sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
070a4f2f7bc70d2b63f714f32e44bd2e687f279f
senhorsapo/kocho
[ "license:openrail", "region:us" ]
2024-01-14T18:46:23+00:00
{"license": "openrail"}
2024-01-14T18:46:46+00:00
efbaee1ec31f361ec40e7b75eb66ea70507ca9ce
DAVIX08BR/vo
[ "license:openrail", "region:us" ]
2024-01-14T18:47:06+00:00
{"license": "openrail"}
2024-01-17T14:51:53+00:00
81f1b9676fac70c62caaeeee825b0548396c3456
FINNUMBER/ESG_Instruction
[ "region:us" ]
2024-01-14T18:56:20+00:00
{}
2024-02-05T08:05:12+00:00
374f4e323cb607b15e34d783ab924c40de4e8748
ascolda/ru_en_Crystallography_and_Spectroscopy
[ "task_categories:translation", "size_categories:10K<n<100K", "language:ru", "language:en", "chemistry", "region:us" ]
2024-01-14T19:02:40+00:00
{"language": ["ru", "en"], "size_categories": ["10K<n<100K"], "task_categories": ["translation"], "tags": ["chemistry"]}
2024-01-14T19:15:36+00:00
715ebd235aa83dca5e53c0d4f0b021b1316567eb
TheGreatP/HozierVoz
[ "license:openrail", "region:us" ]
2024-01-14T19:03:29+00:00
{"license": "openrail"}
2024-01-14T19:06:58+00:00
b0013ae1bafaa183513e49bafbc0d242acffb5dc
jianfuzhang233/controlnet_syncdreamer
[ "license:mit", "region:us" ]
2024-01-14T19:07:52+00:00
{"license": "mit"}
2024-01-29T02:35:00+00:00
654f4ce66f282ec9acbbe29c94e6cb4238e6f09a
GilsonRDF/Teste
[ "region:us" ]
2024-01-14T19:10:23+00:00
{"dataset_info": {"features": [{"name": "conversation", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5450.4, "num_examples": 24}, {"name": "test", "num_bytes": 1362.6, "num_examples": 6}], "download_size": 6033, "dataset_size": 6813.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T21:03:30+00:00
d5a0c7d41def084ffa9c6d4a7f48fe64626f4b25
adambuttrick/500K-ner-indexes-multiple-organizations-locations-alpaca-format-json-response-all-cases
[ "license:cc0-1.0", "region:us" ]
2024-01-14T19:12:04+00:00
{"license": "cc0-1.0"}
2024-01-14T19:15:32+00:00
e1242d51159f03f66004e612145c395116e3e854
yeager89/levi
[ "region:us" ]
2024-01-14T19:12:29+00:00
{}
2024-01-15T01:16:45+00:00
d1f87e29d66a29edfa8f10af2dbb940b48028e00
Minata/cot_mistral_method2test_v1
[ "region:us" ]
2024-01-14T19:12:35+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 155868, "num_examples": 93}], "download_size": 27946, "dataset_size": 155868}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T19:12:36+00:00
ff4150f5b27919f149c49ad2fb5133178647a7a8
# Dataset Card for Evaluation run of CallComply/openchat-3.5-0106-11b <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [CallComply/openchat-3.5-0106-11b](https://huggingface.co/CallComply/openchat-3.5-0106-11b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CallComply__openchat-3.5-0106-11b", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T19:16:22.396289](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__openchat-3.5-0106-11b/blob/main/results_2024-01-14T19-16-22.396289.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6221695918215556, "acc_stderr": 0.032672062972624025, "acc_norm": 0.6283243003334837, "acc_norm_stderr": 0.033341783944514224, "mc1": 0.31946144430844553, "mc1_stderr": 0.016322644182960498, "mc2": 0.4806689432668841, "mc2_stderr": 0.014999748207355675 }, "harness|arc:challenge|25": { "acc": 0.5981228668941979, "acc_stderr": 0.014327268614578276, "acc_norm": 0.636518771331058, "acc_norm_stderr": 0.014056207319068285 }, "harness|hellaswag|10": { "acc": 0.5804620593507269, "acc_stderr": 0.00492474850063935, "acc_norm": 0.7863971320454093, "acc_norm_stderr": 0.004090119686697031 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.27, "acc_stderr": 0.04461960433384739, "acc_norm": 0.27, "acc_norm_stderr": 0.04461960433384739 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6074074074074074, "acc_stderr": 0.04218506215368879, "acc_norm": 0.6074074074074074, "acc_norm_stderr": 0.04218506215368879 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7105263157894737, "acc_stderr": 0.03690677986137283, "acc_norm": 0.7105263157894737, "acc_norm_stderr": 0.03690677986137283 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.63, "acc_stderr": 0.048523658709391, "acc_norm": 0.63, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7094339622641509, "acc_stderr": 0.027943219989337135, "acc_norm": 0.7094339622641509, "acc_norm_stderr": 0.027943219989337135 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6875, "acc_stderr": 0.038760854559127644, "acc_norm": 0.6875, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6416184971098265, "acc_stderr": 0.036563436533531585, "acc_norm": 0.6416184971098265, "acc_norm_stderr": 0.036563436533531585 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.73, "acc_stderr": 0.0446196043338474, "acc_norm": 0.73, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5659574468085107, "acc_stderr": 0.03240038086792747, "acc_norm": 0.5659574468085107, "acc_norm_stderr": 0.03240038086792747 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5862068965517241, "acc_stderr": 0.04104269211806232, "acc_norm": 0.5862068965517241, "acc_norm_stderr": 0.04104269211806232 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4417989417989418, "acc_stderr": 0.02557625706125383, "acc_norm": 0.4417989417989418, "acc_norm_stderr": 0.02557625706125383 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.46825396825396826, "acc_stderr": 0.04463112720677173, "acc_norm": 0.46825396825396826, "acc_norm_stderr": 0.04463112720677173 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7645161290322581, "acc_stderr": 0.02413763242933771, "acc_norm": 0.7645161290322581, "acc_norm_stderr": 0.02413763242933771 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.458128078817734, "acc_stderr": 0.03505630140785741, "acc_norm": 0.458128078817734, "acc_norm_stderr": 0.03505630140785741 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001974, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03346409881055953, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03346409881055953 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7272727272727273, "acc_stderr": 0.03173071239071724, "acc_norm": 0.7272727272727273, "acc_norm_stderr": 0.03173071239071724 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8911917098445595, "acc_stderr": 0.022473253332768776, "acc_norm": 0.8911917098445595, "acc_norm_stderr": 0.022473253332768776 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6666666666666666, "acc_stderr": 0.023901157979402538, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.023901157979402538 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3074074074074074, "acc_stderr": 0.02813325257881564, "acc_norm": 0.3074074074074074, "acc_norm_stderr": 0.02813325257881564 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6428571428571429, "acc_stderr": 0.031124619309328177, "acc_norm": 0.6428571428571429, "acc_norm_stderr": 0.031124619309328177 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.31125827814569534, "acc_stderr": 0.03780445850526732, "acc_norm": 0.31125827814569534, "acc_norm_stderr": 0.03780445850526732 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8146788990825689, "acc_stderr": 0.01665927970029582, "acc_norm": 0.8146788990825689, "acc_norm_stderr": 0.01665927970029582 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4583333333333333, "acc_stderr": 0.03398110890294636, "acc_norm": 0.4583333333333333, "acc_norm_stderr": 0.03398110890294636 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8088235294117647, "acc_stderr": 0.027599174300640766, "acc_norm": 0.8088235294117647, "acc_norm_stderr": 0.027599174300640766 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579654, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579654 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6995515695067265, "acc_stderr": 0.030769352008229143, "acc_norm": 0.6995515695067265, "acc_norm_stderr": 0.030769352008229143 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7251908396946565, "acc_stderr": 0.039153454088478354, "acc_norm": 0.7251908396946565, "acc_norm_stderr": 0.039153454088478354 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7851239669421488, "acc_stderr": 0.037494924487096966, "acc_norm": 0.7851239669421488, "acc_norm_stderr": 0.037494924487096966 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243839, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243839 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7239263803680982, "acc_stderr": 0.035123852837050475, "acc_norm": 0.7239263803680982, "acc_norm_stderr": 0.035123852837050475 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.49107142857142855, "acc_stderr": 0.04745033255489123, "acc_norm": 0.49107142857142855, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8717948717948718, "acc_stderr": 0.02190190511507333, "acc_norm": 0.8717948717948718, "acc_norm_stderr": 0.02190190511507333 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8288633461047255, "acc_stderr": 0.013468201614066304, "acc_norm": 0.8288633461047255, "acc_norm_stderr": 0.013468201614066304 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6936416184971098, "acc_stderr": 0.024818350129436596, "acc_norm": 0.6936416184971098, "acc_norm_stderr": 0.024818350129436596 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.26033519553072626, "acc_stderr": 0.01467625200931947, "acc_norm": 0.26033519553072626, "acc_norm_stderr": 0.01467625200931947 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7124183006535948, "acc_stderr": 0.02591780611714716, "acc_norm": 0.7124183006535948, "acc_norm_stderr": 0.02591780611714716 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6752411575562701, "acc_stderr": 0.02659678228769704, "acc_norm": 0.6752411575562701, "acc_norm_stderr": 0.02659678228769704 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7438271604938271, "acc_stderr": 0.024288533637726095, "acc_norm": 0.7438271604938271, "acc_norm_stderr": 0.024288533637726095 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4929078014184397, "acc_stderr": 0.02982449855912901, "acc_norm": 0.4929078014184397, "acc_norm_stderr": 0.02982449855912901 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4589308996088657, "acc_stderr": 0.012727084826799802, "acc_norm": 0.4589308996088657, "acc_norm_stderr": 0.012727084826799802 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6838235294117647, "acc_stderr": 0.02824568739146292, "acc_norm": 0.6838235294117647, "acc_norm_stderr": 0.02824568739146292 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6356209150326797, "acc_stderr": 0.019469518221573695, "acc_norm": 0.6356209150326797, "acc_norm_stderr": 0.019469518221573695 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6363636363636364, "acc_stderr": 0.046075820907199756, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.046075820907199756 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6938775510204082, "acc_stderr": 0.029504896454595957, "acc_norm": 0.6938775510204082, "acc_norm_stderr": 0.029504896454595957 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7960199004975125, "acc_stderr": 0.02849317624532607, "acc_norm": 0.7960199004975125, "acc_norm_stderr": 0.02849317624532607 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.82, "acc_stderr": 0.038612291966536934, "acc_norm": 0.82, "acc_norm_stderr": 0.038612291966536934 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333045, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.029547741687640038, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.029547741687640038 }, "harness|truthfulqa:mc|0": { "mc1": 0.31946144430844553, "mc1_stderr": 0.016322644182960498, "mc2": 0.4806689432668841, "mc2_stderr": 0.014999748207355675 }, "harness|winogrande|5": { "acc": 0.7805840568271507, "acc_stderr": 0.01163126836060778 }, "harness|gsm8k|5": { "acc": 0.34495830174374525, "acc_stderr": 0.01309363013366622 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_CallComply__openchat-3.5-0106-11b
[ "region:us" ]
2024-01-14T19:18:41+00:00
{"pretty_name": "Evaluation run of CallComply/openchat-3.5-0106-11b", "dataset_summary": "Dataset automatically created during the evaluation run of model [CallComply/openchat-3.5-0106-11b](https://huggingface.co/CallComply/openchat-3.5-0106-11b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CallComply__openchat-3.5-0106-11b\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T19:16:22.396289](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__openchat-3.5-0106-11b/blob/main/results_2024-01-14T19-16-22.396289.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6221695918215556,\n \"acc_stderr\": 0.032672062972624025,\n \"acc_norm\": 0.6283243003334837,\n \"acc_norm_stderr\": 0.033341783944514224,\n \"mc1\": 0.31946144430844553,\n \"mc1_stderr\": 0.016322644182960498,\n \"mc2\": 0.4806689432668841,\n \"mc2_stderr\": 0.014999748207355675\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5981228668941979,\n \"acc_stderr\": 0.014327268614578276,\n \"acc_norm\": 0.636518771331058,\n \"acc_norm_stderr\": 0.014056207319068285\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5804620593507269,\n \"acc_stderr\": 0.00492474850063935,\n \"acc_norm\": 0.7863971320454093,\n \"acc_norm_stderr\": 0.004090119686697031\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.04461960433384739,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.04461960433384739\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6074074074074074,\n \"acc_stderr\": 0.04218506215368879,\n \"acc_norm\": 0.6074074074074074,\n \"acc_norm_stderr\": 0.04218506215368879\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7105263157894737,\n \"acc_stderr\": 0.03690677986137283,\n \"acc_norm\": 0.7105263157894737,\n \"acc_norm_stderr\": 0.03690677986137283\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7094339622641509,\n \"acc_stderr\": 0.027943219989337135,\n \"acc_norm\": 0.7094339622641509,\n \"acc_norm_stderr\": 0.027943219989337135\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6416184971098265,\n \"acc_stderr\": 0.036563436533531585,\n \"acc_norm\": 0.6416184971098265,\n \"acc_norm_stderr\": 0.036563436533531585\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5659574468085107,\n \"acc_stderr\": 0.03240038086792747,\n \"acc_norm\": 0.5659574468085107,\n \"acc_norm_stderr\": 0.03240038086792747\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5862068965517241,\n \"acc_stderr\": 0.04104269211806232,\n \"acc_norm\": 0.5862068965517241,\n \"acc_norm_stderr\": 0.04104269211806232\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4417989417989418,\n \"acc_stderr\": 0.02557625706125383,\n \"acc_norm\": 0.4417989417989418,\n \"acc_norm_stderr\": 0.02557625706125383\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677173,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677173\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7645161290322581,\n \"acc_stderr\": 0.02413763242933771,\n \"acc_norm\": 0.7645161290322581,\n \"acc_norm_stderr\": 0.02413763242933771\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.458128078817734,\n \"acc_stderr\": 0.03505630140785741,\n \"acc_norm\": 0.458128078817734,\n \"acc_norm_stderr\": 0.03505630140785741\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03346409881055953,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03346409881055953\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.03173071239071724,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.03173071239071724\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8911917098445595,\n \"acc_stderr\": 0.022473253332768776,\n \"acc_norm\": 0.8911917098445595,\n \"acc_norm_stderr\": 0.022473253332768776\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.023901157979402538,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.023901157979402538\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3074074074074074,\n \"acc_stderr\": 0.02813325257881564,\n \"acc_norm\": 0.3074074074074074,\n \"acc_norm_stderr\": 0.02813325257881564\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6428571428571429,\n \"acc_stderr\": 0.031124619309328177,\n \"acc_norm\": 0.6428571428571429,\n \"acc_norm_stderr\": 0.031124619309328177\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.31125827814569534,\n \"acc_stderr\": 0.03780445850526732,\n \"acc_norm\": 0.31125827814569534,\n \"acc_norm_stderr\": 0.03780445850526732\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8146788990825689,\n \"acc_stderr\": 0.01665927970029582,\n \"acc_norm\": 0.8146788990825689,\n \"acc_norm_stderr\": 0.01665927970029582\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4583333333333333,\n \"acc_stderr\": 0.03398110890294636,\n \"acc_norm\": 0.4583333333333333,\n \"acc_norm_stderr\": 0.03398110890294636\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8088235294117647,\n \"acc_stderr\": 0.027599174300640766,\n \"acc_norm\": 0.8088235294117647,\n \"acc_norm_stderr\": 0.027599174300640766\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579654,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579654\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6995515695067265,\n \"acc_stderr\": 0.030769352008229143,\n \"acc_norm\": 0.6995515695067265,\n \"acc_norm_stderr\": 0.030769352008229143\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7251908396946565,\n \"acc_stderr\": 0.039153454088478354,\n \"acc_norm\": 0.7251908396946565,\n \"acc_norm_stderr\": 0.039153454088478354\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7851239669421488,\n \"acc_stderr\": 0.037494924487096966,\n \"acc_norm\": 0.7851239669421488,\n \"acc_norm_stderr\": 0.037494924487096966\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243839,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243839\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7239263803680982,\n \"acc_stderr\": 0.035123852837050475,\n \"acc_norm\": 0.7239263803680982,\n \"acc_norm_stderr\": 0.035123852837050475\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8717948717948718,\n \"acc_stderr\": 0.02190190511507333,\n \"acc_norm\": 0.8717948717948718,\n \"acc_norm_stderr\": 0.02190190511507333\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8288633461047255,\n \"acc_stderr\": 0.013468201614066304,\n \"acc_norm\": 0.8288633461047255,\n \"acc_norm_stderr\": 0.013468201614066304\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6936416184971098,\n \"acc_stderr\": 0.024818350129436596,\n \"acc_norm\": 0.6936416184971098,\n \"acc_norm_stderr\": 0.024818350129436596\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.26033519553072626,\n \"acc_stderr\": 0.01467625200931947,\n \"acc_norm\": 0.26033519553072626,\n \"acc_norm_stderr\": 0.01467625200931947\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7124183006535948,\n \"acc_stderr\": 0.02591780611714716,\n \"acc_norm\": 0.7124183006535948,\n \"acc_norm_stderr\": 0.02591780611714716\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6752411575562701,\n \"acc_stderr\": 0.02659678228769704,\n \"acc_norm\": 0.6752411575562701,\n \"acc_norm_stderr\": 0.02659678228769704\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7438271604938271,\n \"acc_stderr\": 0.024288533637726095,\n \"acc_norm\": 0.7438271604938271,\n \"acc_norm_stderr\": 0.024288533637726095\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4929078014184397,\n \"acc_stderr\": 0.02982449855912901,\n \"acc_norm\": 0.4929078014184397,\n \"acc_norm_stderr\": 0.02982449855912901\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4589308996088657,\n \"acc_stderr\": 0.012727084826799802,\n \"acc_norm\": 0.4589308996088657,\n \"acc_norm_stderr\": 0.012727084826799802\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6838235294117647,\n \"acc_stderr\": 0.02824568739146292,\n \"acc_norm\": 0.6838235294117647,\n \"acc_norm_stderr\": 0.02824568739146292\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6356209150326797,\n \"acc_stderr\": 0.019469518221573695,\n \"acc_norm\": 0.6356209150326797,\n \"acc_norm_stderr\": 0.019469518221573695\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.046075820907199756,\n \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.046075820907199756\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6938775510204082,\n \"acc_stderr\": 0.029504896454595957,\n \"acc_norm\": 0.6938775510204082,\n \"acc_norm_stderr\": 0.029504896454595957\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7960199004975125,\n \"acc_stderr\": 0.02849317624532607,\n \"acc_norm\": 0.7960199004975125,\n \"acc_norm_stderr\": 0.02849317624532607\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640038,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640038\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.31946144430844553,\n \"mc1_stderr\": 0.016322644182960498,\n \"mc2\": 0.4806689432668841,\n \"mc2_stderr\": 0.014999748207355675\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7805840568271507,\n \"acc_stderr\": 0.01163126836060778\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.34495830174374525,\n \"acc_stderr\": 0.01309363013366622\n }\n}\n```", "repo_url": "https://huggingface.co/CallComply/openchat-3.5-0106-11b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-16-22.396289.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["**/details_harness|winogrande|5_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T19-16-22.396289.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T19_16_22.396289", "path": ["results_2024-01-14T19-16-22.396289.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T19-16-22.396289.parquet"]}]}]}
2024-01-14T19:19:02+00:00
3ccc55a4c2278f7573dd79733945c6b49542ad5a
DucHaiten/sd1.5-journey
[ "region:us" ]
2024-01-14T19:23:17+00:00
{}
2024-01-23T08:14:33+00:00
93c237afec08a4ef1e295f5089ed3ca0cf23376b
# Dataset Card for Evaluation run of AA051611/A0113 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [AA051611/A0113](https://huggingface.co/AA051611/A0113) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_AA051611__A0113", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T19:22:00.115237](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051611__A0113/blob/main/results_2024-01-14T19-22-00.115237.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7396629430618338, "acc_stderr": 0.02895723757690259, "acc_norm": 0.7443509721070339, "acc_norm_stderr": 0.02950325667268791, "mc1": 0.412484700122399, "mc1_stderr": 0.01723329939957122, "mc2": 0.5965256915069256, "mc2_stderr": 0.01518941143132932 }, "harness|arc:challenge|25": { "acc": 0.6313993174061433, "acc_stderr": 0.014097810678042194, "acc_norm": 0.6638225255972696, "acc_norm_stderr": 0.013804855026205761 }, "harness|hellaswag|10": { "acc": 0.6549492133041227, "acc_stderr": 0.00474413282539152, "acc_norm": 0.848635729934276, "acc_norm_stderr": 0.0035767110656195833 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7111111111111111, "acc_stderr": 0.03915450630414251, "acc_norm": 0.7111111111111111, "acc_norm_stderr": 0.03915450630414251 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8552631578947368, "acc_stderr": 0.028631951845930387, "acc_norm": 0.8552631578947368, "acc_norm_stderr": 0.028631951845930387 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.76, "acc_stderr": 0.04292346959909284, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909284 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8, "acc_stderr": 0.02461829819586651, "acc_norm": 0.8, "acc_norm_stderr": 0.02461829819586651 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8263888888888888, "acc_stderr": 0.03167473383795718, "acc_norm": 0.8263888888888888, "acc_norm_stderr": 0.03167473383795718 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001974, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6878612716763006, "acc_stderr": 0.03533133389323657, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.03533133389323657 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5, "acc_stderr": 0.04975185951049946, "acc_norm": 0.5, "acc_norm_stderr": 0.04975185951049946 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932261, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932261 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7659574468085106, "acc_stderr": 0.027678452578212383, "acc_norm": 0.7659574468085106, "acc_norm_stderr": 0.027678452578212383 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5877192982456141, "acc_stderr": 0.04630653203366596, "acc_norm": 0.5877192982456141, "acc_norm_stderr": 0.04630653203366596 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7241379310344828, "acc_stderr": 0.03724563619774632, "acc_norm": 0.7241379310344828, "acc_norm_stderr": 0.03724563619774632 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.6428571428571429, "acc_stderr": 0.024677862841332783, "acc_norm": 0.6428571428571429, "acc_norm_stderr": 0.024677862841332783 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5555555555555556, "acc_stderr": 0.04444444444444449, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.58, "acc_stderr": 0.049604496374885836, "acc_norm": 0.58, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.867741935483871, "acc_stderr": 0.019272015434846478, "acc_norm": 0.867741935483871, "acc_norm_stderr": 0.019272015434846478 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5812807881773399, "acc_stderr": 0.03471192860518468, "acc_norm": 0.5812807881773399, "acc_norm_stderr": 0.03471192860518468 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.8, "acc_stderr": 0.040201512610368445, "acc_norm": 0.8, "acc_norm_stderr": 0.040201512610368445 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8424242424242424, "acc_stderr": 0.028450388805284357, "acc_norm": 0.8424242424242424, "acc_norm_stderr": 0.028450388805284357 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8888888888888888, "acc_stderr": 0.022390787638216773, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.022390787638216773 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9533678756476683, "acc_stderr": 0.01521676181926258, "acc_norm": 0.9533678756476683, "acc_norm_stderr": 0.01521676181926258 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.7923076923076923, "acc_stderr": 0.020567539567246784, "acc_norm": 0.7923076923076923, "acc_norm_stderr": 0.020567539567246784 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.4111111111111111, "acc_stderr": 0.029999923508706682, "acc_norm": 0.4111111111111111, "acc_norm_stderr": 0.029999923508706682 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8613445378151261, "acc_stderr": 0.022448264476832583, "acc_norm": 0.8613445378151261, "acc_norm_stderr": 0.022448264476832583 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.41721854304635764, "acc_stderr": 0.040261414976346104, "acc_norm": 0.41721854304635764, "acc_norm_stderr": 0.040261414976346104 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9064220183486239, "acc_stderr": 0.012486841824601963, "acc_norm": 0.9064220183486239, "acc_norm_stderr": 0.012486841824601963 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6666666666666666, "acc_stderr": 0.03214952147802749, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.03214952147802749 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9068627450980392, "acc_stderr": 0.020397853969426994, "acc_norm": 0.9068627450980392, "acc_norm_stderr": 0.020397853969426994 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8987341772151899, "acc_stderr": 0.019637720526065515, "acc_norm": 0.8987341772151899, "acc_norm_stderr": 0.019637720526065515 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7847533632286996, "acc_stderr": 0.027584066602208274, "acc_norm": 0.7847533632286996, "acc_norm_stderr": 0.027584066602208274 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8854961832061069, "acc_stderr": 0.027927473753597453, "acc_norm": 0.8854961832061069, "acc_norm_stderr": 0.027927473753597453 }, "harness|hendrycksTest-international_law|5": { "acc": 0.859504132231405, "acc_stderr": 0.03172233426002158, "acc_norm": 0.859504132231405, "acc_norm_stderr": 0.03172233426002158 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.9074074074074074, "acc_stderr": 0.02802188803860943, "acc_norm": 0.9074074074074074, "acc_norm_stderr": 0.02802188803860943 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.852760736196319, "acc_stderr": 0.027839915278339653, "acc_norm": 0.852760736196319, "acc_norm_stderr": 0.027839915278339653 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.6160714285714286, "acc_stderr": 0.046161430750285455, "acc_norm": 0.6160714285714286, "acc_norm_stderr": 0.046161430750285455 }, "harness|hendrycksTest-management|5": { "acc": 0.8932038834951457, "acc_stderr": 0.030581088928331356, "acc_norm": 0.8932038834951457, "acc_norm_stderr": 0.030581088928331356 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9145299145299145, "acc_stderr": 0.018315891685625852, "acc_norm": 0.9145299145299145, "acc_norm_stderr": 0.018315891685625852 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.87, "acc_stderr": 0.033799766898963086, "acc_norm": 0.87, "acc_norm_stderr": 0.033799766898963086 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9029374201787995, "acc_stderr": 0.010586474712018302, "acc_norm": 0.9029374201787995, "acc_norm_stderr": 0.010586474712018302 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7861271676300579, "acc_stderr": 0.022075709251757177, "acc_norm": 0.7861271676300579, "acc_norm_stderr": 0.022075709251757177 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.6547486033519553, "acc_stderr": 0.015901432608930358, "acc_norm": 0.6547486033519553, "acc_norm_stderr": 0.015901432608930358 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8169934640522876, "acc_stderr": 0.022140767512880973, "acc_norm": 0.8169934640522876, "acc_norm_stderr": 0.022140767512880973 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8135048231511254, "acc_stderr": 0.0221224397724808, "acc_norm": 0.8135048231511254, "acc_norm_stderr": 0.0221224397724808 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8240740740740741, "acc_stderr": 0.02118589361522515, "acc_norm": 0.8240740740740741, "acc_norm_stderr": 0.02118589361522515 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5851063829787234, "acc_stderr": 0.0293922365846125, "acc_norm": 0.5851063829787234, "acc_norm_stderr": 0.0293922365846125 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5619295958279009, "acc_stderr": 0.012671902782567643, "acc_norm": 0.5619295958279009, "acc_norm_stderr": 0.012671902782567643 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8198529411764706, "acc_stderr": 0.023345163616544855, "acc_norm": 0.8198529411764706, "acc_norm_stderr": 0.023345163616544855 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.7761437908496732, "acc_stderr": 0.016863008585416613, "acc_norm": 0.7761437908496732, "acc_norm_stderr": 0.016863008585416613 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7090909090909091, "acc_stderr": 0.04350271442923243, "acc_norm": 0.7090909090909091, "acc_norm_stderr": 0.04350271442923243 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8081632653061225, "acc_stderr": 0.025206963154225402, "acc_norm": 0.8081632653061225, "acc_norm_stderr": 0.025206963154225402 }, "harness|hendrycksTest-sociology|5": { "acc": 0.9054726368159204, "acc_stderr": 0.020687186951534094, "acc_norm": 0.9054726368159204, "acc_norm_stderr": 0.020687186951534094 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.94, "acc_stderr": 0.023868325657594173, "acc_norm": 0.94, "acc_norm_stderr": 0.023868325657594173 }, "harness|hendrycksTest-virology|5": { "acc": 0.5662650602409639, "acc_stderr": 0.03858158940685515, "acc_norm": 0.5662650602409639, "acc_norm_stderr": 0.03858158940685515 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8888888888888888, "acc_stderr": 0.024103384202072864, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.024103384202072864 }, "harness|truthfulqa:mc|0": { "mc1": 0.412484700122399, "mc1_stderr": 0.01723329939957122, "mc2": 0.5965256915069256, "mc2_stderr": 0.01518941143132932 }, "harness|winogrande|5": { "acc": 0.8200473559589582, "acc_stderr": 0.01079646868806868 }, "harness|gsm8k|5": { "acc": 0.6087945413191812, "acc_stderr": 0.0134425024027943 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_AA051611__A0113
[ "region:us" ]
2024-01-14T19:24:10+00:00
{"pretty_name": "Evaluation run of AA051611/A0113", "dataset_summary": "Dataset automatically created during the evaluation run of model [AA051611/A0113](https://huggingface.co/AA051611/A0113) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_AA051611__A0113\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T19:22:00.115237](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051611__A0113/blob/main/results_2024-01-14T19-22-00.115237.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7396629430618338,\n \"acc_stderr\": 0.02895723757690259,\n \"acc_norm\": 0.7443509721070339,\n \"acc_norm_stderr\": 0.02950325667268791,\n \"mc1\": 0.412484700122399,\n \"mc1_stderr\": 0.01723329939957122,\n \"mc2\": 0.5965256915069256,\n \"mc2_stderr\": 0.01518941143132932\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6313993174061433,\n \"acc_stderr\": 0.014097810678042194,\n \"acc_norm\": 0.6638225255972696,\n \"acc_norm_stderr\": 0.013804855026205761\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6549492133041227,\n \"acc_stderr\": 0.00474413282539152,\n \"acc_norm\": 0.848635729934276,\n \"acc_norm_stderr\": 0.0035767110656195833\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7111111111111111,\n \"acc_stderr\": 0.03915450630414251,\n \"acc_norm\": 0.7111111111111111,\n \"acc_norm_stderr\": 0.03915450630414251\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8552631578947368,\n \"acc_stderr\": 0.028631951845930387,\n \"acc_norm\": 0.8552631578947368,\n \"acc_norm_stderr\": 0.028631951845930387\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909284,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909284\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.02461829819586651,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.02461829819586651\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8263888888888888,\n \"acc_stderr\": 0.03167473383795718,\n \"acc_norm\": 0.8263888888888888,\n \"acc_norm_stderr\": 0.03167473383795718\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.03533133389323657,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.03533133389323657\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.04975185951049946,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.04975185951049946\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932261,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932261\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7659574468085106,\n \"acc_stderr\": 0.027678452578212383,\n \"acc_norm\": 0.7659574468085106,\n \"acc_norm_stderr\": 0.027678452578212383\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5877192982456141,\n \"acc_stderr\": 0.04630653203366596,\n \"acc_norm\": 0.5877192982456141,\n \"acc_norm_stderr\": 0.04630653203366596\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7241379310344828,\n \"acc_stderr\": 0.03724563619774632,\n \"acc_norm\": 0.7241379310344828,\n \"acc_norm_stderr\": 0.03724563619774632\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.6428571428571429,\n \"acc_stderr\": 0.024677862841332783,\n \"acc_norm\": 0.6428571428571429,\n \"acc_norm_stderr\": 0.024677862841332783\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.867741935483871,\n \"acc_stderr\": 0.019272015434846478,\n \"acc_norm\": 0.867741935483871,\n \"acc_norm_stderr\": 0.019272015434846478\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5812807881773399,\n \"acc_stderr\": 0.03471192860518468,\n \"acc_norm\": 0.5812807881773399,\n \"acc_norm_stderr\": 0.03471192860518468\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.040201512610368445,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8424242424242424,\n \"acc_stderr\": 0.028450388805284357,\n \"acc_norm\": 0.8424242424242424,\n \"acc_norm_stderr\": 0.028450388805284357\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.022390787638216773,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.022390787638216773\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9533678756476683,\n \"acc_stderr\": 0.01521676181926258,\n \"acc_norm\": 0.9533678756476683,\n \"acc_norm_stderr\": 0.01521676181926258\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.7923076923076923,\n \"acc_stderr\": 0.020567539567246784,\n \"acc_norm\": 0.7923076923076923,\n \"acc_norm_stderr\": 0.020567539567246784\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.4111111111111111,\n \"acc_stderr\": 0.029999923508706682,\n \"acc_norm\": 0.4111111111111111,\n \"acc_norm_stderr\": 0.029999923508706682\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8613445378151261,\n \"acc_stderr\": 0.022448264476832583,\n \"acc_norm\": 0.8613445378151261,\n \"acc_norm_stderr\": 0.022448264476832583\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.41721854304635764,\n \"acc_stderr\": 0.040261414976346104,\n \"acc_norm\": 0.41721854304635764,\n \"acc_norm_stderr\": 0.040261414976346104\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9064220183486239,\n \"acc_stderr\": 0.012486841824601963,\n \"acc_norm\": 0.9064220183486239,\n \"acc_norm_stderr\": 0.012486841824601963\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.03214952147802749,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.03214952147802749\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9068627450980392,\n \"acc_stderr\": 0.020397853969426994,\n \"acc_norm\": 0.9068627450980392,\n \"acc_norm_stderr\": 0.020397853969426994\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8987341772151899,\n \"acc_stderr\": 0.019637720526065515,\n \"acc_norm\": 0.8987341772151899,\n \"acc_norm_stderr\": 0.019637720526065515\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7847533632286996,\n \"acc_stderr\": 0.027584066602208274,\n \"acc_norm\": 0.7847533632286996,\n \"acc_norm_stderr\": 0.027584066602208274\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8854961832061069,\n \"acc_stderr\": 0.027927473753597453,\n \"acc_norm\": 0.8854961832061069,\n \"acc_norm_stderr\": 0.027927473753597453\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.859504132231405,\n \"acc_stderr\": 0.03172233426002158,\n \"acc_norm\": 0.859504132231405,\n \"acc_norm_stderr\": 0.03172233426002158\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.9074074074074074,\n \"acc_stderr\": 0.02802188803860943,\n \"acc_norm\": 0.9074074074074074,\n \"acc_norm_stderr\": 0.02802188803860943\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.852760736196319,\n \"acc_stderr\": 0.027839915278339653,\n \"acc_norm\": 0.852760736196319,\n \"acc_norm_stderr\": 0.027839915278339653\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.6160714285714286,\n \"acc_stderr\": 0.046161430750285455,\n \"acc_norm\": 0.6160714285714286,\n \"acc_norm_stderr\": 0.046161430750285455\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8932038834951457,\n \"acc_stderr\": 0.030581088928331356,\n \"acc_norm\": 0.8932038834951457,\n \"acc_norm_stderr\": 0.030581088928331356\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9145299145299145,\n \"acc_stderr\": 0.018315891685625852,\n \"acc_norm\": 0.9145299145299145,\n \"acc_norm_stderr\": 0.018315891685625852\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.87,\n \"acc_stderr\": 0.033799766898963086,\n \"acc_norm\": 0.87,\n \"acc_norm_stderr\": 0.033799766898963086\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9029374201787995,\n \"acc_stderr\": 0.010586474712018302,\n \"acc_norm\": 0.9029374201787995,\n \"acc_norm_stderr\": 0.010586474712018302\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7861271676300579,\n \"acc_stderr\": 0.022075709251757177,\n \"acc_norm\": 0.7861271676300579,\n \"acc_norm_stderr\": 0.022075709251757177\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.6547486033519553,\n \"acc_stderr\": 0.015901432608930358,\n \"acc_norm\": 0.6547486033519553,\n \"acc_norm_stderr\": 0.015901432608930358\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8169934640522876,\n \"acc_stderr\": 0.022140767512880973,\n \"acc_norm\": 0.8169934640522876,\n \"acc_norm_stderr\": 0.022140767512880973\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8135048231511254,\n \"acc_stderr\": 0.0221224397724808,\n \"acc_norm\": 0.8135048231511254,\n \"acc_norm_stderr\": 0.0221224397724808\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8240740740740741,\n \"acc_stderr\": 0.02118589361522515,\n \"acc_norm\": 0.8240740740740741,\n \"acc_norm_stderr\": 0.02118589361522515\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5851063829787234,\n \"acc_stderr\": 0.0293922365846125,\n \"acc_norm\": 0.5851063829787234,\n \"acc_norm_stderr\": 0.0293922365846125\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5619295958279009,\n \"acc_stderr\": 0.012671902782567643,\n \"acc_norm\": 0.5619295958279009,\n \"acc_norm_stderr\": 0.012671902782567643\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8198529411764706,\n \"acc_stderr\": 0.023345163616544855,\n \"acc_norm\": 0.8198529411764706,\n \"acc_norm_stderr\": 0.023345163616544855\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.7761437908496732,\n \"acc_stderr\": 0.016863008585416613,\n \"acc_norm\": 0.7761437908496732,\n \"acc_norm_stderr\": 0.016863008585416613\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7090909090909091,\n \"acc_stderr\": 0.04350271442923243,\n \"acc_norm\": 0.7090909090909091,\n \"acc_norm_stderr\": 0.04350271442923243\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8081632653061225,\n \"acc_stderr\": 0.025206963154225402,\n \"acc_norm\": 0.8081632653061225,\n \"acc_norm_stderr\": 0.025206963154225402\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.9054726368159204,\n \"acc_stderr\": 0.020687186951534094,\n \"acc_norm\": 0.9054726368159204,\n \"acc_norm_stderr\": 0.020687186951534094\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.94,\n \"acc_stderr\": 0.023868325657594173,\n \"acc_norm\": 0.94,\n \"acc_norm_stderr\": 0.023868325657594173\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5662650602409639,\n \"acc_stderr\": 0.03858158940685515,\n \"acc_norm\": 0.5662650602409639,\n \"acc_norm_stderr\": 0.03858158940685515\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.024103384202072864,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.024103384202072864\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.412484700122399,\n \"mc1_stderr\": 0.01723329939957122,\n \"mc2\": 0.5965256915069256,\n \"mc2_stderr\": 0.01518941143132932\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8200473559589582,\n \"acc_stderr\": 0.01079646868806868\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6087945413191812,\n \"acc_stderr\": 0.0134425024027943\n }\n}\n```", "repo_url": "https://huggingface.co/AA051611/A0113", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-22-00.115237.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["**/details_harness|winogrande|5_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T19-22-00.115237.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T19_22_00.115237", "path": ["results_2024-01-14T19-22-00.115237.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T19-22-00.115237.parquet"]}]}]}
2024-01-14T19:24:32+00:00
1399054f245ffb967c40e9b469932f702503860b
The text of all the articles from Logic Magazine issues 1-18. **logic_raw.txt** - The articles are separated by three newlines. Each paragraph is on its own line. **logic_passages.txt** - The articles, broken up into passages of between 300 to 2000 characters. Each passage is on its own line.
bentarnoff/logic_magazine_raw
[ "language:en", "license:cc", "magazine", "region:us" ]
2024-01-14T19:29:04+00:00
{"language": ["en"], "license": "cc", "pretty_name": "Logic Magazine Article Text", "tags": ["magazine"]}
2024-01-15T02:16:29+00:00
88d78dd044a265dd77130111289fb5555cc6f084
# Dataset Card for Evaluation run of CallComply/openchat-3.5-0106-128k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [CallComply/openchat-3.5-0106-128k](https://huggingface.co/CallComply/openchat-3.5-0106-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T19:33:38.391321](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k/blob/main/results_2024-01-14T19-33-38.391321.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5749023148549777, "acc_stderr": 0.03362057109614855, "acc_norm": 0.5803055801198537, "acc_norm_stderr": 0.034322339538364395, "mc1": 0.31334149326805383, "mc1_stderr": 0.016238065069059605, "mc2": 0.46500466840014487, "mc2_stderr": 0.014848695472788285 }, "harness|arc:challenge|25": { "acc": 0.5827645051194539, "acc_stderr": 0.014409825518403079, "acc_norm": 0.6424914675767918, "acc_norm_stderr": 0.014005494275916573 }, "harness|hellaswag|10": { "acc": 0.5573590918143796, "acc_stderr": 0.004956839256162732, "acc_norm": 0.7730531766580363, "acc_norm_stderr": 0.004180018992862959 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5037037037037037, "acc_stderr": 0.04319223625811331, "acc_norm": 0.5037037037037037, "acc_norm_stderr": 0.04319223625811331 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5855263157894737, "acc_stderr": 0.04008973785779206, "acc_norm": 0.5855263157894737, "acc_norm_stderr": 0.04008973785779206 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.58, "acc_stderr": 0.049604496374885836, "acc_norm": 0.58, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.660377358490566, "acc_stderr": 0.029146904747798328, "acc_norm": 0.660377358490566, "acc_norm_stderr": 0.029146904747798328 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6319444444444444, "acc_stderr": 0.04032999053960719, "acc_norm": 0.6319444444444444, "acc_norm_stderr": 0.04032999053960719 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6011560693641619, "acc_stderr": 0.0373362665538351, "acc_norm": 0.6011560693641619, "acc_norm_stderr": 0.0373362665538351 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.29411764705882354, "acc_stderr": 0.04533838195929776, "acc_norm": 0.29411764705882354, "acc_norm_stderr": 0.04533838195929776 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.0440844002276808, "acc_norm": 0.74, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5191489361702127, "acc_stderr": 0.03266204299064678, "acc_norm": 0.5191489361702127, "acc_norm_stderr": 0.03266204299064678 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.41228070175438597, "acc_stderr": 0.04630653203366595, "acc_norm": 0.41228070175438597, "acc_norm_stderr": 0.04630653203366595 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5310344827586206, "acc_stderr": 0.04158632762097828, "acc_norm": 0.5310344827586206, "acc_norm_stderr": 0.04158632762097828 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4365079365079365, "acc_stderr": 0.0255428468174005, "acc_norm": 0.4365079365079365, "acc_norm_stderr": 0.0255428468174005 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.373015873015873, "acc_stderr": 0.04325506042017086, "acc_norm": 0.373015873015873, "acc_norm_stderr": 0.04325506042017086 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7032258064516129, "acc_stderr": 0.025988500792411887, "acc_norm": 0.7032258064516129, "acc_norm_stderr": 0.025988500792411887 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.41379310344827586, "acc_stderr": 0.03465304488406795, "acc_norm": 0.41379310344827586, "acc_norm_stderr": 0.03465304488406795 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.64, "acc_stderr": 0.048241815132442176, "acc_norm": 0.64, "acc_norm_stderr": 0.048241815132442176 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.4909090909090909, "acc_stderr": 0.0390369864774844, "acc_norm": 0.4909090909090909, "acc_norm_stderr": 0.0390369864774844 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6919191919191919, "acc_stderr": 0.03289477330098616, "acc_norm": 0.6919191919191919, "acc_norm_stderr": 0.03289477330098616 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8756476683937824, "acc_stderr": 0.023814477086593556, "acc_norm": 0.8756476683937824, "acc_norm_stderr": 0.023814477086593556 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5871794871794872, "acc_stderr": 0.024962683564331796, "acc_norm": 0.5871794871794872, "acc_norm_stderr": 0.024962683564331796 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2740740740740741, "acc_stderr": 0.027195934804085626, "acc_norm": 0.2740740740740741, "acc_norm_stderr": 0.027195934804085626 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5630252100840336, "acc_stderr": 0.03221943636566196, "acc_norm": 0.5630252100840336, "acc_norm_stderr": 0.03221943636566196 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3708609271523179, "acc_stderr": 0.03943966699183629, "acc_norm": 0.3708609271523179, "acc_norm_stderr": 0.03943966699183629 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7761467889908257, "acc_stderr": 0.017871217767790236, "acc_norm": 0.7761467889908257, "acc_norm_stderr": 0.017871217767790236 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4027777777777778, "acc_stderr": 0.033448873829978666, "acc_norm": 0.4027777777777778, "acc_norm_stderr": 0.033448873829978666 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6176470588235294, "acc_stderr": 0.0341078533890472, "acc_norm": 0.6176470588235294, "acc_norm_stderr": 0.0341078533890472 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7088607594936709, "acc_stderr": 0.029571601065753378, "acc_norm": 0.7088607594936709, "acc_norm_stderr": 0.029571601065753378 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6591928251121076, "acc_stderr": 0.0318114974705536, "acc_norm": 0.6591928251121076, "acc_norm_stderr": 0.0318114974705536 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6946564885496184, "acc_stderr": 0.040393149787245605, "acc_norm": 0.6946564885496184, "acc_norm_stderr": 0.040393149787245605 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228732, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228732 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6944444444444444, "acc_stderr": 0.044531975073749834, "acc_norm": 0.6944444444444444, "acc_norm_stderr": 0.044531975073749834 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.656441717791411, "acc_stderr": 0.03731133519673893, "acc_norm": 0.656441717791411, "acc_norm_stderr": 0.03731133519673893 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.6990291262135923, "acc_stderr": 0.04541609446503948, "acc_norm": 0.6990291262135923, "acc_norm_stderr": 0.04541609446503948 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8547008547008547, "acc_stderr": 0.023086635086841407, "acc_norm": 0.8547008547008547, "acc_norm_stderr": 0.023086635086841407 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.67, "acc_stderr": 0.04725815626252609, "acc_norm": 0.67, "acc_norm_stderr": 0.04725815626252609 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.776500638569604, "acc_stderr": 0.014897235229450708, "acc_norm": 0.776500638569604, "acc_norm_stderr": 0.014897235229450708 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6502890173410405, "acc_stderr": 0.025674281456531015, "acc_norm": 0.6502890173410405, "acc_norm_stderr": 0.025674281456531015 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2536312849162011, "acc_stderr": 0.014551553659369922, "acc_norm": 0.2536312849162011, "acc_norm_stderr": 0.014551553659369922 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6339869281045751, "acc_stderr": 0.02758281141515962, "acc_norm": 0.6339869281045751, "acc_norm_stderr": 0.02758281141515962 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.639871382636656, "acc_stderr": 0.027264297599804015, "acc_norm": 0.639871382636656, "acc_norm_stderr": 0.027264297599804015 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6574074074074074, "acc_stderr": 0.026406145973625676, "acc_norm": 0.6574074074074074, "acc_norm_stderr": 0.026406145973625676 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4574468085106383, "acc_stderr": 0.029719281272236837, "acc_norm": 0.4574468085106383, "acc_norm_stderr": 0.029719281272236837 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3970013037809648, "acc_stderr": 0.012496346982909556, "acc_norm": 0.3970013037809648, "acc_norm_stderr": 0.012496346982909556 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5294117647058824, "acc_stderr": 0.03032024326500413, "acc_norm": 0.5294117647058824, "acc_norm_stderr": 0.03032024326500413 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5866013071895425, "acc_stderr": 0.01992211568278668, "acc_norm": 0.5866013071895425, "acc_norm_stderr": 0.01992211568278668 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6818181818181818, "acc_stderr": 0.04461272175910509, "acc_norm": 0.6818181818181818, "acc_norm_stderr": 0.04461272175910509 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6571428571428571, "acc_stderr": 0.03038726291954773, "acc_norm": 0.6571428571428571, "acc_norm_stderr": 0.03038726291954773 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7611940298507462, "acc_stderr": 0.030147775935409217, "acc_norm": 0.7611940298507462, "acc_norm_stderr": 0.030147775935409217 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.77, "acc_stderr": 0.04229525846816508, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816508 }, "harness|hendrycksTest-virology|5": { "acc": 0.4759036144578313, "acc_stderr": 0.03887971849597264, "acc_norm": 0.4759036144578313, "acc_norm_stderr": 0.03887971849597264 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7719298245614035, "acc_stderr": 0.032180937956023566, "acc_norm": 0.7719298245614035, "acc_norm_stderr": 0.032180937956023566 }, "harness|truthfulqa:mc|0": { "mc1": 0.31334149326805383, "mc1_stderr": 0.016238065069059605, "mc2": 0.46500466840014487, "mc2_stderr": 0.014848695472788285 }, "harness|winogrande|5": { "acc": 0.77663772691397, "acc_stderr": 0.0117056975652052 }, "harness|gsm8k|5": { "acc": 0.3297952994692949, "acc_stderr": 0.012949955030571147 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k
[ "region:us" ]
2024-01-14T19:30:22+00:00
{"pretty_name": "Evaluation run of CallComply/openchat-3.5-0106-128k", "dataset_summary": "Dataset automatically created during the evaluation run of model [CallComply/openchat-3.5-0106-128k](https://huggingface.co/CallComply/openchat-3.5-0106-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T19:33:38.391321](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k/blob/main/results_2024-01-14T19-33-38.391321.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5749023148549777,\n \"acc_stderr\": 0.03362057109614855,\n \"acc_norm\": 0.5803055801198537,\n \"acc_norm_stderr\": 0.034322339538364395,\n \"mc1\": 0.31334149326805383,\n \"mc1_stderr\": 0.016238065069059605,\n \"mc2\": 0.46500466840014487,\n \"mc2_stderr\": 0.014848695472788285\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5827645051194539,\n \"acc_stderr\": 0.014409825518403079,\n \"acc_norm\": 0.6424914675767918,\n \"acc_norm_stderr\": 0.014005494275916573\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5573590918143796,\n \"acc_stderr\": 0.004956839256162732,\n \"acc_norm\": 0.7730531766580363,\n \"acc_norm_stderr\": 0.004180018992862959\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5037037037037037,\n \"acc_stderr\": 0.04319223625811331,\n \"acc_norm\": 0.5037037037037037,\n \"acc_norm_stderr\": 0.04319223625811331\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5855263157894737,\n \"acc_stderr\": 0.04008973785779206,\n \"acc_norm\": 0.5855263157894737,\n \"acc_norm_stderr\": 0.04008973785779206\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.660377358490566,\n \"acc_stderr\": 0.029146904747798328,\n \"acc_norm\": 0.660377358490566,\n \"acc_norm_stderr\": 0.029146904747798328\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6319444444444444,\n \"acc_stderr\": 0.04032999053960719,\n \"acc_norm\": 0.6319444444444444,\n \"acc_norm_stderr\": 0.04032999053960719\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6011560693641619,\n \"acc_stderr\": 0.0373362665538351,\n \"acc_norm\": 0.6011560693641619,\n \"acc_norm_stderr\": 0.0373362665538351\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.29411764705882354,\n \"acc_stderr\": 0.04533838195929776,\n \"acc_norm\": 0.29411764705882354,\n \"acc_norm_stderr\": 0.04533838195929776\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5191489361702127,\n \"acc_stderr\": 0.03266204299064678,\n \"acc_norm\": 0.5191489361702127,\n \"acc_norm_stderr\": 0.03266204299064678\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.41228070175438597,\n \"acc_stderr\": 0.04630653203366595,\n \"acc_norm\": 0.41228070175438597,\n \"acc_norm_stderr\": 0.04630653203366595\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5310344827586206,\n \"acc_stderr\": 0.04158632762097828,\n \"acc_norm\": 0.5310344827586206,\n \"acc_norm_stderr\": 0.04158632762097828\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4365079365079365,\n \"acc_stderr\": 0.0255428468174005,\n \"acc_norm\": 0.4365079365079365,\n \"acc_norm_stderr\": 0.0255428468174005\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.373015873015873,\n \"acc_stderr\": 0.04325506042017086,\n \"acc_norm\": 0.373015873015873,\n \"acc_norm_stderr\": 0.04325506042017086\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7032258064516129,\n \"acc_stderr\": 0.025988500792411887,\n \"acc_norm\": 0.7032258064516129,\n \"acc_norm_stderr\": 0.025988500792411887\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.41379310344827586,\n \"acc_stderr\": 0.03465304488406795,\n \"acc_norm\": 0.41379310344827586,\n \"acc_norm_stderr\": 0.03465304488406795\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.4909090909090909,\n \"acc_stderr\": 0.0390369864774844,\n \"acc_norm\": 0.4909090909090909,\n \"acc_norm_stderr\": 0.0390369864774844\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6919191919191919,\n \"acc_stderr\": 0.03289477330098616,\n \"acc_norm\": 0.6919191919191919,\n \"acc_norm_stderr\": 0.03289477330098616\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8756476683937824,\n \"acc_stderr\": 0.023814477086593556,\n \"acc_norm\": 0.8756476683937824,\n \"acc_norm_stderr\": 0.023814477086593556\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5871794871794872,\n \"acc_stderr\": 0.024962683564331796,\n \"acc_norm\": 0.5871794871794872,\n \"acc_norm_stderr\": 0.024962683564331796\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2740740740740741,\n \"acc_stderr\": 0.027195934804085626,\n \"acc_norm\": 0.2740740740740741,\n \"acc_norm_stderr\": 0.027195934804085626\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5630252100840336,\n \"acc_stderr\": 0.03221943636566196,\n \"acc_norm\": 0.5630252100840336,\n \"acc_norm_stderr\": 0.03221943636566196\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3708609271523179,\n \"acc_stderr\": 0.03943966699183629,\n \"acc_norm\": 0.3708609271523179,\n \"acc_norm_stderr\": 0.03943966699183629\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7761467889908257,\n \"acc_stderr\": 0.017871217767790236,\n \"acc_norm\": 0.7761467889908257,\n \"acc_norm_stderr\": 0.017871217767790236\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4027777777777778,\n \"acc_stderr\": 0.033448873829978666,\n \"acc_norm\": 0.4027777777777778,\n \"acc_norm_stderr\": 0.033448873829978666\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.6176470588235294,\n \"acc_stderr\": 0.0341078533890472,\n \"acc_norm\": 0.6176470588235294,\n \"acc_norm_stderr\": 0.0341078533890472\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7088607594936709,\n \"acc_stderr\": 0.029571601065753378,\n \"acc_norm\": 0.7088607594936709,\n \"acc_norm_stderr\": 0.029571601065753378\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6591928251121076,\n \"acc_stderr\": 0.0318114974705536,\n \"acc_norm\": 0.6591928251121076,\n \"acc_norm_stderr\": 0.0318114974705536\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6946564885496184,\n \"acc_stderr\": 0.040393149787245605,\n \"acc_norm\": 0.6946564885496184,\n \"acc_norm_stderr\": 0.040393149787245605\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6944444444444444,\n \"acc_stderr\": 0.044531975073749834,\n \"acc_norm\": 0.6944444444444444,\n \"acc_norm_stderr\": 0.044531975073749834\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.656441717791411,\n \"acc_stderr\": 0.03731133519673893,\n \"acc_norm\": 0.656441717791411,\n \"acc_norm_stderr\": 0.03731133519673893\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.48214285714285715,\n \"acc_stderr\": 0.047427623612430116,\n \"acc_norm\": 0.48214285714285715,\n \"acc_norm_stderr\": 0.047427623612430116\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6990291262135923,\n \"acc_stderr\": 0.04541609446503948,\n \"acc_norm\": 0.6990291262135923,\n \"acc_norm_stderr\": 0.04541609446503948\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8547008547008547,\n \"acc_stderr\": 0.023086635086841407,\n \"acc_norm\": 0.8547008547008547,\n \"acc_norm_stderr\": 0.023086635086841407\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.04725815626252609,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.04725815626252609\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.776500638569604,\n \"acc_stderr\": 0.014897235229450708,\n \"acc_norm\": 0.776500638569604,\n \"acc_norm_stderr\": 0.014897235229450708\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6502890173410405,\n \"acc_stderr\": 0.025674281456531015,\n \"acc_norm\": 0.6502890173410405,\n \"acc_norm_stderr\": 0.025674281456531015\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2536312849162011,\n \"acc_stderr\": 0.014551553659369922,\n \"acc_norm\": 0.2536312849162011,\n \"acc_norm_stderr\": 0.014551553659369922\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6339869281045751,\n \"acc_stderr\": 0.02758281141515962,\n \"acc_norm\": 0.6339869281045751,\n \"acc_norm_stderr\": 0.02758281141515962\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.639871382636656,\n \"acc_stderr\": 0.027264297599804015,\n \"acc_norm\": 0.639871382636656,\n \"acc_norm_stderr\": 0.027264297599804015\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6574074074074074,\n \"acc_stderr\": 0.026406145973625676,\n \"acc_norm\": 0.6574074074074074,\n \"acc_norm_stderr\": 0.026406145973625676\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4574468085106383,\n \"acc_stderr\": 0.029719281272236837,\n \"acc_norm\": 0.4574468085106383,\n \"acc_norm_stderr\": 0.029719281272236837\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3970013037809648,\n \"acc_stderr\": 0.012496346982909556,\n \"acc_norm\": 0.3970013037809648,\n \"acc_norm_stderr\": 0.012496346982909556\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5294117647058824,\n \"acc_stderr\": 0.03032024326500413,\n \"acc_norm\": 0.5294117647058824,\n \"acc_norm_stderr\": 0.03032024326500413\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5866013071895425,\n \"acc_stderr\": 0.01992211568278668,\n \"acc_norm\": 0.5866013071895425,\n \"acc_norm_stderr\": 0.01992211568278668\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6818181818181818,\n \"acc_stderr\": 0.04461272175910509,\n \"acc_norm\": 0.6818181818181818,\n \"acc_norm_stderr\": 0.04461272175910509\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6571428571428571,\n \"acc_stderr\": 0.03038726291954773,\n \"acc_norm\": 0.6571428571428571,\n \"acc_norm_stderr\": 0.03038726291954773\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7611940298507462,\n \"acc_stderr\": 0.030147775935409217,\n \"acc_norm\": 0.7611940298507462,\n \"acc_norm_stderr\": 0.030147775935409217\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816508,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816508\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4759036144578313,\n \"acc_stderr\": 0.03887971849597264,\n \"acc_norm\": 0.4759036144578313,\n \"acc_norm_stderr\": 0.03887971849597264\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7719298245614035,\n \"acc_stderr\": 0.032180937956023566,\n \"acc_norm\": 0.7719298245614035,\n \"acc_norm_stderr\": 0.032180937956023566\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.31334149326805383,\n \"mc1_stderr\": 0.016238065069059605,\n \"mc2\": 0.46500466840014487,\n \"mc2_stderr\": 0.014848695472788285\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.77663772691397,\n \"acc_stderr\": 0.0117056975652052\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3297952994692949,\n \"acc_stderr\": 0.012949955030571147\n }\n}\n```", "repo_url": "https://huggingface.co/CallComply/openchat-3.5-0106-128k", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-28-00.282158.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-33-38.391321.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["**/details_harness|winogrande|5_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["**/details_harness|winogrande|5_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T19-33-38.391321.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T19_28_00.282158", "path": ["results_2024-01-14T19-28-00.282158.parquet"]}, {"split": "2024_01_14T19_33_38.391321", "path": ["results_2024-01-14T19-33-38.391321.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T19-33-38.391321.parquet"]}]}]}
2024-01-14T19:35:58+00:00
b02fd8ab55d73d3eb7fea2f0e47fb53566021453
marmofayezi/M3CelebA-Test
[ "region:us" ]
2024-01-14T19:31:14+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "mask", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "landmark", "dtype": "image"}, {"name": "caption_fre", "dtype": "string"}, {"name": "caption_deu", "dtype": "string"}, {"name": "caption_ita", "dtype": "string"}, {"name": "caption_spa", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1104063693.75, "num_examples": 2998}], "download_size": 725132925, "dataset_size": 1104063693.75}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-18T20:00:07+00:00
e660e13f4babccf7d10073dc4e78032cca69d3a8
dawidkubicki/ner_crypto_news
[ "region:us" ]
2024-01-14T19:43:15+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "int64"}, {"name": "tokens", "sequence": "string"}, {"name": "ner_tags", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 62388, "num_examples": 152}, {"name": "validation", "num_bytes": 13265, "num_examples": 32}, {"name": "test", "num_bytes": 14322, "num_examples": 34}], "download_size": 36662, "dataset_size": 89975}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T19:47:36+00:00
e2aa3f30d138a7891a55bc16fb25bf12ea0d2f7b
# Dataset Card for Evaluation run of CallComply/zephyr-7b-beta-128k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [CallComply/zephyr-7b-beta-128k](https://huggingface.co/CallComply/zephyr-7b-beta-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T19:45:35.717294](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k/blob/main/results_2024-01-14T19-45-35.717294.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5337384150834084, "acc_stderr": 0.034377622578911936, "acc_norm": 0.5411488270607204, "acc_norm_stderr": 0.03515985681109475, "mc1": 0.30966952264381886, "mc1_stderr": 0.016185744355144915, "mc2": 0.4609603387456776, "mc2_stderr": 0.01568400425776764 }, "harness|arc:challenge|25": { "acc": 0.5435153583617748, "acc_stderr": 0.01455594976049644, "acc_norm": 0.5827645051194539, "acc_norm_stderr": 0.014409825518403084 }, "harness|hellaswag|10": { "acc": 0.6016729735112527, "acc_stderr": 0.004885529674958333, "acc_norm": 0.8099980083648676, "acc_norm_stderr": 0.003915007231962104 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.22, "acc_stderr": 0.0416333199893227, "acc_norm": 0.22, "acc_norm_stderr": 0.0416333199893227 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4962962962962963, "acc_stderr": 0.04319223625811331, "acc_norm": 0.4962962962962963, "acc_norm_stderr": 0.04319223625811331 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5592105263157895, "acc_stderr": 0.04040311062490436, "acc_norm": 0.5592105263157895, "acc_norm_stderr": 0.04040311062490436 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5735849056603773, "acc_stderr": 0.03043779434298305, "acc_norm": 0.5735849056603773, "acc_norm_stderr": 0.03043779434298305 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6458333333333334, "acc_stderr": 0.039994111357535424, "acc_norm": 0.6458333333333334, "acc_norm_stderr": 0.039994111357535424 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.44, "acc_stderr": 0.0498887651569859, "acc_norm": 0.44, "acc_norm_stderr": 0.0498887651569859 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6069364161849711, "acc_stderr": 0.0372424959581773, "acc_norm": 0.6069364161849711, "acc_norm_stderr": 0.0372424959581773 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107224, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107224 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4340425531914894, "acc_stderr": 0.032400380867927465, "acc_norm": 0.4340425531914894, "acc_norm_stderr": 0.032400380867927465 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.37719298245614036, "acc_stderr": 0.04559522141958217, "acc_norm": 0.37719298245614036, "acc_norm_stderr": 0.04559522141958217 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.43448275862068964, "acc_stderr": 0.041307408795554966, "acc_norm": 0.43448275862068964, "acc_norm_stderr": 0.041307408795554966 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.30687830687830686, "acc_stderr": 0.02375292871211213, "acc_norm": 0.30687830687830686, "acc_norm_stderr": 0.02375292871211213 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.36507936507936506, "acc_stderr": 0.04306241259127153, "acc_norm": 0.36507936507936506, "acc_norm_stderr": 0.04306241259127153 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6548387096774193, "acc_stderr": 0.02704574657353433, "acc_norm": 0.6548387096774193, "acc_norm_stderr": 0.02704574657353433 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.43349753694581283, "acc_stderr": 0.03486731727419872, "acc_norm": 0.43349753694581283, "acc_norm_stderr": 0.03486731727419872 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.5757575757575758, "acc_stderr": 0.03859268142070264, "acc_norm": 0.5757575757575758, "acc_norm_stderr": 0.03859268142070264 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6717171717171717, "acc_stderr": 0.03345678422756776, "acc_norm": 0.6717171717171717, "acc_norm_stderr": 0.03345678422756776 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.772020725388601, "acc_stderr": 0.030276909945178263, "acc_norm": 0.772020725388601, "acc_norm_stderr": 0.030276909945178263 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5743589743589743, "acc_stderr": 0.02506909438729653, "acc_norm": 0.5743589743589743, "acc_norm_stderr": 0.02506909438729653 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.31851851851851853, "acc_stderr": 0.028406533090608456, "acc_norm": 0.31851851851851853, "acc_norm_stderr": 0.028406533090608456 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.542016806722689, "acc_stderr": 0.03236361111951941, "acc_norm": 0.542016806722689, "acc_norm_stderr": 0.03236361111951941 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7486238532110092, "acc_stderr": 0.018599206360287415, "acc_norm": 0.7486238532110092, "acc_norm_stderr": 0.018599206360287415 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49074074074074076, "acc_stderr": 0.034093869469927006, "acc_norm": 0.49074074074074076, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.5980392156862745, "acc_stderr": 0.034411900234824655, "acc_norm": 0.5980392156862745, "acc_norm_stderr": 0.034411900234824655 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6286919831223629, "acc_stderr": 0.0314506860074486, "acc_norm": 0.6286919831223629, "acc_norm_stderr": 0.0314506860074486 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.57847533632287, "acc_stderr": 0.03314190222110657, "acc_norm": 0.57847533632287, "acc_norm_stderr": 0.03314190222110657 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.549618320610687, "acc_stderr": 0.04363643698524779, "acc_norm": 0.549618320610687, "acc_norm_stderr": 0.04363643698524779 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6694214876033058, "acc_stderr": 0.04294340845212094, "acc_norm": 0.6694214876033058, "acc_norm_stderr": 0.04294340845212094 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6203703703703703, "acc_stderr": 0.04691521224077742, "acc_norm": 0.6203703703703703, "acc_norm_stderr": 0.04691521224077742 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6441717791411042, "acc_stderr": 0.03761521380046734, "acc_norm": 0.6441717791411042, "acc_norm_stderr": 0.03761521380046734 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4107142857142857, "acc_stderr": 0.04669510663875191, "acc_norm": 0.4107142857142857, "acc_norm_stderr": 0.04669510663875191 }, "harness|hendrycksTest-management|5": { "acc": 0.6796116504854369, "acc_stderr": 0.04620284082280041, "acc_norm": 0.6796116504854369, "acc_norm_stderr": 0.04620284082280041 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7863247863247863, "acc_stderr": 0.026853450377009154, "acc_norm": 0.7863247863247863, "acc_norm_stderr": 0.026853450377009154 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7266922094508301, "acc_stderr": 0.01593668106262856, "acc_norm": 0.7266922094508301, "acc_norm_stderr": 0.01593668106262856 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5924855491329479, "acc_stderr": 0.026454578146931494, "acc_norm": 0.5924855491329479, "acc_norm_stderr": 0.026454578146931494 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2636871508379888, "acc_stderr": 0.01473692638376197, "acc_norm": 0.2636871508379888, "acc_norm_stderr": 0.01473692638376197 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5588235294117647, "acc_stderr": 0.028431095444176643, "acc_norm": 0.5588235294117647, "acc_norm_stderr": 0.028431095444176643 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5884244372990354, "acc_stderr": 0.02795048149440127, "acc_norm": 0.5884244372990354, "acc_norm_stderr": 0.02795048149440127 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5617283950617284, "acc_stderr": 0.02760791408740047, "acc_norm": 0.5617283950617284, "acc_norm_stderr": 0.02760791408740047 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4219858156028369, "acc_stderr": 0.029462189233370593, "acc_norm": 0.4219858156028369, "acc_norm_stderr": 0.029462189233370593 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3820078226857888, "acc_stderr": 0.012409564470235562, "acc_norm": 0.3820078226857888, "acc_norm_stderr": 0.012409564470235562 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5551470588235294, "acc_stderr": 0.03018753206032938, "acc_norm": 0.5551470588235294, "acc_norm_stderr": 0.03018753206032938 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5506535947712419, "acc_stderr": 0.02012376652802727, "acc_norm": 0.5506535947712419, "acc_norm_stderr": 0.02012376652802727 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6454545454545455, "acc_stderr": 0.04582004841505417, "acc_norm": 0.6454545454545455, "acc_norm_stderr": 0.04582004841505417 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6163265306122448, "acc_stderr": 0.031130880396235926, "acc_norm": 0.6163265306122448, "acc_norm_stderr": 0.031130880396235926 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6119402985074627, "acc_stderr": 0.0344578996436275, "acc_norm": 0.6119402985074627, "acc_norm_stderr": 0.0344578996436275 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-virology|5": { "acc": 0.4457831325301205, "acc_stderr": 0.03869543323472101, "acc_norm": 0.4457831325301205, "acc_norm_stderr": 0.03869543323472101 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7368421052631579, "acc_stderr": 0.03377310252209205, "acc_norm": 0.7368421052631579, "acc_norm_stderr": 0.03377310252209205 }, "harness|truthfulqa:mc|0": { "mc1": 0.30966952264381886, "mc1_stderr": 0.016185744355144915, "mc2": 0.4609603387456776, "mc2_stderr": 0.01568400425776764 }, "harness|winogrande|5": { "acc": 0.7474348855564326, "acc_stderr": 0.012211148449394105 }, "harness|gsm8k|5": { "acc": 0.13040181956027294, "acc_stderr": 0.009275630324554092 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k
[ "region:us" ]
2024-01-14T19:47:57+00:00
{"pretty_name": "Evaluation run of CallComply/zephyr-7b-beta-128k", "dataset_summary": "Dataset automatically created during the evaluation run of model [CallComply/zephyr-7b-beta-128k](https://huggingface.co/CallComply/zephyr-7b-beta-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T19:45:35.717294](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__zephyr-7b-beta-128k/blob/main/results_2024-01-14T19-45-35.717294.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5337384150834084,\n \"acc_stderr\": 0.034377622578911936,\n \"acc_norm\": 0.5411488270607204,\n \"acc_norm_stderr\": 0.03515985681109475,\n \"mc1\": 0.30966952264381886,\n \"mc1_stderr\": 0.016185744355144915,\n \"mc2\": 0.4609603387456776,\n \"mc2_stderr\": 0.01568400425776764\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5435153583617748,\n \"acc_stderr\": 0.01455594976049644,\n \"acc_norm\": 0.5827645051194539,\n \"acc_norm_stderr\": 0.014409825518403084\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6016729735112527,\n \"acc_stderr\": 0.004885529674958333,\n \"acc_norm\": 0.8099980083648676,\n \"acc_norm_stderr\": 0.003915007231962104\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.0416333199893227,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.0416333199893227\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4962962962962963,\n \"acc_stderr\": 0.04319223625811331,\n \"acc_norm\": 0.4962962962962963,\n \"acc_norm_stderr\": 0.04319223625811331\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5592105263157895,\n \"acc_stderr\": 0.04040311062490436,\n \"acc_norm\": 0.5592105263157895,\n \"acc_norm_stderr\": 0.04040311062490436\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5735849056603773,\n \"acc_stderr\": 0.03043779434298305,\n \"acc_norm\": 0.5735849056603773,\n \"acc_norm_stderr\": 0.03043779434298305\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6458333333333334,\n \"acc_stderr\": 0.039994111357535424,\n \"acc_norm\": 0.6458333333333334,\n \"acc_norm_stderr\": 0.039994111357535424\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.0498887651569859,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.0498887651569859\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6069364161849711,\n \"acc_stderr\": 0.0372424959581773,\n \"acc_norm\": 0.6069364161849711,\n \"acc_norm_stderr\": 0.0372424959581773\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107224,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107224\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4340425531914894,\n \"acc_stderr\": 0.032400380867927465,\n \"acc_norm\": 0.4340425531914894,\n \"acc_norm_stderr\": 0.032400380867927465\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.37719298245614036,\n \"acc_stderr\": 0.04559522141958217,\n \"acc_norm\": 0.37719298245614036,\n \"acc_norm_stderr\": 0.04559522141958217\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.43448275862068964,\n \"acc_stderr\": 0.041307408795554966,\n \"acc_norm\": 0.43448275862068964,\n \"acc_norm_stderr\": 0.041307408795554966\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.30687830687830686,\n \"acc_stderr\": 0.02375292871211213,\n \"acc_norm\": 0.30687830687830686,\n \"acc_norm_stderr\": 0.02375292871211213\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.36507936507936506,\n \"acc_stderr\": 0.04306241259127153,\n \"acc_norm\": 0.36507936507936506,\n \"acc_norm_stderr\": 0.04306241259127153\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6548387096774193,\n \"acc_stderr\": 0.02704574657353433,\n \"acc_norm\": 0.6548387096774193,\n \"acc_norm_stderr\": 0.02704574657353433\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.43349753694581283,\n \"acc_stderr\": 0.03486731727419872,\n \"acc_norm\": 0.43349753694581283,\n \"acc_norm_stderr\": 0.03486731727419872\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.5757575757575758,\n \"acc_stderr\": 0.03859268142070264,\n \"acc_norm\": 0.5757575757575758,\n \"acc_norm_stderr\": 0.03859268142070264\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6717171717171717,\n \"acc_stderr\": 0.03345678422756776,\n \"acc_norm\": 0.6717171717171717,\n \"acc_norm_stderr\": 0.03345678422756776\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.772020725388601,\n \"acc_stderr\": 0.030276909945178263,\n \"acc_norm\": 0.772020725388601,\n \"acc_norm_stderr\": 0.030276909945178263\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5743589743589743,\n \"acc_stderr\": 0.02506909438729653,\n \"acc_norm\": 0.5743589743589743,\n \"acc_norm_stderr\": 0.02506909438729653\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.31851851851851853,\n \"acc_stderr\": 0.028406533090608456,\n \"acc_norm\": 0.31851851851851853,\n \"acc_norm_stderr\": 0.028406533090608456\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.542016806722689,\n \"acc_stderr\": 0.03236361111951941,\n \"acc_norm\": 0.542016806722689,\n \"acc_norm_stderr\": 0.03236361111951941\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7486238532110092,\n \"acc_stderr\": 0.018599206360287415,\n \"acc_norm\": 0.7486238532110092,\n \"acc_norm_stderr\": 0.018599206360287415\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49074074074074076,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.49074074074074076,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.5980392156862745,\n \"acc_stderr\": 0.034411900234824655,\n \"acc_norm\": 0.5980392156862745,\n \"acc_norm_stderr\": 0.034411900234824655\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6286919831223629,\n \"acc_stderr\": 0.0314506860074486,\n \"acc_norm\": 0.6286919831223629,\n \"acc_norm_stderr\": 0.0314506860074486\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.57847533632287,\n \"acc_stderr\": 0.03314190222110657,\n \"acc_norm\": 0.57847533632287,\n \"acc_norm_stderr\": 0.03314190222110657\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.549618320610687,\n \"acc_stderr\": 0.04363643698524779,\n \"acc_norm\": 0.549618320610687,\n \"acc_norm_stderr\": 0.04363643698524779\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6694214876033058,\n \"acc_stderr\": 0.04294340845212094,\n \"acc_norm\": 0.6694214876033058,\n \"acc_norm_stderr\": 0.04294340845212094\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6203703703703703,\n \"acc_stderr\": 0.04691521224077742,\n \"acc_norm\": 0.6203703703703703,\n \"acc_norm_stderr\": 0.04691521224077742\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6441717791411042,\n \"acc_stderr\": 0.03761521380046734,\n \"acc_norm\": 0.6441717791411042,\n \"acc_norm_stderr\": 0.03761521380046734\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4107142857142857,\n \"acc_stderr\": 0.04669510663875191,\n \"acc_norm\": 0.4107142857142857,\n \"acc_norm_stderr\": 0.04669510663875191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6796116504854369,\n \"acc_stderr\": 0.04620284082280041,\n \"acc_norm\": 0.6796116504854369,\n \"acc_norm_stderr\": 0.04620284082280041\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7863247863247863,\n \"acc_stderr\": 0.026853450377009154,\n \"acc_norm\": 0.7863247863247863,\n \"acc_norm_stderr\": 0.026853450377009154\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7266922094508301,\n \"acc_stderr\": 0.01593668106262856,\n \"acc_norm\": 0.7266922094508301,\n \"acc_norm_stderr\": 0.01593668106262856\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5924855491329479,\n \"acc_stderr\": 0.026454578146931494,\n \"acc_norm\": 0.5924855491329479,\n \"acc_norm_stderr\": 0.026454578146931494\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2636871508379888,\n \"acc_stderr\": 0.01473692638376197,\n \"acc_norm\": 0.2636871508379888,\n \"acc_norm_stderr\": 0.01473692638376197\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5588235294117647,\n \"acc_stderr\": 0.028431095444176643,\n \"acc_norm\": 0.5588235294117647,\n \"acc_norm_stderr\": 0.028431095444176643\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5884244372990354,\n \"acc_stderr\": 0.02795048149440127,\n \"acc_norm\": 0.5884244372990354,\n \"acc_norm_stderr\": 0.02795048149440127\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5617283950617284,\n \"acc_stderr\": 0.02760791408740047,\n \"acc_norm\": 0.5617283950617284,\n \"acc_norm_stderr\": 0.02760791408740047\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4219858156028369,\n \"acc_stderr\": 0.029462189233370593,\n \"acc_norm\": 0.4219858156028369,\n \"acc_norm_stderr\": 0.029462189233370593\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3820078226857888,\n \"acc_stderr\": 0.012409564470235562,\n \"acc_norm\": 0.3820078226857888,\n \"acc_norm_stderr\": 0.012409564470235562\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5551470588235294,\n \"acc_stderr\": 0.03018753206032938,\n \"acc_norm\": 0.5551470588235294,\n \"acc_norm_stderr\": 0.03018753206032938\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5506535947712419,\n \"acc_stderr\": 0.02012376652802727,\n \"acc_norm\": 0.5506535947712419,\n \"acc_norm_stderr\": 0.02012376652802727\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.04582004841505417,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.04582004841505417\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6163265306122448,\n \"acc_stderr\": 0.031130880396235926,\n \"acc_norm\": 0.6163265306122448,\n \"acc_norm_stderr\": 0.031130880396235926\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6119402985074627,\n \"acc_stderr\": 0.0344578996436275,\n \"acc_norm\": 0.6119402985074627,\n \"acc_norm_stderr\": 0.0344578996436275\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4457831325301205,\n \"acc_stderr\": 0.03869543323472101,\n \"acc_norm\": 0.4457831325301205,\n \"acc_norm_stderr\": 0.03869543323472101\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7368421052631579,\n \"acc_stderr\": 0.03377310252209205,\n \"acc_norm\": 0.7368421052631579,\n \"acc_norm_stderr\": 0.03377310252209205\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.30966952264381886,\n \"mc1_stderr\": 0.016185744355144915,\n \"mc2\": 0.4609603387456776,\n \"mc2_stderr\": 0.01568400425776764\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7474348855564326,\n \"acc_stderr\": 0.012211148449394105\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.13040181956027294,\n \"acc_stderr\": 0.009275630324554092\n }\n}\n```", "repo_url": "https://huggingface.co/CallComply/zephyr-7b-beta-128k", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T19-45-35.717294.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["**/details_harness|winogrande|5_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T19-45-35.717294.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T19_45_35.717294", "path": ["results_2024-01-14T19-45-35.717294.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T19-45-35.717294.parquet"]}]}]}
2024-01-14T19:48:19+00:00
fca8c06cfcbac7bb917aa8872b82aa513b22ead0
reidolichess15/louise
[ "region:us" ]
2024-01-14T19:50:21+00:00
{}
2024-01-14T19:51:33+00:00
b25ad59ffbaac297db33a4029c79c9c33177291a
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en-enr-enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T19:52:47+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:36:55+00:00
db20b69f991431d206c37a391464900406b8805f
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-enr-enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T19:58:28+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:37:21+00:00
c782d04050ba6885a9d1806192057e1cdecc9f80
# Dataset Card for Evaluation run of moreh/MoMo-70B-lora-1.8.5-DPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [moreh/MoMo-70B-lora-1.8.5-DPO](https://huggingface.co/moreh/MoMo-70B-lora-1.8.5-DPO) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.5-DPO", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T20:00:36.558108](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.5-DPO/blob/main/results_2024-01-14T20-00-36.558108.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7718244861304054, "acc_stderr": 0.02796487785418919, "acc_norm": 0.7749239423331258, "acc_norm_stderr": 0.0285082622909065, "mc1": 0.48959608323133413, "mc1_stderr": 0.017499711430249264, "mc2": 0.6579360053724295, "mc2_stderr": 0.014740925357615238 }, "harness|arc:challenge|25": { "acc": 0.6638225255972696, "acc_stderr": 0.013804855026205761, "acc_norm": 0.6953924914675768, "acc_norm_stderr": 0.013449522109932487 }, "harness|hellaswag|10": { "acc": 0.6640111531567416, "acc_stderr": 0.0047136966941316765, "acc_norm": 0.8560047799243179, "acc_norm_stderr": 0.00350367366880503 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7111111111111111, "acc_stderr": 0.03915450630414251, "acc_norm": 0.7111111111111111, "acc_norm_stderr": 0.03915450630414251 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.881578947368421, "acc_stderr": 0.026293995855474928, "acc_norm": 0.881578947368421, "acc_norm_stderr": 0.026293995855474928 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.8, "acc_stderr": 0.04020151261036844, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036844 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8301886792452831, "acc_stderr": 0.02310839379984133, "acc_norm": 0.8301886792452831, "acc_norm_stderr": 0.02310839379984133 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.9236111111111112, "acc_stderr": 0.02221220393834591, "acc_norm": 0.9236111111111112, "acc_norm_stderr": 0.02221220393834591 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.59, "acc_stderr": 0.049431107042371025, "acc_norm": 0.59, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.54, "acc_stderr": 0.05009082659620332, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7745664739884393, "acc_stderr": 0.031862098516411454, "acc_norm": 0.7745664739884393, "acc_norm_stderr": 0.031862098516411454 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5980392156862745, "acc_stderr": 0.04878608714466996, "acc_norm": 0.5980392156862745, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.81, "acc_stderr": 0.039427724440366234, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366234 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.774468085106383, "acc_stderr": 0.027321078417387536, "acc_norm": 0.774468085106383, "acc_norm_stderr": 0.027321078417387536 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.6228070175438597, "acc_stderr": 0.04559522141958216, "acc_norm": 0.6228070175438597, "acc_norm_stderr": 0.04559522141958216 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.8068965517241379, "acc_stderr": 0.032894455221273995, "acc_norm": 0.8068965517241379, "acc_norm_stderr": 0.032894455221273995 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.6825396825396826, "acc_stderr": 0.023973861998992086, "acc_norm": 0.6825396825396826, "acc_norm_stderr": 0.023973861998992086 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5555555555555556, "acc_stderr": 0.04444444444444449, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8903225806451613, "acc_stderr": 0.017776778700485173, "acc_norm": 0.8903225806451613, "acc_norm_stderr": 0.017776778700485173 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.645320197044335, "acc_stderr": 0.0336612448905145, "acc_norm": 0.645320197044335, "acc_norm_stderr": 0.0336612448905145 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.83, "acc_stderr": 0.0377525168068637, "acc_norm": 0.83, "acc_norm_stderr": 0.0377525168068637 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8545454545454545, "acc_stderr": 0.027530196355066584, "acc_norm": 0.8545454545454545, "acc_norm_stderr": 0.027530196355066584 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9343434343434344, "acc_stderr": 0.017646526677233335, "acc_norm": 0.9343434343434344, "acc_norm_stderr": 0.017646526677233335 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9792746113989638, "acc_stderr": 0.010281417011909046, "acc_norm": 0.9792746113989638, "acc_norm_stderr": 0.010281417011909046 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8153846153846154, "acc_stderr": 0.019671632413100288, "acc_norm": 0.8153846153846154, "acc_norm_stderr": 0.019671632413100288 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.48148148148148145, "acc_stderr": 0.03046462171889533, "acc_norm": 0.48148148148148145, "acc_norm_stderr": 0.03046462171889533 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8487394957983193, "acc_stderr": 0.02327425589870794, "acc_norm": 0.8487394957983193, "acc_norm_stderr": 0.02327425589870794 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.5827814569536424, "acc_stderr": 0.040261414976346104, "acc_norm": 0.5827814569536424, "acc_norm_stderr": 0.040261414976346104 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9229357798165138, "acc_stderr": 0.011434381698911096, "acc_norm": 0.9229357798165138, "acc_norm_stderr": 0.011434381698911096 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.7037037037037037, "acc_stderr": 0.03114144782353605, "acc_norm": 0.7037037037037037, "acc_norm_stderr": 0.03114144782353605 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9264705882352942, "acc_stderr": 0.018318855850089678, "acc_norm": 0.9264705882352942, "acc_norm_stderr": 0.018318855850089678 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.018889750550956715, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.018889750550956715 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.8116591928251121, "acc_stderr": 0.026241132996407256, "acc_norm": 0.8116591928251121, "acc_norm_stderr": 0.026241132996407256 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8931297709923665, "acc_stderr": 0.027096548624883733, "acc_norm": 0.8931297709923665, "acc_norm_stderr": 0.027096548624883733 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8842975206611571, "acc_stderr": 0.029199802455622804, "acc_norm": 0.8842975206611571, "acc_norm_stderr": 0.029199802455622804 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8611111111111112, "acc_stderr": 0.0334327006286962, "acc_norm": 0.8611111111111112, "acc_norm_stderr": 0.0334327006286962 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8343558282208589, "acc_stderr": 0.029208296231259104, "acc_norm": 0.8343558282208589, "acc_norm_stderr": 0.029208296231259104 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.6160714285714286, "acc_stderr": 0.04616143075028546, "acc_norm": 0.6160714285714286, "acc_norm_stderr": 0.04616143075028546 }, "harness|hendrycksTest-management|5": { "acc": 0.8932038834951457, "acc_stderr": 0.030581088928331362, "acc_norm": 0.8932038834951457, "acc_norm_stderr": 0.030581088928331362 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9358974358974359, "acc_stderr": 0.01604626163167314, "acc_norm": 0.9358974358974359, "acc_norm_stderr": 0.01604626163167314 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.85, "acc_stderr": 0.035887028128263734, "acc_norm": 0.85, "acc_norm_stderr": 0.035887028128263734 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9182630906768838, "acc_stderr": 0.009796913952313168, "acc_norm": 0.9182630906768838, "acc_norm_stderr": 0.009796913952313168 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.838150289017341, "acc_stderr": 0.019829299214925416, "acc_norm": 0.838150289017341, "acc_norm_stderr": 0.019829299214925416 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.7016759776536313, "acc_stderr": 0.01530184004512928, "acc_norm": 0.7016759776536313, "acc_norm_stderr": 0.01530184004512928 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8366013071895425, "acc_stderr": 0.0211706230112135, "acc_norm": 0.8366013071895425, "acc_norm_stderr": 0.0211706230112135 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8488745980707395, "acc_stderr": 0.020342749744428634, "acc_norm": 0.8488745980707395, "acc_norm_stderr": 0.020342749744428634 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8765432098765432, "acc_stderr": 0.018303868806891787, "acc_norm": 0.8765432098765432, "acc_norm_stderr": 0.018303868806891787 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6524822695035462, "acc_stderr": 0.02840662780959095, "acc_norm": 0.6524822695035462, "acc_norm_stderr": 0.02840662780959095 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.6166883963494133, "acc_stderr": 0.012417603662901188, "acc_norm": 0.6166883963494133, "acc_norm_stderr": 0.012417603662901188 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8382352941176471, "acc_stderr": 0.022368672562886747, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.022368672562886747 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.8169934640522876, "acc_stderr": 0.015643069911273337, "acc_norm": 0.8169934640522876, "acc_norm_stderr": 0.015643069911273337 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7545454545454545, "acc_stderr": 0.041220665028782855, "acc_norm": 0.7545454545454545, "acc_norm_stderr": 0.041220665028782855 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8285714285714286, "acc_stderr": 0.024127463462650153, "acc_norm": 0.8285714285714286, "acc_norm_stderr": 0.024127463462650153 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8905472636815921, "acc_stderr": 0.022076326101824667, "acc_norm": 0.8905472636815921, "acc_norm_stderr": 0.022076326101824667 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.93, "acc_stderr": 0.025643239997624294, "acc_norm": 0.93, "acc_norm_stderr": 0.025643239997624294 }, "harness|hendrycksTest-virology|5": { "acc": 0.5843373493975904, "acc_stderr": 0.03836722176598053, "acc_norm": 0.5843373493975904, "acc_norm_stderr": 0.03836722176598053 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8830409356725146, "acc_stderr": 0.024648068961366152, "acc_norm": 0.8830409356725146, "acc_norm_stderr": 0.024648068961366152 }, "harness|truthfulqa:mc|0": { "mc1": 0.48959608323133413, "mc1_stderr": 0.017499711430249264, "mc2": 0.6579360053724295, "mc2_stderr": 0.014740925357615238 }, "harness|winogrande|5": { "acc": 0.8413575374901342, "acc_stderr": 0.010267936243028228 }, "harness|gsm8k|5": { "acc": 0.7429871114480667, "acc_stderr": 0.01203678175742868 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.5-DPO
[ "region:us" ]
2024-01-14T20:02:44+00:00
{"pretty_name": "Evaluation run of moreh/MoMo-70B-lora-1.8.5-DPO", "dataset_summary": "Dataset automatically created during the evaluation run of model [moreh/MoMo-70B-lora-1.8.5-DPO](https://huggingface.co/moreh/MoMo-70B-lora-1.8.5-DPO) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.5-DPO\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T20:00:36.558108](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.5-DPO/blob/main/results_2024-01-14T20-00-36.558108.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7718244861304054,\n \"acc_stderr\": 0.02796487785418919,\n \"acc_norm\": 0.7749239423331258,\n \"acc_norm_stderr\": 0.0285082622909065,\n \"mc1\": 0.48959608323133413,\n \"mc1_stderr\": 0.017499711430249264,\n \"mc2\": 0.6579360053724295,\n \"mc2_stderr\": 0.014740925357615238\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6638225255972696,\n \"acc_stderr\": 0.013804855026205761,\n \"acc_norm\": 0.6953924914675768,\n \"acc_norm_stderr\": 0.013449522109932487\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6640111531567416,\n \"acc_stderr\": 0.0047136966941316765,\n \"acc_norm\": 0.8560047799243179,\n \"acc_norm_stderr\": 0.00350367366880503\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7111111111111111,\n \"acc_stderr\": 0.03915450630414251,\n \"acc_norm\": 0.7111111111111111,\n \"acc_norm_stderr\": 0.03915450630414251\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.881578947368421,\n \"acc_stderr\": 0.026293995855474928,\n \"acc_norm\": 0.881578947368421,\n \"acc_norm_stderr\": 0.026293995855474928\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036844,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036844\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8301886792452831,\n \"acc_stderr\": 0.02310839379984133,\n \"acc_norm\": 0.8301886792452831,\n \"acc_norm_stderr\": 0.02310839379984133\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.9236111111111112,\n \"acc_stderr\": 0.02221220393834591,\n \"acc_norm\": 0.9236111111111112,\n \"acc_norm_stderr\": 0.02221220393834591\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7745664739884393,\n \"acc_stderr\": 0.031862098516411454,\n \"acc_norm\": 0.7745664739884393,\n \"acc_norm_stderr\": 0.031862098516411454\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5980392156862745,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.5980392156862745,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.774468085106383,\n \"acc_stderr\": 0.027321078417387536,\n \"acc_norm\": 0.774468085106383,\n \"acc_norm_stderr\": 0.027321078417387536\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.6228070175438597,\n \"acc_stderr\": 0.04559522141958216,\n \"acc_norm\": 0.6228070175438597,\n \"acc_norm_stderr\": 0.04559522141958216\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.8068965517241379,\n \"acc_stderr\": 0.032894455221273995,\n \"acc_norm\": 0.8068965517241379,\n \"acc_norm_stderr\": 0.032894455221273995\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.6825396825396826,\n \"acc_stderr\": 0.023973861998992086,\n \"acc_norm\": 0.6825396825396826,\n \"acc_norm_stderr\": 0.023973861998992086\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8903225806451613,\n \"acc_stderr\": 0.017776778700485173,\n \"acc_norm\": 0.8903225806451613,\n \"acc_norm_stderr\": 0.017776778700485173\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.645320197044335,\n \"acc_stderr\": 0.0336612448905145,\n \"acc_norm\": 0.645320197044335,\n \"acc_norm_stderr\": 0.0336612448905145\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8545454545454545,\n \"acc_stderr\": 0.027530196355066584,\n \"acc_norm\": 0.8545454545454545,\n \"acc_norm_stderr\": 0.027530196355066584\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9343434343434344,\n \"acc_stderr\": 0.017646526677233335,\n \"acc_norm\": 0.9343434343434344,\n \"acc_norm_stderr\": 0.017646526677233335\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9792746113989638,\n \"acc_stderr\": 0.010281417011909046,\n \"acc_norm\": 0.9792746113989638,\n \"acc_norm_stderr\": 0.010281417011909046\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8153846153846154,\n \"acc_stderr\": 0.019671632413100288,\n \"acc_norm\": 0.8153846153846154,\n \"acc_norm_stderr\": 0.019671632413100288\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.48148148148148145,\n \"acc_stderr\": 0.03046462171889533,\n \"acc_norm\": 0.48148148148148145,\n \"acc_norm_stderr\": 0.03046462171889533\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8487394957983193,\n \"acc_stderr\": 0.02327425589870794,\n \"acc_norm\": 0.8487394957983193,\n \"acc_norm_stderr\": 0.02327425589870794\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.5827814569536424,\n \"acc_stderr\": 0.040261414976346104,\n \"acc_norm\": 0.5827814569536424,\n \"acc_norm_stderr\": 0.040261414976346104\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9229357798165138,\n \"acc_stderr\": 0.011434381698911096,\n \"acc_norm\": 0.9229357798165138,\n \"acc_norm_stderr\": 0.011434381698911096\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.7037037037037037,\n \"acc_stderr\": 0.03114144782353605,\n \"acc_norm\": 0.7037037037037037,\n \"acc_norm_stderr\": 0.03114144782353605\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9264705882352942,\n \"acc_stderr\": 0.018318855850089678,\n \"acc_norm\": 0.9264705882352942,\n \"acc_norm_stderr\": 0.018318855850089678\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.018889750550956715,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.018889750550956715\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.8116591928251121,\n \"acc_stderr\": 0.026241132996407256,\n \"acc_norm\": 0.8116591928251121,\n \"acc_norm_stderr\": 0.026241132996407256\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8931297709923665,\n \"acc_stderr\": 0.027096548624883733,\n \"acc_norm\": 0.8931297709923665,\n \"acc_norm_stderr\": 0.027096548624883733\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8842975206611571,\n \"acc_stderr\": 0.029199802455622804,\n \"acc_norm\": 0.8842975206611571,\n \"acc_norm_stderr\": 0.029199802455622804\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8611111111111112,\n \"acc_stderr\": 0.0334327006286962,\n \"acc_norm\": 0.8611111111111112,\n \"acc_norm_stderr\": 0.0334327006286962\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8343558282208589,\n \"acc_stderr\": 0.029208296231259104,\n \"acc_norm\": 0.8343558282208589,\n \"acc_norm_stderr\": 0.029208296231259104\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.6160714285714286,\n \"acc_stderr\": 0.04616143075028546,\n \"acc_norm\": 0.6160714285714286,\n \"acc_norm_stderr\": 0.04616143075028546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8932038834951457,\n \"acc_stderr\": 0.030581088928331362,\n \"acc_norm\": 0.8932038834951457,\n \"acc_norm_stderr\": 0.030581088928331362\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9358974358974359,\n \"acc_stderr\": 0.01604626163167314,\n \"acc_norm\": 0.9358974358974359,\n \"acc_norm_stderr\": 0.01604626163167314\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.035887028128263734,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.035887028128263734\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9182630906768838,\n \"acc_stderr\": 0.009796913952313168,\n \"acc_norm\": 0.9182630906768838,\n \"acc_norm_stderr\": 0.009796913952313168\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.838150289017341,\n \"acc_stderr\": 0.019829299214925416,\n \"acc_norm\": 0.838150289017341,\n \"acc_norm_stderr\": 0.019829299214925416\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.7016759776536313,\n \"acc_stderr\": 0.01530184004512928,\n \"acc_norm\": 0.7016759776536313,\n \"acc_norm_stderr\": 0.01530184004512928\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8366013071895425,\n \"acc_stderr\": 0.0211706230112135,\n \"acc_norm\": 0.8366013071895425,\n \"acc_norm_stderr\": 0.0211706230112135\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8488745980707395,\n \"acc_stderr\": 0.020342749744428634,\n \"acc_norm\": 0.8488745980707395,\n \"acc_norm_stderr\": 0.020342749744428634\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8765432098765432,\n \"acc_stderr\": 0.018303868806891787,\n \"acc_norm\": 0.8765432098765432,\n \"acc_norm_stderr\": 0.018303868806891787\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6524822695035462,\n \"acc_stderr\": 0.02840662780959095,\n \"acc_norm\": 0.6524822695035462,\n \"acc_norm_stderr\": 0.02840662780959095\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.6166883963494133,\n \"acc_stderr\": 0.012417603662901188,\n \"acc_norm\": 0.6166883963494133,\n \"acc_norm_stderr\": 0.012417603662901188\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.022368672562886747,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.022368672562886747\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.8169934640522876,\n \"acc_stderr\": 0.015643069911273337,\n \"acc_norm\": 0.8169934640522876,\n \"acc_norm_stderr\": 0.015643069911273337\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7545454545454545,\n \"acc_stderr\": 0.041220665028782855,\n \"acc_norm\": 0.7545454545454545,\n \"acc_norm_stderr\": 0.041220665028782855\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8285714285714286,\n \"acc_stderr\": 0.024127463462650153,\n \"acc_norm\": 0.8285714285714286,\n \"acc_norm_stderr\": 0.024127463462650153\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8905472636815921,\n \"acc_stderr\": 0.022076326101824667,\n \"acc_norm\": 0.8905472636815921,\n \"acc_norm_stderr\": 0.022076326101824667\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.93,\n \"acc_stderr\": 0.025643239997624294,\n \"acc_norm\": 0.93,\n \"acc_norm_stderr\": 0.025643239997624294\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5843373493975904,\n \"acc_stderr\": 0.03836722176598053,\n \"acc_norm\": 0.5843373493975904,\n \"acc_norm_stderr\": 0.03836722176598053\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8830409356725146,\n \"acc_stderr\": 0.024648068961366152,\n \"acc_norm\": 0.8830409356725146,\n \"acc_norm_stderr\": 0.024648068961366152\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.48959608323133413,\n \"mc1_stderr\": 0.017499711430249264,\n \"mc2\": 0.6579360053724295,\n \"mc2_stderr\": 0.014740925357615238\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8413575374901342,\n \"acc_stderr\": 0.010267936243028228\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7429871114480667,\n \"acc_stderr\": 0.01203678175742868\n }\n}\n```", "repo_url": "https://huggingface.co/moreh/MoMo-70B-lora-1.8.5-DPO", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|arc:challenge|25_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|gsm8k|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hellaswag|10_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T20-00-36.558108.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["**/details_harness|winogrande|5_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T20-00-36.558108.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T20_00_36.558108", "path": ["results_2024-01-14T20-00-36.558108.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T20-00-36.558108.parquet"]}]}]}
2024-01-14T20:03:05+00:00
abf56a6780eb8176b92522309fa7006416859519
andersonbcdefg/MEDI-processed-no-instruct-dedup-taskfiltered
[ "region:us" ]
2024-01-14T20:05:40+00:00
{"dataset_info": {"features": [{"name": "pos", "dtype": "string"}, {"name": "task_name", "dtype": "string"}, {"name": "neg", "dtype": "string"}, {"name": "query", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 425167107.0593314, "num_examples": 337877}], "download_size": 321552494, "dataset_size": 425167107.0593314}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T20:09:59+00:00
c0bd86fd3eb056f93c91dbfc80ac0f94178ec4fd
modelloosrvcc/LuanGalinha
[ "license:openrail", "region:us" ]
2024-01-14T20:10:40+00:00
{"license": "openrail"}
2024-01-14T20:10:52+00:00
d61a05cd1ad7c1f14078dd4e7bcc93257747f4c4
# Dataset Card for "DoctorKelp" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
KeynesYouDigIt/DoctorKelp
[ "region:us" ]
2024-01-14T20:18:05+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "test_satellite", "1": "train_kelp", "2": "train_satellite"}}}}], "splits": [{"name": "train", "num_bytes": 28827196275.44, "num_examples": 22540}, {"name": "test", "num_bytes": 3643649767.064, "num_examples": 2852}], "download_size": 18049706797, "dataset_size": 32470846042.503998}}
2024-01-14T20:44:29+00:00
c147d179b4796e0f78993d80160b5195b6bcb035
# Dataset of mai/マイ/마이 (Touhou) This is the dataset of mai/マイ/마이 (Touhou), containing 159 images and their tags. The core tags of this character are `blue_hair, bow, blue_eyes, hair_bow, short_hair, wings, ribbon, angel_wings`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 159 | 143.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mai_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 159 | 95.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mai_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 291 | 177.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mai_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 159 | 131.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mai_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 291 | 231.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mai_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/mai_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, dress, smile, solo, purple_eyes | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, dress, solo | | 2 | 22 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, puffy_short_sleeves, white_wings, feathered_wings, solo, white_dress, white_bow, bangs, buttons, looking_at_viewer, closed_mouth, breasts, black_ribbon, smile, frilled_sleeves, black_sash, blush | | 3 | 12 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 2girls, blonde_hair, dress, blush, hat, smile | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | dress | smile | solo | purple_eyes | puffy_short_sleeves | white_wings | feathered_wings | white_dress | white_bow | bangs | buttons | looking_at_viewer | closed_mouth | breasts | black_ribbon | frilled_sleeves | black_sash | blush | 2girls | blonde_hair | hat | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:--------|:-------|:--------------|:----------------------|:--------------|:------------------|:--------------|:------------|:--------|:----------|:--------------------|:---------------|:----------|:---------------|:------------------|:-------------|:--------|:---------|:--------------|:------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | | | | | | | | | | | | | | | | | | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | | | | | | | | | | | | | | | | | | | | 2 | 22 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | 3 | 12 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | | X | X | | | | | | | | | | | | | | | | X | X | X | X |
CyberHarem/mai_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-14T20:19:33+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-14T21:00:36+00:00
5fbc342dfa2e798679c21d55e925af46cc12dc26
GilsonRDF/ExercisesLlama
[ "region:us" ]
2024-01-14T20:20:56+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2306.4, "num_examples": 24}, {"name": "test", "num_bytes": 576.6, "num_examples": 6}], "download_size": 4045, "dataset_size": 2883.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-14T23:47:43+00:00
e7e763873bebec76c2230dd03eeede6dabf81dbb
jilp00/youtoks-transcripts-Kanji-Learning
[ "region:us" ]
2024-01-14T20:24:03+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 68997, "num_examples": 78}], "download_size": 41971, "dataset_size": 68997}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T20:24:06+00:00
bc95b15e7fbcc7b74bae067aa6cc3638e94207f0
# Dataset Card for "distilabel-intel-orca-dpo-pairs-binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
floleuerer/distilabel-intel-orca-dpo-pairs-binarized
[ "region:us" ]
2024-01-14T20:28:42+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 24252252.089665655, "num_examples": 5625}, {"name": "test", "num_bytes": 1280518.9103343466, "num_examples": 297}], "download_size": 13698335, "dataset_size": 25532771.0}}
2024-01-14T20:31:36+00:00
3ae30ea5fc42b1069ea99237d031a9b0480f08ee
AlexDom/labeling_with_pretrained
[ "region:us" ]
2024-01-14T20:28:47+00:00
{}
2024-01-14T20:28:48+00:00
1cf34e2e4f7e56d0fb8279d7feb6ba958e063b79
This dataset contains nearly 18,000 European Member of Parliament (meps) speeches beween 2019 and 2023. The speeches are from Italian, German, French and Belgium meps. All the speeches were gently scraped for the european parliament website using this code: https://github.com/misclassified/meps-text-mining
misclassified/meps_speeches
[ "license:apache-2.0", "region:us" ]
2024-01-14T20:32:39+00:00
{"license": "apache-2.0"}
2024-01-14T20:45:53+00:00
881b64d8ff972c225ee6c1dcd8897f15b82db21e
# Dataset Card for Evaluation run of Jaume/openchat-3.5-0106-mod-gpt5 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Jaume/openchat-3.5-0106-mod-gpt5](https://huggingface.co/Jaume/openchat-3.5-0106-mod-gpt5) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Jaume__openchat-3.5-0106-mod-gpt5", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T21:01:35.974498](https://huggingface.co/datasets/open-llm-leaderboard/details_Jaume__openchat-3.5-0106-mod-gpt5/blob/main/results_2024-01-14T21-01-35.974498.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6528578653707416, "acc_stderr": 0.031849870154313474, "acc_norm": 0.6535559561419437, "acc_norm_stderr": 0.03250454817189663, "mc1": 0.35862913096695226, "mc1_stderr": 0.016789289499502022, "mc2": 0.5189602568049447, "mc2_stderr": 0.015303685990455876 }, "harness|arc:challenge|25": { "acc": 0.621160409556314, "acc_stderr": 0.014175915490000324, "acc_norm": 0.6604095563139932, "acc_norm_stderr": 0.01383903976282017 }, "harness|hellaswag|10": { "acc": 0.6338378809002191, "acc_stderr": 0.0048076995399734075, "acc_norm": 0.8293168691495718, "acc_norm_stderr": 0.0037546293132751625 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6444444444444445, "acc_stderr": 0.04135176749720385, "acc_norm": 0.6444444444444445, "acc_norm_stderr": 0.04135176749720385 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6907894736842105, "acc_stderr": 0.037610708698674805, "acc_norm": 0.6907894736842105, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7094339622641509, "acc_stderr": 0.02794321998933714, "acc_norm": 0.7094339622641509, "acc_norm_stderr": 0.02794321998933714 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.57, "acc_stderr": 0.049756985195624284, "acc_norm": 0.57, "acc_norm_stderr": 0.049756985195624284 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.04878317312145634, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145634 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6878612716763006, "acc_stderr": 0.03533133389323657, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.03533133389323657 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.35294117647058826, "acc_stderr": 0.04755129616062947, "acc_norm": 0.35294117647058826, "acc_norm_stderr": 0.04755129616062947 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.04408440022768079, "acc_norm": 0.74, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5829787234042553, "acc_stderr": 0.03223276266711712, "acc_norm": 0.5829787234042553, "acc_norm_stderr": 0.03223276266711712 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4649122807017544, "acc_stderr": 0.04692008381368909, "acc_norm": 0.4649122807017544, "acc_norm_stderr": 0.04692008381368909 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.593103448275862, "acc_stderr": 0.04093793981266236, "acc_norm": 0.593103448275862, "acc_norm_stderr": 0.04093793981266236 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.42592592592592593, "acc_stderr": 0.02546714904546955, "acc_norm": 0.42592592592592593, "acc_norm_stderr": 0.02546714904546955 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5079365079365079, "acc_stderr": 0.044715725362943486, "acc_norm": 0.5079365079365079, "acc_norm_stderr": 0.044715725362943486 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.04512608598542127, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542127 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.02315787934908353, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.02315787934908353 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7818181818181819, "acc_stderr": 0.03225078108306289, "acc_norm": 0.7818181818181819, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7828282828282829, "acc_stderr": 0.02937661648494562, "acc_norm": 0.7828282828282829, "acc_norm_stderr": 0.02937661648494562 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8911917098445595, "acc_stderr": 0.022473253332768763, "acc_norm": 0.8911917098445595, "acc_norm_stderr": 0.022473253332768763 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6641025641025641, "acc_stderr": 0.023946724741563973, "acc_norm": 0.6641025641025641, "acc_norm_stderr": 0.023946724741563973 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3592592592592593, "acc_stderr": 0.029252905927251972, "acc_norm": 0.3592592592592593, "acc_norm_stderr": 0.029252905927251972 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6848739495798319, "acc_stderr": 0.030176808288974337, "acc_norm": 0.6848739495798319, "acc_norm_stderr": 0.030176808288974337 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3509933774834437, "acc_stderr": 0.03896981964257375, "acc_norm": 0.3509933774834437, "acc_norm_stderr": 0.03896981964257375 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8495412844036697, "acc_stderr": 0.015328563932669237, "acc_norm": 0.8495412844036697, "acc_norm_stderr": 0.015328563932669237 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49537037037037035, "acc_stderr": 0.03409825519163572, "acc_norm": 0.49537037037037035, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8284313725490197, "acc_stderr": 0.026460569561240644, "acc_norm": 0.8284313725490197, "acc_norm_stderr": 0.026460569561240644 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579647, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579647 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7130044843049327, "acc_stderr": 0.030360379710291943, "acc_norm": 0.7130044843049327, "acc_norm_stderr": 0.030360379710291943 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7709923664122137, "acc_stderr": 0.036853466317118506, "acc_norm": 0.7709923664122137, "acc_norm_stderr": 0.036853466317118506 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243839, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243839 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7730061349693251, "acc_stderr": 0.03291099578615769, "acc_norm": 0.7730061349693251, "acc_norm_stderr": 0.03291099578615769 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.8252427184466019, "acc_stderr": 0.03760178006026621, "acc_norm": 0.8252427184466019, "acc_norm_stderr": 0.03760178006026621 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8931623931623932, "acc_stderr": 0.02023714900899093, "acc_norm": 0.8931623931623932, "acc_norm_stderr": 0.02023714900899093 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.79, "acc_stderr": 0.04093601807403326, "acc_norm": 0.79, "acc_norm_stderr": 0.04093601807403326 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8365261813537676, "acc_stderr": 0.013223928616741626, "acc_norm": 0.8365261813537676, "acc_norm_stderr": 0.013223928616741626 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7601156069364162, "acc_stderr": 0.022989592543123563, "acc_norm": 0.7601156069364162, "acc_norm_stderr": 0.022989592543123563 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.761437908496732, "acc_stderr": 0.02440439492808787, "acc_norm": 0.761437908496732, "acc_norm_stderr": 0.02440439492808787 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.707395498392283, "acc_stderr": 0.02583989833487798, "acc_norm": 0.707395498392283, "acc_norm_stderr": 0.02583989833487798 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7623456790123457, "acc_stderr": 0.023683591837008557, "acc_norm": 0.7623456790123457, "acc_norm_stderr": 0.023683591837008557 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.48936170212765956, "acc_stderr": 0.029820747191422473, "acc_norm": 0.48936170212765956, "acc_norm_stderr": 0.029820747191422473 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4869621903520209, "acc_stderr": 0.012765893883835332, "acc_norm": 0.4869621903520209, "acc_norm_stderr": 0.012765893883835332 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7352941176470589, "acc_stderr": 0.02679956202488766, "acc_norm": 0.7352941176470589, "acc_norm_stderr": 0.02679956202488766 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6748366013071896, "acc_stderr": 0.01895088677080631, "acc_norm": 0.6748366013071896, "acc_norm_stderr": 0.01895088677080631 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.746938775510204, "acc_stderr": 0.027833023871399673, "acc_norm": 0.746938775510204, "acc_norm_stderr": 0.027833023871399673 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578334, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578334 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.03487350880197768, "acc_norm": 0.86, "acc_norm_stderr": 0.03487350880197768 }, "harness|hendrycksTest-virology|5": { "acc": 0.5240963855421686, "acc_stderr": 0.03887971849597264, "acc_norm": 0.5240963855421686, "acc_norm_stderr": 0.03887971849597264 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.02917088550072767, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.02917088550072767 }, "harness|truthfulqa:mc|0": { "mc1": 0.35862913096695226, "mc1_stderr": 0.016789289499502022, "mc2": 0.5189602568049447, "mc2_stderr": 0.015303685990455876 }, "harness|winogrande|5": { "acc": 0.8176795580110497, "acc_stderr": 0.010851565594267195 }, "harness|gsm8k|5": { "acc": 0.6815769522365428, "acc_stderr": 0.01283222572307541 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Jaume__openchat-3.5-0106-mod-gpt5
[ "region:us" ]
2024-01-14T20:43:38+00:00
{"pretty_name": "Evaluation run of Jaume/openchat-3.5-0106-mod-gpt5", "dataset_summary": "Dataset automatically created during the evaluation run of model [Jaume/openchat-3.5-0106-mod-gpt5](https://huggingface.co/Jaume/openchat-3.5-0106-mod-gpt5) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Jaume__openchat-3.5-0106-mod-gpt5\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T21:01:35.974498](https://huggingface.co/datasets/open-llm-leaderboard/details_Jaume__openchat-3.5-0106-mod-gpt5/blob/main/results_2024-01-14T21-01-35.974498.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6528578653707416,\n \"acc_stderr\": 0.031849870154313474,\n \"acc_norm\": 0.6535559561419437,\n \"acc_norm_stderr\": 0.03250454817189663,\n \"mc1\": 0.35862913096695226,\n \"mc1_stderr\": 0.016789289499502022,\n \"mc2\": 0.5189602568049447,\n \"mc2_stderr\": 0.015303685990455876\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.621160409556314,\n \"acc_stderr\": 0.014175915490000324,\n \"acc_norm\": 0.6604095563139932,\n \"acc_norm_stderr\": 0.01383903976282017\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6338378809002191,\n \"acc_stderr\": 0.0048076995399734075,\n \"acc_norm\": 0.8293168691495718,\n \"acc_norm_stderr\": 0.0037546293132751625\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6444444444444445,\n \"acc_stderr\": 0.04135176749720385,\n \"acc_norm\": 0.6444444444444445,\n \"acc_norm_stderr\": 0.04135176749720385\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6907894736842105,\n \"acc_stderr\": 0.037610708698674805,\n \"acc_norm\": 0.6907894736842105,\n \"acc_norm_stderr\": 0.037610708698674805\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7094339622641509,\n \"acc_stderr\": 0.02794321998933714,\n \"acc_norm\": 0.7094339622641509,\n \"acc_norm_stderr\": 0.02794321998933714\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.57,\n \"acc_stderr\": 0.049756985195624284,\n \"acc_norm\": 0.57,\n \"acc_norm_stderr\": 0.049756985195624284\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145634,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145634\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.03533133389323657,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.03533133389323657\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.35294117647058826,\n \"acc_stderr\": 0.04755129616062947,\n \"acc_norm\": 0.35294117647058826,\n \"acc_norm_stderr\": 0.04755129616062947\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.04408440022768079,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.04408440022768079\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5829787234042553,\n \"acc_stderr\": 0.03223276266711712,\n \"acc_norm\": 0.5829787234042553,\n \"acc_norm_stderr\": 0.03223276266711712\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.04692008381368909,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.04692008381368909\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.593103448275862,\n \"acc_stderr\": 0.04093793981266236,\n \"acc_norm\": 0.593103448275862,\n \"acc_norm_stderr\": 0.04093793981266236\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42592592592592593,\n \"acc_stderr\": 0.02546714904546955,\n \"acc_norm\": 0.42592592592592593,\n \"acc_norm_stderr\": 0.02546714904546955\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5079365079365079,\n \"acc_stderr\": 0.044715725362943486,\n \"acc_norm\": 0.5079365079365079,\n \"acc_norm_stderr\": 0.044715725362943486\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542127,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542127\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.02315787934908353,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.02315787934908353\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7818181818181819,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.7818181818181819,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.02937661648494562,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.02937661648494562\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8911917098445595,\n \"acc_stderr\": 0.022473253332768763,\n \"acc_norm\": 0.8911917098445595,\n \"acc_norm_stderr\": 0.022473253332768763\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6641025641025641,\n \"acc_stderr\": 0.023946724741563973,\n \"acc_norm\": 0.6641025641025641,\n \"acc_norm_stderr\": 0.023946724741563973\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3592592592592593,\n \"acc_stderr\": 0.029252905927251972,\n \"acc_norm\": 0.3592592592592593,\n \"acc_norm_stderr\": 0.029252905927251972\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6848739495798319,\n \"acc_stderr\": 0.030176808288974337,\n \"acc_norm\": 0.6848739495798319,\n \"acc_norm_stderr\": 0.030176808288974337\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3509933774834437,\n \"acc_stderr\": 0.03896981964257375,\n \"acc_norm\": 0.3509933774834437,\n \"acc_norm_stderr\": 0.03896981964257375\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669237,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669237\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49537037037037035,\n \"acc_stderr\": 0.03409825519163572,\n \"acc_norm\": 0.49537037037037035,\n \"acc_norm_stderr\": 0.03409825519163572\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8284313725490197,\n \"acc_stderr\": 0.026460569561240644,\n \"acc_norm\": 0.8284313725490197,\n \"acc_norm_stderr\": 0.026460569561240644\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579647,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579647\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7130044843049327,\n \"acc_stderr\": 0.030360379710291943,\n \"acc_norm\": 0.7130044843049327,\n \"acc_norm_stderr\": 0.030360379710291943\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243839,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243839\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7730061349693251,\n \"acc_stderr\": 0.03291099578615769,\n \"acc_norm\": 0.7730061349693251,\n \"acc_norm_stderr\": 0.03291099578615769\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8252427184466019,\n \"acc_stderr\": 0.03760178006026621,\n \"acc_norm\": 0.8252427184466019,\n \"acc_norm_stderr\": 0.03760178006026621\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8931623931623932,\n \"acc_stderr\": 0.02023714900899093,\n \"acc_norm\": 0.8931623931623932,\n \"acc_norm_stderr\": 0.02023714900899093\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.04093601807403326,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.04093601807403326\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8365261813537676,\n \"acc_stderr\": 0.013223928616741626,\n \"acc_norm\": 0.8365261813537676,\n \"acc_norm_stderr\": 0.013223928616741626\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7601156069364162,\n \"acc_stderr\": 0.022989592543123563,\n \"acc_norm\": 0.7601156069364162,\n \"acc_norm_stderr\": 0.022989592543123563\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.761437908496732,\n \"acc_stderr\": 0.02440439492808787,\n \"acc_norm\": 0.761437908496732,\n \"acc_norm_stderr\": 0.02440439492808787\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7623456790123457,\n \"acc_stderr\": 0.023683591837008557,\n \"acc_norm\": 0.7623456790123457,\n \"acc_norm_stderr\": 0.023683591837008557\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48936170212765956,\n \"acc_stderr\": 0.029820747191422473,\n \"acc_norm\": 0.48936170212765956,\n \"acc_norm_stderr\": 0.029820747191422473\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4869621903520209,\n \"acc_stderr\": 0.012765893883835332,\n \"acc_norm\": 0.4869621903520209,\n \"acc_norm_stderr\": 0.012765893883835332\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7352941176470589,\n \"acc_stderr\": 0.02679956202488766,\n \"acc_norm\": 0.7352941176470589,\n \"acc_norm_stderr\": 0.02679956202488766\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6748366013071896,\n \"acc_stderr\": 0.01895088677080631,\n \"acc_norm\": 0.6748366013071896,\n \"acc_norm_stderr\": 0.01895088677080631\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.746938775510204,\n \"acc_stderr\": 0.027833023871399673,\n \"acc_norm\": 0.746938775510204,\n \"acc_norm_stderr\": 0.027833023871399673\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578334,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578334\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.03487350880197768,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.03487350880197768\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5240963855421686,\n \"acc_stderr\": 0.03887971849597264,\n \"acc_norm\": 0.5240963855421686,\n \"acc_norm_stderr\": 0.03887971849597264\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.02917088550072767,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.02917088550072767\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.35862913096695226,\n \"mc1_stderr\": 0.016789289499502022,\n \"mc2\": 0.5189602568049447,\n \"mc2_stderr\": 0.015303685990455876\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8176795580110497,\n \"acc_stderr\": 0.010851565594267195\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6815769522365428,\n \"acc_stderr\": 0.01283222572307541\n }\n}\n```", "repo_url": "https://huggingface.co/Jaume/openchat-3.5-0106-mod-gpt5", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|arc:challenge|25_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|gsm8k|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hellaswag|10_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T20-41-18.617914.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-01-35.974498.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["**/details_harness|winogrande|5_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["**/details_harness|winogrande|5_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T21-01-35.974498.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T20_41_18.617914", "path": ["results_2024-01-14T20-41-18.617914.parquet"]}, {"split": "2024_01_14T21_01_35.974498", "path": ["results_2024-01-14T21-01-35.974498.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T21-01-35.974498.parquet"]}]}]}
2024-01-14T21:04:15+00:00
007dba5ec7a9af6d8700eca0a80b5962f5dd86f2
Nomadsb212/images
[ "license:mit", "region:us" ]
2024-01-14T20:54:30+00:00
{"license": "mit"}
2024-01-14T20:57:38+00:00
2dbec0754c34d492e4922c3e0f77cc277936becc
mlabonne/chessllm
[ "region:us" ]
2024-01-14T20:58:49+00:00
{}
2024-01-14T22:02:46+00:00
58072351479e03a160e1e44a29ba5602ac5ac280
rs0x29a/the-stack-yaml-camel-k
[ "license:apache-2.0", "region:us" ]
2024-01-14T21:02:17+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "hexsha", "dtype": "string"}, {"name": "size", "dtype": "int64"}, {"name": "ext", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "max_stars_repo_path", "dtype": "string"}, {"name": "max_stars_repo_name", "dtype": "string"}, {"name": "max_stars_repo_head_hexsha", "dtype": "string"}, {"name": "max_stars_repo_licenses", "sequence": "string"}, {"name": "max_stars_count", "dtype": "int64"}, {"name": "max_stars_repo_stars_event_min_datetime", "dtype": "string"}, {"name": "max_stars_repo_stars_event_max_datetime", "dtype": "string"}, {"name": "max_issues_repo_path", "dtype": "string"}, {"name": "max_issues_repo_name", "dtype": "string"}, {"name": "max_issues_repo_head_hexsha", "dtype": "string"}, {"name": "max_issues_repo_licenses", "sequence": "string"}, {"name": "max_issues_count", "dtype": "int64"}, {"name": "max_issues_repo_issues_event_min_datetime", "dtype": "string"}, {"name": "max_issues_repo_issues_event_max_datetime", "dtype": "string"}, {"name": "max_forks_repo_path", "dtype": "string"}, {"name": "max_forks_repo_name", "dtype": "string"}, {"name": "max_forks_repo_head_hexsha", "dtype": "string"}, {"name": "max_forks_repo_licenses", "sequence": "string"}, {"name": "max_forks_count", "dtype": "int64"}, {"name": "max_forks_repo_forks_event_min_datetime", "dtype": "string"}, {"name": "max_forks_repo_forks_event_max_datetime", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "avg_line_length", "dtype": "float64"}, {"name": "max_line_length", "dtype": "int64"}, {"name": "alphanum_fraction", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 297506.9341430791, "num_examples": 40}], "download_size": 66785, "dataset_size": 297506.9341430791}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T10:10:00+00:00
73581a917845ae353eca2e55ac445997242f286b
LeeHarrold/yocto-manual-completion
[ "license:apache-2.0", "region:us" ]
2024-01-14T21:04:38+00:00
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 531238, "num_examples": 123}], "download_size": 263830, "dataset_size": 531238}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T21:08:44+00:00
e2bd101a21e9d47b01d171167b0e0b72b9207f36
senhorsapo/charlie
[ "license:openrail", "region:us" ]
2024-01-14T21:07:19+00:00
{"license": "openrail"}
2024-01-14T21:07:19+00:00
21d286fdf12418c06fea8a9b31f513db3dac3215
jilp00/youtoks-transcripts-Intro-Psychology
[ "region:us" ]
2024-01-14T21:08:04+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1360676, "num_examples": 1583}], "download_size": 757845, "dataset_size": 1360676}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T21:08:05+00:00
2b8468580922d27395257e018a02bf16485e8cac
IsaacLabe/4D-Gaussian-Semantic-data
[ "region:us" ]
2024-01-14T21:08:33+00:00
{}
2024-01-19T09:23:25+00:00
4f5a49be0bc9ea4dbfc48caf316c9d93a7d83eb4
adambuttrick/100K-ner-indexes-multiple-organizations-locations-alpaca-format-json-response-all-cases
[ "license:cc0-1.0", "region:us" ]
2024-01-14T21:10:32+00:00
{"license": "cc0-1.0"}
2024-01-14T21:12:39+00:00
8515cfcc43a1e5242d97d0b006fa9d0a5f61ddd2
# Dataset Card for "autotrain-data-autotrain-jose-antorcha-22" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pedromigurasdev/autotrain-data-autotrain-jose-antorcha-22
[ "region:us" ]
2024-01-14T21:14:16+00:00
{"dataset_info": {"features": [{"name": "autotrain_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 555000, "num_examples": 840}, {"name": "validation", "num_bytes": 555000, "num_examples": 840}], "download_size": 84992, "dataset_size": 1110000}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-14T21:14:25+00:00
556e82854a945a113b665d0640868a71ee1240b8
JackLilley/CMMC
[ "license:mit", "region:us" ]
2024-01-14T21:14:44+00:00
{"license": "mit"}
2024-01-14T21:18:06+00:00
051d37a3a27c981bb3a18ae37fe0ebcc20e8c48d
# Dataset Card for Evaluation run of NovoCode/Novocode7b <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [NovoCode/Novocode7b](https://huggingface.co/NovoCode/Novocode7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_NovoCode__Novocode7b", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-23T01:09:59.087164](https://huggingface.co/datasets/open-llm-leaderboard/details_NovoCode__Novocode7b/blob/main/results_2024-01-23T01-09-59.087164.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5637380070206868, "acc_stderr": 0.03397699301826096, "acc_norm": 0.5694898071045811, "acc_norm_stderr": 0.03471749621521052, "mc1": 0.4663402692778458, "mc1_stderr": 0.017463793867168106, "mc2": 0.6276801807189292, "mc2_stderr": 0.015415755094430335 }, "harness|arc:challenge|25": { "acc": 0.5477815699658704, "acc_stderr": 0.01454451988063383, "acc_norm": 0.5878839590443686, "acc_norm_stderr": 0.014383915302225403 }, "harness|hellaswag|10": { "acc": 0.6214897430790679, "acc_stderr": 0.004840244782805302, "acc_norm": 0.8051185022903804, "acc_norm_stderr": 0.003952999181084448 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4962962962962963, "acc_stderr": 0.04319223625811331, "acc_norm": 0.4962962962962963, "acc_norm_stderr": 0.04319223625811331 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5526315789473685, "acc_stderr": 0.04046336883978251, "acc_norm": 0.5526315789473685, "acc_norm_stderr": 0.04046336883978251 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6339622641509434, "acc_stderr": 0.02964781353936525, "acc_norm": 0.6339622641509434, "acc_norm_stderr": 0.02964781353936525 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5972222222222222, "acc_stderr": 0.04101405519842426, "acc_norm": 0.5972222222222222, "acc_norm_stderr": 0.04101405519842426 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.49, "acc_stderr": 0.05024183937956913, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956913 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.43, "acc_stderr": 0.04975698519562428, "acc_norm": 0.43, "acc_norm_stderr": 0.04975698519562428 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5433526011560693, "acc_stderr": 0.03798106566014498, "acc_norm": 0.5433526011560693, "acc_norm_stderr": 0.03798106566014498 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.43137254901960786, "acc_stderr": 0.04928099597287534, "acc_norm": 0.43137254901960786, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5063829787234042, "acc_stderr": 0.032683358999363366, "acc_norm": 0.5063829787234042, "acc_norm_stderr": 0.032683358999363366 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.41228070175438597, "acc_stderr": 0.04630653203366595, "acc_norm": 0.41228070175438597, "acc_norm_stderr": 0.04630653203366595 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5379310344827586, "acc_stderr": 0.04154659671707548, "acc_norm": 0.5379310344827586, "acc_norm_stderr": 0.04154659671707548 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.32275132275132273, "acc_stderr": 0.024078943243597016, "acc_norm": 0.32275132275132273, "acc_norm_stderr": 0.024078943243597016 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3888888888888889, "acc_stderr": 0.04360314860077459, "acc_norm": 0.3888888888888889, "acc_norm_stderr": 0.04360314860077459 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6451612903225806, "acc_stderr": 0.027218889773308753, "acc_norm": 0.6451612903225806, "acc_norm_stderr": 0.027218889773308753 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.42857142857142855, "acc_stderr": 0.03481904844438803, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.03481904844438803 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6303030303030303, "acc_stderr": 0.03769430314512567, "acc_norm": 0.6303030303030303, "acc_norm_stderr": 0.03769430314512567 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7272727272727273, "acc_stderr": 0.03173071239071724, "acc_norm": 0.7272727272727273, "acc_norm_stderr": 0.03173071239071724 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7875647668393783, "acc_stderr": 0.02951928261681723, "acc_norm": 0.7875647668393783, "acc_norm_stderr": 0.02951928261681723 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.541025641025641, "acc_stderr": 0.025265525491284295, "acc_norm": 0.541025641025641, "acc_norm_stderr": 0.025265525491284295 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3296296296296296, "acc_stderr": 0.028661201116524575, "acc_norm": 0.3296296296296296, "acc_norm_stderr": 0.028661201116524575 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5462184873949579, "acc_stderr": 0.03233943468182088, "acc_norm": 0.5462184873949579, "acc_norm_stderr": 0.03233943468182088 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7504587155963303, "acc_stderr": 0.018553897629501628, "acc_norm": 0.7504587155963303, "acc_norm_stderr": 0.018553897629501628 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4166666666666667, "acc_stderr": 0.03362277436608044, "acc_norm": 0.4166666666666667, "acc_norm_stderr": 0.03362277436608044 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7156862745098039, "acc_stderr": 0.03166009679399814, "acc_norm": 0.7156862745098039, "acc_norm_stderr": 0.03166009679399814 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.679324894514768, "acc_stderr": 0.030381931949990403, "acc_norm": 0.679324894514768, "acc_norm_stderr": 0.030381931949990403 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6502242152466368, "acc_stderr": 0.03200736719484503, "acc_norm": 0.6502242152466368, "acc_norm_stderr": 0.03200736719484503 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6412213740458015, "acc_stderr": 0.04206739313864908, "acc_norm": 0.6412213740458015, "acc_norm_stderr": 0.04206739313864908 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7024793388429752, "acc_stderr": 0.04173349148083499, "acc_norm": 0.7024793388429752, "acc_norm_stderr": 0.04173349148083499 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6574074074074074, "acc_stderr": 0.0458790474130181, "acc_norm": 0.6574074074074074, "acc_norm_stderr": 0.0458790474130181 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7116564417177914, "acc_stderr": 0.03559039531617342, "acc_norm": 0.7116564417177914, "acc_norm_stderr": 0.03559039531617342 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5, "acc_stderr": 0.04745789978762494, "acc_norm": 0.5, "acc_norm_stderr": 0.04745789978762494 }, "harness|hendrycksTest-management|5": { "acc": 0.7087378640776699, "acc_stderr": 0.044986763205729224, "acc_norm": 0.7087378640776699, "acc_norm_stderr": 0.044986763205729224 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8376068376068376, "acc_stderr": 0.02416161812798774, "acc_norm": 0.8376068376068376, "acc_norm_stderr": 0.02416161812798774 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7509578544061303, "acc_stderr": 0.015464676163395965, "acc_norm": 0.7509578544061303, "acc_norm_stderr": 0.015464676163395965 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6098265895953757, "acc_stderr": 0.026261677607806642, "acc_norm": 0.6098265895953757, "acc_norm_stderr": 0.026261677607806642 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.37988826815642457, "acc_stderr": 0.016232826818678513, "acc_norm": 0.37988826815642457, "acc_norm_stderr": 0.016232826818678513 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6045751633986928, "acc_stderr": 0.027996723180631462, "acc_norm": 0.6045751633986928, "acc_norm_stderr": 0.027996723180631462 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6334405144694534, "acc_stderr": 0.02736807824397165, "acc_norm": 0.6334405144694534, "acc_norm_stderr": 0.02736807824397165 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5925925925925926, "acc_stderr": 0.027339546640662737, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.027339546640662737 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4078014184397163, "acc_stderr": 0.02931601177634356, "acc_norm": 0.4078014184397163, "acc_norm_stderr": 0.02931601177634356 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3859191655801825, "acc_stderr": 0.012433398911476143, "acc_norm": 0.3859191655801825, "acc_norm_stderr": 0.012433398911476143 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5367647058823529, "acc_stderr": 0.03029061918048569, "acc_norm": 0.5367647058823529, "acc_norm_stderr": 0.03029061918048569 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5245098039215687, "acc_stderr": 0.02020351728026144, "acc_norm": 0.5245098039215687, "acc_norm_stderr": 0.02020351728026144 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.046534298079135075, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.046534298079135075 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5877551020408164, "acc_stderr": 0.03151236044674268, "acc_norm": 0.5877551020408164, "acc_norm_stderr": 0.03151236044674268 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8308457711442786, "acc_stderr": 0.02650859065623326, "acc_norm": 0.8308457711442786, "acc_norm_stderr": 0.02650859065623326 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.79, "acc_stderr": 0.040936018074033256, "acc_norm": 0.79, "acc_norm_stderr": 0.040936018074033256 }, "harness|hendrycksTest-virology|5": { "acc": 0.463855421686747, "acc_stderr": 0.03882310850890593, "acc_norm": 0.463855421686747, "acc_norm_stderr": 0.03882310850890593 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7953216374269005, "acc_stderr": 0.030944459778533193, "acc_norm": 0.7953216374269005, "acc_norm_stderr": 0.030944459778533193 }, "harness|truthfulqa:mc|0": { "mc1": 0.4663402692778458, "mc1_stderr": 0.017463793867168106, "mc2": 0.6276801807189292, "mc2_stderr": 0.015415755094430335 }, "harness|winogrande|5": { "acc": 0.7813733228097869, "acc_stderr": 0.011616198215773218 }, "harness|gsm8k|5": { "acc": 0.2304776345716452, "acc_stderr": 0.011600249020595822 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_NovoCode__Novocode7b
[ "region:us" ]
2024-01-14T21:22:48+00:00
{"pretty_name": "Evaluation run of NovoCode/Novocode7b", "dataset_summary": "Dataset automatically created during the evaluation run of model [NovoCode/Novocode7b](https://huggingface.co/NovoCode/Novocode7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_NovoCode__Novocode7b\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-23T01:09:59.087164](https://huggingface.co/datasets/open-llm-leaderboard/details_NovoCode__Novocode7b/blob/main/results_2024-01-23T01-09-59.087164.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5637380070206868,\n \"acc_stderr\": 0.03397699301826096,\n \"acc_norm\": 0.5694898071045811,\n \"acc_norm_stderr\": 0.03471749621521052,\n \"mc1\": 0.4663402692778458,\n \"mc1_stderr\": 0.017463793867168106,\n \"mc2\": 0.6276801807189292,\n \"mc2_stderr\": 0.015415755094430335\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5477815699658704,\n \"acc_stderr\": 0.01454451988063383,\n \"acc_norm\": 0.5878839590443686,\n \"acc_norm_stderr\": 0.014383915302225403\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6214897430790679,\n \"acc_stderr\": 0.004840244782805302,\n \"acc_norm\": 0.8051185022903804,\n \"acc_norm_stderr\": 0.003952999181084448\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4962962962962963,\n \"acc_stderr\": 0.04319223625811331,\n \"acc_norm\": 0.4962962962962963,\n \"acc_norm_stderr\": 0.04319223625811331\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5526315789473685,\n \"acc_stderr\": 0.04046336883978251,\n \"acc_norm\": 0.5526315789473685,\n \"acc_norm_stderr\": 0.04046336883978251\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6339622641509434,\n \"acc_stderr\": 0.02964781353936525,\n \"acc_norm\": 0.6339622641509434,\n \"acc_norm_stderr\": 0.02964781353936525\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5972222222222222,\n \"acc_stderr\": 0.04101405519842426,\n \"acc_norm\": 0.5972222222222222,\n \"acc_norm_stderr\": 0.04101405519842426\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956913,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956913\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.04975698519562428,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.04975698519562428\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5433526011560693,\n \"acc_stderr\": 0.03798106566014498,\n \"acc_norm\": 0.5433526011560693,\n \"acc_norm_stderr\": 0.03798106566014498\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.43137254901960786,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.43137254901960786,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5063829787234042,\n \"acc_stderr\": 0.032683358999363366,\n \"acc_norm\": 0.5063829787234042,\n \"acc_norm_stderr\": 0.032683358999363366\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.41228070175438597,\n \"acc_stderr\": 0.04630653203366595,\n \"acc_norm\": 0.41228070175438597,\n \"acc_norm_stderr\": 0.04630653203366595\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5379310344827586,\n \"acc_stderr\": 0.04154659671707548,\n \"acc_norm\": 0.5379310344827586,\n \"acc_norm_stderr\": 0.04154659671707548\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.32275132275132273,\n \"acc_stderr\": 0.024078943243597016,\n \"acc_norm\": 0.32275132275132273,\n \"acc_norm_stderr\": 0.024078943243597016\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3888888888888889,\n \"acc_stderr\": 0.04360314860077459,\n \"acc_norm\": 0.3888888888888889,\n \"acc_norm_stderr\": 0.04360314860077459\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6451612903225806,\n \"acc_stderr\": 0.027218889773308753,\n \"acc_norm\": 0.6451612903225806,\n \"acc_norm_stderr\": 0.027218889773308753\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.03481904844438803,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.03481904844438803\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6303030303030303,\n \"acc_stderr\": 0.03769430314512567,\n \"acc_norm\": 0.6303030303030303,\n \"acc_norm_stderr\": 0.03769430314512567\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.03173071239071724,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.03173071239071724\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7875647668393783,\n \"acc_stderr\": 0.02951928261681723,\n \"acc_norm\": 0.7875647668393783,\n \"acc_norm_stderr\": 0.02951928261681723\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.541025641025641,\n \"acc_stderr\": 0.025265525491284295,\n \"acc_norm\": 0.541025641025641,\n \"acc_norm_stderr\": 0.025265525491284295\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3296296296296296,\n \"acc_stderr\": 0.028661201116524575,\n \"acc_norm\": 0.3296296296296296,\n \"acc_norm_stderr\": 0.028661201116524575\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5462184873949579,\n \"acc_stderr\": 0.03233943468182088,\n \"acc_norm\": 0.5462184873949579,\n \"acc_norm_stderr\": 0.03233943468182088\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7504587155963303,\n \"acc_stderr\": 0.018553897629501628,\n \"acc_norm\": 0.7504587155963303,\n \"acc_norm_stderr\": 0.018553897629501628\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4166666666666667,\n \"acc_stderr\": 0.03362277436608044,\n \"acc_norm\": 0.4166666666666667,\n \"acc_norm_stderr\": 0.03362277436608044\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.03166009679399814,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.03166009679399814\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.679324894514768,\n \"acc_stderr\": 0.030381931949990403,\n \"acc_norm\": 0.679324894514768,\n \"acc_norm_stderr\": 0.030381931949990403\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6502242152466368,\n \"acc_stderr\": 0.03200736719484503,\n \"acc_norm\": 0.6502242152466368,\n \"acc_norm_stderr\": 0.03200736719484503\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6412213740458015,\n \"acc_stderr\": 0.04206739313864908,\n \"acc_norm\": 0.6412213740458015,\n \"acc_norm_stderr\": 0.04206739313864908\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7024793388429752,\n \"acc_stderr\": 0.04173349148083499,\n \"acc_norm\": 0.7024793388429752,\n \"acc_norm_stderr\": 0.04173349148083499\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6574074074074074,\n \"acc_stderr\": 0.0458790474130181,\n \"acc_norm\": 0.6574074074074074,\n \"acc_norm_stderr\": 0.0458790474130181\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7116564417177914,\n \"acc_stderr\": 0.03559039531617342,\n \"acc_norm\": 0.7116564417177914,\n \"acc_norm_stderr\": 0.03559039531617342\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.04745789978762494,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.04745789978762494\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7087378640776699,\n \"acc_stderr\": 0.044986763205729224,\n \"acc_norm\": 0.7087378640776699,\n \"acc_norm_stderr\": 0.044986763205729224\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8376068376068376,\n \"acc_stderr\": 0.02416161812798774,\n \"acc_norm\": 0.8376068376068376,\n \"acc_norm_stderr\": 0.02416161812798774\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7509578544061303,\n \"acc_stderr\": 0.015464676163395965,\n \"acc_norm\": 0.7509578544061303,\n \"acc_norm_stderr\": 0.015464676163395965\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6098265895953757,\n \"acc_stderr\": 0.026261677607806642,\n \"acc_norm\": 0.6098265895953757,\n \"acc_norm_stderr\": 0.026261677607806642\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.37988826815642457,\n \"acc_stderr\": 0.016232826818678513,\n \"acc_norm\": 0.37988826815642457,\n \"acc_norm_stderr\": 0.016232826818678513\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6045751633986928,\n \"acc_stderr\": 0.027996723180631462,\n \"acc_norm\": 0.6045751633986928,\n \"acc_norm_stderr\": 0.027996723180631462\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6334405144694534,\n \"acc_stderr\": 0.02736807824397165,\n \"acc_norm\": 0.6334405144694534,\n \"acc_norm_stderr\": 0.02736807824397165\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.027339546640662737,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.027339546640662737\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4078014184397163,\n \"acc_stderr\": 0.02931601177634356,\n \"acc_norm\": 0.4078014184397163,\n \"acc_norm_stderr\": 0.02931601177634356\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3859191655801825,\n \"acc_stderr\": 0.012433398911476143,\n \"acc_norm\": 0.3859191655801825,\n \"acc_norm_stderr\": 0.012433398911476143\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5367647058823529,\n \"acc_stderr\": 0.03029061918048569,\n \"acc_norm\": 0.5367647058823529,\n \"acc_norm_stderr\": 0.03029061918048569\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5245098039215687,\n \"acc_stderr\": 0.02020351728026144,\n \"acc_norm\": 0.5245098039215687,\n \"acc_norm_stderr\": 0.02020351728026144\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.046534298079135075,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.046534298079135075\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5877551020408164,\n \"acc_stderr\": 0.03151236044674268,\n \"acc_norm\": 0.5877551020408164,\n \"acc_norm_stderr\": 0.03151236044674268\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8308457711442786,\n \"acc_stderr\": 0.02650859065623326,\n \"acc_norm\": 0.8308457711442786,\n \"acc_norm_stderr\": 0.02650859065623326\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.040936018074033256,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.040936018074033256\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.463855421686747,\n \"acc_stderr\": 0.03882310850890593,\n \"acc_norm\": 0.463855421686747,\n \"acc_norm_stderr\": 0.03882310850890593\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7953216374269005,\n \"acc_stderr\": 0.030944459778533193,\n \"acc_norm\": 0.7953216374269005,\n \"acc_norm_stderr\": 0.030944459778533193\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4663402692778458,\n \"mc1_stderr\": 0.017463793867168106,\n \"mc2\": 0.6276801807189292,\n \"mc2_stderr\": 0.015415755094430335\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7813733228097869,\n \"acc_stderr\": 0.011616198215773218\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.2304776345716452,\n \"acc_stderr\": 0.011600249020595822\n }\n}\n```", "repo_url": "https://huggingface.co/NovoCode/Novocode7b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|arc:challenge|25_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|arc:challenge|25_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|gsm8k|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|gsm8k|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hellaswag|10_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hellaswag|10_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-20-28.943538.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-23T00-46-49.917108.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-23T01-09-59.087164.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["**/details_harness|winogrande|5_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["**/details_harness|winogrande|5_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["**/details_harness|winogrande|5_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-23T01-09-59.087164.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T21_20_28.943538", "path": ["results_2024-01-14T21-20-28.943538.parquet"]}, {"split": "2024_01_23T00_46_49.917108", "path": ["results_2024-01-23T00-46-49.917108.parquet"]}, {"split": "2024_01_23T01_09_59.087164", "path": ["results_2024-01-23T01-09-59.087164.parquet"]}, {"split": "latest", "path": ["results_2024-01-23T01-09-59.087164.parquet"]}]}]}
2024-01-23T01:12:22+00:00
9e78ee1fa8cd4681c6d4259e3b66ee3ec1cf4c2e
# Dataset Card for Evaluation run of kz919/mistral-7b-sft-open-orca-flan-50k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [kz919/mistral-7b-sft-open-orca-flan-50k](https://huggingface.co/kz919/mistral-7b-sft-open-orca-flan-50k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_kz919__mistral-7b-sft-open-orca-flan-50k", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T21:25:51.230819](https://huggingface.co/datasets/open-llm-leaderboard/details_kz919__mistral-7b-sft-open-orca-flan-50k/blob/main/results_2024-01-14T21-25-51.230819.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5538213786755696, "acc_stderr": 0.03369594673096056, "acc_norm": 0.5621293960309836, "acc_norm_stderr": 0.03447812044023231, "mc1": 0.2533659730722154, "mc1_stderr": 0.01522589934082683, "mc2": 0.3749461951546611, "mc2_stderr": 0.014143079789920542 }, "harness|arc:challenge|25": { "acc": 0.5255972696245734, "acc_stderr": 0.014592230885298964, "acc_norm": 0.5878839590443686, "acc_norm_stderr": 0.014383915302225403 }, "harness|hellaswag|10": { "acc": 0.6160127464648476, "acc_stderr": 0.004853608805843885, "acc_norm": 0.8191595299741088, "acc_norm_stderr": 0.0038409935166272657 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.04232073695151589, "acc_norm": 0.6, "acc_norm_stderr": 0.04232073695151589 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5723684210526315, "acc_stderr": 0.04026097083296564, "acc_norm": 0.5723684210526315, "acc_norm_stderr": 0.04026097083296564 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6075471698113207, "acc_stderr": 0.03005258057955784, "acc_norm": 0.6075471698113207, "acc_norm_stderr": 0.03005258057955784 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6180555555555556, "acc_stderr": 0.040629907841466674, "acc_norm": 0.6180555555555556, "acc_norm_stderr": 0.040629907841466674 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.45, "acc_stderr": 0.049999999999999996, "acc_norm": 0.45, "acc_norm_stderr": 0.049999999999999996 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5780346820809249, "acc_stderr": 0.03765746693865149, "acc_norm": 0.5780346820809249, "acc_norm_stderr": 0.03765746693865149 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.39215686274509803, "acc_stderr": 0.04858083574266345, "acc_norm": 0.39215686274509803, "acc_norm_stderr": 0.04858083574266345 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.0440844002276808, "acc_norm": 0.74, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.502127659574468, "acc_stderr": 0.03268572658667492, "acc_norm": 0.502127659574468, "acc_norm_stderr": 0.03268572658667492 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.496551724137931, "acc_stderr": 0.041665675771015785, "acc_norm": 0.496551724137931, "acc_norm_stderr": 0.041665675771015785 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.38095238095238093, "acc_stderr": 0.025010749116137595, "acc_norm": 0.38095238095238093, "acc_norm_stderr": 0.025010749116137595 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2698412698412698, "acc_stderr": 0.03970158273235173, "acc_norm": 0.2698412698412698, "acc_norm_stderr": 0.03970158273235173 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6451612903225806, "acc_stderr": 0.02721888977330876, "acc_norm": 0.6451612903225806, "acc_norm_stderr": 0.02721888977330876 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.458128078817734, "acc_stderr": 0.03505630140785741, "acc_norm": 0.458128078817734, "acc_norm_stderr": 0.03505630140785741 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6727272727272727, "acc_stderr": 0.036639749943912434, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.036639749943912434 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7323232323232324, "acc_stderr": 0.03154449888270286, "acc_norm": 0.7323232323232324, "acc_norm_stderr": 0.03154449888270286 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7512953367875648, "acc_stderr": 0.03119584087770029, "acc_norm": 0.7512953367875648, "acc_norm_stderr": 0.03119584087770029 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5897435897435898, "acc_stderr": 0.024939313906940794, "acc_norm": 0.5897435897435898, "acc_norm_stderr": 0.024939313906940794 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2111111111111111, "acc_stderr": 0.02488211685765508, "acc_norm": 0.2111111111111111, "acc_norm_stderr": 0.02488211685765508 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5588235294117647, "acc_stderr": 0.032252942323996406, "acc_norm": 0.5588235294117647, "acc_norm_stderr": 0.032252942323996406 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.26490066225165565, "acc_stderr": 0.03603038545360384, "acc_norm": 0.26490066225165565, "acc_norm_stderr": 0.03603038545360384 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7302752293577982, "acc_stderr": 0.01902848671111544, "acc_norm": 0.7302752293577982, "acc_norm_stderr": 0.01902848671111544 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.38425925925925924, "acc_stderr": 0.03317354514310742, "acc_norm": 0.38425925925925924, "acc_norm_stderr": 0.03317354514310742 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6764705882352942, "acc_stderr": 0.032834720561085606, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.032834720561085606 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6582278481012658, "acc_stderr": 0.030874537537553617, "acc_norm": 0.6582278481012658, "acc_norm_stderr": 0.030874537537553617 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6233183856502242, "acc_stderr": 0.032521134899291884, "acc_norm": 0.6233183856502242, "acc_norm_stderr": 0.032521134899291884 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.648854961832061, "acc_stderr": 0.04186445163013751, "acc_norm": 0.648854961832061, "acc_norm_stderr": 0.04186445163013751 }, "harness|hendrycksTest-international_law|5": { "acc": 0.743801652892562, "acc_stderr": 0.03984979653302872, "acc_norm": 0.743801652892562, "acc_norm_stderr": 0.03984979653302872 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6388888888888888, "acc_stderr": 0.04643454608906275, "acc_norm": 0.6388888888888888, "acc_norm_stderr": 0.04643454608906275 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6441717791411042, "acc_stderr": 0.03761521380046734, "acc_norm": 0.6441717791411042, "acc_norm_stderr": 0.03761521380046734 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.38392857142857145, "acc_stderr": 0.04616143075028547, "acc_norm": 0.38392857142857145, "acc_norm_stderr": 0.04616143075028547 }, "harness|hendrycksTest-management|5": { "acc": 0.6893203883495146, "acc_stderr": 0.045821241601615506, "acc_norm": 0.6893203883495146, "acc_norm_stderr": 0.045821241601615506 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7948717948717948, "acc_stderr": 0.026453508054040332, "acc_norm": 0.7948717948717948, "acc_norm_stderr": 0.026453508054040332 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7637292464878672, "acc_stderr": 0.015190473717037497, "acc_norm": 0.7637292464878672, "acc_norm_stderr": 0.015190473717037497 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6502890173410405, "acc_stderr": 0.025674281456531018, "acc_norm": 0.6502890173410405, "acc_norm_stderr": 0.025674281456531018 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2636871508379888, "acc_stderr": 0.01473692638376196, "acc_norm": 0.2636871508379888, "acc_norm_stderr": 0.01473692638376196 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5816993464052288, "acc_stderr": 0.028245134024387292, "acc_norm": 0.5816993464052288, "acc_norm_stderr": 0.028245134024387292 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6688102893890675, "acc_stderr": 0.026730620728004903, "acc_norm": 0.6688102893890675, "acc_norm_stderr": 0.026730620728004903 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6728395061728395, "acc_stderr": 0.026105673861409825, "acc_norm": 0.6728395061728395, "acc_norm_stderr": 0.026105673861409825 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.40070921985815605, "acc_stderr": 0.029233465745573096, "acc_norm": 0.40070921985815605, "acc_norm_stderr": 0.029233465745573096 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3878748370273794, "acc_stderr": 0.012444998309675609, "acc_norm": 0.3878748370273794, "acc_norm_stderr": 0.012444998309675609 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5147058823529411, "acc_stderr": 0.03035969707904612, "acc_norm": 0.5147058823529411, "acc_norm_stderr": 0.03035969707904612 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5898692810457516, "acc_stderr": 0.019898412717635913, "acc_norm": 0.5898692810457516, "acc_norm_stderr": 0.019898412717635913 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302505, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302505 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6, "acc_stderr": 0.031362502409358936, "acc_norm": 0.6, "acc_norm_stderr": 0.031362502409358936 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7810945273631841, "acc_stderr": 0.029239174636647, "acc_norm": 0.7810945273631841, "acc_norm_stderr": 0.029239174636647 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.78, "acc_stderr": 0.04163331998932263, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932263 }, "harness|hendrycksTest-virology|5": { "acc": 0.5301204819277109, "acc_stderr": 0.03885425420866767, "acc_norm": 0.5301204819277109, "acc_norm_stderr": 0.03885425420866767 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7602339181286549, "acc_stderr": 0.032744852119469564, "acc_norm": 0.7602339181286549, "acc_norm_stderr": 0.032744852119469564 }, "harness|truthfulqa:mc|0": { "mc1": 0.2533659730722154, "mc1_stderr": 0.01522589934082683, "mc2": 0.3749461951546611, "mc2_stderr": 0.014143079789920542 }, "harness|winogrande|5": { "acc": 0.7797947908445146, "acc_stderr": 0.011646276755089684 }, "harness|gsm8k|5": { "acc": 0.10310841546626232, "acc_stderr": 0.008376436987507795 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_kz919__mistral-7b-sft-open-orca-flan-50k
[ "region:us" ]
2024-01-14T21:28:10+00:00
{"pretty_name": "Evaluation run of kz919/mistral-7b-sft-open-orca-flan-50k", "dataset_summary": "Dataset automatically created during the evaluation run of model [kz919/mistral-7b-sft-open-orca-flan-50k](https://huggingface.co/kz919/mistral-7b-sft-open-orca-flan-50k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_kz919__mistral-7b-sft-open-orca-flan-50k\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T21:25:51.230819](https://huggingface.co/datasets/open-llm-leaderboard/details_kz919__mistral-7b-sft-open-orca-flan-50k/blob/main/results_2024-01-14T21-25-51.230819.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5538213786755696,\n \"acc_stderr\": 0.03369594673096056,\n \"acc_norm\": 0.5621293960309836,\n \"acc_norm_stderr\": 0.03447812044023231,\n \"mc1\": 0.2533659730722154,\n \"mc1_stderr\": 0.01522589934082683,\n \"mc2\": 0.3749461951546611,\n \"mc2_stderr\": 0.014143079789920542\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5255972696245734,\n \"acc_stderr\": 0.014592230885298964,\n \"acc_norm\": 0.5878839590443686,\n \"acc_norm_stderr\": 0.014383915302225403\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6160127464648476,\n \"acc_stderr\": 0.004853608805843885,\n \"acc_norm\": 0.8191595299741088,\n \"acc_norm_stderr\": 0.0038409935166272657\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5723684210526315,\n \"acc_stderr\": 0.04026097083296564,\n \"acc_norm\": 0.5723684210526315,\n \"acc_norm_stderr\": 0.04026097083296564\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6075471698113207,\n \"acc_stderr\": 0.03005258057955784,\n \"acc_norm\": 0.6075471698113207,\n \"acc_norm_stderr\": 0.03005258057955784\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6180555555555556,\n \"acc_stderr\": 0.040629907841466674,\n \"acc_norm\": 0.6180555555555556,\n \"acc_norm_stderr\": 0.040629907841466674\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.049999999999999996,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.049999999999999996\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5780346820809249,\n \"acc_stderr\": 0.03765746693865149,\n \"acc_norm\": 0.5780346820809249,\n \"acc_norm_stderr\": 0.03765746693865149\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.39215686274509803,\n \"acc_stderr\": 0.04858083574266345,\n \"acc_norm\": 0.39215686274509803,\n \"acc_norm_stderr\": 0.04858083574266345\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.502127659574468,\n \"acc_stderr\": 0.03268572658667492,\n \"acc_norm\": 0.502127659574468,\n \"acc_norm_stderr\": 0.03268572658667492\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.496551724137931,\n \"acc_stderr\": 0.041665675771015785,\n \"acc_norm\": 0.496551724137931,\n \"acc_norm_stderr\": 0.041665675771015785\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.38095238095238093,\n \"acc_stderr\": 0.025010749116137595,\n \"acc_norm\": 0.38095238095238093,\n \"acc_norm_stderr\": 0.025010749116137595\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2698412698412698,\n \"acc_stderr\": 0.03970158273235173,\n \"acc_norm\": 0.2698412698412698,\n \"acc_norm_stderr\": 0.03970158273235173\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6451612903225806,\n \"acc_stderr\": 0.02721888977330876,\n \"acc_norm\": 0.6451612903225806,\n \"acc_norm_stderr\": 0.02721888977330876\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.458128078817734,\n \"acc_stderr\": 0.03505630140785741,\n \"acc_norm\": 0.458128078817734,\n \"acc_norm_stderr\": 0.03505630140785741\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.036639749943912434,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.036639749943912434\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7323232323232324,\n \"acc_stderr\": 0.03154449888270286,\n \"acc_norm\": 0.7323232323232324,\n \"acc_norm_stderr\": 0.03154449888270286\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7512953367875648,\n \"acc_stderr\": 0.03119584087770029,\n \"acc_norm\": 0.7512953367875648,\n \"acc_norm_stderr\": 0.03119584087770029\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5897435897435898,\n \"acc_stderr\": 0.024939313906940794,\n \"acc_norm\": 0.5897435897435898,\n \"acc_norm_stderr\": 0.024939313906940794\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2111111111111111,\n \"acc_stderr\": 0.02488211685765508,\n \"acc_norm\": 0.2111111111111111,\n \"acc_norm_stderr\": 0.02488211685765508\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5588235294117647,\n \"acc_stderr\": 0.032252942323996406,\n \"acc_norm\": 0.5588235294117647,\n \"acc_norm_stderr\": 0.032252942323996406\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.26490066225165565,\n \"acc_stderr\": 0.03603038545360384,\n \"acc_norm\": 0.26490066225165565,\n \"acc_norm_stderr\": 0.03603038545360384\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7302752293577982,\n \"acc_stderr\": 0.01902848671111544,\n \"acc_norm\": 0.7302752293577982,\n \"acc_norm_stderr\": 0.01902848671111544\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.38425925925925924,\n \"acc_stderr\": 0.03317354514310742,\n \"acc_norm\": 0.38425925925925924,\n \"acc_norm_stderr\": 0.03317354514310742\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.032834720561085606,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.032834720561085606\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6582278481012658,\n \"acc_stderr\": 0.030874537537553617,\n \"acc_norm\": 0.6582278481012658,\n \"acc_norm_stderr\": 0.030874537537553617\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6233183856502242,\n \"acc_stderr\": 0.032521134899291884,\n \"acc_norm\": 0.6233183856502242,\n \"acc_norm_stderr\": 0.032521134899291884\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.648854961832061,\n \"acc_stderr\": 0.04186445163013751,\n \"acc_norm\": 0.648854961832061,\n \"acc_norm_stderr\": 0.04186445163013751\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.743801652892562,\n \"acc_stderr\": 0.03984979653302872,\n \"acc_norm\": 0.743801652892562,\n \"acc_norm_stderr\": 0.03984979653302872\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6388888888888888,\n \"acc_stderr\": 0.04643454608906275,\n \"acc_norm\": 0.6388888888888888,\n \"acc_norm_stderr\": 0.04643454608906275\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6441717791411042,\n \"acc_stderr\": 0.03761521380046734,\n \"acc_norm\": 0.6441717791411042,\n \"acc_norm_stderr\": 0.03761521380046734\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.38392857142857145,\n \"acc_stderr\": 0.04616143075028547,\n \"acc_norm\": 0.38392857142857145,\n \"acc_norm_stderr\": 0.04616143075028547\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6893203883495146,\n \"acc_stderr\": 0.045821241601615506,\n \"acc_norm\": 0.6893203883495146,\n \"acc_norm_stderr\": 0.045821241601615506\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7948717948717948,\n \"acc_stderr\": 0.026453508054040332,\n \"acc_norm\": 0.7948717948717948,\n \"acc_norm_stderr\": 0.026453508054040332\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7637292464878672,\n \"acc_stderr\": 0.015190473717037497,\n \"acc_norm\": 0.7637292464878672,\n \"acc_norm_stderr\": 0.015190473717037497\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6502890173410405,\n \"acc_stderr\": 0.025674281456531018,\n \"acc_norm\": 0.6502890173410405,\n \"acc_norm_stderr\": 0.025674281456531018\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2636871508379888,\n \"acc_stderr\": 0.01473692638376196,\n \"acc_norm\": 0.2636871508379888,\n \"acc_norm_stderr\": 0.01473692638376196\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5816993464052288,\n \"acc_stderr\": 0.028245134024387292,\n \"acc_norm\": 0.5816993464052288,\n \"acc_norm_stderr\": 0.028245134024387292\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6688102893890675,\n \"acc_stderr\": 0.026730620728004903,\n \"acc_norm\": 0.6688102893890675,\n \"acc_norm_stderr\": 0.026730620728004903\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6728395061728395,\n \"acc_stderr\": 0.026105673861409825,\n \"acc_norm\": 0.6728395061728395,\n \"acc_norm_stderr\": 0.026105673861409825\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.40070921985815605,\n \"acc_stderr\": 0.029233465745573096,\n \"acc_norm\": 0.40070921985815605,\n \"acc_norm_stderr\": 0.029233465745573096\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3878748370273794,\n \"acc_stderr\": 0.012444998309675609,\n \"acc_norm\": 0.3878748370273794,\n \"acc_norm_stderr\": 0.012444998309675609\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5147058823529411,\n \"acc_stderr\": 0.03035969707904612,\n \"acc_norm\": 0.5147058823529411,\n \"acc_norm_stderr\": 0.03035969707904612\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5898692810457516,\n \"acc_stderr\": 0.019898412717635913,\n \"acc_norm\": 0.5898692810457516,\n \"acc_norm_stderr\": 0.019898412717635913\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302505,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302505\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.031362502409358936,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.031362502409358936\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7810945273631841,\n \"acc_stderr\": 0.029239174636647,\n \"acc_norm\": 0.7810945273631841,\n \"acc_norm_stderr\": 0.029239174636647\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932263,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932263\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5301204819277109,\n \"acc_stderr\": 0.03885425420866767,\n \"acc_norm\": 0.5301204819277109,\n \"acc_norm_stderr\": 0.03885425420866767\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7602339181286549,\n \"acc_stderr\": 0.032744852119469564,\n \"acc_norm\": 0.7602339181286549,\n \"acc_norm_stderr\": 0.032744852119469564\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2533659730722154,\n \"mc1_stderr\": 0.01522589934082683,\n \"mc2\": 0.3749461951546611,\n \"mc2_stderr\": 0.014143079789920542\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7797947908445146,\n \"acc_stderr\": 0.011646276755089684\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.10310841546626232,\n \"acc_stderr\": 0.008376436987507795\n }\n}\n```", "repo_url": "https://huggingface.co/kz919/mistral-7b-sft-open-orca-flan-50k", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-25-51.230819.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["**/details_harness|winogrande|5_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T21-25-51.230819.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T21_25_51.230819", "path": ["results_2024-01-14T21-25-51.230819.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T21-25-51.230819.parquet"]}]}]}
2024-01-14T21:28:31+00:00
98632809254d6f073203049e47e194057d0d0776
# Dataset Card for Evaluation run of bhavinjawade/SOLAR-10B-Nector-DPO-Jawade <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [bhavinjawade/SOLAR-10B-Nector-DPO-Jawade](https://huggingface.co/bhavinjawade/SOLAR-10B-Nector-DPO-Jawade) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-Nector-DPO-Jawade", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T21:40:44.530689](https://huggingface.co/datasets/open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-Nector-DPO-Jawade/blob/main/results_2024-01-14T21-40-44.530689.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6659513885128865, "acc_stderr": 0.03153636640803569, "acc_norm": 0.6668604037396749, "acc_norm_stderr": 0.03217609086906697, "mc1": 0.5618115055079559, "mc1_stderr": 0.01736923616440442, "mc2": 0.7092186670643685, "mc2_stderr": 0.01520446597729704 }, "harness|arc:challenge|25": { "acc": 0.6851535836177475, "acc_stderr": 0.01357265770308495, "acc_norm": 0.7133105802047781, "acc_norm_stderr": 0.013214986329274779 }, "harness|hellaswag|10": { "acc": 0.7124078868751245, "acc_stderr": 0.0045171484341804905, "acc_norm": 0.8861780521808404, "acc_norm_stderr": 0.0031694581233577238 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.45, "acc_stderr": 0.049999999999999996, "acc_norm": 0.45, "acc_norm_stderr": 0.049999999999999996 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6296296296296297, "acc_stderr": 0.041716541613545426, "acc_norm": 0.6296296296296297, "acc_norm_stderr": 0.041716541613545426 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.75, "acc_stderr": 0.03523807393012047, "acc_norm": 0.75, "acc_norm_stderr": 0.03523807393012047 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.73, "acc_stderr": 0.04461960433384741, "acc_norm": 0.73, "acc_norm_stderr": 0.04461960433384741 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6943396226415094, "acc_stderr": 0.028353298073322666, "acc_norm": 0.6943396226415094, "acc_norm_stderr": 0.028353298073322666 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8055555555555556, "acc_stderr": 0.03309615177059006, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.03309615177059006 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.58, "acc_stderr": 0.049604496374885836, "acc_norm": 0.58, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.26, "acc_stderr": 0.04408440022768078, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6473988439306358, "acc_stderr": 0.03643037168958548, "acc_norm": 0.6473988439306358, "acc_norm_stderr": 0.03643037168958548 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107223, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107223 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.042923469599092816, "acc_norm": 0.76, "acc_norm_stderr": 0.042923469599092816 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6042553191489362, "acc_stderr": 0.031967586978353627, "acc_norm": 0.6042553191489362, "acc_norm_stderr": 0.031967586978353627 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4824561403508772, "acc_stderr": 0.04700708033551038, "acc_norm": 0.4824561403508772, "acc_norm_stderr": 0.04700708033551038 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6137931034482759, "acc_stderr": 0.04057324734419036, "acc_norm": 0.6137931034482759, "acc_norm_stderr": 0.04057324734419036 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.47619047619047616, "acc_stderr": 0.025722097064388535, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.025722097064388535 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.40476190476190477, "acc_stderr": 0.04390259265377562, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.04390259265377562 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8193548387096774, "acc_stderr": 0.021886178567172534, "acc_norm": 0.8193548387096774, "acc_norm_stderr": 0.021886178567172534 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.49261083743842365, "acc_stderr": 0.03517603540361008, "acc_norm": 0.49261083743842365, "acc_norm_stderr": 0.03517603540361008 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.03192271569548301, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.03192271569548301 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8838383838383839, "acc_stderr": 0.022828881775249377, "acc_norm": 0.8838383838383839, "acc_norm_stderr": 0.022828881775249377 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9119170984455959, "acc_stderr": 0.02045374660160103, "acc_norm": 0.9119170984455959, "acc_norm_stderr": 0.02045374660160103 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6717948717948717, "acc_stderr": 0.023807633198657262, "acc_norm": 0.6717948717948717, "acc_norm_stderr": 0.023807633198657262 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3814814814814815, "acc_stderr": 0.029616718927497593, "acc_norm": 0.3814814814814815, "acc_norm_stderr": 0.029616718927497593 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7016806722689075, "acc_stderr": 0.029719142876342853, "acc_norm": 0.7016806722689075, "acc_norm_stderr": 0.029719142876342853 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8477064220183487, "acc_stderr": 0.015405084393157074, "acc_norm": 0.8477064220183487, "acc_norm_stderr": 0.015405084393157074 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5462962962962963, "acc_stderr": 0.033953227263757976, "acc_norm": 0.5462962962962963, "acc_norm_stderr": 0.033953227263757976 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8578431372549019, "acc_stderr": 0.024509803921568617, "acc_norm": 0.8578431372549019, "acc_norm_stderr": 0.024509803921568617 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8649789029535865, "acc_stderr": 0.022245776632003694, "acc_norm": 0.8649789029535865, "acc_norm_stderr": 0.022245776632003694 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6860986547085202, "acc_stderr": 0.03114679648297246, "acc_norm": 0.6860986547085202, "acc_norm_stderr": 0.03114679648297246 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7404580152671756, "acc_stderr": 0.03844876139785271, "acc_norm": 0.7404580152671756, "acc_norm_stderr": 0.03844876139785271 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7962962962962963, "acc_stderr": 0.03893542518824847, "acc_norm": 0.7962962962962963, "acc_norm_stderr": 0.03893542518824847 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7239263803680982, "acc_stderr": 0.035123852837050475, "acc_norm": 0.7239263803680982, "acc_norm_stderr": 0.035123852837050475 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.8155339805825242, "acc_stderr": 0.03840423627288276, "acc_norm": 0.8155339805825242, "acc_norm_stderr": 0.03840423627288276 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.022801382534597524, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.022801382534597524 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8020434227330779, "acc_stderr": 0.014248873549217575, "acc_norm": 0.8020434227330779, "acc_norm_stderr": 0.014248873549217575 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7485549132947977, "acc_stderr": 0.023357365785874037, "acc_norm": 0.7485549132947977, "acc_norm_stderr": 0.023357365785874037 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.36201117318435755, "acc_stderr": 0.016073067350153087, "acc_norm": 0.36201117318435755, "acc_norm_stderr": 0.016073067350153087 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7647058823529411, "acc_stderr": 0.024288619466046095, "acc_norm": 0.7647058823529411, "acc_norm_stderr": 0.024288619466046095 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7202572347266881, "acc_stderr": 0.02549425935069491, "acc_norm": 0.7202572347266881, "acc_norm_stderr": 0.02549425935069491 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7808641975308642, "acc_stderr": 0.02301670564026219, "acc_norm": 0.7808641975308642, "acc_norm_stderr": 0.02301670564026219 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.524822695035461, "acc_stderr": 0.02979071924382972, "acc_norm": 0.524822695035461, "acc_norm_stderr": 0.02979071924382972 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4915254237288136, "acc_stderr": 0.01276840169726906, "acc_norm": 0.4915254237288136, "acc_norm_stderr": 0.01276840169726906 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.75, "acc_stderr": 0.026303648393696036, "acc_norm": 0.75, "acc_norm_stderr": 0.026303648393696036 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6944444444444444, "acc_stderr": 0.018635594034423983, "acc_norm": 0.6944444444444444, "acc_norm_stderr": 0.018635594034423983 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7090909090909091, "acc_stderr": 0.04350271442923243, "acc_norm": 0.7090909090909091, "acc_norm_stderr": 0.04350271442923243 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7346938775510204, "acc_stderr": 0.028263889943784596, "acc_norm": 0.7346938775510204, "acc_norm_stderr": 0.028263889943784596 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.02587064676616913, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.02587064676616913 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.92, "acc_stderr": 0.0272659924344291, "acc_norm": 0.92, "acc_norm_stderr": 0.0272659924344291 }, "harness|hendrycksTest-virology|5": { "acc": 0.5783132530120482, "acc_stderr": 0.038444531817709175, "acc_norm": 0.5783132530120482, "acc_norm_stderr": 0.038444531817709175 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7719298245614035, "acc_stderr": 0.032180937956023566, "acc_norm": 0.7719298245614035, "acc_norm_stderr": 0.032180937956023566 }, "harness|truthfulqa:mc|0": { "mc1": 0.5618115055079559, "mc1_stderr": 0.01736923616440442, "mc2": 0.7092186670643685, "mc2_stderr": 0.01520446597729704 }, "harness|winogrande|5": { "acc": 0.8342541436464088, "acc_stderr": 0.010450899545370632 }, "harness|gsm8k|5": { "acc": 0.6459438968915845, "acc_stderr": 0.013172728385222567 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-Nector-DPO-Jawade
[ "region:us" ]
2024-01-14T21:43:01+00:00
{"pretty_name": "Evaluation run of bhavinjawade/SOLAR-10B-Nector-DPO-Jawade", "dataset_summary": "Dataset automatically created during the evaluation run of model [bhavinjawade/SOLAR-10B-Nector-DPO-Jawade](https://huggingface.co/bhavinjawade/SOLAR-10B-Nector-DPO-Jawade) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-Nector-DPO-Jawade\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T21:40:44.530689](https://huggingface.co/datasets/open-llm-leaderboard/details_bhavinjawade__SOLAR-10B-Nector-DPO-Jawade/blob/main/results_2024-01-14T21-40-44.530689.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6659513885128865,\n \"acc_stderr\": 0.03153636640803569,\n \"acc_norm\": 0.6668604037396749,\n \"acc_norm_stderr\": 0.03217609086906697,\n \"mc1\": 0.5618115055079559,\n \"mc1_stderr\": 0.01736923616440442,\n \"mc2\": 0.7092186670643685,\n \"mc2_stderr\": 0.01520446597729704\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6851535836177475,\n \"acc_stderr\": 0.01357265770308495,\n \"acc_norm\": 0.7133105802047781,\n \"acc_norm_stderr\": 0.013214986329274779\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7124078868751245,\n \"acc_stderr\": 0.0045171484341804905,\n \"acc_norm\": 0.8861780521808404,\n \"acc_norm_stderr\": 0.0031694581233577238\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.049999999999999996,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.049999999999999996\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6296296296296297,\n \"acc_stderr\": 0.041716541613545426,\n \"acc_norm\": 0.6296296296296297,\n \"acc_norm_stderr\": 0.041716541613545426\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.03523807393012047,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.03523807393012047\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.04461960433384741,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.04461960433384741\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6943396226415094,\n \"acc_stderr\": 0.028353298073322666,\n \"acc_norm\": 0.6943396226415094,\n \"acc_norm_stderr\": 0.028353298073322666\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.03309615177059006,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.03309615177059006\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6473988439306358,\n \"acc_stderr\": 0.03643037168958548,\n \"acc_norm\": 0.6473988439306358,\n \"acc_norm_stderr\": 0.03643037168958548\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6042553191489362,\n \"acc_stderr\": 0.031967586978353627,\n \"acc_norm\": 0.6042553191489362,\n \"acc_norm_stderr\": 0.031967586978353627\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4824561403508772,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.4824561403508772,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419036,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419036\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.47619047619047616,\n \"acc_stderr\": 0.025722097064388535,\n \"acc_norm\": 0.47619047619047616,\n \"acc_norm_stderr\": 0.025722097064388535\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8193548387096774,\n \"acc_stderr\": 0.021886178567172534,\n \"acc_norm\": 0.8193548387096774,\n \"acc_norm_stderr\": 0.021886178567172534\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.49261083743842365,\n \"acc_stderr\": 0.03517603540361008,\n \"acc_norm\": 0.49261083743842365,\n \"acc_norm_stderr\": 0.03517603540361008\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.03192271569548301,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.03192271569548301\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8838383838383839,\n \"acc_stderr\": 0.022828881775249377,\n \"acc_norm\": 0.8838383838383839,\n \"acc_norm_stderr\": 0.022828881775249377\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9119170984455959,\n \"acc_stderr\": 0.02045374660160103,\n \"acc_norm\": 0.9119170984455959,\n \"acc_norm_stderr\": 0.02045374660160103\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6717948717948717,\n \"acc_stderr\": 0.023807633198657262,\n \"acc_norm\": 0.6717948717948717,\n \"acc_norm_stderr\": 0.023807633198657262\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3814814814814815,\n \"acc_stderr\": 0.029616718927497593,\n \"acc_norm\": 0.3814814814814815,\n \"acc_norm_stderr\": 0.029616718927497593\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7016806722689075,\n \"acc_stderr\": 0.029719142876342853,\n \"acc_norm\": 0.7016806722689075,\n \"acc_norm_stderr\": 0.029719142876342853\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8477064220183487,\n \"acc_stderr\": 0.015405084393157074,\n \"acc_norm\": 0.8477064220183487,\n \"acc_norm_stderr\": 0.015405084393157074\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5462962962962963,\n \"acc_stderr\": 0.033953227263757976,\n \"acc_norm\": 0.5462962962962963,\n \"acc_norm_stderr\": 0.033953227263757976\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8578431372549019,\n \"acc_stderr\": 0.024509803921568617,\n \"acc_norm\": 0.8578431372549019,\n \"acc_norm_stderr\": 0.024509803921568617\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8649789029535865,\n \"acc_stderr\": 0.022245776632003694,\n \"acc_norm\": 0.8649789029535865,\n \"acc_norm_stderr\": 0.022245776632003694\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.03114679648297246,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.03114679648297246\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7404580152671756,\n \"acc_stderr\": 0.03844876139785271,\n \"acc_norm\": 0.7404580152671756,\n \"acc_norm_stderr\": 0.03844876139785271\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8099173553719008,\n \"acc_stderr\": 0.03581796951709282,\n \"acc_norm\": 0.8099173553719008,\n \"acc_norm_stderr\": 0.03581796951709282\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7962962962962963,\n \"acc_stderr\": 0.03893542518824847,\n \"acc_norm\": 0.7962962962962963,\n \"acc_norm_stderr\": 0.03893542518824847\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7239263803680982,\n \"acc_stderr\": 0.035123852837050475,\n \"acc_norm\": 0.7239263803680982,\n \"acc_norm_stderr\": 0.035123852837050475\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8155339805825242,\n \"acc_stderr\": 0.03840423627288276,\n \"acc_norm\": 0.8155339805825242,\n \"acc_norm_stderr\": 0.03840423627288276\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597524,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597524\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8020434227330779,\n \"acc_stderr\": 0.014248873549217575,\n \"acc_norm\": 0.8020434227330779,\n \"acc_norm_stderr\": 0.014248873549217575\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7485549132947977,\n \"acc_stderr\": 0.023357365785874037,\n \"acc_norm\": 0.7485549132947977,\n \"acc_norm_stderr\": 0.023357365785874037\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.36201117318435755,\n \"acc_stderr\": 0.016073067350153087,\n \"acc_norm\": 0.36201117318435755,\n \"acc_norm_stderr\": 0.016073067350153087\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.024288619466046095,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.024288619466046095\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n \"acc_stderr\": 0.02549425935069491,\n \"acc_norm\": 0.7202572347266881,\n \"acc_norm_stderr\": 0.02549425935069491\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7808641975308642,\n \"acc_stderr\": 0.02301670564026219,\n \"acc_norm\": 0.7808641975308642,\n \"acc_norm_stderr\": 0.02301670564026219\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.524822695035461,\n \"acc_stderr\": 0.02979071924382972,\n \"acc_norm\": 0.524822695035461,\n \"acc_norm_stderr\": 0.02979071924382972\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4915254237288136,\n \"acc_stderr\": 0.01276840169726906,\n \"acc_norm\": 0.4915254237288136,\n \"acc_norm_stderr\": 0.01276840169726906\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.026303648393696036,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.026303648393696036\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6944444444444444,\n \"acc_stderr\": 0.018635594034423983,\n \"acc_norm\": 0.6944444444444444,\n \"acc_norm_stderr\": 0.018635594034423983\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7090909090909091,\n \"acc_stderr\": 0.04350271442923243,\n \"acc_norm\": 0.7090909090909091,\n \"acc_norm_stderr\": 0.04350271442923243\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7346938775510204,\n \"acc_stderr\": 0.028263889943784596,\n \"acc_norm\": 0.7346938775510204,\n \"acc_norm_stderr\": 0.028263889943784596\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.02587064676616913,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.02587064676616913\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.92,\n \"acc_stderr\": 0.0272659924344291,\n \"acc_norm\": 0.92,\n \"acc_norm_stderr\": 0.0272659924344291\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5783132530120482,\n \"acc_stderr\": 0.038444531817709175,\n \"acc_norm\": 0.5783132530120482,\n \"acc_norm_stderr\": 0.038444531817709175\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7719298245614035,\n \"acc_stderr\": 0.032180937956023566,\n \"acc_norm\": 0.7719298245614035,\n \"acc_norm_stderr\": 0.032180937956023566\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5618115055079559,\n \"mc1_stderr\": 0.01736923616440442,\n \"mc2\": 0.7092186670643685,\n \"mc2_stderr\": 0.01520446597729704\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8342541436464088,\n \"acc_stderr\": 0.010450899545370632\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6459438968915845,\n \"acc_stderr\": 0.013172728385222567\n }\n}\n```", "repo_url": "https://huggingface.co/bhavinjawade/SOLAR-10B-Nector-DPO-Jawade", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-40-44.530689.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["**/details_harness|winogrande|5_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T21-40-44.530689.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T21_40_44.530689", "path": ["results_2024-01-14T21-40-44.530689.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T21-40-44.530689.parquet"]}]}]}
2024-01-14T21:43:22+00:00
3624a06a494e69695437a43f7d3313a66976068e
anhnv125/code-small
[ "region:us" ]
2024-01-14T21:44:30+00:00
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4768858, "num_examples": 2217}], "download_size": 2223998, "dataset_size": 4768858}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T09:35:12+00:00
503a0329f0545ca92e3b629eacad587d01ddcd91
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-extra-3enr-1enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T21:46:17+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:37:42+00:00
526ae8624fe28cdd57032ca6bd7ca37e42e461df
Tsuinzues/gosma
[ "license:openrail", "region:us" ]
2024-01-14T21:47:28+00:00
{"license": "openrail"}
2024-01-14T21:47:41+00:00
25d605319f0c76580ae913d76d83b6e8b39c40fd
THis repo contains about 100 rows of random speech to speech vox populi data. can be use for quick testing of code and pipelines
babs/vox-populi-subset
[ "region:us" ]
2024-01-14T21:48:39+00:00
{"dataset_info": {"features": [{"name": "source_id", "dtype": "string"}, {"name": "target_id", "dtype": "string"}, {"name": "source_audio", "dtype": "audio"}, {"name": "target_audio", "dtype": "audio"}, {"name": "target_units", "sequence": "int32"}], "splits": [{"name": "train", "num_bytes": 459597811.0, "num_examples": 1000}], "download_size": 457570458, "dataset_size": 459597811.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T19:44:53+00:00
4c30bb49eecfebc1110384125a3cc23268a417ea
ilostmygreggs/ai-voices
[ "region:us" ]
2024-01-14T21:49:21+00:00
{}
2024-01-14T21:49:21+00:00
40ff2e5f9c768d72de7fee0bb924d0a3b52ec124
# Dataset Card for Evaluation run of h2m/mhm-7b-v1.3 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [h2m/mhm-7b-v1.3](https://huggingface.co/h2m/mhm-7b-v1.3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_h2m__mhm-7b-v1.3", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T21:47:14.933980](https://huggingface.co/datasets/open-llm-leaderboard/details_h2m__mhm-7b-v1.3/blob/main/results_2024-01-14T21-47-14.933980.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.45565733826199045, "acc_stderr": 0.034441057472680836, "acc_norm": 0.46104688055946413, "acc_norm_stderr": 0.03520094341367283, "mc1": 0.2864137086903305, "mc1_stderr": 0.015826142439502353, "mc2": 0.4622053324775365, "mc2_stderr": 0.015177238897436999 }, "harness|arc:challenge|25": { "acc": 0.44197952218430037, "acc_stderr": 0.014512682523128345, "acc_norm": 0.47525597269624575, "acc_norm_stderr": 0.014593487694937738 }, "harness|hellaswag|10": { "acc": 0.4901414060944035, "acc_stderr": 0.004988811384747417, "acc_norm": 0.6530571599283012, "acc_norm_stderr": 0.004750245757533308 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.22, "acc_stderr": 0.041633319989322695, "acc_norm": 0.22, "acc_norm_stderr": 0.041633319989322695 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.43703703703703706, "acc_stderr": 0.04284958639753399, "acc_norm": 0.43703703703703706, "acc_norm_stderr": 0.04284958639753399 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.506578947368421, "acc_stderr": 0.040685900502249704, "acc_norm": 0.506578947368421, "acc_norm_stderr": 0.040685900502249704 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.42, "acc_stderr": 0.04960449637488584, "acc_norm": 0.42, "acc_norm_stderr": 0.04960449637488584 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.4641509433962264, "acc_stderr": 0.030693675018458006, "acc_norm": 0.4641509433962264, "acc_norm_stderr": 0.030693675018458006 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.3333333333333333, "acc_stderr": 0.039420826399272135, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.039420826399272135 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.27, "acc_stderr": 0.04461960433384741, "acc_norm": 0.27, "acc_norm_stderr": 0.04461960433384741 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.05021167315686781, "acc_norm": 0.48, "acc_norm_stderr": 0.05021167315686781 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.45664739884393063, "acc_stderr": 0.03798106566014498, "acc_norm": 0.45664739884393063, "acc_norm_stderr": 0.03798106566014498 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.2647058823529412, "acc_stderr": 0.04389869956808777, "acc_norm": 0.2647058823529412, "acc_norm_stderr": 0.04389869956808777 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.35319148936170214, "acc_stderr": 0.031245325202761926, "acc_norm": 0.35319148936170214, "acc_norm_stderr": 0.031245325202761926 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.30701754385964913, "acc_stderr": 0.043391383225798615, "acc_norm": 0.30701754385964913, "acc_norm_stderr": 0.043391383225798615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.42758620689655175, "acc_stderr": 0.041227371113703316, "acc_norm": 0.42758620689655175, "acc_norm_stderr": 0.041227371113703316 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2804232804232804, "acc_stderr": 0.02313528797432563, "acc_norm": 0.2804232804232804, "acc_norm_stderr": 0.02313528797432563 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2777777777777778, "acc_stderr": 0.04006168083848877, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.04006168083848877 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.4935483870967742, "acc_stderr": 0.028441638233540505, "acc_norm": 0.4935483870967742, "acc_norm_stderr": 0.028441638233540505 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.35960591133004927, "acc_stderr": 0.033764582465095665, "acc_norm": 0.35960591133004927, "acc_norm_stderr": 0.033764582465095665 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6060606060606061, "acc_stderr": 0.038154943086889305, "acc_norm": 0.6060606060606061, "acc_norm_stderr": 0.038154943086889305 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.5858585858585859, "acc_stderr": 0.03509438348879629, "acc_norm": 0.5858585858585859, "acc_norm_stderr": 0.03509438348879629 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.6062176165803109, "acc_stderr": 0.035260770955482405, "acc_norm": 0.6062176165803109, "acc_norm_stderr": 0.035260770955482405 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.4205128205128205, "acc_stderr": 0.02502861027671086, "acc_norm": 0.4205128205128205, "acc_norm_stderr": 0.02502861027671086 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.22592592592592592, "acc_stderr": 0.02549753263960955, "acc_norm": 0.22592592592592592, "acc_norm_stderr": 0.02549753263960955 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.42436974789915966, "acc_stderr": 0.032104790510157764, "acc_norm": 0.42436974789915966, "acc_norm_stderr": 0.032104790510157764 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33112582781456956, "acc_stderr": 0.038425817186598696, "acc_norm": 0.33112582781456956, "acc_norm_stderr": 0.038425817186598696 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.5944954128440367, "acc_stderr": 0.021050997991896834, "acc_norm": 0.5944954128440367, "acc_norm_stderr": 0.021050997991896834 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.38425925925925924, "acc_stderr": 0.03317354514310742, "acc_norm": 0.38425925925925924, "acc_norm_stderr": 0.03317354514310742 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.5833333333333334, "acc_stderr": 0.03460228327239171, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.03460228327239171 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6371308016877637, "acc_stderr": 0.03129920825530213, "acc_norm": 0.6371308016877637, "acc_norm_stderr": 0.03129920825530213 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5246636771300448, "acc_stderr": 0.033516951676526276, "acc_norm": 0.5246636771300448, "acc_norm_stderr": 0.033516951676526276 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5648854961832062, "acc_stderr": 0.04348208051644858, "acc_norm": 0.5648854961832062, "acc_norm_stderr": 0.04348208051644858 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6363636363636364, "acc_stderr": 0.043913262867240704, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.043913262867240704 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.5370370370370371, "acc_stderr": 0.04820403072760627, "acc_norm": 0.5370370370370371, "acc_norm_stderr": 0.04820403072760627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.4723926380368098, "acc_stderr": 0.0392237829061099, "acc_norm": 0.4723926380368098, "acc_norm_stderr": 0.0392237829061099 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.36607142857142855, "acc_stderr": 0.04572372358737431, "acc_norm": 0.36607142857142855, "acc_norm_stderr": 0.04572372358737431 }, "harness|hendrycksTest-management|5": { "acc": 0.6407766990291263, "acc_stderr": 0.04750458399041696, "acc_norm": 0.6407766990291263, "acc_norm_stderr": 0.04750458399041696 }, "harness|hendrycksTest-marketing|5": { "acc": 0.688034188034188, "acc_stderr": 0.030351527323344934, "acc_norm": 0.688034188034188, "acc_norm_stderr": 0.030351527323344934 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.6002554278416348, "acc_stderr": 0.01751684790705328, "acc_norm": 0.6002554278416348, "acc_norm_stderr": 0.01751684790705328 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.4913294797687861, "acc_stderr": 0.026915047355369804, "acc_norm": 0.4913294797687861, "acc_norm_stderr": 0.026915047355369804 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.24804469273743016, "acc_stderr": 0.014444157808261433, "acc_norm": 0.24804469273743016, "acc_norm_stderr": 0.014444157808261433 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.4673202614379085, "acc_stderr": 0.02856869975222588, "acc_norm": 0.4673202614379085, "acc_norm_stderr": 0.02856869975222588 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.48231511254019294, "acc_stderr": 0.02838032284907713, "acc_norm": 0.48231511254019294, "acc_norm_stderr": 0.02838032284907713 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5092592592592593, "acc_stderr": 0.027815973433878014, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.027815973433878014 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.35815602836879434, "acc_stderr": 0.028602085862759422, "acc_norm": 0.35815602836879434, "acc_norm_stderr": 0.028602085862759422 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.34028683181225555, "acc_stderr": 0.012101217610223784, "acc_norm": 0.34028683181225555, "acc_norm_stderr": 0.012101217610223784 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4338235294117647, "acc_stderr": 0.030105636570016636, "acc_norm": 0.4338235294117647, "acc_norm_stderr": 0.030105636570016636 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.4084967320261438, "acc_stderr": 0.01988622103750187, "acc_norm": 0.4084967320261438, "acc_norm_stderr": 0.01988622103750187 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.4727272727272727, "acc_stderr": 0.04782001791380063, "acc_norm": 0.4727272727272727, "acc_norm_stderr": 0.04782001791380063 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5469387755102041, "acc_stderr": 0.03186785930004128, "acc_norm": 0.5469387755102041, "acc_norm_stderr": 0.03186785930004128 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6666666666666666, "acc_stderr": 0.03333333333333334, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.03333333333333334 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-virology|5": { "acc": 0.4036144578313253, "acc_stderr": 0.038194861407583984, "acc_norm": 0.4036144578313253, "acc_norm_stderr": 0.038194861407583984 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.5730994152046783, "acc_stderr": 0.03793620616529917, "acc_norm": 0.5730994152046783, "acc_norm_stderr": 0.03793620616529917 }, "harness|truthfulqa:mc|0": { "mc1": 0.2864137086903305, "mc1_stderr": 0.015826142439502353, "mc2": 0.4622053324775365, "mc2_stderr": 0.015177238897436999 }, "harness|winogrande|5": { "acc": 0.6227308602999211, "acc_stderr": 0.0136225679287995 }, "harness|gsm8k|5": { "acc": 0.16679302501895377, "acc_stderr": 0.010268516042629513 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_h2m__mhm-7b-v1.3
[ "region:us" ]
2024-01-14T21:49:34+00:00
{"pretty_name": "Evaluation run of h2m/mhm-7b-v1.3", "dataset_summary": "Dataset automatically created during the evaluation run of model [h2m/mhm-7b-v1.3](https://huggingface.co/h2m/mhm-7b-v1.3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_h2m__mhm-7b-v1.3\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T21:47:14.933980](https://huggingface.co/datasets/open-llm-leaderboard/details_h2m__mhm-7b-v1.3/blob/main/results_2024-01-14T21-47-14.933980.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.45565733826199045,\n \"acc_stderr\": 0.034441057472680836,\n \"acc_norm\": 0.46104688055946413,\n \"acc_norm_stderr\": 0.03520094341367283,\n \"mc1\": 0.2864137086903305,\n \"mc1_stderr\": 0.015826142439502353,\n \"mc2\": 0.4622053324775365,\n \"mc2_stderr\": 0.015177238897436999\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.44197952218430037,\n \"acc_stderr\": 0.014512682523128345,\n \"acc_norm\": 0.47525597269624575,\n \"acc_norm_stderr\": 0.014593487694937738\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.4901414060944035,\n \"acc_stderr\": 0.004988811384747417,\n \"acc_norm\": 0.6530571599283012,\n \"acc_norm_stderr\": 0.004750245757533308\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.041633319989322695,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.041633319989322695\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.43703703703703706,\n \"acc_stderr\": 0.04284958639753399,\n \"acc_norm\": 0.43703703703703706,\n \"acc_norm_stderr\": 0.04284958639753399\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.506578947368421,\n \"acc_stderr\": 0.040685900502249704,\n \"acc_norm\": 0.506578947368421,\n \"acc_norm_stderr\": 0.040685900502249704\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.04960449637488584,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.04960449637488584\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.4641509433962264,\n \"acc_stderr\": 0.030693675018458006,\n \"acc_norm\": 0.4641509433962264,\n \"acc_norm_stderr\": 0.030693675018458006\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.039420826399272135,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.039420826399272135\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.04461960433384741,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.04461960433384741\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.05021167315686781,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.05021167315686781\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.45664739884393063,\n \"acc_stderr\": 0.03798106566014498,\n \"acc_norm\": 0.45664739884393063,\n \"acc_norm_stderr\": 0.03798106566014498\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.2647058823529412,\n \"acc_stderr\": 0.04389869956808777,\n \"acc_norm\": 0.2647058823529412,\n \"acc_norm_stderr\": 0.04389869956808777\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.35319148936170214,\n \"acc_stderr\": 0.031245325202761926,\n \"acc_norm\": 0.35319148936170214,\n \"acc_norm_stderr\": 0.031245325202761926\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.30701754385964913,\n \"acc_stderr\": 0.043391383225798615,\n \"acc_norm\": 0.30701754385964913,\n \"acc_norm_stderr\": 0.043391383225798615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.42758620689655175,\n \"acc_stderr\": 0.041227371113703316,\n \"acc_norm\": 0.42758620689655175,\n \"acc_norm_stderr\": 0.041227371113703316\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2804232804232804,\n \"acc_stderr\": 0.02313528797432563,\n \"acc_norm\": 0.2804232804232804,\n \"acc_norm_stderr\": 0.02313528797432563\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.04006168083848877,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.04006168083848877\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.4935483870967742,\n \"acc_stderr\": 0.028441638233540505,\n \"acc_norm\": 0.4935483870967742,\n \"acc_norm_stderr\": 0.028441638233540505\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.35960591133004927,\n \"acc_stderr\": 0.033764582465095665,\n \"acc_norm\": 0.35960591133004927,\n \"acc_norm_stderr\": 0.033764582465095665\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6060606060606061,\n \"acc_stderr\": 0.038154943086889305,\n \"acc_norm\": 0.6060606060606061,\n \"acc_norm_stderr\": 0.038154943086889305\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.5858585858585859,\n \"acc_stderr\": 0.03509438348879629,\n \"acc_norm\": 0.5858585858585859,\n \"acc_norm_stderr\": 0.03509438348879629\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.6062176165803109,\n \"acc_stderr\": 0.035260770955482405,\n \"acc_norm\": 0.6062176165803109,\n \"acc_norm_stderr\": 0.035260770955482405\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.4205128205128205,\n \"acc_stderr\": 0.02502861027671086,\n \"acc_norm\": 0.4205128205128205,\n \"acc_norm_stderr\": 0.02502861027671086\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.22592592592592592,\n \"acc_stderr\": 0.02549753263960955,\n \"acc_norm\": 0.22592592592592592,\n \"acc_norm_stderr\": 0.02549753263960955\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.42436974789915966,\n \"acc_stderr\": 0.032104790510157764,\n \"acc_norm\": 0.42436974789915966,\n \"acc_norm_stderr\": 0.032104790510157764\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.5944954128440367,\n \"acc_stderr\": 0.021050997991896834,\n \"acc_norm\": 0.5944954128440367,\n \"acc_norm_stderr\": 0.021050997991896834\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.38425925925925924,\n \"acc_stderr\": 0.03317354514310742,\n \"acc_norm\": 0.38425925925925924,\n \"acc_norm_stderr\": 0.03317354514310742\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.5833333333333334,\n \"acc_stderr\": 0.03460228327239171,\n \"acc_norm\": 0.5833333333333334,\n \"acc_norm_stderr\": 0.03460228327239171\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6371308016877637,\n \"acc_stderr\": 0.03129920825530213,\n \"acc_norm\": 0.6371308016877637,\n \"acc_norm_stderr\": 0.03129920825530213\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5246636771300448,\n \"acc_stderr\": 0.033516951676526276,\n \"acc_norm\": 0.5246636771300448,\n \"acc_norm_stderr\": 0.033516951676526276\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5648854961832062,\n \"acc_stderr\": 0.04348208051644858,\n \"acc_norm\": 0.5648854961832062,\n \"acc_norm_stderr\": 0.04348208051644858\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.043913262867240704,\n \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.043913262867240704\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.5370370370370371,\n \"acc_stderr\": 0.04820403072760627,\n \"acc_norm\": 0.5370370370370371,\n \"acc_norm_stderr\": 0.04820403072760627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.4723926380368098,\n \"acc_stderr\": 0.0392237829061099,\n \"acc_norm\": 0.4723926380368098,\n \"acc_norm_stderr\": 0.0392237829061099\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.36607142857142855,\n \"acc_stderr\": 0.04572372358737431,\n \"acc_norm\": 0.36607142857142855,\n \"acc_norm_stderr\": 0.04572372358737431\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6407766990291263,\n \"acc_stderr\": 0.04750458399041696,\n \"acc_norm\": 0.6407766990291263,\n \"acc_norm_stderr\": 0.04750458399041696\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.688034188034188,\n \"acc_stderr\": 0.030351527323344934,\n \"acc_norm\": 0.688034188034188,\n \"acc_norm_stderr\": 0.030351527323344934\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.6002554278416348,\n \"acc_stderr\": 0.01751684790705328,\n \"acc_norm\": 0.6002554278416348,\n \"acc_norm_stderr\": 0.01751684790705328\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.4913294797687861,\n \"acc_stderr\": 0.026915047355369804,\n \"acc_norm\": 0.4913294797687861,\n \"acc_norm_stderr\": 0.026915047355369804\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.24804469273743016,\n \"acc_stderr\": 0.014444157808261433,\n \"acc_norm\": 0.24804469273743016,\n \"acc_norm_stderr\": 0.014444157808261433\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.4673202614379085,\n \"acc_stderr\": 0.02856869975222588,\n \"acc_norm\": 0.4673202614379085,\n \"acc_norm_stderr\": 0.02856869975222588\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.48231511254019294,\n \"acc_stderr\": 0.02838032284907713,\n \"acc_norm\": 0.48231511254019294,\n \"acc_norm_stderr\": 0.02838032284907713\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5092592592592593,\n \"acc_stderr\": 0.027815973433878014,\n \"acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.027815973433878014\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.35815602836879434,\n \"acc_stderr\": 0.028602085862759422,\n \"acc_norm\": 0.35815602836879434,\n \"acc_norm_stderr\": 0.028602085862759422\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.34028683181225555,\n \"acc_stderr\": 0.012101217610223784,\n \"acc_norm\": 0.34028683181225555,\n \"acc_norm_stderr\": 0.012101217610223784\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4338235294117647,\n \"acc_stderr\": 0.030105636570016636,\n \"acc_norm\": 0.4338235294117647,\n \"acc_norm_stderr\": 0.030105636570016636\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.4084967320261438,\n \"acc_stderr\": 0.01988622103750187,\n \"acc_norm\": 0.4084967320261438,\n \"acc_norm_stderr\": 0.01988622103750187\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.4727272727272727,\n \"acc_stderr\": 0.04782001791380063,\n \"acc_norm\": 0.4727272727272727,\n \"acc_norm_stderr\": 0.04782001791380063\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5469387755102041,\n \"acc_stderr\": 0.03186785930004128,\n \"acc_norm\": 0.5469387755102041,\n \"acc_norm_stderr\": 0.03186785930004128\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.03333333333333334,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.03333333333333334\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4036144578313253,\n \"acc_stderr\": 0.038194861407583984,\n \"acc_norm\": 0.4036144578313253,\n \"acc_norm_stderr\": 0.038194861407583984\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.5730994152046783,\n \"acc_stderr\": 0.03793620616529917,\n \"acc_norm\": 0.5730994152046783,\n \"acc_norm_stderr\": 0.03793620616529917\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2864137086903305,\n \"mc1_stderr\": 0.015826142439502353,\n \"mc2\": 0.4622053324775365,\n \"mc2_stderr\": 0.015177238897436999\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6227308602999211,\n \"acc_stderr\": 0.0136225679287995\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.16679302501895377,\n \"acc_stderr\": 0.010268516042629513\n }\n}\n```", "repo_url": "https://huggingface.co/h2m/mhm-7b-v1.3", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T21-47-14.933980.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["**/details_harness|winogrande|5_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T21-47-14.933980.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T21_47_14.933980", "path": ["results_2024-01-14T21-47-14.933980.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T21-47-14.933980.parquet"]}]}]}
2024-01-14T21:49:54+00:00
d9cb7bf3db3f837856d2730cb1bd24fc4adda679
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-pt
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T21:49:51+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:37:56+00:00
024f35781b98aca3a277e031952074be00072d55
joaosanches/cleaned_tedtalks_total
[ "region:us" ]
2024-01-14T21:55:03+00:00
{"dataset_info": {"features": [{"name": "pt", "dtype": "string"}, {"name": "pt-br", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 66045930, "num_examples": 314702}], "download_size": 41381774, "dataset_size": 66045930}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-30T22:23:36+00:00
a7727d4aabe6ec9926da703f922c0e55546b5838
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-es
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T21:56:38+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:38:11+00:00
c8c8f5d77f54414309c1d2e1ec17f59963d6c185
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-fr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:00:51+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:38:38+00:00
c14fdcd0e4725b7ab08d55f345df495d070a29d8
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-pt
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:04:25+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:38:57+00:00
1c1eb8386fa19590a153a69c443ac3ab3b870524
joaosanches/tedtalks_train_no_duplicates
[ "region:us" ]
2024-01-14T22:05:23+00:00
{"dataset_info": {"features": [{"name": "pt", "dtype": "string"}, {"name": "pt-br", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26649615, "num_examples": 126984}], "download_size": 18481563, "dataset_size": 26649615}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-30T22:23:49+00:00
61f98144c1d0ef21c1424f80869cf7528f239a4f
fooperterooney/huh
[ "region:us" ]
2024-01-14T22:07:43+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": "audio"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1718632.0, "num_examples": 3}], "download_size": 1706927, "dataset_size": 1718632.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T22:07:44+00:00
b1b693e12b8732688fde334dd05021fc7e05421b
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-pt-es-fr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:10:51+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:43:13+00:00
0ab51c1dbcda1a84dba2bbdf2a5fee3d8c4b34fe
# Dataset Card for Evaluation run of Locutusque/Rhino-Mistral-7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Locutusque/Rhino-Mistral-7B](https://huggingface.co/Locutusque/Rhino-Mistral-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Locutusque__Rhino-Mistral-7B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T22:10:37.195277](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Rhino-Mistral-7B/blob/main/results_2024-01-14T22-10-37.195277.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.48839477081957533, "acc_stderr": 0.034627634904041645, "acc_norm": 0.49321170014255594, "acc_norm_stderr": 0.0353856151916697, "mc1": 0.2741738066095471, "mc1_stderr": 0.015616518497219367, "mc2": 0.4589835712394215, "mc2_stderr": 0.014873298625532366 }, "harness|arc:challenge|25": { "acc": 0.43430034129692835, "acc_stderr": 0.014484703048857364, "acc_norm": 0.4812286689419795, "acc_norm_stderr": 0.014601090150633964 }, "harness|hellaswag|10": { "acc": 0.5212109141605258, "acc_stderr": 0.004985289555586536, "acc_norm": 0.7142003584943238, "acc_norm_stderr": 0.004508710891053852 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4888888888888889, "acc_stderr": 0.04318275491977976, "acc_norm": 0.4888888888888889, "acc_norm_stderr": 0.04318275491977976 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.45394736842105265, "acc_stderr": 0.04051646342874142, "acc_norm": 0.45394736842105265, "acc_norm_stderr": 0.04051646342874142 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5283018867924528, "acc_stderr": 0.0307235352490061, "acc_norm": 0.5283018867924528, "acc_norm_stderr": 0.0307235352490061 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.4583333333333333, "acc_stderr": 0.04166666666666665, "acc_norm": 0.4583333333333333, "acc_norm_stderr": 0.04166666666666665 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.4682080924855491, "acc_stderr": 0.03804749744364763, "acc_norm": 0.4682080924855491, "acc_norm_stderr": 0.03804749744364763 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3137254901960784, "acc_stderr": 0.04617034827006718, "acc_norm": 0.3137254901960784, "acc_norm_stderr": 0.04617034827006718 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4085106382978723, "acc_stderr": 0.03213418026701576, "acc_norm": 0.4085106382978723, "acc_norm_stderr": 0.03213418026701576 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2982456140350877, "acc_stderr": 0.04303684033537315, "acc_norm": 0.2982456140350877, "acc_norm_stderr": 0.04303684033537315 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.503448275862069, "acc_stderr": 0.04166567577101579, "acc_norm": 0.503448275862069, "acc_norm_stderr": 0.04166567577101579 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.31746031746031744, "acc_stderr": 0.023973861998992072, "acc_norm": 0.31746031746031744, "acc_norm_stderr": 0.023973861998992072 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2698412698412698, "acc_stderr": 0.03970158273235173, "acc_norm": 0.2698412698412698, "acc_norm_stderr": 0.03970158273235173 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.045126085985421276, "acc_norm": 0.28, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5612903225806452, "acc_stderr": 0.028229497320317216, "acc_norm": 0.5612903225806452, "acc_norm_stderr": 0.028229497320317216 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3645320197044335, "acc_stderr": 0.0338640574606209, "acc_norm": 0.3645320197044335, "acc_norm_stderr": 0.0338640574606209 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.43, "acc_stderr": 0.049756985195624284, "acc_norm": 0.43, "acc_norm_stderr": 0.049756985195624284 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6606060606060606, "acc_stderr": 0.03697442205031595, "acc_norm": 0.6606060606060606, "acc_norm_stderr": 0.03697442205031595 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6161616161616161, "acc_stderr": 0.03464881675016338, "acc_norm": 0.6161616161616161, "acc_norm_stderr": 0.03464881675016338 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.6476683937823834, "acc_stderr": 0.03447478286414358, "acc_norm": 0.6476683937823834, "acc_norm_stderr": 0.03447478286414358 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.4076923076923077, "acc_stderr": 0.024915243985987847, "acc_norm": 0.4076923076923077, "acc_norm_stderr": 0.024915243985987847 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.25925925925925924, "acc_stderr": 0.026719240783712156, "acc_norm": 0.25925925925925924, "acc_norm_stderr": 0.026719240783712156 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.4789915966386555, "acc_stderr": 0.032449808499900284, "acc_norm": 0.4789915966386555, "acc_norm_stderr": 0.032449808499900284 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33112582781456956, "acc_stderr": 0.038425817186598696, "acc_norm": 0.33112582781456956, "acc_norm_stderr": 0.038425817186598696 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.655045871559633, "acc_stderr": 0.020380605405066962, "acc_norm": 0.655045871559633, "acc_norm_stderr": 0.020380605405066962 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4722222222222222, "acc_stderr": 0.0340470532865388, "acc_norm": 0.4722222222222222, "acc_norm_stderr": 0.0340470532865388 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.5637254901960784, "acc_stderr": 0.03480693138457039, "acc_norm": 0.5637254901960784, "acc_norm_stderr": 0.03480693138457039 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.6118143459915611, "acc_stderr": 0.03172295004332329, "acc_norm": 0.6118143459915611, "acc_norm_stderr": 0.03172295004332329 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5650224215246636, "acc_stderr": 0.033272833702713445, "acc_norm": 0.5650224215246636, "acc_norm_stderr": 0.033272833702713445 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5877862595419847, "acc_stderr": 0.04317171194870254, "acc_norm": 0.5877862595419847, "acc_norm_stderr": 0.04317171194870254 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6198347107438017, "acc_stderr": 0.04431324501968431, "acc_norm": 0.6198347107438017, "acc_norm_stderr": 0.04431324501968431 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.5462962962962963, "acc_stderr": 0.04812917324536823, "acc_norm": 0.5462962962962963, "acc_norm_stderr": 0.04812917324536823 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.49693251533742333, "acc_stderr": 0.03928297078179662, "acc_norm": 0.49693251533742333, "acc_norm_stderr": 0.03928297078179662 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4375, "acc_stderr": 0.04708567521880525, "acc_norm": 0.4375, "acc_norm_stderr": 0.04708567521880525 }, "harness|hendrycksTest-management|5": { "acc": 0.6990291262135923, "acc_stderr": 0.04541609446503948, "acc_norm": 0.6990291262135923, "acc_norm_stderr": 0.04541609446503948 }, "harness|hendrycksTest-marketing|5": { "acc": 0.6709401709401709, "acc_stderr": 0.030782321577688173, "acc_norm": 0.6709401709401709, "acc_norm_stderr": 0.030782321577688173 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.51, "acc_stderr": 0.05024183937956913, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956913 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.6577266922094508, "acc_stderr": 0.016967031766413624, "acc_norm": 0.6577266922094508, "acc_norm_stderr": 0.016967031766413624 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5173410404624278, "acc_stderr": 0.02690290045866664, "acc_norm": 0.5173410404624278, "acc_norm_stderr": 0.02690290045866664 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3206703910614525, "acc_stderr": 0.015609929559348408, "acc_norm": 0.3206703910614525, "acc_norm_stderr": 0.015609929559348408 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5294117647058824, "acc_stderr": 0.028580341065138286, "acc_norm": 0.5294117647058824, "acc_norm_stderr": 0.028580341065138286 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5401929260450161, "acc_stderr": 0.028306190403305693, "acc_norm": 0.5401929260450161, "acc_norm_stderr": 0.028306190403305693 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5308641975308642, "acc_stderr": 0.02776768960683392, "acc_norm": 0.5308641975308642, "acc_norm_stderr": 0.02776768960683392 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.35106382978723405, "acc_stderr": 0.02847350127296376, "acc_norm": 0.35106382978723405, "acc_norm_stderr": 0.02847350127296376 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.36114732724902215, "acc_stderr": 0.012267935477519028, "acc_norm": 0.36114732724902215, "acc_norm_stderr": 0.012267935477519028 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4632352941176471, "acc_stderr": 0.030290619180485694, "acc_norm": 0.4632352941176471, "acc_norm_stderr": 0.030290619180485694 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.4362745098039216, "acc_stderr": 0.02006287424353913, "acc_norm": 0.4362745098039216, "acc_norm_stderr": 0.02006287424353913 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.5272727272727272, "acc_stderr": 0.04782001791380061, "acc_norm": 0.5272727272727272, "acc_norm_stderr": 0.04782001791380061 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5510204081632653, "acc_stderr": 0.03184213866687579, "acc_norm": 0.5510204081632653, "acc_norm_stderr": 0.03184213866687579 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6218905472636815, "acc_stderr": 0.034288678487786564, "acc_norm": 0.6218905472636815, "acc_norm_stderr": 0.034288678487786564 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.76, "acc_stderr": 0.042923469599092816, "acc_norm": 0.76, "acc_norm_stderr": 0.042923469599092816 }, "harness|hendrycksTest-virology|5": { "acc": 0.45180722891566266, "acc_stderr": 0.03874371556587953, "acc_norm": 0.45180722891566266, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7017543859649122, "acc_stderr": 0.03508771929824563, "acc_norm": 0.7017543859649122, "acc_norm_stderr": 0.03508771929824563 }, "harness|truthfulqa:mc|0": { "mc1": 0.2741738066095471, "mc1_stderr": 0.015616518497219367, "mc2": 0.4589835712394215, "mc2_stderr": 0.014873298625532366 }, "harness|winogrande|5": { "acc": 0.7111286503551697, "acc_stderr": 0.012738241271018445 }, "harness|gsm8k|5": { "acc": 0.221379833206975, "acc_stderr": 0.011436000004253521 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Locutusque__Rhino-Mistral-7B
[ "region:us" ]
2024-01-14T22:13:01+00:00
{"pretty_name": "Evaluation run of Locutusque/Rhino-Mistral-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [Locutusque/Rhino-Mistral-7B](https://huggingface.co/Locutusque/Rhino-Mistral-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Locutusque__Rhino-Mistral-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T22:10:37.195277](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Rhino-Mistral-7B/blob/main/results_2024-01-14T22-10-37.195277.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.48839477081957533,\n \"acc_stderr\": 0.034627634904041645,\n \"acc_norm\": 0.49321170014255594,\n \"acc_norm_stderr\": 0.0353856151916697,\n \"mc1\": 0.2741738066095471,\n \"mc1_stderr\": 0.015616518497219367,\n \"mc2\": 0.4589835712394215,\n \"mc2_stderr\": 0.014873298625532366\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.43430034129692835,\n \"acc_stderr\": 0.014484703048857364,\n \"acc_norm\": 0.4812286689419795,\n \"acc_norm_stderr\": 0.014601090150633964\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.5212109141605258,\n \"acc_stderr\": 0.004985289555586536,\n \"acc_norm\": 0.7142003584943238,\n \"acc_norm_stderr\": 0.004508710891053852\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4888888888888889,\n \"acc_stderr\": 0.04318275491977976,\n \"acc_norm\": 0.4888888888888889,\n \"acc_norm_stderr\": 0.04318275491977976\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.45394736842105265,\n \"acc_stderr\": 0.04051646342874142,\n \"acc_norm\": 0.45394736842105265,\n \"acc_norm_stderr\": 0.04051646342874142\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5283018867924528,\n \"acc_stderr\": 0.0307235352490061,\n \"acc_norm\": 0.5283018867924528,\n \"acc_norm_stderr\": 0.0307235352490061\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.4583333333333333,\n \"acc_stderr\": 0.04166666666666665,\n \"acc_norm\": 0.4583333333333333,\n \"acc_norm_stderr\": 0.04166666666666665\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.4682080924855491,\n \"acc_stderr\": 0.03804749744364763,\n \"acc_norm\": 0.4682080924855491,\n \"acc_norm_stderr\": 0.03804749744364763\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3137254901960784,\n \"acc_stderr\": 0.04617034827006718,\n \"acc_norm\": 0.3137254901960784,\n \"acc_norm_stderr\": 0.04617034827006718\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4085106382978723,\n \"acc_stderr\": 0.03213418026701576,\n \"acc_norm\": 0.4085106382978723,\n \"acc_norm_stderr\": 0.03213418026701576\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2982456140350877,\n \"acc_stderr\": 0.04303684033537315,\n \"acc_norm\": 0.2982456140350877,\n \"acc_norm_stderr\": 0.04303684033537315\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.503448275862069,\n \"acc_stderr\": 0.04166567577101579,\n \"acc_norm\": 0.503448275862069,\n \"acc_norm_stderr\": 0.04166567577101579\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.31746031746031744,\n \"acc_stderr\": 0.023973861998992072,\n \"acc_norm\": 0.31746031746031744,\n \"acc_norm_stderr\": 0.023973861998992072\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2698412698412698,\n \"acc_stderr\": 0.03970158273235173,\n \"acc_norm\": 0.2698412698412698,\n \"acc_norm_stderr\": 0.03970158273235173\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5612903225806452,\n \"acc_stderr\": 0.028229497320317216,\n \"acc_norm\": 0.5612903225806452,\n \"acc_norm_stderr\": 0.028229497320317216\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.3645320197044335,\n \"acc_stderr\": 0.0338640574606209,\n \"acc_norm\": 0.3645320197044335,\n \"acc_norm_stderr\": 0.0338640574606209\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.049756985195624284,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.049756985195624284\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6606060606060606,\n \"acc_stderr\": 0.03697442205031595,\n \"acc_norm\": 0.6606060606060606,\n \"acc_norm_stderr\": 0.03697442205031595\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6161616161616161,\n \"acc_stderr\": 0.03464881675016338,\n \"acc_norm\": 0.6161616161616161,\n \"acc_norm_stderr\": 0.03464881675016338\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.6476683937823834,\n \"acc_stderr\": 0.03447478286414358,\n \"acc_norm\": 0.6476683937823834,\n \"acc_norm_stderr\": 0.03447478286414358\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.4076923076923077,\n \"acc_stderr\": 0.024915243985987847,\n \"acc_norm\": 0.4076923076923077,\n \"acc_norm_stderr\": 0.024915243985987847\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.25925925925925924,\n \"acc_stderr\": 0.026719240783712156,\n \"acc_norm\": 0.25925925925925924,\n \"acc_norm_stderr\": 0.026719240783712156\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.4789915966386555,\n \"acc_stderr\": 0.032449808499900284,\n \"acc_norm\": 0.4789915966386555,\n \"acc_norm_stderr\": 0.032449808499900284\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.655045871559633,\n \"acc_stderr\": 0.020380605405066962,\n \"acc_norm\": 0.655045871559633,\n \"acc_norm_stderr\": 0.020380605405066962\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4722222222222222,\n \"acc_stderr\": 0.0340470532865388,\n \"acc_norm\": 0.4722222222222222,\n \"acc_norm_stderr\": 0.0340470532865388\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.5637254901960784,\n \"acc_stderr\": 0.03480693138457039,\n \"acc_norm\": 0.5637254901960784,\n \"acc_norm_stderr\": 0.03480693138457039\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.6118143459915611,\n \"acc_stderr\": 0.03172295004332329,\n \"acc_norm\": 0.6118143459915611,\n \"acc_norm_stderr\": 0.03172295004332329\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5650224215246636,\n \"acc_stderr\": 0.033272833702713445,\n \"acc_norm\": 0.5650224215246636,\n \"acc_norm_stderr\": 0.033272833702713445\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5877862595419847,\n \"acc_stderr\": 0.04317171194870254,\n \"acc_norm\": 0.5877862595419847,\n \"acc_norm_stderr\": 0.04317171194870254\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6198347107438017,\n \"acc_stderr\": 0.04431324501968431,\n \"acc_norm\": 0.6198347107438017,\n \"acc_norm_stderr\": 0.04431324501968431\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.5462962962962963,\n \"acc_stderr\": 0.04812917324536823,\n \"acc_norm\": 0.5462962962962963,\n \"acc_norm_stderr\": 0.04812917324536823\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.49693251533742333,\n \"acc_stderr\": 0.03928297078179662,\n \"acc_norm\": 0.49693251533742333,\n \"acc_norm_stderr\": 0.03928297078179662\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.04708567521880525,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.04708567521880525\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6990291262135923,\n \"acc_stderr\": 0.04541609446503948,\n \"acc_norm\": 0.6990291262135923,\n \"acc_norm_stderr\": 0.04541609446503948\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.6709401709401709,\n \"acc_stderr\": 0.030782321577688173,\n \"acc_norm\": 0.6709401709401709,\n \"acc_norm_stderr\": 0.030782321577688173\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956913,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956913\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.6577266922094508,\n \"acc_stderr\": 0.016967031766413624,\n \"acc_norm\": 0.6577266922094508,\n \"acc_norm_stderr\": 0.016967031766413624\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5173410404624278,\n \"acc_stderr\": 0.02690290045866664,\n \"acc_norm\": 0.5173410404624278,\n \"acc_norm_stderr\": 0.02690290045866664\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3206703910614525,\n \"acc_stderr\": 0.015609929559348408,\n \"acc_norm\": 0.3206703910614525,\n \"acc_norm_stderr\": 0.015609929559348408\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5294117647058824,\n \"acc_stderr\": 0.028580341065138286,\n \"acc_norm\": 0.5294117647058824,\n \"acc_norm_stderr\": 0.028580341065138286\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5401929260450161,\n \"acc_stderr\": 0.028306190403305693,\n \"acc_norm\": 0.5401929260450161,\n \"acc_norm_stderr\": 0.028306190403305693\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5308641975308642,\n \"acc_stderr\": 0.02776768960683392,\n \"acc_norm\": 0.5308641975308642,\n \"acc_norm_stderr\": 0.02776768960683392\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.35106382978723405,\n \"acc_stderr\": 0.02847350127296376,\n \"acc_norm\": 0.35106382978723405,\n \"acc_norm_stderr\": 0.02847350127296376\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.36114732724902215,\n \"acc_stderr\": 0.012267935477519028,\n \"acc_norm\": 0.36114732724902215,\n \"acc_norm_stderr\": 0.012267935477519028\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4632352941176471,\n \"acc_stderr\": 0.030290619180485694,\n \"acc_norm\": 0.4632352941176471,\n \"acc_norm_stderr\": 0.030290619180485694\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.4362745098039216,\n \"acc_stderr\": 0.02006287424353913,\n \"acc_norm\": 0.4362745098039216,\n \"acc_norm_stderr\": 0.02006287424353913\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.5272727272727272,\n \"acc_stderr\": 0.04782001791380061,\n \"acc_norm\": 0.5272727272727272,\n \"acc_norm_stderr\": 0.04782001791380061\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5510204081632653,\n \"acc_stderr\": 0.03184213866687579,\n \"acc_norm\": 0.5510204081632653,\n \"acc_norm_stderr\": 0.03184213866687579\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6218905472636815,\n \"acc_stderr\": 0.034288678487786564,\n \"acc_norm\": 0.6218905472636815,\n \"acc_norm_stderr\": 0.034288678487786564\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.45180722891566266,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.45180722891566266,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7017543859649122,\n \"acc_stderr\": 0.03508771929824563,\n \"acc_norm\": 0.7017543859649122,\n \"acc_norm_stderr\": 0.03508771929824563\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2741738066095471,\n \"mc1_stderr\": 0.015616518497219367,\n \"mc2\": 0.4589835712394215,\n \"mc2_stderr\": 0.014873298625532366\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7111286503551697,\n \"acc_stderr\": 0.012738241271018445\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.221379833206975,\n \"acc_stderr\": 0.011436000004253521\n }\n}\n```", "repo_url": "https://huggingface.co/Locutusque/Rhino-Mistral-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-10-37.195277.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["**/details_harness|winogrande|5_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T22-10-37.195277.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T22_10_37.195277", "path": ["results_2024-01-14T22-10-37.195277.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T22-10-37.195277.parquet"]}]}]}
2024-01-14T22:13:22+00:00
27a559a4b17aa0f7752d010cef9bf61f1bb528c7
SoorajK1/questions_and_answers
[ "region:us" ]
2024-01-14T22:15:11+00:00
{}
2024-01-30T07:48:29+00:00
1d3690cd4ded8e9355e2e98ee9dd616ce3ef6792
spedr/twt
[ "region:us" ]
2024-01-14T22:21:37+00:00
{}
2024-01-15T05:45:44+00:00
c333c0646b7da531a9eed8f33fd059dce7ec7886
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-pt-es-fr-enr-enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:22:27+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:39:30+00:00
a0d547c35251fd2b79a1da3f5b286d2f7f35f4b4
VerminRed/Ngin
[ "license:openrail", "region:us" ]
2024-01-14T22:23:32+00:00
{"license": "openrail"}
2024-01-14T22:24:26+00:00
27d2c438a943e4786bc8ac67fa663708b60530c1
This is a subset (2000 samples) of [`timdettmers/openassistant-guanaco`](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) dataset, processed to match Mistral-7B-instruct-v0.2's prompt format as described [in this article](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). It was created using the [colab notebook](https://colab.research.google.com/drive/1afeicfJa9Mo8-wEcDoGrjyoVLyFkF9xm?usp=sharing). Inspired by Maxime Labonne's [llm-course repo](https://github.com/mlabonne/llm-course).
wenqiglantz/guanaco-llama2-2k
[ "region:us" ]
2024-01-14T22:27:26+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3211457, "num_examples": 2000}], "download_size": 1887239, "dataset_size": 3211457}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-16T04:30:43+00:00
56bfd86ce9c804b0ca40b4d750d4c23225e2b6c3
anmorgan24/pedro-pascal
[ "region:us" ]
2024-01-14T22:30:33+00:00
{}
2024-01-14T22:33:59+00:00
d593cde04b493e89bab6a4fa30be891c05c41c0b
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:31:23+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:39:46+00:00
d4e3597a54259009bd3ba52c7cd135b1930c4fa0
# Dataset Card for "autotrain-data-autotrain-tres" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
pedromigurasdev/autotrain-data-autotrain-tres
[ "region:us" ]
2024-01-14T22:39:23+00:00
{"dataset_info": {"features": [{"name": "autotrain_text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1145062, "num_examples": 758}, {"name": "validation", "num_bytes": 1145062, "num_examples": 758}], "download_size": 1344524, "dataset_size": 2290124}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-14T22:39:25+00:00
8e4a5ce0d07a6c5603c3a4181b5fe7e8388bc8eb
# Dataset Card for Evaluation run of CallComply/SOLAR-10.7B-Instruct-v1.0-128k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [CallComply/SOLAR-10.7B-Instruct-v1.0-128k](https://huggingface.co/CallComply/SOLAR-10.7B-Instruct-v1.0-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CallComply__SOLAR-10.7B-Instruct-v1.0-128k", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T22:38:12.148949](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__SOLAR-10.7B-Instruct-v1.0-128k/blob/main/results_2024-01-14T22-38-12.148949.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5736345987046274, "acc_stderr": 0.033417579618165875, "acc_norm": 0.5822139213719528, "acc_norm_stderr": 0.03421698352385503, "mc1": 0.48592411260709917, "mc1_stderr": 0.017496563717042793, "mc2": 0.6542262778057006, "mc2_stderr": 0.015681013574816827 }, "harness|arc:challenge|25": { "acc": 0.6262798634812287, "acc_stderr": 0.014137708601759091, "acc_norm": 0.659556313993174, "acc_norm_stderr": 0.013847460518892973 }, "harness|hellaswag|10": { "acc": 0.6415056761601274, "acc_stderr": 0.004785781979354868, "acc_norm": 0.8434574785899224, "acc_norm_stderr": 0.003626262805442223 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.562962962962963, "acc_stderr": 0.04284958639753401, "acc_norm": 0.562962962962963, "acc_norm_stderr": 0.04284958639753401 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.625, "acc_stderr": 0.039397364351956274, "acc_norm": 0.625, "acc_norm_stderr": 0.039397364351956274 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6188679245283019, "acc_stderr": 0.02989060968628664, "acc_norm": 0.6188679245283019, "acc_norm_stderr": 0.02989060968628664 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6527777777777778, "acc_stderr": 0.039812405437178615, "acc_norm": 0.6527777777777778, "acc_norm_stderr": 0.039812405437178615 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.4, "acc_stderr": 0.04923659639173309, "acc_norm": 0.4, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6184971098265896, "acc_stderr": 0.03703851193099522, "acc_norm": 0.6184971098265896, "acc_norm_stderr": 0.03703851193099522 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107223, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107223 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5659574468085107, "acc_stderr": 0.03240038086792747, "acc_norm": 0.5659574468085107, "acc_norm_stderr": 0.03240038086792747 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.3508771929824561, "acc_stderr": 0.04489539350270699, "acc_norm": 0.3508771929824561, "acc_norm_stderr": 0.04489539350270699 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5655172413793104, "acc_stderr": 0.04130740879555497, "acc_norm": 0.5655172413793104, "acc_norm_stderr": 0.04130740879555497 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3412698412698413, "acc_stderr": 0.024419234966819064, "acc_norm": 0.3412698412698413, "acc_norm_stderr": 0.024419234966819064 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.35714285714285715, "acc_stderr": 0.04285714285714281, "acc_norm": 0.35714285714285715, "acc_norm_stderr": 0.04285714285714281 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.04878317312145633, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145633 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6387096774193548, "acc_stderr": 0.027327548447957543, "acc_norm": 0.6387096774193548, "acc_norm_stderr": 0.027327548447957543 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4088669950738916, "acc_stderr": 0.034590588158832314, "acc_norm": 0.4088669950738916, "acc_norm_stderr": 0.034590588158832314 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6424242424242425, "acc_stderr": 0.03742597043806585, "acc_norm": 0.6424242424242425, "acc_norm_stderr": 0.03742597043806585 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7676767676767676, "acc_stderr": 0.03008862949021749, "acc_norm": 0.7676767676767676, "acc_norm_stderr": 0.03008862949021749 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.844559585492228, "acc_stderr": 0.02614848346915332, "acc_norm": 0.844559585492228, "acc_norm_stderr": 0.02614848346915332 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5769230769230769, "acc_stderr": 0.025049197876042338, "acc_norm": 0.5769230769230769, "acc_norm_stderr": 0.025049197876042338 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2814814814814815, "acc_stderr": 0.027420019350945284, "acc_norm": 0.2814814814814815, "acc_norm_stderr": 0.027420019350945284 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6302521008403361, "acc_stderr": 0.03135709599613591, "acc_norm": 0.6302521008403361, "acc_norm_stderr": 0.03135709599613591 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.763302752293578, "acc_stderr": 0.018224078117299106, "acc_norm": 0.763302752293578, "acc_norm_stderr": 0.018224078117299106 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4212962962962963, "acc_stderr": 0.03367462138896078, "acc_norm": 0.4212962962962963, "acc_norm_stderr": 0.03367462138896078 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7352941176470589, "acc_stderr": 0.030964517926923403, "acc_norm": 0.7352941176470589, "acc_norm_stderr": 0.030964517926923403 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7341772151898734, "acc_stderr": 0.02875679962965834, "acc_norm": 0.7341772151898734, "acc_norm_stderr": 0.02875679962965834 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6367713004484304, "acc_stderr": 0.032277904428505, "acc_norm": 0.6367713004484304, "acc_norm_stderr": 0.032277904428505 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6946564885496184, "acc_stderr": 0.040393149787245605, "acc_norm": 0.6946564885496184, "acc_norm_stderr": 0.040393149787245605 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.03640118271990948, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.03640118271990948 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7177914110429447, "acc_stderr": 0.03536117886664742, "acc_norm": 0.7177914110429447, "acc_norm_stderr": 0.03536117886664742 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.41964285714285715, "acc_stderr": 0.046840993210771065, "acc_norm": 0.41964285714285715, "acc_norm_stderr": 0.046840993210771065 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690878, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690878 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8205128205128205, "acc_stderr": 0.025140935950335445, "acc_norm": 0.8205128205128205, "acc_norm_stderr": 0.025140935950335445 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.63, "acc_stderr": 0.04852365870939098, "acc_norm": 0.63, "acc_norm_stderr": 0.04852365870939098 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7547892720306514, "acc_stderr": 0.015384352284543932, "acc_norm": 0.7547892720306514, "acc_norm_stderr": 0.015384352284543932 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6734104046242775, "acc_stderr": 0.025248264774242836, "acc_norm": 0.6734104046242775, "acc_norm_stderr": 0.025248264774242836 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.31620111731843575, "acc_stderr": 0.015551673652172544, "acc_norm": 0.31620111731843575, "acc_norm_stderr": 0.015551673652172544 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.630718954248366, "acc_stderr": 0.027634176689602653, "acc_norm": 0.630718954248366, "acc_norm_stderr": 0.027634176689602653 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6077170418006431, "acc_stderr": 0.027731258647011994, "acc_norm": 0.6077170418006431, "acc_norm_stderr": 0.027731258647011994 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6265432098765432, "acc_stderr": 0.026915003011380154, "acc_norm": 0.6265432098765432, "acc_norm_stderr": 0.026915003011380154 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4148936170212766, "acc_stderr": 0.029392236584612503, "acc_norm": 0.4148936170212766, "acc_norm_stderr": 0.029392236584612503 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.423728813559322, "acc_stderr": 0.012620785155885992, "acc_norm": 0.423728813559322, "acc_norm_stderr": 0.012620785155885992 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5073529411764706, "acc_stderr": 0.030369552523902173, "acc_norm": 0.5073529411764706, "acc_norm_stderr": 0.030369552523902173 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6045751633986928, "acc_stderr": 0.019780465954777518, "acc_norm": 0.6045751633986928, "acc_norm_stderr": 0.019780465954777518 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.04653429807913508, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.04653429807913508 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7142857142857143, "acc_stderr": 0.0289205832206756, "acc_norm": 0.7142857142857143, "acc_norm_stderr": 0.0289205832206756 }, "harness|hendrycksTest-sociology|5": { "acc": 0.4975124378109453, "acc_stderr": 0.03535490150137288, "acc_norm": 0.4975124378109453, "acc_norm_stderr": 0.03535490150137288 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.81, "acc_stderr": 0.03942772444036625, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036625 }, "harness|hendrycksTest-virology|5": { "acc": 0.5, "acc_stderr": 0.03892494720807614, "acc_norm": 0.5, "acc_norm_stderr": 0.03892494720807614 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7485380116959064, "acc_stderr": 0.033275044238468436, "acc_norm": 0.7485380116959064, "acc_norm_stderr": 0.033275044238468436 }, "harness|truthfulqa:mc|0": { "mc1": 0.48592411260709917, "mc1_stderr": 0.017496563717042793, "mc2": 0.6542262778057006, "mc2_stderr": 0.015681013574816827 }, "harness|winogrande|5": { "acc": 0.8050513022888713, "acc_stderr": 0.011134099415938256 }, "harness|gsm8k|5": { "acc": 0.0712661106899166, "acc_stderr": 0.0070864621279544985 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_CallComply__SOLAR-10.7B-Instruct-v1.0-128k
[ "region:us" ]
2024-01-14T22:40:30+00:00
{"pretty_name": "Evaluation run of CallComply/SOLAR-10.7B-Instruct-v1.0-128k", "dataset_summary": "Dataset automatically created during the evaluation run of model [CallComply/SOLAR-10.7B-Instruct-v1.0-128k](https://huggingface.co/CallComply/SOLAR-10.7B-Instruct-v1.0-128k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CallComply__SOLAR-10.7B-Instruct-v1.0-128k\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T22:38:12.148949](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__SOLAR-10.7B-Instruct-v1.0-128k/blob/main/results_2024-01-14T22-38-12.148949.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5736345987046274,\n \"acc_stderr\": 0.033417579618165875,\n \"acc_norm\": 0.5822139213719528,\n \"acc_norm_stderr\": 0.03421698352385503,\n \"mc1\": 0.48592411260709917,\n \"mc1_stderr\": 0.017496563717042793,\n \"mc2\": 0.6542262778057006,\n \"mc2_stderr\": 0.015681013574816827\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6262798634812287,\n \"acc_stderr\": 0.014137708601759091,\n \"acc_norm\": 0.659556313993174,\n \"acc_norm_stderr\": 0.013847460518892973\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6415056761601274,\n \"acc_stderr\": 0.004785781979354868,\n \"acc_norm\": 0.8434574785899224,\n \"acc_norm_stderr\": 0.003626262805442223\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.562962962962963,\n \"acc_stderr\": 0.04284958639753401,\n \"acc_norm\": 0.562962962962963,\n \"acc_norm_stderr\": 0.04284958639753401\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.625,\n \"acc_stderr\": 0.039397364351956274,\n \"acc_norm\": 0.625,\n \"acc_norm_stderr\": 0.039397364351956274\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6188679245283019,\n \"acc_stderr\": 0.02989060968628664,\n \"acc_norm\": 0.6188679245283019,\n \"acc_norm_stderr\": 0.02989060968628664\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6527777777777778,\n \"acc_stderr\": 0.039812405437178615,\n \"acc_norm\": 0.6527777777777778,\n \"acc_norm_stderr\": 0.039812405437178615\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6184971098265896,\n \"acc_stderr\": 0.03703851193099522,\n \"acc_norm\": 0.6184971098265896,\n \"acc_norm_stderr\": 0.03703851193099522\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5659574468085107,\n \"acc_stderr\": 0.03240038086792747,\n \"acc_norm\": 0.5659574468085107,\n \"acc_norm_stderr\": 0.03240038086792747\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.3508771929824561,\n \"acc_stderr\": 0.04489539350270699,\n \"acc_norm\": 0.3508771929824561,\n \"acc_norm_stderr\": 0.04489539350270699\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555497,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555497\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3412698412698413,\n \"acc_stderr\": 0.024419234966819064,\n \"acc_norm\": 0.3412698412698413,\n \"acc_norm_stderr\": 0.024419234966819064\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.35714285714285715,\n \"acc_stderr\": 0.04285714285714281,\n \"acc_norm\": 0.35714285714285715,\n \"acc_norm_stderr\": 0.04285714285714281\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145633,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145633\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6387096774193548,\n \"acc_stderr\": 0.027327548447957543,\n \"acc_norm\": 0.6387096774193548,\n \"acc_norm_stderr\": 0.027327548447957543\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4088669950738916,\n \"acc_stderr\": 0.034590588158832314,\n \"acc_norm\": 0.4088669950738916,\n \"acc_norm_stderr\": 0.034590588158832314\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6424242424242425,\n \"acc_stderr\": 0.03742597043806585,\n \"acc_norm\": 0.6424242424242425,\n \"acc_norm_stderr\": 0.03742597043806585\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7676767676767676,\n \"acc_stderr\": 0.03008862949021749,\n \"acc_norm\": 0.7676767676767676,\n \"acc_norm_stderr\": 0.03008862949021749\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.844559585492228,\n \"acc_stderr\": 0.02614848346915332,\n \"acc_norm\": 0.844559585492228,\n \"acc_norm_stderr\": 0.02614848346915332\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5769230769230769,\n \"acc_stderr\": 0.025049197876042338,\n \"acc_norm\": 0.5769230769230769,\n \"acc_norm_stderr\": 0.025049197876042338\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2814814814814815,\n \"acc_stderr\": 0.027420019350945284,\n \"acc_norm\": 0.2814814814814815,\n \"acc_norm_stderr\": 0.027420019350945284\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6302521008403361,\n \"acc_stderr\": 0.03135709599613591,\n \"acc_norm\": 0.6302521008403361,\n \"acc_norm_stderr\": 0.03135709599613591\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.763302752293578,\n \"acc_stderr\": 0.018224078117299106,\n \"acc_norm\": 0.763302752293578,\n \"acc_norm_stderr\": 0.018224078117299106\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4212962962962963,\n \"acc_stderr\": 0.03367462138896078,\n \"acc_norm\": 0.4212962962962963,\n \"acc_norm_stderr\": 0.03367462138896078\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7352941176470589,\n \"acc_stderr\": 0.030964517926923403,\n \"acc_norm\": 0.7352941176470589,\n \"acc_norm_stderr\": 0.030964517926923403\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7341772151898734,\n \"acc_stderr\": 0.02875679962965834,\n \"acc_norm\": 0.7341772151898734,\n \"acc_norm_stderr\": 0.02875679962965834\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6367713004484304,\n \"acc_stderr\": 0.032277904428505,\n \"acc_norm\": 0.6367713004484304,\n \"acc_norm_stderr\": 0.032277904428505\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6946564885496184,\n \"acc_stderr\": 0.040393149787245605,\n \"acc_norm\": 0.6946564885496184,\n \"acc_norm_stderr\": 0.040393149787245605\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990948,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990948\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7177914110429447,\n \"acc_stderr\": 0.03536117886664742,\n \"acc_norm\": 0.7177914110429447,\n \"acc_norm_stderr\": 0.03536117886664742\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.41964285714285715,\n \"acc_stderr\": 0.046840993210771065,\n \"acc_norm\": 0.41964285714285715,\n \"acc_norm_stderr\": 0.046840993210771065\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690878,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690878\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8205128205128205,\n \"acc_stderr\": 0.025140935950335445,\n \"acc_norm\": 0.8205128205128205,\n \"acc_norm_stderr\": 0.025140935950335445\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939098,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939098\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7547892720306514,\n \"acc_stderr\": 0.015384352284543932,\n \"acc_norm\": 0.7547892720306514,\n \"acc_norm_stderr\": 0.015384352284543932\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6734104046242775,\n \"acc_stderr\": 0.025248264774242836,\n \"acc_norm\": 0.6734104046242775,\n \"acc_norm_stderr\": 0.025248264774242836\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.31620111731843575,\n \"acc_stderr\": 0.015551673652172544,\n \"acc_norm\": 0.31620111731843575,\n \"acc_norm_stderr\": 0.015551673652172544\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.630718954248366,\n \"acc_stderr\": 0.027634176689602653,\n \"acc_norm\": 0.630718954248366,\n \"acc_norm_stderr\": 0.027634176689602653\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6077170418006431,\n \"acc_stderr\": 0.027731258647011994,\n \"acc_norm\": 0.6077170418006431,\n \"acc_norm_stderr\": 0.027731258647011994\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6265432098765432,\n \"acc_stderr\": 0.026915003011380154,\n \"acc_norm\": 0.6265432098765432,\n \"acc_norm_stderr\": 0.026915003011380154\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4148936170212766,\n \"acc_stderr\": 0.029392236584612503,\n \"acc_norm\": 0.4148936170212766,\n \"acc_norm_stderr\": 0.029392236584612503\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.423728813559322,\n \"acc_stderr\": 0.012620785155885992,\n \"acc_norm\": 0.423728813559322,\n \"acc_norm_stderr\": 0.012620785155885992\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5073529411764706,\n \"acc_stderr\": 0.030369552523902173,\n \"acc_norm\": 0.5073529411764706,\n \"acc_norm_stderr\": 0.030369552523902173\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6045751633986928,\n \"acc_stderr\": 0.019780465954777518,\n \"acc_norm\": 0.6045751633986928,\n \"acc_norm_stderr\": 0.019780465954777518\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.04653429807913508,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.04653429807913508\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.0289205832206756,\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.0289205832206756\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.4975124378109453,\n \"acc_stderr\": 0.03535490150137288,\n \"acc_norm\": 0.4975124378109453,\n \"acc_norm_stderr\": 0.03535490150137288\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036625,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036625\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.03892494720807614,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.03892494720807614\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7485380116959064,\n \"acc_stderr\": 0.033275044238468436,\n \"acc_norm\": 0.7485380116959064,\n \"acc_norm_stderr\": 0.033275044238468436\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.48592411260709917,\n \"mc1_stderr\": 0.017496563717042793,\n \"mc2\": 0.6542262778057006,\n \"mc2_stderr\": 0.015681013574816827\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8050513022888713,\n \"acc_stderr\": 0.011134099415938256\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0712661106899166,\n \"acc_stderr\": 0.0070864621279544985\n }\n}\n```", "repo_url": "https://huggingface.co/CallComply/SOLAR-10.7B-Instruct-v1.0-128k", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-38-12.148949.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["**/details_harness|winogrande|5_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T22-38-12.148949.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T22_38_12.148949", "path": ["results_2024-01-14T22-38-12.148949.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T22-38-12.148949.parquet"]}]}]}
2024-01-14T22:40:49+00:00
f2db36ac37e9ac9db6d17a8bc7dffdf9a86fc230
Foquss/jahprayzah
[ "license:apache-2.0", "region:us" ]
2024-01-14T22:43:58+00:00
{"license": "apache-2.0"}
2024-01-14T22:43:58+00:00
86a00c83b88e66f867ab4b558450dd8860a6353a
samcp210/voices
[ "region:us" ]
2024-01-14T22:44:45+00:00
{}
2024-01-14T22:44:45+00:00
890125115eb54752ed1ff6921273656f0a97c9ab
maxmyn/wholesome_greentext_180k
[ "region:us" ]
2024-01-14T22:45:45+00:00
{"dataset_info": {"features": [{"name": "greentexts", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 23675637, "num_examples": 179561}], "download_size": 14651344, "dataset_size": 23675637}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T22:45:51+00:00
5a106b6118a56ccd37d385ba6f3b9409ddb7adf2
slasocrates/DulceMaria
[ "license:openrail", "region:us" ]
2024-01-14T22:46:45+00:00
{"license": "openrail"}
2024-01-14T22:49:11+00:00
73ba7886521de84706107e9a7226e13763211604
nisancoskun/finnish_sentiment_data
[ "task_categories:text-classification", "size_categories:10K<n<100K", "source_datasets:sepidmnorozy/Finnish_sentiment", "source_datasets:https://github.com/cynarr/sentiment-analysis", "language:fi", "license:mit", "region:us" ]
2024-01-14T22:49:49+00:00
{"language": ["fi"], "license": "mit", "size_categories": ["10K<n<100K"], "source_datasets": ["sepidmnorozy/Finnish_sentiment", "https://github.com/cynarr/sentiment-analysis"], "task_categories": ["text-classification"]}
2024-01-16T16:44:31+00:00
c632ea8e45be1687f511a2d02818538073bc985c
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T22:50:27+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:42:58+00:00
91dba49e507b26408827372c45e6899f7b4fb59a
# Dataset Card for Evaluation run of CallComply/Starling-LM-11B-alpha <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [CallComply/Starling-LM-11B-alpha](https://huggingface.co/CallComply/Starling-LM-11B-alpha) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T22:50:55.626486](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha/blob/main/results_2024-01-14T22-50-55.626486.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6124497978149351, "acc_stderr": 0.032857819921299845, "acc_norm": 0.618390298674969, "acc_norm_stderr": 0.03352975999467289, "mc1": 0.25703794369645044, "mc1_stderr": 0.01529807750948508, "mc2": 0.4153002055665266, "mc2_stderr": 0.014702058713161457 }, "harness|arc:challenge|25": { "acc": 0.5639931740614335, "acc_stderr": 0.014491225699230916, "acc_norm": 0.6126279863481229, "acc_norm_stderr": 0.01423587248790987 }, "harness|hellaswag|10": { "acc": 0.6105357498506274, "acc_stderr": 0.0048663222583359665, "acc_norm": 0.8198566022704641, "acc_norm_stderr": 0.0038352143402103785 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5703703703703704, "acc_stderr": 0.042763494943765995, "acc_norm": 0.5703703703703704, "acc_norm_stderr": 0.042763494943765995 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6776315789473685, "acc_stderr": 0.03803510248351585, "acc_norm": 0.6776315789473685, "acc_norm_stderr": 0.03803510248351585 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.04923659639173309, "acc_norm": 0.6, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6830188679245283, "acc_stderr": 0.028637235639800893, "acc_norm": 0.6830188679245283, "acc_norm_stderr": 0.028637235639800893 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6597222222222222, "acc_stderr": 0.039621355734862175, "acc_norm": 0.6597222222222222, "acc_norm_stderr": 0.039621355734862175 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621505, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.653179190751445, "acc_stderr": 0.036291466701596636, "acc_norm": 0.653179190751445, "acc_norm_stderr": 0.036291466701596636 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726366, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726366 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.502127659574468, "acc_stderr": 0.032685726586674915, "acc_norm": 0.502127659574468, "acc_norm_stderr": 0.032685726586674915 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.41228070175438597, "acc_stderr": 0.046306532033665956, "acc_norm": 0.41228070175438597, "acc_norm_stderr": 0.046306532033665956 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.593103448275862, "acc_stderr": 0.04093793981266236, "acc_norm": 0.593103448275862, "acc_norm_stderr": 0.04093793981266236 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.41005291005291006, "acc_stderr": 0.025331202438944444, "acc_norm": 0.41005291005291006, "acc_norm_stderr": 0.025331202438944444 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4603174603174603, "acc_stderr": 0.04458029125470973, "acc_norm": 0.4603174603174603, "acc_norm_stderr": 0.04458029125470973 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7580645161290323, "acc_stderr": 0.024362599693031086, "acc_norm": 0.7580645161290323, "acc_norm_stderr": 0.024362599693031086 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4630541871921182, "acc_stderr": 0.035083705204426656, "acc_norm": 0.4630541871921182, "acc_norm_stderr": 0.035083705204426656 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.64, "acc_stderr": 0.04824181513244218, "acc_norm": 0.64, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7272727272727273, "acc_stderr": 0.0347769116216366, "acc_norm": 0.7272727272727273, "acc_norm_stderr": 0.0347769116216366 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7474747474747475, "acc_stderr": 0.030954055470365897, "acc_norm": 0.7474747474747475, "acc_norm_stderr": 0.030954055470365897 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8756476683937824, "acc_stderr": 0.023814477086593556, "acc_norm": 0.8756476683937824, "acc_norm_stderr": 0.023814477086593556 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6410256410256411, "acc_stderr": 0.02432173848460235, "acc_norm": 0.6410256410256411, "acc_norm_stderr": 0.02432173848460235 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3037037037037037, "acc_stderr": 0.02803792996911499, "acc_norm": 0.3037037037037037, "acc_norm_stderr": 0.02803792996911499 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6428571428571429, "acc_stderr": 0.031124619309328177, "acc_norm": 0.6428571428571429, "acc_norm_stderr": 0.031124619309328177 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3708609271523179, "acc_stderr": 0.03943966699183629, "acc_norm": 0.3708609271523179, "acc_norm_stderr": 0.03943966699183629 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8146788990825689, "acc_stderr": 0.01665927970029582, "acc_norm": 0.8146788990825689, "acc_norm_stderr": 0.01665927970029582 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4583333333333333, "acc_stderr": 0.033981108902946366, "acc_norm": 0.4583333333333333, "acc_norm_stderr": 0.033981108902946366 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7598039215686274, "acc_stderr": 0.02998373305591361, "acc_norm": 0.7598039215686274, "acc_norm_stderr": 0.02998373305591361 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7848101265822784, "acc_stderr": 0.02675082699467617, "acc_norm": 0.7848101265822784, "acc_norm_stderr": 0.02675082699467617 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6412556053811659, "acc_stderr": 0.03219079200419996, "acc_norm": 0.6412556053811659, "acc_norm_stderr": 0.03219079200419996 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7633587786259542, "acc_stderr": 0.03727673575596914, "acc_norm": 0.7633587786259542, "acc_norm_stderr": 0.03727673575596914 }, "harness|hendrycksTest-international_law|5": { "acc": 0.768595041322314, "acc_stderr": 0.038498560987940876, "acc_norm": 0.768595041322314, "acc_norm_stderr": 0.038498560987940876 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6666666666666666, "acc_stderr": 0.04557239513497751, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.04557239513497751 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7116564417177914, "acc_stderr": 0.035590395316173425, "acc_norm": 0.7116564417177914, "acc_norm_stderr": 0.035590395316173425 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.8058252427184466, "acc_stderr": 0.03916667762822584, "acc_norm": 0.8058252427184466, "acc_norm_stderr": 0.03916667762822584 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8504273504273504, "acc_stderr": 0.023365051491753715, "acc_norm": 0.8504273504273504, "acc_norm_stderr": 0.023365051491753715 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8020434227330779, "acc_stderr": 0.014248873549217582, "acc_norm": 0.8020434227330779, "acc_norm_stderr": 0.014248873549217582 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6907514450867052, "acc_stderr": 0.02488314057007176, "acc_norm": 0.6907514450867052, "acc_norm_stderr": 0.02488314057007176 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4245810055865922, "acc_stderr": 0.01653117099327889, "acc_norm": 0.4245810055865922, "acc_norm_stderr": 0.01653117099327889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6830065359477124, "acc_stderr": 0.026643278474508755, "acc_norm": 0.6830065359477124, "acc_norm_stderr": 0.026643278474508755 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6559485530546624, "acc_stderr": 0.02698147804364804, "acc_norm": 0.6559485530546624, "acc_norm_stderr": 0.02698147804364804 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7067901234567902, "acc_stderr": 0.025329888171900926, "acc_norm": 0.7067901234567902, "acc_norm_stderr": 0.025329888171900926 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4397163120567376, "acc_stderr": 0.02960991207559411, "acc_norm": 0.4397163120567376, "acc_norm_stderr": 0.02960991207559411 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4348109517601043, "acc_stderr": 0.012661233805616295, "acc_norm": 0.4348109517601043, "acc_norm_stderr": 0.012661233805616295 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6066176470588235, "acc_stderr": 0.029674288281311155, "acc_norm": 0.6066176470588235, "acc_norm_stderr": 0.029674288281311155 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6356209150326797, "acc_stderr": 0.019469518221573705, "acc_norm": 0.6356209150326797, "acc_norm_stderr": 0.019469518221573705 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6272727272727273, "acc_stderr": 0.04631381319425465, "acc_norm": 0.6272727272727273, "acc_norm_stderr": 0.04631381319425465 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.710204081632653, "acc_stderr": 0.02904308868330433, "acc_norm": 0.710204081632653, "acc_norm_stderr": 0.02904308868330433 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8258706467661692, "acc_stderr": 0.026814951200421606, "acc_norm": 0.8258706467661692, "acc_norm_stderr": 0.026814951200421606 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.03487350880197768, "acc_norm": 0.86, "acc_norm_stderr": 0.03487350880197768 }, "harness|hendrycksTest-virology|5": { "acc": 0.4939759036144578, "acc_stderr": 0.03892212195333045, "acc_norm": 0.4939759036144578, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.02796678585916089, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.02796678585916089 }, "harness|truthfulqa:mc|0": { "mc1": 0.25703794369645044, "mc1_stderr": 0.01529807750948508, "mc2": 0.4153002055665266, "mc2_stderr": 0.014702058713161457 }, "harness|winogrande|5": { "acc": 0.7805840568271507, "acc_stderr": 0.011631268360607778 }, "harness|gsm8k|5": { "acc": 0.35178165276724793, "acc_stderr": 0.01315344602353602 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha
[ "region:us" ]
2024-01-14T22:53:11+00:00
{"pretty_name": "Evaluation run of CallComply/Starling-LM-11B-alpha", "dataset_summary": "Dataset automatically created during the evaluation run of model [CallComply/Starling-LM-11B-alpha](https://huggingface.co/CallComply/Starling-LM-11B-alpha) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T22:50:55.626486](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha/blob/main/results_2024-01-14T22-50-55.626486.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6124497978149351,\n \"acc_stderr\": 0.032857819921299845,\n \"acc_norm\": 0.618390298674969,\n \"acc_norm_stderr\": 0.03352975999467289,\n \"mc1\": 0.25703794369645044,\n \"mc1_stderr\": 0.01529807750948508,\n \"mc2\": 0.4153002055665266,\n \"mc2_stderr\": 0.014702058713161457\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5639931740614335,\n \"acc_stderr\": 0.014491225699230916,\n \"acc_norm\": 0.6126279863481229,\n \"acc_norm_stderr\": 0.01423587248790987\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6105357498506274,\n \"acc_stderr\": 0.0048663222583359665,\n \"acc_norm\": 0.8198566022704641,\n \"acc_norm_stderr\": 0.0038352143402103785\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5703703703703704,\n \"acc_stderr\": 0.042763494943765995,\n \"acc_norm\": 0.5703703703703704,\n \"acc_norm_stderr\": 0.042763494943765995\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6776315789473685,\n \"acc_stderr\": 0.03803510248351585,\n \"acc_norm\": 0.6776315789473685,\n \"acc_norm_stderr\": 0.03803510248351585\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6830188679245283,\n \"acc_stderr\": 0.028637235639800893,\n \"acc_norm\": 0.6830188679245283,\n \"acc_norm_stderr\": 0.028637235639800893\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6597222222222222,\n \"acc_stderr\": 0.039621355734862175,\n \"acc_norm\": 0.6597222222222222,\n \"acc_norm_stderr\": 0.039621355734862175\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621505,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621505\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.653179190751445,\n \"acc_stderr\": 0.036291466701596636,\n \"acc_norm\": 0.653179190751445,\n \"acc_norm_stderr\": 0.036291466701596636\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726366,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726366\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.502127659574468,\n \"acc_stderr\": 0.032685726586674915,\n \"acc_norm\": 0.502127659574468,\n \"acc_norm_stderr\": 0.032685726586674915\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.41228070175438597,\n \"acc_stderr\": 0.046306532033665956,\n \"acc_norm\": 0.41228070175438597,\n \"acc_norm_stderr\": 0.046306532033665956\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.593103448275862,\n \"acc_stderr\": 0.04093793981266236,\n \"acc_norm\": 0.593103448275862,\n \"acc_norm_stderr\": 0.04093793981266236\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.41005291005291006,\n \"acc_stderr\": 0.025331202438944444,\n \"acc_norm\": 0.41005291005291006,\n \"acc_norm_stderr\": 0.025331202438944444\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4603174603174603,\n \"acc_stderr\": 0.04458029125470973,\n \"acc_norm\": 0.4603174603174603,\n \"acc_norm_stderr\": 0.04458029125470973\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7580645161290323,\n \"acc_stderr\": 0.024362599693031086,\n \"acc_norm\": 0.7580645161290323,\n \"acc_norm_stderr\": 0.024362599693031086\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4630541871921182,\n \"acc_stderr\": 0.035083705204426656,\n \"acc_norm\": 0.4630541871921182,\n \"acc_norm_stderr\": 0.035083705204426656\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.0347769116216366,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.0347769116216366\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7474747474747475,\n \"acc_stderr\": 0.030954055470365897,\n \"acc_norm\": 0.7474747474747475,\n \"acc_norm_stderr\": 0.030954055470365897\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8756476683937824,\n \"acc_stderr\": 0.023814477086593556,\n \"acc_norm\": 0.8756476683937824,\n \"acc_norm_stderr\": 0.023814477086593556\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6410256410256411,\n \"acc_stderr\": 0.02432173848460235,\n \"acc_norm\": 0.6410256410256411,\n \"acc_norm_stderr\": 0.02432173848460235\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3037037037037037,\n \"acc_stderr\": 0.02803792996911499,\n \"acc_norm\": 0.3037037037037037,\n \"acc_norm_stderr\": 0.02803792996911499\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6428571428571429,\n \"acc_stderr\": 0.031124619309328177,\n \"acc_norm\": 0.6428571428571429,\n \"acc_norm_stderr\": 0.031124619309328177\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3708609271523179,\n \"acc_stderr\": 0.03943966699183629,\n \"acc_norm\": 0.3708609271523179,\n \"acc_norm_stderr\": 0.03943966699183629\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8146788990825689,\n \"acc_stderr\": 0.01665927970029582,\n \"acc_norm\": 0.8146788990825689,\n \"acc_norm_stderr\": 0.01665927970029582\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4583333333333333,\n \"acc_stderr\": 0.033981108902946366,\n \"acc_norm\": 0.4583333333333333,\n \"acc_norm_stderr\": 0.033981108902946366\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7598039215686274,\n \"acc_stderr\": 0.02998373305591361,\n \"acc_norm\": 0.7598039215686274,\n \"acc_norm_stderr\": 0.02998373305591361\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7848101265822784,\n \"acc_stderr\": 0.02675082699467617,\n \"acc_norm\": 0.7848101265822784,\n \"acc_norm_stderr\": 0.02675082699467617\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6412556053811659,\n \"acc_stderr\": 0.03219079200419996,\n \"acc_norm\": 0.6412556053811659,\n \"acc_norm_stderr\": 0.03219079200419996\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7633587786259542,\n \"acc_stderr\": 0.03727673575596914,\n \"acc_norm\": 0.7633587786259542,\n \"acc_norm_stderr\": 0.03727673575596914\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.768595041322314,\n \"acc_stderr\": 0.038498560987940876,\n \"acc_norm\": 0.768595041322314,\n \"acc_norm_stderr\": 0.038498560987940876\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.04557239513497751,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.04557239513497751\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7116564417177914,\n \"acc_stderr\": 0.035590395316173425,\n \"acc_norm\": 0.7116564417177914,\n \"acc_norm_stderr\": 0.035590395316173425\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8058252427184466,\n \"acc_stderr\": 0.03916667762822584,\n \"acc_norm\": 0.8058252427184466,\n \"acc_norm_stderr\": 0.03916667762822584\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8504273504273504,\n \"acc_stderr\": 0.023365051491753715,\n \"acc_norm\": 0.8504273504273504,\n \"acc_norm_stderr\": 0.023365051491753715\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8020434227330779,\n \"acc_stderr\": 0.014248873549217582,\n \"acc_norm\": 0.8020434227330779,\n \"acc_norm_stderr\": 0.014248873549217582\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6907514450867052,\n \"acc_stderr\": 0.02488314057007176,\n \"acc_norm\": 0.6907514450867052,\n \"acc_norm_stderr\": 0.02488314057007176\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4245810055865922,\n \"acc_stderr\": 0.01653117099327889,\n \"acc_norm\": 0.4245810055865922,\n \"acc_norm_stderr\": 0.01653117099327889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6830065359477124,\n \"acc_stderr\": 0.026643278474508755,\n \"acc_norm\": 0.6830065359477124,\n \"acc_norm_stderr\": 0.026643278474508755\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6559485530546624,\n \"acc_stderr\": 0.02698147804364804,\n \"acc_norm\": 0.6559485530546624,\n \"acc_norm_stderr\": 0.02698147804364804\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7067901234567902,\n \"acc_stderr\": 0.025329888171900926,\n \"acc_norm\": 0.7067901234567902,\n \"acc_norm_stderr\": 0.025329888171900926\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4397163120567376,\n \"acc_stderr\": 0.02960991207559411,\n \"acc_norm\": 0.4397163120567376,\n \"acc_norm_stderr\": 0.02960991207559411\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4348109517601043,\n \"acc_stderr\": 0.012661233805616295,\n \"acc_norm\": 0.4348109517601043,\n \"acc_norm_stderr\": 0.012661233805616295\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6066176470588235,\n \"acc_stderr\": 0.029674288281311155,\n \"acc_norm\": 0.6066176470588235,\n \"acc_norm_stderr\": 0.029674288281311155\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6356209150326797,\n \"acc_stderr\": 0.019469518221573705,\n \"acc_norm\": 0.6356209150326797,\n \"acc_norm_stderr\": 0.019469518221573705\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6272727272727273,\n \"acc_stderr\": 0.04631381319425465,\n \"acc_norm\": 0.6272727272727273,\n \"acc_norm_stderr\": 0.04631381319425465\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.710204081632653,\n \"acc_stderr\": 0.02904308868330433,\n \"acc_norm\": 0.710204081632653,\n \"acc_norm_stderr\": 0.02904308868330433\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8258706467661692,\n \"acc_stderr\": 0.026814951200421606,\n \"acc_norm\": 0.8258706467661692,\n \"acc_norm_stderr\": 0.026814951200421606\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.03487350880197768,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.03487350880197768\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4939759036144578,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.4939759036144578,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.02796678585916089,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.02796678585916089\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.25703794369645044,\n \"mc1_stderr\": 0.01529807750948508,\n \"mc2\": 0.4153002055665266,\n \"mc2_stderr\": 0.014702058713161457\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7805840568271507,\n \"acc_stderr\": 0.011631268360607778\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.35178165276724793,\n \"acc_stderr\": 0.01315344602353602\n }\n}\n```", "repo_url": "https://huggingface.co/CallComply/Starling-LM-11B-alpha", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T22-50-55.626486.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["**/details_harness|winogrande|5_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T22-50-55.626486.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T22_50_55.626486", "path": ["results_2024-01-14T22-50-55.626486.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T22-50-55.626486.parquet"]}]}]}
2024-01-14T22:53:32+00:00
37a21caed0c61f5e525d45fcb1e8577a83fafd00
ibivibiv/plantuml-training
[ "region:us" ]
2024-01-14T23:03:25+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1569689, "num_examples": 972}], "download_size": 681556, "dataset_size": 1569689}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-14T23:08:35+00:00
a76e08334dc92d55dfaeae38e73b81010ee78ae2
# Dataset Card for Evaluation run of cloudyu/Yi-34Bx3-MoE-90B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [cloudyu/Yi-34Bx3-MoE-90B](https://huggingface.co/cloudyu/Yi-34Bx3-MoE-90B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_cloudyu__Yi-34Bx3-MoE-90B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-14T23:01:35.520046](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx3-MoE-90B/blob/main/results_2024-01-14T23-01-35.520046.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.770922119161067, "acc_stderr": 0.027863740601296195, "acc_norm": 0.774340723628372, "acc_norm_stderr": 0.02839947094621756, "mc1": 0.49326805385556916, "mc1_stderr": 0.017501914492655386, "mc2": 0.6631117489702718, "mc2_stderr": 0.01453284217897903 }, "harness|arc:challenge|25": { "acc": 0.6723549488054608, "acc_stderr": 0.01371584794071934, "acc_norm": 0.7090443686006825, "acc_norm_stderr": 0.01327307786590759 }, "harness|hellaswag|10": { "acc": 0.6586337382991436, "acc_stderr": 0.004731989816563666, "acc_norm": 0.8533160724955188, "acc_norm_stderr": 0.003530675014892315 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7407407407407407, "acc_stderr": 0.03785714465066653, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.03785714465066653 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.9013157894736842, "acc_stderr": 0.02427022773752271, "acc_norm": 0.9013157894736842, "acc_norm_stderr": 0.02427022773752271 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.76, "acc_stderr": 0.04292346959909283, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909283 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8037735849056604, "acc_stderr": 0.024442388131100806, "acc_norm": 0.8037735849056604, "acc_norm_stderr": 0.024442388131100806 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8888888888888888, "acc_stderr": 0.026280550932848087, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.026280550932848087 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.65, "acc_stderr": 0.04793724854411019, "acc_norm": 0.65, "acc_norm_stderr": 0.04793724854411019 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.45, "acc_stderr": 0.04999999999999999, "acc_norm": 0.45, "acc_norm_stderr": 0.04999999999999999 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7456647398843931, "acc_stderr": 0.0332055644308557, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5980392156862745, "acc_stderr": 0.04878608714466996, "acc_norm": 0.5980392156862745, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.81, "acc_stderr": 0.03942772444036624, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036624 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.8, "acc_stderr": 0.0261488180184245, "acc_norm": 0.8, "acc_norm_stderr": 0.0261488180184245 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.6052631578947368, "acc_stderr": 0.045981880578165414, "acc_norm": 0.6052631578947368, "acc_norm_stderr": 0.045981880578165414 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7793103448275862, "acc_stderr": 0.03455930201924814, "acc_norm": 0.7793103448275862, "acc_norm_stderr": 0.03455930201924814 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.7195767195767195, "acc_stderr": 0.023135287974325618, "acc_norm": 0.7195767195767195, "acc_norm_stderr": 0.023135287974325618 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5873015873015873, "acc_stderr": 0.04403438954768176, "acc_norm": 0.5873015873015873, "acc_norm_stderr": 0.04403438954768176 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.57, "acc_stderr": 0.049756985195624284, "acc_norm": 0.57, "acc_norm_stderr": 0.049756985195624284 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.9, "acc_stderr": 0.017066403719657255, "acc_norm": 0.9, "acc_norm_stderr": 0.017066403719657255 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.6502463054187192, "acc_stderr": 0.03355400904969567, "acc_norm": 0.6502463054187192, "acc_norm_stderr": 0.03355400904969567 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.81, "acc_stderr": 0.03942772444036625, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036625 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8727272727272727, "acc_stderr": 0.026024657651656187, "acc_norm": 0.8727272727272727, "acc_norm_stderr": 0.026024657651656187 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9393939393939394, "acc_stderr": 0.01699999492742161, "acc_norm": 0.9393939393939394, "acc_norm_stderr": 0.01699999492742161 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9689119170984456, "acc_stderr": 0.012525310625527033, "acc_norm": 0.9689119170984456, "acc_norm_stderr": 0.012525310625527033 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.823076923076923, "acc_stderr": 0.01934807017439699, "acc_norm": 0.823076923076923, "acc_norm_stderr": 0.01934807017439699 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.45555555555555555, "acc_stderr": 0.03036486250482443, "acc_norm": 0.45555555555555555, "acc_norm_stderr": 0.03036486250482443 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8529411764705882, "acc_stderr": 0.023005459446673957, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.023005459446673957 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.5099337748344371, "acc_stderr": 0.04081677107248436, "acc_norm": 0.5099337748344371, "acc_norm_stderr": 0.04081677107248436 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9174311926605505, "acc_stderr": 0.011800361363016581, "acc_norm": 0.9174311926605505, "acc_norm_stderr": 0.011800361363016581 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6712962962962963, "acc_stderr": 0.032036140846700596, "acc_norm": 0.6712962962962963, "acc_norm_stderr": 0.032036140846700596 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9264705882352942, "acc_stderr": 0.018318855850089674, "acc_norm": 0.9264705882352942, "acc_norm_stderr": 0.018318855850089674 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8987341772151899, "acc_stderr": 0.019637720526065515, "acc_norm": 0.8987341772151899, "acc_norm_stderr": 0.019637720526065515 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7892376681614349, "acc_stderr": 0.027373095500540193, "acc_norm": 0.7892376681614349, "acc_norm_stderr": 0.027373095500540193 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.9007633587786259, "acc_stderr": 0.02622223517147737, "acc_norm": 0.9007633587786259, "acc_norm_stderr": 0.02622223517147737 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8925619834710744, "acc_stderr": 0.028268812192540627, "acc_norm": 0.8925619834710744, "acc_norm_stderr": 0.028268812192540627 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8796296296296297, "acc_stderr": 0.031457038543062504, "acc_norm": 0.8796296296296297, "acc_norm_stderr": 0.031457038543062504 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8834355828220859, "acc_stderr": 0.025212327210507094, "acc_norm": 0.8834355828220859, "acc_norm_stderr": 0.025212327210507094 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.6339285714285714, "acc_stderr": 0.04572372358737431, "acc_norm": 0.6339285714285714, "acc_norm_stderr": 0.04572372358737431 }, "harness|hendrycksTest-management|5": { "acc": 0.912621359223301, "acc_stderr": 0.027960689125970654, "acc_norm": 0.912621359223301, "acc_norm_stderr": 0.027960689125970654 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9401709401709402, "acc_stderr": 0.015537514263253876, "acc_norm": 0.9401709401709402, "acc_norm_stderr": 0.015537514263253876 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.88, "acc_stderr": 0.03265986323710906, "acc_norm": 0.88, "acc_norm_stderr": 0.03265986323710906 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9067688378033205, "acc_stderr": 0.010397417087292849, "acc_norm": 0.9067688378033205, "acc_norm_stderr": 0.010397417087292849 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8236994219653179, "acc_stderr": 0.020516425672490714, "acc_norm": 0.8236994219653179, "acc_norm_stderr": 0.020516425672490714 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.8011173184357542, "acc_stderr": 0.013349892983092521, "acc_norm": 0.8011173184357542, "acc_norm_stderr": 0.013349892983092521 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8562091503267973, "acc_stderr": 0.020091188936043693, "acc_norm": 0.8562091503267973, "acc_norm_stderr": 0.020091188936043693 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8295819935691319, "acc_stderr": 0.02135534302826405, "acc_norm": 0.8295819935691319, "acc_norm_stderr": 0.02135534302826405 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8858024691358025, "acc_stderr": 0.017696832447213897, "acc_norm": 0.8858024691358025, "acc_norm_stderr": 0.017696832447213897 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6382978723404256, "acc_stderr": 0.028663820147199485, "acc_norm": 0.6382978723404256, "acc_norm_stderr": 0.028663820147199485 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.6029986962190352, "acc_stderr": 0.012496346982909554, "acc_norm": 0.6029986962190352, "acc_norm_stderr": 0.012496346982909554 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8419117647058824, "acc_stderr": 0.02216146260806852, "acc_norm": 0.8419117647058824, "acc_norm_stderr": 0.02216146260806852 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.8251633986928104, "acc_stderr": 0.015366167064780644, "acc_norm": 0.8251633986928104, "acc_norm_stderr": 0.015366167064780644 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.04309118709946458, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.04309118709946458 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8408163265306122, "acc_stderr": 0.02342097206916635, "acc_norm": 0.8408163265306122, "acc_norm_stderr": 0.02342097206916635 }, "harness|hendrycksTest-sociology|5": { "acc": 0.9054726368159204, "acc_stderr": 0.020687186951534108, "acc_norm": 0.9054726368159204, "acc_norm_stderr": 0.020687186951534108 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.92, "acc_stderr": 0.0272659924344291, "acc_norm": 0.92, "acc_norm_stderr": 0.0272659924344291 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587952, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587952 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.9005847953216374, "acc_stderr": 0.022949025579355044, "acc_norm": 0.9005847953216374, "acc_norm_stderr": 0.022949025579355044 }, "harness|truthfulqa:mc|0": { "mc1": 0.49326805385556916, "mc1_stderr": 0.017501914492655386, "mc2": 0.6631117489702718, "mc2_stderr": 0.01453284217897903 }, "harness|winogrande|5": { "acc": 0.8429360694554064, "acc_stderr": 0.010226303949598484 }, "harness|gsm8k|5": { "acc": 0.7285822592873389, "acc_stderr": 0.01224900202615058 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_cloudyu__Yi-34Bx3-MoE-90B
[ "region:us" ]
2024-01-14T23:03:51+00:00
{"pretty_name": "Evaluation run of cloudyu/Yi-34Bx3-MoE-90B", "dataset_summary": "Dataset automatically created during the evaluation run of model [cloudyu/Yi-34Bx3-MoE-90B](https://huggingface.co/cloudyu/Yi-34Bx3-MoE-90B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_cloudyu__Yi-34Bx3-MoE-90B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-14T23:01:35.520046](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx3-MoE-90B/blob/main/results_2024-01-14T23-01-35.520046.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.770922119161067,\n \"acc_stderr\": 0.027863740601296195,\n \"acc_norm\": 0.774340723628372,\n \"acc_norm_stderr\": 0.02839947094621756,\n \"mc1\": 0.49326805385556916,\n \"mc1_stderr\": 0.017501914492655386,\n \"mc2\": 0.6631117489702718,\n \"mc2_stderr\": 0.01453284217897903\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6723549488054608,\n \"acc_stderr\": 0.01371584794071934,\n \"acc_norm\": 0.7090443686006825,\n \"acc_norm_stderr\": 0.01327307786590759\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6586337382991436,\n \"acc_stderr\": 0.004731989816563666,\n \"acc_norm\": 0.8533160724955188,\n \"acc_norm_stderr\": 0.003530675014892315\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.03785714465066653,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.03785714465066653\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.9013157894736842,\n \"acc_stderr\": 0.02427022773752271,\n \"acc_norm\": 0.9013157894736842,\n \"acc_norm_stderr\": 0.02427022773752271\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8037735849056604,\n \"acc_stderr\": 0.024442388131100806,\n \"acc_norm\": 0.8037735849056604,\n \"acc_norm_stderr\": 0.024442388131100806\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.026280550932848087,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.026280550932848087\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.04793724854411019,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.04793724854411019\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.04999999999999999,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.04999999999999999\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5980392156862745,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.5980392156862745,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036624,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036624\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.0261488180184245,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.0261488180184245\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.6052631578947368,\n \"acc_stderr\": 0.045981880578165414,\n \"acc_norm\": 0.6052631578947368,\n \"acc_norm_stderr\": 0.045981880578165414\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7793103448275862,\n \"acc_stderr\": 0.03455930201924814,\n \"acc_norm\": 0.7793103448275862,\n \"acc_norm_stderr\": 0.03455930201924814\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7195767195767195,\n \"acc_stderr\": 0.023135287974325618,\n \"acc_norm\": 0.7195767195767195,\n \"acc_norm_stderr\": 0.023135287974325618\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5873015873015873,\n \"acc_stderr\": 0.04403438954768176,\n \"acc_norm\": 0.5873015873015873,\n \"acc_norm_stderr\": 0.04403438954768176\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.57,\n \"acc_stderr\": 0.049756985195624284,\n \"acc_norm\": 0.57,\n \"acc_norm_stderr\": 0.049756985195624284\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.017066403719657255,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.017066403719657255\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.6502463054187192,\n \"acc_stderr\": 0.03355400904969567,\n \"acc_norm\": 0.6502463054187192,\n \"acc_norm_stderr\": 0.03355400904969567\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036625,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036625\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8727272727272727,\n \"acc_stderr\": 0.026024657651656187,\n \"acc_norm\": 0.8727272727272727,\n \"acc_norm_stderr\": 0.026024657651656187\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9393939393939394,\n \"acc_stderr\": 0.01699999492742161,\n \"acc_norm\": 0.9393939393939394,\n \"acc_norm_stderr\": 0.01699999492742161\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9689119170984456,\n \"acc_stderr\": 0.012525310625527033,\n \"acc_norm\": 0.9689119170984456,\n \"acc_norm_stderr\": 0.012525310625527033\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.823076923076923,\n \"acc_stderr\": 0.01934807017439699,\n \"acc_norm\": 0.823076923076923,\n \"acc_norm_stderr\": 0.01934807017439699\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.45555555555555555,\n \"acc_stderr\": 0.03036486250482443,\n \"acc_norm\": 0.45555555555555555,\n \"acc_norm_stderr\": 0.03036486250482443\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.023005459446673957,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.023005459446673957\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.5099337748344371,\n \"acc_stderr\": 0.04081677107248436,\n \"acc_norm\": 0.5099337748344371,\n \"acc_norm_stderr\": 0.04081677107248436\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9174311926605505,\n \"acc_stderr\": 0.011800361363016581,\n \"acc_norm\": 0.9174311926605505,\n \"acc_norm_stderr\": 0.011800361363016581\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6712962962962963,\n \"acc_stderr\": 0.032036140846700596,\n \"acc_norm\": 0.6712962962962963,\n \"acc_norm_stderr\": 0.032036140846700596\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9264705882352942,\n \"acc_stderr\": 0.018318855850089674,\n \"acc_norm\": 0.9264705882352942,\n \"acc_norm_stderr\": 0.018318855850089674\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8987341772151899,\n \"acc_stderr\": 0.019637720526065515,\n \"acc_norm\": 0.8987341772151899,\n \"acc_norm_stderr\": 0.019637720526065515\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7892376681614349,\n \"acc_stderr\": 0.027373095500540193,\n \"acc_norm\": 0.7892376681614349,\n \"acc_norm_stderr\": 0.027373095500540193\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.9007633587786259,\n \"acc_stderr\": 0.02622223517147737,\n \"acc_norm\": 0.9007633587786259,\n \"acc_norm_stderr\": 0.02622223517147737\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8925619834710744,\n \"acc_stderr\": 0.028268812192540627,\n \"acc_norm\": 0.8925619834710744,\n \"acc_norm_stderr\": 0.028268812192540627\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8796296296296297,\n \"acc_stderr\": 0.031457038543062504,\n \"acc_norm\": 0.8796296296296297,\n \"acc_norm_stderr\": 0.031457038543062504\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8834355828220859,\n \"acc_stderr\": 0.025212327210507094,\n \"acc_norm\": 0.8834355828220859,\n \"acc_norm_stderr\": 0.025212327210507094\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.6339285714285714,\n \"acc_stderr\": 0.04572372358737431,\n \"acc_norm\": 0.6339285714285714,\n \"acc_norm_stderr\": 0.04572372358737431\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.912621359223301,\n \"acc_stderr\": 0.027960689125970654,\n \"acc_norm\": 0.912621359223301,\n \"acc_norm_stderr\": 0.027960689125970654\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9401709401709402,\n \"acc_stderr\": 0.015537514263253876,\n \"acc_norm\": 0.9401709401709402,\n \"acc_norm_stderr\": 0.015537514263253876\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.88,\n \"acc_stderr\": 0.03265986323710906,\n \"acc_norm\": 0.88,\n \"acc_norm_stderr\": 0.03265986323710906\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9067688378033205,\n \"acc_stderr\": 0.010397417087292849,\n \"acc_norm\": 0.9067688378033205,\n \"acc_norm_stderr\": 0.010397417087292849\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8236994219653179,\n \"acc_stderr\": 0.020516425672490714,\n \"acc_norm\": 0.8236994219653179,\n \"acc_norm_stderr\": 0.020516425672490714\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.8011173184357542,\n \"acc_stderr\": 0.013349892983092521,\n \"acc_norm\": 0.8011173184357542,\n \"acc_norm_stderr\": 0.013349892983092521\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8562091503267973,\n \"acc_stderr\": 0.020091188936043693,\n \"acc_norm\": 0.8562091503267973,\n \"acc_norm_stderr\": 0.020091188936043693\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8295819935691319,\n \"acc_stderr\": 0.02135534302826405,\n \"acc_norm\": 0.8295819935691319,\n \"acc_norm_stderr\": 0.02135534302826405\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8858024691358025,\n \"acc_stderr\": 0.017696832447213897,\n \"acc_norm\": 0.8858024691358025,\n \"acc_norm_stderr\": 0.017696832447213897\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6382978723404256,\n \"acc_stderr\": 0.028663820147199485,\n \"acc_norm\": 0.6382978723404256,\n \"acc_norm_stderr\": 0.028663820147199485\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.6029986962190352,\n \"acc_stderr\": 0.012496346982909554,\n \"acc_norm\": 0.6029986962190352,\n \"acc_norm_stderr\": 0.012496346982909554\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8419117647058824,\n \"acc_stderr\": 0.02216146260806852,\n \"acc_norm\": 0.8419117647058824,\n \"acc_norm_stderr\": 0.02216146260806852\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.8251633986928104,\n \"acc_stderr\": 0.015366167064780644,\n \"acc_norm\": 0.8251633986928104,\n \"acc_norm_stderr\": 0.015366167064780644\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.04309118709946458,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.04309118709946458\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8408163265306122,\n \"acc_stderr\": 0.02342097206916635,\n \"acc_norm\": 0.8408163265306122,\n \"acc_norm_stderr\": 0.02342097206916635\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.9054726368159204,\n \"acc_stderr\": 0.020687186951534108,\n \"acc_norm\": 0.9054726368159204,\n \"acc_norm_stderr\": 0.020687186951534108\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.92,\n \"acc_stderr\": 0.0272659924344291,\n \"acc_norm\": 0.92,\n \"acc_norm_stderr\": 0.0272659924344291\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587952,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587952\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.9005847953216374,\n \"acc_stderr\": 0.022949025579355044,\n \"acc_norm\": 0.9005847953216374,\n \"acc_norm_stderr\": 0.022949025579355044\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.49326805385556916,\n \"mc1_stderr\": 0.017501914492655386,\n \"mc2\": 0.6631117489702718,\n \"mc2_stderr\": 0.01453284217897903\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8429360694554064,\n \"acc_stderr\": 0.010226303949598484\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7285822592873389,\n \"acc_stderr\": 0.01224900202615058\n }\n}\n```", "repo_url": "https://huggingface.co/cloudyu/Yi-34Bx3-MoE-90B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|arc:challenge|25_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|gsm8k|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hellaswag|10_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-14T23-01-35.520046.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["**/details_harness|winogrande|5_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-14T23-01-35.520046.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_14T23_01_35.520046", "path": ["results_2024-01-14T23-01-35.520046.parquet"]}, {"split": "latest", "path": ["results_2024-01-14T23-01-35.520046.parquet"]}]}]}
2024-01-14T23:04:13+00:00
a8e719bd0bb9c28f5718f98a536b9e412f2d07ae
# open-english-wordnet-synset-2023 Open English WordNet (2023) ## Dataset Details ### Dataset Description Open English WordNet is a lexical network of the English language grouping words into synsets and linking them according to relationships such as hypernymy, antonymy and meronymy. It is intended to be used in natural language processing applications and provides deep lexical information about the English language as a graph. ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** https://github.com/globalwordnet/english-wordnet - **Paper:** John P. McCrae, Alexandre Rademaker, Francis Bond, Ewa Rudnicka and Christiane Fellbaum (2019) [English WordNet 2019 – An Open-Source WordNet for English](https://aclanthology.org/2019.gwc-1.31/). In Proceedings of the 10th Global WordNet Conference – GWC 2019, Wrocław ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> ```bibtex @inproceedings{mccrae-etal-2019-english, title = "{E}nglish {W}ord{N}et 2019 {--} An Open-Source {W}ord{N}et for {E}nglish", author = "McCrae, John P. and Rademaker, Alexandre and Bond, Francis and Rudnicka, Ewa and Fellbaum, Christiane", editor = "Vossen, Piek and Fellbaum, Christiane", booktitle = "Proceedings of the 10th Global Wordnet Conference", month = jul, year = "2019", address = "Wroclaw, Poland", publisher = "Global Wordnet Association", url = "https://aclanthology.org/2019.gwc-1.31", pages = "245--252", abstract = "We describe the release of a new wordnet for English based on the Princeton WordNet, but now developed under an open-source model. In particular, this version of WordNet, which we call English WordNet 2019, which has been developed by multiple people around the world through GitHub, fixes many errors in previous wordnets for English. We give some details of the changes that have been made in this version and give some perspectives about likely future changes that will be made as this project continues to evolve.", } ```
jon-tow/open-english-wordnet-synset-2023
[ "license:cc-by-4.0", "region:us" ]
2024-01-14T23:07:28+00:00
{"license": "cc-by-4.0", "configs": [{"config_name": "default", "data_files": "open_english_wordnet_2023.jsonl"}]}
2024-01-15T04:12:09+00:00
cb4b3afe726b52f57490629bb43606760a987c36
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en-extra-3enr-1enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:15:12+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:42:35+00:00
6db40192dd3f4f10f8e5ec480a2af37870573ac9
erikbtx/minhavoiizzzz
[ "license:openrail", "region:us" ]
2024-01-14T23:15:15+00:00
{"license": "openrail"}
2024-01-14T23:15:39+00:00
38760e8b8b09404f15ddfc3b26ab6b8101dc9e1c
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-pt
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:19:56+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:42:01+00:00
6f7c24e5a866830895c44dea61b5e6f5666e48f5
marcelhuber/CompVis_integrals
[ "region:us" ]
2024-01-14T23:20:31+00:00
{}
2024-01-14T23:51:55+00:00
9bd39793f22c099ecbe171fe3c7f13c2f9f80553
marcelhuber/CompVis_predictions
[ "region:us" ]
2024-01-14T23:21:08+00:00
{}
2024-01-14T23:29:56+00:00
649d7aa3b22a008a23ee9eada18bfcb9696773f7
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-es
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:23:57+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:40:08+00:00
63ea2584bc2e0ad19e962927a4c866399b00263a
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-fr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:26:40+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:40:24+00:00
fd425d27b2792e7766b856a248584475fafceb96
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en-pt-es-fr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:29:44+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:40:40+00:00
0bb43ab6c704d5468568a112933e496c1a4ef8cc
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en-pt-es-fr-extra-3enr-3ptr-3esr-3frr
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:33:15+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:41:16+00:00
4296e705777ea41a4fb2fb943458ab97ee7cc324
Distributed under the Creative Commons-by-sa-4.0 respecting the ShareAlike of the [Spider Dataset](https://yale-lily.github.io/spider). Code explanations and links for the model's checkpoints and datasets are on Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql) Here is the [Hugging Face collection](https://huggingface.co/collections/Marchanjo/mrat-sql-65a671743bb0e70b416561f6), you can download the model's checkpoints and datasets, but to understand is better to go to Github [mRAT-SQL](https://github.com/C4AI/gap-text2sql). # mRAT-SQL-FIT ## A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Marcelo Archanjo Jose, Fabio Gagliardi Cozman Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). [paper published in Springer-Nature - International Journal of Information Technology](https://doi.org/10.1007/s41870-023-01342-3), [here the SharedIt link](https://rdcu.be/dff19). [here the pre-print in arXiv](https://arxiv.org/abs/2306.14256). # mRAT-SQL+GAP ## mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer Marcelo Archanjo José, Fabio Gagliardi Cozman The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: [mRAT-SQL](https://github.com/C4AI/gap-text2sql). BRACIS 2021: [paper published in Springer Lecture Notes in Computer Science](https://link.springer.com/chapter/10.1007%2F978-3-030-91699-2_35), [here the pre-print in arXiv](https://arxiv.org/abs/2110.03546). Based on: RAT-SQL+GAP: [Github](https://github.com/awslabs/gap-text2sql). Paper: [AAAI 2021 paper](https://arxiv.org/abs/2012.10309)
Marchanjo/spider-FIT-en-pt-es-fr-enr-enb
[ "license:cc-by-sa-4.0", "arxiv:2306.14256", "arxiv:2110.03546", "arxiv:2012.10309", "region:us" ]
2024-01-14T23:37:44+00:00
{"license": "cc-by-sa-4.0"}
2024-01-16T12:41:32+00:00
dc375029bfe036707d91075be93939d127f6fa0c
Arflas/wanted
[ "license:openrail", "region:us" ]
2024-01-14T23:43:16+00:00
{"license": "openrail"}
2024-01-14T23:44:06+00:00
ae1700982243110f59f761a63bacf19cce5a7fc3
# DATACLYSM PATCH 0.0.2: ARXIV ## USE THE NOTEBOOK TO GET STARTED! https://github.com/somewheresystems/dataclysm ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62a4a59791cfdc7b365ff5da/VwuifFrxpATEAPGOvYOHe.png) # somewheresystems/dataclysm-wikipedia-titles This dataset comprises of 3,360,984 English language arXiv papers from the Cornell/arXiv dataset, with two new columns added: title-embeddings and abstract-embeddings. These additional columns were generated using the bge-small-en-v1.5 embeddings model. The dataset was sourced from the Cornell/arXiv GCP bucket's json manifest for arXiv metadata, as of January 14th, 2024 [gs://arxiv-dataset/metadata-v5/arxiv-metadata-oai.json](gs://arxiv-dataset/metadata-v5/arxiv-metadata-oai.json) # Embeddings Model We used https://huggingface.co/BAAI/bge-small-en-v1.5 to embed the `title` and `abstract` fields. ## Contact Please contact [email protected] for inquiries.
somewheresystems/dataclysm-arxiv
[ "size_categories:1M<n<10M", "language:en", "license:cc0-1.0", "arxiv", "science", "region:us" ]
2024-01-14T23:51:58+00:00
{"language": ["en"], "license": "cc0-1.0", "size_categories": ["1M<n<10M"], "pretty_name": "dataclysm-arxiv", "tags": ["arxiv", "science"]}
2024-02-11T22:30:09+00:00
21dda751bf30b284045a55a95957c16b7bd80a90
Hiraishin/ujianjpj-test-a
[ "license:apache-2.0", "region:us" ]
2024-01-15T00:01:29+00:00
{"license": "apache-2.0"}
2024-01-15T00:02:46+00:00
5b93a53603b82bc9ffd2fc5d9679261766ce1873
Phreeeez/Alexeevafap
[ "region:us" ]
2024-01-15T00:05:00+00:00
{}
2024-01-15T00:06:21+00:00
a3d826cf3c0f0fe71519a3760dd74647273f3fbd
![Thumbnail](AI-GENERATED.jpg) # End-To-End TEXT-2-ASMR with Transformers This repository contains pretrained text2asmr model files, audio files and training+inference notebooks. ## Dataset Details This unique dataset is tailored for training and deploying text-to-speech (TTS) systems specifically focused on ASMR (Autonomous Sensory Meridian Response) content. It includes a comprehensive collection of pretrained model files, audio files and training code suitable for TTS applications. ### Dataset Description Inside this dataset, you shall find zipped folders as is follows: 1. **wavs_original:** original wav files as it was converted from the original video 2. **wavs:** original wav files broken into 1 minute chunks 3. **transcripts_original:** transribed scripts of the original wav files 4. **transcripts:** transribed scripts of the files in wav folder 5. **models:** text to spectrogram model trained on Glow-TTS 6. **ljspeech:** alignment files and respective checkpoint models (text to phoneme) 7. **transformer_tts_data.ljspeech**: trained checkpoint models and other files And the following files: 1. **Glow-TTS.ipynb:** Training and inference code for GlowTTS models 2. **TransformerTTS.ipynb:** Training and inference code for Transformer models 3. **VITS_TTS.ipynb:** Optional code for training VITS models; follows the same format as GlowTTS 4. **metadata_original.csv:** ljspeech formatted transcriptions of wav_original folder; ready for TTS training 5. **metadata.csv:** ljspeech formatted transcriptions of wav folder; ready for TTS training - **Curated by:** Alosh Denny, Anish S - **Language(s) (NLP):** English - **License:** MIT ### Dataset Sources **Youtube:** Rebeccas ASMR, Nanou ASMR, Gibi ASMR, Cherie Lorraine ASMR, etc. ## Uses The dataset can be used to train text2spec2mel, text2wav, and/or other end-to-end text-to-speech models. ### Direct Use Pretrained models can be tested out with the TransformerTTS notebook and the Glow-TTS notebook. ## Dataset Card Authors Alosh Denny, Anish S ## Dataset Card Contact [email protected]
aoxo/text2asmr-uncensored
[ "task_categories:text-to-speech", "task_categories:text-to-audio", "size_categories:1K<n<10K", "language:en", "license:mit", "code", "music", "doi:10.57967/hf/1610", "region:us" ]
2024-01-15T00:12:07+00:00
{"language": ["en"], "license": "mit", "size_categories": ["1K<n<10K"], "task_categories": ["text-to-speech", "text-to-audio"], "pretty_name": "Text-to-ASMR", "image": ["https://ibb.co/ZzFkfWZ"], "tags": ["code", "music"]}
2024-02-13T13:32:33+00:00
ad91832a34de99c38c22381ca7f081037310b1d3
Vitorbr2009/ds-voz-ajuricaba
[ "license:openrail", "region:us" ]
2024-01-15T00:18:53+00:00
{"license": "openrail"}
2024-01-15T00:19:27+00:00
2e1bebe81cf48da3cebb81b4aff691d1da82496f
joaosanches/tedtalks_dataset_not_in_train
[ "region:us" ]
2024-01-15T00:24:31+00:00
{"dataset_info": {"features": [{"name": "pt", "dtype": "string"}, {"name": "pt-br", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 39396315, "num_examples": 187718}], "download_size": 25225794, "dataset_size": 39396315}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-30T22:24:04+00:00
a20f8c530fa0b13625be42a3393c030d96d0f018
snowsense/food-images-1k
[ "task_categories:image-classification", "size_categories:10B<n<100B", "language:en", "license:mit", "Food", "Dish", "Chinese", "region:us" ]
2024-01-15T00:27:50+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10B<n<100B"], "task_categories": ["image-classification"], "pretty_name": "Food Images 1K", "tags": ["Food", "Dish", "Chinese"]}
2024-01-19T12:54:53+00:00
04348af14c0bc1c2dc16e4ac459a09470622d99e
SeanJIE250/llama2_law2
[ "region:us" ]
2024-01-15T00:48:21+00:00
{}
2024-01-15T01:00:37+00:00
d93a0c14c771534baab6301c6f977817344dbfa5
erikbtx/BASEDERIKTRAING
[ "license:openrail", "region:us" ]
2024-01-15T00:57:31+00:00
{"license": "openrail"}
2024-01-15T00:57:55+00:00
76d2f604d27a27784ef087493f04faadcceb80eb
# Dataset of yatadera_narumi/矢田寺成美 (Touhou) This is the dataset of yatadera_narumi/矢田寺成美 (Touhou), containing 11 images and their tags. The core tags of this character are `black_hair, braid, hat, long_hair, twin_braids, bangs, red_eyes, breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 11 | 15.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yatadera_narumi_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 11 | 9.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yatadera_narumi_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 27 | 18.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yatadera_narumi_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 11 | 13.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yatadera_narumi_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 27 | 23.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/yatadera_narumi_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/yatadera_narumi_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, ajirogasa, grey_dress, long_sleeves, solo, red_capelet, buttons, looking_at_viewer, clothes_writing, smile, long_earlobes, own_hands_together, snowing, blush, open_mouth, closed_mouth, upper_body | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | ajirogasa | grey_dress | long_sleeves | solo | red_capelet | buttons | looking_at_viewer | clothes_writing | smile | long_earlobes | own_hands_together | snowing | blush | open_mouth | closed_mouth | upper_body | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:------------|:-------------|:---------------|:-------|:--------------|:----------|:--------------------|:------------------|:--------|:----------------|:---------------------|:----------|:--------|:-------------|:---------------|:-------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/yatadera_narumi_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T01:04:57+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T01:09:00+00:00