") # ['<text start="2997.929">So, it will\nhas time', '<text start="3000.929">blah', ..] captions = [] for line in cc: if re.search('text', line): time = re.search(r'start="(\d+)(?:\.(\d+)){0,1}', line).groups() # ('2997','929') time = ( int(time[0]), int(0 if not time[1] else time[1]) ) #convert seconds and millisec to int text = re.search(r'">(.*)', line, re.DOTALL).group(1) # extract text i.e. 'So, it will\nhas time' textlines = [ htmlpar.unescape(htmlpar.unescape( unicode(lineunparsed,"utf-8") )) for lineunparsed in text.split('\n') ] #unscape chars like &amp; or &#39; ntime = {'hours':time[0]/3600,"min":time[0]%3600/60,"sec":time[0]%3600%60,"msec":time[1]} captions.append({'time':ntime,'textlines':textlines}) return captions
python
def _parseXml(self,cc): """ INPUT: XML file with captions OUTPUT: parsed object like: [{'texlines': [u"So, I'm going to rewrite this", 'in a more concise form as'], 'time': {'hours':'1', 'min':'2','sec':44,'msec':232} }] """ htmlpar = HTMLParser.HTMLParser() cc = cc.split("</text>") # ['<text start="2997.929">So, it will\nhas time', '<text start="3000.929">blah', ..] captions = [] for line in cc: if re.search('text', line): time = re.search(r'start="(\d+)(?:\.(\d+)){0,1}', line).groups() # ('2997','929') time = ( int(time[0]), int(0 if not time[1] else time[1]) ) #convert seconds and millisec to int text = re.search(r'">(.*)', line, re.DOTALL).group(1) # extract text i.e. 'So, it will\nhas time' textlines = [ htmlpar.unescape(htmlpar.unescape( unicode(lineunparsed,"utf-8") )) for lineunparsed in text.split('\n') ] #unscape chars like &amp; or &#39; ntime = {'hours':time[0]/3600,"min":time[0]%3600/60,"sec":time[0]%3600%60,"msec":time[1]} captions.append({'time':ntime,'textlines':textlines}) return captions
['def', '_parseXml', '(', 'self', ',', 'cc', ')', ':', 'htmlpar', '=', 'HTMLParser', '.', 'HTMLParser', '(', ')', 'cc', '=', 'cc', '.', 'split', '(', '"</text>"', ')', '# [\'<text start="2997.929">So, it will\\nhas time\', \'<text start="3000.929">blah\', ..]', 'captions', '=', '[', ']', 'for', 'line', 'in', 'cc', ':', 'if', 're', '.', 'search', '(', "'text'", ',', 'line', ')', ':', 'time', '=', 're', '.', 'search', '(', 'r\'start="(\\d+)(?:\\.(\\d+)){0,1}\'', ',', 'line', ')', '.', 'groups', '(', ')', "# ('2997','929')", 'time', '=', '(', 'int', '(', 'time', '[', '0', ']', ')', ',', 'int', '(', '0', 'if', 'not', 'time', '[', '1', ']', 'else', 'time', '[', '1', ']', ')', ')', '#convert seconds and millisec to int', 'text', '=', 're', '.', 'search', '(', 'r\'">(.*)\'', ',', 'line', ',', 're', '.', 'DOTALL', ')', '.', 'group', '(', '1', ')', "# extract text i.e. 'So, it will\\nhas time'", 'textlines', '=', '[', 'htmlpar', '.', 'unescape', '(', 'htmlpar', '.', 'unescape', '(', 'unicode', '(', 'lineunparsed', ',', '"utf-8"', ')', ')', ')', 'for', 'lineunparsed', 'in', 'text', '.', 'split', '(', "'\\n'", ')', ']', '#unscape chars like &amp; or &#39;', 'ntime', '=', '{', "'hours'", ':', 'time', '[', '0', ']', '/', '3600', ',', '"min"', ':', 'time', '[', '0', ']', '%', '3600', '/', '60', ',', '"sec"', ':', 'time', '[', '0', ']', '%', '3600', '%', '60', ',', '"msec"', ':', 'time', '[', '1', ']', '}', 'captions', '.', 'append', '(', '{', "'time'", ':', 'ntime', ',', "'textlines'", ':', 'textlines', '}', ')', 'return', 'captions']
INPUT: XML file with captions OUTPUT: parsed object like: [{'texlines': [u"So, I'm going to rewrite this", 'in a more concise form as'], 'time': {'hours':'1', 'min':'2','sec':44,'msec':232} }]
['INPUT', ':', 'XML', 'file', 'with', 'captions', 'OUTPUT', ':', 'parsed', 'object', 'like', ':', '[', '{', 'texlines', ':', '[', 'u', 'So', 'I', 'm', 'going', 'to', 'rewrite', 'this', 'in', 'a', 'more', 'concise', 'form', 'as', ']', 'time', ':', '{', 'hours', ':', '1', 'min', ':', '2', 'sec', ':', '44', 'msec', ':', '232', '}', '}', ']']
train
https://github.com/antiboredom/videogrep/blob/faffd3446d96242677757f1af7db23b6dfc429cf/videogrep/tools/getyoutubecc.py#L57-L76
1,925
pescadores/pescador
pescador/maps.py
keras_tuples
def keras_tuples(stream, inputs=None, outputs=None): """Reformat data objects as keras-compatible tuples. For more detail: https://keras.io/models/model/#fit Parameters ---------- stream : iterable Stream of data objects. inputs : string or iterable of strings, None Keys to use for ordered input data. If not specified, returns `None` in its place. outputs : string or iterable of strings, default=None Keys to use for ordered output data. If not specified, returns `None` in its place. Yields ------ x : np.ndarray, list of np.ndarray, or None If `inputs` is a string, `x` is a single np.ndarray. If `inputs` is an iterable of strings, `x` is a list of np.ndarrays. If `inputs` is a null type, `x` is None. y : np.ndarray, list of np.ndarray, or None If `outputs` is a string, `y` is a single np.ndarray. If `outputs` is an iterable of strings, `y` is a list of np.ndarrays. If `outputs` is a null type, `y` is None. Raises ------ DataError If the stream contains items that are not data-like. """ flatten_inputs, flatten_outputs = False, False if inputs and isinstance(inputs, six.string_types): inputs = [inputs] flatten_inputs = True if outputs and isinstance(outputs, six.string_types): outputs = [outputs] flatten_outputs = True inputs, outputs = (inputs or []), (outputs or []) if not inputs + outputs: raise PescadorError('At least one key must be given for ' '`inputs` or `outputs`') for data in stream: try: x = list(data[key] for key in inputs) or None if len(inputs) == 1 and flatten_inputs: x = x[0] y = list(data[key] for key in outputs) or None if len(outputs) == 1 and flatten_outputs: y = y[0] yield (x, y) except TypeError: raise DataError("Malformed data stream: {}".format(data))
python
def keras_tuples(stream, inputs=None, outputs=None): """Reformat data objects as keras-compatible tuples. For more detail: https://keras.io/models/model/#fit Parameters ---------- stream : iterable Stream of data objects. inputs : string or iterable of strings, None Keys to use for ordered input data. If not specified, returns `None` in its place. outputs : string or iterable of strings, default=None Keys to use for ordered output data. If not specified, returns `None` in its place. Yields ------ x : np.ndarray, list of np.ndarray, or None If `inputs` is a string, `x` is a single np.ndarray. If `inputs` is an iterable of strings, `x` is a list of np.ndarrays. If `inputs` is a null type, `x` is None. y : np.ndarray, list of np.ndarray, or None If `outputs` is a string, `y` is a single np.ndarray. If `outputs` is an iterable of strings, `y` is a list of np.ndarrays. If `outputs` is a null type, `y` is None. Raises ------ DataError If the stream contains items that are not data-like. """ flatten_inputs, flatten_outputs = False, False if inputs and isinstance(inputs, six.string_types): inputs = [inputs] flatten_inputs = True if outputs and isinstance(outputs, six.string_types): outputs = [outputs] flatten_outputs = True inputs, outputs = (inputs or []), (outputs or []) if not inputs + outputs: raise PescadorError('At least one key must be given for ' '`inputs` or `outputs`') for data in stream: try: x = list(data[key] for key in inputs) or None if len(inputs) == 1 and flatten_inputs: x = x[0] y = list(data[key] for key in outputs) or None if len(outputs) == 1 and flatten_outputs: y = y[0] yield (x, y) except TypeError: raise DataError("Malformed data stream: {}".format(data))
['def', 'keras_tuples', '(', 'stream', ',', 'inputs', '=', 'None', ',', 'outputs', '=', 'None', ')', ':', 'flatten_inputs', ',', 'flatten_outputs', '=', 'False', ',', 'False', 'if', 'inputs', 'and', 'isinstance', '(', 'inputs', ',', 'six', '.', 'string_types', ')', ':', 'inputs', '=', '[', 'inputs', ']', 'flatten_inputs', '=', 'True', 'if', 'outputs', 'and', 'isinstance', '(', 'outputs', ',', 'six', '.', 'string_types', ')', ':', 'outputs', '=', '[', 'outputs', ']', 'flatten_outputs', '=', 'True', 'inputs', ',', 'outputs', '=', '(', 'inputs', 'or', '[', ']', ')', ',', '(', 'outputs', 'or', '[', ']', ')', 'if', 'not', 'inputs', '+', 'outputs', ':', 'raise', 'PescadorError', '(', "'At least one key must be given for '", "'`inputs` or `outputs`'", ')', 'for', 'data', 'in', 'stream', ':', 'try', ':', 'x', '=', 'list', '(', 'data', '[', 'key', ']', 'for', 'key', 'in', 'inputs', ')', 'or', 'None', 'if', 'len', '(', 'inputs', ')', '==', '1', 'and', 'flatten_inputs', ':', 'x', '=', 'x', '[', '0', ']', 'y', '=', 'list', '(', 'data', '[', 'key', ']', 'for', 'key', 'in', 'outputs', ')', 'or', 'None', 'if', 'len', '(', 'outputs', ')', '==', '1', 'and', 'flatten_outputs', ':', 'y', '=', 'y', '[', '0', ']', 'yield', '(', 'x', ',', 'y', ')', 'except', 'TypeError', ':', 'raise', 'DataError', '(', '"Malformed data stream: {}"', '.', 'format', '(', 'data', ')', ')']
Reformat data objects as keras-compatible tuples. For more detail: https://keras.io/models/model/#fit Parameters ---------- stream : iterable Stream of data objects. inputs : string or iterable of strings, None Keys to use for ordered input data. If not specified, returns `None` in its place. outputs : string or iterable of strings, default=None Keys to use for ordered output data. If not specified, returns `None` in its place. Yields ------ x : np.ndarray, list of np.ndarray, or None If `inputs` is a string, `x` is a single np.ndarray. If `inputs` is an iterable of strings, `x` is a list of np.ndarrays. If `inputs` is a null type, `x` is None. y : np.ndarray, list of np.ndarray, or None If `outputs` is a string, `y` is a single np.ndarray. If `outputs` is an iterable of strings, `y` is a list of np.ndarrays. If `outputs` is a null type, `y` is None. Raises ------ DataError If the stream contains items that are not data-like.
['Reformat', 'data', 'objects', 'as', 'keras', '-', 'compatible', 'tuples', '.']
train
https://github.com/pescadores/pescador/blob/786e2b5f882d13ea563769fbc7ad0a0a10c3553d/pescador/maps.py#L120-L179
1,926
hovren/crisp
crisp/calibration.py
AutoCalibrator.calibrate
def calibrate(self, max_tracks=MAX_OPTIMIZATION_TRACKS, max_eval=MAX_OPTIMIZATION_FEV, norm_c=DEFAULT_NORM_C): """Perform calibration Parameters ---------------------- max_eval : int Maximum number of function evaluations Returns --------------------- dict Optimization result Raises ----------------------- CalibrationError If calibration fails """ x0 = np.array([self.parameter[param] for param in PARAM_ORDER]) available_tracks = np.sum([len(s.inliers) for s in self.slices]) if available_tracks < max_tracks: warnings.warn("Could not use the requested {} tracks, since only {} were available in the slice data.".format(max_tracks, available_tracks)) max_tracks = available_tracks # Get subset of available tracks such that all slices are still used slice_sample_idxs = videoslice.fill_sampling(self.slices, max_tracks) func_args = (self.slices, slice_sample_idxs, self.video.camera_model, self.gyro, norm_c) self.slice_sample_idxs = slice_sample_idxs logger.debug("Starting optimization on {:d} slices and {:d} tracks".format(len(self.slices), max_tracks)) start_time = time.time() # TODO: Check what values of ftol and xtol are required for good results. The current setting is probably pessimistic. leastsq_result = scipy.optimize.leastsq(optimization_func, x0, args=func_args, full_output=True, ftol=1e-10, xtol=1e-10, maxfev=max_eval) elapsed = time.time() - start_time x, covx, infodict, mesg, ier = leastsq_result self.__debug_leastsq = leastsq_result logger.debug("Optimization completed in {:.1f} seconds and {:d} function evaluations. ier={}, mesg='{}'".format(elapsed, infodict['nfev'], ier, mesg)) if ier in (1,2,3,4): for pname, val in zip(PARAM_ORDER, x): self.params['calibrated'][pname] = val return self.parameter else: raise CalibrationError(mesg)
python
def calibrate(self, max_tracks=MAX_OPTIMIZATION_TRACKS, max_eval=MAX_OPTIMIZATION_FEV, norm_c=DEFAULT_NORM_C): """Perform calibration Parameters ---------------------- max_eval : int Maximum number of function evaluations Returns --------------------- dict Optimization result Raises ----------------------- CalibrationError If calibration fails """ x0 = np.array([self.parameter[param] for param in PARAM_ORDER]) available_tracks = np.sum([len(s.inliers) for s in self.slices]) if available_tracks < max_tracks: warnings.warn("Could not use the requested {} tracks, since only {} were available in the slice data.".format(max_tracks, available_tracks)) max_tracks = available_tracks # Get subset of available tracks such that all slices are still used slice_sample_idxs = videoslice.fill_sampling(self.slices, max_tracks) func_args = (self.slices, slice_sample_idxs, self.video.camera_model, self.gyro, norm_c) self.slice_sample_idxs = slice_sample_idxs logger.debug("Starting optimization on {:d} slices and {:d} tracks".format(len(self.slices), max_tracks)) start_time = time.time() # TODO: Check what values of ftol and xtol are required for good results. The current setting is probably pessimistic. leastsq_result = scipy.optimize.leastsq(optimization_func, x0, args=func_args, full_output=True, ftol=1e-10, xtol=1e-10, maxfev=max_eval) elapsed = time.time() - start_time x, covx, infodict, mesg, ier = leastsq_result self.__debug_leastsq = leastsq_result logger.debug("Optimization completed in {:.1f} seconds and {:d} function evaluations. ier={}, mesg='{}'".format(elapsed, infodict['nfev'], ier, mesg)) if ier in (1,2,3,4): for pname, val in zip(PARAM_ORDER, x): self.params['calibrated'][pname] = val return self.parameter else: raise CalibrationError(mesg)
['def', 'calibrate', '(', 'self', ',', 'max_tracks', '=', 'MAX_OPTIMIZATION_TRACKS', ',', 'max_eval', '=', 'MAX_OPTIMIZATION_FEV', ',', 'norm_c', '=', 'DEFAULT_NORM_C', ')', ':', 'x0', '=', 'np', '.', 'array', '(', '[', 'self', '.', 'parameter', '[', 'param', ']', 'for', 'param', 'in', 'PARAM_ORDER', ']', ')', 'available_tracks', '=', 'np', '.', 'sum', '(', '[', 'len', '(', 's', '.', 'inliers', ')', 'for', 's', 'in', 'self', '.', 'slices', ']', ')', 'if', 'available_tracks', '<', 'max_tracks', ':', 'warnings', '.', 'warn', '(', '"Could not use the requested {} tracks, since only {} were available in the slice data."', '.', 'format', '(', 'max_tracks', ',', 'available_tracks', ')', ')', 'max_tracks', '=', 'available_tracks', '# Get subset of available tracks such that all slices are still used', 'slice_sample_idxs', '=', 'videoslice', '.', 'fill_sampling', '(', 'self', '.', 'slices', ',', 'max_tracks', ')', 'func_args', '=', '(', 'self', '.', 'slices', ',', 'slice_sample_idxs', ',', 'self', '.', 'video', '.', 'camera_model', ',', 'self', '.', 'gyro', ',', 'norm_c', ')', 'self', '.', 'slice_sample_idxs', '=', 'slice_sample_idxs', 'logger', '.', 'debug', '(', '"Starting optimization on {:d} slices and {:d} tracks"', '.', 'format', '(', 'len', '(', 'self', '.', 'slices', ')', ',', 'max_tracks', ')', ')', 'start_time', '=', 'time', '.', 'time', '(', ')', '# TODO: Check what values of ftol and xtol are required for good results. The current setting is probably pessimistic.', 'leastsq_result', '=', 'scipy', '.', 'optimize', '.', 'leastsq', '(', 'optimization_func', ',', 'x0', ',', 'args', '=', 'func_args', ',', 'full_output', '=', 'True', ',', 'ftol', '=', '1e-10', ',', 'xtol', '=', '1e-10', ',', 'maxfev', '=', 'max_eval', ')', 'elapsed', '=', 'time', '.', 'time', '(', ')', '-', 'start_time', 'x', ',', 'covx', ',', 'infodict', ',', 'mesg', ',', 'ier', '=', 'leastsq_result', 'self', '.', '__debug_leastsq', '=', 'leastsq_result', 'logger', '.', 'debug', '(', '"Optimization completed in {:.1f} seconds and {:d} function evaluations. ier={}, mesg=\'{}\'"', '.', 'format', '(', 'elapsed', ',', 'infodict', '[', "'nfev'", ']', ',', 'ier', ',', 'mesg', ')', ')', 'if', 'ier', 'in', '(', '1', ',', '2', ',', '3', ',', '4', ')', ':', 'for', 'pname', ',', 'val', 'in', 'zip', '(', 'PARAM_ORDER', ',', 'x', ')', ':', 'self', '.', 'params', '[', "'calibrated'", ']', '[', 'pname', ']', '=', 'val', 'return', 'self', '.', 'parameter', 'else', ':', 'raise', 'CalibrationError', '(', 'mesg', ')']
Perform calibration Parameters ---------------------- max_eval : int Maximum number of function evaluations Returns --------------------- dict Optimization result Raises ----------------------- CalibrationError If calibration fails
['Perform', 'calibration']
train
https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/calibration.py#L167-L209
1,927
saltstack/salt
salt/modules/smf_service.py
start
def start(name): ''' Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name> ''' cmd = '/usr/sbin/svcadm enable -s -t {0}'.format(name) retcode = __salt__['cmd.retcode'](cmd, python_shell=False) if not retcode: return True if retcode == 3: # Return code 3 means there was a problem with the service # A common case is being in the 'maintenance' state # Attempt a clear and try one more time clear_cmd = '/usr/sbin/svcadm clear {0}'.format(name) __salt__['cmd.retcode'](clear_cmd, python_shell=False) return not __salt__['cmd.retcode'](cmd, python_shell=False) return False
python
def start(name): ''' Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name> ''' cmd = '/usr/sbin/svcadm enable -s -t {0}'.format(name) retcode = __salt__['cmd.retcode'](cmd, python_shell=False) if not retcode: return True if retcode == 3: # Return code 3 means there was a problem with the service # A common case is being in the 'maintenance' state # Attempt a clear and try one more time clear_cmd = '/usr/sbin/svcadm clear {0}'.format(name) __salt__['cmd.retcode'](clear_cmd, python_shell=False) return not __salt__['cmd.retcode'](cmd, python_shell=False) return False
['def', 'start', '(', 'name', ')', ':', 'cmd', '=', "'/usr/sbin/svcadm enable -s -t {0}'", '.', 'format', '(', 'name', ')', 'retcode', '=', '__salt__', '[', "'cmd.retcode'", ']', '(', 'cmd', ',', 'python_shell', '=', 'False', ')', 'if', 'not', 'retcode', ':', 'return', 'True', 'if', 'retcode', '==', '3', ':', '# Return code 3 means there was a problem with the service', "# A common case is being in the 'maintenance' state", '# Attempt a clear and try one more time', 'clear_cmd', '=', "'/usr/sbin/svcadm clear {0}'", '.', 'format', '(', 'name', ')', '__salt__', '[', "'cmd.retcode'", ']', '(', 'clear_cmd', ',', 'python_shell', '=', 'False', ')', 'return', 'not', '__salt__', '[', "'cmd.retcode'", ']', '(', 'cmd', ',', 'python_shell', '=', 'False', ')', 'return', 'False']
Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name>
['Start', 'the', 'specified', 'service']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/smf_service.py#L155-L176
1,928
bsolomon1124/pyfinance
pyfinance/returns.py
TSeries.drawdown_end
def drawdown_end(self, return_date=False): """The date of the drawdown trough. Date at which the drawdown was most negative. Parameters ---------- return_date : bool, default False If True, return a `datetime.date` object. If False, return a Pandas Timestamp object. Returns ------- datetime.date or pandas._libs.tslib.Timestamp """ end = self.drawdown_idx().idxmin() if return_date: return end.date() return end
python
def drawdown_end(self, return_date=False): """The date of the drawdown trough. Date at which the drawdown was most negative. Parameters ---------- return_date : bool, default False If True, return a `datetime.date` object. If False, return a Pandas Timestamp object. Returns ------- datetime.date or pandas._libs.tslib.Timestamp """ end = self.drawdown_idx().idxmin() if return_date: return end.date() return end
['def', 'drawdown_end', '(', 'self', ',', 'return_date', '=', 'False', ')', ':', 'end', '=', 'self', '.', 'drawdown_idx', '(', ')', '.', 'idxmin', '(', ')', 'if', 'return_date', ':', 'return', 'end', '.', 'date', '(', ')', 'return', 'end']
The date of the drawdown trough. Date at which the drawdown was most negative. Parameters ---------- return_date : bool, default False If True, return a `datetime.date` object. If False, return a Pandas Timestamp object. Returns ------- datetime.date or pandas._libs.tslib.Timestamp
['The', 'date', 'of', 'the', 'drawdown', 'trough', '.']
train
https://github.com/bsolomon1124/pyfinance/blob/c95925209a809b4e648e79cbeaf7711d8e5ff1a6/pyfinance/returns.py#L396-L415
1,929
jmbhughes/suvi-trainer
suvitrainer/gui.py
App.onclick
def onclick(self, event): """ Draw contours on the data for a click in the thematic map :param event: mouse click on thematic map preview """ if event.inaxes == self.previewax: y, x = int(event.xdata), int(event.ydata) label = self.selection_array[x, y] contiguous_regions = scipy.ndimage.label(self.selection_array == label)[0] this_region = contiguous_regions == (contiguous_regions[x, y]) # remove the boundaries so any region touching the edge isn't drawn odd this_region[0, :] = 0 this_region[:, 0] = 0 this_region[this_region.shape[0]-1, :] = 0 this_region[:, this_region.shape[1]-1] = 0 # convert the region mask into just a true/false array of its boundary pixels edges = binary_erosion(this_region) ^ this_region # convert the boundary pixels into a path, moving around instead of just where x, y = np.where(edges) coords = np.dstack([x, y])[0] path = [coords[0]] coords = coords[1:] while len(coords): dist = np.sum(np.abs(path[-1] - coords), axis=1) neighbor_index = np.argmin(dist) if dist[neighbor_index] < 5: path.append(coords[neighbor_index].copy()) coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] else: break path = np.array(path) clips = [] while len(coords) > 5: dist = np.sum(np.abs(path[-1] - coords), axis=1) neighbor_index = np.argmin(dist) clip = [coords[neighbor_index].copy()] coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] while len(coords): dist = np.sum(np.abs(clip[-1] - coords), axis=1) neighbor_index = np.argmin(dist) if dist[neighbor_index] < 5: clip.append(coords[neighbor_index].copy()) coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] else: break clips.append(np.array(clip)) # draw the continguous on the selection area self.region_patches.append(PatchCollection( [Polygon(np.dstack([path[:, 1], path[:, 0]])[0], False, fill=False, facecolor=None, edgecolor="black", alpha=1, lw=2.5)] + [Polygon(np.dstack([clip[:, 1], clip[:, 0]])[0], False, fill=False, facecolor=None, edgecolor="black", alpha=1, lw=2.0) for clip in clips], match_original=True)) self.imageax.add_collection(self.region_patches[-1]) self.fig.canvas.draw_idle()
python
def onclick(self, event): """ Draw contours on the data for a click in the thematic map :param event: mouse click on thematic map preview """ if event.inaxes == self.previewax: y, x = int(event.xdata), int(event.ydata) label = self.selection_array[x, y] contiguous_regions = scipy.ndimage.label(self.selection_array == label)[0] this_region = contiguous_regions == (contiguous_regions[x, y]) # remove the boundaries so any region touching the edge isn't drawn odd this_region[0, :] = 0 this_region[:, 0] = 0 this_region[this_region.shape[0]-1, :] = 0 this_region[:, this_region.shape[1]-1] = 0 # convert the region mask into just a true/false array of its boundary pixels edges = binary_erosion(this_region) ^ this_region # convert the boundary pixels into a path, moving around instead of just where x, y = np.where(edges) coords = np.dstack([x, y])[0] path = [coords[0]] coords = coords[1:] while len(coords): dist = np.sum(np.abs(path[-1] - coords), axis=1) neighbor_index = np.argmin(dist) if dist[neighbor_index] < 5: path.append(coords[neighbor_index].copy()) coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] else: break path = np.array(path) clips = [] while len(coords) > 5: dist = np.sum(np.abs(path[-1] - coords), axis=1) neighbor_index = np.argmin(dist) clip = [coords[neighbor_index].copy()] coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] while len(coords): dist = np.sum(np.abs(clip[-1] - coords), axis=1) neighbor_index = np.argmin(dist) if dist[neighbor_index] < 5: clip.append(coords[neighbor_index].copy()) coords[neighbor_index:-1] = coords[neighbor_index + 1:] coords = coords[:-1] else: break clips.append(np.array(clip)) # draw the continguous on the selection area self.region_patches.append(PatchCollection( [Polygon(np.dstack([path[:, 1], path[:, 0]])[0], False, fill=False, facecolor=None, edgecolor="black", alpha=1, lw=2.5)] + [Polygon(np.dstack([clip[:, 1], clip[:, 0]])[0], False, fill=False, facecolor=None, edgecolor="black", alpha=1, lw=2.0) for clip in clips], match_original=True)) self.imageax.add_collection(self.region_patches[-1]) self.fig.canvas.draw_idle()
['def', 'onclick', '(', 'self', ',', 'event', ')', ':', 'if', 'event', '.', 'inaxes', '==', 'self', '.', 'previewax', ':', 'y', ',', 'x', '=', 'int', '(', 'event', '.', 'xdata', ')', ',', 'int', '(', 'event', '.', 'ydata', ')', 'label', '=', 'self', '.', 'selection_array', '[', 'x', ',', 'y', ']', 'contiguous_regions', '=', 'scipy', '.', 'ndimage', '.', 'label', '(', 'self', '.', 'selection_array', '==', 'label', ')', '[', '0', ']', 'this_region', '=', 'contiguous_regions', '==', '(', 'contiguous_regions', '[', 'x', ',', 'y', ']', ')', "# remove the boundaries so any region touching the edge isn't drawn odd", 'this_region', '[', '0', ',', ':', ']', '=', '0', 'this_region', '[', ':', ',', '0', ']', '=', '0', 'this_region', '[', 'this_region', '.', 'shape', '[', '0', ']', '-', '1', ',', ':', ']', '=', '0', 'this_region', '[', ':', ',', 'this_region', '.', 'shape', '[', '1', ']', '-', '1', ']', '=', '0', '# convert the region mask into just a true/false array of its boundary pixels', 'edges', '=', 'binary_erosion', '(', 'this_region', ')', '^', 'this_region', '# convert the boundary pixels into a path, moving around instead of just where', 'x', ',', 'y', '=', 'np', '.', 'where', '(', 'edges', ')', 'coords', '=', 'np', '.', 'dstack', '(', '[', 'x', ',', 'y', ']', ')', '[', '0', ']', 'path', '=', '[', 'coords', '[', '0', ']', ']', 'coords', '=', 'coords', '[', '1', ':', ']', 'while', 'len', '(', 'coords', ')', ':', 'dist', '=', 'np', '.', 'sum', '(', 'np', '.', 'abs', '(', 'path', '[', '-', '1', ']', '-', 'coords', ')', ',', 'axis', '=', '1', ')', 'neighbor_index', '=', 'np', '.', 'argmin', '(', 'dist', ')', 'if', 'dist', '[', 'neighbor_index', ']', '<', '5', ':', 'path', '.', 'append', '(', 'coords', '[', 'neighbor_index', ']', '.', 'copy', '(', ')', ')', 'coords', '[', 'neighbor_index', ':', '-', '1', ']', '=', 'coords', '[', 'neighbor_index', '+', '1', ':', ']', 'coords', '=', 'coords', '[', ':', '-', '1', ']', 'else', ':', 'break', 'path', '=', 'np', '.', 'array', '(', 'path', ')', 'clips', '=', '[', ']', 'while', 'len', '(', 'coords', ')', '>', '5', ':', 'dist', '=', 'np', '.', 'sum', '(', 'np', '.', 'abs', '(', 'path', '[', '-', '1', ']', '-', 'coords', ')', ',', 'axis', '=', '1', ')', 'neighbor_index', '=', 'np', '.', 'argmin', '(', 'dist', ')', 'clip', '=', '[', 'coords', '[', 'neighbor_index', ']', '.', 'copy', '(', ')', ']', 'coords', '[', 'neighbor_index', ':', '-', '1', ']', '=', 'coords', '[', 'neighbor_index', '+', '1', ':', ']', 'coords', '=', 'coords', '[', ':', '-', '1', ']', 'while', 'len', '(', 'coords', ')', ':', 'dist', '=', 'np', '.', 'sum', '(', 'np', '.', 'abs', '(', 'clip', '[', '-', '1', ']', '-', 'coords', ')', ',', 'axis', '=', '1', ')', 'neighbor_index', '=', 'np', '.', 'argmin', '(', 'dist', ')', 'if', 'dist', '[', 'neighbor_index', ']', '<', '5', ':', 'clip', '.', 'append', '(', 'coords', '[', 'neighbor_index', ']', '.', 'copy', '(', ')', ')', 'coords', '[', 'neighbor_index', ':', '-', '1', ']', '=', 'coords', '[', 'neighbor_index', '+', '1', ':', ']', 'coords', '=', 'coords', '[', ':', '-', '1', ']', 'else', ':', 'break', 'clips', '.', 'append', '(', 'np', '.', 'array', '(', 'clip', ')', ')', '# draw the continguous on the selection area', 'self', '.', 'region_patches', '.', 'append', '(', 'PatchCollection', '(', '[', 'Polygon', '(', 'np', '.', 'dstack', '(', '[', 'path', '[', ':', ',', '1', ']', ',', 'path', '[', ':', ',', '0', ']', ']', ')', '[', '0', ']', ',', 'False', ',', 'fill', '=', 'False', ',', 'facecolor', '=', 'None', ',', 'edgecolor', '=', '"black"', ',', 'alpha', '=', '1', ',', 'lw', '=', '2.5', ')', ']', '+', '[', 'Polygon', '(', 'np', '.', 'dstack', '(', '[', 'clip', '[', ':', ',', '1', ']', ',', 'clip', '[', ':', ',', '0', ']', ']', ')', '[', '0', ']', ',', 'False', ',', 'fill', '=', 'False', ',', 'facecolor', '=', 'None', ',', 'edgecolor', '=', '"black"', ',', 'alpha', '=', '1', ',', 'lw', '=', '2.0', ')', 'for', 'clip', 'in', 'clips', ']', ',', 'match_original', '=', 'True', ')', ')', 'self', '.', 'imageax', '.', 'add_collection', '(', 'self', '.', 'region_patches', '[', '-', '1', ']', ')', 'self', '.', 'fig', '.', 'canvas', '.', 'draw_idle', '(', ')']
Draw contours on the data for a click in the thematic map :param event: mouse click on thematic map preview
['Draw', 'contours', 'on', 'the', 'data', 'for', 'a', 'click', 'in', 'the', 'thematic', 'map', ':', 'param', 'event', ':', 'mouse', 'click', 'on', 'thematic', 'map', 'preview']
train
https://github.com/jmbhughes/suvi-trainer/blob/3d89894a4a037286221974c7eb5634d229b4f5d4/suvitrainer/gui.py#L378-L445
1,930
delph-in/pydelphin
delphin/interfaces/ace.py
parse_from_iterable
def parse_from_iterable(grm, data, **kwargs): """ Parse each sentence in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): the sentences to parse **kwargs: additional keyword arguments to pass to the AceParser Yields: :class:`~delphin.interfaces.ParseResponse` Example: >>> sentences = ['Dogs bark.', 'It rained'] >>> responses = list(ace.parse_from_iterable('erg.dat', sentences)) NOTE: parsed 2 / 2 sentences, avg 723k, time 0.01026s """ with AceParser(grm, **kwargs) as parser: for datum in data: yield parser.interact(datum)
python
def parse_from_iterable(grm, data, **kwargs): """ Parse each sentence in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): the sentences to parse **kwargs: additional keyword arguments to pass to the AceParser Yields: :class:`~delphin.interfaces.ParseResponse` Example: >>> sentences = ['Dogs bark.', 'It rained'] >>> responses = list(ace.parse_from_iterable('erg.dat', sentences)) NOTE: parsed 2 / 2 sentences, avg 723k, time 0.01026s """ with AceParser(grm, **kwargs) as parser: for datum in data: yield parser.interact(datum)
['def', 'parse_from_iterable', '(', 'grm', ',', 'data', ',', '*', '*', 'kwargs', ')', ':', 'with', 'AceParser', '(', 'grm', ',', '*', '*', 'kwargs', ')', 'as', 'parser', ':', 'for', 'datum', 'in', 'data', ':', 'yield', 'parser', '.', 'interact', '(', 'datum', ')']
Parse each sentence in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): the sentences to parse **kwargs: additional keyword arguments to pass to the AceParser Yields: :class:`~delphin.interfaces.ParseResponse` Example: >>> sentences = ['Dogs bark.', 'It rained'] >>> responses = list(ace.parse_from_iterable('erg.dat', sentences)) NOTE: parsed 2 / 2 sentences, avg 723k, time 0.01026s
['Parse', 'each', 'sentence', 'in', '*', 'data', '*', 'with', 'ACE', 'using', 'grammar', '*', 'grm', '*', '.']
train
https://github.com/delph-in/pydelphin/blob/7bd2cd63ab7cf74803e1d6547b9ebc014b382abd/delphin/interfaces/ace.py#L468-L485
1,931
grycap/RADL
radl/radl_parse.py
RADLParser.p_feature_contains
def p_feature_contains(self, t): """feature_contains : VAR CONTAINS LPAREN features RPAREN""" t[0] = Feature(t[1], t[2], Features(t[4]), line=t.lineno(1))
python
def p_feature_contains(self, t): """feature_contains : VAR CONTAINS LPAREN features RPAREN""" t[0] = Feature(t[1], t[2], Features(t[4]), line=t.lineno(1))
['def', 'p_feature_contains', '(', 'self', ',', 't', ')', ':', 't', '[', '0', ']', '=', 'Feature', '(', 't', '[', '1', ']', ',', 't', '[', '2', ']', ',', 'Features', '(', 't', '[', '4', ']', ')', ',', 'line', '=', 't', '.', 'lineno', '(', '1', ')', ')']
feature_contains : VAR CONTAINS LPAREN features RPAREN
['feature_contains', ':', 'VAR', 'CONTAINS', 'LPAREN', 'features', 'RPAREN']
train
https://github.com/grycap/RADL/blob/03ccabb0313a48a5aa0e20c1f7983fddcb95e9cb/radl/radl_parse.py#L335-L338
1,932
ryanvarley/ExoData
exodata/database.py
OECDatabase.transitingPlanets
def transitingPlanets(self): """ Returns a list of transiting planet objects """ transitingPlanets = [] for planet in self.planets: try: if planet.isTransiting: transitingPlanets.append(planet) except KeyError: # No 'discoverymethod' tag - this also filters Solar System planets pass return transitingPlanets
python
def transitingPlanets(self): """ Returns a list of transiting planet objects """ transitingPlanets = [] for planet in self.planets: try: if planet.isTransiting: transitingPlanets.append(planet) except KeyError: # No 'discoverymethod' tag - this also filters Solar System planets pass return transitingPlanets
['def', 'transitingPlanets', '(', 'self', ')', ':', 'transitingPlanets', '=', '[', ']', 'for', 'planet', 'in', 'self', '.', 'planets', ':', 'try', ':', 'if', 'planet', '.', 'isTransiting', ':', 'transitingPlanets', '.', 'append', '(', 'planet', ')', 'except', 'KeyError', ':', "# No 'discoverymethod' tag - this also filters Solar System planets", 'pass', 'return', 'transitingPlanets']
Returns a list of transiting planet objects
['Returns', 'a', 'list', 'of', 'transiting', 'planet', 'objects']
train
https://github.com/ryanvarley/ExoData/blob/e0d3652117214d2377a707d6778f93b7eb201a41/exodata/database.py#L68-L81
1,933
DistrictDataLabs/yellowbrick
yellowbrick/cluster/icdm.py
InterclusterDistance.draw
def draw(self): """ Draw the embedded centers with their sizes on the visualization. """ # Compute the sizes of the markers from their score sizes = self._get_cluster_sizes() # Draw the scatter plots with associated sizes on the graph self.ax.scatter( self.embedded_centers_[:,0], self.embedded_centers_[:,1], s=sizes, c=self.facecolor, edgecolor=self.edgecolor, linewidth=1, ) # Annotate the clusters with their labels for i, pt in enumerate(self.embedded_centers_): self.ax.text( s=str(i), x=pt[0], y=pt[1], va="center", ha="center", fontweight="bold" ) # Ensure the current axes is always the main residuals axes plt.sca(self.ax) return self.ax
python
def draw(self): """ Draw the embedded centers with their sizes on the visualization. """ # Compute the sizes of the markers from their score sizes = self._get_cluster_sizes() # Draw the scatter plots with associated sizes on the graph self.ax.scatter( self.embedded_centers_[:,0], self.embedded_centers_[:,1], s=sizes, c=self.facecolor, edgecolor=self.edgecolor, linewidth=1, ) # Annotate the clusters with their labels for i, pt in enumerate(self.embedded_centers_): self.ax.text( s=str(i), x=pt[0], y=pt[1], va="center", ha="center", fontweight="bold" ) # Ensure the current axes is always the main residuals axes plt.sca(self.ax) return self.ax
['def', 'draw', '(', 'self', ')', ':', '# Compute the sizes of the markers from their score', 'sizes', '=', 'self', '.', '_get_cluster_sizes', '(', ')', '# Draw the scatter plots with associated sizes on the graph', 'self', '.', 'ax', '.', 'scatter', '(', 'self', '.', 'embedded_centers_', '[', ':', ',', '0', ']', ',', 'self', '.', 'embedded_centers_', '[', ':', ',', '1', ']', ',', 's', '=', 'sizes', ',', 'c', '=', 'self', '.', 'facecolor', ',', 'edgecolor', '=', 'self', '.', 'edgecolor', ',', 'linewidth', '=', '1', ',', ')', '# Annotate the clusters with their labels', 'for', 'i', ',', 'pt', 'in', 'enumerate', '(', 'self', '.', 'embedded_centers_', ')', ':', 'self', '.', 'ax', '.', 'text', '(', 's', '=', 'str', '(', 'i', ')', ',', 'x', '=', 'pt', '[', '0', ']', ',', 'y', '=', 'pt', '[', '1', ']', ',', 'va', '=', '"center"', ',', 'ha', '=', '"center"', ',', 'fontweight', '=', '"bold"', ')', '# Ensure the current axes is always the main residuals axes', 'plt', '.', 'sca', '(', 'self', '.', 'ax', ')', 'return', 'self', '.', 'ax']
Draw the embedded centers with their sizes on the visualization.
['Draw', 'the', 'embedded', 'centers', 'with', 'their', 'sizes', 'on', 'the', 'visualization', '.']
train
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/cluster/icdm.py#L270-L291
1,934
bunq/sdk_python
bunq/sdk/json/adapters.py
ShareDetailAdapter.serialize
def serialize(cls, share_detail): """ :type share_detail: object_.ShareDetail :rtype: dict """ return { cls._FIELD_PAYMENT: converter.serialize( share_detail._payment_field_for_request), cls._FIELD_READ_ONLY: converter.serialize( share_detail._read_only_field_for_request), cls._FIELD_DRAFT_PAYMENT: converter.serialize( share_detail._draft_payment ), }
python
def serialize(cls, share_detail): """ :type share_detail: object_.ShareDetail :rtype: dict """ return { cls._FIELD_PAYMENT: converter.serialize( share_detail._payment_field_for_request), cls._FIELD_READ_ONLY: converter.serialize( share_detail._read_only_field_for_request), cls._FIELD_DRAFT_PAYMENT: converter.serialize( share_detail._draft_payment ), }
['def', 'serialize', '(', 'cls', ',', 'share_detail', ')', ':', 'return', '{', 'cls', '.', '_FIELD_PAYMENT', ':', 'converter', '.', 'serialize', '(', 'share_detail', '.', '_payment_field_for_request', ')', ',', 'cls', '.', '_FIELD_READ_ONLY', ':', 'converter', '.', 'serialize', '(', 'share_detail', '.', '_read_only_field_for_request', ')', ',', 'cls', '.', '_FIELD_DRAFT_PAYMENT', ':', 'converter', '.', 'serialize', '(', 'share_detail', '.', '_draft_payment', ')', ',', '}']
:type share_detail: object_.ShareDetail :rtype: dict
[':', 'type', 'share_detail', ':', 'object_', '.', 'ShareDetail']
train
https://github.com/bunq/sdk_python/blob/da6c9b83e6d83ee8062617f53c6eb7293c0d863d/bunq/sdk/json/adapters.py#L501-L516
1,935
aio-libs/yarl
yarl/__init__.py
URL.port
def port(self): """Port part of URL, with scheme-based fallback. None for relative URLs or URLs without explicit port and scheme without default port substitution. """ return self._val.port or DEFAULT_PORTS.get(self._val.scheme)
python
def port(self): """Port part of URL, with scheme-based fallback. None for relative URLs or URLs without explicit port and scheme without default port substitution. """ return self._val.port or DEFAULT_PORTS.get(self._val.scheme)
['def', 'port', '(', 'self', ')', ':', 'return', 'self', '.', '_val', '.', 'port', 'or', 'DEFAULT_PORTS', '.', 'get', '(', 'self', '.', '_val', '.', 'scheme', ')']
Port part of URL, with scheme-based fallback. None for relative URLs or URLs without explicit port and scheme without default port substitution.
['Port', 'part', 'of', 'URL', 'with', 'scheme', '-', 'based', 'fallback', '.']
train
https://github.com/aio-libs/yarl/blob/e47da02c00ad764e030ca7647a9565548c97d362/yarl/__init__.py#L456-L463
1,936
pypa/setuptools
setuptools/msvc.py
EnvironmentInfo._build_paths
def _build_paths(self, name, spec_path_lists, exists): """ Given an environment variable name and specified paths, return a pathsep-separated string of paths containing unique, extant, directories from those paths and from the environment variable. Raise an error if no paths are resolved. """ # flatten spec_path_lists spec_paths = itertools.chain.from_iterable(spec_path_lists) env_paths = safe_env.get(name, '').split(os.pathsep) paths = itertools.chain(spec_paths, env_paths) extant_paths = list(filter(os.path.isdir, paths)) if exists else paths if not extant_paths: msg = "%s environment variable is empty" % name.upper() raise distutils.errors.DistutilsPlatformError(msg) unique_paths = self._unique_everseen(extant_paths) return os.pathsep.join(unique_paths)
python
def _build_paths(self, name, spec_path_lists, exists): """ Given an environment variable name and specified paths, return a pathsep-separated string of paths containing unique, extant, directories from those paths and from the environment variable. Raise an error if no paths are resolved. """ # flatten spec_path_lists spec_paths = itertools.chain.from_iterable(spec_path_lists) env_paths = safe_env.get(name, '').split(os.pathsep) paths = itertools.chain(spec_paths, env_paths) extant_paths = list(filter(os.path.isdir, paths)) if exists else paths if not extant_paths: msg = "%s environment variable is empty" % name.upper() raise distutils.errors.DistutilsPlatformError(msg) unique_paths = self._unique_everseen(extant_paths) return os.pathsep.join(unique_paths)
['def', '_build_paths', '(', 'self', ',', 'name', ',', 'spec_path_lists', ',', 'exists', ')', ':', '# flatten spec_path_lists', 'spec_paths', '=', 'itertools', '.', 'chain', '.', 'from_iterable', '(', 'spec_path_lists', ')', 'env_paths', '=', 'safe_env', '.', 'get', '(', 'name', ',', "''", ')', '.', 'split', '(', 'os', '.', 'pathsep', ')', 'paths', '=', 'itertools', '.', 'chain', '(', 'spec_paths', ',', 'env_paths', ')', 'extant_paths', '=', 'list', '(', 'filter', '(', 'os', '.', 'path', '.', 'isdir', ',', 'paths', ')', ')', 'if', 'exists', 'else', 'paths', 'if', 'not', 'extant_paths', ':', 'msg', '=', '"%s environment variable is empty"', '%', 'name', '.', 'upper', '(', ')', 'raise', 'distutils', '.', 'errors', '.', 'DistutilsPlatformError', '(', 'msg', ')', 'unique_paths', '=', 'self', '.', '_unique_everseen', '(', 'extant_paths', ')', 'return', 'os', '.', 'pathsep', '.', 'join', '(', 'unique_paths', ')']
Given an environment variable name and specified paths, return a pathsep-separated string of paths containing unique, extant, directories from those paths and from the environment variable. Raise an error if no paths are resolved.
['Given', 'an', 'environment', 'variable', 'name', 'and', 'specified', 'paths', 'return', 'a', 'pathsep', '-', 'separated', 'string', 'of', 'paths', 'containing', 'unique', 'extant', 'directories', 'from', 'those', 'paths', 'and', 'from', 'the', 'environment', 'variable', '.', 'Raise', 'an', 'error', 'if', 'no', 'paths', 'are', 'resolved', '.']
train
https://github.com/pypa/setuptools/blob/83c667e0b2a98193851c07115d1af65011ed0fb6/setuptools/msvc.py#L1261-L1278
1,937
smdabdoub/phylotoast
bin/diversity.py
print_KruskalWallisH
def print_KruskalWallisH(div_calc): """ Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that each group must have at least 5 measurements. """ calc = defaultdict(list) try: for k1, v1 in div_calc.iteritems(): for k2, v2 in v1.iteritems(): calc[k1].append(v2) except: return "Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "\ "significance testing." h, p = stats.kruskal(*calc.values()) print "\nKruskal-Wallis H-test statistic for {} groups: {}".format(str(len(div_calc)), h) print "p-value: {}".format(p)
python
def print_KruskalWallisH(div_calc): """ Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that each group must have at least 5 measurements. """ calc = defaultdict(list) try: for k1, v1 in div_calc.iteritems(): for k2, v2 in v1.iteritems(): calc[k1].append(v2) except: return "Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "\ "significance testing." h, p = stats.kruskal(*calc.values()) print "\nKruskal-Wallis H-test statistic for {} groups: {}".format(str(len(div_calc)), h) print "p-value: {}".format(p)
['def', 'print_KruskalWallisH', '(', 'div_calc', ')', ':', 'calc', '=', 'defaultdict', '(', 'list', ')', 'try', ':', 'for', 'k1', ',', 'v1', 'in', 'div_calc', '.', 'iteritems', '(', ')', ':', 'for', 'k2', ',', 'v2', 'in', 'v1', '.', 'iteritems', '(', ')', ':', 'calc', '[', 'k1', ']', '.', 'append', '(', 'v2', ')', 'except', ':', 'return', '"Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "', '"significance testing."', 'h', ',', 'p', '=', 'stats', '.', 'kruskal', '(', '*', 'calc', '.', 'values', '(', ')', ')', 'print', '"\\nKruskal-Wallis H-test statistic for {} groups: {}"', '.', 'format', '(', 'str', '(', 'len', '(', 'div_calc', ')', ')', ',', 'h', ')', 'print', '"p-value: {}"', '.', 'format', '(', 'p', ')']
Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that each group must have at least 5 measurements.
['Compute', 'the', 'Kruskal', '-', 'Wallis', 'H', '-', 'test', 'for', 'independent', 'samples', '.', 'A', 'typical', 'rule', 'is', 'that', 'each', 'group', 'must', 'have', 'at', 'least', '5', 'measurements', '.']
train
https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/diversity.py#L69-L84
1,938
Rapptz/discord.py
discord/message.py
Message.raw_channel_mentions
def raw_channel_mentions(self): """A property that returns an array of channel IDs matched with the syntax of <#channel_id> in the message content. """ return [int(x) for x in re.findall(r'<#([0-9]+)>', self.content)]
python
def raw_channel_mentions(self): """A property that returns an array of channel IDs matched with the syntax of <#channel_id> in the message content. """ return [int(x) for x in re.findall(r'<#([0-9]+)>', self.content)]
['def', 'raw_channel_mentions', '(', 'self', ')', ':', 'return', '[', 'int', '(', 'x', ')', 'for', 'x', 'in', 're', '.', 'findall', '(', "r'<#([0-9]+)>'", ',', 'self', '.', 'content', ')', ']']
A property that returns an array of channel IDs matched with the syntax of <#channel_id> in the message content.
['A', 'property', 'that', 'returns', 'an', 'array', 'of', 'channel', 'IDs', 'matched', 'with', 'the', 'syntax', 'of', '<#channel_id', '>', 'in', 'the', 'message', 'content', '.']
train
https://github.com/Rapptz/discord.py/blob/05d4f7f9620ef33635d6ac965b26528e09cdaf5b/discord/message.py#L380-L384
1,939
BD2KOnFHIR/fhirtordf
fhirtordf/fhir/fhirmetavoc.py
FHIRMetaVocEntry._to_str
def _to_str(uri: URIRef) -> str: """ Convert a FHIR style URI into a tag name to be used to retrieve data from a JSON representation Example: http://hl7.org/fhir/Provenance.agent.whoReference --> whoReference :param uri: URI to convert :return: tag name """ local_name = str(uri).replace(str(FHIR), '') return local_name.rsplit('.', 1)[1] if '.' in local_name else local_name
python
def _to_str(uri: URIRef) -> str: """ Convert a FHIR style URI into a tag name to be used to retrieve data from a JSON representation Example: http://hl7.org/fhir/Provenance.agent.whoReference --> whoReference :param uri: URI to convert :return: tag name """ local_name = str(uri).replace(str(FHIR), '') return local_name.rsplit('.', 1)[1] if '.' in local_name else local_name
['def', '_to_str', '(', 'uri', ':', 'URIRef', ')', '->', 'str', ':', 'local_name', '=', 'str', '(', 'uri', ')', '.', 'replace', '(', 'str', '(', 'FHIR', ')', ',', "''", ')', 'return', 'local_name', '.', 'rsplit', '(', "'.'", ',', '1', ')', '[', '1', ']', 'if', "'.'", 'in', 'local_name', 'else', 'local_name']
Convert a FHIR style URI into a tag name to be used to retrieve data from a JSON representation Example: http://hl7.org/fhir/Provenance.agent.whoReference --> whoReference :param uri: URI to convert :return: tag name
['Convert', 'a', 'FHIR', 'style', 'URI', 'into', 'a', 'tag', 'name', 'to', 'be', 'used', 'to', 'retrieve', 'data', 'from', 'a', 'JSON', 'representation', 'Example', ':', 'http', ':', '//', 'hl7', '.', 'org', '/', 'fhir', '/', 'Provenance', '.', 'agent', '.', 'whoReference', '--', '>', 'whoReference', ':', 'param', 'uri', ':', 'URI', 'to', 'convert', ':', 'return', ':', 'tag', 'name']
train
https://github.com/BD2KOnFHIR/fhirtordf/blob/f97b3df683fa4caacf5cf4f29699ab060bcc0fbf/fhirtordf/fhir/fhirmetavoc.py#L60-L68
1,940
log2timeline/dfvfs
dfvfs/file_io/vshadow_file_io.py
VShadowFile.read
def read(self, size=None): """Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed. """ if not self._is_open: raise IOError('Not opened.') return self._vshadow_store.read(size)
python
def read(self, size=None): """Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed. """ if not self._is_open: raise IOError('Not opened.') return self._vshadow_store.read(size)
['def', 'read', '(', 'self', ',', 'size', '=', 'None', ')', ':', 'if', 'not', 'self', '.', '_is_open', ':', 'raise', 'IOError', '(', "'Not opened.'", ')', 'return', 'self', '.', '_vshadow_store', '.', 'read', '(', 'size', ')']
Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed.
['Reads', 'a', 'byte', 'string', 'from', 'the', 'file', '-', 'like', 'object', 'at', 'the', 'current', 'offset', '.']
train
https://github.com/log2timeline/dfvfs/blob/2b3ccd115f9901d89f383397d4a1376a873c83c4/dfvfs/file_io/vshadow_file_io.py#L78-L98
1,941
undertherain/pycontextfree
setup_boilerplate.py
parse_requirements
def parse_requirements( requirements_path: str = 'requirements.txt') -> t.List[str]: """Read contents of requirements.txt file and return data from its relevant lines. Only non-empty and non-comment lines are relevant. """ requirements = [] with HERE.joinpath(requirements_path).open() as reqs_file: for requirement in [line.strip() for line in reqs_file.read().splitlines()]: if not requirement or requirement.startswith('#'): continue requirements.append(requirement) return requirements
python
def parse_requirements( requirements_path: str = 'requirements.txt') -> t.List[str]: """Read contents of requirements.txt file and return data from its relevant lines. Only non-empty and non-comment lines are relevant. """ requirements = [] with HERE.joinpath(requirements_path).open() as reqs_file: for requirement in [line.strip() for line in reqs_file.read().splitlines()]: if not requirement or requirement.startswith('#'): continue requirements.append(requirement) return requirements
['def', 'parse_requirements', '(', 'requirements_path', ':', 'str', '=', "'requirements.txt'", ')', '->', 't', '.', 'List', '[', 'str', ']', ':', 'requirements', '=', '[', ']', 'with', 'HERE', '.', 'joinpath', '(', 'requirements_path', ')', '.', 'open', '(', ')', 'as', 'reqs_file', ':', 'for', 'requirement', 'in', '[', 'line', '.', 'strip', '(', ')', 'for', 'line', 'in', 'reqs_file', '.', 'read', '(', ')', '.', 'splitlines', '(', ')', ']', ':', 'if', 'not', 'requirement', 'or', 'requirement', '.', 'startswith', '(', "'#'", ')', ':', 'continue', 'requirements', '.', 'append', '(', 'requirement', ')', 'return', 'requirements']
Read contents of requirements.txt file and return data from its relevant lines. Only non-empty and non-comment lines are relevant.
['Read', 'contents', 'of', 'requirements', '.', 'txt', 'file', 'and', 'return', 'data', 'from', 'its', 'relevant', 'lines', '.']
train
https://github.com/undertherain/pycontextfree/blob/91505e978f6034863747c98d919ac11b029b1ac3/setup_boilerplate.py#L66-L78
1,942
tensorflow/tensor2tensor
tensor2tensor/models/image_transformer_2d.py
img2img_transformer2d_n31
def img2img_transformer2d_n31(): """Set of hyperparameters.""" hparams = img2img_transformer2d_base() hparams.batch_size = 1 hparams.num_encoder_layers = 6 hparams.num_decoder_layers = 12 hparams.num_heads = 8 hparams.query_shape = (16, 32) hparams.memory_flange = (16, 32) return hparams
python
def img2img_transformer2d_n31(): """Set of hyperparameters.""" hparams = img2img_transformer2d_base() hparams.batch_size = 1 hparams.num_encoder_layers = 6 hparams.num_decoder_layers = 12 hparams.num_heads = 8 hparams.query_shape = (16, 32) hparams.memory_flange = (16, 32) return hparams
['def', 'img2img_transformer2d_n31', '(', ')', ':', 'hparams', '=', 'img2img_transformer2d_base', '(', ')', 'hparams', '.', 'batch_size', '=', '1', 'hparams', '.', 'num_encoder_layers', '=', '6', 'hparams', '.', 'num_decoder_layers', '=', '12', 'hparams', '.', 'num_heads', '=', '8', 'hparams', '.', 'query_shape', '=', '(', '16', ',', '32', ')', 'hparams', '.', 'memory_flange', '=', '(', '16', ',', '32', ')', 'return', 'hparams']
Set of hyperparameters.
['Set', 'of', 'hyperparameters', '.']
train
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/image_transformer_2d.py#L829-L838
1,943
thespacedoctor/tastic
tastic/tastic.py
baseClass.to_string
def to_string( self, indentLevel=1, title=True, tags=None, projects=None, tasks=None, notes=None): """*convert this taskpaper object to a string* **Key Arguments:** - ``indentLevel`` -- the level of the indent for this object. Default *1*. - ``title`` -- print the title of the taskpaper object alongside the contents. Default *True* - ``tags`` -- replace tags with these tags. Default *None* - ``projects`` -- replace projects with these projects, pass empty list to delete all projects. Default *None* - ``tasks`` -- replace tasks with these ones, pass empty list to delete all tasks. Default *None* - ``notes`` -- replace notes with these ones, pass empty list to delete all notes. Default *None* **Return:** - ``objectString`` -- the taskpaper object as a string **Usage:** If we have the *archive* project from a taskpaper document, we can convert it to a string using: .. code-block:: python print archiveProject.to_string() .. code-block:: text Archive: - and a third task @done(2016-09-04) @project(parent project / child-project) - and a forth task @done(2016-09-04) @project(parent project / child-project) - fill the kettle @done(2016-09-04) @project(parent project / make coffee) - boil the kettle @done(2016-09-04) @project(parent project / make coffee) """ indent = indentLevel * "\t" objectString = "" if title: try: # NONE DOCUMENT OBJECTS objectString += self.title except: pass try: if tags: tagString = (" @").join(tags) else: tagString = (" @").join(self.tags) if len(tagString): objectString += " @" + tagString except: pass try: if not notes: notes = self.notes for n in notes: if len(n.title.strip()): if not self.parent and len(objectString) == 0: objectString += indent + n.title.strip() + n.content else: objectString += "\n" + indent + n.title.strip() + n.content except: pass try: if not tasks: tasks = self.tasks for t in tasks: objectString += "\n" + indent + t.to_string(indentLevel + 1) except: pass try: if not projects: projects = self.projects for p in projects: objectString += "\n" + indent + p.to_string(indentLevel + 1) except: pass try: objectString += "\n" + indent + self.searches except: pass return objectString.strip()
python
def to_string( self, indentLevel=1, title=True, tags=None, projects=None, tasks=None, notes=None): """*convert this taskpaper object to a string* **Key Arguments:** - ``indentLevel`` -- the level of the indent for this object. Default *1*. - ``title`` -- print the title of the taskpaper object alongside the contents. Default *True* - ``tags`` -- replace tags with these tags. Default *None* - ``projects`` -- replace projects with these projects, pass empty list to delete all projects. Default *None* - ``tasks`` -- replace tasks with these ones, pass empty list to delete all tasks. Default *None* - ``notes`` -- replace notes with these ones, pass empty list to delete all notes. Default *None* **Return:** - ``objectString`` -- the taskpaper object as a string **Usage:** If we have the *archive* project from a taskpaper document, we can convert it to a string using: .. code-block:: python print archiveProject.to_string() .. code-block:: text Archive: - and a third task @done(2016-09-04) @project(parent project / child-project) - and a forth task @done(2016-09-04) @project(parent project / child-project) - fill the kettle @done(2016-09-04) @project(parent project / make coffee) - boil the kettle @done(2016-09-04) @project(parent project / make coffee) """ indent = indentLevel * "\t" objectString = "" if title: try: # NONE DOCUMENT OBJECTS objectString += self.title except: pass try: if tags: tagString = (" @").join(tags) else: tagString = (" @").join(self.tags) if len(tagString): objectString += " @" + tagString except: pass try: if not notes: notes = self.notes for n in notes: if len(n.title.strip()): if not self.parent and len(objectString) == 0: objectString += indent + n.title.strip() + n.content else: objectString += "\n" + indent + n.title.strip() + n.content except: pass try: if not tasks: tasks = self.tasks for t in tasks: objectString += "\n" + indent + t.to_string(indentLevel + 1) except: pass try: if not projects: projects = self.projects for p in projects: objectString += "\n" + indent + p.to_string(indentLevel + 1) except: pass try: objectString += "\n" + indent + self.searches except: pass return objectString.strip()
['def', 'to_string', '(', 'self', ',', 'indentLevel', '=', '1', ',', 'title', '=', 'True', ',', 'tags', '=', 'None', ',', 'projects', '=', 'None', ',', 'tasks', '=', 'None', ',', 'notes', '=', 'None', ')', ':', 'indent', '=', 'indentLevel', '*', '"\\t"', 'objectString', '=', '""', 'if', 'title', ':', 'try', ':', '# NONE DOCUMENT OBJECTS', 'objectString', '+=', 'self', '.', 'title', 'except', ':', 'pass', 'try', ':', 'if', 'tags', ':', 'tagString', '=', '(', '" @"', ')', '.', 'join', '(', 'tags', ')', 'else', ':', 'tagString', '=', '(', '" @"', ')', '.', 'join', '(', 'self', '.', 'tags', ')', 'if', 'len', '(', 'tagString', ')', ':', 'objectString', '+=', '" @"', '+', 'tagString', 'except', ':', 'pass', 'try', ':', 'if', 'not', 'notes', ':', 'notes', '=', 'self', '.', 'notes', 'for', 'n', 'in', 'notes', ':', 'if', 'len', '(', 'n', '.', 'title', '.', 'strip', '(', ')', ')', ':', 'if', 'not', 'self', '.', 'parent', 'and', 'len', '(', 'objectString', ')', '==', '0', ':', 'objectString', '+=', 'indent', '+', 'n', '.', 'title', '.', 'strip', '(', ')', '+', 'n', '.', 'content', 'else', ':', 'objectString', '+=', '"\\n"', '+', 'indent', '+', 'n', '.', 'title', '.', 'strip', '(', ')', '+', 'n', '.', 'content', 'except', ':', 'pass', 'try', ':', 'if', 'not', 'tasks', ':', 'tasks', '=', 'self', '.', 'tasks', 'for', 't', 'in', 'tasks', ':', 'objectString', '+=', '"\\n"', '+', 'indent', '+', 't', '.', 'to_string', '(', 'indentLevel', '+', '1', ')', 'except', ':', 'pass', 'try', ':', 'if', 'not', 'projects', ':', 'projects', '=', 'self', '.', 'projects', 'for', 'p', 'in', 'projects', ':', 'objectString', '+=', '"\\n"', '+', 'indent', '+', 'p', '.', 'to_string', '(', 'indentLevel', '+', '1', ')', 'except', ':', 'pass', 'try', ':', 'objectString', '+=', '"\\n"', '+', 'indent', '+', 'self', '.', 'searches', 'except', ':', 'pass', 'return', 'objectString', '.', 'strip', '(', ')']
*convert this taskpaper object to a string* **Key Arguments:** - ``indentLevel`` -- the level of the indent for this object. Default *1*. - ``title`` -- print the title of the taskpaper object alongside the contents. Default *True* - ``tags`` -- replace tags with these tags. Default *None* - ``projects`` -- replace projects with these projects, pass empty list to delete all projects. Default *None* - ``tasks`` -- replace tasks with these ones, pass empty list to delete all tasks. Default *None* - ``notes`` -- replace notes with these ones, pass empty list to delete all notes. Default *None* **Return:** - ``objectString`` -- the taskpaper object as a string **Usage:** If we have the *archive* project from a taskpaper document, we can convert it to a string using: .. code-block:: python print archiveProject.to_string() .. code-block:: text Archive: - and a third task @done(2016-09-04) @project(parent project / child-project) - and a forth task @done(2016-09-04) @project(parent project / child-project) - fill the kettle @done(2016-09-04) @project(parent project / make coffee) - boil the kettle @done(2016-09-04) @project(parent project / make coffee)
['*', 'convert', 'this', 'taskpaper', 'object', 'to', 'a', 'string', '*']
train
https://github.com/thespacedoctor/tastic/blob/a0a16cf329a50057906ac3f696bb60b6fcee25e0/tastic/tastic.py#L315-L406
1,944
apple/turicreate
src/unity/python/turicreate/toolkits/_internal_utils.py
_validate_data
def _validate_data(dataset, target, features=None, validation_set='auto'): """ Validate and canonicalize training and validation data. Parameters ---------- dataset : SFrame Dataset for training the model. target : string Name of the column containing the target variable. features : list[string], optional List of feature names used. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance, with the same schema as the training dataset. Can also be None or 'auto'. Returns ------- dataset : SFrame The input dataset, minus any columns not referenced by target or features validation_set : SFrame or str A canonicalized version of the input validation_set. For SFrame arguments, the returned SFrame only includes those columns referenced by target or features. SFrame arguments that do not match the schema of dataset, or string arguments that are not 'auto', trigger an exception. """ _raise_error_if_not_sframe(dataset, "training dataset") # Determine columns to keep if features is None: features = [feat for feat in dataset.column_names() if feat != target] if not hasattr(features, '__iter__'): raise TypeError("Input 'features' must be a list.") if not all([isinstance(x, str) for x in features]): raise TypeError( "Invalid feature %s: Feature names must be of type str" % x) # Check validation_set argument if isinstance(validation_set, str): # Only string value allowed is 'auto' if validation_set != 'auto': raise TypeError('Unrecognized value for validation_set.') elif isinstance(validation_set, _SFrame): # Attempt to append the two datasets together to check schema validation_set.head().append(dataset.head()) # Reduce validation set to requested columns validation_set = _toolkits_select_columns( validation_set, features + [target]) elif not validation_set is None: raise TypeError("validation_set must be either 'auto', None, or an " "SFrame matching the training data.") # Reduce training set to requested columns dataset = _toolkits_select_columns(dataset, features + [target]) return dataset, validation_set
python
def _validate_data(dataset, target, features=None, validation_set='auto'): """ Validate and canonicalize training and validation data. Parameters ---------- dataset : SFrame Dataset for training the model. target : string Name of the column containing the target variable. features : list[string], optional List of feature names used. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance, with the same schema as the training dataset. Can also be None or 'auto'. Returns ------- dataset : SFrame The input dataset, minus any columns not referenced by target or features validation_set : SFrame or str A canonicalized version of the input validation_set. For SFrame arguments, the returned SFrame only includes those columns referenced by target or features. SFrame arguments that do not match the schema of dataset, or string arguments that are not 'auto', trigger an exception. """ _raise_error_if_not_sframe(dataset, "training dataset") # Determine columns to keep if features is None: features = [feat for feat in dataset.column_names() if feat != target] if not hasattr(features, '__iter__'): raise TypeError("Input 'features' must be a list.") if not all([isinstance(x, str) for x in features]): raise TypeError( "Invalid feature %s: Feature names must be of type str" % x) # Check validation_set argument if isinstance(validation_set, str): # Only string value allowed is 'auto' if validation_set != 'auto': raise TypeError('Unrecognized value for validation_set.') elif isinstance(validation_set, _SFrame): # Attempt to append the two datasets together to check schema validation_set.head().append(dataset.head()) # Reduce validation set to requested columns validation_set = _toolkits_select_columns( validation_set, features + [target]) elif not validation_set is None: raise TypeError("validation_set must be either 'auto', None, or an " "SFrame matching the training data.") # Reduce training set to requested columns dataset = _toolkits_select_columns(dataset, features + [target]) return dataset, validation_set
['def', '_validate_data', '(', 'dataset', ',', 'target', ',', 'features', '=', 'None', ',', 'validation_set', '=', "'auto'", ')', ':', '_raise_error_if_not_sframe', '(', 'dataset', ',', '"training dataset"', ')', '# Determine columns to keep', 'if', 'features', 'is', 'None', ':', 'features', '=', '[', 'feat', 'for', 'feat', 'in', 'dataset', '.', 'column_names', '(', ')', 'if', 'feat', '!=', 'target', ']', 'if', 'not', 'hasattr', '(', 'features', ',', "'__iter__'", ')', ':', 'raise', 'TypeError', '(', '"Input \'features\' must be a list."', ')', 'if', 'not', 'all', '(', '[', 'isinstance', '(', 'x', ',', 'str', ')', 'for', 'x', 'in', 'features', ']', ')', ':', 'raise', 'TypeError', '(', '"Invalid feature %s: Feature names must be of type str"', '%', 'x', ')', '# Check validation_set argument', 'if', 'isinstance', '(', 'validation_set', ',', 'str', ')', ':', "# Only string value allowed is 'auto'", 'if', 'validation_set', '!=', "'auto'", ':', 'raise', 'TypeError', '(', "'Unrecognized value for validation_set.'", ')', 'elif', 'isinstance', '(', 'validation_set', ',', '_SFrame', ')', ':', '# Attempt to append the two datasets together to check schema', 'validation_set', '.', 'head', '(', ')', '.', 'append', '(', 'dataset', '.', 'head', '(', ')', ')', '# Reduce validation set to requested columns', 'validation_set', '=', '_toolkits_select_columns', '(', 'validation_set', ',', 'features', '+', '[', 'target', ']', ')', 'elif', 'not', 'validation_set', 'is', 'None', ':', 'raise', 'TypeError', '(', '"validation_set must be either \'auto\', None, or an "', '"SFrame matching the training data."', ')', '# Reduce training set to requested columns', 'dataset', '=', '_toolkits_select_columns', '(', 'dataset', ',', 'features', '+', '[', 'target', ']', ')', 'return', 'dataset', ',', 'validation_set']
Validate and canonicalize training and validation data. Parameters ---------- dataset : SFrame Dataset for training the model. target : string Name of the column containing the target variable. features : list[string], optional List of feature names used. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance, with the same schema as the training dataset. Can also be None or 'auto'. Returns ------- dataset : SFrame The input dataset, minus any columns not referenced by target or features validation_set : SFrame or str A canonicalized version of the input validation_set. For SFrame arguments, the returned SFrame only includes those columns referenced by target or features. SFrame arguments that do not match the schema of dataset, or string arguments that are not 'auto', trigger an exception.
['Validate', 'and', 'canonicalize', 'training', 'and', 'validation', 'data', '.']
train
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/toolkits/_internal_utils.py#L563-L625
1,945
datadotworld/data.world-py
datadotworld/client/_swagger/apis/insights_api.py
InsightsApi.get_insights_for_project
def get_insights_for_project(self, project_owner, project_id, **kwargs): """ Get insights for project. Get insights for a project. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_insights_for_project(project_owner, project_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str project_owner: User name and unique identifier of the creator of a project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `government` is the unique identifier of the owner. (required) :param str project_id: User name and unique identifier of the project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `how-to-add-depth-to-your-data-with-the-us-census-acs` is the unique identifier of the owner. (required) :param str limit: Maximum number of items to include in a page of results. :param str next: Token from previous result page to be used when requesting a subsequent page. :return: PaginatedInsightResults If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_insights_for_project_with_http_info(project_owner, project_id, **kwargs) else: (data) = self.get_insights_for_project_with_http_info(project_owner, project_id, **kwargs) return data
python
def get_insights_for_project(self, project_owner, project_id, **kwargs): """ Get insights for project. Get insights for a project. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_insights_for_project(project_owner, project_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str project_owner: User name and unique identifier of the creator of a project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `government` is the unique identifier of the owner. (required) :param str project_id: User name and unique identifier of the project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `how-to-add-depth-to-your-data-with-the-us-census-acs` is the unique identifier of the owner. (required) :param str limit: Maximum number of items to include in a page of results. :param str next: Token from previous result page to be used when requesting a subsequent page. :return: PaginatedInsightResults If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_insights_for_project_with_http_info(project_owner, project_id, **kwargs) else: (data) = self.get_insights_for_project_with_http_info(project_owner, project_id, **kwargs) return data
['def', 'get_insights_for_project', '(', 'self', ',', 'project_owner', ',', 'project_id', ',', '*', '*', 'kwargs', ')', ':', 'kwargs', '[', "'_return_http_data_only'", ']', '=', 'True', 'if', 'kwargs', '.', 'get', '(', "'callback'", ')', ':', 'return', 'self', '.', 'get_insights_for_project_with_http_info', '(', 'project_owner', ',', 'project_id', ',', '*', '*', 'kwargs', ')', 'else', ':', '(', 'data', ')', '=', 'self', '.', 'get_insights_for_project_with_http_info', '(', 'project_owner', ',', 'project_id', ',', '*', '*', 'kwargs', ')', 'return', 'data']
Get insights for project. Get insights for a project. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_insights_for_project(project_owner, project_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str project_owner: User name and unique identifier of the creator of a project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `government` is the unique identifier of the owner. (required) :param str project_id: User name and unique identifier of the project. For example, in the URL: [https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs](https://data.world/government/how-to-add-depth-to-your-data-with-the-us-census-acs), `how-to-add-depth-to-your-data-with-the-us-census-acs` is the unique identifier of the owner. (required) :param str limit: Maximum number of items to include in a page of results. :param str next: Token from previous result page to be used when requesting a subsequent page. :return: PaginatedInsightResults If the method is called asynchronously, returns the request thread.
['Get', 'insights', 'for', 'project', '.', 'Get', 'insights', 'for', 'a', 'project', '.', 'This', 'method', 'makes', 'a', 'synchronous', 'HTTP', 'request', 'by', 'default', '.', 'To', 'make', 'an', 'asynchronous', 'HTTP', 'request', 'please', 'define', 'a', 'callback', 'function', 'to', 'be', 'invoked', 'when', 'receiving', 'the', 'response', '.', '>>>', 'def', 'callback_function', '(', 'response', ')', ':', '>>>', 'pprint', '(', 'response', ')', '>>>', '>>>', 'thread', '=', 'api', '.', 'get_insights_for_project', '(', 'project_owner', 'project_id', 'callback', '=', 'callback_function', ')']
train
https://github.com/datadotworld/data.world-py/blob/ffaeb115f358731ab0b805b0c43b7ff2e3cf0a77/datadotworld/client/_swagger/apis/insights_api.py#L404-L431
1,946
talkincode/txradius
txradius/radius/packet.py
Packet.DecodePacket
def DecodePacket(self, packet): """Initialize the object from raw packet data. Decode a packet as received from the network and decode it. :param packet: raw packet :type packet: string""" try: (self.code, self.id, length, self.authenticator) = \ struct.unpack('!BBH16s', packet[0:20]) except struct.error: raise PacketError('Packet header is corrupt') if len(packet) != length: raise PacketError('Packet has invalid length') if length > 8192: raise PacketError('Packet length is too long (%d)' % length) self.clear() packet = packet[20:] while packet: try: (key, attrlen) = struct.unpack('!BB', packet[0:2]) except struct.error: raise PacketError('Attribute header is corrupt') if attrlen < 2: raise PacketError( 'Attribute length is too small (%d)' % attrlen) value = packet[2:attrlen] if key == 26: # 26 is the Vendor-Specific attribute (vendor, subattrs) = self._PktDecodeVendorAttribute(value) if vendor is None: self.setdefault(key, []).append(value) else: for (k, v) in subattrs: self.setdefault((vendor, k), []).append(v) else: self.setdefault(key, []).append(value) packet = packet[attrlen:]
python
def DecodePacket(self, packet): """Initialize the object from raw packet data. Decode a packet as received from the network and decode it. :param packet: raw packet :type packet: string""" try: (self.code, self.id, length, self.authenticator) = \ struct.unpack('!BBH16s', packet[0:20]) except struct.error: raise PacketError('Packet header is corrupt') if len(packet) != length: raise PacketError('Packet has invalid length') if length > 8192: raise PacketError('Packet length is too long (%d)' % length) self.clear() packet = packet[20:] while packet: try: (key, attrlen) = struct.unpack('!BB', packet[0:2]) except struct.error: raise PacketError('Attribute header is corrupt') if attrlen < 2: raise PacketError( 'Attribute length is too small (%d)' % attrlen) value = packet[2:attrlen] if key == 26: # 26 is the Vendor-Specific attribute (vendor, subattrs) = self._PktDecodeVendorAttribute(value) if vendor is None: self.setdefault(key, []).append(value) else: for (k, v) in subattrs: self.setdefault((vendor, k), []).append(v) else: self.setdefault(key, []).append(value) packet = packet[attrlen:]
['def', 'DecodePacket', '(', 'self', ',', 'packet', ')', ':', 'try', ':', '(', 'self', '.', 'code', ',', 'self', '.', 'id', ',', 'length', ',', 'self', '.', 'authenticator', ')', '=', 'struct', '.', 'unpack', '(', "'!BBH16s'", ',', 'packet', '[', '0', ':', '20', ']', ')', 'except', 'struct', '.', 'error', ':', 'raise', 'PacketError', '(', "'Packet header is corrupt'", ')', 'if', 'len', '(', 'packet', ')', '!=', 'length', ':', 'raise', 'PacketError', '(', "'Packet has invalid length'", ')', 'if', 'length', '>', '8192', ':', 'raise', 'PacketError', '(', "'Packet length is too long (%d)'", '%', 'length', ')', 'self', '.', 'clear', '(', ')', 'packet', '=', 'packet', '[', '20', ':', ']', 'while', 'packet', ':', 'try', ':', '(', 'key', ',', 'attrlen', ')', '=', 'struct', '.', 'unpack', '(', "'!BB'", ',', 'packet', '[', '0', ':', '2', ']', ')', 'except', 'struct', '.', 'error', ':', 'raise', 'PacketError', '(', "'Attribute header is corrupt'", ')', 'if', 'attrlen', '<', '2', ':', 'raise', 'PacketError', '(', "'Attribute length is too small (%d)'", '%', 'attrlen', ')', 'value', '=', 'packet', '[', '2', ':', 'attrlen', ']', 'if', 'key', '==', '26', ':', '# 26 is the Vendor-Specific attribute', '(', 'vendor', ',', 'subattrs', ')', '=', 'self', '.', '_PktDecodeVendorAttribute', '(', 'value', ')', 'if', 'vendor', 'is', 'None', ':', 'self', '.', 'setdefault', '(', 'key', ',', '[', ']', ')', '.', 'append', '(', 'value', ')', 'else', ':', 'for', '(', 'k', ',', 'v', ')', 'in', 'subattrs', ':', 'self', '.', 'setdefault', '(', '(', 'vendor', ',', 'k', ')', ',', '[', ']', ')', '.', 'append', '(', 'v', ')', 'else', ':', 'self', '.', 'setdefault', '(', 'key', ',', '[', ']', ')', '.', 'append', '(', 'value', ')', 'packet', '=', 'packet', '[', 'attrlen', ':', ']']
Initialize the object from raw packet data. Decode a packet as received from the network and decode it. :param packet: raw packet :type packet: string
['Initialize', 'the', 'object', 'from', 'raw', 'packet', 'data', '.', 'Decode', 'a', 'packet', 'as', 'received', 'from', 'the', 'network', 'and', 'decode', 'it', '.']
train
https://github.com/talkincode/txradius/blob/b86fdbc9be41183680b82b07d3a8e8ea10926e01/txradius/radius/packet.py#L308-L350
1,947
SecurityInnovation/PGPy
pgpy/pgp.py
PGPKey.revoker
def revoker(self, revoker, **prefs): """ Generate a signature that specifies another key as being valid for revoking this key. :param revoker: The :py:obj:`PGPKey` to specify as a valid revocation key. :type revoker: :py:obj:`PGPKey` :raises: :py:exc:`~pgpy.errors.PGPError` if the key is passphrase-protected and has not been unlocked :raises: :py:exc:`~pgpy.errors.PGPError` if the key is public :returns: :py:obj:`PGPSignature` In addition to the optional keyword arguments accepted by :py:meth:`PGPKey.sign`, the following optional keyword arguments can be used with :py:meth:`PGPKey.revoker`. :keyword sensitive: If ``True``, this sets the sensitive flag on the RevocationKey subpacket. Currently, this has no other effect. :type sensitive: ``bool`` """ hash_algo = prefs.pop('hash', None) sig = PGPSignature.new(SignatureType.DirectlyOnKey, self.key_algorithm, hash_algo, self.fingerprint.keyid) # signature options that only make sense when adding a revocation key sensitive = prefs.pop('sensitive', False) keyclass = RevocationKeyClass.Normal | (RevocationKeyClass.Sensitive if sensitive else 0x00) sig._signature.subpackets.addnew('RevocationKey', hashed=True, algorithm=revoker.key_algorithm, fingerprint=revoker.fingerprint, keyclass=keyclass) # revocation keys should really not be revocable themselves prefs['revocable'] = False return self._sign(self, sig, **prefs)
python
def revoker(self, revoker, **prefs): """ Generate a signature that specifies another key as being valid for revoking this key. :param revoker: The :py:obj:`PGPKey` to specify as a valid revocation key. :type revoker: :py:obj:`PGPKey` :raises: :py:exc:`~pgpy.errors.PGPError` if the key is passphrase-protected and has not been unlocked :raises: :py:exc:`~pgpy.errors.PGPError` if the key is public :returns: :py:obj:`PGPSignature` In addition to the optional keyword arguments accepted by :py:meth:`PGPKey.sign`, the following optional keyword arguments can be used with :py:meth:`PGPKey.revoker`. :keyword sensitive: If ``True``, this sets the sensitive flag on the RevocationKey subpacket. Currently, this has no other effect. :type sensitive: ``bool`` """ hash_algo = prefs.pop('hash', None) sig = PGPSignature.new(SignatureType.DirectlyOnKey, self.key_algorithm, hash_algo, self.fingerprint.keyid) # signature options that only make sense when adding a revocation key sensitive = prefs.pop('sensitive', False) keyclass = RevocationKeyClass.Normal | (RevocationKeyClass.Sensitive if sensitive else 0x00) sig._signature.subpackets.addnew('RevocationKey', hashed=True, algorithm=revoker.key_algorithm, fingerprint=revoker.fingerprint, keyclass=keyclass) # revocation keys should really not be revocable themselves prefs['revocable'] = False return self._sign(self, sig, **prefs)
['def', 'revoker', '(', 'self', ',', 'revoker', ',', '*', '*', 'prefs', ')', ':', 'hash_algo', '=', 'prefs', '.', 'pop', '(', "'hash'", ',', 'None', ')', 'sig', '=', 'PGPSignature', '.', 'new', '(', 'SignatureType', '.', 'DirectlyOnKey', ',', 'self', '.', 'key_algorithm', ',', 'hash_algo', ',', 'self', '.', 'fingerprint', '.', 'keyid', ')', '# signature options that only make sense when adding a revocation key', 'sensitive', '=', 'prefs', '.', 'pop', '(', "'sensitive'", ',', 'False', ')', 'keyclass', '=', 'RevocationKeyClass', '.', 'Normal', '|', '(', 'RevocationKeyClass', '.', 'Sensitive', 'if', 'sensitive', 'else', '0x00', ')', 'sig', '.', '_signature', '.', 'subpackets', '.', 'addnew', '(', "'RevocationKey'", ',', 'hashed', '=', 'True', ',', 'algorithm', '=', 'revoker', '.', 'key_algorithm', ',', 'fingerprint', '=', 'revoker', '.', 'fingerprint', ',', 'keyclass', '=', 'keyclass', ')', '# revocation keys should really not be revocable themselves', 'prefs', '[', "'revocable'", ']', '=', 'False', 'return', 'self', '.', '_sign', '(', 'self', ',', 'sig', ',', '*', '*', 'prefs', ')']
Generate a signature that specifies another key as being valid for revoking this key. :param revoker: The :py:obj:`PGPKey` to specify as a valid revocation key. :type revoker: :py:obj:`PGPKey` :raises: :py:exc:`~pgpy.errors.PGPError` if the key is passphrase-protected and has not been unlocked :raises: :py:exc:`~pgpy.errors.PGPError` if the key is public :returns: :py:obj:`PGPSignature` In addition to the optional keyword arguments accepted by :py:meth:`PGPKey.sign`, the following optional keyword arguments can be used with :py:meth:`PGPKey.revoker`. :keyword sensitive: If ``True``, this sets the sensitive flag on the RevocationKey subpacket. Currently, this has no other effect. :type sensitive: ``bool``
['Generate', 'a', 'signature', 'that', 'specifies', 'another', 'key', 'as', 'being', 'valid', 'for', 'revoking', 'this', 'key', '.']
train
https://github.com/SecurityInnovation/PGPy/blob/f1c3d68e32c334f5aa14c34580925e97f17f4fde/pgpy/pgp.py#L2015-L2048
1,948
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/brocade_xstp_ext.py
brocade_xstp_ext.get_stp_mst_detail_output_msti_port_oper_bpdu_guard
def get_stp_mst_detail_output_msti_port_oper_bpdu_guard(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_stp_mst_detail = ET.Element("get_stp_mst_detail") config = get_stp_mst_detail output = ET.SubElement(get_stp_mst_detail, "output") msti = ET.SubElement(output, "msti") instance_id_key = ET.SubElement(msti, "instance-id") instance_id_key.text = kwargs.pop('instance_id') port = ET.SubElement(msti, "port") oper_bpdu_guard = ET.SubElement(port, "oper-bpdu-guard") oper_bpdu_guard.text = kwargs.pop('oper_bpdu_guard') callback = kwargs.pop('callback', self._callback) return callback(config)
python
def get_stp_mst_detail_output_msti_port_oper_bpdu_guard(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_stp_mst_detail = ET.Element("get_stp_mst_detail") config = get_stp_mst_detail output = ET.SubElement(get_stp_mst_detail, "output") msti = ET.SubElement(output, "msti") instance_id_key = ET.SubElement(msti, "instance-id") instance_id_key.text = kwargs.pop('instance_id') port = ET.SubElement(msti, "port") oper_bpdu_guard = ET.SubElement(port, "oper-bpdu-guard") oper_bpdu_guard.text = kwargs.pop('oper_bpdu_guard') callback = kwargs.pop('callback', self._callback) return callback(config)
['def', 'get_stp_mst_detail_output_msti_port_oper_bpdu_guard', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'config', '=', 'ET', '.', 'Element', '(', '"config"', ')', 'get_stp_mst_detail', '=', 'ET', '.', 'Element', '(', '"get_stp_mst_detail"', ')', 'config', '=', 'get_stp_mst_detail', 'output', '=', 'ET', '.', 'SubElement', '(', 'get_stp_mst_detail', ',', '"output"', ')', 'msti', '=', 'ET', '.', 'SubElement', '(', 'output', ',', '"msti"', ')', 'instance_id_key', '=', 'ET', '.', 'SubElement', '(', 'msti', ',', '"instance-id"', ')', 'instance_id_key', '.', 'text', '=', 'kwargs', '.', 'pop', '(', "'instance_id'", ')', 'port', '=', 'ET', '.', 'SubElement', '(', 'msti', ',', '"port"', ')', 'oper_bpdu_guard', '=', 'ET', '.', 'SubElement', '(', 'port', ',', '"oper-bpdu-guard"', ')', 'oper_bpdu_guard', '.', 'text', '=', 'kwargs', '.', 'pop', '(', "'oper_bpdu_guard'", ')', 'callback', '=', 'kwargs', '.', 'pop', '(', "'callback'", ',', 'self', '.', '_callback', ')', 'return', 'callback', '(', 'config', ')']
Auto Generated Code
['Auto', 'Generated', 'Code']
train
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_xstp_ext.py#L4946-L4961
1,949
apple/turicreate
src/unity/python/turicreate/toolkits/recommender/util.py
_Recommender.evaluate_rmse
def evaluate_rmse(self, dataset, target): """ Evaluate the prediction error for each user-item pair in the given data set. Parameters ---------- dataset : SFrame An SFrame in the same format as the one used during training. target : str The name of the target rating column in `dataset`. Returns ------- out : dict A dictionary with three items: 'rmse_by_user' and 'rmse_by_item', which are SFrames containing the average rmse for each user and item, respectively; and 'rmse_overall', which is a float. Examples -------- >>> import turicreate as tc >>> sf = tc.SFrame('https://static.turi.com/datasets/audioscrobbler') >>> train, test = tc.recommender.util.random_split_by_user(sf) >>> m = tc.recommender.create(train, target='target') >>> m.evaluate_rmse(test, target='target') See Also -------- turicreate.evaluation.rmse """ assert target in dataset.column_names(), \ 'Provided dataset must contain a target column with the same \ name as the target used during training.' y = dataset[target] yhat = self.predict(dataset) user_column = self.user_id item_column = self.item_id assert user_column in dataset.column_names() and \ item_column in dataset.column_names(), \ 'Provided data set must have a column pertaining to user ids and \ item ids, similar to what we had during training.' result = dataset[[user_column, item_column]] result['sq_error'] = (y - yhat) * (y - yhat) rmse_by_user = result.groupby(user_column, {'rmse':_turicreate.aggregate.AVG('sq_error'), 'count':_turicreate.aggregate.COUNT}) rmse_by_user['rmse'] = rmse_by_user['rmse'].apply(lambda x: x**.5) rmse_by_item = result.groupby(item_column, {'rmse':_turicreate.aggregate.AVG('sq_error'), 'count':_turicreate.aggregate.COUNT}) rmse_by_item['rmse'] = rmse_by_item['rmse'].apply(lambda x: x**.5) overall_rmse = result['sq_error'].mean() ** .5 return {'rmse_by_user': rmse_by_user, 'rmse_by_item': rmse_by_item, 'rmse_overall': overall_rmse}
python
def evaluate_rmse(self, dataset, target): """ Evaluate the prediction error for each user-item pair in the given data set. Parameters ---------- dataset : SFrame An SFrame in the same format as the one used during training. target : str The name of the target rating column in `dataset`. Returns ------- out : dict A dictionary with three items: 'rmse_by_user' and 'rmse_by_item', which are SFrames containing the average rmse for each user and item, respectively; and 'rmse_overall', which is a float. Examples -------- >>> import turicreate as tc >>> sf = tc.SFrame('https://static.turi.com/datasets/audioscrobbler') >>> train, test = tc.recommender.util.random_split_by_user(sf) >>> m = tc.recommender.create(train, target='target') >>> m.evaluate_rmse(test, target='target') See Also -------- turicreate.evaluation.rmse """ assert target in dataset.column_names(), \ 'Provided dataset must contain a target column with the same \ name as the target used during training.' y = dataset[target] yhat = self.predict(dataset) user_column = self.user_id item_column = self.item_id assert user_column in dataset.column_names() and \ item_column in dataset.column_names(), \ 'Provided data set must have a column pertaining to user ids and \ item ids, similar to what we had during training.' result = dataset[[user_column, item_column]] result['sq_error'] = (y - yhat) * (y - yhat) rmse_by_user = result.groupby(user_column, {'rmse':_turicreate.aggregate.AVG('sq_error'), 'count':_turicreate.aggregate.COUNT}) rmse_by_user['rmse'] = rmse_by_user['rmse'].apply(lambda x: x**.5) rmse_by_item = result.groupby(item_column, {'rmse':_turicreate.aggregate.AVG('sq_error'), 'count':_turicreate.aggregate.COUNT}) rmse_by_item['rmse'] = rmse_by_item['rmse'].apply(lambda x: x**.5) overall_rmse = result['sq_error'].mean() ** .5 return {'rmse_by_user': rmse_by_user, 'rmse_by_item': rmse_by_item, 'rmse_overall': overall_rmse}
['def', 'evaluate_rmse', '(', 'self', ',', 'dataset', ',', 'target', ')', ':', 'assert', 'target', 'in', 'dataset', '.', 'column_names', '(', ')', ',', "'Provided dataset must contain a target column with the same \\\n name as the target used during training.'", 'y', '=', 'dataset', '[', 'target', ']', 'yhat', '=', 'self', '.', 'predict', '(', 'dataset', ')', 'user_column', '=', 'self', '.', 'user_id', 'item_column', '=', 'self', '.', 'item_id', 'assert', 'user_column', 'in', 'dataset', '.', 'column_names', '(', ')', 'and', 'item_column', 'in', 'dataset', '.', 'column_names', '(', ')', ',', "'Provided data set must have a column pertaining to user ids and \\\n item ids, similar to what we had during training.'", 'result', '=', 'dataset', '[', '[', 'user_column', ',', 'item_column', ']', ']', 'result', '[', "'sq_error'", ']', '=', '(', 'y', '-', 'yhat', ')', '*', '(', 'y', '-', 'yhat', ')', 'rmse_by_user', '=', 'result', '.', 'groupby', '(', 'user_column', ',', '{', "'rmse'", ':', '_turicreate', '.', 'aggregate', '.', 'AVG', '(', "'sq_error'", ')', ',', "'count'", ':', '_turicreate', '.', 'aggregate', '.', 'COUNT', '}', ')', 'rmse_by_user', '[', "'rmse'", ']', '=', 'rmse_by_user', '[', "'rmse'", ']', '.', 'apply', '(', 'lambda', 'x', ':', 'x', '**', '.5', ')', 'rmse_by_item', '=', 'result', '.', 'groupby', '(', 'item_column', ',', '{', "'rmse'", ':', '_turicreate', '.', 'aggregate', '.', 'AVG', '(', "'sq_error'", ')', ',', "'count'", ':', '_turicreate', '.', 'aggregate', '.', 'COUNT', '}', ')', 'rmse_by_item', '[', "'rmse'", ']', '=', 'rmse_by_item', '[', "'rmse'", ']', '.', 'apply', '(', 'lambda', 'x', ':', 'x', '**', '.5', ')', 'overall_rmse', '=', 'result', '[', "'sq_error'", ']', '.', 'mean', '(', ')', '**', '.5', 'return', '{', "'rmse_by_user'", ':', 'rmse_by_user', ',', "'rmse_by_item'", ':', 'rmse_by_item', ',', "'rmse_overall'", ':', 'overall_rmse', '}']
Evaluate the prediction error for each user-item pair in the given data set. Parameters ---------- dataset : SFrame An SFrame in the same format as the one used during training. target : str The name of the target rating column in `dataset`. Returns ------- out : dict A dictionary with three items: 'rmse_by_user' and 'rmse_by_item', which are SFrames containing the average rmse for each user and item, respectively; and 'rmse_overall', which is a float. Examples -------- >>> import turicreate as tc >>> sf = tc.SFrame('https://static.turi.com/datasets/audioscrobbler') >>> train, test = tc.recommender.util.random_split_by_user(sf) >>> m = tc.recommender.create(train, target='target') >>> m.evaluate_rmse(test, target='target') See Also -------- turicreate.evaluation.rmse
['Evaluate', 'the', 'prediction', 'error', 'for', 'each', 'user', '-', 'item', 'pair', 'in', 'the', 'given', 'data', 'set', '.']
train
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/toolkits/recommender/util.py#L1576-L1635
1,950
jonathf/chaospy
chaospy/poly/constructor/identifier.py
identify_core
def identify_core(core): """Identify the polynomial argument.""" for datatype, identifier in { int: _identify_scaler, numpy.int8: _identify_scaler, numpy.int16: _identify_scaler, numpy.int32: _identify_scaler, numpy.int64: _identify_scaler, float: _identify_scaler, numpy.float16: _identify_scaler, numpy.float32: _identify_scaler, numpy.float64: _identify_scaler, chaospy.poly.base.Poly: _identify_poly, dict: _identify_dict, numpy.ndarray: _identify_iterable, list: _identify_iterable, tuple: _identify_iterable, }.items(): if isinstance(core, datatype): return identifier(core) raise TypeError( "Poly arg: 'core' is not a valid type " + repr(core))
python
def identify_core(core): """Identify the polynomial argument.""" for datatype, identifier in { int: _identify_scaler, numpy.int8: _identify_scaler, numpy.int16: _identify_scaler, numpy.int32: _identify_scaler, numpy.int64: _identify_scaler, float: _identify_scaler, numpy.float16: _identify_scaler, numpy.float32: _identify_scaler, numpy.float64: _identify_scaler, chaospy.poly.base.Poly: _identify_poly, dict: _identify_dict, numpy.ndarray: _identify_iterable, list: _identify_iterable, tuple: _identify_iterable, }.items(): if isinstance(core, datatype): return identifier(core) raise TypeError( "Poly arg: 'core' is not a valid type " + repr(core))
['def', 'identify_core', '(', 'core', ')', ':', 'for', 'datatype', ',', 'identifier', 'in', '{', 'int', ':', '_identify_scaler', ',', 'numpy', '.', 'int8', ':', '_identify_scaler', ',', 'numpy', '.', 'int16', ':', '_identify_scaler', ',', 'numpy', '.', 'int32', ':', '_identify_scaler', ',', 'numpy', '.', 'int64', ':', '_identify_scaler', ',', 'float', ':', '_identify_scaler', ',', 'numpy', '.', 'float16', ':', '_identify_scaler', ',', 'numpy', '.', 'float32', ':', '_identify_scaler', ',', 'numpy', '.', 'float64', ':', '_identify_scaler', ',', 'chaospy', '.', 'poly', '.', 'base', '.', 'Poly', ':', '_identify_poly', ',', 'dict', ':', '_identify_dict', ',', 'numpy', '.', 'ndarray', ':', '_identify_iterable', ',', 'list', ':', '_identify_iterable', ',', 'tuple', ':', '_identify_iterable', ',', '}', '.', 'items', '(', ')', ':', 'if', 'isinstance', '(', 'core', ',', 'datatype', ')', ':', 'return', 'identifier', '(', 'core', ')', 'raise', 'TypeError', '(', '"Poly arg: \'core\' is not a valid type "', '+', 'repr', '(', 'core', ')', ')']
Identify the polynomial argument.
['Identify', 'the', 'polynomial', 'argument', '.']
train
https://github.com/jonathf/chaospy/blob/25ecfa7bf5608dc10c0b31d142ded0e3755f5d74/chaospy/poly/constructor/identifier.py#L11-L33
1,951
openstack/proliantutils
proliantutils/ilo/ris.py
RISOperations._create_list_of_array_controllers
def _create_list_of_array_controllers(self): """Creates the list of Array Controller URIs. :raises: IloCommandNotSupportedError if the ArrayControllers doesnt have member "Member". :returns list of ArrayControllers. """ headers, array_uri, array_settings = ( self._get_array_controller_resource()) array_uri_links = [] if ('links' in array_settings and 'Member' in array_settings['links']): array_uri_links = array_settings['links']['Member'] else: msg = ('"links/Member" section in ArrayControllers' ' does not exist') raise exception.IloCommandNotSupportedError(msg) return array_uri_links
python
def _create_list_of_array_controllers(self): """Creates the list of Array Controller URIs. :raises: IloCommandNotSupportedError if the ArrayControllers doesnt have member "Member". :returns list of ArrayControllers. """ headers, array_uri, array_settings = ( self._get_array_controller_resource()) array_uri_links = [] if ('links' in array_settings and 'Member' in array_settings['links']): array_uri_links = array_settings['links']['Member'] else: msg = ('"links/Member" section in ArrayControllers' ' does not exist') raise exception.IloCommandNotSupportedError(msg) return array_uri_links
['def', '_create_list_of_array_controllers', '(', 'self', ')', ':', 'headers', ',', 'array_uri', ',', 'array_settings', '=', '(', 'self', '.', '_get_array_controller_resource', '(', ')', ')', 'array_uri_links', '=', '[', ']', 'if', '(', "'links'", 'in', 'array_settings', 'and', "'Member'", 'in', 'array_settings', '[', "'links'", ']', ')', ':', 'array_uri_links', '=', 'array_settings', '[', "'links'", ']', '[', "'Member'", ']', 'else', ':', 'msg', '=', '(', '\'"links/Member" section in ArrayControllers\'', "' does not exist'", ')', 'raise', 'exception', '.', 'IloCommandNotSupportedError', '(', 'msg', ')', 'return', 'array_uri_links']
Creates the list of Array Controller URIs. :raises: IloCommandNotSupportedError if the ArrayControllers doesnt have member "Member". :returns list of ArrayControllers.
['Creates', 'the', 'list', 'of', 'Array', 'Controller', 'URIs', '.']
train
https://github.com/openstack/proliantutils/blob/86ef3b47b4eca97c221577e3570b0240d6a25f22/proliantutils/ilo/ris.py#L331-L348
1,952
ask/carrot
carrot/backends/pikachu.py
SyncBackend.queue_declare
def queue_declare(self, queue, durable, exclusive, auto_delete, warn_if_exists=False, arguments=None): """Declare a named queue.""" return self.channel.queue_declare(queue=queue, durable=durable, exclusive=exclusive, auto_delete=auto_delete, arguments=arguments)
python
def queue_declare(self, queue, durable, exclusive, auto_delete, warn_if_exists=False, arguments=None): """Declare a named queue.""" return self.channel.queue_declare(queue=queue, durable=durable, exclusive=exclusive, auto_delete=auto_delete, arguments=arguments)
['def', 'queue_declare', '(', 'self', ',', 'queue', ',', 'durable', ',', 'exclusive', ',', 'auto_delete', ',', 'warn_if_exists', '=', 'False', ',', 'arguments', '=', 'None', ')', ':', 'return', 'self', '.', 'channel', '.', 'queue_declare', '(', 'queue', '=', 'queue', ',', 'durable', '=', 'durable', ',', 'exclusive', '=', 'exclusive', ',', 'auto_delete', '=', 'auto_delete', ',', 'arguments', '=', 'arguments', ')']
Declare a named queue.
['Declare', 'a', 'named', 'queue', '.']
train
https://github.com/ask/carrot/blob/5889a25cd2e274642071c9bba39772f4b3e3d9da/carrot/backends/pikachu.py#L87-L95
1,953
mhe/pynrrd
nrrd/parsers.py
parse_number_list
def parse_number_list(x, dtype=None): """Parse NRRD number list from string into (N,) :class:`numpy.ndarray`. See :ref:`user-guide:int list` and :ref:`user-guide:double list` for more information on the format. Parameters ---------- x : :class:`str` String containing NRRD number list dtype : data-type, optional Datatype to use for the resulting Numpy array. Datatype can be :class:`float`, :class:`int` or :obj:`None`. If :obj:`dtype` is :obj:`None`, then it will be automatically determined by checking for fractional numbers. If found, then the string will be converted to :class:`float`, otherwise :class:`int`. Default is to automatically determine datatype. Returns ------- vector : (N,) :class:`numpy.ndarray` Vector that is parsed from the :obj:`x` string """ # Always convert to float and then perform truncation to integer if necessary number_list = np.array([float(x) for x in x.split()]) if dtype is None: number_list_trunc = number_list.astype(int) # If there is no difference between the truncated number list and the number list, then that means that the # number list was all integers and we can just return that if np.all((number_list - number_list_trunc) == 0): number_list = number_list_trunc elif dtype == int: number_list = number_list.astype(int) elif dtype != float: raise NRRDError('dtype should be None for automatic type detection, float or int') return number_list
python
def parse_number_list(x, dtype=None): """Parse NRRD number list from string into (N,) :class:`numpy.ndarray`. See :ref:`user-guide:int list` and :ref:`user-guide:double list` for more information on the format. Parameters ---------- x : :class:`str` String containing NRRD number list dtype : data-type, optional Datatype to use for the resulting Numpy array. Datatype can be :class:`float`, :class:`int` or :obj:`None`. If :obj:`dtype` is :obj:`None`, then it will be automatically determined by checking for fractional numbers. If found, then the string will be converted to :class:`float`, otherwise :class:`int`. Default is to automatically determine datatype. Returns ------- vector : (N,) :class:`numpy.ndarray` Vector that is parsed from the :obj:`x` string """ # Always convert to float and then perform truncation to integer if necessary number_list = np.array([float(x) for x in x.split()]) if dtype is None: number_list_trunc = number_list.astype(int) # If there is no difference between the truncated number list and the number list, then that means that the # number list was all integers and we can just return that if np.all((number_list - number_list_trunc) == 0): number_list = number_list_trunc elif dtype == int: number_list = number_list.astype(int) elif dtype != float: raise NRRDError('dtype should be None for automatic type detection, float or int') return number_list
['def', 'parse_number_list', '(', 'x', ',', 'dtype', '=', 'None', ')', ':', '# Always convert to float and then perform truncation to integer if necessary', 'number_list', '=', 'np', '.', 'array', '(', '[', 'float', '(', 'x', ')', 'for', 'x', 'in', 'x', '.', 'split', '(', ')', ']', ')', 'if', 'dtype', 'is', 'None', ':', 'number_list_trunc', '=', 'number_list', '.', 'astype', '(', 'int', ')', '# If there is no difference between the truncated number list and the number list, then that means that the', '# number list was all integers and we can just return that', 'if', 'np', '.', 'all', '(', '(', 'number_list', '-', 'number_list_trunc', ')', '==', '0', ')', ':', 'number_list', '=', 'number_list_trunc', 'elif', 'dtype', '==', 'int', ':', 'number_list', '=', 'number_list', '.', 'astype', '(', 'int', ')', 'elif', 'dtype', '!=', 'float', ':', 'raise', 'NRRDError', '(', "'dtype should be None for automatic type detection, float or int'", ')', 'return', 'number_list']
Parse NRRD number list from string into (N,) :class:`numpy.ndarray`. See :ref:`user-guide:int list` and :ref:`user-guide:double list` for more information on the format. Parameters ---------- x : :class:`str` String containing NRRD number list dtype : data-type, optional Datatype to use for the resulting Numpy array. Datatype can be :class:`float`, :class:`int` or :obj:`None`. If :obj:`dtype` is :obj:`None`, then it will be automatically determined by checking for fractional numbers. If found, then the string will be converted to :class:`float`, otherwise :class:`int`. Default is to automatically determine datatype. Returns ------- vector : (N,) :class:`numpy.ndarray` Vector that is parsed from the :obj:`x` string
['Parse', 'NRRD', 'number', 'list', 'from', 'string', 'into', '(', 'N', ')', ':', 'class', ':', 'numpy', '.', 'ndarray', '.']
train
https://github.com/mhe/pynrrd/blob/96dd875b302031ea27e2d3aaa611dc6f2dfc7979/nrrd/parsers.py#L168-L204
1,954
althonos/fs.sshfs
fs/sshfs/sshfs.py
SSHFS._exec_command
def _exec_command(self, cmd): """Run a command on the remote SSH server. Returns: bytes: the output of the command, if it didn't fail None: if the error pipe of the command was not empty """ _, out, err = self._client.exec_command(cmd, timeout=self._timeout) return out.read().strip() if not err.read().strip() else None
python
def _exec_command(self, cmd): """Run a command on the remote SSH server. Returns: bytes: the output of the command, if it didn't fail None: if the error pipe of the command was not empty """ _, out, err = self._client.exec_command(cmd, timeout=self._timeout) return out.read().strip() if not err.read().strip() else None
['def', '_exec_command', '(', 'self', ',', 'cmd', ')', ':', '_', ',', 'out', ',', 'err', '=', 'self', '.', '_client', '.', 'exec_command', '(', 'cmd', ',', 'timeout', '=', 'self', '.', '_timeout', ')', 'return', 'out', '.', 'read', '(', ')', '.', 'strip', '(', ')', 'if', 'not', 'err', '.', 'read', '(', ')', '.', 'strip', '(', ')', 'else', 'None']
Run a command on the remote SSH server. Returns: bytes: the output of the command, if it didn't fail None: if the error pipe of the command was not empty
['Run', 'a', 'command', 'on', 'the', 'remote', 'SSH', 'server', '.']
train
https://github.com/althonos/fs.sshfs/blob/773cbdb6bceac5e00cf5785b6ffad6dc4574d29c/fs/sshfs/sshfs.py#L311-L319
1,955
Azure/blobxfer
blobxfer/operations/md5.py
compute_md5_for_file_asbase64
def compute_md5_for_file_asbase64( filename, pagealign=False, start=None, end=None, blocksize=65536): # type: (str, bool, int, int, int) -> str """Compute MD5 hash for file and encode as Base64 :param str filename: file to compute MD5 for :param bool pagealign: page align data :param int start: file start offset :param int end: file end offset :param int blocksize: block size :rtype: str :return: MD5 for file encoded as Base64 """ hasher = blobxfer.util.new_md5_hasher() with open(filename, 'rb') as filedesc: if start is not None: filedesc.seek(start) curr = start else: curr = 0 while True: if end is not None and curr + blocksize > end: blocksize = end - curr if blocksize == 0: break buf = filedesc.read(blocksize) if not buf: break buflen = len(buf) if pagealign and buflen < blocksize: aligned = blobxfer.util.page_align_content_length(buflen) if aligned != buflen: buf = buf.ljust(aligned, b'\0') hasher.update(buf) curr += blocksize return blobxfer.util.base64_encode_as_string(hasher.digest())
python
def compute_md5_for_file_asbase64( filename, pagealign=False, start=None, end=None, blocksize=65536): # type: (str, bool, int, int, int) -> str """Compute MD5 hash for file and encode as Base64 :param str filename: file to compute MD5 for :param bool pagealign: page align data :param int start: file start offset :param int end: file end offset :param int blocksize: block size :rtype: str :return: MD5 for file encoded as Base64 """ hasher = blobxfer.util.new_md5_hasher() with open(filename, 'rb') as filedesc: if start is not None: filedesc.seek(start) curr = start else: curr = 0 while True: if end is not None and curr + blocksize > end: blocksize = end - curr if blocksize == 0: break buf = filedesc.read(blocksize) if not buf: break buflen = len(buf) if pagealign and buflen < blocksize: aligned = blobxfer.util.page_align_content_length(buflen) if aligned != buflen: buf = buf.ljust(aligned, b'\0') hasher.update(buf) curr += blocksize return blobxfer.util.base64_encode_as_string(hasher.digest())
['def', 'compute_md5_for_file_asbase64', '(', 'filename', ',', 'pagealign', '=', 'False', ',', 'start', '=', 'None', ',', 'end', '=', 'None', ',', 'blocksize', '=', '65536', ')', ':', '# type: (str, bool, int, int, int) -> str', 'hasher', '=', 'blobxfer', '.', 'util', '.', 'new_md5_hasher', '(', ')', 'with', 'open', '(', 'filename', ',', "'rb'", ')', 'as', 'filedesc', ':', 'if', 'start', 'is', 'not', 'None', ':', 'filedesc', '.', 'seek', '(', 'start', ')', 'curr', '=', 'start', 'else', ':', 'curr', '=', '0', 'while', 'True', ':', 'if', 'end', 'is', 'not', 'None', 'and', 'curr', '+', 'blocksize', '>', 'end', ':', 'blocksize', '=', 'end', '-', 'curr', 'if', 'blocksize', '==', '0', ':', 'break', 'buf', '=', 'filedesc', '.', 'read', '(', 'blocksize', ')', 'if', 'not', 'buf', ':', 'break', 'buflen', '=', 'len', '(', 'buf', ')', 'if', 'pagealign', 'and', 'buflen', '<', 'blocksize', ':', 'aligned', '=', 'blobxfer', '.', 'util', '.', 'page_align_content_length', '(', 'buflen', ')', 'if', 'aligned', '!=', 'buflen', ':', 'buf', '=', 'buf', '.', 'ljust', '(', 'aligned', ',', "b'\\0'", ')', 'hasher', '.', 'update', '(', 'buf', ')', 'curr', '+=', 'blocksize', 'return', 'blobxfer', '.', 'util', '.', 'base64_encode_as_string', '(', 'hasher', '.', 'digest', '(', ')', ')']
Compute MD5 hash for file and encode as Base64 :param str filename: file to compute MD5 for :param bool pagealign: page align data :param int start: file start offset :param int end: file end offset :param int blocksize: block size :rtype: str :return: MD5 for file encoded as Base64
['Compute', 'MD5', 'hash', 'for', 'file', 'and', 'encode', 'as', 'Base64', ':', 'param', 'str', 'filename', ':', 'file', 'to', 'compute', 'MD5', 'for', ':', 'param', 'bool', 'pagealign', ':', 'page', 'align', 'data', ':', 'param', 'int', 'start', ':', 'file', 'start', 'offset', ':', 'param', 'int', 'end', ':', 'file', 'end', 'offset', ':', 'param', 'int', 'blocksize', ':', 'block', 'size', ':', 'rtype', ':', 'str', ':', 'return', ':', 'MD5', 'for', 'file', 'encoded', 'as', 'Base64']
train
https://github.com/Azure/blobxfer/blob/3eccbe7530cc6a20ab2d30f9e034b6f021817f34/blobxfer/operations/md5.py#L50-L84
1,956
grampajoe/pymosh
pymosh/riff.py
RiffIndexList.find_all
def find_all(self, header, list_type=None): """Find all direct children with header and optional list type.""" found = [] for chunk in self: if chunk.header == header and (not list_type or (header in list_headers and chunk.type == list_type)): found.append(chunk) return found
python
def find_all(self, header, list_type=None): """Find all direct children with header and optional list type.""" found = [] for chunk in self: if chunk.header == header and (not list_type or (header in list_headers and chunk.type == list_type)): found.append(chunk) return found
['def', 'find_all', '(', 'self', ',', 'header', ',', 'list_type', '=', 'None', ')', ':', 'found', '=', '[', ']', 'for', 'chunk', 'in', 'self', ':', 'if', 'chunk', '.', 'header', '==', 'header', 'and', '(', 'not', 'list_type', 'or', '(', 'header', 'in', 'list_headers', 'and', 'chunk', '.', 'type', '==', 'list_type', ')', ')', ':', 'found', '.', 'append', '(', 'chunk', ')', 'return', 'found']
Find all direct children with header and optional list type.
['Find', 'all', 'direct', 'children', 'with', 'header', 'and', 'optional', 'list', 'type', '.']
train
https://github.com/grampajoe/pymosh/blob/2a17a0271fda939528edc31572940d3b676f8a47/pymosh/riff.py#L117-L124
1,957
hustlzp/permission
permission/permission.py
Rule.run
def run(self): """Run self.rules_list. Return True if one rule channel has been passed. Otherwise return False and the deny() method of the last failed rule. """ failed_result = None for rule in self.rules_list: for check, deny in rule: if not check(): failed_result = (False, deny) break else: return (True, None) return failed_result
python
def run(self): """Run self.rules_list. Return True if one rule channel has been passed. Otherwise return False and the deny() method of the last failed rule. """ failed_result = None for rule in self.rules_list: for check, deny in rule: if not check(): failed_result = (False, deny) break else: return (True, None) return failed_result
['def', 'run', '(', 'self', ')', ':', 'failed_result', '=', 'None', 'for', 'rule', 'in', 'self', '.', 'rules_list', ':', 'for', 'check', ',', 'deny', 'in', 'rule', ':', 'if', 'not', 'check', '(', ')', ':', 'failed_result', '=', '(', 'False', ',', 'deny', ')', 'break', 'else', ':', 'return', '(', 'True', ',', 'None', ')', 'return', 'failed_result']
Run self.rules_list. Return True if one rule channel has been passed. Otherwise return False and the deny() method of the last failed rule.
['Run', 'self', '.', 'rules_list', '.']
train
https://github.com/hustlzp/permission/blob/302a02a775c4cd53f7588ff9c4ce1ca49a0d40bf/permission/permission.py#L98-L112
1,958
StanfordVL/robosuite
robosuite/devices/spacemouse.py
SpaceMouse.run
def run(self): """Listener method that keeps pulling new messages.""" t_last_click = -1 while True: d = self.device.read(13) if d is not None and self._enabled: if d[0] == 1: ## readings from 6-DoF sensor self.y = convert(d[1], d[2]) self.x = convert(d[3], d[4]) self.z = convert(d[5], d[6]) * -1.0 self.roll = convert(d[7], d[8]) self.pitch = convert(d[9], d[10]) self.yaw = convert(d[11], d[12]) self._control = [ self.x, self.y, self.z, self.roll, self.pitch, self.yaw, ] elif d[0] == 3: ## readings from the side buttons # press left button if d[1] == 1: t_click = time.time() elapsed_time = t_click - t_last_click t_last_click = t_click self.single_click_and_hold = True # release left button if d[1] == 0: self.single_click_and_hold = False # right button is for reset if d[1] == 2: self._reset_state = 1 self._enabled = False self._reset_internal_state()
python
def run(self): """Listener method that keeps pulling new messages.""" t_last_click = -1 while True: d = self.device.read(13) if d is not None and self._enabled: if d[0] == 1: ## readings from 6-DoF sensor self.y = convert(d[1], d[2]) self.x = convert(d[3], d[4]) self.z = convert(d[5], d[6]) * -1.0 self.roll = convert(d[7], d[8]) self.pitch = convert(d[9], d[10]) self.yaw = convert(d[11], d[12]) self._control = [ self.x, self.y, self.z, self.roll, self.pitch, self.yaw, ] elif d[0] == 3: ## readings from the side buttons # press left button if d[1] == 1: t_click = time.time() elapsed_time = t_click - t_last_click t_last_click = t_click self.single_click_and_hold = True # release left button if d[1] == 0: self.single_click_and_hold = False # right button is for reset if d[1] == 2: self._reset_state = 1 self._enabled = False self._reset_internal_state()
['def', 'run', '(', 'self', ')', ':', 't_last_click', '=', '-', '1', 'while', 'True', ':', 'd', '=', 'self', '.', 'device', '.', 'read', '(', '13', ')', 'if', 'd', 'is', 'not', 'None', 'and', 'self', '.', '_enabled', ':', 'if', 'd', '[', '0', ']', '==', '1', ':', '## readings from 6-DoF sensor', 'self', '.', 'y', '=', 'convert', '(', 'd', '[', '1', ']', ',', 'd', '[', '2', ']', ')', 'self', '.', 'x', '=', 'convert', '(', 'd', '[', '3', ']', ',', 'd', '[', '4', ']', ')', 'self', '.', 'z', '=', 'convert', '(', 'd', '[', '5', ']', ',', 'd', '[', '6', ']', ')', '*', '-', '1.0', 'self', '.', 'roll', '=', 'convert', '(', 'd', '[', '7', ']', ',', 'd', '[', '8', ']', ')', 'self', '.', 'pitch', '=', 'convert', '(', 'd', '[', '9', ']', ',', 'd', '[', '10', ']', ')', 'self', '.', 'yaw', '=', 'convert', '(', 'd', '[', '11', ']', ',', 'd', '[', '12', ']', ')', 'self', '.', '_control', '=', '[', 'self', '.', 'x', ',', 'self', '.', 'y', ',', 'self', '.', 'z', ',', 'self', '.', 'roll', ',', 'self', '.', 'pitch', ',', 'self', '.', 'yaw', ',', ']', 'elif', 'd', '[', '0', ']', '==', '3', ':', '## readings from the side buttons', '# press left button', 'if', 'd', '[', '1', ']', '==', '1', ':', 't_click', '=', 'time', '.', 'time', '(', ')', 'elapsed_time', '=', 't_click', '-', 't_last_click', 't_last_click', '=', 't_click', 'self', '.', 'single_click_and_hold', '=', 'True', '# release left button', 'if', 'd', '[', '1', ']', '==', '0', ':', 'self', '.', 'single_click_and_hold', '=', 'False', '# right button is for reset', 'if', 'd', '[', '1', ']', '==', '2', ':', 'self', '.', '_reset_state', '=', '1', 'self', '.', '_enabled', '=', 'False', 'self', '.', '_reset_internal_state', '(', ')']
Listener method that keeps pulling new messages.
['Listener', 'method', 'that', 'keeps', 'pulling', 'new', 'messages', '.']
train
https://github.com/StanfordVL/robosuite/blob/65cd16810e2ed647e3ec88746af3412065b7f278/robosuite/devices/spacemouse.py#L155-L199
1,959
SKA-ScienceDataProcessor/integration-prototype
sip/execution_control/docker_api/sip_docker_swarm/docker_swarm_client.py
DockerSwarmClient._parse_resources
def _parse_resources(resource_values: dict, resource_name: str) -> dict: """Parse resources key. Args: resource_values (dict): resource configurations values resource_name (string): Resource name Returns: dict, resources specification """ # Initialising empty dictionary resources = {} for r_values in resource_values[resource_name]: if 'limits' in r_values: for r_key, r_value in \ resource_values[resource_name][r_values].items(): if 'cpu' in r_key: cpu_value = float(r_value) * 10 ** 9 cpu_key = r_key[:3] + '_limit' resources[cpu_key] = int(cpu_value) if 'mem' in r_key: mem_value = re.sub('M', '', r_value) mem_key = r_key[:3] + '_limit' resources[mem_key] = int(mem_value) * 1048576 resources_spec = docker.types.Resources(**resources) return resources_spec
python
def _parse_resources(resource_values: dict, resource_name: str) -> dict: """Parse resources key. Args: resource_values (dict): resource configurations values resource_name (string): Resource name Returns: dict, resources specification """ # Initialising empty dictionary resources = {} for r_values in resource_values[resource_name]: if 'limits' in r_values: for r_key, r_value in \ resource_values[resource_name][r_values].items(): if 'cpu' in r_key: cpu_value = float(r_value) * 10 ** 9 cpu_key = r_key[:3] + '_limit' resources[cpu_key] = int(cpu_value) if 'mem' in r_key: mem_value = re.sub('M', '', r_value) mem_key = r_key[:3] + '_limit' resources[mem_key] = int(mem_value) * 1048576 resources_spec = docker.types.Resources(**resources) return resources_spec
['def', '_parse_resources', '(', 'resource_values', ':', 'dict', ',', 'resource_name', ':', 'str', ')', '->', 'dict', ':', '# Initialising empty dictionary', 'resources', '=', '{', '}', 'for', 'r_values', 'in', 'resource_values', '[', 'resource_name', ']', ':', 'if', "'limits'", 'in', 'r_values', ':', 'for', 'r_key', ',', 'r_value', 'in', 'resource_values', '[', 'resource_name', ']', '[', 'r_values', ']', '.', 'items', '(', ')', ':', 'if', "'cpu'", 'in', 'r_key', ':', 'cpu_value', '=', 'float', '(', 'r_value', ')', '*', '10', '**', '9', 'cpu_key', '=', 'r_key', '[', ':', '3', ']', '+', "'_limit'", 'resources', '[', 'cpu_key', ']', '=', 'int', '(', 'cpu_value', ')', 'if', "'mem'", 'in', 'r_key', ':', 'mem_value', '=', 're', '.', 'sub', '(', "'M'", ',', "''", ',', 'r_value', ')', 'mem_key', '=', 'r_key', '[', ':', '3', ']', '+', "'_limit'", 'resources', '[', 'mem_key', ']', '=', 'int', '(', 'mem_value', ')', '*', '1048576', 'resources_spec', '=', 'docker', '.', 'types', '.', 'Resources', '(', '*', '*', 'resources', ')', 'return', 'resources_spec']
Parse resources key. Args: resource_values (dict): resource configurations values resource_name (string): Resource name Returns: dict, resources specification
['Parse', 'resources', 'key', '.']
train
https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/execution_control/docker_api/sip_docker_swarm/docker_swarm_client.py#L617-L645
1,960
sibirrer/lenstronomy
lenstronomy/Util/util.py
get_axes
def get_axes(x, y): """ computes the axis x and y of a given 2d grid :param x: :param y: :return: """ n=int(np.sqrt(len(x))) if n**2 != len(x): raise ValueError("lenght of input array given as %s is not square of integer number!" % (len(x))) x_image = x.reshape(n,n) y_image = y.reshape(n,n) x_axes = x_image[0,:] y_axes = y_image[:,0] return x_axes, y_axes
python
def get_axes(x, y): """ computes the axis x and y of a given 2d grid :param x: :param y: :return: """ n=int(np.sqrt(len(x))) if n**2 != len(x): raise ValueError("lenght of input array given as %s is not square of integer number!" % (len(x))) x_image = x.reshape(n,n) y_image = y.reshape(n,n) x_axes = x_image[0,:] y_axes = y_image[:,0] return x_axes, y_axes
['def', 'get_axes', '(', 'x', ',', 'y', ')', ':', 'n', '=', 'int', '(', 'np', '.', 'sqrt', '(', 'len', '(', 'x', ')', ')', ')', 'if', 'n', '**', '2', '!=', 'len', '(', 'x', ')', ':', 'raise', 'ValueError', '(', '"lenght of input array given as %s is not square of integer number!"', '%', '(', 'len', '(', 'x', ')', ')', ')', 'x_image', '=', 'x', '.', 'reshape', '(', 'n', ',', 'n', ')', 'y_image', '=', 'y', '.', 'reshape', '(', 'n', ',', 'n', ')', 'x_axes', '=', 'x_image', '[', '0', ',', ':', ']', 'y_axes', '=', 'y_image', '[', ':', ',', '0', ']', 'return', 'x_axes', ',', 'y_axes']
computes the axis x and y of a given 2d grid :param x: :param y: :return:
['computes', 'the', 'axis', 'x', 'and', 'y', 'of', 'a', 'given', '2d', 'grid', ':', 'param', 'x', ':', ':', 'param', 'y', ':', ':', 'return', ':']
train
https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/Util/util.py#L227-L241
1,961
inveniosoftware/invenio-github
invenio_github/handlers.py
disconnect
def disconnect(remote): """Disconnect callback handler for GitHub.""" # User must be authenticated if not current_user.is_authenticated: return current_app.login_manager.unauthorized() external_method = 'github' external_ids = [i.id for i in current_user.external_identifiers if i.method == external_method] if external_ids: oauth_unlink_external_id(dict(id=external_ids[0], method=external_method)) user_id = int(current_user.get_id()) token = RemoteToken.get(user_id, remote.consumer_key) if token: extra_data = token.remote_account.extra_data # Delete the token that we issued for GitHub to deliver webhooks webhook_token_id = extra_data.get('tokens', {}).get('webhook') ProviderToken.query.filter_by(id=webhook_token_id).delete() # Disable GitHub webhooks from our side db_repos = Repository.query.filter_by(user_id=user_id).all() # Keep repositories with hooks to pass to the celery task later on repos_with_hooks = [(r.github_id, r.hook) for r in db_repos if r.hook] for repo in db_repos: try: Repository.disable(user_id=user_id, github_id=repo.github_id, name=repo.name) except NoResultFound: # If the repository doesn't exist, no action is necessary pass db.session.commit() # Send Celery task for webhooks removal and token revocation disconnect_github.delay(token.access_token, repos_with_hooks) # Delete the RemoteAccount (along with the associated RemoteToken) token.remote_account.delete() return redirect(url_for('invenio_oauthclient_settings.index'))
python
def disconnect(remote): """Disconnect callback handler for GitHub.""" # User must be authenticated if not current_user.is_authenticated: return current_app.login_manager.unauthorized() external_method = 'github' external_ids = [i.id for i in current_user.external_identifiers if i.method == external_method] if external_ids: oauth_unlink_external_id(dict(id=external_ids[0], method=external_method)) user_id = int(current_user.get_id()) token = RemoteToken.get(user_id, remote.consumer_key) if token: extra_data = token.remote_account.extra_data # Delete the token that we issued for GitHub to deliver webhooks webhook_token_id = extra_data.get('tokens', {}).get('webhook') ProviderToken.query.filter_by(id=webhook_token_id).delete() # Disable GitHub webhooks from our side db_repos = Repository.query.filter_by(user_id=user_id).all() # Keep repositories with hooks to pass to the celery task later on repos_with_hooks = [(r.github_id, r.hook) for r in db_repos if r.hook] for repo in db_repos: try: Repository.disable(user_id=user_id, github_id=repo.github_id, name=repo.name) except NoResultFound: # If the repository doesn't exist, no action is necessary pass db.session.commit() # Send Celery task for webhooks removal and token revocation disconnect_github.delay(token.access_token, repos_with_hooks) # Delete the RemoteAccount (along with the associated RemoteToken) token.remote_account.delete() return redirect(url_for('invenio_oauthclient_settings.index'))
['def', 'disconnect', '(', 'remote', ')', ':', '# User must be authenticated', 'if', 'not', 'current_user', '.', 'is_authenticated', ':', 'return', 'current_app', '.', 'login_manager', '.', 'unauthorized', '(', ')', 'external_method', '=', "'github'", 'external_ids', '=', '[', 'i', '.', 'id', 'for', 'i', 'in', 'current_user', '.', 'external_identifiers', 'if', 'i', '.', 'method', '==', 'external_method', ']', 'if', 'external_ids', ':', 'oauth_unlink_external_id', '(', 'dict', '(', 'id', '=', 'external_ids', '[', '0', ']', ',', 'method', '=', 'external_method', ')', ')', 'user_id', '=', 'int', '(', 'current_user', '.', 'get_id', '(', ')', ')', 'token', '=', 'RemoteToken', '.', 'get', '(', 'user_id', ',', 'remote', '.', 'consumer_key', ')', 'if', 'token', ':', 'extra_data', '=', 'token', '.', 'remote_account', '.', 'extra_data', '# Delete the token that we issued for GitHub to deliver webhooks', 'webhook_token_id', '=', 'extra_data', '.', 'get', '(', "'tokens'", ',', '{', '}', ')', '.', 'get', '(', "'webhook'", ')', 'ProviderToken', '.', 'query', '.', 'filter_by', '(', 'id', '=', 'webhook_token_id', ')', '.', 'delete', '(', ')', '# Disable GitHub webhooks from our side', 'db_repos', '=', 'Repository', '.', 'query', '.', 'filter_by', '(', 'user_id', '=', 'user_id', ')', '.', 'all', '(', ')', '# Keep repositories with hooks to pass to the celery task later on', 'repos_with_hooks', '=', '[', '(', 'r', '.', 'github_id', ',', 'r', '.', 'hook', ')', 'for', 'r', 'in', 'db_repos', 'if', 'r', '.', 'hook', ']', 'for', 'repo', 'in', 'db_repos', ':', 'try', ':', 'Repository', '.', 'disable', '(', 'user_id', '=', 'user_id', ',', 'github_id', '=', 'repo', '.', 'github_id', ',', 'name', '=', 'repo', '.', 'name', ')', 'except', 'NoResultFound', ':', "# If the repository doesn't exist, no action is necessary", 'pass', 'db', '.', 'session', '.', 'commit', '(', ')', '# Send Celery task for webhooks removal and token revocation', 'disconnect_github', '.', 'delay', '(', 'token', '.', 'access_token', ',', 'repos_with_hooks', ')', '# Delete the RemoteAccount (along with the associated RemoteToken)', 'token', '.', 'remote_account', '.', 'delete', '(', ')', 'return', 'redirect', '(', 'url_for', '(', "'invenio_oauthclient_settings.index'", ')', ')']
Disconnect callback handler for GitHub.
['Disconnect', 'callback', 'handler', 'for', 'GitHub', '.']
train
https://github.com/inveniosoftware/invenio-github/blob/ec42fd6a06079310dcbe2c46d9fd79d5197bbe26/invenio_github/handlers.py#L62-L103
1,962
ContextLab/quail
quail/fingerprint.py
stick_perm
def stick_perm(presenter, egg, dist_dict, strategy): """Computes weights for one reordering using stick-breaking method""" # seed RNG np.random.seed() # unpack egg egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg) # reorder regg = order_stick(presenter, egg, dist_dict, strategy) # unpack regg regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg) # # get the order regg_pres = list(regg_pres) egg_pres = list(egg_pres) idx = [egg_pres.index(r) for r in regg_pres] # compute weights weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres), list(regg_features), dist_dict) # save out the order orders = idx return weights, orders
python
def stick_perm(presenter, egg, dist_dict, strategy): """Computes weights for one reordering using stick-breaking method""" # seed RNG np.random.seed() # unpack egg egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg) # reorder regg = order_stick(presenter, egg, dist_dict, strategy) # unpack regg regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg) # # get the order regg_pres = list(regg_pres) egg_pres = list(egg_pres) idx = [egg_pres.index(r) for r in regg_pres] # compute weights weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres), list(regg_features), dist_dict) # save out the order orders = idx return weights, orders
['def', 'stick_perm', '(', 'presenter', ',', 'egg', ',', 'dist_dict', ',', 'strategy', ')', ':', '# seed RNG', 'np', '.', 'random', '.', 'seed', '(', ')', '# unpack egg', 'egg_pres', ',', 'egg_rec', ',', 'egg_features', ',', 'egg_dist_funcs', '=', 'parse_egg', '(', 'egg', ')', '# reorder', 'regg', '=', 'order_stick', '(', 'presenter', ',', 'egg', ',', 'dist_dict', ',', 'strategy', ')', '# unpack regg', 'regg_pres', ',', 'regg_rec', ',', 'regg_features', ',', 'regg_dist_funcs', '=', 'parse_egg', '(', 'regg', ')', '# # get the order', 'regg_pres', '=', 'list', '(', 'regg_pres', ')', 'egg_pres', '=', 'list', '(', 'egg_pres', ')', 'idx', '=', '[', 'egg_pres', '.', 'index', '(', 'r', ')', 'for', 'r', 'in', 'regg_pres', ']', '# compute weights', 'weights', '=', 'compute_feature_weights_dict', '(', 'list', '(', 'regg_pres', ')', ',', 'list', '(', 'regg_pres', ')', ',', 'list', '(', 'regg_features', ')', ',', 'dist_dict', ')', '# save out the order', 'orders', '=', 'idx', 'return', 'weights', ',', 'orders']
Computes weights for one reordering using stick-breaking method
['Computes', 'weights', 'for', 'one', 'reordering', 'using', 'stick', '-', 'breaking', 'method']
train
https://github.com/ContextLab/quail/blob/71dd53c792dd915dc84879d8237e3582dd68b7a4/quail/fingerprint.py#L577-L603
1,963
uw-it-aca/uw-restclients-pws
uw_pws/__init__.py
PWS.get_person_by_prox_rfid
def get_person_by_prox_rfid(self, prox_rfid): """ Returns a restclients.Person object for the given rfid. If the rfid isn't found, or if there is an error communicating with the IdCard WS, a DataFailureException will be thrown. """ if not self.valid_prox_rfid(prox_rfid): raise InvalidProxRFID(prox_rfid) url = "{}.json?{}".format( CARD_PREFIX, urlencode({"prox_rfid": prox_rfid})) response = DAO.getURL(url, {"Accept": "application/json"}) if response.status != 200: raise DataFailureException(url, response.status, response.data) data = json.loads(response.data) if not len(data["Cards"]): raise DataFailureException(url, 404, "No card found") regid = data["Cards"][0]["RegID"] return self.get_person_by_regid(regid)
python
def get_person_by_prox_rfid(self, prox_rfid): """ Returns a restclients.Person object for the given rfid. If the rfid isn't found, or if there is an error communicating with the IdCard WS, a DataFailureException will be thrown. """ if not self.valid_prox_rfid(prox_rfid): raise InvalidProxRFID(prox_rfid) url = "{}.json?{}".format( CARD_PREFIX, urlencode({"prox_rfid": prox_rfid})) response = DAO.getURL(url, {"Accept": "application/json"}) if response.status != 200: raise DataFailureException(url, response.status, response.data) data = json.loads(response.data) if not len(data["Cards"]): raise DataFailureException(url, 404, "No card found") regid = data["Cards"][0]["RegID"] return self.get_person_by_regid(regid)
['def', 'get_person_by_prox_rfid', '(', 'self', ',', 'prox_rfid', ')', ':', 'if', 'not', 'self', '.', 'valid_prox_rfid', '(', 'prox_rfid', ')', ':', 'raise', 'InvalidProxRFID', '(', 'prox_rfid', ')', 'url', '=', '"{}.json?{}"', '.', 'format', '(', 'CARD_PREFIX', ',', 'urlencode', '(', '{', '"prox_rfid"', ':', 'prox_rfid', '}', ')', ')', 'response', '=', 'DAO', '.', 'getURL', '(', 'url', ',', '{', '"Accept"', ':', '"application/json"', '}', ')', 'if', 'response', '.', 'status', '!=', '200', ':', 'raise', 'DataFailureException', '(', 'url', ',', 'response', '.', 'status', ',', 'response', '.', 'data', ')', 'data', '=', 'json', '.', 'loads', '(', 'response', '.', 'data', ')', 'if', 'not', 'len', '(', 'data', '[', '"Cards"', ']', ')', ':', 'raise', 'DataFailureException', '(', 'url', ',', '404', ',', '"No card found"', ')', 'regid', '=', 'data', '[', '"Cards"', ']', '[', '0', ']', '[', '"RegID"', ']', 'return', 'self', '.', 'get_person_by_regid', '(', 'regid', ')']
Returns a restclients.Person object for the given rfid. If the rfid isn't found, or if there is an error communicating with the IdCard WS, a DataFailureException will be thrown.
['Returns', 'a', 'restclients', '.', 'Person', 'object', 'for', 'the', 'given', 'rfid', '.', 'If', 'the', 'rfid', 'isn', 't', 'found', 'or', 'if', 'there', 'is', 'an', 'error', 'communicating', 'with', 'the', 'IdCard', 'WS', 'a', 'DataFailureException', 'will', 'be', 'thrown', '.']
train
https://github.com/uw-it-aca/uw-restclients-pws/blob/758d94b42a01762738140c5f984d05f389325b7a/uw_pws/__init__.py#L120-L141
1,964
Lagg/steamodd
steam/items.py
item.equipped
def equipped(self): """ Returns a dict of classes that have the item equipped and in what slot """ equipped = self._item.get("equipped", []) # WORKAROUND: 0 is probably an off-by-one error # WORKAROUND: 65535 actually serves a purpose (according to Valve) return dict([(eq["class"], eq["slot"]) for eq in equipped if eq["class"] != 0 and eq["slot"] != 65535])
python
def equipped(self): """ Returns a dict of classes that have the item equipped and in what slot """ equipped = self._item.get("equipped", []) # WORKAROUND: 0 is probably an off-by-one error # WORKAROUND: 65535 actually serves a purpose (according to Valve) return dict([(eq["class"], eq["slot"]) for eq in equipped if eq["class"] != 0 and eq["slot"] != 65535])
['def', 'equipped', '(', 'self', ')', ':', 'equipped', '=', 'self', '.', '_item', '.', 'get', '(', '"equipped"', ',', '[', ']', ')', '# WORKAROUND: 0 is probably an off-by-one error', '# WORKAROUND: 65535 actually serves a purpose (according to Valve)', 'return', 'dict', '(', '[', '(', 'eq', '[', '"class"', ']', ',', 'eq', '[', '"slot"', ']', ')', 'for', 'eq', 'in', 'equipped', 'if', 'eq', '[', '"class"', ']', '!=', '0', 'and', 'eq', '[', '"slot"', ']', '!=', '65535', ']', ')']
Returns a dict of classes that have the item equipped and in what slot
['Returns', 'a', 'dict', 'of', 'classes', 'that', 'have', 'the', 'item', 'equipped', 'and', 'in', 'what', 'slot']
train
https://github.com/Lagg/steamodd/blob/2e9ced4e7a6dbe3e09d5a648450bafc12b937b95/steam/items.py#L306-L312
1,965
bitesofcode/projexui
projexui/widgets/xtreewidget/xtreewidget.py
XTreeWidget.mouseDoubleClickEvent
def mouseDoubleClickEvent(self, event): """ Overloads when a mouse press occurs. If in editable mode, and the click occurs on a selected index, then the editor will be created and no selection change will occur. :param event | <QMousePressEvent> """ item = self.itemAt(event.pos()) column = self.columnAt(event.pos().x()) mid_button = event.button() == QtCore.Qt.MidButton ctrl_click = event.button() == QtCore.Qt.LeftButton and \ event.modifiers() == QtCore.Qt.ControlModifier if mid_button or ctrl_click: self.itemMiddleDoubleClicked.emit(item, column) elif event.button() == QtCore.Qt.RightButton: self.itemRightDoubleClicked.emit(item, column) else: super(XTreeWidget, self).mouseDoubleClickEvent(event)
python
def mouseDoubleClickEvent(self, event): """ Overloads when a mouse press occurs. If in editable mode, and the click occurs on a selected index, then the editor will be created and no selection change will occur. :param event | <QMousePressEvent> """ item = self.itemAt(event.pos()) column = self.columnAt(event.pos().x()) mid_button = event.button() == QtCore.Qt.MidButton ctrl_click = event.button() == QtCore.Qt.LeftButton and \ event.modifiers() == QtCore.Qt.ControlModifier if mid_button or ctrl_click: self.itemMiddleDoubleClicked.emit(item, column) elif event.button() == QtCore.Qt.RightButton: self.itemRightDoubleClicked.emit(item, column) else: super(XTreeWidget, self).mouseDoubleClickEvent(event)
['def', 'mouseDoubleClickEvent', '(', 'self', ',', 'event', ')', ':', 'item', '=', 'self', '.', 'itemAt', '(', 'event', '.', 'pos', '(', ')', ')', 'column', '=', 'self', '.', 'columnAt', '(', 'event', '.', 'pos', '(', ')', '.', 'x', '(', ')', ')', 'mid_button', '=', 'event', '.', 'button', '(', ')', '==', 'QtCore', '.', 'Qt', '.', 'MidButton', 'ctrl_click', '=', 'event', '.', 'button', '(', ')', '==', 'QtCore', '.', 'Qt', '.', 'LeftButton', 'and', 'event', '.', 'modifiers', '(', ')', '==', 'QtCore', '.', 'Qt', '.', 'ControlModifier', 'if', 'mid_button', 'or', 'ctrl_click', ':', 'self', '.', 'itemMiddleDoubleClicked', '.', 'emit', '(', 'item', ',', 'column', ')', 'elif', 'event', '.', 'button', '(', ')', '==', 'QtCore', '.', 'Qt', '.', 'RightButton', ':', 'self', '.', 'itemRightDoubleClicked', '.', 'emit', '(', 'item', ',', 'column', ')', 'else', ':', 'super', '(', 'XTreeWidget', ',', 'self', ')', '.', 'mouseDoubleClickEvent', '(', 'event', ')']
Overloads when a mouse press occurs. If in editable mode, and the click occurs on a selected index, then the editor will be created and no selection change will occur. :param event | <QMousePressEvent>
['Overloads', 'when', 'a', 'mouse', 'press', 'occurs', '.', 'If', 'in', 'editable', 'mode', 'and', 'the', 'click', 'occurs', 'on', 'a', 'selected', 'index', 'then', 'the', 'editor', 'will', 'be', 'created', 'and', 'no', 'selection', 'change', 'will', 'occur', '.', ':', 'param', 'event', '|', '<QMousePressEvent', '>']
train
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xtreewidget/xtreewidget.py#L1263-L1283
1,966
lablup/backend.ai-client-py
src/ai/backend/client/session.py
Session.close
def close(self): ''' Terminates the session. It schedules the ``close()`` coroutine of the underlying aiohttp session and then enqueues a sentinel object to indicate termination. Then it waits until the worker thread to self-terminate by joining. ''' if self._closed: return self._closed = True self._worker_thread.work_queue.put(self.aiohttp_session.close()) self._worker_thread.work_queue.put(self.worker_thread.sentinel) self._worker_thread.join()
python
def close(self): ''' Terminates the session. It schedules the ``close()`` coroutine of the underlying aiohttp session and then enqueues a sentinel object to indicate termination. Then it waits until the worker thread to self-terminate by joining. ''' if self._closed: return self._closed = True self._worker_thread.work_queue.put(self.aiohttp_session.close()) self._worker_thread.work_queue.put(self.worker_thread.sentinel) self._worker_thread.join()
['def', 'close', '(', 'self', ')', ':', 'if', 'self', '.', '_closed', ':', 'return', 'self', '.', '_closed', '=', 'True', 'self', '.', '_worker_thread', '.', 'work_queue', '.', 'put', '(', 'self', '.', 'aiohttp_session', '.', 'close', '(', ')', ')', 'self', '.', '_worker_thread', '.', 'work_queue', '.', 'put', '(', 'self', '.', 'worker_thread', '.', 'sentinel', ')', 'self', '.', '_worker_thread', '.', 'join', '(', ')']
Terminates the session. It schedules the ``close()`` coroutine of the underlying aiohttp session and then enqueues a sentinel object to indicate termination. Then it waits until the worker thread to self-terminate by joining.
['Terminates', 'the', 'session', '.', 'It', 'schedules', 'the', 'close', '()', 'coroutine', 'of', 'the', 'underlying', 'aiohttp', 'session', 'and', 'then', 'enqueues', 'a', 'sentinel', 'object', 'to', 'indicate', 'termination', '.', 'Then', 'it', 'waits', 'until', 'the', 'worker', 'thread', 'to', 'self', '-', 'terminate', 'by', 'joining', '.']
train
https://github.com/lablup/backend.ai-client-py/blob/a063d774fea6f4350b89498c40d3c837ec3029a7/src/ai/backend/client/session.py#L214-L226
1,967
flowersteam/explauto
explauto/sensorimotor_model/inverse/cma.py
fmin
def fmin(objective_function, x0, sigma0, options=None, args=(), gradf=None, restarts=0, restart_from_best='False', incpopsize=2, eval_initial_x=False, noise_handler=None, noise_change_sigma_exponent=1, noise_kappa_exponent=0, # TODO: add max kappa value as parameter bipop=False): """functional interface to the stochastic optimizer CMA-ES for non-convex function minimization. Calling Sequences ================= ``fmin(objective_function, x0, sigma0)`` minimizes `objective_function` starting at `x0` and with standard deviation `sigma0` (step-size) ``fmin(objective_function, x0, sigma0, options={'ftarget': 1e-5})`` minimizes `objective_function` up to target function value 1e-5, which is typically useful for benchmarking. ``fmin(objective_function, x0, sigma0, args=('f',))`` minimizes `objective_function` called with an additional argument ``'f'``. ``fmin(objective_function, x0, sigma0, options={'ftarget':1e-5, 'popsize':40})`` uses additional options ``ftarget`` and ``popsize`` ``fmin(objective_function, esobj, None, options={'maxfevals': 1e5})`` uses the `CMAEvolutionStrategy` object instance `esobj` to optimize `objective_function`, similar to `esobj.optimize()`. Arguments ========= `objective_function` function to be minimized. Called as ``objective_function(x, *args)``. `x` is a one-dimensional `numpy.ndarray`. `objective_function` can return `numpy.NaN`, which is interpreted as outright rejection of solution `x` and invokes an immediate resampling and (re-)evaluation of a new solution not counting as function evaluation. `x0` list or `numpy.ndarray`, initial guess of minimum solution before the application of the geno-phenotype transformation according to the ``transformation`` option. It can also be a string holding a Python expression that is evaluated to yield the initial guess - this is important in case restarts are performed so that they start from different places. Otherwise `x0` can also be a `cma.CMAEvolutionStrategy` object instance, in that case `sigma0` can be ``None``. `sigma0` scalar, initial standard deviation in each coordinate. `sigma0` should be about 1/4th of the search domain width (where the optimum is to be expected). The variables in `objective_function` should be scaled such that they presumably have similar sensitivity. See also option `scaling_of_variables`. `options` a dictionary with additional options passed to the constructor of class ``CMAEvolutionStrategy``, see ``cma.CMAOptions()`` for a list of available options. ``args=()`` arguments to be used to call the `objective_function` ``gradf`` gradient of f, where ``len(gradf(x, *args)) == len(x)``. `gradf` is called once in each iteration if ``gradf is not None``. ``restarts=0`` number of restarts with increasing population size, see also parameter `incpopsize`, implementing the IPOP-CMA-ES restart strategy, see also parameter `bipop`; to restart from different points (recommended), pass `x0` as a string. ``restart_from_best=False`` which point to restart from ``incpopsize=2`` multiplier for increasing the population size `popsize` before each restart ``eval_initial_x=None`` evaluate initial solution, for `None` only with elitist option ``noise_handler=None`` a ``NoiseHandler`` instance or ``None``, a simple usecase is ``cma.fmin(f, 6 * [1], 1, noise_handler=cma.NoiseHandler(6))`` see ``help(cma.NoiseHandler)``. ``noise_change_sigma_exponent=1`` exponent for sigma increment for additional noise treatment ``noise_evaluations_as_kappa`` instead of applying reevaluations, the "number of evaluations" is (ab)used as scaling factor kappa (experimental). ``bipop`` if True, run as BIPOP-CMA-ES; BIPOP is a special restart strategy switching between two population sizings - small (like the default CMA, but with more focused search) and large (progressively increased as in IPOP). This makes the algorithm perform well both on functions with many regularly or irregularly arranged local optima (the latter by frequently restarting with small populations). For the `bipop` parameter to actually take effect, also select non-zero number of (IPOP) restarts; the recommended setting is ``restarts<=9`` and `x0` passed as a string. Note that small-population restarts do not count into the total restart count. Optional Arguments ================== All values in the `options` dictionary are evaluated if they are of type `str`, besides `verb_filenameprefix`, see class `CMAOptions` for details. The full list is available via ``cma.CMAOptions()``. >>> import cma >>> cma.CMAOptions() Subsets of options can be displayed, for example like ``cma.CMAOptions('tol')``, or ``cma.CMAOptions('bound')``, see also class `CMAOptions`. Return ====== Return the list provided by `CMAEvolutionStrategy.result()` appended with termination conditions, an `OOOptimizer` and a `BaseDataLogger`:: res = es.result() + (es.stop(), es, logger) where - ``res[0]`` (``xopt``) -- best evaluated solution - ``res[1]`` (``fopt``) -- respective function value - ``res[2]`` (``evalsopt``) -- respective number of function evaluations - ``res[3]`` (``evals``) -- number of overall conducted objective function evaluations - ``res[4]`` (``iterations``) -- number of overall conducted iterations - ``res[5]`` (``xmean``) -- mean of the final sample distribution - ``res[6]`` (``stds``) -- effective stds of the final sample distribution - ``res[-3]`` (``stop``) -- termination condition(s) in a dictionary - ``res[-2]`` (``cmaes``) -- class `CMAEvolutionStrategy` instance - ``res[-1]`` (``logger``) -- class `CMADataLogger` instance Details ======= This function is an interface to the class `CMAEvolutionStrategy`. The latter class should be used when full control over the iteration loop of the optimizer is desired. Examples ======== The following example calls `fmin` optimizing the Rosenbrock function in 10-D with initial solution 0.1 and initial step-size 0.5. The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'CMA_diagonal':100, 'seed':1234, 'verb_time':0} >>> >>> res = cma.fmin(cma.fcts.rosen, [0.1] * 10, 0.5, options) (5_w,10)-CMA-ES (mu_w=3.2,w_1=45%) in dimension 10 (seed=1234) Covariance matrix is diagonal for 10 iterations (1/ccov=29.0) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 10 1.264232686260072e+02 1.1e+00 4.40e-01 4e-01 4e-01 2 20 1.023929748193649e+02 1.1e+00 4.00e-01 4e-01 4e-01 3 30 1.214724267489674e+02 1.2e+00 3.70e-01 3e-01 4e-01 100 1000 6.366683525319511e+00 6.2e+00 2.49e-02 9e-03 3e-02 200 2000 3.347312410388666e+00 1.2e+01 4.52e-02 8e-03 4e-02 300 3000 1.027509686232270e+00 1.3e+01 2.85e-02 5e-03 2e-02 400 4000 1.279649321170636e-01 2.3e+01 3.53e-02 3e-03 3e-02 500 5000 4.302636076186532e-04 4.6e+01 4.78e-03 3e-04 5e-03 600 6000 6.943669235595049e-11 5.1e+01 5.41e-06 1e-07 4e-06 650 6500 5.557961334063003e-14 5.4e+01 1.88e-07 4e-09 1e-07 termination on tolfun : 1e-11 final/bestever f-value = 5.55796133406e-14 2.62435631419e-14 mean solution: [ 1. 1.00000001 1. 1. 1. 1.00000001 1.00000002 1.00000003 ...] std deviation: [ 3.9193387e-09 3.7792732e-09 4.0062285e-09 4.6605925e-09 5.4966188e-09 7.4377745e-09 1.3797207e-08 2.6020765e-08 ...] >>> >>> print('best solutions fitness = %f' % (res[1])) best solutions fitness = 2.62435631419e-14 >>> assert res[1] < 1e-12 The above call is pretty much equivalent with the slightly more verbose call:: es = cma.CMAEvolutionStrategy([0.1] * 10, 0.5, options=options).optimize(cma.fcts.rosen) The following example calls `fmin` optimizing the Rastrigin function in 3-D with random initial solution in [-2,2], initial step-size 0.5 and the BIPOP restart strategy (that progressively increases population). The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'seed':12345, 'verb_time':0, 'ftarget': 1e-8} >>> >>> res = cma.fmin(cma.fcts.rastrigin, '2. * np.random.rand(3) - 1', 0.5, ... options, restarts=9, bipop=True) (3_w,7)-aCMA-ES (mu_w=2.3,w_1=58%) in dimension 3 (seed=12345) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 7 1.633489455763566e+01 1.0e+00 4.35e-01 4e-01 4e-01 2 14 9.762462950258016e+00 1.2e+00 4.12e-01 4e-01 4e-01 3 21 2.461107851413725e+01 1.4e+00 3.78e-01 3e-01 4e-01 100 700 9.949590571272680e-01 1.7e+00 5.07e-05 3e-07 5e-07 123 861 9.949590570932969e-01 1.3e+00 3.93e-06 9e-09 1e-08 termination on tolfun=1e-11 final/bestever f-value = 9.949591e-01 9.949591e-01 mean solution: [ 9.94958638e-01 -7.19265205e-10 2.09294450e-10] std deviation: [ 8.71497860e-09 8.58994807e-09 9.85585654e-09] [...] (4_w,9)-aCMA-ES (mu_w=2.8,w_1=49%) in dimension 3 (seed=12349) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 5342.0 2.114883315350800e+01 1.0e+00 3.42e-02 3e-02 4e-02 2 5351.0 1.810102940125502e+01 1.4e+00 3.79e-02 3e-02 4e-02 3 5360.0 1.340222457448063e+01 1.4e+00 4.58e-02 4e-02 6e-02 50 5783.0 8.631491965616078e-09 1.6e+00 2.01e-04 8e-06 1e-05 termination on ftarget=1e-08 after 4 restarts final/bestever f-value = 8.316963e-09 8.316963e-09 mean solution: [ -3.10652459e-06 2.77935436e-06 -4.95444519e-06] std deviation: [ 1.02825265e-05 8.08348144e-06 8.47256408e-06] In either case, the method:: cma.plot(); (based on `matplotlib.pyplot`) produces a plot of the run and, if necessary:: cma.show() shows the plot in a window. Finally:: cma.savefig('myfirstrun') # savefig from matplotlib.pyplot will save the figure in a png. We can use the gradient like >>> import cma >>> res = cma.fmin(cma.fcts.rosen, np.zeros(10), 0.1, ... options = {'ftarget':1e-8,}, ... gradf=cma.fcts.grad_rosen, ... ) >>> assert cma.fcts.rosen(res[0]) < 1e-8 >>> assert res[2] < 3600 # 1% are > 3300 >>> assert res[3] < 3600 # 1% are > 3300 :See: `CMAEvolutionStrategy`, `OOOptimizer.optimize(), `plot()`, `CMAOptions`, `scipy.optimize.fmin()` """ # style guides say there should be the above empty line if 1 < 3: # try: # pass on KeyboardInterrupt if not objective_function: # cma.fmin(0, 0, 0) return CMAOptions() # these opts are by definition valid fmin_options = locals().copy() # archive original options del fmin_options['objective_function'] del fmin_options['x0'] del fmin_options['sigma0'] del fmin_options['options'] del fmin_options['args'] if options is None: options = cma_default_options CMAOptions().check_attributes(options) # might modify options # checked that no options.ftarget = opts = CMAOptions(options.copy()).complement() # BIPOP-related variables: runs_with_small = 0 small_i = [] large_i = [] popsize0 = None # to be evaluated after the first iteration maxiter0 = None # to be evaluated after the first iteration base_evals = 0 irun = 0 best = BestSolution() while True: # restart loop sigma_factor = 1 # Adjust the population according to BIPOP after a restart. if not bipop: # BIPOP not in use, simply double the previous population # on restart. if irun > 0: popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = popsize0 * popsize_multiplier elif irun == 0: # Initial run is with "normal" population size; it is # the large population before first doubling, but its # budget accounting is the same as in case of small # population. poptype = 'small' elif sum(small_i) < sum(large_i): # An interweaved run with small population size poptype = 'small' runs_with_small += 1 # _Before_ it's used in popsize_lastlarge sigma_factor = 0.01 ** np.random.uniform() # Local search popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = np.floor(popsize0 * popsize_multiplier ** (np.random.uniform() ** 2)) opts['maxiter'] = min(maxiter0, 0.5 * sum(large_i) / opts['popsize']) # print('small basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter'])) else: # A run with large population size; the population # doubling is implicit with incpopsize. poptype = 'large' popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = popsize0 * popsize_multiplier opts['maxiter'] = maxiter0 # print('large basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter'])) # recover from a CMA object if irun == 0 and isinstance(x0, CMAEvolutionStrategy): es = x0 x0 = es.inputargs['x0'] # for the next restarts if isscalar(sigma0) and isfinite(sigma0) and sigma0 > 0: es.sigma = sigma0 # debatable whether this makes sense: sigma0 = es.inputargs['sigma0'] # for the next restarts if options is not None: es.opts.set(options) # ignore further input args and keep original options else: # default case if irun and eval(str(fmin_options['restart_from_best'])): print_warning('CAVE: restart_from_best is often not useful', verbose=opts['verbose']) es = CMAEvolutionStrategy(best.x, sigma_factor * sigma0, opts) else: es = CMAEvolutionStrategy(x0, sigma_factor * sigma0, opts) if eval_initial_x or es.opts['CMA_elitist'] == 'initial' \ or (es.opts['CMA_elitist'] and eval_initial_x is None): x = es.gp.pheno(es.mean, into_bounds=es.boundary_handler.repair, archive=es.sent_solutions) es.best.update([x], es.sent_solutions, [objective_function(x, *args)], 1) es.countevals += 1 opts = es.opts # processed options, unambiguous # a hack: fmin_opts = CMAOptions(fmin_options.copy(), unchecked=True) for k in fmin_opts: # locals() cannot be modified directly, exec won't work # in 3.x, therefore fmin_opts.eval(k, loc={'N': es.N, 'popsize': opts['popsize']}, correct_key=False) append = opts['verb_append'] or es.countiter > 0 or irun > 0 # es.logger is "the same" logger, because the "identity" # is only determined by the `filenameprefix` logger = CMADataLogger(opts['verb_filenameprefix'], opts['verb_log']) logger.register(es, append).add() # no fitness values here es.logger = logger if noise_handler: noisehandler = noise_handler noise_handling = True if fmin_opts['noise_change_sigma_exponent'] > 0: es.opts['tolfacupx'] = inf else: noisehandler = NoiseHandler(es.N, 0) noise_handling = False es.noise_handler = noisehandler # the problem: this assumes that good solutions cannot take longer than bad ones: # with EvalInParallel(objective_function, 2, is_feasible=opts['is_feasible']) as eval_in_parallel: if 1 < 3: while not es.stop(): # iteration loop # X, fit = eval_in_parallel(lambda: es.ask(1)[0], es.popsize, args, repetitions=noisehandler.evaluations-1) X, fit = es.ask_and_eval(objective_function, args, gradf=gradf, evaluations=noisehandler.evaluations, aggregation=np.median) # treats NaN with resampling # TODO: check args and in case use args=(noisehandler.evaluations, ) es.tell(X, fit) # prepare for next iteration if noise_handling: # it would be better to also use these f-evaluations in tell es.sigma *= noisehandler(X, fit, objective_function, es.ask, args=args)**fmin_opts['noise_change_sigma_exponent'] es.countevals += noisehandler.evaluations_just_done # TODO: this is a hack, not important though # es.more_to_write.append(noisehandler.evaluations_just_done) if noisehandler.maxevals > noisehandler.minevals: es.more_to_write.append(noisehandler.get_evaluations()) if 1 < 3: es.sp.cmean *= exp(-noise_kappa_exponent * np.tanh(noisehandler.noiseS)) if es.sp.cmean > 1: es.sp.cmean = 1 es.disp() logger.add(# more_data=[noisehandler.evaluations, 10**noisehandler.noiseS] if noise_handling else [], modulo=1 if es.stop() and logger.modulo else None) if (opts['verb_log'] and opts['verb_plot'] and (es.countiter % max(opts['verb_plot'], opts['verb_log']) == 0 or es.stop())): logger.plot(324) # end while not es.stop mean_pheno = es.gp.pheno(es.mean, into_bounds=es.boundary_handler.repair, archive=es.sent_solutions) fmean = objective_function(mean_pheno, *args) es.countevals += 1 es.best.update([mean_pheno], es.sent_solutions, [fmean], es.countevals) best.update(es.best, es.sent_solutions) # in restarted case # es.best.update(best) this_evals = es.countevals - base_evals base_evals = es.countevals # BIPOP stats update if irun == 0: popsize0 = opts['popsize'] maxiter0 = opts['maxiter'] # XXX: This might be a bug? Reproduced from Matlab # small_i.append(this_evals) if bipop: if poptype == 'small': small_i.append(this_evals) else: # poptype == 'large' large_i.append(this_evals) # final message if opts['verb_disp']: es.result_pretty(irun, time.asctime(time.localtime()), best.f) irun += 1 # if irun > fmin_opts['restarts'] or 'ftarget' in es.stop() \ # if irun > restarts or 'ftarget' in es.stop() \ if irun - runs_with_small > fmin_opts['restarts'] or 'ftarget' in es.stop() \ or 'maxfevals' in es.stop(check=False): break opts['verb_append'] = es.countevals opts['popsize'] = fmin_opts['incpopsize'] * es.sp.popsize # TODO: use rather options? opts['seed'] += 1 # while irun # es.out['best'] = best # TODO: this is a rather suboptimal type for inspection in the shell if 1 < 3: if irun: es.best.update(best) # TODO: there should be a better way to communicate the overall best return es.result() + (es.stop(), es, logger) else: # previously: to be removed return (best.x.copy(), best.f, es.countevals, dict((('stopdict', _CMAStopDict(es._stopdict)) , ('mean', es.gp.pheno(es.mean)) , ('std', es.sigma * es.sigma_vec * sqrt(es.dC) * es.gp.scales) , ('out', es.out) , ('opts', es.opts) # last state of options , ('cma', es) , ('inputargs', es.inputargs) )) ) # TODO refine output, can #args be flexible? # is this well usable as it is now? else: # except KeyboardInterrupt: # Exception, e: if eval(str(options['verb_disp'])) > 0: print(' in/outcomment ``raise`` in last line of cma.fmin to prevent/restore KeyboardInterrupt exception') raise
python
def fmin(objective_function, x0, sigma0, options=None, args=(), gradf=None, restarts=0, restart_from_best='False', incpopsize=2, eval_initial_x=False, noise_handler=None, noise_change_sigma_exponent=1, noise_kappa_exponent=0, # TODO: add max kappa value as parameter bipop=False): """functional interface to the stochastic optimizer CMA-ES for non-convex function minimization. Calling Sequences ================= ``fmin(objective_function, x0, sigma0)`` minimizes `objective_function` starting at `x0` and with standard deviation `sigma0` (step-size) ``fmin(objective_function, x0, sigma0, options={'ftarget': 1e-5})`` minimizes `objective_function` up to target function value 1e-5, which is typically useful for benchmarking. ``fmin(objective_function, x0, sigma0, args=('f',))`` minimizes `objective_function` called with an additional argument ``'f'``. ``fmin(objective_function, x0, sigma0, options={'ftarget':1e-5, 'popsize':40})`` uses additional options ``ftarget`` and ``popsize`` ``fmin(objective_function, esobj, None, options={'maxfevals': 1e5})`` uses the `CMAEvolutionStrategy` object instance `esobj` to optimize `objective_function`, similar to `esobj.optimize()`. Arguments ========= `objective_function` function to be minimized. Called as ``objective_function(x, *args)``. `x` is a one-dimensional `numpy.ndarray`. `objective_function` can return `numpy.NaN`, which is interpreted as outright rejection of solution `x` and invokes an immediate resampling and (re-)evaluation of a new solution not counting as function evaluation. `x0` list or `numpy.ndarray`, initial guess of minimum solution before the application of the geno-phenotype transformation according to the ``transformation`` option. It can also be a string holding a Python expression that is evaluated to yield the initial guess - this is important in case restarts are performed so that they start from different places. Otherwise `x0` can also be a `cma.CMAEvolutionStrategy` object instance, in that case `sigma0` can be ``None``. `sigma0` scalar, initial standard deviation in each coordinate. `sigma0` should be about 1/4th of the search domain width (where the optimum is to be expected). The variables in `objective_function` should be scaled such that they presumably have similar sensitivity. See also option `scaling_of_variables`. `options` a dictionary with additional options passed to the constructor of class ``CMAEvolutionStrategy``, see ``cma.CMAOptions()`` for a list of available options. ``args=()`` arguments to be used to call the `objective_function` ``gradf`` gradient of f, where ``len(gradf(x, *args)) == len(x)``. `gradf` is called once in each iteration if ``gradf is not None``. ``restarts=0`` number of restarts with increasing population size, see also parameter `incpopsize`, implementing the IPOP-CMA-ES restart strategy, see also parameter `bipop`; to restart from different points (recommended), pass `x0` as a string. ``restart_from_best=False`` which point to restart from ``incpopsize=2`` multiplier for increasing the population size `popsize` before each restart ``eval_initial_x=None`` evaluate initial solution, for `None` only with elitist option ``noise_handler=None`` a ``NoiseHandler`` instance or ``None``, a simple usecase is ``cma.fmin(f, 6 * [1], 1, noise_handler=cma.NoiseHandler(6))`` see ``help(cma.NoiseHandler)``. ``noise_change_sigma_exponent=1`` exponent for sigma increment for additional noise treatment ``noise_evaluations_as_kappa`` instead of applying reevaluations, the "number of evaluations" is (ab)used as scaling factor kappa (experimental). ``bipop`` if True, run as BIPOP-CMA-ES; BIPOP is a special restart strategy switching between two population sizings - small (like the default CMA, but with more focused search) and large (progressively increased as in IPOP). This makes the algorithm perform well both on functions with many regularly or irregularly arranged local optima (the latter by frequently restarting with small populations). For the `bipop` parameter to actually take effect, also select non-zero number of (IPOP) restarts; the recommended setting is ``restarts<=9`` and `x0` passed as a string. Note that small-population restarts do not count into the total restart count. Optional Arguments ================== All values in the `options` dictionary are evaluated if they are of type `str`, besides `verb_filenameprefix`, see class `CMAOptions` for details. The full list is available via ``cma.CMAOptions()``. >>> import cma >>> cma.CMAOptions() Subsets of options can be displayed, for example like ``cma.CMAOptions('tol')``, or ``cma.CMAOptions('bound')``, see also class `CMAOptions`. Return ====== Return the list provided by `CMAEvolutionStrategy.result()` appended with termination conditions, an `OOOptimizer` and a `BaseDataLogger`:: res = es.result() + (es.stop(), es, logger) where - ``res[0]`` (``xopt``) -- best evaluated solution - ``res[1]`` (``fopt``) -- respective function value - ``res[2]`` (``evalsopt``) -- respective number of function evaluations - ``res[3]`` (``evals``) -- number of overall conducted objective function evaluations - ``res[4]`` (``iterations``) -- number of overall conducted iterations - ``res[5]`` (``xmean``) -- mean of the final sample distribution - ``res[6]`` (``stds``) -- effective stds of the final sample distribution - ``res[-3]`` (``stop``) -- termination condition(s) in a dictionary - ``res[-2]`` (``cmaes``) -- class `CMAEvolutionStrategy` instance - ``res[-1]`` (``logger``) -- class `CMADataLogger` instance Details ======= This function is an interface to the class `CMAEvolutionStrategy`. The latter class should be used when full control over the iteration loop of the optimizer is desired. Examples ======== The following example calls `fmin` optimizing the Rosenbrock function in 10-D with initial solution 0.1 and initial step-size 0.5. The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'CMA_diagonal':100, 'seed':1234, 'verb_time':0} >>> >>> res = cma.fmin(cma.fcts.rosen, [0.1] * 10, 0.5, options) (5_w,10)-CMA-ES (mu_w=3.2,w_1=45%) in dimension 10 (seed=1234) Covariance matrix is diagonal for 10 iterations (1/ccov=29.0) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 10 1.264232686260072e+02 1.1e+00 4.40e-01 4e-01 4e-01 2 20 1.023929748193649e+02 1.1e+00 4.00e-01 4e-01 4e-01 3 30 1.214724267489674e+02 1.2e+00 3.70e-01 3e-01 4e-01 100 1000 6.366683525319511e+00 6.2e+00 2.49e-02 9e-03 3e-02 200 2000 3.347312410388666e+00 1.2e+01 4.52e-02 8e-03 4e-02 300 3000 1.027509686232270e+00 1.3e+01 2.85e-02 5e-03 2e-02 400 4000 1.279649321170636e-01 2.3e+01 3.53e-02 3e-03 3e-02 500 5000 4.302636076186532e-04 4.6e+01 4.78e-03 3e-04 5e-03 600 6000 6.943669235595049e-11 5.1e+01 5.41e-06 1e-07 4e-06 650 6500 5.557961334063003e-14 5.4e+01 1.88e-07 4e-09 1e-07 termination on tolfun : 1e-11 final/bestever f-value = 5.55796133406e-14 2.62435631419e-14 mean solution: [ 1. 1.00000001 1. 1. 1. 1.00000001 1.00000002 1.00000003 ...] std deviation: [ 3.9193387e-09 3.7792732e-09 4.0062285e-09 4.6605925e-09 5.4966188e-09 7.4377745e-09 1.3797207e-08 2.6020765e-08 ...] >>> >>> print('best solutions fitness = %f' % (res[1])) best solutions fitness = 2.62435631419e-14 >>> assert res[1] < 1e-12 The above call is pretty much equivalent with the slightly more verbose call:: es = cma.CMAEvolutionStrategy([0.1] * 10, 0.5, options=options).optimize(cma.fcts.rosen) The following example calls `fmin` optimizing the Rastrigin function in 3-D with random initial solution in [-2,2], initial step-size 0.5 and the BIPOP restart strategy (that progressively increases population). The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'seed':12345, 'verb_time':0, 'ftarget': 1e-8} >>> >>> res = cma.fmin(cma.fcts.rastrigin, '2. * np.random.rand(3) - 1', 0.5, ... options, restarts=9, bipop=True) (3_w,7)-aCMA-ES (mu_w=2.3,w_1=58%) in dimension 3 (seed=12345) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 7 1.633489455763566e+01 1.0e+00 4.35e-01 4e-01 4e-01 2 14 9.762462950258016e+00 1.2e+00 4.12e-01 4e-01 4e-01 3 21 2.461107851413725e+01 1.4e+00 3.78e-01 3e-01 4e-01 100 700 9.949590571272680e-01 1.7e+00 5.07e-05 3e-07 5e-07 123 861 9.949590570932969e-01 1.3e+00 3.93e-06 9e-09 1e-08 termination on tolfun=1e-11 final/bestever f-value = 9.949591e-01 9.949591e-01 mean solution: [ 9.94958638e-01 -7.19265205e-10 2.09294450e-10] std deviation: [ 8.71497860e-09 8.58994807e-09 9.85585654e-09] [...] (4_w,9)-aCMA-ES (mu_w=2.8,w_1=49%) in dimension 3 (seed=12349) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 5342.0 2.114883315350800e+01 1.0e+00 3.42e-02 3e-02 4e-02 2 5351.0 1.810102940125502e+01 1.4e+00 3.79e-02 3e-02 4e-02 3 5360.0 1.340222457448063e+01 1.4e+00 4.58e-02 4e-02 6e-02 50 5783.0 8.631491965616078e-09 1.6e+00 2.01e-04 8e-06 1e-05 termination on ftarget=1e-08 after 4 restarts final/bestever f-value = 8.316963e-09 8.316963e-09 mean solution: [ -3.10652459e-06 2.77935436e-06 -4.95444519e-06] std deviation: [ 1.02825265e-05 8.08348144e-06 8.47256408e-06] In either case, the method:: cma.plot(); (based on `matplotlib.pyplot`) produces a plot of the run and, if necessary:: cma.show() shows the plot in a window. Finally:: cma.savefig('myfirstrun') # savefig from matplotlib.pyplot will save the figure in a png. We can use the gradient like >>> import cma >>> res = cma.fmin(cma.fcts.rosen, np.zeros(10), 0.1, ... options = {'ftarget':1e-8,}, ... gradf=cma.fcts.grad_rosen, ... ) >>> assert cma.fcts.rosen(res[0]) < 1e-8 >>> assert res[2] < 3600 # 1% are > 3300 >>> assert res[3] < 3600 # 1% are > 3300 :See: `CMAEvolutionStrategy`, `OOOptimizer.optimize(), `plot()`, `CMAOptions`, `scipy.optimize.fmin()` """ # style guides say there should be the above empty line if 1 < 3: # try: # pass on KeyboardInterrupt if not objective_function: # cma.fmin(0, 0, 0) return CMAOptions() # these opts are by definition valid fmin_options = locals().copy() # archive original options del fmin_options['objective_function'] del fmin_options['x0'] del fmin_options['sigma0'] del fmin_options['options'] del fmin_options['args'] if options is None: options = cma_default_options CMAOptions().check_attributes(options) # might modify options # checked that no options.ftarget = opts = CMAOptions(options.copy()).complement() # BIPOP-related variables: runs_with_small = 0 small_i = [] large_i = [] popsize0 = None # to be evaluated after the first iteration maxiter0 = None # to be evaluated after the first iteration base_evals = 0 irun = 0 best = BestSolution() while True: # restart loop sigma_factor = 1 # Adjust the population according to BIPOP after a restart. if not bipop: # BIPOP not in use, simply double the previous population # on restart. if irun > 0: popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = popsize0 * popsize_multiplier elif irun == 0: # Initial run is with "normal" population size; it is # the large population before first doubling, but its # budget accounting is the same as in case of small # population. poptype = 'small' elif sum(small_i) < sum(large_i): # An interweaved run with small population size poptype = 'small' runs_with_small += 1 # _Before_ it's used in popsize_lastlarge sigma_factor = 0.01 ** np.random.uniform() # Local search popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = np.floor(popsize0 * popsize_multiplier ** (np.random.uniform() ** 2)) opts['maxiter'] = min(maxiter0, 0.5 * sum(large_i) / opts['popsize']) # print('small basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter'])) else: # A run with large population size; the population # doubling is implicit with incpopsize. poptype = 'large' popsize_multiplier = fmin_options['incpopsize'] ** (irun - runs_with_small) opts['popsize'] = popsize0 * popsize_multiplier opts['maxiter'] = maxiter0 # print('large basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter'])) # recover from a CMA object if irun == 0 and isinstance(x0, CMAEvolutionStrategy): es = x0 x0 = es.inputargs['x0'] # for the next restarts if isscalar(sigma0) and isfinite(sigma0) and sigma0 > 0: es.sigma = sigma0 # debatable whether this makes sense: sigma0 = es.inputargs['sigma0'] # for the next restarts if options is not None: es.opts.set(options) # ignore further input args and keep original options else: # default case if irun and eval(str(fmin_options['restart_from_best'])): print_warning('CAVE: restart_from_best is often not useful', verbose=opts['verbose']) es = CMAEvolutionStrategy(best.x, sigma_factor * sigma0, opts) else: es = CMAEvolutionStrategy(x0, sigma_factor * sigma0, opts) if eval_initial_x or es.opts['CMA_elitist'] == 'initial' \ or (es.opts['CMA_elitist'] and eval_initial_x is None): x = es.gp.pheno(es.mean, into_bounds=es.boundary_handler.repair, archive=es.sent_solutions) es.best.update([x], es.sent_solutions, [objective_function(x, *args)], 1) es.countevals += 1 opts = es.opts # processed options, unambiguous # a hack: fmin_opts = CMAOptions(fmin_options.copy(), unchecked=True) for k in fmin_opts: # locals() cannot be modified directly, exec won't work # in 3.x, therefore fmin_opts.eval(k, loc={'N': es.N, 'popsize': opts['popsize']}, correct_key=False) append = opts['verb_append'] or es.countiter > 0 or irun > 0 # es.logger is "the same" logger, because the "identity" # is only determined by the `filenameprefix` logger = CMADataLogger(opts['verb_filenameprefix'], opts['verb_log']) logger.register(es, append).add() # no fitness values here es.logger = logger if noise_handler: noisehandler = noise_handler noise_handling = True if fmin_opts['noise_change_sigma_exponent'] > 0: es.opts['tolfacupx'] = inf else: noisehandler = NoiseHandler(es.N, 0) noise_handling = False es.noise_handler = noisehandler # the problem: this assumes that good solutions cannot take longer than bad ones: # with EvalInParallel(objective_function, 2, is_feasible=opts['is_feasible']) as eval_in_parallel: if 1 < 3: while not es.stop(): # iteration loop # X, fit = eval_in_parallel(lambda: es.ask(1)[0], es.popsize, args, repetitions=noisehandler.evaluations-1) X, fit = es.ask_and_eval(objective_function, args, gradf=gradf, evaluations=noisehandler.evaluations, aggregation=np.median) # treats NaN with resampling # TODO: check args and in case use args=(noisehandler.evaluations, ) es.tell(X, fit) # prepare for next iteration if noise_handling: # it would be better to also use these f-evaluations in tell es.sigma *= noisehandler(X, fit, objective_function, es.ask, args=args)**fmin_opts['noise_change_sigma_exponent'] es.countevals += noisehandler.evaluations_just_done # TODO: this is a hack, not important though # es.more_to_write.append(noisehandler.evaluations_just_done) if noisehandler.maxevals > noisehandler.minevals: es.more_to_write.append(noisehandler.get_evaluations()) if 1 < 3: es.sp.cmean *= exp(-noise_kappa_exponent * np.tanh(noisehandler.noiseS)) if es.sp.cmean > 1: es.sp.cmean = 1 es.disp() logger.add(# more_data=[noisehandler.evaluations, 10**noisehandler.noiseS] if noise_handling else [], modulo=1 if es.stop() and logger.modulo else None) if (opts['verb_log'] and opts['verb_plot'] and (es.countiter % max(opts['verb_plot'], opts['verb_log']) == 0 or es.stop())): logger.plot(324) # end while not es.stop mean_pheno = es.gp.pheno(es.mean, into_bounds=es.boundary_handler.repair, archive=es.sent_solutions) fmean = objective_function(mean_pheno, *args) es.countevals += 1 es.best.update([mean_pheno], es.sent_solutions, [fmean], es.countevals) best.update(es.best, es.sent_solutions) # in restarted case # es.best.update(best) this_evals = es.countevals - base_evals base_evals = es.countevals # BIPOP stats update if irun == 0: popsize0 = opts['popsize'] maxiter0 = opts['maxiter'] # XXX: This might be a bug? Reproduced from Matlab # small_i.append(this_evals) if bipop: if poptype == 'small': small_i.append(this_evals) else: # poptype == 'large' large_i.append(this_evals) # final message if opts['verb_disp']: es.result_pretty(irun, time.asctime(time.localtime()), best.f) irun += 1 # if irun > fmin_opts['restarts'] or 'ftarget' in es.stop() \ # if irun > restarts or 'ftarget' in es.stop() \ if irun - runs_with_small > fmin_opts['restarts'] or 'ftarget' in es.stop() \ or 'maxfevals' in es.stop(check=False): break opts['verb_append'] = es.countevals opts['popsize'] = fmin_opts['incpopsize'] * es.sp.popsize # TODO: use rather options? opts['seed'] += 1 # while irun # es.out['best'] = best # TODO: this is a rather suboptimal type for inspection in the shell if 1 < 3: if irun: es.best.update(best) # TODO: there should be a better way to communicate the overall best return es.result() + (es.stop(), es, logger) else: # previously: to be removed return (best.x.copy(), best.f, es.countevals, dict((('stopdict', _CMAStopDict(es._stopdict)) , ('mean', es.gp.pheno(es.mean)) , ('std', es.sigma * es.sigma_vec * sqrt(es.dC) * es.gp.scales) , ('out', es.out) , ('opts', es.opts) # last state of options , ('cma', es) , ('inputargs', es.inputargs) )) ) # TODO refine output, can #args be flexible? # is this well usable as it is now? else: # except KeyboardInterrupt: # Exception, e: if eval(str(options['verb_disp'])) > 0: print(' in/outcomment ``raise`` in last line of cma.fmin to prevent/restore KeyboardInterrupt exception') raise
['def', 'fmin', '(', 'objective_function', ',', 'x0', ',', 'sigma0', ',', 'options', '=', 'None', ',', 'args', '=', '(', ')', ',', 'gradf', '=', 'None', ',', 'restarts', '=', '0', ',', 'restart_from_best', '=', "'False'", ',', 'incpopsize', '=', '2', ',', 'eval_initial_x', '=', 'False', ',', 'noise_handler', '=', 'None', ',', 'noise_change_sigma_exponent', '=', '1', ',', 'noise_kappa_exponent', '=', '0', ',', '# TODO: add max kappa value as parameter', 'bipop', '=', 'False', ')', ':', '# style guides say there should be the above empty line', 'if', '1', '<', '3', ':', '# try: # pass on KeyboardInterrupt', 'if', 'not', 'objective_function', ':', '# cma.fmin(0, 0, 0)', 'return', 'CMAOptions', '(', ')', '# these opts are by definition valid', 'fmin_options', '=', 'locals', '(', ')', '.', 'copy', '(', ')', '# archive original options', 'del', 'fmin_options', '[', "'objective_function'", ']', 'del', 'fmin_options', '[', "'x0'", ']', 'del', 'fmin_options', '[', "'sigma0'", ']', 'del', 'fmin_options', '[', "'options'", ']', 'del', 'fmin_options', '[', "'args'", ']', 'if', 'options', 'is', 'None', ':', 'options', '=', 'cma_default_options', 'CMAOptions', '(', ')', '.', 'check_attributes', '(', 'options', ')', '# might modify options', '# checked that no options.ftarget =', 'opts', '=', 'CMAOptions', '(', 'options', '.', 'copy', '(', ')', ')', '.', 'complement', '(', ')', '# BIPOP-related variables:', 'runs_with_small', '=', '0', 'small_i', '=', '[', ']', 'large_i', '=', '[', ']', 'popsize0', '=', 'None', '# to be evaluated after the first iteration', 'maxiter0', '=', 'None', '# to be evaluated after the first iteration', 'base_evals', '=', '0', 'irun', '=', '0', 'best', '=', 'BestSolution', '(', ')', 'while', 'True', ':', '# restart loop', 'sigma_factor', '=', '1', '# Adjust the population according to BIPOP after a restart.', 'if', 'not', 'bipop', ':', '# BIPOP not in use, simply double the previous population', '# on restart.', 'if', 'irun', '>', '0', ':', 'popsize_multiplier', '=', 'fmin_options', '[', "'incpopsize'", ']', '**', '(', 'irun', '-', 'runs_with_small', ')', 'opts', '[', "'popsize'", ']', '=', 'popsize0', '*', 'popsize_multiplier', 'elif', 'irun', '==', '0', ':', '# Initial run is with "normal" population size; it is', '# the large population before first doubling, but its', '# budget accounting is the same as in case of small', '# population.', 'poptype', '=', "'small'", 'elif', 'sum', '(', 'small_i', ')', '<', 'sum', '(', 'large_i', ')', ':', '# An interweaved run with small population size', 'poptype', '=', "'small'", 'runs_with_small', '+=', '1', "# _Before_ it's used in popsize_lastlarge", 'sigma_factor', '=', '0.01', '**', 'np', '.', 'random', '.', 'uniform', '(', ')', '# Local search', 'popsize_multiplier', '=', 'fmin_options', '[', "'incpopsize'", ']', '**', '(', 'irun', '-', 'runs_with_small', ')', 'opts', '[', "'popsize'", ']', '=', 'np', '.', 'floor', '(', 'popsize0', '*', 'popsize_multiplier', '**', '(', 'np', '.', 'random', '.', 'uniform', '(', ')', '**', '2', ')', ')', 'opts', '[', "'maxiter'", ']', '=', 'min', '(', 'maxiter0', ',', '0.5', '*', 'sum', '(', 'large_i', ')', '/', 'opts', '[', "'popsize'", ']', ')', "# print('small basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter']))", 'else', ':', '# A run with large population size; the population', '# doubling is implicit with incpopsize.', 'poptype', '=', "'large'", 'popsize_multiplier', '=', 'fmin_options', '[', "'incpopsize'", ']', '**', '(', 'irun', '-', 'runs_with_small', ')', 'opts', '[', "'popsize'", ']', '=', 'popsize0', '*', 'popsize_multiplier', 'opts', '[', "'maxiter'", ']', '=', 'maxiter0', "# print('large basemul %s --> %s; maxiter %s' % (popsize_multiplier, opts['popsize'], opts['maxiter']))", '# recover from a CMA object', 'if', 'irun', '==', '0', 'and', 'isinstance', '(', 'x0', ',', 'CMAEvolutionStrategy', ')', ':', 'es', '=', 'x0', 'x0', '=', 'es', '.', 'inputargs', '[', "'x0'", ']', '# for the next restarts', 'if', 'isscalar', '(', 'sigma0', ')', 'and', 'isfinite', '(', 'sigma0', ')', 'and', 'sigma0', '>', '0', ':', 'es', '.', 'sigma', '=', 'sigma0', '# debatable whether this makes sense:', 'sigma0', '=', 'es', '.', 'inputargs', '[', "'sigma0'", ']', '# for the next restarts', 'if', 'options', 'is', 'not', 'None', ':', 'es', '.', 'opts', '.', 'set', '(', 'options', ')', '# ignore further input args and keep original options', 'else', ':', '# default case', 'if', 'irun', 'and', 'eval', '(', 'str', '(', 'fmin_options', '[', "'restart_from_best'", ']', ')', ')', ':', 'print_warning', '(', "'CAVE: restart_from_best is often not useful'", ',', 'verbose', '=', 'opts', '[', "'verbose'", ']', ')', 'es', '=', 'CMAEvolutionStrategy', '(', 'best', '.', 'x', ',', 'sigma_factor', '*', 'sigma0', ',', 'opts', ')', 'else', ':', 'es', '=', 'CMAEvolutionStrategy', '(', 'x0', ',', 'sigma_factor', '*', 'sigma0', ',', 'opts', ')', 'if', 'eval_initial_x', 'or', 'es', '.', 'opts', '[', "'CMA_elitist'", ']', '==', "'initial'", 'or', '(', 'es', '.', 'opts', '[', "'CMA_elitist'", ']', 'and', 'eval_initial_x', 'is', 'None', ')', ':', 'x', '=', 'es', '.', 'gp', '.', 'pheno', '(', 'es', '.', 'mean', ',', 'into_bounds', '=', 'es', '.', 'boundary_handler', '.', 'repair', ',', 'archive', '=', 'es', '.', 'sent_solutions', ')', 'es', '.', 'best', '.', 'update', '(', '[', 'x', ']', ',', 'es', '.', 'sent_solutions', ',', '[', 'objective_function', '(', 'x', ',', '*', 'args', ')', ']', ',', '1', ')', 'es', '.', 'countevals', '+=', '1', 'opts', '=', 'es', '.', 'opts', '# processed options, unambiguous', '# a hack:', 'fmin_opts', '=', 'CMAOptions', '(', 'fmin_options', '.', 'copy', '(', ')', ',', 'unchecked', '=', 'True', ')', 'for', 'k', 'in', 'fmin_opts', ':', "# locals() cannot be modified directly, exec won't work", '# in 3.x, therefore', 'fmin_opts', '.', 'eval', '(', 'k', ',', 'loc', '=', '{', "'N'", ':', 'es', '.', 'N', ',', "'popsize'", ':', 'opts', '[', "'popsize'", ']', '}', ',', 'correct_key', '=', 'False', ')', 'append', '=', 'opts', '[', "'verb_append'", ']', 'or', 'es', '.', 'countiter', '>', '0', 'or', 'irun', '>', '0', '# es.logger is "the same" logger, because the "identity"', '# is only determined by the `filenameprefix`', 'logger', '=', 'CMADataLogger', '(', 'opts', '[', "'verb_filenameprefix'", ']', ',', 'opts', '[', "'verb_log'", ']', ')', 'logger', '.', 'register', '(', 'es', ',', 'append', ')', '.', 'add', '(', ')', '# no fitness values here', 'es', '.', 'logger', '=', 'logger', 'if', 'noise_handler', ':', 'noisehandler', '=', 'noise_handler', 'noise_handling', '=', 'True', 'if', 'fmin_opts', '[', "'noise_change_sigma_exponent'", ']', '>', '0', ':', 'es', '.', 'opts', '[', "'tolfacupx'", ']', '=', 'inf', 'else', ':', 'noisehandler', '=', 'NoiseHandler', '(', 'es', '.', 'N', ',', '0', ')', 'noise_handling', '=', 'False', 'es', '.', 'noise_handler', '=', 'noisehandler', '# the problem: this assumes that good solutions cannot take longer than bad ones:', "# with EvalInParallel(objective_function, 2, is_feasible=opts['is_feasible']) as eval_in_parallel:", 'if', '1', '<', '3', ':', 'while', 'not', 'es', '.', 'stop', '(', ')', ':', '# iteration loop', '# X, fit = eval_in_parallel(lambda: es.ask(1)[0], es.popsize, args, repetitions=noisehandler.evaluations-1)', 'X', ',', 'fit', '=', 'es', '.', 'ask_and_eval', '(', 'objective_function', ',', 'args', ',', 'gradf', '=', 'gradf', ',', 'evaluations', '=', 'noisehandler', '.', 'evaluations', ',', 'aggregation', '=', 'np', '.', 'median', ')', '# treats NaN with resampling', '# TODO: check args and in case use args=(noisehandler.evaluations, )', 'es', '.', 'tell', '(', 'X', ',', 'fit', ')', '# prepare for next iteration', 'if', 'noise_handling', ':', '# it would be better to also use these f-evaluations in tell', 'es', '.', 'sigma', '*=', 'noisehandler', '(', 'X', ',', 'fit', ',', 'objective_function', ',', 'es', '.', 'ask', ',', 'args', '=', 'args', ')', '**', 'fmin_opts', '[', "'noise_change_sigma_exponent'", ']', 'es', '.', 'countevals', '+=', 'noisehandler', '.', 'evaluations_just_done', '# TODO: this is a hack, not important though', '# es.more_to_write.append(noisehandler.evaluations_just_done)', 'if', 'noisehandler', '.', 'maxevals', '>', 'noisehandler', '.', 'minevals', ':', 'es', '.', 'more_to_write', '.', 'append', '(', 'noisehandler', '.', 'get_evaluations', '(', ')', ')', 'if', '1', '<', '3', ':', 'es', '.', 'sp', '.', 'cmean', '*=', 'exp', '(', '-', 'noise_kappa_exponent', '*', 'np', '.', 'tanh', '(', 'noisehandler', '.', 'noiseS', ')', ')', 'if', 'es', '.', 'sp', '.', 'cmean', '>', '1', ':', 'es', '.', 'sp', '.', 'cmean', '=', '1', 'es', '.', 'disp', '(', ')', 'logger', '.', 'add', '(', '# more_data=[noisehandler.evaluations, 10**noisehandler.noiseS] if noise_handling else [],', 'modulo', '=', '1', 'if', 'es', '.', 'stop', '(', ')', 'and', 'logger', '.', 'modulo', 'else', 'None', ')', 'if', '(', 'opts', '[', "'verb_log'", ']', 'and', 'opts', '[', "'verb_plot'", ']', 'and', '(', 'es', '.', 'countiter', '%', 'max', '(', 'opts', '[', "'verb_plot'", ']', ',', 'opts', '[', "'verb_log'", ']', ')', '==', '0', 'or', 'es', '.', 'stop', '(', ')', ')', ')', ':', 'logger', '.', 'plot', '(', '324', ')', '# end while not es.stop', 'mean_pheno', '=', 'es', '.', 'gp', '.', 'pheno', '(', 'es', '.', 'mean', ',', 'into_bounds', '=', 'es', '.', 'boundary_handler', '.', 'repair', ',', 'archive', '=', 'es', '.', 'sent_solutions', ')', 'fmean', '=', 'objective_function', '(', 'mean_pheno', ',', '*', 'args', ')', 'es', '.', 'countevals', '+=', '1', 'es', '.', 'best', '.', 'update', '(', '[', 'mean_pheno', ']', ',', 'es', '.', 'sent_solutions', ',', '[', 'fmean', ']', ',', 'es', '.', 'countevals', ')', 'best', '.', 'update', '(', 'es', '.', 'best', ',', 'es', '.', 'sent_solutions', ')', '# in restarted case', '# es.best.update(best)', 'this_evals', '=', 'es', '.', 'countevals', '-', 'base_evals', 'base_evals', '=', 'es', '.', 'countevals', '# BIPOP stats update', 'if', 'irun', '==', '0', ':', 'popsize0', '=', 'opts', '[', "'popsize'", ']', 'maxiter0', '=', 'opts', '[', "'maxiter'", ']', '# XXX: This might be a bug? Reproduced from Matlab', '# small_i.append(this_evals)', 'if', 'bipop', ':', 'if', 'poptype', '==', "'small'", ':', 'small_i', '.', 'append', '(', 'this_evals', ')', 'else', ':', "# poptype == 'large'", 'large_i', '.', 'append', '(', 'this_evals', ')', '# final message', 'if', 'opts', '[', "'verb_disp'", ']', ':', 'es', '.', 'result_pretty', '(', 'irun', ',', 'time', '.', 'asctime', '(', 'time', '.', 'localtime', '(', ')', ')', ',', 'best', '.', 'f', ')', 'irun', '+=', '1', "# if irun > fmin_opts['restarts'] or 'ftarget' in es.stop() \\", "# if irun > restarts or 'ftarget' in es.stop() \\", 'if', 'irun', '-', 'runs_with_small', '>', 'fmin_opts', '[', "'restarts'", ']', 'or', "'ftarget'", 'in', 'es', '.', 'stop', '(', ')', 'or', "'maxfevals'", 'in', 'es', '.', 'stop', '(', 'check', '=', 'False', ')', ':', 'break', 'opts', '[', "'verb_append'", ']', '=', 'es', '.', 'countevals', 'opts', '[', "'popsize'", ']', '=', 'fmin_opts', '[', "'incpopsize'", ']', '*', 'es', '.', 'sp', '.', 'popsize', '# TODO: use rather options?', 'opts', '[', "'seed'", ']', '+=', '1', '# while irun', "# es.out['best'] = best # TODO: this is a rather suboptimal type for inspection in the shell", 'if', '1', '<', '3', ':', 'if', 'irun', ':', 'es', '.', 'best', '.', 'update', '(', 'best', ')', '# TODO: there should be a better way to communicate the overall best', 'return', 'es', '.', 'result', '(', ')', '+', '(', 'es', '.', 'stop', '(', ')', ',', 'es', ',', 'logger', ')', 'else', ':', '# previously: to be removed', 'return', '(', 'best', '.', 'x', '.', 'copy', '(', ')', ',', 'best', '.', 'f', ',', 'es', '.', 'countevals', ',', 'dict', '(', '(', '(', "'stopdict'", ',', '_CMAStopDict', '(', 'es', '.', '_stopdict', ')', ')', ',', '(', "'mean'", ',', 'es', '.', 'gp', '.', 'pheno', '(', 'es', '.', 'mean', ')', ')', ',', '(', "'std'", ',', 'es', '.', 'sigma', '*', 'es', '.', 'sigma_vec', '*', 'sqrt', '(', 'es', '.', 'dC', ')', '*', 'es', '.', 'gp', '.', 'scales', ')', ',', '(', "'out'", ',', 'es', '.', 'out', ')', ',', '(', "'opts'", ',', 'es', '.', 'opts', ')', '# last state of options', ',', '(', "'cma'", ',', 'es', ')', ',', '(', "'inputargs'", ',', 'es', '.', 'inputargs', ')', ')', ')', ')', '# TODO refine output, can #args be flexible?', '# is this well usable as it is now?', 'else', ':', '# except KeyboardInterrupt: # Exception, e:', 'if', 'eval', '(', 'str', '(', 'options', '[', "'verb_disp'", ']', ')', ')', '>', '0', ':', 'print', '(', "' in/outcomment ``raise`` in last line of cma.fmin to prevent/restore KeyboardInterrupt exception'", ')', 'raise']
functional interface to the stochastic optimizer CMA-ES for non-convex function minimization. Calling Sequences ================= ``fmin(objective_function, x0, sigma0)`` minimizes `objective_function` starting at `x0` and with standard deviation `sigma0` (step-size) ``fmin(objective_function, x0, sigma0, options={'ftarget': 1e-5})`` minimizes `objective_function` up to target function value 1e-5, which is typically useful for benchmarking. ``fmin(objective_function, x0, sigma0, args=('f',))`` minimizes `objective_function` called with an additional argument ``'f'``. ``fmin(objective_function, x0, sigma0, options={'ftarget':1e-5, 'popsize':40})`` uses additional options ``ftarget`` and ``popsize`` ``fmin(objective_function, esobj, None, options={'maxfevals': 1e5})`` uses the `CMAEvolutionStrategy` object instance `esobj` to optimize `objective_function`, similar to `esobj.optimize()`. Arguments ========= `objective_function` function to be minimized. Called as ``objective_function(x, *args)``. `x` is a one-dimensional `numpy.ndarray`. `objective_function` can return `numpy.NaN`, which is interpreted as outright rejection of solution `x` and invokes an immediate resampling and (re-)evaluation of a new solution not counting as function evaluation. `x0` list or `numpy.ndarray`, initial guess of minimum solution before the application of the geno-phenotype transformation according to the ``transformation`` option. It can also be a string holding a Python expression that is evaluated to yield the initial guess - this is important in case restarts are performed so that they start from different places. Otherwise `x0` can also be a `cma.CMAEvolutionStrategy` object instance, in that case `sigma0` can be ``None``. `sigma0` scalar, initial standard deviation in each coordinate. `sigma0` should be about 1/4th of the search domain width (where the optimum is to be expected). The variables in `objective_function` should be scaled such that they presumably have similar sensitivity. See also option `scaling_of_variables`. `options` a dictionary with additional options passed to the constructor of class ``CMAEvolutionStrategy``, see ``cma.CMAOptions()`` for a list of available options. ``args=()`` arguments to be used to call the `objective_function` ``gradf`` gradient of f, where ``len(gradf(x, *args)) == len(x)``. `gradf` is called once in each iteration if ``gradf is not None``. ``restarts=0`` number of restarts with increasing population size, see also parameter `incpopsize`, implementing the IPOP-CMA-ES restart strategy, see also parameter `bipop`; to restart from different points (recommended), pass `x0` as a string. ``restart_from_best=False`` which point to restart from ``incpopsize=2`` multiplier for increasing the population size `popsize` before each restart ``eval_initial_x=None`` evaluate initial solution, for `None` only with elitist option ``noise_handler=None`` a ``NoiseHandler`` instance or ``None``, a simple usecase is ``cma.fmin(f, 6 * [1], 1, noise_handler=cma.NoiseHandler(6))`` see ``help(cma.NoiseHandler)``. ``noise_change_sigma_exponent=1`` exponent for sigma increment for additional noise treatment ``noise_evaluations_as_kappa`` instead of applying reevaluations, the "number of evaluations" is (ab)used as scaling factor kappa (experimental). ``bipop`` if True, run as BIPOP-CMA-ES; BIPOP is a special restart strategy switching between two population sizings - small (like the default CMA, but with more focused search) and large (progressively increased as in IPOP). This makes the algorithm perform well both on functions with many regularly or irregularly arranged local optima (the latter by frequently restarting with small populations). For the `bipop` parameter to actually take effect, also select non-zero number of (IPOP) restarts; the recommended setting is ``restarts<=9`` and `x0` passed as a string. Note that small-population restarts do not count into the total restart count. Optional Arguments ================== All values in the `options` dictionary are evaluated if they are of type `str`, besides `verb_filenameprefix`, see class `CMAOptions` for details. The full list is available via ``cma.CMAOptions()``. >>> import cma >>> cma.CMAOptions() Subsets of options can be displayed, for example like ``cma.CMAOptions('tol')``, or ``cma.CMAOptions('bound')``, see also class `CMAOptions`. Return ====== Return the list provided by `CMAEvolutionStrategy.result()` appended with termination conditions, an `OOOptimizer` and a `BaseDataLogger`:: res = es.result() + (es.stop(), es, logger) where - ``res[0]`` (``xopt``) -- best evaluated solution - ``res[1]`` (``fopt``) -- respective function value - ``res[2]`` (``evalsopt``) -- respective number of function evaluations - ``res[3]`` (``evals``) -- number of overall conducted objective function evaluations - ``res[4]`` (``iterations``) -- number of overall conducted iterations - ``res[5]`` (``xmean``) -- mean of the final sample distribution - ``res[6]`` (``stds``) -- effective stds of the final sample distribution - ``res[-3]`` (``stop``) -- termination condition(s) in a dictionary - ``res[-2]`` (``cmaes``) -- class `CMAEvolutionStrategy` instance - ``res[-1]`` (``logger``) -- class `CMADataLogger` instance Details ======= This function is an interface to the class `CMAEvolutionStrategy`. The latter class should be used when full control over the iteration loop of the optimizer is desired. Examples ======== The following example calls `fmin` optimizing the Rosenbrock function in 10-D with initial solution 0.1 and initial step-size 0.5. The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'CMA_diagonal':100, 'seed':1234, 'verb_time':0} >>> >>> res = cma.fmin(cma.fcts.rosen, [0.1] * 10, 0.5, options) (5_w,10)-CMA-ES (mu_w=3.2,w_1=45%) in dimension 10 (seed=1234) Covariance matrix is diagonal for 10 iterations (1/ccov=29.0) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 10 1.264232686260072e+02 1.1e+00 4.40e-01 4e-01 4e-01 2 20 1.023929748193649e+02 1.1e+00 4.00e-01 4e-01 4e-01 3 30 1.214724267489674e+02 1.2e+00 3.70e-01 3e-01 4e-01 100 1000 6.366683525319511e+00 6.2e+00 2.49e-02 9e-03 3e-02 200 2000 3.347312410388666e+00 1.2e+01 4.52e-02 8e-03 4e-02 300 3000 1.027509686232270e+00 1.3e+01 2.85e-02 5e-03 2e-02 400 4000 1.279649321170636e-01 2.3e+01 3.53e-02 3e-03 3e-02 500 5000 4.302636076186532e-04 4.6e+01 4.78e-03 3e-04 5e-03 600 6000 6.943669235595049e-11 5.1e+01 5.41e-06 1e-07 4e-06 650 6500 5.557961334063003e-14 5.4e+01 1.88e-07 4e-09 1e-07 termination on tolfun : 1e-11 final/bestever f-value = 5.55796133406e-14 2.62435631419e-14 mean solution: [ 1. 1.00000001 1. 1. 1. 1.00000001 1.00000002 1.00000003 ...] std deviation: [ 3.9193387e-09 3.7792732e-09 4.0062285e-09 4.6605925e-09 5.4966188e-09 7.4377745e-09 1.3797207e-08 2.6020765e-08 ...] >>> >>> print('best solutions fitness = %f' % (res[1])) best solutions fitness = 2.62435631419e-14 >>> assert res[1] < 1e-12 The above call is pretty much equivalent with the slightly more verbose call:: es = cma.CMAEvolutionStrategy([0.1] * 10, 0.5, options=options).optimize(cma.fcts.rosen) The following example calls `fmin` optimizing the Rastrigin function in 3-D with random initial solution in [-2,2], initial step-size 0.5 and the BIPOP restart strategy (that progressively increases population). The options are specified for the usage with the `doctest` module. >>> import cma >>> # cma.CMAOptions() # returns all possible options >>> options = {'seed':12345, 'verb_time':0, 'ftarget': 1e-8} >>> >>> res = cma.fmin(cma.fcts.rastrigin, '2. * np.random.rand(3) - 1', 0.5, ... options, restarts=9, bipop=True) (3_w,7)-aCMA-ES (mu_w=2.3,w_1=58%) in dimension 3 (seed=12345) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 7 1.633489455763566e+01 1.0e+00 4.35e-01 4e-01 4e-01 2 14 9.762462950258016e+00 1.2e+00 4.12e-01 4e-01 4e-01 3 21 2.461107851413725e+01 1.4e+00 3.78e-01 3e-01 4e-01 100 700 9.949590571272680e-01 1.7e+00 5.07e-05 3e-07 5e-07 123 861 9.949590570932969e-01 1.3e+00 3.93e-06 9e-09 1e-08 termination on tolfun=1e-11 final/bestever f-value = 9.949591e-01 9.949591e-01 mean solution: [ 9.94958638e-01 -7.19265205e-10 2.09294450e-10] std deviation: [ 8.71497860e-09 8.58994807e-09 9.85585654e-09] [...] (4_w,9)-aCMA-ES (mu_w=2.8,w_1=49%) in dimension 3 (seed=12349) Iterat #Fevals function value axis ratio sigma minstd maxstd min:sec 1 5342.0 2.114883315350800e+01 1.0e+00 3.42e-02 3e-02 4e-02 2 5351.0 1.810102940125502e+01 1.4e+00 3.79e-02 3e-02 4e-02 3 5360.0 1.340222457448063e+01 1.4e+00 4.58e-02 4e-02 6e-02 50 5783.0 8.631491965616078e-09 1.6e+00 2.01e-04 8e-06 1e-05 termination on ftarget=1e-08 after 4 restarts final/bestever f-value = 8.316963e-09 8.316963e-09 mean solution: [ -3.10652459e-06 2.77935436e-06 -4.95444519e-06] std deviation: [ 1.02825265e-05 8.08348144e-06 8.47256408e-06] In either case, the method:: cma.plot(); (based on `matplotlib.pyplot`) produces a plot of the run and, if necessary:: cma.show() shows the plot in a window. Finally:: cma.savefig('myfirstrun') # savefig from matplotlib.pyplot will save the figure in a png. We can use the gradient like >>> import cma >>> res = cma.fmin(cma.fcts.rosen, np.zeros(10), 0.1, ... options = {'ftarget':1e-8,}, ... gradf=cma.fcts.grad_rosen, ... ) >>> assert cma.fcts.rosen(res[0]) < 1e-8 >>> assert res[2] < 3600 # 1% are > 3300 >>> assert res[3] < 3600 # 1% are > 3300 :See: `CMAEvolutionStrategy`, `OOOptimizer.optimize(), `plot()`, `CMAOptions`, `scipy.optimize.fmin()`
['functional', 'interface', 'to', 'the', 'stochastic', 'optimizer', 'CMA', '-', 'ES', 'for', 'non', '-', 'convex', 'function', 'minimization', '.']
train
https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/sensorimotor_model/inverse/cma.py#L5137-L5598
1,968
Esri/ArcREST
src/arcrest/manageags/_security.py
Security.updateUser
def updateUser(self, username, password, fullname, description, email): """ Updates a user account in the user store Input: username - the name of the user. The name must be unique in the user store. password - the password for this user. fullname - an optional full name for the user. description - an optional field to add comments or description for the user account. email - an optional email for the user account. """ params = { "f" : "json", "username" : username } if password is not None: params['password'] = password if fullname is not None: params['fullname'] = fullname if description is not None: params['description'] = description if email is not None: params['email'] = email uURL = self._url + "/users/update" return self._post(url=uURL, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port)
python
def updateUser(self, username, password, fullname, description, email): """ Updates a user account in the user store Input: username - the name of the user. The name must be unique in the user store. password - the password for this user. fullname - an optional full name for the user. description - an optional field to add comments or description for the user account. email - an optional email for the user account. """ params = { "f" : "json", "username" : username } if password is not None: params['password'] = password if fullname is not None: params['fullname'] = fullname if description is not None: params['description'] = description if email is not None: params['email'] = email uURL = self._url + "/users/update" return self._post(url=uURL, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port)
['def', 'updateUser', '(', 'self', ',', 'username', ',', 'password', ',', 'fullname', ',', 'description', ',', 'email', ')', ':', 'params', '=', '{', '"f"', ':', '"json"', ',', '"username"', ':', 'username', '}', 'if', 'password', 'is', 'not', 'None', ':', 'params', '[', "'password'", ']', '=', 'password', 'if', 'fullname', 'is', 'not', 'None', ':', 'params', '[', "'fullname'", ']', '=', 'fullname', 'if', 'description', 'is', 'not', 'None', ':', 'params', '[', "'description'", ']', '=', 'description', 'if', 'email', 'is', 'not', 'None', ':', 'params', '[', "'email'", ']', '=', 'email', 'uURL', '=', 'self', '.', '_url', '+', '"/users/update"', 'return', 'self', '.', '_post', '(', 'url', '=', 'uURL', ',', 'param_dict', '=', 'params', ',', 'securityHandler', '=', 'self', '.', '_securityHandler', ',', 'proxy_url', '=', 'self', '.', '_proxy_url', ',', 'proxy_port', '=', 'self', '.', '_proxy_port', ')']
Updates a user account in the user store Input: username - the name of the user. The name must be unique in the user store. password - the password for this user. fullname - an optional full name for the user. description - an optional field to add comments or description for the user account. email - an optional email for the user account.
['Updates', 'a', 'user', 'account', 'in', 'the', 'user', 'store', 'Input', ':', 'username', '-', 'the', 'name', 'of', 'the', 'user', '.', 'The', 'name', 'must', 'be', 'unique', 'in', 'the', 'user', 'store', '.', 'password', '-', 'the', 'password', 'for', 'this', 'user', '.', 'fullname', '-', 'an', 'optional', 'full', 'name', 'for', 'the', 'user', '.', 'description', '-', 'an', 'optional', 'field', 'to', 'add', 'comments', 'or', 'description', 'for', 'the', 'user', 'account', '.', 'email', '-', 'an', 'optional', 'email', 'for', 'the', 'user', 'account', '.']
train
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/manageags/_security.py#L621-L648
1,969
base4sistemas/pyescpos
escpos/impl/epson.py
GenericESCPOS.code128
def code128(self, data, **kwargs): """Renders given ``data`` as **Code 128** barcode symbology. :param str codeset: Optional. Keyword argument for the subtype (code set) to render. Defaults to :attr:`escpos.barcode.CODE128_A`. .. warning:: You should draw up your data according to the subtype (code set). The default is **Code 128 A** and there is no way (yet) to mix code sets in a single barcode rendering (at least not uniformly). Implementations may simply ignore the code set. """ if not re.match(r'^[\x20-\x7F]+$', data): raise ValueError('Invalid Code 128 symbology. Code 128 can encode ' 'any ASCII character ranging from 32 (20h) to 127 (7Fh); ' 'got {!r}'.format(data)) codeset = kwargs.pop('codeset', barcode.CODE128_A) barcode.validate_barcode_args(**kwargs) return self._code128_impl(data, codeset=codeset, **kwargs)
python
def code128(self, data, **kwargs): """Renders given ``data`` as **Code 128** barcode symbology. :param str codeset: Optional. Keyword argument for the subtype (code set) to render. Defaults to :attr:`escpos.barcode.CODE128_A`. .. warning:: You should draw up your data according to the subtype (code set). The default is **Code 128 A** and there is no way (yet) to mix code sets in a single barcode rendering (at least not uniformly). Implementations may simply ignore the code set. """ if not re.match(r'^[\x20-\x7F]+$', data): raise ValueError('Invalid Code 128 symbology. Code 128 can encode ' 'any ASCII character ranging from 32 (20h) to 127 (7Fh); ' 'got {!r}'.format(data)) codeset = kwargs.pop('codeset', barcode.CODE128_A) barcode.validate_barcode_args(**kwargs) return self._code128_impl(data, codeset=codeset, **kwargs)
['def', 'code128', '(', 'self', ',', 'data', ',', '*', '*', 'kwargs', ')', ':', 'if', 'not', 're', '.', 'match', '(', "r'^[\\x20-\\x7F]+$'", ',', 'data', ')', ':', 'raise', 'ValueError', '(', "'Invalid Code 128 symbology. Code 128 can encode '", "'any ASCII character ranging from 32 (20h) to 127 (7Fh); '", "'got {!r}'", '.', 'format', '(', 'data', ')', ')', 'codeset', '=', 'kwargs', '.', 'pop', '(', "'codeset'", ',', 'barcode', '.', 'CODE128_A', ')', 'barcode', '.', 'validate_barcode_args', '(', '*', '*', 'kwargs', ')', 'return', 'self', '.', '_code128_impl', '(', 'data', ',', 'codeset', '=', 'codeset', ',', '*', '*', 'kwargs', ')']
Renders given ``data`` as **Code 128** barcode symbology. :param str codeset: Optional. Keyword argument for the subtype (code set) to render. Defaults to :attr:`escpos.barcode.CODE128_A`. .. warning:: You should draw up your data according to the subtype (code set). The default is **Code 128 A** and there is no way (yet) to mix code sets in a single barcode rendering (at least not uniformly). Implementations may simply ignore the code set.
['Renders', 'given', 'data', 'as', '**', 'Code', '128', '**', 'barcode', 'symbology', '.']
train
https://github.com/base4sistemas/pyescpos/blob/621bd00f1499aff700f37d8d36d04e0d761708f1/escpos/impl/epson.py#L240-L261
1,970
jazzband/sorl-thumbnail
sorl/thumbnail/kvstores/base.py
KVStoreBase._get
def _get(self, key, identity='image'): """ Deserializing, prefix wrapper for _get_raw """ value = self._get_raw(add_prefix(key, identity)) if not value: return None if identity == 'image': return deserialize_image_file(value) return deserialize(value)
python
def _get(self, key, identity='image'): """ Deserializing, prefix wrapper for _get_raw """ value = self._get_raw(add_prefix(key, identity)) if not value: return None if identity == 'image': return deserialize_image_file(value) return deserialize(value)
['def', '_get', '(', 'self', ',', 'key', ',', 'identity', '=', "'image'", ')', ':', 'value', '=', 'self', '.', '_get_raw', '(', 'add_prefix', '(', 'key', ',', 'identity', ')', ')', 'if', 'not', 'value', ':', 'return', 'None', 'if', 'identity', '==', "'image'", ':', 'return', 'deserialize_image_file', '(', 'value', ')', 'return', 'deserialize', '(', 'value', ')']
Deserializing, prefix wrapper for _get_raw
['Deserializing', 'prefix', 'wrapper', 'for', '_get_raw']
train
https://github.com/jazzband/sorl-thumbnail/blob/22ccd9781462a820f963f57018ad3dcef85053ed/sorl/thumbnail/kvstores/base.py#L141-L153
1,971
lordmauve/lepton
examples/fireworks.py
on_draw
def on_draw(): global yrot win.clear() glLoadIdentity() glTranslatef(0, 0, -100) glRotatef(yrot, 0.0, 1.0, 0.0) default_system.draw() ''' glBindTexture(GL_TEXTURE_2D, 1) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(0,0) glEnd() glBindTexture(GL_TEXTURE_2D, 2) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(50,0) glEnd() glBindTexture(GL_TEXTURE_2D, 0) '''
python
def on_draw(): global yrot win.clear() glLoadIdentity() glTranslatef(0, 0, -100) glRotatef(yrot, 0.0, 1.0, 0.0) default_system.draw() ''' glBindTexture(GL_TEXTURE_2D, 1) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(0,0) glEnd() glBindTexture(GL_TEXTURE_2D, 2) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(50,0) glEnd() glBindTexture(GL_TEXTURE_2D, 0) '''
['def', 'on_draw', '(', ')', ':', 'global', 'yrot', 'win', '.', 'clear', '(', ')', 'glLoadIdentity', '(', ')', 'glTranslatef', '(', '0', ',', '0', ',', '-', '100', ')', 'glRotatef', '(', 'yrot', ',', '0.0', ',', '1.0', ',', '0.0', ')', 'default_system', '.', 'draw', '(', ')']
glBindTexture(GL_TEXTURE_2D, 1) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(0,0) glEnd() glBindTexture(GL_TEXTURE_2D, 2) glEnable(GL_TEXTURE_2D) glEnable(GL_POINT_SPRITE) glPointSize(100); glBegin(GL_POINTS) glVertex2f(50,0) glEnd() glBindTexture(GL_TEXTURE_2D, 0)
['glBindTexture', '(', 'GL_TEXTURE_2D', '1', ')', 'glEnable', '(', 'GL_TEXTURE_2D', ')', 'glEnable', '(', 'GL_POINT_SPRITE', ')', 'glPointSize', '(', '100', ')', ';', 'glBegin', '(', 'GL_POINTS', ')', 'glVertex2f', '(', '0', '0', ')', 'glEnd', '()', 'glBindTexture', '(', 'GL_TEXTURE_2D', '2', ')', 'glEnable', '(', 'GL_TEXTURE_2D', ')', 'glEnable', '(', 'GL_POINT_SPRITE', ')', 'glPointSize', '(', '100', ')', ';', 'glBegin', '(', 'GL_POINTS', ')', 'glVertex2f', '(', '50', '0', ')', 'glEnd', '()', 'glBindTexture', '(', 'GL_TEXTURE_2D', '0', ')']
train
https://github.com/lordmauve/lepton/blob/bf03f2c20ea8c51ade632f692d0a21e520fbba7c/examples/fireworks.py#L132-L155
1,972
Turbo87/aerofiles
aerofiles/flarmcfg/writer.py
Writer.write_waypoint
def write_waypoint(self, latitude=None, longitude=None, description=None): """ Adds a waypoint to the current task declaration. The first and the last waypoint added will be treated as takeoff and landing location, respectively. :: writer.write_waypoint( latitude=(51 + 7.345 / 60.), longitude=(6 + 24.765 / 60.), text='Meiersberg', ) # -> $PFLAC,S,ADDWP,5107345N,00624765E,Meiersberg If no ``latitude`` or ``longitude`` is passed, the fields will be filled with zeros (i.e. unknown coordinates). This however should only be used for takeoff and landing points. :param latitude: latitude of the point (between -90 and 90 degrees) :param longitude: longitude of the point (between -180 and 180 degrees) :param description: arbitrary text description of waypoint """ if not description: description = '' latitude = self.format_latitude(latitude) longitude = self.format_longitude(longitude) self.write_config( 'ADDWP', '%s,%s,%s' % (latitude, longitude, description[0:50]) )
python
def write_waypoint(self, latitude=None, longitude=None, description=None): """ Adds a waypoint to the current task declaration. The first and the last waypoint added will be treated as takeoff and landing location, respectively. :: writer.write_waypoint( latitude=(51 + 7.345 / 60.), longitude=(6 + 24.765 / 60.), text='Meiersberg', ) # -> $PFLAC,S,ADDWP,5107345N,00624765E,Meiersberg If no ``latitude`` or ``longitude`` is passed, the fields will be filled with zeros (i.e. unknown coordinates). This however should only be used for takeoff and landing points. :param latitude: latitude of the point (between -90 and 90 degrees) :param longitude: longitude of the point (between -180 and 180 degrees) :param description: arbitrary text description of waypoint """ if not description: description = '' latitude = self.format_latitude(latitude) longitude = self.format_longitude(longitude) self.write_config( 'ADDWP', '%s,%s,%s' % (latitude, longitude, description[0:50]) )
['def', 'write_waypoint', '(', 'self', ',', 'latitude', '=', 'None', ',', 'longitude', '=', 'None', ',', 'description', '=', 'None', ')', ':', 'if', 'not', 'description', ':', 'description', '=', "''", 'latitude', '=', 'self', '.', 'format_latitude', '(', 'latitude', ')', 'longitude', '=', 'self', '.', 'format_longitude', '(', 'longitude', ')', 'self', '.', 'write_config', '(', "'ADDWP'", ',', "'%s,%s,%s'", '%', '(', 'latitude', ',', 'longitude', ',', 'description', '[', '0', ':', '50', ']', ')', ')']
Adds a waypoint to the current task declaration. The first and the last waypoint added will be treated as takeoff and landing location, respectively. :: writer.write_waypoint( latitude=(51 + 7.345 / 60.), longitude=(6 + 24.765 / 60.), text='Meiersberg', ) # -> $PFLAC,S,ADDWP,5107345N,00624765E,Meiersberg If no ``latitude`` or ``longitude`` is passed, the fields will be filled with zeros (i.e. unknown coordinates). This however should only be used for takeoff and landing points. :param latitude: latitude of the point (between -90 and 90 degrees) :param longitude: longitude of the point (between -180 and 180 degrees) :param description: arbitrary text description of waypoint
['Adds', 'a', 'waypoint', 'to', 'the', 'current', 'task', 'declaration', '.', 'The', 'first', 'and', 'the', 'last', 'waypoint', 'added', 'will', 'be', 'treated', 'as', 'takeoff', 'and', 'landing', 'location', 'respectively', '.']
train
https://github.com/Turbo87/aerofiles/blob/d8b7b04a1fcea5c98f89500de1164619a4ec7ef4/aerofiles/flarmcfg/writer.py#L150-L182
1,973
vingd/vingd-api-python
vingd/client.py
Vingd.revoke_vouchers
def revoke_vouchers(self, vid_encoded=None, uid_from=None, uid_to=None, gid=None, valid_after=None, valid_before=None, last=None, first=None): """ REVOKES/INVALIDATES a filtered list of vouchers. :type vid_encoded: ``alphanumeric(64)`` :param vid_encoded: Voucher ID, as a string with CRC. :type uid_from: ``bigint`` :param uid_from: Filter by source account UID. :type uid_to: ``bigint`` :param uid_to: Filter by destination account UID. :type gid: ``alphanumeric(32)`` :param gid: Filter by voucher Group ID. GID is localized to `uid_from`. :type valid_after: ``datetime``/``dict`` :param valid_after: Voucher has to be valid after this timestamp. Absolute (``datetime``) or relative (``dict``) timestamps are accepted. Valid keys for relative timestamp dictionary are same as keyword arguments for `datetime.timedelta` (``days``, ``seconds``, ``minutes``, ``hours``, ``weeks``). :type valid_before: ``datetime``/``dict`` :param valid_before: Voucher was valid until this timestamp (for format, see the `valid_after` above). :type last: ``bigint`` :param last: The number of newest vouchers (that satisfy all other criteria) to return. :type first: ``bigint`` :param first: The number of oldest vouchers (that satisfy all other criteria) to return. :note: As with `get_vouchers`, filters are restrictive, narrowing down the set of vouchers, which initially includes complete voucher collection. That means, in turn, that a naive empty-handed `revoke_vouchers()` call shall revoke **all** un-used vouchers (both valid and expired)! :rtype: ``dict`` :returns: A dictionary of successfully revoked vouchers, i.e. a map ``vid_encoded``: ``refund_transfer_id`` for all successfully revoked vouchers. :raises GeneralException: :resource: ``vouchers[/<vid_encoded>][/from=<uid_from>][/to=<uid_to>]`` ``[/valid_after=<valid_after>][/valid_before=<valid_before>]`` ``[/last=<last>][/first=<first>]`` :access: authorized users (ACL flag: ``voucher.revoke``) """ resource = self.kvpath( 'vouchers', ('ident', vid_encoded), **{ 'from': ('int', uid_from), 'to': ('int', uid_to), 'gid': ('ident', gid), 'valid_after': ('isobasic', absdatetime(valid_after)), 'valid_before': ('isobasic', absdatetime(valid_before)), 'first': ('int', first), 'last': ('int', last) } ) return self.request('delete', resource, json.dumps({'revoke': True}))
python
def revoke_vouchers(self, vid_encoded=None, uid_from=None, uid_to=None, gid=None, valid_after=None, valid_before=None, last=None, first=None): """ REVOKES/INVALIDATES a filtered list of vouchers. :type vid_encoded: ``alphanumeric(64)`` :param vid_encoded: Voucher ID, as a string with CRC. :type uid_from: ``bigint`` :param uid_from: Filter by source account UID. :type uid_to: ``bigint`` :param uid_to: Filter by destination account UID. :type gid: ``alphanumeric(32)`` :param gid: Filter by voucher Group ID. GID is localized to `uid_from`. :type valid_after: ``datetime``/``dict`` :param valid_after: Voucher has to be valid after this timestamp. Absolute (``datetime``) or relative (``dict``) timestamps are accepted. Valid keys for relative timestamp dictionary are same as keyword arguments for `datetime.timedelta` (``days``, ``seconds``, ``minutes``, ``hours``, ``weeks``). :type valid_before: ``datetime``/``dict`` :param valid_before: Voucher was valid until this timestamp (for format, see the `valid_after` above). :type last: ``bigint`` :param last: The number of newest vouchers (that satisfy all other criteria) to return. :type first: ``bigint`` :param first: The number of oldest vouchers (that satisfy all other criteria) to return. :note: As with `get_vouchers`, filters are restrictive, narrowing down the set of vouchers, which initially includes complete voucher collection. That means, in turn, that a naive empty-handed `revoke_vouchers()` call shall revoke **all** un-used vouchers (both valid and expired)! :rtype: ``dict`` :returns: A dictionary of successfully revoked vouchers, i.e. a map ``vid_encoded``: ``refund_transfer_id`` for all successfully revoked vouchers. :raises GeneralException: :resource: ``vouchers[/<vid_encoded>][/from=<uid_from>][/to=<uid_to>]`` ``[/valid_after=<valid_after>][/valid_before=<valid_before>]`` ``[/last=<last>][/first=<first>]`` :access: authorized users (ACL flag: ``voucher.revoke``) """ resource = self.kvpath( 'vouchers', ('ident', vid_encoded), **{ 'from': ('int', uid_from), 'to': ('int', uid_to), 'gid': ('ident', gid), 'valid_after': ('isobasic', absdatetime(valid_after)), 'valid_before': ('isobasic', absdatetime(valid_before)), 'first': ('int', first), 'last': ('int', last) } ) return self.request('delete', resource, json.dumps({'revoke': True}))
['def', 'revoke_vouchers', '(', 'self', ',', 'vid_encoded', '=', 'None', ',', 'uid_from', '=', 'None', ',', 'uid_to', '=', 'None', ',', 'gid', '=', 'None', ',', 'valid_after', '=', 'None', ',', 'valid_before', '=', 'None', ',', 'last', '=', 'None', ',', 'first', '=', 'None', ')', ':', 'resource', '=', 'self', '.', 'kvpath', '(', "'vouchers'", ',', '(', "'ident'", ',', 'vid_encoded', ')', ',', '*', '*', '{', "'from'", ':', '(', "'int'", ',', 'uid_from', ')', ',', "'to'", ':', '(', "'int'", ',', 'uid_to', ')', ',', "'gid'", ':', '(', "'ident'", ',', 'gid', ')', ',', "'valid_after'", ':', '(', "'isobasic'", ',', 'absdatetime', '(', 'valid_after', ')', ')', ',', "'valid_before'", ':', '(', "'isobasic'", ',', 'absdatetime', '(', 'valid_before', ')', ')', ',', "'first'", ':', '(', "'int'", ',', 'first', ')', ',', "'last'", ':', '(', "'int'", ',', 'last', ')', '}', ')', 'return', 'self', '.', 'request', '(', "'delete'", ',', 'resource', ',', 'json', '.', 'dumps', '(', '{', "'revoke'", ':', 'True', '}', ')', ')']
REVOKES/INVALIDATES a filtered list of vouchers. :type vid_encoded: ``alphanumeric(64)`` :param vid_encoded: Voucher ID, as a string with CRC. :type uid_from: ``bigint`` :param uid_from: Filter by source account UID. :type uid_to: ``bigint`` :param uid_to: Filter by destination account UID. :type gid: ``alphanumeric(32)`` :param gid: Filter by voucher Group ID. GID is localized to `uid_from`. :type valid_after: ``datetime``/``dict`` :param valid_after: Voucher has to be valid after this timestamp. Absolute (``datetime``) or relative (``dict``) timestamps are accepted. Valid keys for relative timestamp dictionary are same as keyword arguments for `datetime.timedelta` (``days``, ``seconds``, ``minutes``, ``hours``, ``weeks``). :type valid_before: ``datetime``/``dict`` :param valid_before: Voucher was valid until this timestamp (for format, see the `valid_after` above). :type last: ``bigint`` :param last: The number of newest vouchers (that satisfy all other criteria) to return. :type first: ``bigint`` :param first: The number of oldest vouchers (that satisfy all other criteria) to return. :note: As with `get_vouchers`, filters are restrictive, narrowing down the set of vouchers, which initially includes complete voucher collection. That means, in turn, that a naive empty-handed `revoke_vouchers()` call shall revoke **all** un-used vouchers (both valid and expired)! :rtype: ``dict`` :returns: A dictionary of successfully revoked vouchers, i.e. a map ``vid_encoded``: ``refund_transfer_id`` for all successfully revoked vouchers. :raises GeneralException: :resource: ``vouchers[/<vid_encoded>][/from=<uid_from>][/to=<uid_to>]`` ``[/valid_after=<valid_after>][/valid_before=<valid_before>]`` ``[/last=<last>][/first=<first>]`` :access: authorized users (ACL flag: ``voucher.revoke``)
['REVOKES', '/', 'INVALIDATES', 'a', 'filtered', 'list', 'of', 'vouchers', '.', ':', 'type', 'vid_encoded', ':', 'alphanumeric', '(', '64', ')', ':', 'param', 'vid_encoded', ':', 'Voucher', 'ID', 'as', 'a', 'string', 'with', 'CRC', '.', ':', 'type', 'uid_from', ':', 'bigint', ':', 'param', 'uid_from', ':', 'Filter', 'by', 'source', 'account', 'UID', '.', ':', 'type', 'uid_to', ':', 'bigint', ':', 'param', 'uid_to', ':', 'Filter', 'by', 'destination', 'account', 'UID', '.', ':', 'type', 'gid', ':', 'alphanumeric', '(', '32', ')', ':', 'param', 'gid', ':', 'Filter', 'by', 'voucher', 'Group', 'ID', '.', 'GID', 'is', 'localized', 'to', 'uid_from', '.', ':', 'type', 'valid_after', ':', 'datetime', '/', 'dict', ':', 'param', 'valid_after', ':', 'Voucher', 'has', 'to', 'be', 'valid', 'after', 'this', 'timestamp', '.', 'Absolute', '(', 'datetime', ')', 'or', 'relative', '(', 'dict', ')', 'timestamps', 'are', 'accepted', '.', 'Valid', 'keys', 'for', 'relative', 'timestamp', 'dictionary', 'are', 'same', 'as', 'keyword', 'arguments', 'for', 'datetime', '.', 'timedelta', '(', 'days', 'seconds', 'minutes', 'hours', 'weeks', ')', '.', ':', 'type', 'valid_before', ':', 'datetime', '/', 'dict', ':', 'param', 'valid_before', ':', 'Voucher', 'was', 'valid', 'until', 'this', 'timestamp', '(', 'for', 'format', 'see', 'the', 'valid_after', 'above', ')', '.', ':', 'type', 'last', ':', 'bigint', ':', 'param', 'last', ':', 'The', 'number', 'of', 'newest', 'vouchers', '(', 'that', 'satisfy', 'all', 'other', 'criteria', ')', 'to', 'return', '.', ':', 'type', 'first', ':', 'bigint', ':', 'param', 'first', ':', 'The', 'number', 'of', 'oldest', 'vouchers', '(', 'that', 'satisfy', 'all', 'other', 'criteria', ')', 'to', 'return', '.', ':', 'note', ':', 'As', 'with', 'get_vouchers', 'filters', 'are', 'restrictive', 'narrowing', 'down', 'the', 'set', 'of', 'vouchers', 'which', 'initially', 'includes', 'complete', 'voucher', 'collection', '.', 'That', 'means', 'in', 'turn', 'that', 'a', 'naive', 'empty', '-', 'handed', 'revoke_vouchers', '()', 'call', 'shall', 'revoke', '**', 'all', '**', 'un', '-', 'used', 'vouchers', '(', 'both', 'valid', 'and', 'expired', ')', '!', ':', 'rtype', ':', 'dict', ':', 'returns', ':', 'A', 'dictionary', 'of', 'successfully', 'revoked', 'vouchers', 'i', '.', 'e', '.', 'a', 'map', 'vid_encoded', ':', 'refund_transfer_id', 'for', 'all', 'successfully', 'revoked', 'vouchers', '.', ':', 'raises', 'GeneralException', ':', ':', 'resource', ':', 'vouchers', '[', '/', '<vid_encoded', '>', ']', '[', '/', 'from', '=', '<uid_from', '>', ']', '[', '/', 'to', '=', '<uid_to', '>', ']', '[', '/', 'valid_after', '=', '<valid_after', '>', ']', '[', '/', 'valid_before', '=', '<valid_before', '>', ']', '[', '/', 'last', '=', '<last', '>', ']', '[', '/', 'first', '=', '<first', '>', ']', ':', 'access', ':', 'authorized', 'users', '(', 'ACL', 'flag', ':', 'voucher', '.', 'revoke', ')']
train
https://github.com/vingd/vingd-api-python/blob/7548a49973a472f7277c8ef847563faa7b6f3706/vingd/client.py#L853-L925
1,974
ladybug-tools/ladybug
ladybug/wea.py
Wea.directional_irradiance
def directional_irradiance(self, altitude=90, azimuth=180, ground_reflectance=0.2, isotrophic=True): """Returns the irradiance components facing a given altitude and azimuth. This method computes unobstructed solar flux facing a given altitude and azimuth. The default is set to return the golbal horizontal irradiance, assuming an altitude facing straight up (90 degrees). Args: altitude: A number between -90 and 90 that represents the altitude at which irradiance is being evaluated in degrees. azimuth: A number between 0 and 360 that represents the azimuth at wich irradiance is being evaluated in degrees. ground_reflectance: A number between 0 and 1 that represents the reflectance of the ground. Default is set to 0.2. Some common ground reflectances are: urban: 0.18 grass: 0.20 fresh grass: 0.26 soil: 0.17 sand: 0.40 snow: 0.65 fresh_snow: 0.75 asphalt: 0.12 concrete: 0.30 sea: 0.06 isotrophic: A boolean value that sets whether an istotrophic sky is used (as opposed to an anisotrophic sky). An isotrophic sky assummes an even distribution of diffuse irradiance across the sky while an anisotrophic sky places more diffuse irradiance near the solar disc. Default is set to True for isotrophic Returns: total_irradiance: A data collection of total solar irradiance. direct_irradiance: A data collection of direct solar irradiance. diffuse_irradiance: A data collection of diffuse sky solar irradiance. reflected_irradiance: A data collection of ground reflected solar irradiance. """ # function to convert polar coordinates to xyz. def pol2cart(phi, theta): mult = math.cos(theta) x = math.sin(phi) * mult y = math.cos(phi) * mult z = math.sin(theta) return Vector3(x, y, z) # convert the altitude and azimuth to a normal vector normal = pol2cart(math.radians(azimuth), math.radians(altitude)) # create sunpath and get altitude at every timestep of the year direct_irr, diffuse_irr, reflected_irr, total_irr = [], [], [], [] sp = Sunpath.from_location(self.location) sp.is_leap_year = self.is_leap_year for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance, self.diffuse_horizontal_irradiance): sun = sp.calculate_sun_from_date_time(dt) sun_vec = pol2cart(math.radians(sun.azimuth), math.radians(sun.altitude)) vec_angle = sun_vec.angle(normal) # direct irradiance on surface srf_dir = 0 if sun.altitude > 0 and vec_angle < math.pi / 2: srf_dir = dnr * math.cos(vec_angle) # diffuse irradiance on surface if isotrophic is True: srf_dif = dhr * ((math.sin(math.radians(altitude)) / 2) + 0.5) else: y = max(0.45, 0.55 + (0.437 * math.cos(vec_angle)) + 0.313 * math.cos(vec_angle) * 0.313 * math.cos(vec_angle)) srf_dif = self.dhr * (y * ( math.sin(math.radians(abs(90 - altitude)))) + math.cos(math.radians(abs(90 - altitude)))) # reflected irradiance on surface. e_glob = dhr + dnr * math.cos(math.radians(90 - sun.altitude)) srf_ref = e_glob * ground_reflectance * (0.5 - (math.sin( math.radians(altitude)) / 2)) # add it all together direct_irr.append(srf_dir) diffuse_irr.append(srf_dif) reflected_irr.append(srf_ref) total_irr.append(srf_dir + srf_dif + srf_ref) # create the headers a_per = AnalysisPeriod(timestep=self.timestep, is_leap_year=self.is_leap_year) direct_hea = diffuse_hea = reflected_hea = total_hea = \ Header(Irradiance(), 'W/m2', a_per, self.metadata) # create the data collections direct_irradiance = HourlyContinuousCollection(direct_hea, direct_irr) diffuse_irradiance = HourlyContinuousCollection(diffuse_hea, diffuse_irr) reflected_irradiance = HourlyContinuousCollection(reflected_hea, reflected_irr) total_irradiance = HourlyContinuousCollection(total_hea, total_irr) return total_irradiance, direct_irradiance, \ diffuse_irradiance, reflected_irradiance
python
def directional_irradiance(self, altitude=90, azimuth=180, ground_reflectance=0.2, isotrophic=True): """Returns the irradiance components facing a given altitude and azimuth. This method computes unobstructed solar flux facing a given altitude and azimuth. The default is set to return the golbal horizontal irradiance, assuming an altitude facing straight up (90 degrees). Args: altitude: A number between -90 and 90 that represents the altitude at which irradiance is being evaluated in degrees. azimuth: A number between 0 and 360 that represents the azimuth at wich irradiance is being evaluated in degrees. ground_reflectance: A number between 0 and 1 that represents the reflectance of the ground. Default is set to 0.2. Some common ground reflectances are: urban: 0.18 grass: 0.20 fresh grass: 0.26 soil: 0.17 sand: 0.40 snow: 0.65 fresh_snow: 0.75 asphalt: 0.12 concrete: 0.30 sea: 0.06 isotrophic: A boolean value that sets whether an istotrophic sky is used (as opposed to an anisotrophic sky). An isotrophic sky assummes an even distribution of diffuse irradiance across the sky while an anisotrophic sky places more diffuse irradiance near the solar disc. Default is set to True for isotrophic Returns: total_irradiance: A data collection of total solar irradiance. direct_irradiance: A data collection of direct solar irradiance. diffuse_irradiance: A data collection of diffuse sky solar irradiance. reflected_irradiance: A data collection of ground reflected solar irradiance. """ # function to convert polar coordinates to xyz. def pol2cart(phi, theta): mult = math.cos(theta) x = math.sin(phi) * mult y = math.cos(phi) * mult z = math.sin(theta) return Vector3(x, y, z) # convert the altitude and azimuth to a normal vector normal = pol2cart(math.radians(azimuth), math.radians(altitude)) # create sunpath and get altitude at every timestep of the year direct_irr, diffuse_irr, reflected_irr, total_irr = [], [], [], [] sp = Sunpath.from_location(self.location) sp.is_leap_year = self.is_leap_year for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance, self.diffuse_horizontal_irradiance): sun = sp.calculate_sun_from_date_time(dt) sun_vec = pol2cart(math.radians(sun.azimuth), math.radians(sun.altitude)) vec_angle = sun_vec.angle(normal) # direct irradiance on surface srf_dir = 0 if sun.altitude > 0 and vec_angle < math.pi / 2: srf_dir = dnr * math.cos(vec_angle) # diffuse irradiance on surface if isotrophic is True: srf_dif = dhr * ((math.sin(math.radians(altitude)) / 2) + 0.5) else: y = max(0.45, 0.55 + (0.437 * math.cos(vec_angle)) + 0.313 * math.cos(vec_angle) * 0.313 * math.cos(vec_angle)) srf_dif = self.dhr * (y * ( math.sin(math.radians(abs(90 - altitude)))) + math.cos(math.radians(abs(90 - altitude)))) # reflected irradiance on surface. e_glob = dhr + dnr * math.cos(math.radians(90 - sun.altitude)) srf_ref = e_glob * ground_reflectance * (0.5 - (math.sin( math.radians(altitude)) / 2)) # add it all together direct_irr.append(srf_dir) diffuse_irr.append(srf_dif) reflected_irr.append(srf_ref) total_irr.append(srf_dir + srf_dif + srf_ref) # create the headers a_per = AnalysisPeriod(timestep=self.timestep, is_leap_year=self.is_leap_year) direct_hea = diffuse_hea = reflected_hea = total_hea = \ Header(Irradiance(), 'W/m2', a_per, self.metadata) # create the data collections direct_irradiance = HourlyContinuousCollection(direct_hea, direct_irr) diffuse_irradiance = HourlyContinuousCollection(diffuse_hea, diffuse_irr) reflected_irradiance = HourlyContinuousCollection(reflected_hea, reflected_irr) total_irradiance = HourlyContinuousCollection(total_hea, total_irr) return total_irradiance, direct_irradiance, \ diffuse_irradiance, reflected_irradiance
['def', 'directional_irradiance', '(', 'self', ',', 'altitude', '=', '90', ',', 'azimuth', '=', '180', ',', 'ground_reflectance', '=', '0.2', ',', 'isotrophic', '=', 'True', ')', ':', '# function to convert polar coordinates to xyz.', 'def', 'pol2cart', '(', 'phi', ',', 'theta', ')', ':', 'mult', '=', 'math', '.', 'cos', '(', 'theta', ')', 'x', '=', 'math', '.', 'sin', '(', 'phi', ')', '*', 'mult', 'y', '=', 'math', '.', 'cos', '(', 'phi', ')', '*', 'mult', 'z', '=', 'math', '.', 'sin', '(', 'theta', ')', 'return', 'Vector3', '(', 'x', ',', 'y', ',', 'z', ')', '# convert the altitude and azimuth to a normal vector', 'normal', '=', 'pol2cart', '(', 'math', '.', 'radians', '(', 'azimuth', ')', ',', 'math', '.', 'radians', '(', 'altitude', ')', ')', '# create sunpath and get altitude at every timestep of the year', 'direct_irr', ',', 'diffuse_irr', ',', 'reflected_irr', ',', 'total_irr', '=', '[', ']', ',', '[', ']', ',', '[', ']', ',', '[', ']', 'sp', '=', 'Sunpath', '.', 'from_location', '(', 'self', '.', 'location', ')', 'sp', '.', 'is_leap_year', '=', 'self', '.', 'is_leap_year', 'for', 'dt', ',', 'dnr', ',', 'dhr', 'in', 'zip', '(', 'self', '.', 'datetimes', ',', 'self', '.', 'direct_normal_irradiance', ',', 'self', '.', 'diffuse_horizontal_irradiance', ')', ':', 'sun', '=', 'sp', '.', 'calculate_sun_from_date_time', '(', 'dt', ')', 'sun_vec', '=', 'pol2cart', '(', 'math', '.', 'radians', '(', 'sun', '.', 'azimuth', ')', ',', 'math', '.', 'radians', '(', 'sun', '.', 'altitude', ')', ')', 'vec_angle', '=', 'sun_vec', '.', 'angle', '(', 'normal', ')', '# direct irradiance on surface', 'srf_dir', '=', '0', 'if', 'sun', '.', 'altitude', '>', '0', 'and', 'vec_angle', '<', 'math', '.', 'pi', '/', '2', ':', 'srf_dir', '=', 'dnr', '*', 'math', '.', 'cos', '(', 'vec_angle', ')', '# diffuse irradiance on surface', 'if', 'isotrophic', 'is', 'True', ':', 'srf_dif', '=', 'dhr', '*', '(', '(', 'math', '.', 'sin', '(', 'math', '.', 'radians', '(', 'altitude', ')', ')', '/', '2', ')', '+', '0.5', ')', 'else', ':', 'y', '=', 'max', '(', '0.45', ',', '0.55', '+', '(', '0.437', '*', 'math', '.', 'cos', '(', 'vec_angle', ')', ')', '+', '0.313', '*', 'math', '.', 'cos', '(', 'vec_angle', ')', '*', '0.313', '*', 'math', '.', 'cos', '(', 'vec_angle', ')', ')', 'srf_dif', '=', 'self', '.', 'dhr', '*', '(', 'y', '*', '(', 'math', '.', 'sin', '(', 'math', '.', 'radians', '(', 'abs', '(', '90', '-', 'altitude', ')', ')', ')', ')', '+', 'math', '.', 'cos', '(', 'math', '.', 'radians', '(', 'abs', '(', '90', '-', 'altitude', ')', ')', ')', ')', '# reflected irradiance on surface.', 'e_glob', '=', 'dhr', '+', 'dnr', '*', 'math', '.', 'cos', '(', 'math', '.', 'radians', '(', '90', '-', 'sun', '.', 'altitude', ')', ')', 'srf_ref', '=', 'e_glob', '*', 'ground_reflectance', '*', '(', '0.5', '-', '(', 'math', '.', 'sin', '(', 'math', '.', 'radians', '(', 'altitude', ')', ')', '/', '2', ')', ')', '# add it all together', 'direct_irr', '.', 'append', '(', 'srf_dir', ')', 'diffuse_irr', '.', 'append', '(', 'srf_dif', ')', 'reflected_irr', '.', 'append', '(', 'srf_ref', ')', 'total_irr', '.', 'append', '(', 'srf_dir', '+', 'srf_dif', '+', 'srf_ref', ')', '# create the headers', 'a_per', '=', 'AnalysisPeriod', '(', 'timestep', '=', 'self', '.', 'timestep', ',', 'is_leap_year', '=', 'self', '.', 'is_leap_year', ')', 'direct_hea', '=', 'diffuse_hea', '=', 'reflected_hea', '=', 'total_hea', '=', 'Header', '(', 'Irradiance', '(', ')', ',', "'W/m2'", ',', 'a_per', ',', 'self', '.', 'metadata', ')', '# create the data collections', 'direct_irradiance', '=', 'HourlyContinuousCollection', '(', 'direct_hea', ',', 'direct_irr', ')', 'diffuse_irradiance', '=', 'HourlyContinuousCollection', '(', 'diffuse_hea', ',', 'diffuse_irr', ')', 'reflected_irradiance', '=', 'HourlyContinuousCollection', '(', 'reflected_hea', ',', 'reflected_irr', ')', 'total_irradiance', '=', 'HourlyContinuousCollection', '(', 'total_hea', ',', 'total_irr', ')', 'return', 'total_irradiance', ',', 'direct_irradiance', ',', 'diffuse_irradiance', ',', 'reflected_irradiance']
Returns the irradiance components facing a given altitude and azimuth. This method computes unobstructed solar flux facing a given altitude and azimuth. The default is set to return the golbal horizontal irradiance, assuming an altitude facing straight up (90 degrees). Args: altitude: A number between -90 and 90 that represents the altitude at which irradiance is being evaluated in degrees. azimuth: A number between 0 and 360 that represents the azimuth at wich irradiance is being evaluated in degrees. ground_reflectance: A number between 0 and 1 that represents the reflectance of the ground. Default is set to 0.2. Some common ground reflectances are: urban: 0.18 grass: 0.20 fresh grass: 0.26 soil: 0.17 sand: 0.40 snow: 0.65 fresh_snow: 0.75 asphalt: 0.12 concrete: 0.30 sea: 0.06 isotrophic: A boolean value that sets whether an istotrophic sky is used (as opposed to an anisotrophic sky). An isotrophic sky assummes an even distribution of diffuse irradiance across the sky while an anisotrophic sky places more diffuse irradiance near the solar disc. Default is set to True for isotrophic Returns: total_irradiance: A data collection of total solar irradiance. direct_irradiance: A data collection of direct solar irradiance. diffuse_irradiance: A data collection of diffuse sky solar irradiance. reflected_irradiance: A data collection of ground reflected solar irradiance.
['Returns', 'the', 'irradiance', 'components', 'facing', 'a', 'given', 'altitude', 'and', 'azimuth', '.']
train
https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L594-L692
1,975
honzajavorek/redis-collections
redis_collections/dicts.py
Dict.copy
def copy(self, key=None): """ Return a new collection with the same items as this one. If *key* is specified, create the new collection with the given Redis key. """ other = self.__class__(redis=self.redis, key=key) other.update(self) return other
python
def copy(self, key=None): """ Return a new collection with the same items as this one. If *key* is specified, create the new collection with the given Redis key. """ other = self.__class__(redis=self.redis, key=key) other.update(self) return other
['def', 'copy', '(', 'self', ',', 'key', '=', 'None', ')', ':', 'other', '=', 'self', '.', '__class__', '(', 'redis', '=', 'self', '.', 'redis', ',', 'key', '=', 'key', ')', 'other', '.', 'update', '(', 'self', ')', 'return', 'other']
Return a new collection with the same items as this one. If *key* is specified, create the new collection with the given Redis key.
['Return', 'a', 'new', 'collection', 'with', 'the', 'same', 'items', 'as', 'this', 'one', '.', 'If', '*', 'key', '*', 'is', 'specified', 'create', 'the', 'new', 'collection', 'with', 'the', 'given', 'Redis', 'key', '.']
train
https://github.com/honzajavorek/redis-collections/blob/07ca8efe88fb128f7dc7319dfa6a26cd39b3776b/redis_collections/dicts.py#L362-L371
1,976
Jahaja/psdash
psdash/log.py
LogReader.search
def search(self, text): """ Find text in log file from current position returns a tuple containing: absolute position, position in result buffer, result buffer (the actual file contents) """ key = hash(text) searcher = self._searchers.get(key) if not searcher: searcher = ReverseFileSearcher(self.filename, text) self._searchers[key] = searcher position = searcher.find() if position < 0: # reset the searcher to start from the tail again. searcher.reset() return -1, -1, '' # try to get some content from before and after the result's position read_before = self.buffer_size / 2 offset = max(position - read_before, 0) bufferpos = position if offset == 0 else read_before self.fp.seek(offset) return position, bufferpos, self.read()
python
def search(self, text): """ Find text in log file from current position returns a tuple containing: absolute position, position in result buffer, result buffer (the actual file contents) """ key = hash(text) searcher = self._searchers.get(key) if not searcher: searcher = ReverseFileSearcher(self.filename, text) self._searchers[key] = searcher position = searcher.find() if position < 0: # reset the searcher to start from the tail again. searcher.reset() return -1, -1, '' # try to get some content from before and after the result's position read_before = self.buffer_size / 2 offset = max(position - read_before, 0) bufferpos = position if offset == 0 else read_before self.fp.seek(offset) return position, bufferpos, self.read()
['def', 'search', '(', 'self', ',', 'text', ')', ':', 'key', '=', 'hash', '(', 'text', ')', 'searcher', '=', 'self', '.', '_searchers', '.', 'get', '(', 'key', ')', 'if', 'not', 'searcher', ':', 'searcher', '=', 'ReverseFileSearcher', '(', 'self', '.', 'filename', ',', 'text', ')', 'self', '.', '_searchers', '[', 'key', ']', '=', 'searcher', 'position', '=', 'searcher', '.', 'find', '(', ')', 'if', 'position', '<', '0', ':', '# reset the searcher to start from the tail again.', 'searcher', '.', 'reset', '(', ')', 'return', '-', '1', ',', '-', '1', ',', "''", "# try to get some content from before and after the result's position", 'read_before', '=', 'self', '.', 'buffer_size', '/', '2', 'offset', '=', 'max', '(', 'position', '-', 'read_before', ',', '0', ')', 'bufferpos', '=', 'position', 'if', 'offset', '==', '0', 'else', 'read_before', 'self', '.', 'fp', '.', 'seek', '(', 'offset', ')', 'return', 'position', ',', 'bufferpos', ',', 'self', '.', 'read', '(', ')']
Find text in log file from current position returns a tuple containing: absolute position, position in result buffer, result buffer (the actual file contents)
['Find', 'text', 'in', 'log', 'file', 'from', 'current', 'position']
train
https://github.com/Jahaja/psdash/blob/4f1784742666045a3c33bd471dbe489b4f5c7699/psdash/log.py#L114-L140
1,977
sdispater/orator
orator/migrations/migrator.py
Migrator.run
def run(self, path, pretend=False): """ Run the outstanding migrations for a given path. :param path: The path :type path: str :param pretend: Whether we execute the migrations as dry-run :type pretend: bool """ self._notes = [] files = self._get_migration_files(path) ran = self._repository.get_ran() migrations = [f for f in files if f not in ran] self.run_migration_list(path, migrations, pretend)
python
def run(self, path, pretend=False): """ Run the outstanding migrations for a given path. :param path: The path :type path: str :param pretend: Whether we execute the migrations as dry-run :type pretend: bool """ self._notes = [] files = self._get_migration_files(path) ran = self._repository.get_ran() migrations = [f for f in files if f not in ran] self.run_migration_list(path, migrations, pretend)
['def', 'run', '(', 'self', ',', 'path', ',', 'pretend', '=', 'False', ')', ':', 'self', '.', '_notes', '=', '[', ']', 'files', '=', 'self', '.', '_get_migration_files', '(', 'path', ')', 'ran', '=', 'self', '.', '_repository', '.', 'get_ran', '(', ')', 'migrations', '=', '[', 'f', 'for', 'f', 'in', 'files', 'if', 'f', 'not', 'in', 'ran', ']', 'self', '.', 'run_migration_list', '(', 'path', ',', 'migrations', ',', 'pretend', ')']
Run the outstanding migrations for a given path. :param path: The path :type path: str :param pretend: Whether we execute the migrations as dry-run :type pretend: bool
['Run', 'the', 'outstanding', 'migrations', 'for', 'a', 'given', 'path', '.']
train
https://github.com/sdispater/orator/blob/bd90bf198ee897751848f9a92e49d18e60a74136/orator/migrations/migrator.py#L34-L51
1,978
consbio/parserutils
parserutils/elements.py
iter_elements
def iter_elements(element_function, parent_to_parse, **kwargs): """ Applies element_function to each of the sub-elements in parent_to_parse. The passed in function must take at least one element, and an optional list of kwargs which are relevant to each of the elements in the list: def elem_func(each_elem, **kwargs) """ parent = get_element(parent_to_parse) if not hasattr(element_function, '__call__'): return parent for child in ([] if parent is None else parent): element_function(child, **kwargs) return parent
python
def iter_elements(element_function, parent_to_parse, **kwargs): """ Applies element_function to each of the sub-elements in parent_to_parse. The passed in function must take at least one element, and an optional list of kwargs which are relevant to each of the elements in the list: def elem_func(each_elem, **kwargs) """ parent = get_element(parent_to_parse) if not hasattr(element_function, '__call__'): return parent for child in ([] if parent is None else parent): element_function(child, **kwargs) return parent
['def', 'iter_elements', '(', 'element_function', ',', 'parent_to_parse', ',', '*', '*', 'kwargs', ')', ':', 'parent', '=', 'get_element', '(', 'parent_to_parse', ')', 'if', 'not', 'hasattr', '(', 'element_function', ',', "'__call__'", ')', ':', 'return', 'parent', 'for', 'child', 'in', '(', '[', ']', 'if', 'parent', 'is', 'None', 'else', 'parent', ')', ':', 'element_function', '(', 'child', ',', '*', '*', 'kwargs', ')', 'return', 'parent']
Applies element_function to each of the sub-elements in parent_to_parse. The passed in function must take at least one element, and an optional list of kwargs which are relevant to each of the elements in the list: def elem_func(each_elem, **kwargs)
['Applies', 'element_function', 'to', 'each', 'of', 'the', 'sub', '-', 'elements', 'in', 'parent_to_parse', '.', 'The', 'passed', 'in', 'function', 'must', 'take', 'at', 'least', 'one', 'element', 'and', 'an', 'optional', 'list', 'of', 'kwargs', 'which', 'are', 'relevant', 'to', 'each', 'of', 'the', 'elements', 'in', 'the', 'list', ':', 'def', 'elem_func', '(', 'each_elem', '**', 'kwargs', ')']
train
https://github.com/consbio/parserutils/blob/f13f80db99ed43479336b116e38512e3566e4623/parserutils/elements.py#L911-L927
1,979
mitsei/dlkit
dlkit/json_/assessment/sessions.py
ItemBankSession.get_item_ids_by_banks
def get_item_ids_by_banks(self, bank_ids): """Gets the list of ``Item Ids`` corresponding to a list of ``Banks``. arg: bank_ids (osid.id.IdList): list of bank ``Ids`` return: (osid.id.IdList) - list of bank ``Ids`` raise: NullArgument - ``bank_ids`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - assessment failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceBinSession.get_resource_ids_by_bins id_list = [] for item in self.get_items_by_banks(bank_ids): id_list.append(item.get_id()) return IdList(id_list)
python
def get_item_ids_by_banks(self, bank_ids): """Gets the list of ``Item Ids`` corresponding to a list of ``Banks``. arg: bank_ids (osid.id.IdList): list of bank ``Ids`` return: (osid.id.IdList) - list of bank ``Ids`` raise: NullArgument - ``bank_ids`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - assessment failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceBinSession.get_resource_ids_by_bins id_list = [] for item in self.get_items_by_banks(bank_ids): id_list.append(item.get_id()) return IdList(id_list)
['def', 'get_item_ids_by_banks', '(', 'self', ',', 'bank_ids', ')', ':', '# Implemented from template for', '# osid.resource.ResourceBinSession.get_resource_ids_by_bins', 'id_list', '=', '[', ']', 'for', 'item', 'in', 'self', '.', 'get_items_by_banks', '(', 'bank_ids', ')', ':', 'id_list', '.', 'append', '(', 'item', '.', 'get_id', '(', ')', ')', 'return', 'IdList', '(', 'id_list', ')']
Gets the list of ``Item Ids`` corresponding to a list of ``Banks``. arg: bank_ids (osid.id.IdList): list of bank ``Ids`` return: (osid.id.IdList) - list of bank ``Ids`` raise: NullArgument - ``bank_ids`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - assessment failure *compliance: mandatory -- This method must be implemented.*
['Gets', 'the', 'list', 'of', 'Item', 'Ids', 'corresponding', 'to', 'a', 'list', 'of', 'Banks', '.']
train
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/assessment/sessions.py#L3451-L3467
1,980
biocore/mustached-octo-ironman
moi/group.py
Group.close
def close(self): """Unsubscribe the group and all jobs being listened too""" for channel in self._listening_to: self.toredis.unsubscribe(channel) self.toredis.unsubscribe(self.group_pubsub)
python
def close(self): """Unsubscribe the group and all jobs being listened too""" for channel in self._listening_to: self.toredis.unsubscribe(channel) self.toredis.unsubscribe(self.group_pubsub)
['def', 'close', '(', 'self', ')', ':', 'for', 'channel', 'in', 'self', '.', '_listening_to', ':', 'self', '.', 'toredis', '.', 'unsubscribe', '(', 'channel', ')', 'self', '.', 'toredis', '.', 'unsubscribe', '(', 'self', '.', 'group_pubsub', ')']
Unsubscribe the group and all jobs being listened too
['Unsubscribe', 'the', 'group', 'and', 'all', 'jobs', 'being', 'listened', 'too']
train
https://github.com/biocore/mustached-octo-ironman/blob/54128d8fdff327e1b7ffd9bb77bf38c3df9526d7/moi/group.py#L109-L113
1,981
inveniosoftware/invenio-records-rest
invenio_records_rest/schemas/json.py
StrictKeysMixin.check_unknown_fields
def check_unknown_fields(self, data, original_data): """Check for unknown keys.""" if isinstance(original_data, list): for elem in original_data: self.check_unknown_fields(data, elem) else: for key in original_data: if key not in [ self.fields[field].attribute or field for field in self.fields ]: raise ValidationError( 'Unknown field name {}'.format(key), field_names=[key])
python
def check_unknown_fields(self, data, original_data): """Check for unknown keys.""" if isinstance(original_data, list): for elem in original_data: self.check_unknown_fields(data, elem) else: for key in original_data: if key not in [ self.fields[field].attribute or field for field in self.fields ]: raise ValidationError( 'Unknown field name {}'.format(key), field_names=[key])
['def', 'check_unknown_fields', '(', 'self', ',', 'data', ',', 'original_data', ')', ':', 'if', 'isinstance', '(', 'original_data', ',', 'list', ')', ':', 'for', 'elem', 'in', 'original_data', ':', 'self', '.', 'check_unknown_fields', '(', 'data', ',', 'elem', ')', 'else', ':', 'for', 'key', 'in', 'original_data', ':', 'if', 'key', 'not', 'in', '[', 'self', '.', 'fields', '[', 'field', ']', '.', 'attribute', 'or', 'field', 'for', 'field', 'in', 'self', '.', 'fields', ']', ':', 'raise', 'ValidationError', '(', "'Unknown field name {}'", '.', 'format', '(', 'key', ')', ',', 'field_names', '=', '[', 'key', ']', ')']
Check for unknown keys.
['Check', 'for', 'unknown', 'keys', '.']
train
https://github.com/inveniosoftware/invenio-records-rest/blob/e7b63c5f72cef03d06d3f1b4c12c0d37e3a628b9/invenio_records_rest/schemas/json.py#L24-L36
1,982
genialis/resolwe-runtime-utils
resolwe_runtime_utils.py
save_dir
def save_dir(key, dir_path, *refs): """Convert the given parameters to a special JSON object. JSON object is of the form: { key: {"dir": dir_path}}, or { key: {"dir": dir_path, "refs": [refs[0], refs[1], ... ]}} """ if not os.path.isdir(dir_path): return error( "Output '{}' set to a missing directory: '{}'.".format(key, dir_path) ) result = {key: {"dir": dir_path}} if refs: missing_refs = [ ref for ref in refs if not (os.path.isfile(ref) or os.path.isdir(ref)) ] if len(missing_refs) > 0: return error( "Output '{}' set to missing references: '{}'.".format( key, ', '.join(missing_refs) ) ) result[key]["refs"] = refs return json.dumps(result)
python
def save_dir(key, dir_path, *refs): """Convert the given parameters to a special JSON object. JSON object is of the form: { key: {"dir": dir_path}}, or { key: {"dir": dir_path, "refs": [refs[0], refs[1], ... ]}} """ if not os.path.isdir(dir_path): return error( "Output '{}' set to a missing directory: '{}'.".format(key, dir_path) ) result = {key: {"dir": dir_path}} if refs: missing_refs = [ ref for ref in refs if not (os.path.isfile(ref) or os.path.isdir(ref)) ] if len(missing_refs) > 0: return error( "Output '{}' set to missing references: '{}'.".format( key, ', '.join(missing_refs) ) ) result[key]["refs"] = refs return json.dumps(result)
['def', 'save_dir', '(', 'key', ',', 'dir_path', ',', '*', 'refs', ')', ':', 'if', 'not', 'os', '.', 'path', '.', 'isdir', '(', 'dir_path', ')', ':', 'return', 'error', '(', '"Output \'{}\' set to a missing directory: \'{}\'."', '.', 'format', '(', 'key', ',', 'dir_path', ')', ')', 'result', '=', '{', 'key', ':', '{', '"dir"', ':', 'dir_path', '}', '}', 'if', 'refs', ':', 'missing_refs', '=', '[', 'ref', 'for', 'ref', 'in', 'refs', 'if', 'not', '(', 'os', '.', 'path', '.', 'isfile', '(', 'ref', ')', 'or', 'os', '.', 'path', '.', 'isdir', '(', 'ref', ')', ')', ']', 'if', 'len', '(', 'missing_refs', ')', '>', '0', ':', 'return', 'error', '(', '"Output \'{}\' set to missing references: \'{}\'."', '.', 'format', '(', 'key', ',', "', '", '.', 'join', '(', 'missing_refs', ')', ')', ')', 'result', '[', 'key', ']', '[', '"refs"', ']', '=', 'refs', 'return', 'json', '.', 'dumps', '(', 'result', ')']
Convert the given parameters to a special JSON object. JSON object is of the form: { key: {"dir": dir_path}}, or { key: {"dir": dir_path, "refs": [refs[0], refs[1], ... ]}}
['Convert', 'the', 'given', 'parameters', 'to', 'a', 'special', 'JSON', 'object', '.']
train
https://github.com/genialis/resolwe-runtime-utils/blob/5657d7cf981972a5259b9b475eae220479401001/resolwe_runtime_utils.py#L146-L173
1,983
CalebBell/fluids
fluids/fittings.py
K_tilting_disk_check_valve_Crane
def K_tilting_disk_check_valve_Crane(D, angle, fd=None): r'''Returns the loss coefficient for a tilting disk check valve as shown in [1]_. Results are specified in [1]_ to be for the disk's resting position to be at 5 or 25 degrees to the flow direction. The model is implemented here so as to switch to the higher loss 15 degree coefficients at 10 degrees, and use the lesser coefficients for any angle under 10 degrees. .. math:: K = N\cdot f_d N is obtained from the following table: +--------+-------------+-------------+ | | angle = 5 ° | angle = 15° | +========+=============+=============+ | 2-8" | 40 | 120 | +--------+-------------+-------------+ | 10-14" | 30 | 90 | +--------+-------------+-------------+ | 16-48" | 20 | 60 | +--------+-------------+-------------+ The actual change of coefficients happen at <= 9" and <= 15". Parameters ---------- D : float Diameter of the pipe section the valve in mounted in; the same as the line size [m] angle : float Angle of the tilting disk to the flow direction; nominally 5 or 15 degrees [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_tilting_disk_check_valve_Crane(.01, 5) 1.1626516551826345 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D) if angle < 10: # 5 degree case if D <= 0.2286: # 2-8 inches, split at 9 inch return 40*fd elif D <= 0.381: # 10-14 inches, split at 15 inch return 30*fd else: # 16-18 inches return 20*fd else: # 15 degree case if D < 0.2286: # 2-8 inches return 120*fd elif D < 0.381: # 10-14 inches return 90*fd else: # 16-18 inches return 60*fd
python
def K_tilting_disk_check_valve_Crane(D, angle, fd=None): r'''Returns the loss coefficient for a tilting disk check valve as shown in [1]_. Results are specified in [1]_ to be for the disk's resting position to be at 5 or 25 degrees to the flow direction. The model is implemented here so as to switch to the higher loss 15 degree coefficients at 10 degrees, and use the lesser coefficients for any angle under 10 degrees. .. math:: K = N\cdot f_d N is obtained from the following table: +--------+-------------+-------------+ | | angle = 5 ° | angle = 15° | +========+=============+=============+ | 2-8" | 40 | 120 | +--------+-------------+-------------+ | 10-14" | 30 | 90 | +--------+-------------+-------------+ | 16-48" | 20 | 60 | +--------+-------------+-------------+ The actual change of coefficients happen at <= 9" and <= 15". Parameters ---------- D : float Diameter of the pipe section the valve in mounted in; the same as the line size [m] angle : float Angle of the tilting disk to the flow direction; nominally 5 or 15 degrees [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_tilting_disk_check_valve_Crane(.01, 5) 1.1626516551826345 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D) if angle < 10: # 5 degree case if D <= 0.2286: # 2-8 inches, split at 9 inch return 40*fd elif D <= 0.381: # 10-14 inches, split at 15 inch return 30*fd else: # 16-18 inches return 20*fd else: # 15 degree case if D < 0.2286: # 2-8 inches return 120*fd elif D < 0.381: # 10-14 inches return 90*fd else: # 16-18 inches return 60*fd
['def', 'K_tilting_disk_check_valve_Crane', '(', 'D', ',', 'angle', ',', 'fd', '=', 'None', ')', ':', 'if', 'fd', 'is', 'None', ':', 'fd', '=', 'ft_Crane', '(', 'D', ')', 'if', 'angle', '<', '10', ':', '# 5 degree case', 'if', 'D', '<=', '0.2286', ':', '# 2-8 inches, split at 9 inch', 'return', '40', '*', 'fd', 'elif', 'D', '<=', '0.381', ':', '# 10-14 inches, split at 15 inch', 'return', '30', '*', 'fd', 'else', ':', '# 16-18 inches', 'return', '20', '*', 'fd', 'else', ':', '# 15 degree case', 'if', 'D', '<', '0.2286', ':', '# 2-8 inches', 'return', '120', '*', 'fd', 'elif', 'D', '<', '0.381', ':', '# 10-14 inches', 'return', '90', '*', 'fd', 'else', ':', '# 16-18 inches', 'return', '60', '*', 'fd']
r'''Returns the loss coefficient for a tilting disk check valve as shown in [1]_. Results are specified in [1]_ to be for the disk's resting position to be at 5 or 25 degrees to the flow direction. The model is implemented here so as to switch to the higher loss 15 degree coefficients at 10 degrees, and use the lesser coefficients for any angle under 10 degrees. .. math:: K = N\cdot f_d N is obtained from the following table: +--------+-------------+-------------+ | | angle = 5 ° | angle = 15° | +========+=============+=============+ | 2-8" | 40 | 120 | +--------+-------------+-------------+ | 10-14" | 30 | 90 | +--------+-------------+-------------+ | 16-48" | 20 | 60 | +--------+-------------+-------------+ The actual change of coefficients happen at <= 9" and <= 15". Parameters ---------- D : float Diameter of the pipe section the valve in mounted in; the same as the line size [m] angle : float Angle of the tilting disk to the flow direction; nominally 5 or 15 degrees [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_tilting_disk_check_valve_Crane(.01, 5) 1.1626516551826345 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009.
['r', 'Returns', 'the', 'loss', 'coefficient', 'for', 'a', 'tilting', 'disk', 'check', 'valve', 'as', 'shown', 'in', '[', '1', ']', '_', '.', 'Results', 'are', 'specified', 'in', '[', '1', ']', '_', 'to', 'be', 'for', 'the', 'disk', 's', 'resting', 'position', 'to', 'be', 'at', '5', 'or', '25', 'degrees', 'to', 'the', 'flow', 'direction', '.', 'The', 'model', 'is', 'implemented', 'here', 'so', 'as', 'to', 'switch', 'to', 'the', 'higher', 'loss', '15', 'degree', 'coefficients', 'at', '10', 'degrees', 'and', 'use', 'the', 'lesser', 'coefficients', 'for', 'any', 'angle', 'under', '10', 'degrees', '.', '..', 'math', '::', 'K', '=', 'N', '\\', 'cdot', 'f_d', 'N', 'is', 'obtained', 'from', 'the', 'following', 'table', ':']
train
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/fittings.py#L3536-L3617
1,984
AustralianSynchrotron/lightflow
lightflow/models/datastore.py
DataStore.exists
def exists(self, workflow_id): """ Checks whether a document with the specified workflow id already exists. Args: workflow_id (str): The workflow id that should be checked. Raises: DataStoreNotConnected: If the data store is not connected to the server. Returns: bool: ``True`` if a document with the specified workflow id exists. """ try: db = self._client[self.database] col = db[WORKFLOW_DATA_COLLECTION_NAME] return col.find_one({"_id": ObjectId(workflow_id)}) is not None except ConnectionFailure: raise DataStoreNotConnected()
python
def exists(self, workflow_id): """ Checks whether a document with the specified workflow id already exists. Args: workflow_id (str): The workflow id that should be checked. Raises: DataStoreNotConnected: If the data store is not connected to the server. Returns: bool: ``True`` if a document with the specified workflow id exists. """ try: db = self._client[self.database] col = db[WORKFLOW_DATA_COLLECTION_NAME] return col.find_one({"_id": ObjectId(workflow_id)}) is not None except ConnectionFailure: raise DataStoreNotConnected()
['def', 'exists', '(', 'self', ',', 'workflow_id', ')', ':', 'try', ':', 'db', '=', 'self', '.', '_client', '[', 'self', '.', 'database', ']', 'col', '=', 'db', '[', 'WORKFLOW_DATA_COLLECTION_NAME', ']', 'return', 'col', '.', 'find_one', '(', '{', '"_id"', ':', 'ObjectId', '(', 'workflow_id', ')', '}', ')', 'is', 'not', 'None', 'except', 'ConnectionFailure', ':', 'raise', 'DataStoreNotConnected', '(', ')']
Checks whether a document with the specified workflow id already exists. Args: workflow_id (str): The workflow id that should be checked. Raises: DataStoreNotConnected: If the data store is not connected to the server. Returns: bool: ``True`` if a document with the specified workflow id exists.
['Checks', 'whether', 'a', 'document', 'with', 'the', 'specified', 'workflow', 'id', 'already', 'exists', '.']
train
https://github.com/AustralianSynchrotron/lightflow/blob/dc53dbc1d961e20fb144273baca258060705c03e/lightflow/models/datastore.py#L139-L157
1,985
alexandrovteam/pyimzML
pyimzml/ImzMLParser.py
ImzMLParser.__iter_read_spectrum_meta
def __iter_read_spectrum_meta(self): """ This method should only be called by __init__. Reads the data formats, coordinates and offsets from the .imzML file and initializes the respective attributes. While traversing the XML tree, the per-spectrum metadata is pruned, i.e. the <spectrumList> element(s) are left behind empty. Supported accession values for the number formats: "MS:1000521", "MS:1000523", "IMS:1000141" or "IMS:1000142". The string values are "32-bit float", "64-bit float", "32-bit integer", "64-bit integer". """ mz_group = int_group = None slist = None elem_iterator = self.iterparse(self.filename, events=("start", "end")) if sys.version_info > (3,): _, self.root = next(elem_iterator) else: _, self.root = elem_iterator.next() for event, elem in elem_iterator: if elem.tag == self.sl + "spectrumList" and event == "start": slist = elem elif elem.tag == self.sl + "spectrum" and event == "end": self.__process_spectrum(elem) slist.remove(elem) elif elem.tag == self.sl + "referenceableParamGroup" and event == "end": for param in elem: if param.attrib["name"] == "m/z array": self.mzGroupId = elem.attrib['id'] mz_group = elem elif param.attrib["name"] == "intensity array": self.intGroupId = elem.attrib['id'] int_group = elem self.__assign_precision(int_group, mz_group) self.__fix_offsets()
python
def __iter_read_spectrum_meta(self): """ This method should only be called by __init__. Reads the data formats, coordinates and offsets from the .imzML file and initializes the respective attributes. While traversing the XML tree, the per-spectrum metadata is pruned, i.e. the <spectrumList> element(s) are left behind empty. Supported accession values for the number formats: "MS:1000521", "MS:1000523", "IMS:1000141" or "IMS:1000142". The string values are "32-bit float", "64-bit float", "32-bit integer", "64-bit integer". """ mz_group = int_group = None slist = None elem_iterator = self.iterparse(self.filename, events=("start", "end")) if sys.version_info > (3,): _, self.root = next(elem_iterator) else: _, self.root = elem_iterator.next() for event, elem in elem_iterator: if elem.tag == self.sl + "spectrumList" and event == "start": slist = elem elif elem.tag == self.sl + "spectrum" and event == "end": self.__process_spectrum(elem) slist.remove(elem) elif elem.tag == self.sl + "referenceableParamGroup" and event == "end": for param in elem: if param.attrib["name"] == "m/z array": self.mzGroupId = elem.attrib['id'] mz_group = elem elif param.attrib["name"] == "intensity array": self.intGroupId = elem.attrib['id'] int_group = elem self.__assign_precision(int_group, mz_group) self.__fix_offsets()
['def', '__iter_read_spectrum_meta', '(', 'self', ')', ':', 'mz_group', '=', 'int_group', '=', 'None', 'slist', '=', 'None', 'elem_iterator', '=', 'self', '.', 'iterparse', '(', 'self', '.', 'filename', ',', 'events', '=', '(', '"start"', ',', '"end"', ')', ')', 'if', 'sys', '.', 'version_info', '>', '(', '3', ',', ')', ':', '_', ',', 'self', '.', 'root', '=', 'next', '(', 'elem_iterator', ')', 'else', ':', '_', ',', 'self', '.', 'root', '=', 'elem_iterator', '.', 'next', '(', ')', 'for', 'event', ',', 'elem', 'in', 'elem_iterator', ':', 'if', 'elem', '.', 'tag', '==', 'self', '.', 'sl', '+', '"spectrumList"', 'and', 'event', '==', '"start"', ':', 'slist', '=', 'elem', 'elif', 'elem', '.', 'tag', '==', 'self', '.', 'sl', '+', '"spectrum"', 'and', 'event', '==', '"end"', ':', 'self', '.', '__process_spectrum', '(', 'elem', ')', 'slist', '.', 'remove', '(', 'elem', ')', 'elif', 'elem', '.', 'tag', '==', 'self', '.', 'sl', '+', '"referenceableParamGroup"', 'and', 'event', '==', '"end"', ':', 'for', 'param', 'in', 'elem', ':', 'if', 'param', '.', 'attrib', '[', '"name"', ']', '==', '"m/z array"', ':', 'self', '.', 'mzGroupId', '=', 'elem', '.', 'attrib', '[', "'id'", ']', 'mz_group', '=', 'elem', 'elif', 'param', '.', 'attrib', '[', '"name"', ']', '==', '"intensity array"', ':', 'self', '.', 'intGroupId', '=', 'elem', '.', 'attrib', '[', "'id'", ']', 'int_group', '=', 'elem', 'self', '.', '__assign_precision', '(', 'int_group', ',', 'mz_group', ')', 'self', '.', '__fix_offsets', '(', ')']
This method should only be called by __init__. Reads the data formats, coordinates and offsets from the .imzML file and initializes the respective attributes. While traversing the XML tree, the per-spectrum metadata is pruned, i.e. the <spectrumList> element(s) are left behind empty. Supported accession values for the number formats: "MS:1000521", "MS:1000523", "IMS:1000141" or "IMS:1000142". The string values are "32-bit float", "64-bit float", "32-bit integer", "64-bit integer".
['This', 'method', 'should', 'only', 'be', 'called', 'by', '__init__', '.', 'Reads', 'the', 'data', 'formats', 'coordinates', 'and', 'offsets', 'from', 'the', '.', 'imzML', 'file', 'and', 'initializes', 'the', 'respective', 'attributes', '.', 'While', 'traversing', 'the', 'XML', 'tree', 'the', 'per', '-', 'spectrum', 'metadata', 'is', 'pruned', 'i', '.', 'e', '.', 'the', '<spectrumList', '>', 'element', '(', 's', ')', 'are', 'left', 'behind', 'empty', '.']
train
https://github.com/alexandrovteam/pyimzML/blob/baae0bea7279f9439113d6b2f61be528c0462b3f/pyimzml/ImzMLParser.py#L115-L148
1,986
materialsproject/pymatgen
pymatgen/electronic_structure/plotter.py
BoltztrapPlotter.plot_power_factor_mu
def plot_power_factor_mu(self, temp=600, output='eig', relaxation_time=1e-14, xlim=None): """ Plot the power factor in function of Fermi level. Semi-log plot Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object """ import matplotlib.pyplot as plt plt.figure(figsize=(9, 7)) pf = self._bz.get_power_factor(relaxation_time=relaxation_time, output=output, doping_levels=False)[ temp] plt.semilogy(self._bz.mu_steps, pf, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['PF$_1$', 'PF$_2$', 'PF$_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim) plt.ylabel("Power factor, ($\\mu$W/(mK$^2$))", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) plt.tight_layout() return plt
python
def plot_power_factor_mu(self, temp=600, output='eig', relaxation_time=1e-14, xlim=None): """ Plot the power factor in function of Fermi level. Semi-log plot Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object """ import matplotlib.pyplot as plt plt.figure(figsize=(9, 7)) pf = self._bz.get_power_factor(relaxation_time=relaxation_time, output=output, doping_levels=False)[ temp] plt.semilogy(self._bz.mu_steps, pf, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['PF$_1$', 'PF$_2$', 'PF$_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim) plt.ylabel("Power factor, ($\\mu$W/(mK$^2$))", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) plt.tight_layout() return plt
['def', 'plot_power_factor_mu', '(', 'self', ',', 'temp', '=', '600', ',', 'output', '=', "'eig'", ',', 'relaxation_time', '=', '1e-14', ',', 'xlim', '=', 'None', ')', ':', 'import', 'matplotlib', '.', 'pyplot', 'as', 'plt', 'plt', '.', 'figure', '(', 'figsize', '=', '(', '9', ',', '7', ')', ')', 'pf', '=', 'self', '.', '_bz', '.', 'get_power_factor', '(', 'relaxation_time', '=', 'relaxation_time', ',', 'output', '=', 'output', ',', 'doping_levels', '=', 'False', ')', '[', 'temp', ']', 'plt', '.', 'semilogy', '(', 'self', '.', '_bz', '.', 'mu_steps', ',', 'pf', ',', 'linewidth', '=', '3.0', ')', 'self', '.', '_plot_bg_limits', '(', ')', 'self', '.', '_plot_doping', '(', 'temp', ')', 'if', 'output', '==', "'eig'", ':', 'plt', '.', 'legend', '(', '[', "'PF$_1$'", ',', "'PF$_2$'", ',', "'PF$_3$'", ']', ')', 'if', 'xlim', 'is', 'None', ':', 'plt', '.', 'xlim', '(', '-', '0.5', ',', 'self', '.', '_bz', '.', 'gap', '+', '0.5', ')', 'else', ':', 'plt', '.', 'xlim', '(', 'xlim', ')', 'plt', '.', 'ylabel', '(', '"Power factor, ($\\\\mu$W/(mK$^2$))"', ',', 'fontsize', '=', '30.0', ')', 'plt', '.', 'xlabel', '(', '"E-E$_f$ (eV)"', ',', 'fontsize', '=', '30.0', ')', 'plt', '.', 'xticks', '(', 'fontsize', '=', '25', ')', 'plt', '.', 'yticks', '(', 'fontsize', '=', '25', ')', 'plt', '.', 'tight_layout', '(', ')', 'return', 'plt']
Plot the power factor in function of Fermi level. Semi-log plot Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object
['Plot', 'the', 'power', 'factor', 'in', 'function', 'of', 'Fermi', 'level', '.', 'Semi', '-', 'log', 'plot']
train
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/electronic_structure/plotter.py#L2797-L2831
1,987
nutechsoftware/alarmdecoder
alarmdecoder/decoder.py
AlarmDecoder._handle_rfx
def _handle_rfx(self, data): """ Handle RF messages. :param data: RF message to parse :type data: string :returns: :py:class:`~alarmdecoder.messages.RFMessage` """ msg = RFMessage(data) self.on_rfx_message(message=msg) return msg
python
def _handle_rfx(self, data): """ Handle RF messages. :param data: RF message to parse :type data: string :returns: :py:class:`~alarmdecoder.messages.RFMessage` """ msg = RFMessage(data) self.on_rfx_message(message=msg) return msg
['def', '_handle_rfx', '(', 'self', ',', 'data', ')', ':', 'msg', '=', 'RFMessage', '(', 'data', ')', 'self', '.', 'on_rfx_message', '(', 'message', '=', 'msg', ')', 'return', 'msg']
Handle RF messages. :param data: RF message to parse :type data: string :returns: :py:class:`~alarmdecoder.messages.RFMessage`
['Handle', 'RF', 'messages', '.']
train
https://github.com/nutechsoftware/alarmdecoder/blob/b0c014089e24455228cb4402cf30ba98157578cd/alarmdecoder/decoder.py#L499-L512
1,988
ska-sa/katcp-python
katcp/client.py
DeviceClient.until_protocol
def until_protocol(self, timeout=None): """Return future that resolves after receipt of katcp protocol info. If the returned future resolves, the server's protocol information is available in the ProtocolFlags instance self.protocol_flags. """ t0 = self.ioloop.time() yield self.until_running(timeout=timeout) t1 = self.ioloop.time() if timeout: timedelta = timeout - (t1 - t0) else: timedelta = None assert get_thread_ident() == self.ioloop_thread_id yield self._received_protocol_info.until_set(timeout=timedelta)
python
def until_protocol(self, timeout=None): """Return future that resolves after receipt of katcp protocol info. If the returned future resolves, the server's protocol information is available in the ProtocolFlags instance self.protocol_flags. """ t0 = self.ioloop.time() yield self.until_running(timeout=timeout) t1 = self.ioloop.time() if timeout: timedelta = timeout - (t1 - t0) else: timedelta = None assert get_thread_ident() == self.ioloop_thread_id yield self._received_protocol_info.until_set(timeout=timedelta)
['def', 'until_protocol', '(', 'self', ',', 'timeout', '=', 'None', ')', ':', 't0', '=', 'self', '.', 'ioloop', '.', 'time', '(', ')', 'yield', 'self', '.', 'until_running', '(', 'timeout', '=', 'timeout', ')', 't1', '=', 'self', '.', 'ioloop', '.', 'time', '(', ')', 'if', 'timeout', ':', 'timedelta', '=', 'timeout', '-', '(', 't1', '-', 't0', ')', 'else', ':', 'timedelta', '=', 'None', 'assert', 'get_thread_ident', '(', ')', '==', 'self', '.', 'ioloop_thread_id', 'yield', 'self', '.', '_received_protocol_info', '.', 'until_set', '(', 'timeout', '=', 'timedelta', ')']
Return future that resolves after receipt of katcp protocol info. If the returned future resolves, the server's protocol information is available in the ProtocolFlags instance self.protocol_flags.
['Return', 'future', 'that', 'resolves', 'after', 'receipt', 'of', 'katcp', 'protocol', 'info', '.']
train
https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/client.py#L972-L987
1,989
Tanganelli/CoAPthon3
coapthon/layers/messagelayer.py
MessageLayer.fetch_mid
def fetch_mid(self): """ Gets the next valid MID. :return: the mid to use """ current_mid = self._current_mid self._current_mid += 1 self._current_mid %= 65535 return current_mid
python
def fetch_mid(self): """ Gets the next valid MID. :return: the mid to use """ current_mid = self._current_mid self._current_mid += 1 self._current_mid %= 65535 return current_mid
['def', 'fetch_mid', '(', 'self', ')', ':', 'current_mid', '=', 'self', '.', '_current_mid', 'self', '.', '_current_mid', '+=', '1', 'self', '.', '_current_mid', '%=', '65535', 'return', 'current_mid']
Gets the next valid MID. :return: the mid to use
['Gets', 'the', 'next', 'valid', 'MID', '.']
train
https://github.com/Tanganelli/CoAPthon3/blob/985763bfe2eb9e00f49ec100c5b8877c2ed7d531/coapthon/layers/messagelayer.py#L40-L49
1,990
doloopwhile/PyExecJS
execjs/_external_runtime.py
_find_executable
def _find_executable(prog, pathext=("",)): """protected""" pathlist = _decode_if_not_text(os.environ.get('PATH', '')).split(os.pathsep) for dir in pathlist: for ext in pathext: filename = os.path.join(dir, prog + ext) try: st = os.stat(filename) except os.error: continue if stat.S_ISREG(st.st_mode) and (stat.S_IMODE(st.st_mode) & 0o111): return filename return None
python
def _find_executable(prog, pathext=("",)): """protected""" pathlist = _decode_if_not_text(os.environ.get('PATH', '')).split(os.pathsep) for dir in pathlist: for ext in pathext: filename = os.path.join(dir, prog + ext) try: st = os.stat(filename) except os.error: continue if stat.S_ISREG(st.st_mode) and (stat.S_IMODE(st.st_mode) & 0o111): return filename return None
['def', '_find_executable', '(', 'prog', ',', 'pathext', '=', '(', '""', ',', ')', ')', ':', 'pathlist', '=', '_decode_if_not_text', '(', 'os', '.', 'environ', '.', 'get', '(', "'PATH'", ',', "''", ')', ')', '.', 'split', '(', 'os', '.', 'pathsep', ')', 'for', 'dir', 'in', 'pathlist', ':', 'for', 'ext', 'in', 'pathext', ':', 'filename', '=', 'os', '.', 'path', '.', 'join', '(', 'dir', ',', 'prog', '+', 'ext', ')', 'try', ':', 'st', '=', 'os', '.', 'stat', '(', 'filename', ')', 'except', 'os', '.', 'error', ':', 'continue', 'if', 'stat', '.', 'S_ISREG', '(', 'st', '.', 'st_mode', ')', 'and', '(', 'stat', '.', 'S_IMODE', '(', 'st', '.', 'st_mode', ')', '&', '0o111', ')', ':', 'return', 'filename', 'return', 'None']
protected
['protected']
train
https://github.com/doloopwhile/PyExecJS/blob/e300f0a8120c0b7b70eed0758c3c85a9bd1a7b9f/execjs/_external_runtime.py#L182-L195
1,991
Microsoft/azure-devops-python-api
azure-devops/azure/devops/v5_1/graph/graph_client.py
GraphClient.set_avatar
def set_avatar(self, avatar, subject_descriptor): """SetAvatar. [Preview API] :param :class:`<Avatar> <azure.devops.v5_1.graph.models.Avatar>` avatar: :param str subject_descriptor: """ route_values = {} if subject_descriptor is not None: route_values['subjectDescriptor'] = self._serialize.url('subject_descriptor', subject_descriptor, 'str') content = self._serialize.body(avatar, 'Avatar') self._send(http_method='PUT', location_id='801eaf9c-0585-4be8-9cdb-b0efa074de91', version='5.1-preview.1', route_values=route_values, content=content)
python
def set_avatar(self, avatar, subject_descriptor): """SetAvatar. [Preview API] :param :class:`<Avatar> <azure.devops.v5_1.graph.models.Avatar>` avatar: :param str subject_descriptor: """ route_values = {} if subject_descriptor is not None: route_values['subjectDescriptor'] = self._serialize.url('subject_descriptor', subject_descriptor, 'str') content = self._serialize.body(avatar, 'Avatar') self._send(http_method='PUT', location_id='801eaf9c-0585-4be8-9cdb-b0efa074de91', version='5.1-preview.1', route_values=route_values, content=content)
['def', 'set_avatar', '(', 'self', ',', 'avatar', ',', 'subject_descriptor', ')', ':', 'route_values', '=', '{', '}', 'if', 'subject_descriptor', 'is', 'not', 'None', ':', 'route_values', '[', "'subjectDescriptor'", ']', '=', 'self', '.', '_serialize', '.', 'url', '(', "'subject_descriptor'", ',', 'subject_descriptor', ',', "'str'", ')', 'content', '=', 'self', '.', '_serialize', '.', 'body', '(', 'avatar', ',', "'Avatar'", ')', 'self', '.', '_send', '(', 'http_method', '=', "'PUT'", ',', 'location_id', '=', "'801eaf9c-0585-4be8-9cdb-b0efa074de91'", ',', 'version', '=', "'5.1-preview.1'", ',', 'route_values', '=', 'route_values', ',', 'content', '=', 'content', ')']
SetAvatar. [Preview API] :param :class:`<Avatar> <azure.devops.v5_1.graph.models.Avatar>` avatar: :param str subject_descriptor:
['SetAvatar', '.', '[', 'Preview', 'API', ']', ':', 'param', ':', 'class', ':', '<Avatar', '>', '<azure', '.', 'devops', '.', 'v5_1', '.', 'graph', '.', 'models', '.', 'Avatar', '>', 'avatar', ':', ':', 'param', 'str', 'subject_descriptor', ':']
train
https://github.com/Microsoft/azure-devops-python-api/blob/4777ffda2f5052fabbaddb2abe9cb434e0cf1aa8/azure-devops/azure/devops/v5_1/graph/graph_client.py#L64-L78
1,992
unbit/davvy
davvy/__init__.py
register_prop
def register_prop(name, handler_get, handler_set): """ register a property handler """ global props_get, props_set if handler_get: props_get[name] = handler_get if handler_set: props_set[name] = handler_set
python
def register_prop(name, handler_get, handler_set): """ register a property handler """ global props_get, props_set if handler_get: props_get[name] = handler_get if handler_set: props_set[name] = handler_set
['def', 'register_prop', '(', 'name', ',', 'handler_get', ',', 'handler_set', ')', ':', 'global', 'props_get', ',', 'props_set', 'if', 'handler_get', ':', 'props_get', '[', 'name', ']', '=', 'handler_get', 'if', 'handler_set', ':', 'props_set', '[', 'name', ']', '=', 'handler_set']
register a property handler
['register', 'a', 'property', 'handler']
train
https://github.com/unbit/davvy/blob/d9cd95fba25dbc76d80955bbbe5ff9d7cf52268a/davvy/__init__.py#L9-L17
1,993
sibirrer/lenstronomy
lenstronomy/ImSim/MultiBand/multi_frame.py
MultiFrame.image_linear_solve
def image_linear_solve(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False): """ computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data """ A = self.linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) C_D_response, model_error_list = self.error_response(kwargs_lens, kwargs_ps) d = self.data_response param, cov_param, wls_model = de_lens.get_param_WLS(A.T, 1 / C_D_response, d, inv_bool=inv_bool) kwargs_lens_0 = [kwargs_lens[k] for k in self._idex_lens_list[0]] _, _, _, _ = self._imageModel_list[0]._update_linear_kwargs(param, kwargs_lens_0, kwargs_source, kwargs_lens_light, kwargs_ps) wls_list = self._array2image_list(wls_model) return wls_list, model_error_list, cov_param, param
python
def image_linear_solve(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False): """ computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data """ A = self.linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) C_D_response, model_error_list = self.error_response(kwargs_lens, kwargs_ps) d = self.data_response param, cov_param, wls_model = de_lens.get_param_WLS(A.T, 1 / C_D_response, d, inv_bool=inv_bool) kwargs_lens_0 = [kwargs_lens[k] for k in self._idex_lens_list[0]] _, _, _, _ = self._imageModel_list[0]._update_linear_kwargs(param, kwargs_lens_0, kwargs_source, kwargs_lens_light, kwargs_ps) wls_list = self._array2image_list(wls_model) return wls_list, model_error_list, cov_param, param
['def', 'image_linear_solve', '(', 'self', ',', 'kwargs_lens', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ',', 'inv_bool', '=', 'False', ')', ':', 'A', '=', 'self', '.', 'linear_response_matrix', '(', 'kwargs_lens', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ')', 'C_D_response', ',', 'model_error_list', '=', 'self', '.', 'error_response', '(', 'kwargs_lens', ',', 'kwargs_ps', ')', 'd', '=', 'self', '.', 'data_response', 'param', ',', 'cov_param', ',', 'wls_model', '=', 'de_lens', '.', 'get_param_WLS', '(', 'A', '.', 'T', ',', '1', '/', 'C_D_response', ',', 'd', ',', 'inv_bool', '=', 'inv_bool', ')', 'kwargs_lens_0', '=', '[', 'kwargs_lens', '[', 'k', ']', 'for', 'k', 'in', 'self', '.', '_idex_lens_list', '[', '0', ']', ']', '_', ',', '_', ',', '_', ',', '_', '=', 'self', '.', '_imageModel_list', '[', '0', ']', '.', '_update_linear_kwargs', '(', 'param', ',', 'kwargs_lens_0', ',', 'kwargs_source', ',', 'kwargs_lens_light', ',', 'kwargs_ps', ')', 'wls_list', '=', 'self', '.', '_array2image_list', '(', 'wls_model', ')', 'return', 'wls_list', ',', 'model_error_list', ',', 'cov_param', ',', 'param']
computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data
['computes', 'the', 'image', '(', 'lens', 'and', 'source', 'surface', 'brightness', 'with', 'a', 'given', 'lens', 'model', ')', '.', 'The', 'linear', 'parameters', 'are', 'computed', 'with', 'a', 'weighted', 'linear', 'least', 'square', 'optimization', '(', 'i', '.', 'e', '.', 'flux', 'normalization', 'of', 'the', 'brightness', 'profiles', ')', ':', 'param', 'kwargs_lens', ':', 'list', 'of', 'keyword', 'arguments', 'corresponding', 'to', 'the', 'superposition', 'of', 'different', 'lens', 'profiles', ':', 'param', 'kwargs_source', ':', 'list', 'of', 'keyword', 'arguments', 'corresponding', 'to', 'the', 'superposition', 'of', 'different', 'source', 'light', 'profiles', ':', 'param', 'kwargs_lens_light', ':', 'list', 'of', 'keyword', 'arguments', 'corresponding', 'to', 'different', 'lens', 'light', 'surface', 'brightness', 'profiles', ':', 'param', 'kwargs_ps', ':', 'keyword', 'arguments', 'corresponding', 'to', 'other', 'parameters', 'such', 'as', 'external', 'shear', 'and', 'point', 'source', 'image', 'positions', ':', 'param', 'inv_bool', ':', 'if', 'True', 'invert', 'the', 'full', 'linear', 'solver', 'Matrix', 'Ax', '=', 'y', 'for', 'the', 'purpose', 'of', 'the', 'covariance', 'matrix', '.', ':', 'return', ':', '1d', 'array', 'of', 'surface', 'brightness', 'pixels', 'of', 'the', 'optimal', 'solution', 'of', 'the', 'linear', 'parameters', 'to', 'match', 'the', 'data']
train
https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/ImSim/MultiBand/multi_frame.py#L50-L68
1,994
dwavesystems/dimod
dimod/binary_quadratic_model.py
BinaryQuadraticModel.add_variables_from
def add_variables_from(self, linear, vartype=None): """Add variables and/or linear biases to a binary quadratic model. Args: linear (dict[variable, bias]/iterable[(variable, bias)]): A collection of variables and their linear biases to add to the model. If a dict, keys are variables in the binary quadratic model and values are biases. Alternatively, an iterable of (variable, bias) pairs. Variables can be any python object that is a valid dict key. Many methods and functions expect the biases to be numbers but this is not explicitly checked. If any variable already exists in the model, its bias is added to the variable's current linear bias. vartype (:class:`.Vartype`, optional, default=None): Vartype of the given bias. If None, the vartype of the binary quadratic model is used. Valid values are :class:`.Vartype.SPIN` or :class:`.Vartype.BINARY`. Examples: This example creates creates an empty Ising model, adds two variables, and subsequently adds to the bias of the one while adding a new, third, variable. >>> import dimod ... >>> bqm = dimod.BinaryQuadraticModel({}, {}, 0.0, dimod.SPIN) >>> len(bqm.linear) 0 >>> bqm.add_variables_from({'a': .5, 'b': -1.}) >>> 'b' in bqm True >>> bqm.add_variables_from({'b': -1., 'c': 2.0}) >>> bqm.linear['b'] -2.0 """ if isinstance(linear, abc.Mapping): for v, bias in iteritems(linear): self.add_variable(v, bias, vartype=vartype) else: try: for v, bias in linear: self.add_variable(v, bias, vartype=vartype) except TypeError: raise TypeError("expected 'linear' to be a dict or an iterable of 2-tuples.")
python
def add_variables_from(self, linear, vartype=None): """Add variables and/or linear biases to a binary quadratic model. Args: linear (dict[variable, bias]/iterable[(variable, bias)]): A collection of variables and their linear biases to add to the model. If a dict, keys are variables in the binary quadratic model and values are biases. Alternatively, an iterable of (variable, bias) pairs. Variables can be any python object that is a valid dict key. Many methods and functions expect the biases to be numbers but this is not explicitly checked. If any variable already exists in the model, its bias is added to the variable's current linear bias. vartype (:class:`.Vartype`, optional, default=None): Vartype of the given bias. If None, the vartype of the binary quadratic model is used. Valid values are :class:`.Vartype.SPIN` or :class:`.Vartype.BINARY`. Examples: This example creates creates an empty Ising model, adds two variables, and subsequently adds to the bias of the one while adding a new, third, variable. >>> import dimod ... >>> bqm = dimod.BinaryQuadraticModel({}, {}, 0.0, dimod.SPIN) >>> len(bqm.linear) 0 >>> bqm.add_variables_from({'a': .5, 'b': -1.}) >>> 'b' in bqm True >>> bqm.add_variables_from({'b': -1., 'c': 2.0}) >>> bqm.linear['b'] -2.0 """ if isinstance(linear, abc.Mapping): for v, bias in iteritems(linear): self.add_variable(v, bias, vartype=vartype) else: try: for v, bias in linear: self.add_variable(v, bias, vartype=vartype) except TypeError: raise TypeError("expected 'linear' to be a dict or an iterable of 2-tuples.")
['def', 'add_variables_from', '(', 'self', ',', 'linear', ',', 'vartype', '=', 'None', ')', ':', 'if', 'isinstance', '(', 'linear', ',', 'abc', '.', 'Mapping', ')', ':', 'for', 'v', ',', 'bias', 'in', 'iteritems', '(', 'linear', ')', ':', 'self', '.', 'add_variable', '(', 'v', ',', 'bias', ',', 'vartype', '=', 'vartype', ')', 'else', ':', 'try', ':', 'for', 'v', ',', 'bias', 'in', 'linear', ':', 'self', '.', 'add_variable', '(', 'v', ',', 'bias', ',', 'vartype', '=', 'vartype', ')', 'except', 'TypeError', ':', 'raise', 'TypeError', '(', '"expected \'linear\' to be a dict or an iterable of 2-tuples."', ')']
Add variables and/or linear biases to a binary quadratic model. Args: linear (dict[variable, bias]/iterable[(variable, bias)]): A collection of variables and their linear biases to add to the model. If a dict, keys are variables in the binary quadratic model and values are biases. Alternatively, an iterable of (variable, bias) pairs. Variables can be any python object that is a valid dict key. Many methods and functions expect the biases to be numbers but this is not explicitly checked. If any variable already exists in the model, its bias is added to the variable's current linear bias. vartype (:class:`.Vartype`, optional, default=None): Vartype of the given bias. If None, the vartype of the binary quadratic model is used. Valid values are :class:`.Vartype.SPIN` or :class:`.Vartype.BINARY`. Examples: This example creates creates an empty Ising model, adds two variables, and subsequently adds to the bias of the one while adding a new, third, variable. >>> import dimod ... >>> bqm = dimod.BinaryQuadraticModel({}, {}, 0.0, dimod.SPIN) >>> len(bqm.linear) 0 >>> bqm.add_variables_from({'a': .5, 'b': -1.}) >>> 'b' in bqm True >>> bqm.add_variables_from({'b': -1., 'c': 2.0}) >>> bqm.linear['b'] -2.0
['Add', 'variables', 'and', '/', 'or', 'linear', 'biases', 'to', 'a', 'binary', 'quadratic', 'model', '.']
train
https://github.com/dwavesystems/dimod/blob/beff1b7f86b559d923ac653c1de6d593876d6d38/dimod/binary_quadratic_model.py#L459-L504
1,995
django-fluent/django-fluent-contents
fluent_contents/admin/placeholderfield.py
PlaceholderFieldAdmin.get_placeholder_data
def get_placeholder_data(self, request, obj=None): """ Return the data of the placeholder fields. """ # Return all placeholder fields in the model. if not hasattr(self.model, '_meta_placeholder_fields'): return [] data = [] for name, field in self.model._meta_placeholder_fields.items(): assert isinstance(field, PlaceholderField) data.append(PlaceholderData( slot=field.slot, title=field.verbose_name.capitalize(), fallback_language=None, # Information cant' be known by "render_placeholder" in the template. )) return data
python
def get_placeholder_data(self, request, obj=None): """ Return the data of the placeholder fields. """ # Return all placeholder fields in the model. if not hasattr(self.model, '_meta_placeholder_fields'): return [] data = [] for name, field in self.model._meta_placeholder_fields.items(): assert isinstance(field, PlaceholderField) data.append(PlaceholderData( slot=field.slot, title=field.verbose_name.capitalize(), fallback_language=None, # Information cant' be known by "render_placeholder" in the template. )) return data
['def', 'get_placeholder_data', '(', 'self', ',', 'request', ',', 'obj', '=', 'None', ')', ':', '# Return all placeholder fields in the model.', 'if', 'not', 'hasattr', '(', 'self', '.', 'model', ',', "'_meta_placeholder_fields'", ')', ':', 'return', '[', ']', 'data', '=', '[', ']', 'for', 'name', ',', 'field', 'in', 'self', '.', 'model', '.', '_meta_placeholder_fields', '.', 'items', '(', ')', ':', 'assert', 'isinstance', '(', 'field', ',', 'PlaceholderField', ')', 'data', '.', 'append', '(', 'PlaceholderData', '(', 'slot', '=', 'field', '.', 'slot', ',', 'title', '=', 'field', '.', 'verbose_name', '.', 'capitalize', '(', ')', ',', 'fallback_language', '=', 'None', ',', '# Information cant\' be known by "render_placeholder" in the template.', ')', ')', 'return', 'data']
Return the data of the placeholder fields.
['Return', 'the', 'data', 'of', 'the', 'placeholder', 'fields', '.']
train
https://github.com/django-fluent/django-fluent-contents/blob/896f14add58471b98d7aa295b2c9e6abedec9003/fluent_contents/admin/placeholderfield.py#L55-L72
1,996
thombashi/pytablereader
pytablereader/csv/core.py
CsvTableTextLoader.load
def load(self): """ Extract tabular data as |TableData| instances from a CSV text object. |load_source_desc_text| :return: Loaded table data. |load_table_name_desc| =================== ======================================== Format specifier Value after the replacement =================== ======================================== ``%(filename)s`` ``""`` ``%(format_name)s`` ``"csv"`` ``%(format_id)s`` |format_id_desc| ``%(global_id)s`` |global_id| =================== ======================================== :rtype: |TableData| iterator :raises pytablereader.DataError: If the CSV data is invalid. .. seealso:: :py:func:`csv.reader` """ self._validate() self._logger.logging_load() self._csv_reader = csv.reader( six.StringIO(self.source.strip()), delimiter=self.delimiter, quotechar=self.quotechar, strict=True, skipinitialspace=True, ) formatter = CsvTableFormatter(self._to_data_matrix()) formatter.accept(self) return formatter.to_table_data()
python
def load(self): """ Extract tabular data as |TableData| instances from a CSV text object. |load_source_desc_text| :return: Loaded table data. |load_table_name_desc| =================== ======================================== Format specifier Value after the replacement =================== ======================================== ``%(filename)s`` ``""`` ``%(format_name)s`` ``"csv"`` ``%(format_id)s`` |format_id_desc| ``%(global_id)s`` |global_id| =================== ======================================== :rtype: |TableData| iterator :raises pytablereader.DataError: If the CSV data is invalid. .. seealso:: :py:func:`csv.reader` """ self._validate() self._logger.logging_load() self._csv_reader = csv.reader( six.StringIO(self.source.strip()), delimiter=self.delimiter, quotechar=self.quotechar, strict=True, skipinitialspace=True, ) formatter = CsvTableFormatter(self._to_data_matrix()) formatter.accept(self) return formatter.to_table_data()
['def', 'load', '(', 'self', ')', ':', 'self', '.', '_validate', '(', ')', 'self', '.', '_logger', '.', 'logging_load', '(', ')', 'self', '.', '_csv_reader', '=', 'csv', '.', 'reader', '(', 'six', '.', 'StringIO', '(', 'self', '.', 'source', '.', 'strip', '(', ')', ')', ',', 'delimiter', '=', 'self', '.', 'delimiter', ',', 'quotechar', '=', 'self', '.', 'quotechar', ',', 'strict', '=', 'True', ',', 'skipinitialspace', '=', 'True', ',', ')', 'formatter', '=', 'CsvTableFormatter', '(', 'self', '.', '_to_data_matrix', '(', ')', ')', 'formatter', '.', 'accept', '(', 'self', ')', 'return', 'formatter', '.', 'to_table_data', '(', ')']
Extract tabular data as |TableData| instances from a CSV text object. |load_source_desc_text| :return: Loaded table data. |load_table_name_desc| =================== ======================================== Format specifier Value after the replacement =================== ======================================== ``%(filename)s`` ``""`` ``%(format_name)s`` ``"csv"`` ``%(format_id)s`` |format_id_desc| ``%(global_id)s`` |global_id| =================== ======================================== :rtype: |TableData| iterator :raises pytablereader.DataError: If the CSV data is invalid. .. seealso:: :py:func:`csv.reader`
['Extract', 'tabular', 'data', 'as', '|TableData|', 'instances', 'from', 'a', 'CSV', 'text', 'object', '.', '|load_source_desc_text|']
train
https://github.com/thombashi/pytablereader/blob/bc3c057a2cc775bcce690e0e9019c2907b638101/pytablereader/csv/core.py#L220-L258
1,997
sixty-north/asq
asq/queryables.py
Queryable.of_type
def of_type(self, classinfo): '''Filters elements according to whether they are of a certain type. Note: This method uses deferred execution. Args: classinfo: If classinfo is neither a class object nor a type object it may be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are not accepted). Returns: A Queryable over those elements of the source sequence for which the predicate is True. Raises: ValueError: If the Queryable is closed. TypeError: If classinfo is not a class, type, or tuple of classes, types, and such tuples. ''' if self.closed(): raise ValueError("Attempt to call of_type() on a closed " "Queryable.") if not is_type(classinfo): raise TypeError("of_type() parameter classinfo={0} is not a class " "object or a type objector a tuple of class or " "type objects.".format(classinfo)) return self.where(lambda x: isinstance(x, classinfo))
python
def of_type(self, classinfo): '''Filters elements according to whether they are of a certain type. Note: This method uses deferred execution. Args: classinfo: If classinfo is neither a class object nor a type object it may be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are not accepted). Returns: A Queryable over those elements of the source sequence for which the predicate is True. Raises: ValueError: If the Queryable is closed. TypeError: If classinfo is not a class, type, or tuple of classes, types, and such tuples. ''' if self.closed(): raise ValueError("Attempt to call of_type() on a closed " "Queryable.") if not is_type(classinfo): raise TypeError("of_type() parameter classinfo={0} is not a class " "object or a type objector a tuple of class or " "type objects.".format(classinfo)) return self.where(lambda x: isinstance(x, classinfo))
['def', 'of_type', '(', 'self', ',', 'classinfo', ')', ':', 'if', 'self', '.', 'closed', '(', ')', ':', 'raise', 'ValueError', '(', '"Attempt to call of_type() on a closed "', '"Queryable."', ')', 'if', 'not', 'is_type', '(', 'classinfo', ')', ':', 'raise', 'TypeError', '(', '"of_type() parameter classinfo={0} is not a class "', '"object or a type objector a tuple of class or "', '"type objects."', '.', 'format', '(', 'classinfo', ')', ')', 'return', 'self', '.', 'where', '(', 'lambda', 'x', ':', 'isinstance', '(', 'x', ',', 'classinfo', ')', ')']
Filters elements according to whether they are of a certain type. Note: This method uses deferred execution. Args: classinfo: If classinfo is neither a class object nor a type object it may be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are not accepted). Returns: A Queryable over those elements of the source sequence for which the predicate is True. Raises: ValueError: If the Queryable is closed. TypeError: If classinfo is not a class, type, or tuple of classes, types, and such tuples.
['Filters', 'elements', 'according', 'to', 'whether', 'they', 'are', 'of', 'a', 'certain', 'type', '.']
train
https://github.com/sixty-north/asq/blob/db0c4cbcf2118435136d4b63c62a12711441088e/asq/queryables.py#L578-L607
1,998
rosenbrockc/acorn
acorn/ipython.py
InteractiveDecorator.pre_run_cell
def pre_run_cell(self, cellno, code): """Executes before the user-entered code in `ipython` is run. This intercepts loops and other problematic code that would produce lots of database entries and streamlines it to produce only a single entry. Args: cellno (int): the cell number that is about to be executed. code (str): python source code that is about to be executed. """ #First, we look for loops and list/dict comprehensions in the code. Find #the id of the latest cell that was executed. self.cellid = cellno #If there is a loop somewhere in the code, it could generate millions of #database entries and make the notebook unusable. import ast if findloop(ast.parse(code)): #Disable the acorn logging systems so that we don't pollute the #database. from acorn.logging.decoration import set_streamlining set_streamlining(True) #Create the pre-execute entry for the database. from time import time self.pre = { "m": "loop", "a": None, "s": time(), "r": None, "c": code, }
python
def pre_run_cell(self, cellno, code): """Executes before the user-entered code in `ipython` is run. This intercepts loops and other problematic code that would produce lots of database entries and streamlines it to produce only a single entry. Args: cellno (int): the cell number that is about to be executed. code (str): python source code that is about to be executed. """ #First, we look for loops and list/dict comprehensions in the code. Find #the id of the latest cell that was executed. self.cellid = cellno #If there is a loop somewhere in the code, it could generate millions of #database entries and make the notebook unusable. import ast if findloop(ast.parse(code)): #Disable the acorn logging systems so that we don't pollute the #database. from acorn.logging.decoration import set_streamlining set_streamlining(True) #Create the pre-execute entry for the database. from time import time self.pre = { "m": "loop", "a": None, "s": time(), "r": None, "c": code, }
['def', 'pre_run_cell', '(', 'self', ',', 'cellno', ',', 'code', ')', ':', '#First, we look for loops and list/dict comprehensions in the code. Find', '#the id of the latest cell that was executed.', 'self', '.', 'cellid', '=', 'cellno', '#If there is a loop somewhere in the code, it could generate millions of', '#database entries and make the notebook unusable.', 'import', 'ast', 'if', 'findloop', '(', 'ast', '.', 'parse', '(', 'code', ')', ')', ':', "#Disable the acorn logging systems so that we don't pollute the", '#database.', 'from', 'acorn', '.', 'logging', '.', 'decoration', 'import', 'set_streamlining', 'set_streamlining', '(', 'True', ')', '#Create the pre-execute entry for the database.', 'from', 'time', 'import', 'time', 'self', '.', 'pre', '=', '{', '"m"', ':', '"loop"', ',', '"a"', ':', 'None', ',', '"s"', ':', 'time', '(', ')', ',', '"r"', ':', 'None', ',', '"c"', ':', 'code', ',', '}']
Executes before the user-entered code in `ipython` is run. This intercepts loops and other problematic code that would produce lots of database entries and streamlines it to produce only a single entry. Args: cellno (int): the cell number that is about to be executed. code (str): python source code that is about to be executed.
['Executes', 'before', 'the', 'user', '-', 'entered', 'code', 'in', 'ipython', 'is', 'run', '.', 'This', 'intercepts', 'loops', 'and', 'other', 'problematic', 'code', 'that', 'would', 'produce', 'lots', 'of', 'database', 'entries', 'and', 'streamlines', 'it', 'to', 'produce', 'only', 'a', 'single', 'entry', '.']
train
https://github.com/rosenbrockc/acorn/blob/9a44d1a1ad8bfc2c54a6b56d9efe54433a797820/acorn/ipython.py#L421-L451
1,999
PmagPy/PmagPy
pmagpy/pmag.py
measurements_methods
def measurements_methods(meas_data, noave): """ get list of unique specs """ # version_num = get_version() sids = get_specs(meas_data) # list of measurement records for this specimen # # step through spec by spec # SpecTmps, SpecOuts = [], [] for spec in sids: TRM, IRM3D, ATRM, CR = 0, 0, 0, 0 expcodes = "" # first collect all data for this specimen and do lab treatments # list of measurement records for this specimen SpecRecs = get_dictitem(meas_data, 'er_specimen_name', spec, 'T') for rec in SpecRecs: if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g' tmpmeths = rec['magic_method_codes'].split(":") meths = [] if "LP-TRM" in tmpmeths: TRM = 1 # catch these suckers here! if "LP-IRM-3D" in tmpmeths: IRM3D = 1 # catch these suckers here! elif "LP-AN-TRM" in tmpmeths: ATRM = 1 # catch these suckers here! elif "LP-CR-TRM" in tmpmeths: CR = 1 # catch these suckers here! # # otherwise write over existing method codes # # find NRM data (LT-NO) # elif float(rec["measurement_temp"]) >= 273. and float(rec["measurement_temp"]) < 323.: # between 0 and 50C is room T measurement if ("measurement_dc_field" not in list(rec.keys()) or float(rec["measurement_dc_field"]) == 0 or rec["measurement_dc_field"] == "") and ("measurement_ac_field" not in list(rec.keys()) or float(rec["measurement_ac_field"]) == 0 or rec["measurement_ac_field"] == ""): # measurement done in zero field! if "treatment_temp" not in list(rec.keys()) or rec["treatment_temp"].strip() == "" or (float(rec["treatment_temp"]) >= 273. and float(rec["treatment_temp"]) < 298.): # between 0 and 50C is room T treatment if "treatment_ac_field" not in list(rec.keys()) or rec["treatment_ac_field"] == "" or float(rec["treatment_ac_field"]) == 0: # no AF # no IRM! if "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-NO" not in meths: meths.append("LT-NO") elif "LT-IRM" not in meths: meths.append("LT-IRM") # it's an IRM # # find AF/infield/zerofield # # no ARM elif "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-AF-Z" not in meths: meths.append("LT-AF-Z") else: # yes ARM if "LT-AF-I" not in meths: meths.append("LT-AF-I") # # find Thermal/infield/zerofield # elif float(rec["treatment_temp"]) >= 323: # treatment done at high T if TRM == 1: if "LT-T-I" not in meths: # TRM - even if zero applied field! meths.append("LT-T-I") # no TRM elif "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0.: if "LT-T-Z" not in meths: # don't overwrite if part of a TRM experiment! meths.append("LT-T-Z") else: # yes TRM if "LT-T-I" not in meths: meths.append("LT-T-I") # # find low-T infield,zero field # else: # treatment done at low T # no field if "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-LT-Z" not in meths: meths.append("LT-LT-Z") else: # yes field if "LT-LT-I" not in meths: meths.append("LT-LT-I") if "measurement_chi_volume" in list(rec.keys()) or "measurement_chi_mass" in list(rec.keys()): if "LP-X" not in meths: meths.append("LP-X") # measurement in presence of dc field and not susceptibility; # hysteresis! elif "measurement_lab_dc_field" in list(rec.keys()) and rec["measurement_lab_dc_field"] != 0: if "LP-HYS" not in meths: hysq = input("Is this a hysteresis experiment? [1]/0") if hysq == "" or hysq == "1": meths.append("LP-HYS") else: metha = input( "Enter the lab protocol code that best describes this experiment ") meths.append(metha) methcode = "" for meth in meths: methcode = methcode + meth.strip() + ":" rec["magic_method_codes"] = methcode[:-1] # assign them back # # done with first pass, collect and assign provisional method codes if "measurement_description" not in list(rec.keys()): rec["measurement_description"] = "" rec["er_citation_names"] = "This study" SpecTmps.append(rec) # ready for second pass through, step through specimens, check whether ptrm, ptrm tail checks, or AARM, etc. # for spec in sids: MD, pTRM, IZ, ZI = 0, 0, 0, 0 # these are flags for the lab protocol codes expcodes = "" NewSpecs, SpecMeths = [], [] experiment_name, measnum = "", 1 if IRM3D == 1: experiment_name = "LP-IRM-3D" if ATRM == 1: experiment_name = "LP-AN-TRM" if CR == 1: experiment_name = "LP-CR" NewSpecs = get_dictitem(SpecTmps, 'er_specimen_name', spec, 'T') # # first look for replicate measurements # Ninit = len(NewSpecs) if noave != 1: # averages replicate measurements, returns treatment keys that are # being used vdata, treatkeys = vspec_magic(NewSpecs) if len(vdata) != len(NewSpecs): # print spec,'started with ',Ninit,' ending with ',len(vdata) NewSpecs = vdata # print "Averaged replicate measurements" # # now look through this specimen's records - try to figure out what experiment it is # if len(NewSpecs) > 1: # more than one meas for this spec - part of an unknown experiment SpecMeths = get_list(NewSpecs, 'magic_method_codes').split(":") # TRM steps, could be TRM acquisition, Shaw or a Thellier # experiment or TDS experiment if "LT-T-I" in SpecMeths and experiment_name == "": # # collect all the infield steps and look for changes in dc field vector # Steps, TI = [], 1 for rec in NewSpecs: methods = get_list( NewSpecs, 'magic_method_codes').split(":") if "LT-T-I" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if "LT-AF-I" in SpecMeths and "LT-AF-Z" in SpecMeths: # must be Shaw :( experiment_name = "LP-PI-TRM:LP-PI-ALT-AFARM" elif TRM == 1: experiment_name = "LP-TRM" else: TI = 0 # no infield steps at all if "LT-T-Z" in SpecMeths and experiment_name == "": # thermal demag steps if TI == 0: experiment_name = "LP-DIR-T" # just ordinary thermal demag elif TRM != 1: # heart pounding - could be some kind of TRM normalized paleointensity or LP-TRM-TD experiment Temps = [] for step in Steps: # check through the infield steps - if all at same temperature, then must be a demag of a total TRM with checks if step['treatment_temp'] not in Temps: Temps.append(step['treatment_temp']) if len(Temps) > 1: experiment_name = "LP-PI-TRM" # paleointensity normalized by TRM else: # thermal demag of a lab TRM (could be part of a # LP-PI-TDS experiment) experiment_name = "LP-TRM-TD" TZ = 1 else: TZ = 0 # no zero field steps at all if "LT-AF-I" in SpecMeths: # ARM steps Steps = [] for rec in NewSpecs: tmp = rec["magic_method_codes"].split(":") methods = [] for meth in tmp: methods.append(meth.strip()) if "LT-AF-I" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-ARM" if experiment_name == "": # not anisotropy of ARM - acquisition? field0 = rec_bak["treatment_dc_field"] ARM = 0 for k in range(1, len(Steps)): rec = Steps[k] field = rec["treatment_dc_field"] if field != field0: ARM = 1 if ARM == 1: experiment_name = "LP-ARM" AFI = 1 else: AFI = 0 # no ARM steps at all if "LT-AF-Z" in SpecMeths and experiment_name == "": # AF demag steps if AFI == 0: experiment_name = "LP-DIR-AF" # just ordinary AF demag else: # heart pounding - a pseudothellier? experiment_name = "LP-PI-ARM" AFZ = 1 else: AFZ = 0 # no AF demag at all if "LT-IRM" in SpecMeths: # IRM Steps = [] for rec in NewSpecs: tmp = rec["magic_method_codes"].split(":") methods = [] for meth in tmp: methods.append(meth.strip()) if "LT-IRM" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-IRM" if experiment_name == "": # not anisotropy of IRM - acquisition? field0 = rec_bak["treatment_dc_field"] IRM = 0 for k in range(1, len(Steps)): rec = Steps[k] field = rec["treatment_dc_field"] if field != field0: IRM = 1 if IRM == 1: experiment_name = "LP-IRM" IRM = 1 else: IRM = 0 # no IRM at all if "LP-X" in SpecMeths: # susceptibility run Steps = get_dictitem( NewSpecs, 'magic_method_codes', 'LT-X', 'has') if len(Steps) > 0: rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-MS" else: CHI = 0 # no susceptibility at all # # now need to deal with special thellier experiment problems - first clear up pTRM checks and tail checks # if experiment_name == "LP-PI-TRM": # is some sort of thellier experiment rec_bak = NewSpecs[0] tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: methbak.append(meth.strip()) # previous steps method codes for k in range(1, len(NewSpecs)): rec = NewSpecs[k] tmp = rec["magic_method_codes"].split(":") meths = [] for meth in tmp: # get this guys method codes meths.append(meth.strip()) # # check if this is a pTRM check # if float(rec["treatment_temp"]) < float(rec_bak["treatment_temp"]): # went backward if "LT-T-I" in meths and "LT-T-Z" in methbak: # must be a pTRM check after first z # # replace LT-T-I method code with LT-PTRM-I # methcodes = "" for meth in meths: if meth != "LT-T-I": methcode = methcode + meth.strip() + ":" methcodes = methcodes + "LT-PTRM-I" meths = methcodes.split(":") pTRM = 1 elif "LT-T-Z" in meths and "LT-T-I" in methbak: # must be pTRM check after first I # # replace LT-T-Z method code with LT-PTRM-Z # methcodes = "" for meth in meths: if meth != "LT-T-Z": methcode = methcode + meth + ":" methcodes = methcodes + "LT-PTRM-Z" meths = methcodes.split(":") pTRM = 1 methcodes = "" for meth in meths: methcodes = methcodes + meth.strip() + ":" # attach new method code rec["magic_method_codes"] = methcodes[:-1] rec_bak = rec # next previous record tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: # previous steps method codes methbak.append(meth.strip()) # # done with assigning pTRM checks. data should be "fixed" in NewSpecs # # now let's find out which steps are infield zerofield (IZ) and which are zerofield infield (ZI) # rec_bak = NewSpecs[0] tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: methbak.append(meth.strip()) # previous steps method codes if "LT-NO" not in methbak: # first measurement is not NRM if "LT-T-I" in methbak: IZorZI = "LP-PI-TRM-IZ" # first pair is IZ if "LT-T-Z" in methbak: IZorZI = "LP-PI-TRM-ZI" # first pair is ZI if IZorZI not in methbak: methbak.append(IZorZI) methcode = "" for meth in methbak: methcode = methcode + meth + ":" # fix first heating step when no NRM NewSpecs[0]["magic_method_codes"] = methcode[:-1] else: IZorZI = "" # first measurement is NRM and not one of a pair for k in range(1, len(NewSpecs)): # hunt through measurements again rec = NewSpecs[k] tmp = rec["magic_method_codes"].split(":") meths = [] for meth in tmp: # get this guys method codes meths.append(meth.strip()) # # check if this start a new temperature step of a infield/zerofield pair # if float(rec["treatment_temp"]) > float(rec_bak["treatment_temp"]) and "LT-PTRM-I" not in methbak: # new pair? if "LT-T-I" in meths: # infield of this pair IZorZI = "LP-PI-TRM-IZ" IZ = 1 # at least one IZ pair elif "LT-T-Z" in meths: # zerofield IZorZI = "LP-PI-TRM-ZI" ZI = 1 # at least one ZI pair # new pair after out of sequence PTRM check? elif float(rec["treatment_temp"]) > float(rec_bak["treatment_temp"]) and "LT-PTRM-I" in methbak and IZorZI != "LP-PI-TRM-ZI": if "LT-T-I" in meths: # infield of this pair IZorZI = "LP-PI-TRM-IZ" IZ = 1 # at least one IZ pair elif "LT-T-Z" in meths: # zerofield IZorZI = "LP-PI-TRM-ZI" ZI = 1 # at least one ZI pair # stayed same temp if float(rec["treatment_temp"]) == float(rec_bak["treatment_temp"]): if "LT-T-Z" in meths and "LT-T-I" in methbak and IZorZI == "LP-PI-TRM-ZI": # must be a tail check # # replace LT-T-Z method code with LT-PTRM-MD # methcodes = "" for meth in meths: if meth != "LT-T-Z": methcode = methcode + meth + ":" methcodes = methcodes + "LT-PTRM-MD" meths = methcodes.split(":") MD = 1 # fix method codes if "LT-PTRM-I" not in meths and "LT-PTRM-MD" not in meths and IZorZI not in meths: meths.append(IZorZI) newmeths = [] for meth in meths: if meth not in newmeths: newmeths.append(meth) # try to get uniq set methcode = "" for meth in newmeths: methcode = methcode + meth + ":" rec["magic_method_codes"] = methcode[:-1] rec_bak = rec # moving on to next record, making current one the backup # get last specimen's method codes in a list methbak = rec_bak["magic_method_codes"].split(":") # # done with this specimen's records, now check if any pTRM checks or MD checks # if pTRM == 1: experiment_name = experiment_name + ":LP-PI-ALT-PTRM" if MD == 1: experiment_name = experiment_name + ":LP-PI-BT-MD" if IZ == 1 and ZI == 1: experiment_name = experiment_name + ":LP-PI-BT-IZZI" if IZ == 1 and ZI == 0: experiment_name = experiment_name + ":LP-PI-IZ" # Aitken method if IZ == 0 and ZI == 1: experiment_name = experiment_name + ":LP-PI-ZI" # Coe method IZ, ZI, pTRM, MD = 0, 0, 0, 0 # reset these for next specimen for rec in NewSpecs: # fix the experiment name for all recs for this specimen and save in SpecOuts # assign an experiment name to all specimen measurements # from this specimen if experiment_name != "": rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_experiment_name"] = spec + ":" + experiment_name rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers measnum += 1 #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 SpecOuts.append(rec) elif experiment_name == "LP-PI-TRM:LP-PI-ALT-AFARM": # is a Shaw experiment! ARM, TRM = 0, 0 for rec in NewSpecs: # fix the experiment name for all recs for this specimen and save in SpecOuts # assign an experiment name to all specimen measurements from this specimen # make the second ARM in Shaw experiments LT-AF-I-2, stick # in the AF of ARM and TRM codes meths = rec["magic_method_codes"].split(":") if ARM == 1: if "LT-AF-I" in meths: del meths[meths.index("LT-AF-I")] meths.append("LT-AF-I-2") ARM = 2 if "LT-AF-Z" in meths and TRM == 0: meths.append("LP-ARM-AFD") if TRM == 1 and ARM == 1: if "LT-AF-Z" in meths: meths.append("LP-TRM-AFD") if ARM == 2: if "LT-AF-Z" in meths: meths.append("LP-ARM2-AFD") newcode = "" for meth in meths: newcode = newcode + meth + ":" rec["magic_method_codes"] = newcode[:-1] if "LT-AF-I" in meths: ARM = 1 if "LT-T-I" in meths: TRM = 1 rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_experiment_name"] = spec + ":" + experiment_name rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 SpecOuts.append(rec) else: # not a Thellier-Thellier or a Shaw experiemnt for rec in NewSpecs: if experiment_name == "": rec["magic_method_codes"] = "LT-NO" rec["magic_experiment_name"] = spec + ":LT-NO" rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 else: if experiment_name not in rec['magic_method_codes']: rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_method_codes"] = rec["magic_method_codes"].strip( ':') rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 rec["magic_experiment_name"] = spec + \ ":" + experiment_name rec["magic_software_packages"] = version_num SpecOuts.append(rec) else: NewSpecs[0]["magic_experiment_name"] = spec + ":" + \ NewSpecs[0]['magic_method_codes'].split(':')[0] NewSpecs[0]["magic_software_packages"] = version_num # just copy over the single record as is SpecOuts.append(NewSpecs[0]) return SpecOuts
python
def measurements_methods(meas_data, noave): """ get list of unique specs """ # version_num = get_version() sids = get_specs(meas_data) # list of measurement records for this specimen # # step through spec by spec # SpecTmps, SpecOuts = [], [] for spec in sids: TRM, IRM3D, ATRM, CR = 0, 0, 0, 0 expcodes = "" # first collect all data for this specimen and do lab treatments # list of measurement records for this specimen SpecRecs = get_dictitem(meas_data, 'er_specimen_name', spec, 'T') for rec in SpecRecs: if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g' tmpmeths = rec['magic_method_codes'].split(":") meths = [] if "LP-TRM" in tmpmeths: TRM = 1 # catch these suckers here! if "LP-IRM-3D" in tmpmeths: IRM3D = 1 # catch these suckers here! elif "LP-AN-TRM" in tmpmeths: ATRM = 1 # catch these suckers here! elif "LP-CR-TRM" in tmpmeths: CR = 1 # catch these suckers here! # # otherwise write over existing method codes # # find NRM data (LT-NO) # elif float(rec["measurement_temp"]) >= 273. and float(rec["measurement_temp"]) < 323.: # between 0 and 50C is room T measurement if ("measurement_dc_field" not in list(rec.keys()) or float(rec["measurement_dc_field"]) == 0 or rec["measurement_dc_field"] == "") and ("measurement_ac_field" not in list(rec.keys()) or float(rec["measurement_ac_field"]) == 0 or rec["measurement_ac_field"] == ""): # measurement done in zero field! if "treatment_temp" not in list(rec.keys()) or rec["treatment_temp"].strip() == "" or (float(rec["treatment_temp"]) >= 273. and float(rec["treatment_temp"]) < 298.): # between 0 and 50C is room T treatment if "treatment_ac_field" not in list(rec.keys()) or rec["treatment_ac_field"] == "" or float(rec["treatment_ac_field"]) == 0: # no AF # no IRM! if "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-NO" not in meths: meths.append("LT-NO") elif "LT-IRM" not in meths: meths.append("LT-IRM") # it's an IRM # # find AF/infield/zerofield # # no ARM elif "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-AF-Z" not in meths: meths.append("LT-AF-Z") else: # yes ARM if "LT-AF-I" not in meths: meths.append("LT-AF-I") # # find Thermal/infield/zerofield # elif float(rec["treatment_temp"]) >= 323: # treatment done at high T if TRM == 1: if "LT-T-I" not in meths: # TRM - even if zero applied field! meths.append("LT-T-I") # no TRM elif "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0.: if "LT-T-Z" not in meths: # don't overwrite if part of a TRM experiment! meths.append("LT-T-Z") else: # yes TRM if "LT-T-I" not in meths: meths.append("LT-T-I") # # find low-T infield,zero field # else: # treatment done at low T # no field if "treatment_dc_field" not in list(rec.keys()) or rec["treatment_dc_field"] == "" or float(rec["treatment_dc_field"]) == 0: if "LT-LT-Z" not in meths: meths.append("LT-LT-Z") else: # yes field if "LT-LT-I" not in meths: meths.append("LT-LT-I") if "measurement_chi_volume" in list(rec.keys()) or "measurement_chi_mass" in list(rec.keys()): if "LP-X" not in meths: meths.append("LP-X") # measurement in presence of dc field and not susceptibility; # hysteresis! elif "measurement_lab_dc_field" in list(rec.keys()) and rec["measurement_lab_dc_field"] != 0: if "LP-HYS" not in meths: hysq = input("Is this a hysteresis experiment? [1]/0") if hysq == "" or hysq == "1": meths.append("LP-HYS") else: metha = input( "Enter the lab protocol code that best describes this experiment ") meths.append(metha) methcode = "" for meth in meths: methcode = methcode + meth.strip() + ":" rec["magic_method_codes"] = methcode[:-1] # assign them back # # done with first pass, collect and assign provisional method codes if "measurement_description" not in list(rec.keys()): rec["measurement_description"] = "" rec["er_citation_names"] = "This study" SpecTmps.append(rec) # ready for second pass through, step through specimens, check whether ptrm, ptrm tail checks, or AARM, etc. # for spec in sids: MD, pTRM, IZ, ZI = 0, 0, 0, 0 # these are flags for the lab protocol codes expcodes = "" NewSpecs, SpecMeths = [], [] experiment_name, measnum = "", 1 if IRM3D == 1: experiment_name = "LP-IRM-3D" if ATRM == 1: experiment_name = "LP-AN-TRM" if CR == 1: experiment_name = "LP-CR" NewSpecs = get_dictitem(SpecTmps, 'er_specimen_name', spec, 'T') # # first look for replicate measurements # Ninit = len(NewSpecs) if noave != 1: # averages replicate measurements, returns treatment keys that are # being used vdata, treatkeys = vspec_magic(NewSpecs) if len(vdata) != len(NewSpecs): # print spec,'started with ',Ninit,' ending with ',len(vdata) NewSpecs = vdata # print "Averaged replicate measurements" # # now look through this specimen's records - try to figure out what experiment it is # if len(NewSpecs) > 1: # more than one meas for this spec - part of an unknown experiment SpecMeths = get_list(NewSpecs, 'magic_method_codes').split(":") # TRM steps, could be TRM acquisition, Shaw or a Thellier # experiment or TDS experiment if "LT-T-I" in SpecMeths and experiment_name == "": # # collect all the infield steps and look for changes in dc field vector # Steps, TI = [], 1 for rec in NewSpecs: methods = get_list( NewSpecs, 'magic_method_codes').split(":") if "LT-T-I" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if "LT-AF-I" in SpecMeths and "LT-AF-Z" in SpecMeths: # must be Shaw :( experiment_name = "LP-PI-TRM:LP-PI-ALT-AFARM" elif TRM == 1: experiment_name = "LP-TRM" else: TI = 0 # no infield steps at all if "LT-T-Z" in SpecMeths and experiment_name == "": # thermal demag steps if TI == 0: experiment_name = "LP-DIR-T" # just ordinary thermal demag elif TRM != 1: # heart pounding - could be some kind of TRM normalized paleointensity or LP-TRM-TD experiment Temps = [] for step in Steps: # check through the infield steps - if all at same temperature, then must be a demag of a total TRM with checks if step['treatment_temp'] not in Temps: Temps.append(step['treatment_temp']) if len(Temps) > 1: experiment_name = "LP-PI-TRM" # paleointensity normalized by TRM else: # thermal demag of a lab TRM (could be part of a # LP-PI-TDS experiment) experiment_name = "LP-TRM-TD" TZ = 1 else: TZ = 0 # no zero field steps at all if "LT-AF-I" in SpecMeths: # ARM steps Steps = [] for rec in NewSpecs: tmp = rec["magic_method_codes"].split(":") methods = [] for meth in tmp: methods.append(meth.strip()) if "LT-AF-I" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-ARM" if experiment_name == "": # not anisotropy of ARM - acquisition? field0 = rec_bak["treatment_dc_field"] ARM = 0 for k in range(1, len(Steps)): rec = Steps[k] field = rec["treatment_dc_field"] if field != field0: ARM = 1 if ARM == 1: experiment_name = "LP-ARM" AFI = 1 else: AFI = 0 # no ARM steps at all if "LT-AF-Z" in SpecMeths and experiment_name == "": # AF demag steps if AFI == 0: experiment_name = "LP-DIR-AF" # just ordinary AF demag else: # heart pounding - a pseudothellier? experiment_name = "LP-PI-ARM" AFZ = 1 else: AFZ = 0 # no AF demag at all if "LT-IRM" in SpecMeths: # IRM Steps = [] for rec in NewSpecs: tmp = rec["magic_method_codes"].split(":") methods = [] for meth in tmp: methods.append(meth.strip()) if "LT-IRM" in methods: Steps.append(rec) # get all infield steps together rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-IRM" if experiment_name == "": # not anisotropy of IRM - acquisition? field0 = rec_bak["treatment_dc_field"] IRM = 0 for k in range(1, len(Steps)): rec = Steps[k] field = rec["treatment_dc_field"] if field != field0: IRM = 1 if IRM == 1: experiment_name = "LP-IRM" IRM = 1 else: IRM = 0 # no IRM at all if "LP-X" in SpecMeths: # susceptibility run Steps = get_dictitem( NewSpecs, 'magic_method_codes', 'LT-X', 'has') if len(Steps) > 0: rec_bak = Steps[0] if "treatment_dc_field_phi" in list(rec_bak.keys()) and "treatment_dc_field_theta" in list(rec_bak.keys()): # at least there is field orientation info if rec_bak["treatment_dc_field_phi"] != "" and rec_bak["treatment_dc_field_theta"] != "": phi0, theta0 = rec_bak["treatment_dc_field_phi"], rec_bak["treatment_dc_field_theta"] ANIS = 0 for k in range(1, len(Steps)): rec = Steps[k] phi, theta = rec["treatment_dc_field_phi"], rec["treatment_dc_field_theta"] if phi != phi0 or theta != theta0: ANIS = 1 # if direction changes, is some sort of anisotropy experiment if ANIS == 1: experiment_name = "LP-AN-MS" else: CHI = 0 # no susceptibility at all # # now need to deal with special thellier experiment problems - first clear up pTRM checks and tail checks # if experiment_name == "LP-PI-TRM": # is some sort of thellier experiment rec_bak = NewSpecs[0] tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: methbak.append(meth.strip()) # previous steps method codes for k in range(1, len(NewSpecs)): rec = NewSpecs[k] tmp = rec["magic_method_codes"].split(":") meths = [] for meth in tmp: # get this guys method codes meths.append(meth.strip()) # # check if this is a pTRM check # if float(rec["treatment_temp"]) < float(rec_bak["treatment_temp"]): # went backward if "LT-T-I" in meths and "LT-T-Z" in methbak: # must be a pTRM check after first z # # replace LT-T-I method code with LT-PTRM-I # methcodes = "" for meth in meths: if meth != "LT-T-I": methcode = methcode + meth.strip() + ":" methcodes = methcodes + "LT-PTRM-I" meths = methcodes.split(":") pTRM = 1 elif "LT-T-Z" in meths and "LT-T-I" in methbak: # must be pTRM check after first I # # replace LT-T-Z method code with LT-PTRM-Z # methcodes = "" for meth in meths: if meth != "LT-T-Z": methcode = methcode + meth + ":" methcodes = methcodes + "LT-PTRM-Z" meths = methcodes.split(":") pTRM = 1 methcodes = "" for meth in meths: methcodes = methcodes + meth.strip() + ":" # attach new method code rec["magic_method_codes"] = methcodes[:-1] rec_bak = rec # next previous record tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: # previous steps method codes methbak.append(meth.strip()) # # done with assigning pTRM checks. data should be "fixed" in NewSpecs # # now let's find out which steps are infield zerofield (IZ) and which are zerofield infield (ZI) # rec_bak = NewSpecs[0] tmp = rec_bak["magic_method_codes"].split(":") methbak = [] for meth in tmp: methbak.append(meth.strip()) # previous steps method codes if "LT-NO" not in methbak: # first measurement is not NRM if "LT-T-I" in methbak: IZorZI = "LP-PI-TRM-IZ" # first pair is IZ if "LT-T-Z" in methbak: IZorZI = "LP-PI-TRM-ZI" # first pair is ZI if IZorZI not in methbak: methbak.append(IZorZI) methcode = "" for meth in methbak: methcode = methcode + meth + ":" # fix first heating step when no NRM NewSpecs[0]["magic_method_codes"] = methcode[:-1] else: IZorZI = "" # first measurement is NRM and not one of a pair for k in range(1, len(NewSpecs)): # hunt through measurements again rec = NewSpecs[k] tmp = rec["magic_method_codes"].split(":") meths = [] for meth in tmp: # get this guys method codes meths.append(meth.strip()) # # check if this start a new temperature step of a infield/zerofield pair # if float(rec["treatment_temp"]) > float(rec_bak["treatment_temp"]) and "LT-PTRM-I" not in methbak: # new pair? if "LT-T-I" in meths: # infield of this pair IZorZI = "LP-PI-TRM-IZ" IZ = 1 # at least one IZ pair elif "LT-T-Z" in meths: # zerofield IZorZI = "LP-PI-TRM-ZI" ZI = 1 # at least one ZI pair # new pair after out of sequence PTRM check? elif float(rec["treatment_temp"]) > float(rec_bak["treatment_temp"]) and "LT-PTRM-I" in methbak and IZorZI != "LP-PI-TRM-ZI": if "LT-T-I" in meths: # infield of this pair IZorZI = "LP-PI-TRM-IZ" IZ = 1 # at least one IZ pair elif "LT-T-Z" in meths: # zerofield IZorZI = "LP-PI-TRM-ZI" ZI = 1 # at least one ZI pair # stayed same temp if float(rec["treatment_temp"]) == float(rec_bak["treatment_temp"]): if "LT-T-Z" in meths and "LT-T-I" in methbak and IZorZI == "LP-PI-TRM-ZI": # must be a tail check # # replace LT-T-Z method code with LT-PTRM-MD # methcodes = "" for meth in meths: if meth != "LT-T-Z": methcode = methcode + meth + ":" methcodes = methcodes + "LT-PTRM-MD" meths = methcodes.split(":") MD = 1 # fix method codes if "LT-PTRM-I" not in meths and "LT-PTRM-MD" not in meths and IZorZI not in meths: meths.append(IZorZI) newmeths = [] for meth in meths: if meth not in newmeths: newmeths.append(meth) # try to get uniq set methcode = "" for meth in newmeths: methcode = methcode + meth + ":" rec["magic_method_codes"] = methcode[:-1] rec_bak = rec # moving on to next record, making current one the backup # get last specimen's method codes in a list methbak = rec_bak["magic_method_codes"].split(":") # # done with this specimen's records, now check if any pTRM checks or MD checks # if pTRM == 1: experiment_name = experiment_name + ":LP-PI-ALT-PTRM" if MD == 1: experiment_name = experiment_name + ":LP-PI-BT-MD" if IZ == 1 and ZI == 1: experiment_name = experiment_name + ":LP-PI-BT-IZZI" if IZ == 1 and ZI == 0: experiment_name = experiment_name + ":LP-PI-IZ" # Aitken method if IZ == 0 and ZI == 1: experiment_name = experiment_name + ":LP-PI-ZI" # Coe method IZ, ZI, pTRM, MD = 0, 0, 0, 0 # reset these for next specimen for rec in NewSpecs: # fix the experiment name for all recs for this specimen and save in SpecOuts # assign an experiment name to all specimen measurements # from this specimen if experiment_name != "": rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_experiment_name"] = spec + ":" + experiment_name rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers measnum += 1 #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 SpecOuts.append(rec) elif experiment_name == "LP-PI-TRM:LP-PI-ALT-AFARM": # is a Shaw experiment! ARM, TRM = 0, 0 for rec in NewSpecs: # fix the experiment name for all recs for this specimen and save in SpecOuts # assign an experiment name to all specimen measurements from this specimen # make the second ARM in Shaw experiments LT-AF-I-2, stick # in the AF of ARM and TRM codes meths = rec["magic_method_codes"].split(":") if ARM == 1: if "LT-AF-I" in meths: del meths[meths.index("LT-AF-I")] meths.append("LT-AF-I-2") ARM = 2 if "LT-AF-Z" in meths and TRM == 0: meths.append("LP-ARM-AFD") if TRM == 1 and ARM == 1: if "LT-AF-Z" in meths: meths.append("LP-TRM-AFD") if ARM == 2: if "LT-AF-Z" in meths: meths.append("LP-ARM2-AFD") newcode = "" for meth in meths: newcode = newcode + meth + ":" rec["magic_method_codes"] = newcode[:-1] if "LT-AF-I" in meths: ARM = 1 if "LT-T-I" in meths: TRM = 1 rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_experiment_name"] = spec + ":" + experiment_name rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 SpecOuts.append(rec) else: # not a Thellier-Thellier or a Shaw experiemnt for rec in NewSpecs: if experiment_name == "": rec["magic_method_codes"] = "LT-NO" rec["magic_experiment_name"] = spec + ":LT-NO" rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 else: if experiment_name not in rec['magic_method_codes']: rec["magic_method_codes"] = rec["magic_method_codes"] + \ ":" + experiment_name rec["magic_method_codes"] = rec["magic_method_codes"].strip( ':') rec['measurement_number'] = '%i' % ( measnum) # assign measurement numbers #rec['sequence'] = '%i'%(seqnum) #seqnum += 1 measnum += 1 rec["magic_experiment_name"] = spec + \ ":" + experiment_name rec["magic_software_packages"] = version_num SpecOuts.append(rec) else: NewSpecs[0]["magic_experiment_name"] = spec + ":" + \ NewSpecs[0]['magic_method_codes'].split(':')[0] NewSpecs[0]["magic_software_packages"] = version_num # just copy over the single record as is SpecOuts.append(NewSpecs[0]) return SpecOuts
['def', 'measurements_methods', '(', 'meas_data', ',', 'noave', ')', ':', '#', 'version_num', '=', 'get_version', '(', ')', 'sids', '=', 'get_specs', '(', 'meas_data', ')', '# list of measurement records for this specimen', '#', '# step through spec by spec', '#', 'SpecTmps', ',', 'SpecOuts', '=', '[', ']', ',', '[', ']', 'for', 'spec', 'in', 'sids', ':', 'TRM', ',', 'IRM3D', ',', 'ATRM', ',', 'CR', '=', '0', ',', '0', ',', '0', ',', '0', 'expcodes', '=', '""', '# first collect all data for this specimen and do lab treatments', '# list of measurement records for this specimen', 'SpecRecs', '=', 'get_dictitem', '(', 'meas_data', ',', "'er_specimen_name'", ',', 'spec', ',', "'T'", ')', 'for', 'rec', 'in', 'SpecRecs', ':', 'if', "'measurement_flag'", 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', ':', 'rec', '[', "'measurement_flag'", ']', '=', "'g'", 'tmpmeths', '=', 'rec', '[', "'magic_method_codes'", ']', '.', 'split', '(', '":"', ')', 'meths', '=', '[', ']', 'if', '"LP-TRM"', 'in', 'tmpmeths', ':', 'TRM', '=', '1', '# catch these suckers here!', 'if', '"LP-IRM-3D"', 'in', 'tmpmeths', ':', 'IRM3D', '=', '1', '# catch these suckers here!', 'elif', '"LP-AN-TRM"', 'in', 'tmpmeths', ':', 'ATRM', '=', '1', '# catch these suckers here!', 'elif', '"LP-CR-TRM"', 'in', 'tmpmeths', ':', 'CR', '=', '1', '# catch these suckers here!', '#', '# otherwise write over existing method codes', '#', '# find NRM data (LT-NO)', '#', 'elif', 'float', '(', 'rec', '[', '"measurement_temp"', ']', ')', '>=', '273.', 'and', 'float', '(', 'rec', '[', '"measurement_temp"', ']', ')', '<', '323.', ':', '# between 0 and 50C is room T measurement', 'if', '(', '"measurement_dc_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'float', '(', 'rec', '[', '"measurement_dc_field"', ']', ')', '==', '0', 'or', 'rec', '[', '"measurement_dc_field"', ']', '==', '""', ')', 'and', '(', '"measurement_ac_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'float', '(', 'rec', '[', '"measurement_ac_field"', ']', ')', '==', '0', 'or', 'rec', '[', '"measurement_ac_field"', ']', '==', '""', ')', ':', '# measurement done in zero field!', 'if', '"treatment_temp"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_temp"', ']', '.', 'strip', '(', ')', '==', '""', 'or', '(', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '>=', '273.', 'and', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '<', '298.', ')', ':', '# between 0 and 50C is room T treatment', 'if', '"treatment_ac_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_ac_field"', ']', '==', '""', 'or', 'float', '(', 'rec', '[', '"treatment_ac_field"', ']', ')', '==', '0', ':', '# no AF', '# no IRM!', 'if', '"treatment_dc_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_dc_field"', ']', '==', '""', 'or', 'float', '(', 'rec', '[', '"treatment_dc_field"', ']', ')', '==', '0', ':', 'if', '"LT-NO"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-NO"', ')', 'elif', '"LT-IRM"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-IRM"', ')', "# it's an IRM", '#', '# find AF/infield/zerofield', '#', '# no ARM', 'elif', '"treatment_dc_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_dc_field"', ']', '==', '""', 'or', 'float', '(', 'rec', '[', '"treatment_dc_field"', ']', ')', '==', '0', ':', 'if', '"LT-AF-Z"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-AF-Z"', ')', 'else', ':', '# yes ARM', 'if', '"LT-AF-I"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-AF-I"', ')', '#', '# find Thermal/infield/zerofield', '#', 'elif', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '>=', '323', ':', '# treatment done at high T', 'if', 'TRM', '==', '1', ':', 'if', '"LT-T-I"', 'not', 'in', 'meths', ':', '# TRM - even if zero applied field!', 'meths', '.', 'append', '(', '"LT-T-I"', ')', '# no TRM', 'elif', '"treatment_dc_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_dc_field"', ']', '==', '""', 'or', 'float', '(', 'rec', '[', '"treatment_dc_field"', ']', ')', '==', '0.', ':', 'if', '"LT-T-Z"', 'not', 'in', 'meths', ':', "# don't overwrite if part of a TRM experiment!", 'meths', '.', 'append', '(', '"LT-T-Z"', ')', 'else', ':', '# yes TRM', 'if', '"LT-T-I"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-T-I"', ')', '#', '# find low-T infield,zero field', '#', 'else', ':', '# treatment done at low T', '# no field', 'if', '"treatment_dc_field"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', 'rec', '[', '"treatment_dc_field"', ']', '==', '""', 'or', 'float', '(', 'rec', '[', '"treatment_dc_field"', ']', ')', '==', '0', ':', 'if', '"LT-LT-Z"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-LT-Z"', ')', 'else', ':', '# yes field', 'if', '"LT-LT-I"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LT-LT-I"', ')', 'if', '"measurement_chi_volume"', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'or', '"measurement_chi_mass"', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', ':', 'if', '"LP-X"', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LP-X"', ')', '# measurement in presence of dc field and not susceptibility;', '# hysteresis!', 'elif', '"measurement_lab_dc_field"', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', 'and', 'rec', '[', '"measurement_lab_dc_field"', ']', '!=', '0', ':', 'if', '"LP-HYS"', 'not', 'in', 'meths', ':', 'hysq', '=', 'input', '(', '"Is this a hysteresis experiment? [1]/0"', ')', 'if', 'hysq', '==', '""', 'or', 'hysq', '==', '"1"', ':', 'meths', '.', 'append', '(', '"LP-HYS"', ')', 'else', ':', 'metha', '=', 'input', '(', '"Enter the lab protocol code that best describes this experiment "', ')', 'meths', '.', 'append', '(', 'metha', ')', 'methcode', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'methcode', '=', 'methcode', '+', 'meth', '.', 'strip', '(', ')', '+', '":"', 'rec', '[', '"magic_method_codes"', ']', '=', 'methcode', '[', ':', '-', '1', ']', '# assign them back', '#', '# done with first pass, collect and assign provisional method codes', 'if', '"measurement_description"', 'not', 'in', 'list', '(', 'rec', '.', 'keys', '(', ')', ')', ':', 'rec', '[', '"measurement_description"', ']', '=', '""', 'rec', '[', '"er_citation_names"', ']', '=', '"This study"', 'SpecTmps', '.', 'append', '(', 'rec', ')', '# ready for second pass through, step through specimens, check whether ptrm, ptrm tail checks, or AARM, etc.', '#', 'for', 'spec', 'in', 'sids', ':', 'MD', ',', 'pTRM', ',', 'IZ', ',', 'ZI', '=', '0', ',', '0', ',', '0', ',', '0', '# these are flags for the lab protocol codes', 'expcodes', '=', '""', 'NewSpecs', ',', 'SpecMeths', '=', '[', ']', ',', '[', ']', 'experiment_name', ',', 'measnum', '=', '""', ',', '1', 'if', 'IRM3D', '==', '1', ':', 'experiment_name', '=', '"LP-IRM-3D"', 'if', 'ATRM', '==', '1', ':', 'experiment_name', '=', '"LP-AN-TRM"', 'if', 'CR', '==', '1', ':', 'experiment_name', '=', '"LP-CR"', 'NewSpecs', '=', 'get_dictitem', '(', 'SpecTmps', ',', "'er_specimen_name'", ',', 'spec', ',', "'T'", ')', '#', '# first look for replicate measurements', '#', 'Ninit', '=', 'len', '(', 'NewSpecs', ')', 'if', 'noave', '!=', '1', ':', '# averages replicate measurements, returns treatment keys that are', '# being used', 'vdata', ',', 'treatkeys', '=', 'vspec_magic', '(', 'NewSpecs', ')', 'if', 'len', '(', 'vdata', ')', '!=', 'len', '(', 'NewSpecs', ')', ':', "# print spec,'started with ',Ninit,' ending with ',len(vdata)", 'NewSpecs', '=', 'vdata', '# print "Averaged replicate measurements"', '#', "# now look through this specimen's records - try to figure out what experiment it is", '#', 'if', 'len', '(', 'NewSpecs', ')', '>', '1', ':', '# more than one meas for this spec - part of an unknown experiment', 'SpecMeths', '=', 'get_list', '(', 'NewSpecs', ',', "'magic_method_codes'", ')', '.', 'split', '(', '":"', ')', '# TRM steps, could be TRM acquisition, Shaw or a Thellier', '# experiment or TDS experiment', 'if', '"LT-T-I"', 'in', 'SpecMeths', 'and', 'experiment_name', '==', '""', ':', '#', '# collect all the infield steps and look for changes in dc field vector', '#', 'Steps', ',', 'TI', '=', '[', ']', ',', '1', 'for', 'rec', 'in', 'NewSpecs', ':', 'methods', '=', 'get_list', '(', 'NewSpecs', ',', "'magic_method_codes'", ')', '.', 'split', '(', '":"', ')', 'if', '"LT-T-I"', 'in', 'methods', ':', 'Steps', '.', 'append', '(', 'rec', ')', '# get all infield steps together', 'rec_bak', '=', 'Steps', '[', '0', ']', 'if', '"treatment_dc_field_phi"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', 'and', '"treatment_dc_field_theta"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', ':', '# at least there is field orientation info', 'if', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', '!=', '""', 'and', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', '!=', '""', ':', 'phi0', ',', 'theta0', '=', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', ',', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'phi', ',', 'theta', '=', 'rec', '[', '"treatment_dc_field_phi"', ']', ',', 'rec', '[', '"treatment_dc_field_theta"', ']', 'if', 'phi', '!=', 'phi0', 'or', 'theta', '!=', 'theta0', ':', 'ANIS', '=', '1', '# if direction changes, is some sort of anisotropy experiment', 'if', '"LT-AF-I"', 'in', 'SpecMeths', 'and', '"LT-AF-Z"', 'in', 'SpecMeths', ':', '# must be Shaw :(', 'experiment_name', '=', '"LP-PI-TRM:LP-PI-ALT-AFARM"', 'elif', 'TRM', '==', '1', ':', 'experiment_name', '=', '"LP-TRM"', 'else', ':', 'TI', '=', '0', '# no infield steps at all', 'if', '"LT-T-Z"', 'in', 'SpecMeths', 'and', 'experiment_name', '==', '""', ':', '# thermal demag steps', 'if', 'TI', '==', '0', ':', 'experiment_name', '=', '"LP-DIR-T"', '# just ordinary thermal demag', 'elif', 'TRM', '!=', '1', ':', '# heart pounding - could be some kind of TRM normalized paleointensity or LP-TRM-TD experiment', 'Temps', '=', '[', ']', 'for', 'step', 'in', 'Steps', ':', '# check through the infield steps - if all at same temperature, then must be a demag of a total TRM with checks', 'if', 'step', '[', "'treatment_temp'", ']', 'not', 'in', 'Temps', ':', 'Temps', '.', 'append', '(', 'step', '[', "'treatment_temp'", ']', ')', 'if', 'len', '(', 'Temps', ')', '>', '1', ':', 'experiment_name', '=', '"LP-PI-TRM"', '# paleointensity normalized by TRM', 'else', ':', '# thermal demag of a lab TRM (could be part of a', '# LP-PI-TDS experiment)', 'experiment_name', '=', '"LP-TRM-TD"', 'TZ', '=', '1', 'else', ':', 'TZ', '=', '0', '# no zero field steps at all', 'if', '"LT-AF-I"', 'in', 'SpecMeths', ':', '# ARM steps', 'Steps', '=', '[', ']', 'for', 'rec', 'in', 'NewSpecs', ':', 'tmp', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'methods', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', 'methods', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', 'if', '"LT-AF-I"', 'in', 'methods', ':', 'Steps', '.', 'append', '(', 'rec', ')', '# get all infield steps together', 'rec_bak', '=', 'Steps', '[', '0', ']', 'if', '"treatment_dc_field_phi"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', 'and', '"treatment_dc_field_theta"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', ':', '# at least there is field orientation info', 'if', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', '!=', '""', 'and', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', '!=', '""', ':', 'phi0', ',', 'theta0', '=', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', ',', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', 'ANIS', '=', '0', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'phi', ',', 'theta', '=', 'rec', '[', '"treatment_dc_field_phi"', ']', ',', 'rec', '[', '"treatment_dc_field_theta"', ']', 'if', 'phi', '!=', 'phi0', 'or', 'theta', '!=', 'theta0', ':', 'ANIS', '=', '1', '# if direction changes, is some sort of anisotropy experiment', 'if', 'ANIS', '==', '1', ':', 'experiment_name', '=', '"LP-AN-ARM"', 'if', 'experiment_name', '==', '""', ':', '# not anisotropy of ARM - acquisition?', 'field0', '=', 'rec_bak', '[', '"treatment_dc_field"', ']', 'ARM', '=', '0', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'field', '=', 'rec', '[', '"treatment_dc_field"', ']', 'if', 'field', '!=', 'field0', ':', 'ARM', '=', '1', 'if', 'ARM', '==', '1', ':', 'experiment_name', '=', '"LP-ARM"', 'AFI', '=', '1', 'else', ':', 'AFI', '=', '0', '# no ARM steps at all', 'if', '"LT-AF-Z"', 'in', 'SpecMeths', 'and', 'experiment_name', '==', '""', ':', '# AF demag steps', 'if', 'AFI', '==', '0', ':', 'experiment_name', '=', '"LP-DIR-AF"', '# just ordinary AF demag', 'else', ':', '# heart pounding - a pseudothellier?', 'experiment_name', '=', '"LP-PI-ARM"', 'AFZ', '=', '1', 'else', ':', 'AFZ', '=', '0', '# no AF demag at all', 'if', '"LT-IRM"', 'in', 'SpecMeths', ':', '# IRM', 'Steps', '=', '[', ']', 'for', 'rec', 'in', 'NewSpecs', ':', 'tmp', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'methods', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', 'methods', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', 'if', '"LT-IRM"', 'in', 'methods', ':', 'Steps', '.', 'append', '(', 'rec', ')', '# get all infield steps together', 'rec_bak', '=', 'Steps', '[', '0', ']', 'if', '"treatment_dc_field_phi"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', 'and', '"treatment_dc_field_theta"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', ':', '# at least there is field orientation info', 'if', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', '!=', '""', 'and', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', '!=', '""', ':', 'phi0', ',', 'theta0', '=', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', ',', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', 'ANIS', '=', '0', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'phi', ',', 'theta', '=', 'rec', '[', '"treatment_dc_field_phi"', ']', ',', 'rec', '[', '"treatment_dc_field_theta"', ']', 'if', 'phi', '!=', 'phi0', 'or', 'theta', '!=', 'theta0', ':', 'ANIS', '=', '1', '# if direction changes, is some sort of anisotropy experiment', 'if', 'ANIS', '==', '1', ':', 'experiment_name', '=', '"LP-AN-IRM"', 'if', 'experiment_name', '==', '""', ':', '# not anisotropy of IRM - acquisition?', 'field0', '=', 'rec_bak', '[', '"treatment_dc_field"', ']', 'IRM', '=', '0', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'field', '=', 'rec', '[', '"treatment_dc_field"', ']', 'if', 'field', '!=', 'field0', ':', 'IRM', '=', '1', 'if', 'IRM', '==', '1', ':', 'experiment_name', '=', '"LP-IRM"', 'IRM', '=', '1', 'else', ':', 'IRM', '=', '0', '# no IRM at all', 'if', '"LP-X"', 'in', 'SpecMeths', ':', '# susceptibility run', 'Steps', '=', 'get_dictitem', '(', 'NewSpecs', ',', "'magic_method_codes'", ',', "'LT-X'", ',', "'has'", ')', 'if', 'len', '(', 'Steps', ')', '>', '0', ':', 'rec_bak', '=', 'Steps', '[', '0', ']', 'if', '"treatment_dc_field_phi"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', 'and', '"treatment_dc_field_theta"', 'in', 'list', '(', 'rec_bak', '.', 'keys', '(', ')', ')', ':', '# at least there is field orientation info', 'if', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', '!=', '""', 'and', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', '!=', '""', ':', 'phi0', ',', 'theta0', '=', 'rec_bak', '[', '"treatment_dc_field_phi"', ']', ',', 'rec_bak', '[', '"treatment_dc_field_theta"', ']', 'ANIS', '=', '0', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'Steps', ')', ')', ':', 'rec', '=', 'Steps', '[', 'k', ']', 'phi', ',', 'theta', '=', 'rec', '[', '"treatment_dc_field_phi"', ']', ',', 'rec', '[', '"treatment_dc_field_theta"', ']', 'if', 'phi', '!=', 'phi0', 'or', 'theta', '!=', 'theta0', ':', 'ANIS', '=', '1', '# if direction changes, is some sort of anisotropy experiment', 'if', 'ANIS', '==', '1', ':', 'experiment_name', '=', '"LP-AN-MS"', 'else', ':', 'CHI', '=', '0', '# no susceptibility at all', '#', '# now need to deal with special thellier experiment problems - first clear up pTRM checks and tail checks', '#', 'if', 'experiment_name', '==', '"LP-PI-TRM"', ':', '# is some sort of thellier experiment', 'rec_bak', '=', 'NewSpecs', '[', '0', ']', 'tmp', '=', 'rec_bak', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'methbak', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', 'methbak', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', '# previous steps method codes', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'NewSpecs', ')', ')', ':', 'rec', '=', 'NewSpecs', '[', 'k', ']', 'tmp', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'meths', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', '# get this guys method codes', 'meths', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', '#', '# check if this is a pTRM check', '#', 'if', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '<', 'float', '(', 'rec_bak', '[', '"treatment_temp"', ']', ')', ':', '# went backward', 'if', '"LT-T-I"', 'in', 'meths', 'and', '"LT-T-Z"', 'in', 'methbak', ':', '# must be a pTRM check after first z', '#', '# replace LT-T-I method code with LT-PTRM-I', '#', 'methcodes', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'if', 'meth', '!=', '"LT-T-I"', ':', 'methcode', '=', 'methcode', '+', 'meth', '.', 'strip', '(', ')', '+', '":"', 'methcodes', '=', 'methcodes', '+', '"LT-PTRM-I"', 'meths', '=', 'methcodes', '.', 'split', '(', '":"', ')', 'pTRM', '=', '1', 'elif', '"LT-T-Z"', 'in', 'meths', 'and', '"LT-T-I"', 'in', 'methbak', ':', '# must be pTRM check after first I', '#', '# replace LT-T-Z method code with LT-PTRM-Z', '#', 'methcodes', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'if', 'meth', '!=', '"LT-T-Z"', ':', 'methcode', '=', 'methcode', '+', 'meth', '+', '":"', 'methcodes', '=', 'methcodes', '+', '"LT-PTRM-Z"', 'meths', '=', 'methcodes', '.', 'split', '(', '":"', ')', 'pTRM', '=', '1', 'methcodes', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'methcodes', '=', 'methcodes', '+', 'meth', '.', 'strip', '(', ')', '+', '":"', '# attach new method code', 'rec', '[', '"magic_method_codes"', ']', '=', 'methcodes', '[', ':', '-', '1', ']', 'rec_bak', '=', 'rec', '# next previous record', 'tmp', '=', 'rec_bak', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'methbak', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', '# previous steps method codes', 'methbak', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', '#', '# done with assigning pTRM checks. data should be "fixed" in NewSpecs', '#', "# now let's find out which steps are infield zerofield (IZ) and which are zerofield infield (ZI)", '#', 'rec_bak', '=', 'NewSpecs', '[', '0', ']', 'tmp', '=', 'rec_bak', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'methbak', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', 'methbak', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', '# previous steps method codes', 'if', '"LT-NO"', 'not', 'in', 'methbak', ':', '# first measurement is not NRM', 'if', '"LT-T-I"', 'in', 'methbak', ':', 'IZorZI', '=', '"LP-PI-TRM-IZ"', '# first pair is IZ', 'if', '"LT-T-Z"', 'in', 'methbak', ':', 'IZorZI', '=', '"LP-PI-TRM-ZI"', '# first pair is ZI', 'if', 'IZorZI', 'not', 'in', 'methbak', ':', 'methbak', '.', 'append', '(', 'IZorZI', ')', 'methcode', '=', '""', 'for', 'meth', 'in', 'methbak', ':', 'methcode', '=', 'methcode', '+', 'meth', '+', '":"', '# fix first heating step when no NRM', 'NewSpecs', '[', '0', ']', '[', '"magic_method_codes"', ']', '=', 'methcode', '[', ':', '-', '1', ']', 'else', ':', 'IZorZI', '=', '""', '# first measurement is NRM and not one of a pair', 'for', 'k', 'in', 'range', '(', '1', ',', 'len', '(', 'NewSpecs', ')', ')', ':', '# hunt through measurements again', 'rec', '=', 'NewSpecs', '[', 'k', ']', 'tmp', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'meths', '=', '[', ']', 'for', 'meth', 'in', 'tmp', ':', '# get this guys method codes', 'meths', '.', 'append', '(', 'meth', '.', 'strip', '(', ')', ')', '#', '# check if this start a new temperature step of a infield/zerofield pair', '#', 'if', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '>', 'float', '(', 'rec_bak', '[', '"treatment_temp"', ']', ')', 'and', '"LT-PTRM-I"', 'not', 'in', 'methbak', ':', '# new pair?', 'if', '"LT-T-I"', 'in', 'meths', ':', '# infield of this pair', 'IZorZI', '=', '"LP-PI-TRM-IZ"', 'IZ', '=', '1', '# at least one IZ pair', 'elif', '"LT-T-Z"', 'in', 'meths', ':', '# zerofield', 'IZorZI', '=', '"LP-PI-TRM-ZI"', 'ZI', '=', '1', '# at least one ZI pair', '# new pair after out of sequence PTRM check?', 'elif', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '>', 'float', '(', 'rec_bak', '[', '"treatment_temp"', ']', ')', 'and', '"LT-PTRM-I"', 'in', 'methbak', 'and', 'IZorZI', '!=', '"LP-PI-TRM-ZI"', ':', 'if', '"LT-T-I"', 'in', 'meths', ':', '# infield of this pair', 'IZorZI', '=', '"LP-PI-TRM-IZ"', 'IZ', '=', '1', '# at least one IZ pair', 'elif', '"LT-T-Z"', 'in', 'meths', ':', '# zerofield', 'IZorZI', '=', '"LP-PI-TRM-ZI"', 'ZI', '=', '1', '# at least one ZI pair', '# stayed same temp', 'if', 'float', '(', 'rec', '[', '"treatment_temp"', ']', ')', '==', 'float', '(', 'rec_bak', '[', '"treatment_temp"', ']', ')', ':', 'if', '"LT-T-Z"', 'in', 'meths', 'and', '"LT-T-I"', 'in', 'methbak', 'and', 'IZorZI', '==', '"LP-PI-TRM-ZI"', ':', '# must be a tail check', '#', '# replace LT-T-Z method code with LT-PTRM-MD', '#', 'methcodes', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'if', 'meth', '!=', '"LT-T-Z"', ':', 'methcode', '=', 'methcode', '+', 'meth', '+', '":"', 'methcodes', '=', 'methcodes', '+', '"LT-PTRM-MD"', 'meths', '=', 'methcodes', '.', 'split', '(', '":"', ')', 'MD', '=', '1', '# fix method codes', 'if', '"LT-PTRM-I"', 'not', 'in', 'meths', 'and', '"LT-PTRM-MD"', 'not', 'in', 'meths', 'and', 'IZorZI', 'not', 'in', 'meths', ':', 'meths', '.', 'append', '(', 'IZorZI', ')', 'newmeths', '=', '[', ']', 'for', 'meth', 'in', 'meths', ':', 'if', 'meth', 'not', 'in', 'newmeths', ':', 'newmeths', '.', 'append', '(', 'meth', ')', '# try to get uniq set', 'methcode', '=', '""', 'for', 'meth', 'in', 'newmeths', ':', 'methcode', '=', 'methcode', '+', 'meth', '+', '":"', 'rec', '[', '"magic_method_codes"', ']', '=', 'methcode', '[', ':', '-', '1', ']', 'rec_bak', '=', 'rec', '# moving on to next record, making current one the backup', "# get last specimen's method codes in a list", 'methbak', '=', 'rec_bak', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', '#', "# done with this specimen's records, now check if any pTRM checks or MD checks", '#', 'if', 'pTRM', '==', '1', ':', 'experiment_name', '=', 'experiment_name', '+', '":LP-PI-ALT-PTRM"', 'if', 'MD', '==', '1', ':', 'experiment_name', '=', 'experiment_name', '+', '":LP-PI-BT-MD"', 'if', 'IZ', '==', '1', 'and', 'ZI', '==', '1', ':', 'experiment_name', '=', 'experiment_name', '+', '":LP-PI-BT-IZZI"', 'if', 'IZ', '==', '1', 'and', 'ZI', '==', '0', ':', 'experiment_name', '=', 'experiment_name', '+', '":LP-PI-IZ"', '# Aitken method', 'if', 'IZ', '==', '0', 'and', 'ZI', '==', '1', ':', 'experiment_name', '=', 'experiment_name', '+', '":LP-PI-ZI"', '# Coe method', 'IZ', ',', 'ZI', ',', 'pTRM', ',', 'MD', '=', '0', ',', '0', ',', '0', ',', '0', '# reset these for next specimen', 'for', 'rec', 'in', 'NewSpecs', ':', '# fix the experiment name for all recs for this specimen and save in SpecOuts', '# assign an experiment name to all specimen measurements', '# from this specimen', 'if', 'experiment_name', '!=', '""', ':', 'rec', '[', '"magic_method_codes"', ']', '=', 'rec', '[', '"magic_method_codes"', ']', '+', '":"', '+', 'experiment_name', 'rec', '[', '"magic_experiment_name"', ']', '=', 'spec', '+', '":"', '+', 'experiment_name', 'rec', '[', "'measurement_number'", ']', '=', "'%i'", '%', '(', 'measnum', ')', '# assign measurement numbers', 'measnum', '+=', '1', "#rec['sequence'] = '%i'%(seqnum)", '#seqnum += 1', 'SpecOuts', '.', 'append', '(', 'rec', ')', 'elif', 'experiment_name', '==', '"LP-PI-TRM:LP-PI-ALT-AFARM"', ':', '# is a Shaw experiment!', 'ARM', ',', 'TRM', '=', '0', ',', '0', 'for', 'rec', 'in', 'NewSpecs', ':', '# fix the experiment name for all recs for this specimen and save in SpecOuts', '# assign an experiment name to all specimen measurements from this specimen', '# make the second ARM in Shaw experiments LT-AF-I-2, stick', '# in the AF of ARM and TRM codes', 'meths', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'split', '(', '":"', ')', 'if', 'ARM', '==', '1', ':', 'if', '"LT-AF-I"', 'in', 'meths', ':', 'del', 'meths', '[', 'meths', '.', 'index', '(', '"LT-AF-I"', ')', ']', 'meths', '.', 'append', '(', '"LT-AF-I-2"', ')', 'ARM', '=', '2', 'if', '"LT-AF-Z"', 'in', 'meths', 'and', 'TRM', '==', '0', ':', 'meths', '.', 'append', '(', '"LP-ARM-AFD"', ')', 'if', 'TRM', '==', '1', 'and', 'ARM', '==', '1', ':', 'if', '"LT-AF-Z"', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LP-TRM-AFD"', ')', 'if', 'ARM', '==', '2', ':', 'if', '"LT-AF-Z"', 'in', 'meths', ':', 'meths', '.', 'append', '(', '"LP-ARM2-AFD"', ')', 'newcode', '=', '""', 'for', 'meth', 'in', 'meths', ':', 'newcode', '=', 'newcode', '+', 'meth', '+', '":"', 'rec', '[', '"magic_method_codes"', ']', '=', 'newcode', '[', ':', '-', '1', ']', 'if', '"LT-AF-I"', 'in', 'meths', ':', 'ARM', '=', '1', 'if', '"LT-T-I"', 'in', 'meths', ':', 'TRM', '=', '1', 'rec', '[', '"magic_method_codes"', ']', '=', 'rec', '[', '"magic_method_codes"', ']', '+', '":"', '+', 'experiment_name', 'rec', '[', '"magic_experiment_name"', ']', '=', 'spec', '+', '":"', '+', 'experiment_name', 'rec', '[', "'measurement_number'", ']', '=', "'%i'", '%', '(', 'measnum', ')', '# assign measurement numbers', "#rec['sequence'] = '%i'%(seqnum)", '#seqnum += 1', 'measnum', '+=', '1', 'SpecOuts', '.', 'append', '(', 'rec', ')', 'else', ':', '# not a Thellier-Thellier or a Shaw experiemnt', 'for', 'rec', 'in', 'NewSpecs', ':', 'if', 'experiment_name', '==', '""', ':', 'rec', '[', '"magic_method_codes"', ']', '=', '"LT-NO"', 'rec', '[', '"magic_experiment_name"', ']', '=', 'spec', '+', '":LT-NO"', 'rec', '[', "'measurement_number'", ']', '=', "'%i'", '%', '(', 'measnum', ')', '# assign measurement numbers', "#rec['sequence'] = '%i'%(seqnum)", '#seqnum += 1', 'measnum', '+=', '1', 'else', ':', 'if', 'experiment_name', 'not', 'in', 'rec', '[', "'magic_method_codes'", ']', ':', 'rec', '[', '"magic_method_codes"', ']', '=', 'rec', '[', '"magic_method_codes"', ']', '+', '":"', '+', 'experiment_name', 'rec', '[', '"magic_method_codes"', ']', '=', 'rec', '[', '"magic_method_codes"', ']', '.', 'strip', '(', "':'", ')', 'rec', '[', "'measurement_number'", ']', '=', "'%i'", '%', '(', 'measnum', ')', '# assign measurement numbers', "#rec['sequence'] = '%i'%(seqnum)", '#seqnum += 1', 'measnum', '+=', '1', 'rec', '[', '"magic_experiment_name"', ']', '=', 'spec', '+', '":"', '+', 'experiment_name', 'rec', '[', '"magic_software_packages"', ']', '=', 'version_num', 'SpecOuts', '.', 'append', '(', 'rec', ')', 'else', ':', 'NewSpecs', '[', '0', ']', '[', '"magic_experiment_name"', ']', '=', 'spec', '+', '":"', '+', 'NewSpecs', '[', '0', ']', '[', "'magic_method_codes'", ']', '.', 'split', '(', "':'", ')', '[', '0', ']', 'NewSpecs', '[', '0', ']', '[', '"magic_software_packages"', ']', '=', 'version_num', '# just copy over the single record as is', 'SpecOuts', '.', 'append', '(', 'NewSpecs', '[', '0', ']', ')', 'return', 'SpecOuts']
get list of unique specs
['get', 'list', 'of', 'unique', 'specs']
train
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L7745-L8254