metadata
language:
- de
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 170912314562.13522
num_examples: 30558837
download_size: 104029383895
dataset_size: 170912314562.13522
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
import os
import datasets
import torch
from transformers import ModernBertForSequenceClassification, pipeline
_GPU_ID = os.getenv("CUDA_VISIBLE_DEVICES", "0")
def load_model(gpu_index=0):
model = ModernBertForSequenceClassification.from_pretrained(
"flozi00/GermanEduScorer-ModernBERT-base",
reference_compile=False,
attn_implementation="sdpa",
).to(torch.bfloat16)
model = torch.compile(model, dynamic=True, mode="max-autotune")
pipe = pipeline(
"text-classification",
model=model,
tokenizer="flozi00/GermanEduScorer-ModernBERT-base",
device=gpu_index,
torch_dtype=torch.bfloat16,
)
return pipe
pipe0 = load_model(0)
tokenizer_kwargs = {"truncation": True}
BAD_WORDS = [
"Sofort lieferbar",
]
def process_chunk(pipe, texts):
if not texts:
return []
return [
int(x["label"])
for x in pipe(
texts,
batch_size=256,
truncation=True,
max_length=1024,
)
]
def classification_wrapper(text_list: list):
return process_chunk(pipe0, text_list)
def map_edu(example):
example["content"] = example["text"]
example["label"] = classification_wrapper(example["text"])
return example
for SET_ID in ["0", "1", "2", "3"]:
base_url = "https://huggingface.co/datasets/HuggingFaceFW/fineweb-2/resolve/main/data/deu_Latn/train/"
data_files = {
"train": [base_url + f"00{SET_ID}_0000{i}.parquet" for i in range(10)]
+ [base_url + f"00{SET_ID}_000{i}.parquet" for i in range(10, 38)]
}
fineweb = datasets.load_dataset(
"parquet",
data_files=data_files,
split="train",
num_proc=4,
cache_dir=f"./cache_fineweb_{SET_ID}",
)
chunk_size = 100_000
part_size = len(fineweb) // 4
total_samples = part_size * (int(_GPU_ID) + 1)
output_path = f"fineweb2_edu_4up_german_split_{int(SET_ID)+1}-of-4"
for i in range(part_size * int(_GPU_ID), total_samples, chunk_size):
end_idx = min(i + chunk_size, total_samples)
checkpoint_path = f"chunks/{output_path}_chunk_{i}"
# Try to load existing chunk
try:
dset = datasets.load_from_disk(checkpoint_path)
print(f"Chunk {i} to {end_idx} already processed, skipping...")
continue
except Exception:
print(f"Processing chunk {i} to {end_idx} of {total_samples}")
chunk = fineweb.select(range(i, end_idx))
processed_chunk = chunk.map(
map_edu,
remove_columns=chunk.column_names,
batch_size=1024,
batched=True,
).filter(lambda x: x["label"] >= 4, num_proc=8)
processed_chunk = processed_chunk.rename_column("content", "text")
processed_chunk.save_to_disk(checkpoint_path)
print(f"Saved checkpoint to {checkpoint_path}")
if i % 1_000_000 == 0 and _GPU_ID == "0" and i > 0:
sets_to_push = []
# list all folders in the chunks directory
for folder in os.listdir("chunks"):
# load the dataset
sets_to_push.append(datasets.load_from_disk(f"chunks/{folder}"))
state_ds = datasets.concatenate_datasets(sets_to_push)
for bad_word in BAD_WORDS:
state_ds = state_ds.filter(
lambda x: bad_word not in x["text"], num_proc=8
)
state_ds = state_ds.filter(
lambda x: len(x["text"]) > 1024 and len(x["text"]) <= 100_000,
num_proc=8,
)
state_ds.push_to_hub("Fineweb2-German-Eduscore-4andMore")