sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
a915d9bde3669589c28233e984a5389a666a848b
robopg/slot
[ "license:apache-2.0", "region:us" ]
2024-01-15T07:06:03+00:00
{"license": "apache-2.0"}
2024-01-15T07:06:03+00:00
092997d918804c8d8d45df2ca7ba20d56e041309
bbokyeong/gen_data
[ "region:us" ]
2024-01-15T07:17:26+00:00
{}
2024-01-15T07:18:35+00:00
0a43fbc3297a923a67c8c43f0a4f48619f20acf9
latchuk/fabiow
[ "region:us" ]
2024-01-15T07:18:39+00:00
{}
2024-01-15T07:19:06+00:00
f125808ce749c0f57851970723046d1581eef5ba
# Dataset of tatari_kogasa/祟小傘 (Touhou) This is the dataset of tatari_kogasa/祟小傘 (Touhou), containing 27 images and their tags. The core tags of this character are `blue_hair, red_eyes, blue_eyes, heterochromia, breasts, short_hair, medium_breasts, large_breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 27 | 25.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tatari_kogasa_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 27 | 16.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tatari_kogasa_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 52 | 30.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tatari_kogasa_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 27 | 22.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tatari_kogasa_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 52 | 40.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tatari_kogasa_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/tatari_kogasa_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------| | 0 | 18 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, nipples, blush, karakasa_obake, purple_umbrella, tongue, navel, panties, nude, open_clothes, pussy, shirt | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, alternate_hair_length, long_hair, solo, dress, smile, aged_up, cleavage | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | nipples | blush | karakasa_obake | purple_umbrella | tongue | navel | panties | nude | open_clothes | pussy | shirt | alternate_hair_length | long_hair | dress | smile | aged_up | cleavage | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:--------|:-----------------|:------------------|:---------|:--------|:----------|:-------|:---------------|:--------|:--------|:------------------------|:------------|:--------|:--------|:----------|:-----------| | 0 | 18 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | 1 | 6 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | | | | | | | | | | | X | X | X | X | X | X |
CyberHarem/tatari_kogasa_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T07:20:09+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T07:24:18+00:00
da2e99195bf44017d7c8c7d81570e1191fefbda6
damojay/oas_tamil_from_eng
[ "region:us" ]
2024-01-15T07:31:59+00:00
{}
2024-01-15T07:33:02+00:00
267eb4425b4d9ac37ba03d9c20de2b4e2f3736dd
HES-XPLAIN/SportsImageClassificationOld
[ "task_categories:image-classification", "size_categories:100M<n<1B", "language:en", "sports", "region:us" ]
2024-01-15T07:32:08+00:00
{"language": ["en"], "size_categories": ["100M<n<1B"], "task_categories": ["image-classification"], "tags": ["sports"]}
2024-01-15T09:46:43+00:00
6d0622015e854d23c177f9619098424ede30b604
alikli/code
[ "license:apache-2.0", "region:us" ]
2024-01-15T07:32:15+00:00
{"license": "apache-2.0"}
2024-01-15T08:08:39+00:00
6cbb9ea8172a6d7a81486df69665de7308913c8d
skinplaydata/skindiease
[ "license:unknown", "region:us" ]
2024-01-15T07:37:46+00:00
{"license": "unknown"}
2024-01-15T07:46:56+00:00
9c9867ca40b8d7dfcb96b555d05c3d48b1769d8c
yeajinmin/News-NER-dataset-ForKoGPT2
[ "region:us" ]
2024-01-15T07:43:56+00:00
{"dataset_info": {"features": [{"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 55688441.819743976, "num_examples": 120113}, {"name": "test", "num_bytes": 13922458.180256024, "num_examples": 30029}], "download_size": 17862664, "dataset_size": 69610900.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T07:44:15+00:00
9326c002c5d2380e2a3508f1f13d1867aae75a79
qkrwnstj/cubism-journal
[ "region:us" ]
2024-01-15T07:51:26+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4452339.0, "num_examples": 20}], "download_size": 4429181, "dataset_size": 4452339.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T07:51:31+00:00
52c4ff1da157b3bdac76519fb8ec1c91c4a6a7ff
kamii/openslr_northernuk
[ "region:us" ]
2024-01-15T08:00:33+00:00
{}
2024-01-15T09:00:01+00:00
cc0ffb66a1b325cbca08fb0021565ddb161de2d4
Dataset of URLs of articles on Zenn ([zenn.dev](https://zenn.dev/))
p1atdev/zenn-articles-20240115
[ "size_categories:10K<n<100K", "language:ja", "license:cc0-1.0", "code", "region:us" ]
2024-01-15T08:03:26+00:00
{"language": ["ja"], "license": "cc0-1.0", "size_categories": ["10K<n<100K"], "tags": ["code"]}
2024-01-15T08:12:24+00:00
26469123750bf624a8f9b9613adda4b2652db396
Atipico1/squad_v2_only_unanswerable
[ "region:us" ]
2024-01-15T08:07:41+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 44644852.272898614, "num_examples": 49443}], "download_size": 6924554, "dataset_size": 44644852.272898614}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:07:47+00:00
83f162f482ae8aaf4ffa7cfbab0f22f7f7a7a584
# Dataset Card for "bagel_sft_binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
jan-hq/bagel_sft_binarized
[ "region:us" ]
2024-01-15T08:09:40+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 956516282.0643299, "num_examples": 562673}, {"name": "test", "num_bytes": 50344035.86689805, "num_examples": 29615}], "download_size": 628477131, "dataset_size": 1006860317.9312279}}
2024-01-15T08:10:33+00:00
bd46b4a1f3076cda0ff81b0e9bc3b5e2d149a999
fcolt99/combined_dataset
[ "region:us" ]
2024-01-15T08:12:39+00:00
{"dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int64"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "float64"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "null"}, {"name": "detoxify", "struct": [{"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "toxicity", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "struct": [{"name": "count", "sequence": "int64"}, {"name": "name", "sequence": "string"}]}, {"name": "labels", "struct": [{"name": "count", "sequence": "int64"}, {"name": "name", "sequence": "string"}, {"name": "value", "sequence": "float64"}]}], "splits": [{"name": "train", "num_bytes": 87349400, "num_examples": 81037}, {"name": "validation", "num_bytes": 3267472, "num_examples": 3001}], "download_size": 31617744, "dataset_size": 90616872}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-15T08:12:44+00:00
dc887bb63699fd5c50a39d96eab315369303c107
shrms/chart_dataset
[ "region:us" ]
2024-01-15T08:14:14+00:00
{"dataset_info": {"features": [{"name": "image_file", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11391822, "num_examples": 38634}], "download_size": 3135404, "dataset_size": 11391822}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-16T04:59:38+00:00
95ad05a61d5f0a98103839cebb7908ed074d9696
SoorajK1/sentiment_analysis_dataset-16c2d88a-9e71-49be-a846-443ea058041f
[ "region:us" ]
2024-01-15T08:15:09+00:00
{}
2024-01-15T08:15:10+00:00
33fa43b90eb3365c9c9242f5b078ed6d15561624
SoorajK1/sentiment_analysis_dataset-92f2ad6c-0376-4ce9-be36-3c6f26f144d7
[ "region:us" ]
2024-01-15T08:15:43+00:00
{}
2024-01-15T08:15:46+00:00
89d7187fae86a2aa035c3004d72b611f200eca28
SoorajK1/sentiment_analysis_dataset-f1bf9ea2-9a69-4087-9fbd-967c243e9303
[ "region:us" ]
2024-01-15T08:16:32+00:00
{}
2024-01-15T11:26:47+00:00
2328abac558ea6143b12d7ab1fc68721348537c9
HKUST-FYPHO2/audio-infos
[ "region:us" ]
2024-01-15T08:18:50+00:00
{"dataset_info": {"features": [{"name": "chords", "sequence": "int64"}, {"name": "chord_times", "sequence": "float64"}, {"name": "beats", "sequence": "float64"}, {"name": "downbeats", "sequence": "float64"}, {"name": "sample_rate", "dtype": "int64"}, {"name": "genre", "dtype": "string"}, {"name": "audio_name", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "playlist", "dtype": "string"}, {"name": "time_accessed", "dtype": "int64"}, {"name": "views", "dtype": "int64"}, {"name": "length", "dtype": "int64"}, {"name": "rating", "dtype": "string"}, {"name": "age_restricted", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 10545532, "num_examples": 1495}], "download_size": 2617793, "dataset_size": 10545532}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:18:53+00:00
1e129f07e29f756dbc2039c0ad2e5de8bf8fbce8
# Dataset of orange (Touhou) This is the dataset of orange (Touhou), containing 48 images and their tags. The core tags of this character are `long_hair, red_hair, hat, red_eyes, bow, hair_bow, ribbon`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 48 | 27.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/orange_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 48 | 22.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/orange_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 76 | 36.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/orange_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 48 | 26.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/orange_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 76 | 41.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/orange_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/orange_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 23 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, puffy_short_sleeves, shirt, shoes, vest, white_bow, yellow_headwear, yellow_shorts, full_body, smile, holding, open_mouth, socks, looking_at_viewer, simple_background, white_background, white_footwear | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | puffy_short_sleeves | shirt | shoes | vest | white_bow | yellow_headwear | yellow_shorts | full_body | smile | holding | open_mouth | socks | looking_at_viewer | simple_background | white_background | white_footwear | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------------------|:--------|:--------|:-------|:------------|:------------------|:----------------|:------------|:--------|:----------|:-------------|:--------|:--------------------|:--------------------|:-------------------|:-----------------| | 0 | 23 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/orange_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T08:24:01+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T08:42:52+00:00
7aa94d4524a53130cd19fd5e583f6ea521a28b17
# Dataset of nishida_satono/里乃爾子田 (Touhou) This is the dataset of nishida_satono/里乃爾子田 (Touhou), containing 315 images and their tags. The core tags of this character are `brown_hair, hat, black_headwear, bangs, bow, purple_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 315 | 249.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishida_satono_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 315 | 181.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishida_satono_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 633 | 339.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishida_satono_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 315 | 233.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishida_satono_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 633 | 421.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nishida_satono_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/nishida_satono_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 2girls, pink_dress, puffy_short_sleeves, short_hair_with_long_locks, smile, green_dress, looking_at_viewer, tate_eboshi, waist_apron, green_hair, pink_eyes, solo_focus, bamboo, frills, white_apron, holding, purple_dress | | 1 | 24 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, puffy_short_sleeves, short_hair_with_long_locks, solo, waist_apron, looking_at_viewer, pink_dress, smile, open_mouth, tate_eboshi, white_apron, pink_eyes, blush, breasts, holding | | 2 | 42 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | black_socks, short_hair_with_long_locks, pink_dress, looking_at_viewer, smile, tate_eboshi, waist_apron, 1girl, solo, kneehighs, pink_footwear, puffy_short_sleeves, holding, simple_background, full_body, mary_janes, white_background, open_mouth, purple_dress | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 2girls | pink_dress | puffy_short_sleeves | short_hair_with_long_locks | smile | green_dress | looking_at_viewer | tate_eboshi | waist_apron | green_hair | pink_eyes | solo_focus | bamboo | frills | white_apron | holding | purple_dress | 1girl | solo | open_mouth | blush | breasts | black_socks | kneehighs | pink_footwear | simple_background | full_body | mary_janes | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------|:-------------|:----------------------|:-----------------------------|:--------|:--------------|:--------------------|:--------------|:--------------|:-------------|:------------|:-------------|:---------|:---------|:--------------|:----------|:---------------|:--------|:-------|:-------------|:--------|:----------|:--------------|:------------|:----------------|:--------------------|:------------|:-------------|:-------------------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | 1 | 24 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | | X | X | X | X | | X | X | X | | X | | | | X | X | | X | X | X | X | X | | | | | | | | | 2 | 42 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | | X | X | X | X | | X | X | X | | | | | | | X | X | X | X | X | | | X | X | X | X | X | X | X |
CyberHarem/nishida_satono_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T08:24:20+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T09:37:38+00:00
ce741174523773288c10f675deb6e60df807db4b
anu111/coading
[ "size_categories:10K<n<100K", "license:mit", "code", "region:us" ]
2024-01-15T08:27:21+00:00
{"license": "mit", "size_categories": ["10K<n<100K"], "tags": ["code"]}
2024-01-15T08:28:47+00:00
3c769b0d306e6f5c4e4db753da785cab6c220d0d
A3KLFG/1232456
[ "license:apache-2.0", "region:us" ]
2024-01-15T08:30:05+00:00
{"license": "apache-2.0"}
2024-01-15T08:30:05+00:00
01e92792c3226ca246e74e15e722bcd779fb473d
thanhtlx/fix-cmg-time-split-type-cluster-pdg
[ "license:apache-2.0", "region:us" ]
2024-01-15T08:32:54+00:00
{"license": "apache-2.0"}
2024-01-15T08:33:20+00:00
7d49f509fec1d8a6d35b1b808fcb064eea498918
sarahahatee/lasl
[ "region:us" ]
2024-01-15T08:33:25+00:00
{}
2024-01-15T08:38:48+00:00
8191416fe15d057e85f7414ac4b57008e9924f02
presencesw/dataset1
[ "region:us" ]
2024-01-15T08:47:13+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 34776605, "num_examples": 13500}], "download_size": 21213166, "dataset_size": 34776605}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:47:20+00:00
67abee7e848453f2ce627ac7a1bea9dbb97a2141
presencesw/dataset2
[ "region:us" ]
2024-01-15T08:47:21+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 34920701, "num_examples": 13500}], "download_size": 21314705, "dataset_size": 34920701}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:47:29+00:00
39318f8700ecdde3105827dd6c734f312efff131
presencesw/dataset3
[ "region:us" ]
2024-01-15T08:47:30+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 23125707, "num_examples": 9000}], "download_size": 14110602, "dataset_size": 23125707}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:47:35+00:00
7de73d7e98b2505f788a274392ad18e4e70c3855
presencesw/dataset4
[ "region:us" ]
2024-01-15T08:47:54+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 19516857, "num_examples": 7579}, {"name": "validation", "num_bytes": 2580228, "num_examples": 1000}, {"name": "test", "num_bytes": 1038094, "num_examples": 400}], "download_size": 14140459, "dataset_size": 23135179}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T08:48:03+00:00
d4acf71b760e73a269d93447ef2e56940595befd
ERROR: type should be string, got "\nhttps://huggingface.co/datasets/jkhedri/psychology-dataset\n\nthis but split for DPO and regular sft. for fun, nothing serious"
Sao10K/psychology-dataset-pairs
[ "region:us" ]
2024-01-15T08:47:58+00:00
{}
2024-01-15T08:49:08+00:00
d79af07e969a6678fcbbe819956840425816468f
# Norwegian Courts Parallel corpus of Nynorsk and Bokmål from Norwegian Court transcriptions. The data originates from the [OPUS project](https://opus.nlpl.eu/ELRC-Courts_Norway-v1.php).
kardosdrur/norwegian-courts
[ "task_categories:sentence-similarity", "language:nb", "language:nn", "license:mit", "region:us" ]
2024-01-15T08:50:13+00:00
{"language": ["nb", "nn"], "license": "mit", "task_categories": ["sentence-similarity"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "nb", "dtype": "string"}, {"name": "nn", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 156464.72295514512, "num_examples": 909}, {"name": "test", "num_bytes": 39245.27704485488, "num_examples": 228}], "download_size": 120454, "dataset_size": 195710}}
2024-01-15T08:53:19+00:00
ab2a02aade3b424ac193cb93dee93e23a87f442b
p1atdev/stackexchanges
[ "license:cc-by-sa-3.0", "region:us" ]
2024-01-15T08:54:03+00:00
{"license": "cc-by-sa-3.0", "dataset_info": [{"config_name": "anime.stackexchange.com", "features": [{"name": "question", "struct": [{"name": "accepted_answer_id", "dtype": "string"}, {"name": "answer_count", "dtype": "int64"}, {"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "favorite_count", "dtype": "int64"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}, {"name": "title", "dtype": "string"}, {"name": "view_count", "dtype": "int64"}]}, {"name": "answers", "list": [{"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 32533359, "num_examples": 12318}], "download_size": 19104522, "dataset_size": 32533359}, {"config_name": "anime.stackexchange.com_simple", "features": [{"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "question_body", "dtype": "string"}, {"name": "question_score", "dtype": "int64"}, {"name": "accepted_answer_body", "dtype": "string"}, {"name": "accepted_answer_score", "dtype": "int64"}, {"name": "popular_answer_body", "dtype": "string"}, {"name": "popular_answer_score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 29800087, "num_examples": 12318}], "download_size": 18536497, "dataset_size": 29800087}, {"config_name": "default", "features": [{"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "question_body", "dtype": "string"}, {"name": "question_score", "dtype": "int64"}, {"name": "accepted_answer_body", "dtype": "string"}, {"name": "accepted_answer_score", "dtype": "int64"}, {"name": "popular_answer_body", "dtype": "string"}, {"name": "popular_answer_score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}], "splits": [{"name": "anime.stackexchange.com_simple", "num_bytes": 29800087, "num_examples": 12318}, {"name": "japanese.stackexchange.com_simple", "num_bytes": 67358026, "num_examples": 28850}, {"name": "ja.stackoverflow.com_simple", "num_bytes": 115174959, "num_examples": 30820}], "download_size": 117381584, "dataset_size": 212333072}, {"config_name": "ja.stackoverflow.com", "features": [{"name": "question", "struct": [{"name": "accepted_answer_id", "dtype": "string"}, {"name": "answer_count", "dtype": "int64"}, {"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "favorite_count", "dtype": "int64"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}, {"name": "title", "dtype": "string"}, {"name": "view_count", "dtype": "int64"}]}, {"name": "answers", "list": [{"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 114614992, "num_examples": 30820}], "download_size": 55495217, "dataset_size": 114614992}, {"config_name": "ja.stackoverflow.com_simple", "features": [{"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "question_body", "dtype": "string"}, {"name": "question_score", "dtype": "int64"}, {"name": "accepted_answer_body", "dtype": "string"}, {"name": "accepted_answer_score", "dtype": "int64"}, {"name": "popular_answer_body", "dtype": "string"}, {"name": "popular_answer_score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 115174959, "num_examples": 30820}], "download_size": 57385116, "dataset_size": 115174959}, {"config_name": "japanese.stackexchange.com", "features": [{"name": "question", "struct": [{"name": "accepted_answer_id", "dtype": "string"}, {"name": "answer_count", "dtype": "int64"}, {"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "favorite_count", "dtype": "int64"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}, {"name": "title", "dtype": "string"}, {"name": "view_count", "dtype": "int64"}]}, {"name": "answers", "list": [{"name": "body", "dtype": "string"}, {"name": "comment_count", "dtype": "int64"}, {"name": "content_license", "dtype": "string"}, {"name": "creation_date", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "last_activity_date", "dtype": "string"}, {"name": "last_edit_date", "dtype": "string"}, {"name": "last_editor_user_id", "dtype": "string"}, {"name": "owner_user_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "post_type", "dtype": "string"}, {"name": "score", "dtype": "int64"}]}, {"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 68978827, "num_examples": 28850}], "download_size": 39676257, "dataset_size": 68978827}, {"config_name": "japanese.stackexchange.com_simple", "features": [{"name": "id", "dtype": "string"}, {"name": "accepted_answer_id", "dtype": "string"}, {"name": "popular_answer_id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "question_body", "dtype": "string"}, {"name": "question_score", "dtype": "int64"}, {"name": "accepted_answer_body", "dtype": "string"}, {"name": "accepted_answer_score", "dtype": "int64"}, {"name": "popular_answer_body", "dtype": "string"}, {"name": "popular_answer_score", "dtype": "int64"}, {"name": "tags", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 67358026, "num_examples": 28850}], "download_size": 41459971, "dataset_size": 67358026}], "configs": [{"config_name": "anime.stackexchange.com", "data_files": [{"split": "train", "path": "anime.stackexchange.com/train-*"}]}, {"config_name": "anime.stackexchange.com_simple", "data_files": [{"split": "train", "path": "anime.stackexchange.com_simple/train-*"}]}, {"config_name": "default", "data_files": [{"split": "anime.stackexchange.com_simple", "path": "data/anime.stackexchange.com_simple-*"}, {"split": "japanese.stackexchange.com_simple", "path": "data/japanese.stackexchange.com_simple-*"}, {"split": "ja.stackoverflow.com_simple", "path": "data/ja.stackoverflow.com_simple-*"}]}, {"config_name": "ja.stackoverflow.com", "data_files": [{"split": "train", "path": "ja.stackoverflow.com/train-*"}]}, {"config_name": "ja.stackoverflow.com_simple", "data_files": [{"split": "train", "path": "ja.stackoverflow.com_simple/train-*"}]}, {"config_name": "japanese.stackexchange.com", "data_files": [{"split": "train", "path": "japanese.stackexchange.com/train-*"}]}, {"config_name": "japanese.stackexchange.com_simple", "data_files": [{"split": "train", "path": "japanese.stackexchange.com_simple/train-*"}]}]}
2024-01-15T09:08:08+00:00
7b210db79e304bc583b7779a0f94fbfa190139b2
Atipico1/squad_v2_unique_questions
[ "region:us" ]
2024-01-15T08:54:29+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}, {"name": "masked_query", "dtype": "string"}, {"name": "query_embedding", "sequence": "float32"}], "splits": [{"name": "train", "num_bytes": 190748153, "num_examples": 47491}], "download_size": 184171177, "dataset_size": 190748153}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T08:54:48+00:00
afba34367a8609a1d0044eded531548ab71a58cf
<h1 align="center"> Executable Code Actions Elicit Better LLM Agents </h1> <p align="center"> <a href="https://github.com/xingyaoww/code-act">💻 Code</a> • <a href="https://arxiv.org/abs/2402.01030">📃 Paper</a> • <a href="https://huggingface.co/datasets/xingyaoww/code-act" >🤗 Data (CodeActInstruct)</a> • <a href="https://huggingface.co/xingyaoww/CodeActAgent-Mistral-7b-v0.1" >🤗 Model (CodeActAgent-Mistral-7b-v0.1)</a> • <a href="https://chat.xwang.dev/">🤖 Chat with CodeActAgent!</a> </p> We propose to use executable Python **code** to consolidate LLM agents’ **act**ions into a unified action space (**CodeAct**). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations (e.g., code execution results) through multi-turn interactions. ![Overview](https://github.com/xingyaoww/code-act/blob/main/figures/overview.png?raw=true) ## Why CodeAct? Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark [M<sup>3</sup>ToolEval](docs/EVALUATION.md) shows that CodeAct outperforms widely used alternatives like Text and JSON (up to 20% higher success rate). Please check our paper for more detailed analysis! ![Comparison between CodeAct and Text/JSON](https://github.com/xingyaoww/code-act/blob/main/figures/codeact-comparison-table.png?raw=true) *Comparison between CodeAct and Text / JSON as action.* ![Comparison between CodeAct and Text/JSON](https://github.com/xingyaoww/code-act/blob/main/figures/codeact-comparison-perf.png?raw=true) *Quantitative results comparing CodeAct and {Text, JSON} on M<sup>3</sup>ToolEval.* ## 📁 CodeActInstruct We collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. Dataset is release at [huggingface dataset 🤗](https://huggingface.co/datasets/xingyaoww/code-act). Please refer to the paper and [this section](#-data-generation-optional) for details of data collection. ![Data Statistics](https://github.com/xingyaoww/code-act/blob/main/figures/data-stats.png?raw=true) *Dataset Statistics. Token statistics are computed using Llama-2 tokenizer.* ## 🪄 CodeActAgent Trained on **CodeActInstruct** and general conversaions, **CodeActAgent** excels at out-of-domain agent tasks compared to open-source models of the same size, while not sacrificing generic performance (e.g., knowledge, dialog). We release two variants of CodeActAgent: - **CodeActAgent-Mistral-7b-v0.1** (recommended, [model link](https://huggingface.co/xingyaoww/CodeActAgent-Mistral-7b-v0.1)): using Mistral-7b-v0.1 as the base model with 32k context window. - **CodeActAgent-Llama-7b** ([model link](https://huggingface.co/xingyaoww/CodeActAgent-Llama-2-7b)): using Llama-2-7b as the base model with 4k context window. ![Model Performance](https://github.com/xingyaoww/code-act/blob/main/figures/model-performance.png?raw=true) *Evaluation results for CodeActAgent. ID and OD stand for in-domain and out-of-domain evaluation correspondingly. Overall averaged performance normalizes the MT-Bench score to be consistent with other tasks and excludes in-domain tasks for fair comparison.* Please check out [our paper](TODO) and [code](https://github.com/xingyaoww/code-act) for more details about data collection, model training, and evaluation. ## 📚 Citation ```bibtex @misc{wang2024executable, title={Executable Code Actions Elicit Better LLM Agents}, author={Xingyao Wang and Yangyi Chen and Lifan Yuan and Yizhe Zhang and Yunzhu Li and Hao Peng and Heng Ji}, year={2024}, eprint={2402.01030}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
xingyaoww/code-act
[ "task_categories:text-generation", "size_categories:1K<n<10K", "language:en", "license:apache-2.0", "llm-agent", "llm", "instruction-tuning", "arxiv:2402.01030", "region:us" ]
2024-01-15T08:59:02+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-generation"], "configs": [{"config_name": "default", "data_files": [{"split": "codeact", "path": "data/codeact-*"}, {"split": "general", "path": "data/general-*"}]}], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "codeact", "num_bytes": 34936511, "num_examples": 7139}, {"name": "general", "num_bytes": 250817144, "num_examples": 71246}], "download_size": 123084833, "dataset_size": 285753655}, "tags": ["llm-agent", "llm", "instruction-tuning"]}
2024-02-05T05:23:24+00:00
3eaf866e383514ca3c63c15c32f276676094e8a8
PPPAAAA/montage
[ "region:us" ]
2024-01-15T09:10:51+00:00
{}
2024-01-15T09:10:51+00:00
169cb70b431ba0a1a86896af354cdc3e8f3c4dbc
nirantk/dbpedia-entities-mistral-embeddings-100K
[ "region:us" ]
2024-01-15T09:15:47+00:00
{"dataset_info": {"features": [{"name": "_id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "combined_text", "dtype": "string"}, {"name": "embedding", "sequence": "float64"}], "splits": [{"name": "train", "num_bytes": 893578748, "num_examples": 100000}], "download_size": 252132402, "dataset_size": 893578748}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T09:41:12+00:00
b5977f5cb476c4c18f6dc4025aa8900138c750fc
# Dataset Card for "VIVOS_CommonVoice_FOSD_NoiseControl_dataset" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tuanmanh28/VIVOS_CommonVoice_FOSD_NoiseControl_dataset
[ "region:us" ]
2024-01-15T09:16:58+00:00
{"dataset_info": {"features": [{"name": "audio", "dtype": {"audio": {"sampling_rate": 16000}}}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2741051024.0, "num_examples": 39585}, {"name": "test", "num_bytes": 249790491.52, "num_examples": 5108}], "download_size": 2921057376, "dataset_size": 2990841515.52}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T09:18:34+00:00
53d14e1631b3d299bf144921b42089dd2c2cfd7c
ShreeyaVenneti/50entries_Whisper_GT_AverageCSR_CSR_AS_REFERENCE
[ "region:us" ]
2024-01-15T09:18:04+00:00
{}
2024-01-15T09:18:19+00:00
f3fb708fee2352a6643c3a81140ad2493c072a98
# Dataset of ebisu_eika (Touhou) This is the dataset of ebisu_eika (Touhou), containing 132 images and their tags. The core tags of this character are `bangs, long_hair, red_eyes, blonde_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 132 | 122.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebisu_eika_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 132 | 81.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebisu_eika_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 266 | 155.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebisu_eika_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 132 | 112.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebisu_eika_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 266 | 196.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ebisu_eika_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/ebisu_eika_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, barefoot, frilled_shirt, frilled_skirt, full_body, long_earlobes, looking_at_viewer, puffy_short_sleeves, skirt_set, solo, white_shirt, white_skirt, blouse, brown_eyes, rock, simple_background, sitting, stone, white_background, dark-skinned_female, open_mouth, toes, :d, blush_stickers, feet, medium_hair | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, long_earlobes, open_mouth, puffy_short_sleeves, solo, white_shirt, frilled_shirt, looking_at_viewer, rock, stone, white_skirt, :d, blush, holding, jellyfish, skirt_set, upper_body | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, long_earlobes, puffy_short_sleeves, solo, upper_body, dress, open_mouth, simple_background, white_shirt, looking_at_viewer, white_background, blush_stickers, brown_eyes, grey_hair | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | barefoot | frilled_shirt | frilled_skirt | full_body | long_earlobes | looking_at_viewer | puffy_short_sleeves | skirt_set | solo | white_shirt | white_skirt | blouse | brown_eyes | rock | simple_background | sitting | stone | white_background | dark-skinned_female | open_mouth | toes | :d | blush_stickers | feet | medium_hair | blush | holding | jellyfish | upper_body | dress | grey_hair | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:----------------|:----------------|:------------|:----------------|:--------------------|:----------------------|:------------|:-------|:--------------|:--------------|:---------|:-------------|:-------|:--------------------|:----------|:--------|:-------------------|:----------------------|:-------------|:-------|:-----|:-----------------|:-------|:--------------|:--------|:----------|:------------|:-------------|:--------|:------------| | 0 | 8 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | | X | | | X | X | X | X | X | X | X | | | X | | | X | | | X | | X | | | | X | X | X | X | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | | | X | X | X | | X | X | | | X | | X | | | X | | X | | | X | | | | | | X | X | X |
CyberHarem/ebisu_eika_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T09:19:19+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T09:46:59+00:00
e9520a30715abd039dcdac1a0c1a51337da61fef
# Dataset of meira (Touhou) This is the dataset of meira (Touhou), containing 77 images and their tags. The core tags of this character are `purple_hair, ponytail, long_hair, purple_eyes, ribbon, hair_ribbon, bangs`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 77 | 63.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/meira_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 77 | 43.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/meira_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 136 | 75.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/meira_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 77 | 58.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/meira_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 136 | 98.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/meira_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/meira_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 30 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, katana, japanese_clothes, solo, sheath | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, holding_sword, katana, long_sleeves, looking_at_viewer, solo, wide_sleeves, white_ribbon, closed_mouth, pants, simple_background, very_long_hair, white_background, white_kimono, full_body, hakama, sheath | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | katana | japanese_clothes | solo | sheath | holding_sword | long_sleeves | looking_at_viewer | wide_sleeves | white_ribbon | closed_mouth | pants | simple_background | very_long_hair | white_background | white_kimono | full_body | hakama | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------|:-------------------|:-------|:---------|:----------------|:---------------|:--------------------|:---------------|:---------------|:---------------|:--------|:--------------------|:-----------------|:-------------------|:---------------|:------------|:---------| | 0 | 30 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | | | | | | | | | | | | | | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/meira_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T09:19:21+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T09:41:58+00:00
1948f55622b3dc317904c02ae6aa8555c7312fc2
ShreeyaVenneti/50entries_regression_AverageCSR_CSR_AS_REFERENCE
[ "region:us" ]
2024-01-15T09:23:41+00:00
{}
2024-01-15T09:23:56+00:00
269154dc31b124335622cb0a37c38a0a878940b3
# Dataset Card for "myriade_ontologie" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
gguichard/myriade_ontologie
[ "region:us" ]
2024-01-15T09:26:57+00:00
{"dataset_info": {"features": [{"name": "tokens", "sequence": "string"}, {"name": "wn_sens", "sequence": "int64"}, {"name": "input_ids", "sequence": "int32"}, {"name": "attention_mask", "sequence": "int8"}, {"name": "labels", "sequence": "int64"}], "splits": [{"name": "train", "num_bytes": 13863915, "num_examples": 43590}], "download_size": 0, "dataset_size": 13863915}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-23T08:03:15+00:00
f962690d562f21428279f11094b81ec32fd5f4e0
# ShareGPT4 Dataset ShareGPT4 is a cleaned version of the OpenChat-ShareGPT4 Dataset, designed for training conversational AI models. This dataset contains a collection of conversations, with each conversation consisting of two main features: role and value. ## Dataset Info - **Features**: - **conversations**: - **role** (string): The role of the speaker in the conversation. - **value** (string): The actual conversation text. - **Splits**: - **train**: - Number of examples: 6144 - Size: 30,322,763 bytes - **Download Size**: 15,605,374 bytes - **Dataset Size**: 30,322,763 bytes ## Configs - **Config Name**: default - **Data Files**: - **split**: train - **path**: data/train-* For more information on how to use this dataset with the Hugging Face library, please refer to their documentation.
erfanzar/ShareGPT4
[ "region:us" ]
2024-01-15T09:30:01+00:00
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "role", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 30322763, "num_examples": 6144}], "download_size": 15605374, "dataset_size": 30322763}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-18T17:52:38+00:00
a5a26c8bf7c36ccb0870e9bb94474c021fcfd757
# Dataset Card for "VietnameseNewsparquet" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tmnam20/Vietnamese-News
[ "region:us" ]
2024-01-15T09:30:14+00:00
{"dataset_info": [{"config_name": "all", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23505962013, "num_examples": 2421826}], "download_size": 10986340753, "dataset_size": 23505962013}, {"config_name": "baochinhphu", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 733982734, "num_examples": 58400}], "download_size": 312699305, "dataset_size": 733982734}, {"config_name": "dantri", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1265117393, "num_examples": 100396}], "download_size": 551235606, "dataset_size": 1265117393}, {"config_name": "laodong", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2939780592, "num_examples": 392668}], "download_size": 0, "dataset_size": 2939780592}, {"config_name": "qdnd", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2731532774, "num_examples": 259691}], "download_size": 0, "dataset_size": 2731532774}, {"config_name": "vietnamnet", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14103390400, "num_examples": 1444898}], "download_size": 6773926864, "dataset_size": 14103390400}, {"config_name": "vnexpress", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1235989143, "num_examples": 133438}], "download_size": 537754843, "dataset_size": 1235989143}, {"config_name": "vtc", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 230258605, "num_examples": 10440}], "download_size": 66975140, "dataset_size": 230258605}, {"config_name": "zingnews", "features": [{"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 265910372, "num_examples": 21895}], "download_size": 124252870, "dataset_size": 265910372}], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "baochinhphu", "data_files": [{"split": "train", "path": "baochinhphu/train-*"}]}, {"config_name": "dantri", "data_files": [{"split": "train", "path": "dantri/train-*"}]}, {"config_name": "laodong", "data_files": [{"split": "train", "path": "laodong/train-*"}]}, {"config_name": "qdnd", "data_files": [{"split": "train", "path": "qdnd/train-*"}]}, {"config_name": "vietnamnet", "data_files": [{"split": "train", "path": "vietnamnet/train-*"}]}, {"config_name": "vnexpress", "data_files": [{"split": "train", "path": "vnexpress/train-*"}]}, {"config_name": "vtc", "data_files": [{"split": "train", "path": "vtc/train-*"}]}, {"config_name": "zingnews", "data_files": [{"split": "train", "path": "zingnews/train-*"}]}]}
2024-01-16T06:48:40+00:00
938c5e7aef57803acebbadf8f24809e077d5b5dc
shing3232/imatrix
[ "region:us" ]
2024-01-15T09:30:26+00:00
{}
2024-01-15T09:32:25+00:00
2ffe82b0092c705c8354e798eb120c427927c8d5
yuekai/aishell_whisper_large_v3_fbank_lhotse
[ "region:us" ]
2024-01-15T09:31:23+00:00
{}
2024-01-15T09:39:32+00:00
6b143af444900f125e011165f2dbebcd669027b9
# Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
abhika-m/fava-flagged-demo
[ "region:us" ]
2024-01-15T09:31:53+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data.csv"}]}]}
2024-02-17T14:07:32+00:00
565bd237380654d23cc18caaa1a71cee73160af2
# Dataset Card for "quality_counter_512" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
AIRI-NLP/quality_counter_512
[ "region:us" ]
2024-01-15T09:32:22+00:00
{"dataset_info": {"features": [{"name": "context", "dtype": "string"}, {"name": "word", "dtype": "string"}, {"name": "claim", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 64206836, "num_examples": 2640}, {"name": "validation", "num_bytes": 18498688, "num_examples": 740}, {"name": "test", "num_bytes": 56239972, "num_examples": 2300}], "download_size": 4494295, "dataset_size": 138945496}}
2024-01-15T09:32:29+00:00
114e50a43cb499815b64a397179421e1aa12c358
picas9dan/ontobuiltenv_2024-01-15_17.31.44
[ "region:us" ]
2024-01-15T09:33:19+00:00
{}
2024-01-16T01:51:20+00:00
0cbf2e5facdbd3bb3b3b570d5946eeb5aca334df
presencesw/webglm_test_v2
[ "region:us" ]
2024-01-15T09:35:35+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}, {"name": "len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 54302.7270474311, "num_examples": 21}, {"name": "validation", "num_bytes": 295057.992, "num_examples": 114}, {"name": "test", "num_bytes": 255117.03, "num_examples": 98}], "download_size": 575766, "dataset_size": 604477.7490474312}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T09:35:43+00:00
347eeb81381950b59ee372ee57cd02626b8f51c6
joey1895/new02
[ "license:apache-2.0", "region:us" ]
2024-01-15T09:43:13+00:00
{"license": "apache-2.0"}
2024-01-16T08:48:59+00:00
855b94e901261cbb536a1ef3f0e26c36f006b1b8
# Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
davanstrien/fake-gated-dataset
[ "region:us" ]
2024-01-15T09:50:13+00:00
{"extra_gated_prompt": "You agree to not use the dataset to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Full Name": "text", "Email": "text", "Researcher Google Scholar Page": "text", "I understand that this Dataset and the videos are protected by copyrights": "checkbox", "I agree to use this dataset for non-commercial use ONLY": "checkbox"}}
2024-01-15T09:54:14+00:00
96d1c80c8287041b2eb8eb1bcd3ac8b4883afa3e
presencesw/webglm_test_translated
[ "region:us" ]
2024-01-15T09:56:47+00:00
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "references", "sequence": "string"}, {"name": "len", "dtype": "int64"}, {"name": "question_vi", "dtype": "string"}, {"name": "answer_vi", "dtype": "string"}, {"name": "references_vi", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 243843, "num_examples": 21}], "download_size": 152819, "dataset_size": 243843}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-15T10:34:40+00:00
8b433864320029658abfba4a7727849058336ecc
IveniumMarketing/map-marketo
[ "task_categories:text-generation", "size_categories:n<1K", "language:en", "license:openrail", "region:us" ]
2024-01-15T10:02:50+00:00
{"language": ["en"], "license": "openrail", "size_categories": ["n<1K"], "task_categories": ["text-generation"], "pretty_name": "map"}
2024-01-15T10:16:01+00:00
396fc847240e2298d527e4e96bc521dbe0f49f9b
# Spanish Passage Retrieval This repository provides data from https://mklab.iti.gr/results/spanish-passage-retrieval-dataset/ as a HF dataset. The data is not present in the repository but is downloaded on the fly. There is an S2S (retrieve passages/sentences that are marked as relevant) and an S2P (retrieve documents that contain relevant passages/sentences) version of the retrieval task. The respective corpuses are called `'corpus.sentences'` and `'corpus.documents'`. The qrel data is contained in `'qrels.s2s'` and `'qrels.s2p'`, which hold space-separated lists of relevant documents.
jinaai/spanish_passage_retrieval
[ "region:eu" ]
2024-01-15T10:08:21+00:00
{}
2024-01-18T11:28:44+00:00
0d61a3eb2087c21f4f63f199bca5f225ddaf03ac
# TMMLU+ : Large scale traditional chinese massive multitask language understanding <p align="center"> <img src="https://huggingface.co/datasets/ikala/tmmluplus/resolve/main/cover.png" alt="A close-up image of a neat paper note with a white background. The text 'TMMLU+' is written horizontally across the center of the note in bold, black. Join us to work in multimodal LLM : https://ikala.ai/recruit/" style="max-width: 400" width=400 /> </p> We present TMMLU+, a traditional Chinese massive multitask language understanding dataset. TMMLU+ is a multiple-choice question-answering dataset featuring 66 subjects, ranging from elementary to professional level. The TMMLU+ dataset is six times larger and contains more balanced subjects compared to its predecessor, [TMMLU](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval/data/TMMLU). We have included benchmark results in TMMLU+ from closed-source models and 20 open-weight Chinese large language models, with parameters ranging from 1.8B to 72B. The benchmark results show that Traditional Chinese variants still lag behind those trained on major Simplified Chinese models. ```python from datasets import load_dataset task_list = [ 'engineering_math', 'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology', 'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate', 'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2', 'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry', 'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities', 'politic_science', 'agriculture', 'official_document_management', 'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning', 'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology', 'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation', 'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law', 'education_(profession_level)', 'economics', 'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders', 'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature', 'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam', 'junior_social_studies', 'tve_mathematics', 'tve_chinese_language', 'tve_natural_sciences', 'junior_chemistry', 'music', 'education', 'three_principles_of_people', 'taiwanese_hokkien', 'linear_algebra' ] for task in task_list: val = load_dataset('ZoneTwelve/tmmluplus', task)['validation'] dev = load_dataset('ZoneTwelve/tmmluplus', task)['train'] test = load_dataset('ZoneTwelve/tmmluplus', task)['test'] ``` For each dataset split ```python for row in test: print(row) break >> Dataset({ features: ['question', 'A', 'B', 'C', 'D', 'answer'], num_rows: 11 }) ``` Statistic on all four categories : STEM, Social Science, Humanities, Other | Category | Test | Dev | Validation | |----------------------------------|-------|------|------------| | STEM | 3458 | 70 | 385 | | Social Sciences | 5958 | 90 | 665 | | Humanities | 1763 | 35 | 197 | | Other (Business, Health, Misc.) | 8939 | 135 | 995 | | **Total** | 20118 | 330 | 2242 | ## Benchmark on direct prompting | model | STEM | Social Science | Humanities | Other | Average | |------------|------------|------------|------------|------------|------------| | [Qwen/Qwen-72B](https://huggingface.co/Qwen/Qwen-72B) | 61.12 | 71.65 | 63.00 | 61.31 |64.27| | gpt-4-0613 | 60.36 | 67.36 | 56.03 | 57.62 |60.34| | [Qwen/Qwen-72B-Chat](https://huggingface.co/Qwen/Qwen-72B-Chat) | 55.15 | 66.20 | 55.65 | 57.19 |58.55| | [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) | 46.94 | 56.69 | 49.43 | 48.81 |50.47| | Gemini-pro | 45.38 | 57.29 | 48.80 | 48.21 |49.92| | [01-ai/Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 40.24 | 56.77 | 53.99 | 47.58 |49.64| | [Qwen/Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 43.86 | 53.29 | 44.78 | 45.13 |46.77| | [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 39.62 | 50.24 | 44.44 | 44.26 |44.64| | Claude-1.3 | 42.65 | 49.33 | 42.16 | 44.14 |44.57| | gpt-3.5-turbo-0613 | 41.56 | 46.72 | 36.73 | 42.03 |41.76| | [CausalLM/14B](https://huggingface.co/CausalLM/14B) | 39.83 | 44.50 | 39.61 | 41.97 |41.48| | [Skywork/Skywork-13B-base](https://huggingface.co/Skywork/Skywork-13B-base) | 36.93 | 47.27 | 41.04 | 40.10 |41.33| | [Qwen/Qwen-7B](https://huggingface.co/Qwen/Qwen-7B) | 37.53 | 45.48 | 38.09 | 38.96 |40.01| | [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 33.32 | 44.64 | 40.27 | 39.89 |39.53| | [vivo-ai/BlueLM-7B-Base](https://huggingface.co/vivo-ai/BlueLM-7B-Base) | 33.94 | 41.52 | 37.38 | 38.74 |37.90| | [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) | 29.64 | 43.73 | 37.36 | 39.88 |37.65| | [Qwen/Qwen-1_8B](https://huggingface.co/Qwen/Qwen-1_8B) | 32.65 | 38.95 | 38.34 | 35.27 |36.30| | Claude-2 | 39.65 | 39.09 | 28.59 | 37.47 |36.20| | [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) | 31.05 | 39.31 | 35.64 | 35.60 |35.40| | [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat) | 29.82 | 42.29 | 34.24 | 34.31 |35.17| | [CausalLM/7B](https://huggingface.co/CausalLM/7B) | 31.03 | 38.17 | 35.87 | 35.39 |35.11| | [Azure99/blossom-v3_1-mistral-7b](https://huggingface.co/Azure99/blossom-v3_1-mistral-7b) | 32.80 | 36.91 | 32.36 | 34.53 |34.15| | [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) | 24.69 | 39.18 | 33.60 | 31.99 |32.37| | [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) | 26.60 | 36.36 | 31.81 | 31.96 |31.68| | [TigerResearch/tigerbot-13b-chat-v3](https://huggingface.co/TigerResearch/tigerbot-13b-chat-v3) | 24.73 | 29.63 | 25.72 | 27.22 |26.82| | [hongyin/mistral-7b-80k](https://huggingface.co/hongyin/mistral-7b-80k) | 24.26 | 23.76 | 22.56 | 24.57 |23.79| | [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat) | 19.10 | 26.06 | 21.51 | 21.77 |22.11| | [yentinglin/Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 18.53 | 27.65 | 17.77 | 21.49 |21.36| | [GeneZC/MiniChat-3B](https://huggingface.co/GeneZC/MiniChat-3B) | 17.66 | 23.35 | 22.71 | 20.34 |21.02| | [LinkSoul/Chinese-Llama-2-7b](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) | 16.55 | 18.39 | 12.97 | 16.13 |16.01| | [yentinglin/Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 14.99 | 16.23 | 15.00 | 16.22 |15.61| | Claude-instant-1 | 12.52 | 17.13 | 15.10 | 13.57 |14.58| | [FlagAlpha/Atom-7B](https://huggingface.co/FlagAlpha/Atom-7B) | 5.60 | 13.57 | 7.71 | 11.84 |9.68| Results via [ievals](https://github.com/iKala/ievals) ( settings : 0-shot direct answering ) # Citation ``` @article{ikala2023eval, title={An Improved Traditional Chinese Evaluation Suite for Foundation Model}, author={Tam, Zhi-Rui and Pai, Ya-Ting}, journal={arXiv}, year={2023} } ``` > CONTENT WARNING > This is a modification of ikala/tmmluplus, with minor alterations made to facilitate the implementation for lm-evaluation-harness purposes. > [More details on Discussions](https://huggingface.co/datasets/ZoneTwelve/tmmluplus/discussions/1)
ZoneTwelve/tmmluplus
[ "task_categories:question-answering", "size_categories:100K<n<1M", "language:zh", "license:other", "traditional chinese", "finance", "medical", "taiwan", "benchmark", "zh-tw", "zh-hant", "region:us" ]
2024-01-15T10:09:59+00:00
{"language": ["zh"], "license": "other", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering"], "pretty_name": "tmmlu++", "license_name": "creative-commons-by-nc", "tags": ["traditional chinese", "finance", "medical", "taiwan", "benchmark", "zh-tw", "zh-hant"], "configs": [{"config_name": "engineering_math", "datafiles": [{"split": "train", "path": "data/engineering_math_dev.csv"}, {"split": "validation", "path": "data/engineering_math_val.csv"}, {"split": "test", "path": "data/engineering_math_test.csv"}]}, {"config_name": "dentistry", "datafiles": [{"split": "train", "path": "data/dentistry_dev.csv"}, {"split": "validation", "path": "data/dentistry_val.csv"}, {"split": "test", "path": "data/dentistry_test.csv"}]}, {"config_name": "traditional_chinese_medicine_clinical_medicine", "datafiles": [{"split": "train", "path": "data/traditional_chinese_medicine_clinical_medicine_dev.csv"}, {"split": "validation", "path": "data/traditional_chinese_medicine_clinical_medicine_val.csv"}, {"split": "test", "path": "data/traditional_chinese_medicine_clinical_medicine_test.csv"}]}, {"config_name": "clinical_psychology", "datafiles": [{"split": "train", "path": "data/clinical_psychology_dev.csv"}, {"split": "validation", "path": "data/clinical_psychology_val.csv"}, {"split": "test", "path": "data/clinical_psychology_test.csv"}]}, {"config_name": "technical", "datafiles": [{"split": "train", "path": "data/technical_dev.csv"}, {"split": "validation", "path": "data/technical_val.csv"}, {"split": "test", "path": "data/technical_test.csv"}]}, {"config_name": "culinary_skills", "datafiles": [{"split": "train", "path": "data/culinary_skills_dev.csv"}, {"split": "validation", "path": "data/culinary_skills_val.csv"}, {"split": "test", "path": "data/culinary_skills_test.csv"}]}, {"config_name": "mechanical", "datafiles": [{"split": "train", "path": "data/mechanical_dev.csv"}, {"split": "validation", "path": "data/mechanical_val.csv"}, {"split": "test", "path": "data/mechanical_test.csv"}]}, {"config_name": "logic_reasoning", "datafiles": [{"split": "train", "path": "data/logic_reasoning_dev.csv"}, {"split": "validation", "path": "data/logic_reasoning_val.csv"}, {"split": "test", "path": "data/logic_reasoning_test.csv"}]}, {"config_name": "real_estate", "datafiles": [{"split": "train", "path": "data/real_estate_dev.csv"}, {"split": "validation", "path": "data/real_estate_val.csv"}, {"split": "test", "path": "data/real_estate_test.csv"}]}, {"config_name": "general_principles_of_law", "datafiles": [{"split": "train", "path": "data/general_principles_of_law_dev.csv"}, {"split": "validation", "path": "data/general_principles_of_law_val.csv"}, {"split": "test", "path": "data/general_principles_of_law_test.csv"}]}, {"config_name": "finance_banking", "datafiles": [{"split": "train", "path": "data/finance_banking_dev.csv"}, {"split": "validation", "path": "data/finance_banking_val.csv"}, {"split": "test", "path": "data/finance_banking_test.csv"}]}, {"config_name": "anti_money_laundering", "datafiles": [{"split": "train", "path": "data/anti_money_laundering_dev.csv"}, {"split": "validation", "path": "data/anti_money_laundering_val.csv"}, {"split": "test", "path": "data/anti_money_laundering_test.csv"}]}, {"config_name": "ttqav2", "datafiles": [{"split": "train", "path": "data/ttqav2_dev.csv"}, {"split": "validation", "path": "data/ttqav2_val.csv"}, {"split": "test", "path": "data/ttqav2_test.csv"}]}, {"config_name": "marketing_management", "datafiles": [{"split": "train", "path": "data/marketing_management_dev.csv"}, {"split": "validation", "path": "data/marketing_management_val.csv"}, {"split": "test", "path": "data/marketing_management_test.csv"}]}, {"config_name": "business_management", "datafiles": [{"split": "train", "path": "data/business_management_dev.csv"}, {"split": "validation", "path": "data/business_management_val.csv"}, {"split": "test", "path": "data/business_management_test.csv"}]}, {"config_name": "organic_chemistry", "datafiles": [{"split": "train", "path": "data/organic_chemistry_dev.csv"}, {"split": "validation", "path": "data/organic_chemistry_val.csv"}, {"split": "test", "path": "data/organic_chemistry_test.csv"}]}, {"config_name": "advance_chemistry", "datafiles": [{"split": "train", "path": "data/advance_chemistry_dev.csv"}, {"split": "validation", "path": "data/advance_chemistry_val.csv"}, {"split": "test", "path": "data/advance_chemistry_test.csv"}]}, {"config_name": "physics", "datafiles": [{"split": "train", "path": "data/physics_dev.csv"}, {"split": "validation", "path": "data/physics_val.csv"}, {"split": "test", "path": "data/physics_test.csv"}]}, {"config_name": "secondary_physics", "datafiles": [{"split": "train", "path": "data/secondary_physics_dev.csv"}, {"split": "validation", "path": "data/secondary_physics_val.csv"}, {"split": "test", "path": "data/secondary_physics_test.csv"}]}, {"config_name": "human_behavior", "datafiles": [{"split": "train", "path": "data/human_behavior_dev.csv"}, {"split": "validation", "path": "data/human_behavior_val.csv"}, {"split": "test", "path": "data/human_behavior_test.csv"}]}, {"config_name": "national_protection", "datafiles": [{"split": "train", "path": "data/national_protection_dev.csv"}, {"split": "validation", "path": "data/national_protection_val.csv"}, {"split": "test", "path": "data/national_protection_test.csv"}]}, {"config_name": "jce_humanities", "datafiles": [{"split": "train", "path": "data/jce_humanities_dev.csv"}, {"split": "validation", "path": "data/jce_humanities_val.csv"}, {"split": "test", "path": "data/jce_humanities_test.csv"}]}, {"config_name": "politic_science", "datafiles": [{"split": "train", "path": "data/politic_science_dev.csv"}, {"split": "validation", "path": "data/politic_science_val.csv"}, {"split": "test", "path": "data/politic_science_test.csv"}]}, {"config_name": "agriculture", "datafiles": [{"split": "train", "path": "data/agriculture_dev.csv"}, {"split": "validation", "path": "data/agriculture_val.csv"}, {"split": "test", "path": "data/agriculture_test.csv"}]}, {"config_name": "official_document_management", "datafiles": [{"split": "train", "path": "data/official_document_management_dev.csv"}, {"split": "validation", "path": "data/official_document_management_val.csv"}, {"split": "test", "path": "data/official_document_management_test.csv"}]}, {"config_name": "financial_analysis", "datafiles": [{"split": "train", "path": "data/financial_analysis_dev.csv"}, {"split": "validation", "path": "data/financial_analysis_val.csv"}, {"split": "test", "path": "data/financial_analysis_test.csv"}]}, {"config_name": "pharmacy", "datafiles": [{"split": "train", "path": "data/pharmacy_dev.csv"}, {"split": "validation", "path": "data/pharmacy_val.csv"}, {"split": "test", "path": "data/pharmacy_test.csv"}]}, {"config_name": "educational_psychology", "datafiles": [{"split": "train", "path": "data/educational_psychology_dev.csv"}, {"split": "validation", "path": "data/educational_psychology_val.csv"}, {"split": "test", "path": "data/educational_psychology_test.csv"}]}, {"config_name": "statistics_and_machine_learning", "datafiles": [{"split": "train", "path": "data/statistics_and_machine_learning_dev.csv"}, {"split": "validation", "path": "data/statistics_and_machine_learning_val.csv"}, {"split": "test", "path": "data/statistics_and_machine_learning_test.csv"}]}, {"config_name": "management_accounting", "datafiles": [{"split": "train", "path": "data/management_accounting_dev.csv"}, {"split": "validation", "path": "data/management_accounting_val.csv"}, {"split": "test", "path": "data/management_accounting_test.csv"}]}, {"config_name": "introduction_to_law", "datafiles": [{"split": "train", "path": "data/introduction_to_law_dev.csv"}, {"split": "validation", "path": "data/introduction_to_law_val.csv"}, {"split": "test", "path": "data/introduction_to_law_test.csv"}]}, {"config_name": "computer_science", "datafiles": [{"split": "train", "path": "data/computer_science_dev.csv"}, {"split": "validation", "path": "data/computer_science_val.csv"}, {"split": "test", "path": "data/computer_science_test.csv"}]}, {"config_name": "veterinary_pathology", "datafiles": [{"split": "train", "path": "data/veterinary_pathology_dev.csv"}, {"split": "validation", "path": "data/veterinary_pathology_val.csv"}, {"split": "test", "path": "data/veterinary_pathology_test.csv"}]}, {"config_name": "accounting", "datafiles": [{"split": "train", "path": "data/accounting_dev.csv"}, {"split": "validation", "path": "data/accounting_val.csv"}, {"split": "test", "path": "data/accounting_test.csv"}]}, {"config_name": "fire_science", "datafiles": [{"split": "train", "path": "data/fire_science_dev.csv"}, {"split": "validation", "path": "data/fire_science_val.csv"}, {"split": "test", "path": "data/fire_science_test.csv"}]}, {"config_name": "optometry", "datafiles": [{"split": "train", "path": "data/optometry_dev.csv"}, {"split": "validation", "path": "data/optometry_val.csv"}, {"split": "test", "path": "data/optometry_test.csv"}]}, {"config_name": "insurance_studies", "datafiles": [{"split": "train", "path": "data/insurance_studies_dev.csv"}, {"split": "validation", "path": "data/insurance_studies_val.csv"}, {"split": "test", "path": "data/insurance_studies_test.csv"}]}, {"config_name": "pharmacology", "datafiles": [{"split": "train", "path": "data/pharmacology_dev.csv"}, {"split": "validation", "path": "data/pharmacology_val.csv"}, {"split": "test", "path": "data/pharmacology_test.csv"}]}, {"config_name": "taxation", "datafiles": [{"split": "train", "path": "data/taxation_dev.csv"}, {"split": "validation", "path": "data/taxation_val.csv"}, {"split": "test", "path": "data/taxation_test.csv"}]}, {"config_name": "trust_practice", "datafiles": [{"split": "train", "path": "data/trust_practice_dev.csv"}, {"split": "validation", "path": "data/trust_practice_val.csv"}, {"split": "test", "path": "data/trust_practice_test.csv"}]}, {"config_name": "geography_of_taiwan", "datafiles": [{"split": "train", "path": "data/geography_of_taiwan_dev.csv"}, {"split": "validation", "path": "data/geography_of_taiwan_val.csv"}, {"split": "test", "path": "data/geography_of_taiwan_test.csv"}]}, {"config_name": "physical_education", "datafiles": [{"split": "train", "path": "data/physical_education_dev.csv"}, {"split": "validation", "path": "data/physical_education_val.csv"}, {"split": "test", "path": "data/physical_education_test.csv"}]}, {"config_name": "auditing", "datafiles": [{"split": "train", "path": "data/auditing_dev.csv"}, {"split": "validation", "path": "data/auditing_val.csv"}, {"split": "test", "path": "data/auditing_test.csv"}]}, {"config_name": "administrative_law", "datafiles": [{"split": "train", "path": "data/administrative_law_dev.csv"}, {"split": "validation", "path": "data/administrative_law_val.csv"}, {"split": "test", "path": "data/administrative_law_test.csv"}]}, {"config_name": "education_(profession_level)", "datafiles": [{"split": "train", "path": "data/education_(profession_level)_dev.csv"}, {"split": "validation", "path": "data/education_(profession_level)_val.csv"}, {"split": "test", "path": "data/education_(profession_level)_test.csv"}]}, {"config_name": "economics", "datafiles": [{"split": "train", "path": "data/economics_dev.csv"}, {"split": "validation", "path": "data/economics_val.csv"}, {"split": "test", "path": "data/economics_test.csv"}]}, {"config_name": "veterinary_pharmacology", "datafiles": [{"split": "train", "path": "data/veterinary_pharmacology_dev.csv"}, {"split": "validation", "path": "data/veterinary_pharmacology_val.csv"}, {"split": "test", "path": "data/veterinary_pharmacology_test.csv"}]}, {"config_name": "nautical_science", "datafiles": [{"split": "train", "path": "data/nautical_science_dev.csv"}, {"split": "validation", "path": "data/nautical_science_val.csv"}, {"split": "test", "path": "data/nautical_science_test.csv"}]}, {"config_name": "occupational_therapy_for_psychological_disorders", "datafiles": [{"split": "train", "path": "data/occupational_therapy_for_psychological_disorders_dev.csv"}, {"split": "validation", "path": "data/occupational_therapy_for_psychological_disorders_val.csv"}, {"split": "test", "path": "data/occupational_therapy_for_psychological_disorders_test.csv"}]}, {"config_name": "basic_medical_science", "datafiles": [{"split": "train", "path": "data/basic_medical_science_dev.csv"}, {"split": "validation", "path": "data/basic_medical_science_val.csv"}, {"split": "test", "path": "data/basic_medical_science_test.csv"}]}, {"config_name": "macroeconomics", "datafiles": [{"split": "train", "path": "data/macroeconomics_dev.csv"}, {"split": "validation", "path": "data/macroeconomics_val.csv"}, {"split": "test", "path": "data/macroeconomics_test.csv"}]}, {"config_name": "trade", "datafiles": [{"split": "train", "path": "data/trade_dev.csv"}, {"split": "validation", "path": "data/trade_val.csv"}, {"split": "test", "path": "data/trade_test.csv"}]}, {"config_name": "chinese_language_and_literature", "datafiles": [{"split": "train", "path": "data/chinese_language_and_literature_dev.csv"}, {"split": "validation", "path": "data/chinese_language_and_literature_val.csv"}, {"split": "test", "path": "data/chinese_language_and_literature_test.csv"}]}, {"config_name": "tve_design", "datafiles": [{"split": "train", "path": "data/tve_design_dev.csv"}, {"split": "validation", "path": "data/tve_design_val.csv"}, {"split": "test", "path": "data/tve_design_test.csv"}]}, {"config_name": "junior_science_exam", "datafiles": [{"split": "train", "path": "data/junior_science_exam_dev.csv"}, {"split": "validation", "path": "data/junior_science_exam_val.csv"}, {"split": "test", "path": "data/junior_science_exam_test.csv"}]}, {"config_name": "junior_math_exam", "datafiles": [{"split": "train", "path": "data/junior_math_exam_dev.csv"}, {"split": "validation", "path": "data/junior_math_exam_val.csv"}, {"split": "test", "path": "data/junior_math_exam_test.csv"}]}, {"config_name": "junior_chinese_exam", "datafiles": [{"split": "train", "path": "data/junior_chinese_exam_dev.csv"}, {"split": "validation", "path": "data/junior_chinese_exam_val.csv"}, {"split": "test", "path": "data/junior_chinese_exam_test.csv"}]}, {"config_name": "junior_social_studies", "datafiles": [{"split": "train", "path": "data/junior_social_studies_dev.csv"}, {"split": "validation", "path": "data/junior_social_studies_val.csv"}, {"split": "test", "path": "data/junior_social_studies_test.csv"}]}, {"config_name": "tve_mathematics", "datafiles": [{"split": "train", "path": "data/tve_mathematics_dev.csv"}, {"split": "validation", "path": "data/tve_mathematics_val.csv"}, {"split": "test", "path": "data/tve_mathematics_test.csv"}]}, {"config_name": "tve_chinese_language", "datafiles": [{"split": "train", "path": "data/tve_chinese_language_dev.csv"}, {"split": "validation", "path": "data/tve_chinese_language_val.csv"}, {"split": "test", "path": "data/tve_chinese_language_test.csv"}]}, {"config_name": "tve_natural_sciences", "datafiles": [{"split": "train", "path": "data/tve_natural_sciences_dev.csv"}, {"split": "validation", "path": "data/tve_natural_sciences_val.csv"}, {"split": "test", "path": "data/tve_natural_sciences_test.csv"}]}, {"config_name": "junior_chemistry", "datafiles": [{"split": "train", "path": "data/junior_chemistry_dev.csv"}, {"split": "validation", "path": "data/junior_chemistry_val.csv"}, {"split": "test", "path": "data/junior_chemistry_test.csv"}]}, {"config_name": "music", "datafiles": [{"split": "train", "path": "data/music_dev.csv"}, {"split": "validation", "path": "data/music_val.csv"}, {"split": "test", "path": "data/music_test.csv"}]}, {"config_name": "education", "datafiles": [{"split": "train", "path": "data/education_dev.csv"}, {"split": "validation", "path": "data/education_val.csv"}, {"split": "test", "path": "data/education_test.csv"}]}, {"config_name": "three_principles_of_people", "datafiles": [{"split": "train", "path": "data/three_principles_of_people_dev.csv"}, {"split": "validation", "path": "data/three_principles_of_people_val.csv"}, {"split": "test", "path": "data/three_principles_of_people_test.csv"}]}, {"config_name": "taiwanese_hokkien", "datafiles": [{"split": "train", "path": "data/taiwanese_hokkien_dev.csv"}, {"split": "validation", "path": "data/taiwanese_hokkien_val.csv"}, {"split": "test", "path": "data/taiwanese_hokkien_test.csv"}]}, {"config_name": "linear_algebra", "datafiles": [{"split": "train", "path": "data/linear_algebra_dev.csv"}, {"split": "validation", "path": "data/linear_algebra_val.csv"}, {"split": "test", "path": "data/linear_algebra_test.csv"}]}]}
2024-01-19T08:10:20+00:00
7cba2dcc3a4d9c8bb3cdd23f8184c96534f82244
baptistecolle/mc_training_data
[ "region:us" ]
2024-01-15T10:16:17+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12892848.386679526, "num_examples": 31728}, {"name": "test", "num_bytes": 1432809.6133204743, "num_examples": 3526}], "download_size": 8267846, "dataset_size": 14325658.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-15T11:02:23+00:00
2ac4957a00a4d5232ea390624a679d475f71c4f8
# Dataset of toutetsu_yuuma (Touhou) This is the dataset of toutetsu_yuuma (Touhou), containing 20 images and their tags. The core tags of this character are `horns, red_eyes, ribbon, earrings, pointy_ears, short_hair, horn_ornament, red_horns, white_hair, horn_ribbon, bangs, curly_hair, sheep_horns, grey_hair, horizontal_pupils`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 20 | 44.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/toutetsu_yuuma_touhou/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 20 | 20.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/toutetsu_yuuma_touhou/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 54 | 47.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/toutetsu_yuuma_touhou/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 20 | 37.27 MiB | [Download](https://huggingface.co/datasets/CyberHarem/toutetsu_yuuma_touhou/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 54 | 74.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/toutetsu_yuuma_touhou/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/toutetsu_yuuma_touhou', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 20 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, jewelry, solo, blue_dress, red_sleeves, sharp_teeth, looking_at_viewer, bare_shoulders, detached_sleeves, oversized_object, smile, open_mouth, spoon | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | jewelry | solo | blue_dress | red_sleeves | sharp_teeth | looking_at_viewer | bare_shoulders | detached_sleeves | oversized_object | smile | open_mouth | spoon | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:-------|:-------------|:--------------|:--------------|:--------------------|:-----------------|:-------------------|:-------------------|:--------|:-------------|:--------| | 0 | 20 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/toutetsu_yuuma_touhou
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-15T10:22:07+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-15T10:29:09+00:00
11801b3305dafd57d68a8a7d09009f5a925fe741
slplab/asd_syl_240115
[ "region:us" ]
2024-01-15T10:24:52+00:00
{}
2024-01-15T10:26:46+00:00
f02a094952b01741c7ba187c426b568cb6123cce
Gabbbzzz/potato_farming
[ "region:us" ]
2024-01-15T10:29:34+00:00
{}
2024-01-15T12:37:51+00:00
ecb6f3cd4d08203b252f0b5ee68849176805e631
herbievore/bbc_complete
[ "region:us" ]
2024-01-15T10:39:45+00:00
{}
2024-01-15T10:40:01+00:00
7059f8e33bb37e740d7c228f5bc5ccfb51bc166b
Kamyar-zeinalipour/Protein
[ "region:us" ]
2024-01-17T11:08:57+00:00
{"dataset_info": {"features": [{"name": "Cluster ID", "dtype": "string"}, {"name": "Cluster Name", "dtype": "string"}, {"name": "Types", "dtype": "string"}, {"name": "Size", "dtype": "int64"}, {"name": "Organisms", "dtype": "string"}, {"name": "Length", "dtype": "int64"}, {"name": "Identity", "dtype": "float64"}, {"name": "Reference sequence", "dtype": "string"}, {"name": "Common taxon ID", "dtype": "int64"}, {"name": "Common taxon", "dtype": "string"}, {"name": "Organism IDs", "dtype": "string"}, {"name": "Cluster members", "dtype": "string"}, {"name": "Date of creation", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 43805803, "num_examples": 52000}, {"name": "test", "num_bytes": 1693705, "num_examples": 1986}], "download_size": 27144249, "dataset_size": 45499508}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-17T11:09:04+00:00
73027ffcfed3121a9874efb861ea507b8a7f6e5a
# Dataset Card for Evaluation run of sumo43/Yi-32b-x2-v2.0 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [sumo43/Yi-32b-x2-v2.0](https://huggingface.co/sumo43/Yi-32b-x2-v2.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_sumo43__Yi-32b-x2-v2.0", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-17T11:06:51.060608](https://huggingface.co/datasets/open-llm-leaderboard/details_sumo43__Yi-32b-x2-v2.0/blob/main/results_2024-01-17T11-06-51.060608.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7642971242141403, "acc_stderr": 0.02819142505165966, "acc_norm": 0.7688226036476489, "acc_norm_stderr": 0.02871739914525888, "mc1": 0.5862913096695227, "mc1_stderr": 0.0172408618120998, "mc2": 0.7322370420432542, "mc2_stderr": 0.014094911817256119 }, "harness|arc:challenge|25": { "acc": 0.7022184300341296, "acc_stderr": 0.013363080107244482, "acc_norm": 0.7303754266211604, "acc_norm_stderr": 0.012968040686869155 }, "harness|hellaswag|10": { "acc": 0.6692889862577176, "acc_stderr": 0.004695076629884535, "acc_norm": 0.8594901414060944, "acc_norm_stderr": 0.003468050114923806 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.762962962962963, "acc_stderr": 0.03673731683969506, "acc_norm": 0.762962962962963, "acc_norm_stderr": 0.03673731683969506 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.875, "acc_stderr": 0.026913523521537846, "acc_norm": 0.875, "acc_norm_stderr": 0.026913523521537846 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.76, "acc_stderr": 0.04292346959909282, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909282 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7962264150943397, "acc_stderr": 0.02479078450177541, "acc_norm": 0.7962264150943397, "acc_norm_stderr": 0.02479078450177541 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.875, "acc_stderr": 0.02765610492929436, "acc_norm": 0.875, "acc_norm_stderr": 0.02765610492929436 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.65, "acc_stderr": 0.04793724854411019, "acc_norm": 0.65, "acc_norm_stderr": 0.04793724854411019 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7456647398843931, "acc_stderr": 0.0332055644308557, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5392156862745098, "acc_stderr": 0.04959859966384181, "acc_norm": 0.5392156862745098, "acc_norm_stderr": 0.04959859966384181 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.83, "acc_stderr": 0.03775251680686371, "acc_norm": 0.83, "acc_norm_stderr": 0.03775251680686371 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7957446808510639, "acc_stderr": 0.026355158413349424, "acc_norm": 0.7957446808510639, "acc_norm_stderr": 0.026355158413349424 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5877192982456141, "acc_stderr": 0.04630653203366597, "acc_norm": 0.5877192982456141, "acc_norm_stderr": 0.04630653203366597 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7310344827586207, "acc_stderr": 0.036951833116502325, "acc_norm": 0.7310344827586207, "acc_norm_stderr": 0.036951833116502325 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.7354497354497355, "acc_stderr": 0.02271746789770862, "acc_norm": 0.7354497354497355, "acc_norm_stderr": 0.02271746789770862 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5952380952380952, "acc_stderr": 0.04390259265377562, "acc_norm": 0.5952380952380952, "acc_norm_stderr": 0.04390259265377562 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.9, "acc_stderr": 0.01706640371965727, "acc_norm": 0.9, "acc_norm_stderr": 0.01706640371965727 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.645320197044335, "acc_stderr": 0.03366124489051449, "acc_norm": 0.645320197044335, "acc_norm_stderr": 0.03366124489051449 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.82, "acc_stderr": 0.038612291966536955, "acc_norm": 0.82, "acc_norm_stderr": 0.038612291966536955 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8666666666666667, "acc_stderr": 0.026544435312706456, "acc_norm": 0.8666666666666667, "acc_norm_stderr": 0.026544435312706456 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9292929292929293, "acc_stderr": 0.018263105420199505, "acc_norm": 0.9292929292929293, "acc_norm_stderr": 0.018263105420199505 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9689119170984456, "acc_stderr": 0.012525310625527033, "acc_norm": 0.9689119170984456, "acc_norm_stderr": 0.012525310625527033 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8, "acc_stderr": 0.020280805062535726, "acc_norm": 0.8, "acc_norm_stderr": 0.020280805062535726 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.46296296296296297, "acc_stderr": 0.03040178640610151, "acc_norm": 0.46296296296296297, "acc_norm_stderr": 0.03040178640610151 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8277310924369747, "acc_stderr": 0.02452866497130541, "acc_norm": 0.8277310924369747, "acc_norm_stderr": 0.02452866497130541 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4900662251655629, "acc_stderr": 0.04081677107248437, "acc_norm": 0.4900662251655629, "acc_norm_stderr": 0.04081677107248437 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9192660550458716, "acc_stderr": 0.011680172292862083, "acc_norm": 0.9192660550458716, "acc_norm_stderr": 0.011680172292862083 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6574074074074074, "acc_stderr": 0.032365852526021574, "acc_norm": 0.6574074074074074, "acc_norm_stderr": 0.032365852526021574 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9166666666666666, "acc_stderr": 0.019398452135813905, "acc_norm": 0.9166666666666666, "acc_norm_stderr": 0.019398452135813905 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.01888975055095671, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.01888975055095671 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.8071748878923767, "acc_stderr": 0.026478240960489365, "acc_norm": 0.8071748878923767, "acc_norm_stderr": 0.026478240960489365 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8778625954198473, "acc_stderr": 0.02871877688934232, "acc_norm": 0.8778625954198473, "acc_norm_stderr": 0.02871877688934232 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8925619834710744, "acc_stderr": 0.028268812192540637, "acc_norm": 0.8925619834710744, "acc_norm_stderr": 0.028268812192540637 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8981481481481481, "acc_stderr": 0.029239272675632748, "acc_norm": 0.8981481481481481, "acc_norm_stderr": 0.029239272675632748 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8773006134969326, "acc_stderr": 0.025777328426978927, "acc_norm": 0.8773006134969326, "acc_norm_stderr": 0.025777328426978927 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5803571428571429, "acc_stderr": 0.046840993210771065, "acc_norm": 0.5803571428571429, "acc_norm_stderr": 0.046840993210771065 }, "harness|hendrycksTest-management|5": { "acc": 0.883495145631068, "acc_stderr": 0.03176683948640406, "acc_norm": 0.883495145631068, "acc_norm_stderr": 0.03176683948640406 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9401709401709402, "acc_stderr": 0.01553751426325386, "acc_norm": 0.9401709401709402, "acc_norm_stderr": 0.01553751426325386 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.91, "acc_stderr": 0.028762349126466136, "acc_norm": 0.91, "acc_norm_stderr": 0.028762349126466136 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9106002554278416, "acc_stderr": 0.010203017847688298, "acc_norm": 0.9106002554278416, "acc_norm_stderr": 0.010203017847688298 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8236994219653179, "acc_stderr": 0.020516425672490714, "acc_norm": 0.8236994219653179, "acc_norm_stderr": 0.020516425672490714 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.7854748603351955, "acc_stderr": 0.01372892340782884, "acc_norm": 0.7854748603351955, "acc_norm_stderr": 0.01372892340782884 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8529411764705882, "acc_stderr": 0.020279402936174584, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.020279402936174584 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8102893890675241, "acc_stderr": 0.022268196258783225, "acc_norm": 0.8102893890675241, "acc_norm_stderr": 0.022268196258783225 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8765432098765432, "acc_stderr": 0.018303868806891794, "acc_norm": 0.8765432098765432, "acc_norm_stderr": 0.018303868806891794 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6382978723404256, "acc_stderr": 0.028663820147199478, "acc_norm": 0.6382978723404256, "acc_norm_stderr": 0.028663820147199478 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5834419817470665, "acc_stderr": 0.012591153245057392, "acc_norm": 0.5834419817470665, "acc_norm_stderr": 0.012591153245057392 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8161764705882353, "acc_stderr": 0.023529242185193106, "acc_norm": 0.8161764705882353, "acc_norm_stderr": 0.023529242185193106 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.8137254901960784, "acc_stderr": 0.01575052628436335, "acc_norm": 0.8137254901960784, "acc_norm_stderr": 0.01575052628436335 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7363636363636363, "acc_stderr": 0.04220224692971987, "acc_norm": 0.7363636363636363, "acc_norm_stderr": 0.04220224692971987 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8285714285714286, "acc_stderr": 0.024127463462650146, "acc_norm": 0.8285714285714286, "acc_norm_stderr": 0.024127463462650146 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8855721393034826, "acc_stderr": 0.022509345325101713, "acc_norm": 0.8855721393034826, "acc_norm_stderr": 0.022509345325101713 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.89, "acc_stderr": 0.03144660377352203, "acc_norm": 0.89, "acc_norm_stderr": 0.03144660377352203 }, "harness|hendrycksTest-virology|5": { "acc": 0.572289156626506, "acc_stderr": 0.038515976837185335, "acc_norm": 0.572289156626506, "acc_norm_stderr": 0.038515976837185335 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8888888888888888, "acc_stderr": 0.02410338420207286, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.02410338420207286 }, "harness|truthfulqa:mc|0": { "mc1": 0.5862913096695227, "mc1_stderr": 0.0172408618120998, "mc2": 0.7322370420432542, "mc2_stderr": 0.014094911817256119 }, "harness|winogrande|5": { "acc": 0.8279400157853196, "acc_stderr": 0.010607731615247007 }, "harness|gsm8k|5": { "acc": 0.6520090978013646, "acc_stderr": 0.013120581030382132 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_sumo43__Yi-32b-x2-v2.0
[ "region:us" ]
2024-01-17T11:09:02+00:00
{"pretty_name": "Evaluation run of sumo43/Yi-32b-x2-v2.0", "dataset_summary": "Dataset automatically created during the evaluation run of model [sumo43/Yi-32b-x2-v2.0](https://huggingface.co/sumo43/Yi-32b-x2-v2.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_sumo43__Yi-32b-x2-v2.0\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-17T11:06:51.060608](https://huggingface.co/datasets/open-llm-leaderboard/details_sumo43__Yi-32b-x2-v2.0/blob/main/results_2024-01-17T11-06-51.060608.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7642971242141403,\n \"acc_stderr\": 0.02819142505165966,\n \"acc_norm\": 0.7688226036476489,\n \"acc_norm_stderr\": 0.02871739914525888,\n \"mc1\": 0.5862913096695227,\n \"mc1_stderr\": 0.0172408618120998,\n \"mc2\": 0.7322370420432542,\n \"mc2_stderr\": 0.014094911817256119\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.7022184300341296,\n \"acc_stderr\": 0.013363080107244482,\n \"acc_norm\": 0.7303754266211604,\n \"acc_norm_stderr\": 0.012968040686869155\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6692889862577176,\n \"acc_stderr\": 0.004695076629884535,\n \"acc_norm\": 0.8594901414060944,\n \"acc_norm_stderr\": 0.003468050114923806\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.762962962962963,\n \"acc_stderr\": 0.03673731683969506,\n \"acc_norm\": 0.762962962962963,\n \"acc_norm_stderr\": 0.03673731683969506\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.875,\n \"acc_stderr\": 0.026913523521537846,\n \"acc_norm\": 0.875,\n \"acc_norm_stderr\": 0.026913523521537846\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909282,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7962264150943397,\n \"acc_stderr\": 0.02479078450177541,\n \"acc_norm\": 0.7962264150943397,\n \"acc_norm_stderr\": 0.02479078450177541\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.875,\n \"acc_stderr\": 0.02765610492929436,\n \"acc_norm\": 0.875,\n \"acc_norm_stderr\": 0.02765610492929436\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.04793724854411019,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.04793724854411019\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5392156862745098,\n \"acc_stderr\": 0.04959859966384181,\n \"acc_norm\": 0.5392156862745098,\n \"acc_norm_stderr\": 0.04959859966384181\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.03775251680686371,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.03775251680686371\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7957446808510639,\n \"acc_stderr\": 0.026355158413349424,\n \"acc_norm\": 0.7957446808510639,\n \"acc_norm_stderr\": 0.026355158413349424\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5877192982456141,\n \"acc_stderr\": 0.04630653203366597,\n \"acc_norm\": 0.5877192982456141,\n \"acc_norm_stderr\": 0.04630653203366597\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7310344827586207,\n \"acc_stderr\": 0.036951833116502325,\n \"acc_norm\": 0.7310344827586207,\n \"acc_norm_stderr\": 0.036951833116502325\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7354497354497355,\n \"acc_stderr\": 0.02271746789770862,\n \"acc_norm\": 0.7354497354497355,\n \"acc_norm_stderr\": 0.02271746789770862\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5952380952380952,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.5952380952380952,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.01706640371965727,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.01706640371965727\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.645320197044335,\n \"acc_stderr\": 0.03366124489051449,\n \"acc_norm\": 0.645320197044335,\n \"acc_norm_stderr\": 0.03366124489051449\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536955,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536955\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8666666666666667,\n \"acc_stderr\": 0.026544435312706456,\n \"acc_norm\": 0.8666666666666667,\n \"acc_norm_stderr\": 0.026544435312706456\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9292929292929293,\n \"acc_stderr\": 0.018263105420199505,\n \"acc_norm\": 0.9292929292929293,\n \"acc_norm_stderr\": 0.018263105420199505\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9689119170984456,\n \"acc_stderr\": 0.012525310625527033,\n \"acc_norm\": 0.9689119170984456,\n \"acc_norm_stderr\": 0.012525310625527033\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.020280805062535726,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.020280805062535726\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.46296296296296297,\n \"acc_stderr\": 0.03040178640610151,\n \"acc_norm\": 0.46296296296296297,\n \"acc_norm_stderr\": 0.03040178640610151\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8277310924369747,\n \"acc_stderr\": 0.02452866497130541,\n \"acc_norm\": 0.8277310924369747,\n \"acc_norm_stderr\": 0.02452866497130541\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.4900662251655629,\n \"acc_stderr\": 0.04081677107248437,\n \"acc_norm\": 0.4900662251655629,\n \"acc_norm_stderr\": 0.04081677107248437\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9192660550458716,\n \"acc_stderr\": 0.011680172292862083,\n \"acc_norm\": 0.9192660550458716,\n \"acc_norm_stderr\": 0.011680172292862083\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6574074074074074,\n \"acc_stderr\": 0.032365852526021574,\n \"acc_norm\": 0.6574074074074074,\n \"acc_norm_stderr\": 0.032365852526021574\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9166666666666666,\n \"acc_stderr\": 0.019398452135813905,\n \"acc_norm\": 0.9166666666666666,\n \"acc_norm_stderr\": 0.019398452135813905\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.01888975055095671,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.01888975055095671\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.8071748878923767,\n \"acc_stderr\": 0.026478240960489365,\n \"acc_norm\": 0.8071748878923767,\n \"acc_norm_stderr\": 0.026478240960489365\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8778625954198473,\n \"acc_stderr\": 0.02871877688934232,\n \"acc_norm\": 0.8778625954198473,\n \"acc_norm_stderr\": 0.02871877688934232\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8925619834710744,\n \"acc_stderr\": 0.028268812192540637,\n \"acc_norm\": 0.8925619834710744,\n \"acc_norm_stderr\": 0.028268812192540637\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8981481481481481,\n \"acc_stderr\": 0.029239272675632748,\n \"acc_norm\": 0.8981481481481481,\n \"acc_norm_stderr\": 0.029239272675632748\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8773006134969326,\n \"acc_stderr\": 0.025777328426978927,\n \"acc_norm\": 0.8773006134969326,\n \"acc_norm_stderr\": 0.025777328426978927\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5803571428571429,\n \"acc_stderr\": 0.046840993210771065,\n \"acc_norm\": 0.5803571428571429,\n \"acc_norm_stderr\": 0.046840993210771065\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.883495145631068,\n \"acc_stderr\": 0.03176683948640406,\n \"acc_norm\": 0.883495145631068,\n \"acc_norm_stderr\": 0.03176683948640406\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9401709401709402,\n \"acc_stderr\": 0.01553751426325386,\n \"acc_norm\": 0.9401709401709402,\n \"acc_norm_stderr\": 0.01553751426325386\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.91,\n \"acc_stderr\": 0.028762349126466136,\n \"acc_norm\": 0.91,\n \"acc_norm_stderr\": 0.028762349126466136\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9106002554278416,\n \"acc_stderr\": 0.010203017847688298,\n \"acc_norm\": 0.9106002554278416,\n \"acc_norm_stderr\": 0.010203017847688298\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8236994219653179,\n \"acc_stderr\": 0.020516425672490714,\n \"acc_norm\": 0.8236994219653179,\n \"acc_norm_stderr\": 0.020516425672490714\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.7854748603351955,\n \"acc_stderr\": 0.01372892340782884,\n \"acc_norm\": 0.7854748603351955,\n \"acc_norm_stderr\": 0.01372892340782884\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.020279402936174584,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.020279402936174584\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8102893890675241,\n \"acc_stderr\": 0.022268196258783225,\n \"acc_norm\": 0.8102893890675241,\n \"acc_norm_stderr\": 0.022268196258783225\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8765432098765432,\n \"acc_stderr\": 0.018303868806891794,\n \"acc_norm\": 0.8765432098765432,\n \"acc_norm_stderr\": 0.018303868806891794\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6382978723404256,\n \"acc_stderr\": 0.028663820147199478,\n \"acc_norm\": 0.6382978723404256,\n \"acc_norm_stderr\": 0.028663820147199478\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5834419817470665,\n \"acc_stderr\": 0.012591153245057392,\n \"acc_norm\": 0.5834419817470665,\n \"acc_norm_stderr\": 0.012591153245057392\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8161764705882353,\n \"acc_stderr\": 0.023529242185193106,\n \"acc_norm\": 0.8161764705882353,\n \"acc_norm_stderr\": 0.023529242185193106\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.8137254901960784,\n \"acc_stderr\": 0.01575052628436335,\n \"acc_norm\": 0.8137254901960784,\n \"acc_norm_stderr\": 0.01575052628436335\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7363636363636363,\n \"acc_stderr\": 0.04220224692971987,\n \"acc_norm\": 0.7363636363636363,\n \"acc_norm_stderr\": 0.04220224692971987\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8285714285714286,\n \"acc_stderr\": 0.024127463462650146,\n \"acc_norm\": 0.8285714285714286,\n \"acc_norm_stderr\": 0.024127463462650146\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8855721393034826,\n \"acc_stderr\": 0.022509345325101713,\n \"acc_norm\": 0.8855721393034826,\n \"acc_norm_stderr\": 0.022509345325101713\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.572289156626506,\n \"acc_stderr\": 0.038515976837185335,\n \"acc_norm\": 0.572289156626506,\n \"acc_norm_stderr\": 0.038515976837185335\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.02410338420207286,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.02410338420207286\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5862913096695227,\n \"mc1_stderr\": 0.0172408618120998,\n \"mc2\": 0.7322370420432542,\n \"mc2_stderr\": 0.014094911817256119\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8279400157853196,\n \"acc_stderr\": 0.010607731615247007\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6520090978013646,\n \"acc_stderr\": 0.013120581030382132\n }\n}\n```", "repo_url": "https://huggingface.co/sumo43/Yi-32b-x2-v2.0", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|arc:challenge|25_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|gsm8k|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hellaswag|10_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-17T11-06-51.060608.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["**/details_harness|winogrande|5_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-17T11-06-51.060608.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_17T11_06_51.060608", "path": ["results_2024-01-17T11-06-51.060608.parquet"]}, {"split": "latest", "path": ["results_2024-01-17T11-06-51.060608.parquet"]}]}]}
2024-01-17T11:09:21+00:00
253440f8a74dc09a331059b3a372988a819825b9
# **About** This dataset is the formated version of the Isaak-Carter/Openai-function-invocations-20k-with-greetings dataset. This dataset, uniquely structured with custom special tokens, is meticulously crafted to train language models in complex function invocation and time-contextualized interactions. Each "sample" in the dataset contains a sequence of elements: function definitions, user prompts, function calls, function responses, and the assistant's responses. These elements are separated by custom special tokens, enhancing the dataset's structure for more effective parsing and training. Key Highlights: - **Function Definition**: Detailed descriptions of functions, including parameters and types, enabling the model to understand and simulate API-like interactions. - **User Prompts**: Varied user queries, encouraging the model to handle a diverse range of function-related requests. - **Function Calls & Responses**: Simulated API call and response patterns, illustrating practical applications of function calls. - **Time-Contextualized Assistant Responses**: The assistant's responses vary based on the time of the day, indicated by the context. This feature is pivotal in creating AI models that offer time-sensitive responses, from standard greetings to thoughtful reminders for rest during late hours. Applications: - **AI Assistants**: Training conversational AI that can understand and interact based on function calls and time context. - **API Interaction Simulation**: Models that can simulate API interactions based on user requests. - **Context-Aware Systems**: Developing systems that respond differently based on the time of interaction. This dataset is a versatile tool for advancing AI capabilities in understanding complex queries, simulating API interactions, and providing context-aware responses.
Isaak-Carter/Formated-openai-function-invocations-20k-with-greetings
[ "task_categories:text-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:conversational", "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "region:us" ]
2024-01-17T11:14:27+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification", "question-answering", "summarization", "conversational", "text-generation"], "dataset_info": {"features": [{"name": "sample", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20270230, "num_examples": 20432}], "download_size": 6760479, "dataset_size": 20270230}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T11:36:41+00:00
3d4021b58c91c8c4ef6521045dd982ea5c7b0796
# Dataset of Wandjina/ワンジナ/旺吉娜 (Fate/Grand Order) This is the dataset of Wandjina/ワンジナ/旺吉娜 (Fate/Grand Order), containing 22 images and their tags. The core tags of this character are `short_hair, yellow_eyes, breasts, black_hair, dark_skin, dark-skinned_female, small_breasts, brown_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 22 | 30.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wandjina_fgo/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 22 | 16.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wandjina_fgo/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 52 | 35.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wandjina_fgo/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 22 | 27.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wandjina_fgo/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 52 | 51.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wandjina_fgo/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/wandjina_fgo', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, looking_at_viewer, navel, smile, clothing_cutout, open_mouth, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | navel | smile | clothing_cutout | open_mouth | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:--------|:--------|:------------------|:-------------|:-------------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X |
CyberHarem/wandjina_fgo
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:17:38+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T11:23:26+00:00
ee72c58bedcb69dd81caa3d9e388d3393f9cacf5
cjsanjay/jira_train_17012024
[ "region:us" ]
2024-01-17T11:18:37+00:00
{"dataset_info": {"features": [{"name": "expand", "dtype": "string"}, {"name": "_id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "fields", "struct": [{"name": "aggregateprogress", "struct": [{"name": "percent", "dtype": "int64"}, {"name": "progress", "dtype": "int64"}, {"name": "total", "dtype": "int64"}]}, {"name": "aggregatetimeestimate", "dtype": "int64"}, {"name": "aggregatetimeoriginalestimate", "dtype": "int64"}, {"name": "aggregatetimespent", "dtype": "int64"}, {"name": "assignee", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "comments", "list": [{"name": "author", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "body", "dtype": "string"}, {"name": "created", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "updateAuthor", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "updated", "dtype": "string"}]}, {"name": "components", "list": [{"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "created", "dtype": "string"}, {"name": "creator", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "customfield_10010", "dtype": "float64"}, {"name": "customfield_10022", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "customfield_10023", "struct": [{"name": "disabled", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "customfield_10024", "list": [{"name": "disabled", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "customfield_12310191", "list": [{"name": "disabled", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "customfield_12310192", "dtype": "string"}, {"name": "customfield_12310230", "dtype": "string"}, {"name": "customfield_12310250", "list": [{"name": "disabled", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "customfield_12310290", "dtype": "null"}, {"name": "customfield_12310291", "dtype": "null"}, {"name": "customfield_12310300", "dtype": "null"}, {"name": "customfield_12310320", "list": [{"name": "archived", "dtype": "bool"}, {"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "releaseDate", "dtype": "string"}, {"name": "released", "dtype": "bool"}, {"name": "self", "dtype": "string"}]}, {"name": "customfield_12310420", "dtype": "string"}, {"name": "customfield_12310920", "dtype": "string"}, {"name": "customfield_12310921", "dtype": "null"}, {"name": "customfield_12311020", "dtype": "string"}, {"name": "customfield_12311024", "dtype": "string"}, {"name": "customfield_12311038", "dtype": "null"}, {"name": "customfield_12311120", "dtype": "null"}, {"name": "customfield_12311121", "dtype": "string"}, {"name": "customfield_12311122", "struct": [{"name": "disabled", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "customfield_12311123", "dtype": "string"}, {"name": "customfield_12311820", "dtype": "string"}, {"name": "customfield_12311920", "dtype": "null"}, {"name": "customfield_12312022", "dtype": "null"}, {"name": "customfield_12312023", "dtype": "null"}, {"name": "customfield_12312024", "dtype": "null"}, {"name": "customfield_12312026", "dtype": "null"}, {"name": "customfield_12312220", "dtype": "null"}, {"name": "customfield_12312320", "dtype": "null"}, {"name": "customfield_12312321", "dtype": "null"}, {"name": "customfield_12312322", "dtype": "null"}, {"name": "customfield_12312323", "dtype": "null"}, {"name": "customfield_12312324", "dtype": "null"}, {"name": "customfield_12312325", "dtype": "null"}, {"name": "customfield_12312326", "dtype": "null"}, {"name": "customfield_12312327", "dtype": "null"}, {"name": "customfield_12312328", "dtype": "null"}, {"name": "customfield_12312329", "dtype": "null"}, {"name": "customfield_12312330", "dtype": "null"}, {"name": "customfield_12312331", "dtype": "null"}, {"name": "customfield_12312332", "dtype": "null"}, {"name": "customfield_12312333", "dtype": "null"}, {"name": "customfield_12312334", "dtype": "null"}, {"name": "customfield_12312335", "dtype": "null"}, {"name": "customfield_12312336", "dtype": "null"}, {"name": "customfield_12312337", "dtype": "null"}, {"name": "customfield_12312338", "dtype": "null"}, {"name": "customfield_12312339", "dtype": "null"}, {"name": "customfield_12312340", "dtype": "null"}, {"name": "customfield_12312341", "dtype": "null"}, {"name": "customfield_12312520", "dtype": "null"}, {"name": "customfield_12312720", "dtype": "string"}, {"name": "customfield_12312821", "list": [{"name": "archived", "dtype": "bool"}, {"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "releaseDate", "dtype": "string"}, {"name": "released", "dtype": "bool"}, {"name": "self", "dtype": "string"}]}, {"name": "customfield_12312823", "dtype": "null"}, {"name": "customfield_12312920", "dtype": "null"}, {"name": "customfield_12312921", "dtype": "null"}, {"name": "customfield_12312923", "dtype": "null"}, {"name": "customfield_12313422", "dtype": "string"}, {"name": "customfield_12313520", "dtype": "null"}, {"name": "customfield_12313820", "dtype": "null"}, {"name": "customfield_12313821", "dtype": "null"}, {"name": "customfield_12313822", "dtype": "null"}, {"name": "customfield_12313823", "dtype": "null"}, {"name": "customfield_12313825", "dtype": "null"}, {"name": "customfield_12313826", "dtype": "null"}, {"name": "customfield_12313920", "dtype": "null"}, {"name": "customfield_12313924", "dtype": "null"}, {"name": "customfield_12314020", "dtype": "string"}, {"name": "customfield_12314120", "dtype": "null"}, {"name": "customfield_12314121", "dtype": "null"}, {"name": "customfield_12314122", "dtype": "null"}, {"name": "customfield_12314123", "dtype": "null"}, {"name": "customfield_12314124", "dtype": "null"}, {"name": "customfield_12314125", "dtype": "null"}, {"name": "customfield_12314126", "list": [{"name": "archived", "dtype": "bool"}, {"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "releaseDate", "dtype": "string"}, {"name": "released", "dtype": "bool"}, {"name": "self", "dtype": "string"}]}, {"name": "customfield_12314127", "dtype": "null"}, {"name": "customfield_12314128", "dtype": "null"}, {"name": "customfield_12314129", "dtype": "null"}, {"name": "customfield_12314130", "dtype": "null"}, {"name": "customfield_12314131", "dtype": "null"}, {"name": "customfield_12314132", "dtype": "null"}, {"name": "customfield_12314134", "dtype": "null"}, {"name": "customfield_12314135", "dtype": "null"}, {"name": "customfield_12314136", "dtype": "null"}, {"name": "customfield_12314137", "dtype": "null"}, {"name": "customfield_12314138", "dtype": "null"}, {"name": "customfield_12314139", "dtype": "null"}, {"name": "customfield_12314140", "dtype": "null"}, {"name": "customfield_12314141", "dtype": "null"}, {"name": "customfield_12314143", "dtype": "null"}, {"name": "customfield_12314144", "dtype": "null"}, {"name": "customfield_12314145", "dtype": "null"}, {"name": "customfield_12314146", "dtype": "null"}, {"name": "customfield_12314420", "dtype": "null"}, {"name": "customfield_12314421", "sequence": "string"}, {"name": "customfield_12314422", "dtype": "null"}, {"name": "customfield_12314520", "dtype": "null"}, {"name": "customfield_12314521", "dtype": "null"}, {"name": "customfield_12314522", "dtype": "null"}, {"name": "customfield_12314523", "dtype": "null"}, {"name": "customfield_12314524", "dtype": "null"}, {"name": "description", "dtype": "string"}, {"name": "duedate", "dtype": "string"}, {"name": "environment", "dtype": "string"}, {"name": "fixVersions", "list": [{"name": "archived", "dtype": "bool"}, {"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "releaseDate", "dtype": "string"}, {"name": "released", "dtype": "bool"}, {"name": "self", "dtype": "string"}]}, {"name": "issuelinks", "list": [{"name": "id", "dtype": "string"}, {"name": "inwardIssue", "struct": [{"name": "fields", "struct": [{"name": "issuetype", "struct": [{"name": "avatarId", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "subtask", "dtype": "bool"}]}, {"name": "priority", "struct": [{"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "status", "struct": [{"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "statusCategory", "struct": [{"name": "colorName", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "summary", "dtype": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "outwardIssue", "struct": [{"name": "fields", "struct": [{"name": "issuetype", "struct": [{"name": "avatarId", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "subtask", "dtype": "bool"}]}, {"name": "priority", "struct": [{"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "status", "struct": [{"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "statusCategory", "struct": [{"name": "colorName", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "summary", "dtype": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "self", "dtype": "string"}, {"name": "type", "struct": [{"name": "id", "dtype": "string"}, {"name": "inward", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "outward", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "issuetype", "struct": [{"name": "avatarId", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "subtask", "dtype": "bool"}]}, {"name": "labels", "sequence": "string"}, {"name": "lastViewed", "dtype": "null"}, {"name": "parent", "struct": [{"name": "fields", "struct": [{"name": "issuetype", "struct": [{"name": "avatarId", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "subtask", "dtype": "bool"}]}, {"name": "priority", "struct": [{"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "status", "struct": [{"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "statusCategory", "struct": [{"name": "colorName", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "summary", "dtype": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "priority", "struct": [{"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "progress", "struct": [{"name": "percent", "dtype": "int64"}, {"name": "progress", "dtype": "int64"}, {"name": "total", "dtype": "int64"}]}, {"name": "project", "struct": [{"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "projectCategory", "struct": [{"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "projectTypeKey", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "reporter", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "resolution", "struct": [{"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "resolutiondate", "dtype": "string"}, {"name": "status", "struct": [{"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "statusCategory", "struct": [{"name": "colorName", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "subtasks", "list": [{"name": "fields", "struct": [{"name": "issuetype", "struct": [{"name": "avatarId", "dtype": "int64"}, {"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "subtask", "dtype": "bool"}]}, {"name": "priority", "struct": [{"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "status", "struct": [{"name": "description", "dtype": "string"}, {"name": "iconUrl", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "statusCategory", "struct": [{"name": "colorName", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}]}]}, {"name": "summary", "dtype": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "self", "dtype": "string"}]}, {"name": "summary", "dtype": "string"}, {"name": "timeestimate", "dtype": "int64"}, {"name": "timeoriginalestimate", "dtype": "int64"}, {"name": "timespent", "dtype": "int64"}, {"name": "updated", "dtype": "string"}, {"name": "versions", "list": [{"name": "archived", "dtype": "bool"}, {"name": "description", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "releaseDate", "dtype": "string"}, {"name": "released", "dtype": "bool"}, {"name": "self", "dtype": "string"}]}, {"name": "votes", "struct": [{"name": "hasVoted", "dtype": "bool"}, {"name": "self", "dtype": "string"}, {"name": "votes", "dtype": "int64"}]}, {"name": "watches", "struct": [{"name": "isWatching", "dtype": "bool"}, {"name": "self", "dtype": "string"}, {"name": "watchCount", "dtype": "int64"}]}, {"name": "workratio", "dtype": "int64"}]}, {"name": "changelog", "struct": [{"name": "histories", "list": [{"name": "author", "struct": [{"name": "active", "dtype": "bool"}, {"name": "avatarUrls", "struct": [{"name": "16x16", "dtype": "string"}, {"name": "24x24", "dtype": "string"}, {"name": "32x32", "dtype": "string"}, {"name": "48x48", "dtype": "string"}]}, {"name": "displayName", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "self", "dtype": "string"}, {"name": "timeZone", "dtype": "string"}]}, {"name": "created", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "items", "list": [{"name": "field", "dtype": "string"}, {"name": "fieldtype", "dtype": "string"}, {"name": "from", "dtype": "string"}, {"name": "fromString", "dtype": "string"}, {"name": "to", "dtype": "string"}, {"name": "toString", "dtype": "string"}]}]}, {"name": "maxResults", "dtype": "int64"}, {"name": "startAt", "dtype": "int64"}, {"name": "total", "dtype": "int64"}]}, {"name": "self", "dtype": "string"}, {"name": "is_secops", "dtype": "bool"}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1011042600, "num_examples": 34598}], "download_size": 155169432, "dataset_size": 1011042600}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T11:19:07+00:00
5d5cd07bb49954d0812af0e721fbecddd42a611e
# Dataset of Kashin Koji/果心居士 (Fate/Grand Order) This is the dataset of Kashin Koji/果心居士 (Fate/Grand Order), containing 34 images and their tags. The core tags of this character are `heterochromia, long_hair, multicolored_hair, red_eyes, white_hair, black_hair, bangs, grey_hair, two-tone_hair, hair_ornament, green_eyes, twintails, very_long_hair, blue_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 34 | 72.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashin_koji_fgo/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 34 | 33.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashin_koji_fgo/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 83 | 73.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashin_koji_fgo/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 34 | 58.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashin_koji_fgo/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 83 | 115.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kashin_koji_fgo/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/kashin_koji_fgo', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------| | 0 | 25 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, looking_at_viewer, parted_lips, split-color_hair, red_gloves | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | parted_lips | split-color_hair | red_gloves | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:--------------|:-------------------|:-------------| | 0 | 25 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X |
CyberHarem/kashin_koji_fgo
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:19:30+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T11:29:23+00:00
d4ff1d7811910aa78e494ebad0c65b072b8630b2
# Dataset of Sugitani Zenjyubou/杉谷善住坊 (Fate/Grand Order) This is the dataset of Sugitani Zenjyubou/杉谷善住坊 (Fate/Grand Order), containing 25 images and their tags. The core tags of this character are `brown_hair, breasts, brown_eyes, large_breasts, yellow_eyes, ahoge, ponytail`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 25 | 37.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sugitani_zenjubou_fgo/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 25 | 18.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sugitani_zenjubou_fgo/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 60 | 41.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sugitani_zenjubou_fgo/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 25 | 31.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sugitani_zenjubou_fgo/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 60 | 65.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sugitani_zenjubou_fgo/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sugitani_zenjubou_fgo', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | necklace, solo, bandages, scarf, 1girl, prayer_beads, hat, looking_at_viewer, short_hair, smile, cleavage | | 1 | 9 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, scarf, solo, bandaged_arm, sideboob, long_hair, looking_at_viewer, smile | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | necklace | solo | bandages | scarf | 1girl | prayer_beads | hat | looking_at_viewer | short_hair | smile | cleavage | bandaged_arm | sideboob | long_hair | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------|:-------|:-----------|:--------|:--------|:---------------|:------|:--------------------|:-------------|:--------|:-----------|:---------------|:-----------|:------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | | | | | 1 | 9 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | | X | | X | X | | | X | | X | | X | X | X |
CyberHarem/sugitani_zenjubou_fgo
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:20:06+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T11:26:05+00:00
7a2ceddb8d37b5cf3670b34e1cb32110b610a770
## Description Weather. Channel. ## Model SVD ## Voice Julian # Tags - News # Style groundhog, live tv channel, weather news report, tv studio # Music soft breaking news intro ## Prompt Groundhog TV is an AI tube channel generating videos to summarize the weather forecast of the day. The channel should keep the tone light, eventually making joke depending on the weather, sun, rain etc
jbilcke-hf/ai-tube-groundhog-tv
[ "license:cc-by-nc-4.0", "region:us" ]
2024-01-17T11:22:11+00:00
{"license": "cc-by-nc-4.0", "pretty_name": "Groundhog TV"}
2024-01-31T20:55:20+00:00
8ffc544fb0c3cf478a8dcbbb9859d78160ba2481
Faeu/mathew1
[ "license:openrail", "region:us" ]
2024-01-17T11:22:38+00:00
{"license": "openrail"}
2024-01-17T11:53:22+00:00
cae1fd6435c03dca005205b54c77ba55454cf01d
# **Function Invocation and Time-Based Greeting Dataset** This unique dataset is designed for advanced natural language understanding and features function-calling capabilities. Each entry includes a contextual timestamp, a function definition, user inquiries, function calls, function responses, and an assistant's response. What makes this dataset stand out is the assistant's ability to tailor its greetings based on the time of day. For example, in the morning, it greets with "Good morning," while in the evening, the greeting changes accordingly. Notably, if the time is late at night, the assistant thoughtfully reminds the user about the importance of rest but still remains responsive to commands. This dynamic interaction based on timestamps showcases potential for creating more intuitive and human-like AI assistants. ```text "context": "Wednesday, 02.06.2038 09:51", "functions": "{'description': 'Get report data', 'name': 'v3_media', 'parameters': {'properties': {'file_id': {'description': 'UUID of the file.', 'type': 'string'}}, 'required': ['file_id'], 'type': 'object'}}", "user": "I'm curious about the data in this report. Can you fetch it for me?", "function_call": "{'name': 'v3_media', 'arguments': {'file_id': '12345'}}", "function_response": "{'file_id': '12345', 'data': {'title': 'Sales Report', 'date': '2022-01-01', 'total_sales': 50000, 'top_selling_product': 'Widget X'}}", "assistant_response": "Good Wednesday morning. Here is the data from the report:\n\n- Title: Sales Report\n- Date: 2022-01-01\n- Total Sales: $50,000\n- Top Selling Product: Widget X" ```
Isaak-Carter/Openai-function-invocations-20k-with-greetings
[ "task_categories:conversational", "task_categories:text-generation", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "region:us" ]
2024-01-17T11:22:44+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational", "text-generation"], "dataset_info": {"features": [{"name": "function_call", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "functions", "dtype": "string"}, {"name": "user", "dtype": "string"}, {"name": "assistant_response", "dtype": "string"}, {"name": "function_response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18475155, "num_examples": 20432}], "download_size": 7342675, "dataset_size": 18475155}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T11:33:50+00:00
33bc987e8d70b56af2bc4e3c5a3a30cb3587c7f2
A2m94/headline-emotional-word
[ "size_categories:1K<n<10K", "language:fr", "art", "region:us" ]
2024-01-17T11:24:43+00:00
{"language": ["fr"], "size_categories": ["1K<n<10K"], "tags": ["art"]}
2024-01-17T11:27:56+00:00
d0b3910af57de6fadb5baca27b43b7fef011ea01
# Dataset of lyn/リンディス (Fire Emblem) This is the dataset of lyn/リンディス (Fire Emblem), containing 500 images and their tags. The core tags of this character are `green_hair, long_hair, ponytail, green_eyes, breasts, earrings, large_breasts, bangs, very_long_hair, high_ponytail`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 500 | 687.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lyn_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 500 | 392.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lyn_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 1200 | 816.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lyn_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 500 | 611.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lyn_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1200 | 1.14 GiB | [Download](https://huggingface.co/datasets/CyberHarem/lyn_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/lyn_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, blush, hair_flower, jewelry, official_alternate_costume, solo, bare_shoulders, blue_bikini, looking_at_viewer, choker, cleavage, collarbone, smile, simple_background, closed_mouth, strapless_bikini, white_background, navel | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, hair_flower, jewelry, official_alternate_costume, outdoors, blue_bikini, day, solo, blue_sky, cleavage, cloud, looking_at_viewer, ocean, beach, smile, navel, bare_shoulders, blush, open_mouth, one_eye_closed, strapless_bikini, thighs, water | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, fingerless_gloves, jewelry, looking_at_viewer, sword, open_mouth, solo, blue_dress, simple_background, smile, side_slit | | 3 | 13 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, fingerless_gloves, holding_sword, thighs, jewelry, pelvic_curtain, solo, blue_dress, katana, looking_at_viewer, short_sleeves, side_slit, sheath, black_gloves, boots, simple_background, medium_breasts, smile, white_background, full_body, open_mouth, sash | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, dress, jewelry, solo, arrow_(projectile), fingerless_gloves, holding_bow_(weapon), looking_at_viewer, quiver, simple_background, smile, white_background, feathers, armor, boots, pelvic_curtain, thighs | | 5 | 5 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1girl, arrow_(projectile), dress, elbow_gloves, feathers, fingerless_gloves, full_body, hair_ornament, holding_bow_(weapon), jewelry, knee_boots, medium_breasts, short_sleeves, solo, brown_footwear, fur_trim, shoulder_armor, simple_background, belt, fur_cape, pelvic_curtain, quiver, sheath, standing, white_background, grey_background, looking_away, parted_lips, side_slit, sword, thighs, torn_clothes | | 6 | 6 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | cleavage, japanese_clothes, jewelry, ninja, pelvic_curtain, sword, 1girl, bare_shoulders, fingerless_gloves, scarf, shuriken, solo, elbow_gloves, holding_weapon, medium_breasts, official_alternate_costume, thighs, looking_at_viewer, simple_background, smile | | 7 | 8 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1boy, 1girl, blush, hetero, jewelry, penis, solo_focus, open_mouth, paizuri, bar_censor, fingerless_gloves, nipples, cum_on_breasts, breasts_squeezed_together, male_pubic_hair, black_gloves, blue_dress, breasts_out, clothes_lift, ejaculation, facial, smile, sweatdrop, white_background | | 8 | 5 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | 1girl, bare_shoulders, bride, hair_flower, necklace, wedding_dress, white_dress, bouquet, cleavage, official_alternate_costume, open_mouth, solo, strapless_dress, blush, detached_sleeves, holding, looking_at_viewer, simple_background, white_background, bridal_veil, medium_breasts, petals, smile, sweatdrop | | 9 | 6 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | 1boy, 1girl, blush, hetero, open_mouth, sex, solo_focus, mosaic_censoring, penis, vaginal, closed_eyes, nipples, spread_legs, cum_in_pussy, rape, tears | | 10 | 12 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | 1girl, hetero, nipples, sex, 1boy, sweat, blush, solo_focus, vaginal, completely_nude, girl_on_top, penis, mosaic_censoring, jewelry, medium_breasts, cowgirl_position, cum, looking_at_viewer, pubic_hair | | 11 | 5 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | 1girl, bandages, bandeau, blue_shirt, blue_skirt, chest_sarashi, full_body, holding_polearm, mask_on_head, midriff, navel, official_alternate_costume, paper_lantern, single_bare_shoulder, single_sleeve, solo, spear, stomach, tube_top, white_background, cleavage, simple_background, thighs, looking_at_viewer, short_sleeves, standing, :d, collarbone, fire, grin, jewelry, lips, open_mouth, teeth | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | hair_flower | jewelry | official_alternate_costume | solo | bare_shoulders | blue_bikini | looking_at_viewer | choker | cleavage | collarbone | smile | simple_background | closed_mouth | strapless_bikini | white_background | navel | outdoors | day | blue_sky | cloud | ocean | beach | open_mouth | one_eye_closed | thighs | water | fingerless_gloves | sword | blue_dress | side_slit | holding_sword | pelvic_curtain | katana | short_sleeves | sheath | black_gloves | boots | medium_breasts | full_body | sash | dress | arrow_(projectile) | holding_bow_(weapon) | quiver | feathers | armor | elbow_gloves | hair_ornament | knee_boots | brown_footwear | fur_trim | shoulder_armor | belt | fur_cape | standing | grey_background | looking_away | parted_lips | torn_clothes | japanese_clothes | ninja | scarf | shuriken | holding_weapon | 1boy | hetero | penis | solo_focus | paizuri | bar_censor | nipples | cum_on_breasts | breasts_squeezed_together | male_pubic_hair | breasts_out | clothes_lift | ejaculation | facial | sweatdrop | bride | necklace | wedding_dress | white_dress | bouquet | strapless_dress | detached_sleeves | holding | bridal_veil | petals | sex | mosaic_censoring | vaginal | closed_eyes | spread_legs | cum_in_pussy | rape | tears | sweat | completely_nude | girl_on_top | cowgirl_position | cum | pubic_hair | bandages | bandeau | blue_shirt | blue_skirt | chest_sarashi | holding_polearm | mask_on_head | midriff | paper_lantern | single_bare_shoulder | single_sleeve | spear | stomach | tube_top | :d | fire | grin | lips | teeth | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------|:--------------|:----------|:-----------------------------|:-------|:-----------------|:--------------|:--------------------|:---------|:-----------|:-------------|:--------|:--------------------|:---------------|:-------------------|:-------------------|:--------|:-----------|:------|:-----------|:--------|:--------|:--------|:-------------|:-----------------|:---------|:--------|:--------------------|:--------|:-------------|:------------|:----------------|:-----------------|:---------|:----------------|:---------|:---------------|:--------|:-----------------|:------------|:-------|:--------|:---------------------|:-----------------------|:---------|:-----------|:--------|:---------------|:----------------|:-------------|:-----------------|:-----------|:-----------------|:-------|:-----------|:-----------|:------------------|:---------------|:--------------|:---------------|:-------------------|:--------|:--------|:-----------|:-----------------|:-------|:---------|:--------|:-------------|:----------|:-------------|:----------|:-----------------|:----------------------------|:------------------|:--------------|:---------------|:--------------|:---------|:------------|:--------|:-----------|:----------------|:--------------|:----------|:------------------|:-------------------|:----------|:--------------|:---------|:------|:-------------------|:----------|:--------------|:--------------|:---------------|:-------|:--------|:--------|:------------------|:--------------|:-------------------|:------|:-------------|:-----------|:----------|:-------------|:-------------|:----------------|:------------------|:---------------|:----------|:----------------|:-----------------------|:----------------|:--------|:----------|:-----------|:-----|:-------|:-------|:-------|:--------| | 0 | 9 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | X | X | X | X | | X | | X | | | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | X | | X | | | X | | | | X | X | | | | | | | | | | | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 13 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | | | X | | X | | | X | | | | X | X | | | X | | | | | | | | X | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | X | | | X | | | | X | X | | | X | | | | | | | | | | X | | X | | | | | X | | | | | X | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 5 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | | X | | | | | | | | X | | | X | | | | | | | | | | X | | X | X | | X | | X | | X | X | | | X | X | | X | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6 | 6 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | X | X | X | X | | X | | X | | X | X | | | | | | | | | | | | | X | | X | X | | | | X | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | 8 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | X | | X | | | | | | | | | X | | | | X | | | | | | | | X | | | | X | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 8 | 5 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | X | X | X | | X | X | X | | X | | X | | X | X | | | X | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9 | 6 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | X | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | X | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | 10 | 12 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | X | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | X | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | 11 | 5 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | X | | | X | X | X | | | X | | X | X | | X | | | X | X | | | | | | | X | | X | | | | | | | | | X | | | | | X | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/lyn_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:25:15+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:07:25+00:00
c2372ae32a48f94542b58fa664e1275729c4ffe5
# Dataset of sakura/サクラ (Fire Emblem) This is the dataset of sakura/サクラ (Fire Emblem), containing 362 images and their tags. The core tags of this character are `short_hair, pink_hair, hairband, pink_eyes, breasts, red_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 362 | 369.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakura_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 362 | 239.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakura_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 769 | 463.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakura_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 362 | 339.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakura_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 769 | 611.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sakura_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sakura_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 21 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1boy, 1girl, hetero, blush, nipples, sex, open_mouth, solo_focus, penis, sweat, vaginal, pussy, mosaic_censoring, medium_breasts, spread_legs, navel, red_hair, small_breasts, thighhighs, completely_nude | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, gloves, japanese_clothes, simple_background, smile, solo, white_background, capelet, looking_at_viewer | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, japanese_clothes, smile, solo, capelet, gloves, blush, open_mouth, thighhighs | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1boy | 1girl | hetero | blush | nipples | sex | open_mouth | solo_focus | penis | sweat | vaginal | pussy | mosaic_censoring | medium_breasts | spread_legs | navel | red_hair | small_breasts | thighhighs | completely_nude | gloves | japanese_clothes | simple_background | smile | solo | white_background | capelet | looking_at_viewer | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------|:--------|:---------|:--------|:----------|:------|:-------------|:-------------|:--------|:--------|:----------|:--------|:-------------------|:-----------------|:--------------|:--------|:-----------|:----------------|:-------------|:------------------|:---------|:-------------------|:--------------------|:--------|:-------|:-------------------|:----------|:--------------------| | 0 | 21 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | 1 | 5 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | | X | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | | X | | X | | | X | | | | | | | | | | | | X | | X | X | | X | X | | X | |
CyberHarem/sakura_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:26:46+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:16:55+00:00
345016b2cdd07bd75ce7fbdaee94e1d5e4cc1350
# Dataset Card for "filtered_wikibook" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ashish23/filtered_wikibook
[ "region:us" ]
2024-01-17T11:31:17+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2567855206.0077558, "num_examples": 8433293}, {"name": "test", "num_bytes": 7727048.207960854, "num_examples": 25377}], "download_size": 11760058784, "dataset_size": 2575582254.215717}}
2024-01-17T11:49:42+00:00
bea123f296f3c915365aeeb244f7f5065b4c75fb
# Dataset of katua/カチュア/카츄아 (Fire Emblem) This is the dataset of katua/カチュア/카츄아 (Fire Emblem), containing 270 images and their tags. The core tags of this character are `blue_hair, short_hair, blue_eyes, headband, breasts, medium_breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 270 | 245.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/katua_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 270 | 165.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/katua_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 534 | 304.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/katua_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 270 | 227.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/katua_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 534 | 387.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/katua_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/katua_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, elbow_gloves, full_body, solo, thigh_boots, thighhighs, breastplate, fingerless_gloves, looking_at_viewer, short_dress, side_slit, simple_background, spear, white_background, holding_weapon, standing, sword, pegasus_knight_uniform_(fire_emblem), sheath, shoulder_armor, smile, zettai_ryouiki | | 1 | 22 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, solo, elbow_gloves, fingerless_gloves, pegasus_knight_uniform_(fire_emblem), thighhighs, spear, breastplate, smile, boots, simple_background, zettai_ryouiki | | 2 | 26 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, solo, nipples, blush, nude, large_breasts, pussy, open_mouth | | 3 | 15 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, white_dress, bare_shoulders, smile, solo, wedding_dress, simple_background, bangs, detached_collar, strapless_dress, hair_flower, white_background, full_body, feather_trim, official_alternate_costume, skirt_hold, white_footwear, closed_mouth, detached_sleeves, holding, looking_at_viewer | | 4 | 14 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | fake_animal_ears, rabbit_ears, rabbit_tail, 1girl, pegasus_knight_uniform_(fire_emblem), solo, elbow_gloves, thighhighs, blush, playboy_bunny, hair_flower, looking_at_viewer, simple_background, white_gloves, cleavage, egg, detached_collar, open_mouth, white_background | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1boy, hetero, nipples, open_mouth, 1girl, blush, sex, solo_focus, sweat, vaginal, pussy, spread_legs, closed_eyes, completely_nude, female_pubic_hair, girl_on_top, mosaic_censoring, navel, penis, cowgirl_position | | 6 | 5 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1boy, 1girl, hetero, nipples, sex, solo_focus, open_mouth, penis, thighhighs, vaginal, white_headband, blush, censored, cum_in_pussy, fingerless_gloves, spread_legs, sweat, arm_grab, armor, ass, breasts_out, closed_eyes, on_back | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | full_body | solo | thigh_boots | thighhighs | breastplate | fingerless_gloves | looking_at_viewer | short_dress | side_slit | simple_background | spear | white_background | holding_weapon | standing | sword | pegasus_knight_uniform_(fire_emblem) | sheath | shoulder_armor | smile | zettai_ryouiki | boots | nipples | blush | nude | large_breasts | pussy | open_mouth | white_dress | bare_shoulders | wedding_dress | bangs | detached_collar | strapless_dress | hair_flower | feather_trim | official_alternate_costume | skirt_hold | white_footwear | closed_mouth | detached_sleeves | holding | fake_animal_ears | rabbit_ears | rabbit_tail | playboy_bunny | white_gloves | cleavage | egg | 1boy | hetero | sex | solo_focus | sweat | vaginal | spread_legs | closed_eyes | completely_nude | female_pubic_hair | girl_on_top | mosaic_censoring | navel | penis | cowgirl_position | white_headband | censored | cum_in_pussy | arm_grab | armor | ass | breasts_out | on_back | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:------------|:-------|:--------------|:-------------|:--------------|:--------------------|:--------------------|:--------------|:------------|:--------------------|:--------|:-------------------|:-----------------|:-----------|:--------|:---------------------------------------|:---------|:-----------------|:--------|:-----------------|:--------|:----------|:--------|:-------|:----------------|:--------|:-------------|:--------------|:-----------------|:----------------|:--------|:------------------|:------------------|:--------------|:---------------|:-----------------------------|:-------------|:-----------------|:---------------|:-------------------|:----------|:-------------------|:--------------|:--------------|:----------------|:---------------|:-----------|:------|:-------|:---------|:------|:-------------|:--------|:----------|:--------------|:--------------|:------------------|:--------------------|:--------------|:-------------------|:--------|:--------|:-------------------|:-----------------|:-----------|:---------------|:-----------|:--------|:------|:--------------|:----------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 22 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | | X | X | X | | | | X | X | | | | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 26 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 15 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | | X | X | | | | | X | | | X | | X | | | | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 14 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | X | | X | | X | | | X | | | X | | X | | | | X | | | | | | | X | | | | X | | | | | X | | X | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | | | | | | | | | | | | | | | | | | | | | X | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | 6 | 5 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | | | X | | X | | | | | | | | | | | | | | | | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | X | | X | X | X | X | X | X | X | X |
CyberHarem/katua_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:35:07+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T12:32:06+00:00
8c33020dcdc2e20305cf14f42cbff0dfbb017542
# Dataset of elise/エリーゼ (Fire Emblem) This is the dataset of elise/エリーゼ (Fire Emblem), containing 335 images and their tags. The core tags of this character are `blonde_hair, long_hair, twintails, purple_eyes, bow, hair_bow, ribbon, drill_hair, purple_hair, hair_ribbon, breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 335 | 313.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elise_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 335 | 213.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elise_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 676 | 400.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elise_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 335 | 288.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elise_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 676 | 505.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/elise_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/elise_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 45 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, gloves, smile, dress, open_mouth, staff, thighhighs, armor, thigh_boots | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, black_bow, open_mouth, bangs, white_background, white_rose, simple_background, solo, :d, black_dress, blush, looking_at_viewer, very_long_hair, black_gloves, earrings, two-tone_hair, upper_body, black_capelet, holding_staff, long_sleeves, pink_bowtie | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, ninja, official_alternate_costume, open_mouth, red_scarf, bangs, looking_at_viewer, obi, :d, bare_shoulders, black_gloves, blush, fingerless_gloves, multicolored_hair, solo, 2girls, earrings, holding, scroll, shuriken, sidelocks, simple_background, sleeveless_kimono, upper_body, very_long_hair | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, navel, solo, blush, nipples, medium_breasts, open_mouth, completely_nude, looking_at_viewer, one_eye_closed, smile | | 4 | 8 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, hetero, nipples, solo_focus, 1boy, completely_nude, open_mouth, pussy, sex, navel, penis, blush, girl_on_top, small_breasts, smile, spread_legs, vaginal, cowgirl_position, medium_breasts, uncensored | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1boy, 1girl, hetero, sex, solo_focus, vaginal, cum_in_pussy, gloves, nipples, penis, open_mouth, small_breasts, thighhighs, blush, mosaic_censoring | | 6 | 7 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | open_mouth, smile, black_bow, blush, multicolored_hair, flower_necklace, small_breasts, very_long_hair, 1girl, 2girls, bikini, black_one-piece_swimsuit, blue_sky, casual_one-piece_swimsuit, closed_eyes, cloud, day, outdoors, water | | 7 | 6 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1girl, bondage, solo, arms_behind_back, gagged, rope, shibari, improvised_gag, thighhighs | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | gloves | smile | dress | open_mouth | staff | thighhighs | armor | thigh_boots | black_bow | bangs | white_background | white_rose | simple_background | :d | black_dress | blush | looking_at_viewer | very_long_hair | black_gloves | earrings | two-tone_hair | upper_body | black_capelet | holding_staff | long_sleeves | pink_bowtie | ninja | official_alternate_costume | red_scarf | obi | bare_shoulders | fingerless_gloves | multicolored_hair | 2girls | holding | scroll | shuriken | sidelocks | sleeveless_kimono | navel | nipples | medium_breasts | completely_nude | one_eye_closed | hetero | solo_focus | 1boy | pussy | sex | penis | girl_on_top | small_breasts | spread_legs | vaginal | cowgirl_position | uncensored | cum_in_pussy | mosaic_censoring | flower_necklace | bikini | black_one-piece_swimsuit | blue_sky | casual_one-piece_swimsuit | closed_eyes | cloud | day | outdoors | water | bondage | arms_behind_back | gagged | rope | shibari | improvised_gag | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------|:--------|:--------|:-------------|:--------|:-------------|:--------|:--------------|:------------|:--------|:-------------------|:-------------|:--------------------|:-----|:--------------|:--------|:--------------------|:-----------------|:---------------|:-----------|:----------------|:-------------|:----------------|:----------------|:---------------|:--------------|:--------|:-----------------------------|:------------|:------|:-----------------|:--------------------|:--------------------|:---------|:----------|:---------|:-----------|:------------|:--------------------|:--------|:----------|:-----------------|:------------------|:-----------------|:---------|:-------------|:-------|:--------|:------|:--------|:--------------|:----------------|:--------------|:----------|:-------------------|:-------------|:---------------|:-------------------|:------------------|:---------|:---------------------------|:-----------|:----------------------------|:--------------|:--------|:------|:-----------|:--------|:----------|:-------------------|:---------|:-------|:----------|:-----------------| | 0 | 45 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | | | | X | | | | | | X | | | X | X | | X | X | X | X | X | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | | X | | X | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 8 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | X | | | X | | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | X | X | | X | X | | X | | X | | | X | X | | | | | | | | | | | | | | | | | | 6 | 7 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | X | | X | | | | | X | | | | | | | X | | X | | | | | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | 7 | 6 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X |
CyberHarem/elise_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:35:16+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T12:56:30+00:00
40056ec4725839d3a4e765f374b40158ff7773aa
# Dataset of wayu/ワユ (Fire Emblem) This is the dataset of wayu/ワユ (Fire Emblem), containing 500 images and their tags. The core tags of this character are `long_hair, green_eyes, blue_hair, hairband, white_hairband, breasts, ahoge, purple_hair, headband`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 500 | 620.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wayu_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 500 | 370.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wayu_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 1194 | 781.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wayu_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 500 | 558.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wayu_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1194 | 1.05 GiB | [Download](https://huggingface.co/datasets/CyberHarem/wayu_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/wayu_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, fingerless_gloves, holding_sword, looking_at_viewer, smile, solo, detached_sleeves, armor, belt, simple_background, thighhighs, closed_mouth | | 1 | 13 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, smile, solo, fingerless_gloves, sword, simple_background, thighhighs, belt, detached_sleeves, bare_shoulders, white_background, open_mouth, zettai_ryouiki | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, detached_sleeves, fingerless_gloves, holding_sword, navel, official_alternate_costume, smile, solo, thighhighs, cape, looking_at_viewer, open_mouth, short_shorts, midriff, sheathed, white_shorts, bare_shoulders, belt, medium_breasts, simple_background, white_background, white_gloves | | 3 | 9 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, belt, halloween_costume, navel_cutout, solo, white_headband, witch_hat, detached_sleeves, fingerless_gloves, open_mouth, black_gloves, garter_straps, broom_riding, thighhighs | | 4 | 8 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, blue_sky, day, hair_flower, orange_bikini, solo, cloud, navel, cleavage, looking_at_viewer, grin, armpits, holding, large_breasts, open_mouth, thigh_strap, wristband | | 5 | 13 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | hair_flower, orange_bikini, 1girl, smile, solo, medium_breasts, simple_background, cleavage, looking_at_viewer, navel, white_background, open_mouth, wristband, official_alternate_costume, orange_flower, thigh_strap, holding | | 6 | 9 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1girl, blush, hair_flower, hetero, orange_bikini, penis, sex, solo_focus, vaginal, nipples, open_mouth, 1boy, cum_in_pussy, spread_legs, thigh_strap, breasts_out, day, large_breasts, mosaic_censoring, navel, orange_flower, outdoors, clothes_lift, ejaculation, wristband, bangs, blue_sky, clothing_aside, cloud, stomach | | 7 | 7 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1girl, cum_in_pussy, gangbang, hetero, multiple_penises, nipples, solo_focus, thighhighs, vaginal, 3boys, blush, ejaculation, spread_legs, clothed_female_nude_male, cum_on_breasts, large_breasts, open_mouth, breast_grab, breasts_out, clothed_sex, detached_sleeves, facial, fingerless_gloves, grabbing, testicles, bar_censor, belt, gloved_handjob, mosaic_censoring, rape | | 8 | 6 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | 1boy, 1girl, blush, hetero, nipples, open_mouth, penis, solo_focus, thighhighs, vaginal, breasts_out, clothed_female_nude_male, clothed_sex, fingerless_gloves, medium_breasts, mosaic_censoring, spread_legs, belt, cum_in_pussy, elbow_gloves, lying, black_gloves, detached_sleeves, large_breasts, tears | | 9 | 6 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | 1girl, navel, nipples, smile, solo, pussy, blush, looking_at_viewer, medium_breasts, simple_background, bar_censor, completely_nude, large_breasts, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | fingerless_gloves | holding_sword | looking_at_viewer | smile | solo | detached_sleeves | armor | belt | simple_background | thighhighs | closed_mouth | sword | bare_shoulders | white_background | open_mouth | zettai_ryouiki | navel | official_alternate_costume | cape | short_shorts | midriff | sheathed | white_shorts | medium_breasts | white_gloves | halloween_costume | navel_cutout | white_headband | witch_hat | black_gloves | garter_straps | broom_riding | blue_sky | day | hair_flower | orange_bikini | cloud | cleavage | grin | armpits | holding | large_breasts | thigh_strap | wristband | orange_flower | blush | hetero | penis | sex | solo_focus | vaginal | nipples | 1boy | cum_in_pussy | spread_legs | breasts_out | mosaic_censoring | outdoors | clothes_lift | ejaculation | bangs | clothing_aside | stomach | gangbang | multiple_penises | 3boys | clothed_female_nude_male | cum_on_breasts | breast_grab | clothed_sex | facial | grabbing | testicles | bar_censor | gloved_handjob | rape | elbow_gloves | lying | tears | pussy | completely_nude | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:----------------|:--------------------|:--------|:-------|:-------------------|:--------|:-------|:--------------------|:-------------|:---------------|:--------|:-----------------|:-------------------|:-------------|:-----------------|:--------|:-----------------------------|:-------|:---------------|:----------|:-----------|:---------------|:-----------------|:---------------|:--------------------|:---------------|:-----------------|:------------|:---------------|:----------------|:---------------|:-----------|:------|:--------------|:----------------|:--------|:-----------|:-------|:----------|:----------|:----------------|:--------------|:------------|:----------------|:--------|:---------|:--------|:------|:-------------|:----------|:----------|:-------|:---------------|:--------------|:--------------|:-------------------|:-----------|:---------------|:--------------|:--------|:-----------------|:----------|:-----------|:-------------------|:--------|:---------------------------|:-----------------|:--------------|:--------------|:---------|:-----------|:------------|:-------------|:-----------------|:-------|:---------------|:--------|:--------|:--------|:------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 13 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | | X | X | X | | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | X | X | X | X | | X | X | X | | | X | X | X | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 9 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | | | | X | X | | X | | X | | | | | X | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 8 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | X | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 13 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | X | X | | | | X | | | | | X | X | | X | X | | | | | | X | | | | | | | | | | | X | X | | X | | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6 | 9 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | | | | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | 7 | 7 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | X | | | | | X | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | X | | | X | X | X | | X | X | X | X | | | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | 8 | 6 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | X | X | | | | | X | | X | | X | | | | | X | | | | | | | | | X | | | | | | X | | | | | | | | | | | | X | | | | X | X | X | | X | X | X | X | X | X | X | X | | | | | | | | | | X | | | X | | | | | | | X | X | X | | | | 9 | 6 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | X | | | X | X | X | | | | X | | | | | X | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | X | | | | X | | | | | | X | | | | | | | | | | | | | | | | | | | | | | X | | | | | | X | X |
CyberHarem/wayu_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:35:24+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:17:09+00:00
f9b83e1776ed4d269129750ef6f7e7f9e22bccc9
# Dataset of eirik/エイリーク (Fire Emblem) This is the dataset of eirik/エイリーク (Fire Emblem), containing 500 images and their tags. The core tags of this character are `long_hair, blue_eyes, aqua_hair, blue_hair, bangs, breasts, aqua_eyes, sidelocks`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 500 | 718.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eirik_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 500 | 409.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eirik_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 1192 | 846.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eirik_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 500 | 639.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eirik_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1192 | 1.16 GiB | [Download](https://huggingface.co/datasets/CyberHarem/eirik_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/eirik_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, breastplate, closed_mouth, red_shirt, solo, upper_body, looking_at_viewer, pauldrons, simple_background, smile, short_sleeves, cape, earrings, hair_between_eyes, white_background | | 1 | 14 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, breastplate, cape, holding_sword, miniskirt, red_gloves, thigh_boots, white_skirt, zettai_ryouiki, fingerless_gloves, solo, looking_at_viewer, short_sleeves, shoulder_armor, red_footwear, red_shirt, earrings, full_body, closed_mouth, rapier, red_thighhighs, hair_between_eyes, standing, simple_background, smile, white_background | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, armor, cape, rapier, skirt, solo, thighhighs, earrings, thigh_boots, zettai_ryouiki, white_background, fingerless_gloves | | 3 | 6 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, breastplate, cape, looking_at_viewer, red_gloves, shoulder_armor, solo, shirt, white_skirt, fingerless_gloves, hair_between_eyes, short_sleeves, holding_sword, smile | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, breastplate, fingerless_gloves, looking_at_viewer, red_gloves, shoulder_armor, solo, upper_body, earrings, open_mouth, red_shirt, cape, simple_background, smile, blush, hair_between_eyes, shiny_hair | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1girl, alternate_hairstyle, breastplate, cosplay, ponytail, solo, upper_body, cape, closed_mouth, looking_at_viewer, official_alternate_costume, simple_background, smile, earrings, white_background | | 6 | 25 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1girl, solo, breastplate, cape, looking_at_viewer, ponytail, cosplay, holding_polearm, official_alternate_costume, spear, earrings, brown_gloves, thighhighs, skirt, smile, alternate_hairstyle, belt, shoulder_armor, boots, hair_ornament, simple_background | | 7 | 11 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1girl, christmas, fur_trim, santa_costume, santa_hat, smile, cape, looking_at_viewer, red_gloves, solo, dress, official_alternate_costume, open_mouth, red_headwear, blush, holding_staff, skirt | | 8 | 9 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | 1girl, hair_flower, smile, solo, earrings, looking_at_viewer, simple_background, white_background, bare_shoulders, closed_mouth, wedding_dress, white_dress | | 9 | 17 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | 1girl, hair_flower, official_alternate_costume, smile, yellow_bikini, solo, navel, cleavage, off-shoulder_bikini, bare_shoulders, looking_at_viewer, bracelet, hibiscus, necklace, two-tone_bikini, open_mouth, blush, layered_bikini, bikini_skirt, innertube, medium_breasts, simple_background, white_background | | 10 | 11 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | 1girl, black_bikini, cleavage, hair_flower, large_breasts, official_alternate_costume, solo, looking_at_viewer, smile, cloud, navel, ocean, outdoors, blue_sky, dagger, day, beach, hair_between_eyes, hibiscus, water, closed_mouth, holding, parted_lips, sheathed, black_capelet, collarbone, cowboy_shot, red_flower, sitting | | 11 | 8 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | 1girl, looking_at_viewer, nipples, blush, solo, barefoot, completely_nude, smile, ass, full_body, large_breasts, medium_breasts, navel, dakimakura_(medium), on_back | | 12 | 10 | ![](samples/12/clu12-sample0.png) | ![](samples/12/clu12-sample1.png) | ![](samples/12/clu12-sample2.png) | ![](samples/12/clu12-sample3.png) | ![](samples/12/clu12-sample4.png) | 1boy, 1girl, hetero, nipples, penis, blush, large_breasts, open_mouth, vaginal, solo_focus, thighhighs, cum_in_pussy, mosaic_censoring, spread_legs, straddling, breasts_out, clothed_sex, girl_on_top, navel, panties | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | breastplate | closed_mouth | red_shirt | solo | upper_body | looking_at_viewer | pauldrons | simple_background | smile | short_sleeves | cape | earrings | hair_between_eyes | white_background | holding_sword | miniskirt | red_gloves | thigh_boots | white_skirt | zettai_ryouiki | fingerless_gloves | shoulder_armor | red_footwear | full_body | rapier | red_thighhighs | standing | armor | skirt | thighhighs | shirt | open_mouth | blush | shiny_hair | alternate_hairstyle | cosplay | ponytail | official_alternate_costume | holding_polearm | spear | brown_gloves | belt | boots | hair_ornament | christmas | fur_trim | santa_costume | santa_hat | dress | red_headwear | holding_staff | hair_flower | bare_shoulders | wedding_dress | white_dress | yellow_bikini | navel | cleavage | off-shoulder_bikini | bracelet | hibiscus | necklace | two-tone_bikini | layered_bikini | bikini_skirt | innertube | medium_breasts | black_bikini | large_breasts | cloud | ocean | outdoors | blue_sky | dagger | day | beach | water | holding | parted_lips | sheathed | black_capelet | collarbone | cowboy_shot | red_flower | sitting | nipples | barefoot | completely_nude | ass | dakimakura_(medium) | on_back | 1boy | hetero | penis | vaginal | solo_focus | cum_in_pussy | mosaic_censoring | spread_legs | straddling | breasts_out | clothed_sex | girl_on_top | panties | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------------|:---------------|:------------|:-------|:-------------|:--------------------|:------------|:--------------------|:--------|:----------------|:-------|:-----------|:--------------------|:-------------------|:----------------|:------------|:-------------|:--------------|:--------------|:-----------------|:--------------------|:-----------------|:---------------|:------------|:---------|:-----------------|:-----------|:--------|:--------|:-------------|:--------|:-------------|:--------|:-------------|:----------------------|:----------|:-----------|:-----------------------------|:------------------|:--------|:---------------|:-------|:--------|:----------------|:------------|:-----------|:----------------|:------------|:--------|:---------------|:----------------|:--------------|:-----------------|:----------------|:--------------|:----------------|:--------|:-----------|:----------------------|:-----------|:-----------|:-----------|:------------------|:-----------------|:---------------|:------------|:-----------------|:---------------|:----------------|:--------|:--------|:-----------|:-----------|:---------|:------|:--------|:--------|:----------|:--------------|:-----------|:----------------|:-------------|:--------------|:-------------|:----------|:----------|:-----------|:------------------|:------|:----------------------|:----------|:-------|:---------|:--------|:----------|:-------------|:---------------|:-------------------|:--------------|:-------------|:--------------|:--------------|:--------------|:----------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 14 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | | X | | | | | | | X | X | | X | | | | X | | X | X | | | | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 6 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | | | X | | X | | | X | X | X | | X | | X | | X | | X | | X | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | X | | X | X | X | X | | X | X | | X | X | X | | | | X | | | | X | X | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | X | X | | X | X | X | | X | X | | X | X | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6 | 25 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | X | | | X | | X | | X | X | | X | X | | | | | | | | | | X | | | | | | | X | X | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | 11 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | | | | X | | X | | | X | | X | | | | | | X | | | | | | | | | | | | X | | | X | X | | | | | X | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 8 | 9 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | X | | X | | X | | X | | X | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9 | 17 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | X | | | | X | | X | | X | X | | | | | X | | | | | | | | | | | | | | | | | | X | X | | | | | X | | | | | | | | | | | | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 10 | 11 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | X | | X | | X | | X | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | | | | | X | X | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | 11 | 8 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | X | | | | X | | X | | | X | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | 12 | 10 | ![](samples/12/clu12-sample0.png) | ![](samples/12/clu12-sample1.png) | ![](samples/12/clu12-sample2.png) | ![](samples/12/clu12-sample3.png) | ![](samples/12/clu12-sample4.png) | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/eirik_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:35:47+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:34:22+00:00
5f6037055dc9cc31e821ef69a97394087300cbfc
AnzaniAI/ner_data
[ "license:mit", "region:us" ]
2024-01-17T11:37:05+00:00
{"license": "mit"}
2024-01-18T03:14:56+00:00
68c66948a91b29250fb7eb4ec2cb93a5b3e15f33
Aneeth/job_description_7k
[ "region:us" ]
2024-01-17T11:42:40+00:00
{"dataset_info": {"features": [{"name": "Unnamed: 0", "dtype": "int64"}, {"name": "index", "dtype": "int64"}, {"name": "user_prompt", "dtype": "string"}, {"name": "model_response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12754354, "num_examples": 7000}, {"name": "validation", "num_bytes": 910258, "num_examples": 500}], "download_size": 3473642, "dataset_size": 13664612}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-01-17T11:46:35+00:00
f0a4329cf9f9027b095be7743a6db068fa425e5f
This is a cleaned version from the Quora dataset that solves a single problem with the original dataset - sentences can have multiple ids. We also removed 2 rows from the original dataset that contained an empty string - this causes problem when trying to run an embedding because a empty string cannot... be embedded by OpenAI and has no valid representation? Created to minimise data leakage from your train, test and validation sets by allowing you to segregate and split by ID.
567-labs/cleaned-quora-dataset
[ "language:en", "license:mit", "region:us" ]
2024-01-17T11:44:18+00:00
{"language": ["en"], "license": "mit", "dataset_info": {"features": [{"name": "questions", "struct": [{"name": "id", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}, {"name": "is_duplicate", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 61389323, "num_examples": 404288}], "download_size": 36181628, "dataset_size": 61389323}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-29T14:31:06+00:00
29b6a8283f0060ca608994d2d1972e129ee68449
Kamyar-zeinalipour/Protein-less-than-500
[ "region:us" ]
2024-01-17T11:49:04+00:00
{"dataset_info": {"features": [{"name": "Cluster ID", "dtype": "string"}, {"name": "Cluster Name", "dtype": "string"}, {"name": "Types", "dtype": "string"}, {"name": "Size", "dtype": "int64"}, {"name": "Organisms", "dtype": "string"}, {"name": "Length", "dtype": "int64"}, {"name": "Identity", "dtype": "float64"}, {"name": "Reference_sequence", "dtype": "string"}, {"name": "Common taxon ID", "dtype": "int64"}, {"name": "Common taxon", "dtype": "string"}, {"name": "Organism IDs", "dtype": "string"}, {"name": "Cluster members", "dtype": "string"}, {"name": "Date of creation", "dtype": "string"}, {"name": "Reference sequence len", "dtype": "int64"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 27537377, "num_examples": 42000}, {"name": "test", "num_bytes": 973422, "num_examples": 1484}], "download_size": 14859478, "dataset_size": 28510799}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-17T17:26:02+00:00
943afd821c0f96ad9e0b6472ee60c10b668f81ae
# Dataset of felicia/フェリシア (Fire Emblem) This is the dataset of felicia/フェリシア (Fire Emblem), containing 258 images and their tags. The core tags of this character are `long_hair, pink_hair, blue_eyes, maid_headdress, ponytail, breasts, bangs`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 258 | 288.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/felicia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 258 | 175.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/felicia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 572 | 350.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/felicia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 258 | 259.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/felicia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 572 | 480.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/felicia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/felicia_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 12 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, long_sleeves, maid, smile, looking_at_viewer, puffy_sleeves, simple_background, open_mouth, white_background, apron, upper_body | | 1 | 8 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, solo, knife, maid_apron, simple_background, weapon, black_thighhighs, holding, white_background, long_sleeves, open_mouth, smile, full_body, looking_at_viewer, puffy_sleeves, zettai_ryouiki, bridal_gauntlets, gem | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1boy, 1girl, blush, completely_nude, hetero, large_breasts, solo_focus, nipples, open_mouth, tongue_out, ahegao, heart-shaped_pupils, sweat, blunt_bangs, collarbone, doggystyle, saliva, sex_from_behind, simple_background, smile | | 3 | 8 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1boy, 1girl, hetero, open_mouth, sex, thighhighs, blush, maid, solo_focus, vaginal, large_breasts, nipples, penis, breasts_out, cum_in_pussy, spread_legs, uncensored, bar_censor, girl_on_top, heart-shaped_pupils, long_sleeves, lying, straddling | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1boy, blush, completely_nude, hetero, medium_breasts, navel, nipples, open_mouth, penis, sex, vaginal, 1girl, sweat, blunt_bangs, solo_focus, uncensored, cum_in_pussy | | 5 | 5 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1boy, 1girl, blush, hetero, penis, solo_focus, nipples, blunt_bangs, cum_in_mouth, large_breasts, looking_at_viewer, nude, pov, maid, mosaic_censoring, open_mouth, oral, paizuri, smile, tongue_out | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | long_sleeves | maid | smile | looking_at_viewer | puffy_sleeves | simple_background | open_mouth | white_background | apron | upper_body | knife | maid_apron | weapon | black_thighhighs | holding | full_body | zettai_ryouiki | bridal_gauntlets | gem | 1boy | blush | completely_nude | hetero | large_breasts | solo_focus | nipples | tongue_out | ahegao | heart-shaped_pupils | sweat | blunt_bangs | collarbone | doggystyle | saliva | sex_from_behind | sex | thighhighs | vaginal | penis | breasts_out | cum_in_pussy | spread_legs | uncensored | bar_censor | girl_on_top | lying | straddling | medium_breasts | navel | cum_in_mouth | nude | pov | mosaic_censoring | oral | paizuri | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:-------|:--------|:--------------------|:----------------|:--------------------|:-------------|:-------------------|:--------|:-------------|:--------|:-------------|:---------|:-------------------|:----------|:------------|:-----------------|:-------------------|:------|:-------|:--------|:------------------|:---------|:----------------|:-------------|:----------|:-------------|:---------|:----------------------|:--------|:--------------|:-------------|:-------------|:---------|:------------------|:------|:-------------|:----------|:--------|:--------------|:---------------|:--------------|:-------------|:-------------|:--------------|:--------|:-------------|:-----------------|:--------|:---------------|:-------|:------|:-------------------|:-------|:----------| | 0 | 12 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 8 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 6 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | | | | X | | | X | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | 3 | 8 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | | X | X | | | | | X | | | | | | | | | | | | | X | X | | X | X | X | X | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | 4 | 6 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | | | | | | X | | | | | | | | | | | | | X | X | X | X | | X | X | | | | X | X | | | | | X | | X | X | | X | | X | | | | | X | X | | | | | | | | 5 | 5 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | X | X | | | X | | | | | | | | | | | | | X | X | | X | X | X | X | X | | | | X | | | | | | | | X | | | | | | | | | | | X | X | X | X | X | X |
CyberHarem/felicia_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:49:58+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T12:51:37+00:00
ed43c565e4d2a8d9d9db4e05ee6591b6f7061d99
# Dataset of olivia/オリヴィエ (Fire Emblem) This is the dataset of olivia/オリヴィエ (Fire Emblem), containing 397 images and their tags. The core tags of this character are `long_hair, pink_hair, braid, ponytail, twin_braids, hairband, breasts, pink_eyes, side_braid, medium_breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 397 | 465.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olivia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 397 | 270.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olivia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 881 | 552.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olivia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 397 | 411.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olivia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 881 | 766.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olivia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/olivia_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, simple_background, solo, bare_shoulders, closed_mouth, midriff, navel, blush, detached_sleeves, looking_at_viewer, o-ring, smile, twitter_username, upper_body, white_background, dancer, cleavage, grey_background | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, bare_shoulders, looking_at_viewer, navel, simple_background, smile, solo, dancer, midriff, bridal_gauntlets, full_body, sandals, thighhighs, white_background | | 2 | 10 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, ass, bare_shoulders, looking_at_viewer, smile, solo, see-through, simple_background, dancer, looking_back, from_behind, full_body | | 3 | 5 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, ass, blush, from_behind, looking_at_viewer, looking_back, simple_background, solo, white_background, bare_shoulders, dancer, black_panties, bridal_gauntlets, thighhighs | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, cleavage, fake_animal_ears, playboy_bunny, rabbit_ears, solo, alternate_costume, black_pantyhose, detached_collar, strapless_leotard, wrist_cuffs, bare_shoulders, full_body, high_heels, looking_at_viewer, open_mouth, simple_background, white_background, black_leotard, blush, bowtie, covered_navel, necktie, smile, white_leotard | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1boy, 1girl, blush, cum_in_pussy, hetero, penis, sex, vaginal, nipples, solo_focus, large_breasts, open_mouth, spread_legs, mosaic_censoring, nude, purple_eyes, thighhighs | | 6 | 9 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1boy, 1girl, blush, hetero, panties_aside, penis, sex, solo_focus, vaginal, nipples, open_mouth, pussy, spread_legs, thighhighs, white_panties, censored, large_breasts, navel, purple_eyes, sweat | | 7 | 8 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1boy, 1girl, blush, hetero, faceless_male, heart, simple_background, sweat, tongue_out, kiss, open_mouth, bare_shoulders, cleavage, armpits, bald, bridal_gauntlets, licking_armpit, midriff, navel, nude, upper_body | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | simple_background | solo | bare_shoulders | closed_mouth | midriff | navel | blush | detached_sleeves | looking_at_viewer | o-ring | smile | twitter_username | upper_body | white_background | dancer | cleavage | grey_background | bridal_gauntlets | full_body | sandals | thighhighs | ass | see-through | looking_back | from_behind | black_panties | fake_animal_ears | playboy_bunny | rabbit_ears | alternate_costume | black_pantyhose | detached_collar | strapless_leotard | wrist_cuffs | high_heels | open_mouth | black_leotard | bowtie | covered_navel | necktie | white_leotard | 1boy | cum_in_pussy | hetero | penis | sex | vaginal | nipples | solo_focus | large_breasts | spread_legs | mosaic_censoring | nude | purple_eyes | panties_aside | pussy | white_panties | censored | sweat | faceless_male | heart | tongue_out | kiss | armpits | bald | licking_armpit | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:-----------------|:---------------|:----------|:--------|:--------|:-------------------|:--------------------|:---------|:--------|:-------------------|:-------------|:-------------------|:---------|:-----------|:------------------|:-------------------|:------------|:----------|:-------------|:------|:--------------|:---------------|:--------------|:----------------|:-------------------|:----------------|:--------------|:--------------------|:------------------|:------------------|:--------------------|:--------------|:-------------|:-------------|:----------------|:---------|:----------------|:----------|:----------------|:-------|:---------------|:---------|:--------|:------|:----------|:----------|:-------------|:----------------|:--------------|:-------------------|:-------|:--------------|:----------------|:--------|:----------------|:-----------|:--------|:----------------|:--------|:-------------|:-------|:----------|:-------|:-----------------| | 0 | 10 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | | X | X | | | X | | X | | | X | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 10 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | X | | | | | | X | | X | | | | X | | | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 5 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | X | X | | | | X | | X | | | | | X | X | | | X | | | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | X | X | X | | | | X | | X | | X | | | X | | X | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | | | | | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | 6 | 9 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | | | | X | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | X | | X | X | X | X | X | X | X | X | | | X | X | X | X | X | X | | | | | | | | | 7 | 8 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | X | | X | | X | X | X | | | | | | X | | | X | | X | | | | | | | | | | | | | | | | | | X | | | | | | X | | X | | | | | | | | | X | | | | | | X | X | X | X | X | X | X | X |
CyberHarem/olivia_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:50:02+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:17:33+00:00
dfcc9898ac587e21245e006751ed4583e027163f
# Dataset of paola/パオラ (Fire Emblem) This is the dataset of paola/パオラ (Fire Emblem), containing 466 images and their tags. The core tags of this character are `green_hair, long_hair, green_eyes, breasts, headband, large_breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 466 | 520.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/paola_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 466 | 320.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/paola_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 1059 | 648.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/paola_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 466 | 474.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/paola_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1059 | 872.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/paola_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/paola_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, elbow_gloves, green_footwear, solo, pegasus_knight_uniform_(fire_emblem), thigh_boots, green_skirt, dress, green_thighhighs, sitting, smile | | 1 | 18 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, smile, solo, breastplate, looking_at_viewer, upper_body, simple_background, shoulder_armor, white_background, blush, elbow_gloves, closed_mouth | | 2 | 11 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, dress, elbow_gloves, solo, thighhighs, green_gloves, side_slit, bare_shoulders, blush, simple_background, white_background, looking_at_viewer, polearm, sleeveless | | 3 | 5 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, bangs, belt, breastplate, capelet, elbow_gloves, full_body, open_mouth, pelvic_curtain, shoulder_armor, solo, thigh_boots, thighhighs, thighs, white_footwear, white_gloves, gold_trim, shiny_hair, sleeveless, white_dress, holding_sword, medium_breasts, simple_background, white_background, hand_on_own_chest, hand_up, high_heel_boots, looking_at_viewer, sheathed, short_dress, smile, standing, transparent_background | | 4 | 11 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, nipples, nude, smile, solo, looking_at_viewer, blush, navel | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1girl, blush, completely_nude, navel, nipples, spread_legs, bangs, female_pubic_hair, mosaic_censoring, on_back, open_mouth, solo, looking_at_viewer, pillow, smile, spread_pussy | | 6 | 5 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1girl, blush, navel, nipples, open_mouth, solo, sweat, armpits, arms_behind_head, arms_up, bangs, completely_nude, female_pubic_hair, looking_at_viewer, cowboy_shot, very_long_hair, white_headband | | 7 | 14 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1boy, 1girl, hetero, solo_focus, nipples, penis, thighhighs, vaginal, blush, cum_in_pussy, elbow_gloves, open_mouth, female_pubic_hair, mosaic_censoring, girl_on_top, spread_legs, torn_clothes, breasts_out, clothed_sex, cowgirl_position, medium_breasts, tears, rape | | 8 | 8 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | 1girl, navel, solo, cleavage, looking_at_viewer, collarbone, simple_background, smile, white_background, bangs, bare_shoulders, blush, green_bikini, stomach, armpits, thigh_gap | | 9 | 5 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | 1girl, bare_shoulders, smile, solo, blush, elbow_gloves, hair_flower, looking_at_viewer, simple_background, white_background, white_gloves, bangs, official_alternate_costume, green_dress, green_footwear, medium_breasts, open_mouth, skirt, sleeveless_dress, thigh_boots, thighhighs, upper_body | | 10 | 36 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | fake_animal_ears, rabbit_ears, 1girl, solo, cleavage, playboy_bunny, smile, pantyhose, white_gloves, choker, hair_flower, rabbit_tail, leotard, simple_background, looking_at_viewer, blush, open_mouth, see-through, white_background | | 11 | 7 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | 1boy, 1girl, hetero, solo_focus, nude, open_mouth, blush, censored, licking_penis, tongue_out, bangs, cum, sweat | | 12 | 5 | ![](samples/12/clu12-sample0.png) | ![](samples/12/clu12-sample1.png) | ![](samples/12/clu12-sample2.png) | ![](samples/12/clu12-sample3.png) | ![](samples/12/clu12-sample4.png) | 1girl, anus, blush, elbow_gloves, female_pubic_hair, outdoors, pussy, thighhighs, bar_censor, looking_at_viewer, no_panties, open_mouth, solo, squatting, thigh_boots, white_headband, day, peeing, sky, ass, bare_shoulders, brown_gloves, bush, dress, green_footwear, green_gloves, looking_back, sleeveless, spread_legs | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | green_footwear | solo | pegasus_knight_uniform_(fire_emblem) | thigh_boots | green_skirt | dress | green_thighhighs | sitting | smile | breastplate | looking_at_viewer | upper_body | simple_background | shoulder_armor | white_background | blush | closed_mouth | thighhighs | green_gloves | side_slit | bare_shoulders | polearm | sleeveless | bangs | belt | capelet | full_body | open_mouth | pelvic_curtain | thighs | white_footwear | white_gloves | gold_trim | shiny_hair | white_dress | holding_sword | medium_breasts | hand_on_own_chest | hand_up | high_heel_boots | sheathed | short_dress | standing | transparent_background | nipples | nude | navel | completely_nude | spread_legs | female_pubic_hair | mosaic_censoring | on_back | pillow | spread_pussy | sweat | armpits | arms_behind_head | arms_up | cowboy_shot | very_long_hair | white_headband | 1boy | hetero | solo_focus | penis | vaginal | cum_in_pussy | girl_on_top | torn_clothes | breasts_out | clothed_sex | cowgirl_position | tears | rape | cleavage | collarbone | green_bikini | stomach | thigh_gap | hair_flower | official_alternate_costume | green_dress | skirt | sleeveless_dress | fake_animal_ears | rabbit_ears | playboy_bunny | pantyhose | choker | rabbit_tail | leotard | see-through | censored | licking_penis | tongue_out | cum | anus | outdoors | pussy | bar_censor | no_panties | squatting | day | peeing | sky | ass | brown_gloves | bush | looking_back | |----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:---------------|:-----------------|:-------|:---------------------------------------|:--------------|:--------------|:--------|:-------------------|:----------|:--------|:--------------|:--------------------|:-------------|:--------------------|:-----------------|:-------------------|:--------|:---------------|:-------------|:---------------|:------------|:-----------------|:----------|:-------------|:--------|:-------|:----------|:------------|:-------------|:-----------------|:---------|:-----------------|:---------------|:------------|:-------------|:--------------|:----------------|:-----------------|:--------------------|:----------|:------------------|:-----------|:--------------|:-----------|:-------------------------|:----------|:-------|:--------|:------------------|:--------------|:--------------------|:-------------------|:----------|:---------|:---------------|:--------|:----------|:-------------------|:----------|:--------------|:-----------------|:-----------------|:-------|:---------|:-------------|:--------|:----------|:---------------|:--------------|:---------------|:--------------|:--------------|:-------------------|:--------|:-------|:-----------|:-------------|:---------------|:----------|:------------|:--------------|:-----------------------------|:--------------|:--------|:-------------------|:-------------------|:--------------|:----------------|:------------|:---------|:--------------|:----------|:--------------|:-----------|:----------------|:-------------|:------|:-------|:-----------|:--------|:-------------|:-------------|:------------|:------|:---------|:------|:------|:---------------|:-------|:---------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 18 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 11 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | | X | | | | X | | | | | X | | X | | X | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 5 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | X | | X | | X | | | | | X | X | X | | X | X | X | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 11 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | | | | | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 6 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | | | | | | | X | | X | | | | | X | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6 | 5 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | X | | | | | | | | | X | | | | | X | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | X | | X | X | | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | 14 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | X | | | | | | | | | | | | | | | | X | | X | | | | | | | | | | X | | | | | | | | | X | | | | | | | | X | | | | X | X | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 8 | 8 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | X | | | X | | | | | | | X | | X | | X | | X | X | | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9 | 5 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | X | X | X | X | | X | | | | | X | | X | X | X | | X | X | | X | | | X | | | X | | | | X | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | 10 | 36 | ![](samples/10/clu10-sample0.png) | ![](samples/10/clu10-sample1.png) | ![](samples/10/clu10-sample2.png) | ![](samples/10/clu10-sample3.png) | ![](samples/10/clu10-sample4.png) | X | | | X | | | | | | | X | | X | | X | | X | X | | | | | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | X | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | 11 | 7 | ![](samples/11/clu11-sample0.png) | ![](samples/11/clu11-sample1.png) | ![](samples/11/clu11-sample2.png) | ![](samples/11/clu11-sample3.png) | ![](samples/11/clu11-sample4.png) | X | | | | | | | | | | | | | | | | | X | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | 12 | 5 | ![](samples/12/clu12-sample0.png) | ![](samples/12/clu12-sample1.png) | ![](samples/12/clu12-sample2.png) | ![](samples/12/clu12-sample3.png) | ![](samples/12/clu12-sample4.png) | X | X | X | X | | X | | X | | | | | X | | | | | X | | X | X | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | X | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/paola_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:50:10+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:24:34+00:00
d2623048d49ddb62a45217bb0edb7e0e72c552d0
# Dataset of lucina/#ルキナ (Fire Emblem) This is the dataset of lucina/#ルキナ (Fire Emblem), containing 500 images and their tags. The core tags of this character are `blue_hair, blue_eyes, long_hair, hair_between_eyes, breasts, bangs`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 500 | 655.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lucina_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 500 | 371.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lucina_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 1138 | 759.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lucina_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 500 | 577.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lucina_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 1138 | 1.05 GiB | [Download](https://huggingface.co/datasets/CyberHarem/lucina_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/lucina_fireemblem', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 27 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, cape, falchion_(fire_emblem), solo, sword, tiara, fingerless_gloves, armor, looking_at_viewer, smile | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, cape, falchion_(fire_emblem), solo, tiara, armor, fingerless_gloves, looking_at_viewer, holding_sword, simple_background, belt | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, cape, simple_background, solo, tiara, white_background, looking_at_viewer, polearm, shield, armored_boots, full_body, holding_weapon, official_alternate_costume, shoulder_armor, smile | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | 1girl, bare_shoulders, hair_flower, looking_at_viewer, official_alternate_costume, solo, white_dress, cleavage, sleeveless_dress, smile, blush, closed_mouth, collarbone, symbol-shaped_pupils, armlet, small_breasts | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | 1girl, crop_top, looking_at_viewer, midriff, navel, short_shorts, solo, tiara, bare_shoulders, blush, official_alternate_costume, small_breasts, open_mouth, simple_background, sleeveless, thighs, white_background, :d, arm_up, armpits, belt, bikini, blue_shorts, innertube | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | 1girl, day, navel, smile, solo, tiara, blue_bikini, crop_top, looking_at_viewer, midriff, outdoors, armpits, bare_shoulders, cloud, ocean, short_shorts, small_breasts, water, alternate_costume, arm_up, beach, belt, blue_sky, blush, closed_mouth, cowboy_shot, innertube, sleeveless, thighs, tree, wet | | 6 | 6 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | 1girl, alternate_breast_size, large_breasts, smile, solo, looking_at_viewer, navel, tiara, blue_bikini, patreon_username | | 7 | 11 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | 1girl, tiara, 1boy, hetero, nipples, penis, solo_focus, blush, navel, pussy, uncensored, completely_nude, spread_legs, looking_at_viewer, open_mouth, sex, vaginal, cum, pubic_hair, small_breasts, clitoris, lying, pov, sweat | | 8 | 18 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | 1girl, looking_at_viewer, solo, alternate_costume, orange_shorts, short_shorts, tiara, waitress, beer_mug, smile, cleavage, employee_uniform, blush, medium_breasts, open_mouth, white_tank_top, chicken_(food), holding_plate, navel, tray | | 9 | 12 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | 1girl, looking_at_viewer, playboy_bunny, rabbit_ears, solo, fake_animal_ears, official_alternate_costume, smile, leotard, white_pantyhose, rabbit_tail, blush, cleavage, egg, open_mouth, simple_background, frills, small_breasts, choker, puffy_short_sleeves, white_background, white_gloves | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cape | falchion_(fire_emblem) | solo | sword | tiara | fingerless_gloves | armor | looking_at_viewer | smile | holding_sword | simple_background | belt | white_background | polearm | shield | armored_boots | full_body | holding_weapon | official_alternate_costume | shoulder_armor | bare_shoulders | hair_flower | white_dress | cleavage | sleeveless_dress | blush | closed_mouth | collarbone | symbol-shaped_pupils | armlet | small_breasts | crop_top | midriff | navel | short_shorts | open_mouth | sleeveless | thighs | :d | arm_up | armpits | bikini | blue_shorts | innertube | day | blue_bikini | outdoors | cloud | ocean | water | alternate_costume | beach | blue_sky | cowboy_shot | tree | wet | alternate_breast_size | large_breasts | patreon_username | 1boy | hetero | nipples | penis | solo_focus | pussy | uncensored | completely_nude | spread_legs | sex | vaginal | cum | pubic_hair | clitoris | lying | pov | sweat | orange_shorts | waitress | beer_mug | employee_uniform | medium_breasts | white_tank_top | chicken_(food) | holding_plate | tray | playboy_bunny | rabbit_ears | fake_animal_ears | leotard | white_pantyhose | rabbit_tail | egg | frills | choker | puffy_short_sleeves | white_gloves | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------------------------|:-------|:--------|:--------|:--------------------|:--------|:--------------------|:--------|:----------------|:--------------------|:-------|:-------------------|:----------|:---------|:----------------|:------------|:-----------------|:-----------------------------|:-----------------|:-----------------|:--------------|:--------------|:-----------|:-------------------|:--------|:---------------|:-------------|:-----------------------|:---------|:----------------|:-----------|:----------|:--------|:---------------|:-------------|:-------------|:---------|:-----|:---------|:----------|:---------|:--------------|:------------|:------|:--------------|:-----------|:--------|:--------|:--------|:--------------------|:--------|:-----------|:--------------|:-------|:------|:------------------------|:----------------|:-------------------|:-------|:---------|:----------|:--------|:-------------|:--------|:-------------|:------------------|:--------------|:------|:----------|:------|:-------------|:-----------|:--------|:------|:--------|:----------------|:-----------|:-----------|:-------------------|:-----------------|:-----------------|:-----------------|:----------------|:-------|:----------------|:--------------|:-------------------|:----------|:------------------|:--------------|:------|:---------|:---------|:----------------------|:---------------| | 0 | 27 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | 11 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | | X | X | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 | 5 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | | X | | X | | | X | X | | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3 | 7 | ![](samples/3/clu3-sample0.png) | ![](samples/3/clu3-sample1.png) | ![](samples/3/clu3-sample2.png) | ![](samples/3/clu3-sample3.png) | ![](samples/3/clu3-sample4.png) | X | | | X | | | | | X | X | | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 | 5 | ![](samples/4/clu4-sample0.png) | ![](samples/4/clu4-sample1.png) | ![](samples/4/clu4-sample2.png) | ![](samples/4/clu4-sample3.png) | ![](samples/4/clu4-sample4.png) | X | | | X | | X | | | X | | | X | X | X | | | | | | X | | X | | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | 7 | ![](samples/5/clu5-sample0.png) | ![](samples/5/clu5-sample1.png) | ![](samples/5/clu5-sample2.png) | ![](samples/5/clu5-sample3.png) | ![](samples/5/clu5-sample4.png) | X | | | X | | X | | | X | X | | | X | | | | | | | | | X | | | | | X | X | | | | X | X | X | X | X | | X | X | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6 | 6 | ![](samples/6/clu6-sample0.png) | ![](samples/6/clu6-sample1.png) | ![](samples/6/clu6-sample2.png) | ![](samples/6/clu6-sample3.png) | ![](samples/6/clu6-sample4.png) | X | | | X | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | 11 | ![](samples/7/clu7-sample0.png) | ![](samples/7/clu7-sample1.png) | ![](samples/7/clu7-sample2.png) | ![](samples/7/clu7-sample3.png) | ![](samples/7/clu7-sample4.png) | X | | | | | X | | | X | | | | | | | | | | | | | | | | | | X | | | | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | 8 | 18 | ![](samples/8/clu8-sample0.png) | ![](samples/8/clu8-sample1.png) | ![](samples/8/clu8-sample2.png) | ![](samples/8/clu8-sample3.png) | ![](samples/8/clu8-sample4.png) | X | | | X | | X | | | X | X | | | | | | | | | | | | | | | X | | X | | | | | | | | X | X | X | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | 9 | 12 | ![](samples/9/clu9-sample0.png) | ![](samples/9/clu9-sample1.png) | ![](samples/9/clu9-sample2.png) | ![](samples/9/clu9-sample3.png) | ![](samples/9/clu9-sample4.png) | X | | | X | | | | | X | X | | X | | X | | | | | | X | | | | | X | | X | | | | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/lucina_fireemblem
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-17T11:50:26+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-17T13:39:21+00:00
b9823848cfa321c2408f38bc08501a3e03379474
VitinDJ/VozesBR
[ "license:unknown", "region:us" ]
2024-01-17T11:52:03+00:00
{"license": "unknown"}
2024-01-17T12:25:39+00:00
9fb64fa5af6e3d4a2d0ebf3906980754f9e4dc6d
We collect a 2.5B training dataset from various domains for long-context continual pre-training. The composition of this dataset is as follows (partially inspired by [Long-Data-Collection](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections)): | Domain | Proportion | Source | | ------------- | ---------- | ------ | | Book | 40% | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | | Arxiv | 20% | [Redpajama-Arxiv](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | | General | 20% | [Redpajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | | Code | 10% | [LCC-Python](https://huggingface.co/datasets/microsoft/LCC_python) | | QA | 5% | [Natural Questions](https://ai.google.com/research/NaturalQuestions/) | | Summarization | 5% | [BookSum](https://github.com/salesforce/booksum) | We have also curated a test dataset comprising 250 million tokens, mirroring the same composition. The selection criteria ensured that the average n-gram similarity (for n=2, 3, 4) with the training set is below 10%. This threshold effectively excludes all QA and Summarization data, resulting in a test corpus where the distribution of tokens across Book, Arxiv, General, and Code categories follows a ratio of 4:2:2:1, respectively.
DAMO-NLP-SG/LongCorpus-2.5B
[ "task_categories:text-generation", "license:mit", "region:us" ]
2024-01-17T11:56:31+00:00
{"license": "mit", "task_categories": ["text-generation"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train_*"}, {"split": "test", "path": "data/test_*"}]}]}
2024-01-19T18:15:18+00:00
844aa403486950f583e399578cb11f89fa05f87f
# Forecasting Future World Events with Neural Networks This is an (unofficial) repository for "[Forecasting Future World Events with Neural Networks](http://arxiv.org/abs/2206.15474)" by [Andy Zou](https://andyzoujm.github.io/), [Tristan Xiao](https://www.linkedin.com/in/tristan-xiao/), [Ryan Jia](https://www.linkedin.com/in/ryanjia/), [Joe Kwon](joekwon.io), [Mantas Mazeika](https://www.linkedin.com/in/mmazeika/), [Richard Li](https://www.linkedin.com/in/lirichard23/), [Dawn Song](https://people.eecs.berkeley.edu/~dawnsong/), [Jacob Steinhardt](https://www.stat.berkeley.edu/~jsteinhardt/), [Owain Evans](https://owainevans.github.io/), and [Dan Hendrycks](https://danhendrycks.com/). <img align="center" src="assets/splash.png" width="750"> ## Introduction Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits. ## Autocast Dataset The original version of the [Autocast dataset can be downloaded here](https://people.eecs.berkeley.edu/~hendrycks/autocast.tar.gz). For more details on how to use the Autocast dataset and news articles, please refer to our short demonstration in `usage.ipynb`. Each question has the following fields: ```json { "id": "unique identifier (str)", "question": "question body (str)", "background": "question context/details (str)", "qtype": "question type (str)", "status": "question status (str)", "choices": "choices or possible ranges (List or Dict)", "answer": "question resolution (str or float)", "crowd": "human crowd forecasts over time (List)", "publish_time": "publish timestamp (str)", "close_time": "close timestamp (str)", "prediction_count": "number of crowd predictions (int)", "forecaster_count": "number of crowd forecasters (int)", "tags": "question category (List)", "source_links": "source links from comments (List)" } ``` The authors obtained permission from [Metaculus](https://www.metaculus.com/) to host the dataset on GitHub for research purposes only. ## IntervalQA Dataset Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. [Download the IntervalQA dataset here](https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz). ## Citation If you find this useful in your research, please consider citing: @article{zouforecasting2022, title={Forecasting Future World Events with Neural Networks}, author={Andy Zou and Tristan Xiao and Ryan Jia and Joe Kwon and Mantas Mazeika and Richard Li and Dawn Song and Jacob Steinhardt and Owain Evans and Dan Hendrycks}, journal={NeurIPS}, year={2022} }
AlgoveraAI/autocast
[ "task_categories:time-series-forecasting", "arxiv:2206.15474", "region:us" ]
2024-01-17T12:05:02+00:00
{"task_categories": ["time-series-forecasting"]}
2024-01-23T11:34:41+00:00
5f21c760463aa605b3952bde9f472e39c8a17eac
reza-alipour/muse-landmark-0
[ "region:us" ]
2024-01-17T12:05:23+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "mask", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "caption_fre", "dtype": "string"}, {"name": "caption_deu", "dtype": "string"}, {"name": "caption_ita", "dtype": "string"}, {"name": "caption_spa", "dtype": "string"}, {"name": "generated_mask", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 578425461.5, "num_examples": 1500}], "download_size": 230627940, "dataset_size": 578425461.5}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T14:23:48+00:00
5ef2c5b8df689c7eb2cad93b9f0edb68aac3eda8
# Dataset Card for "20000-50000-ultrafeedback-binarized-preferences-cleaned-ita" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
giux78/20000-50000-ultrafeedback-binarized-preferences-cleaned-ita
[ "region:us" ]
2024-01-17T12:12:21+00:00
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "chosen-rating", "dtype": "float64"}, {"name": "chosen-model", "dtype": "string"}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "rejected-rating", "dtype": "float64"}, {"name": "rejected-model", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 197228907, "num_examples": 30000}], "download_size": 87134816, "dataset_size": 197228907}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T12:12:28+00:00
38a0b0594135a3e018458ccadb5a972e764f4d04
elissilva/sheldon
[ "license:openrail", "region:us" ]
2024-01-17T12:24:11+00:00
{"license": "openrail"}
2024-01-17T12:36:18+00:00
5bbd59a5492d377df916a2d712aa40078c9a32d6
trooaditya/image_data_set
[ "region:us" ]
2024-01-17T12:37:04+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 193266.0, "num_examples": 10}], "download_size": 97794, "dataset_size": 193266.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T12:37:05+00:00
159620e7bfe560252ecd1d68aa4f78ed23f339b5
marcones/marconesofertas
[ "license:openrail", "region:us" ]
2024-01-17T12:39:15+00:00
{"license": "openrail"}
2024-01-17T12:39:41+00:00
34dd6ba200632b59b97f93bcd05b953d77842cdb
zjsfxpm1/1231231
[ "license:mit", "region:us" ]
2024-01-17T12:39:40+00:00
{"license": "mit"}
2024-01-17T12:39:40+00:00
348b5298c715ae7a38883de2a59fb3aaf4e6842d
MBassNoBeat/japaozinvoz
[ "license:openrail", "region:us" ]
2024-01-17T12:51:26+00:00
{"license": "openrail"}
2024-01-17T12:52:36+00:00
3ef2a4a8880bd74c0517eb2ba4b17137ad33115e
reza-alipour/m-landmark-generated
[ "region:us" ]
2024-01-17T13:02:13+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "mask", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "caption_fre", "dtype": "string"}, {"name": "caption_deu", "dtype": "string"}, {"name": "caption_ita", "dtype": "string"}, {"name": "caption_spa", "dtype": "string"}, {"name": "generated_mask", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 1148441048.756, "num_examples": 2998}], "download_size": 779602659, "dataset_size": 1148441048.756}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T15:36:11+00:00
d244355319e9eda251e3adce4ebb4ea2f3e4751e
reza-alipour/m-mask-generated
[ "region:us" ]
2024-01-17T13:03:01+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "mask", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "caption_fre", "dtype": "string"}, {"name": "caption_deu", "dtype": "string"}, {"name": "caption_ita", "dtype": "string"}, {"name": "caption_spa", "dtype": "string"}, {"name": "generated_mask", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 1188331922.75, "num_examples": 2998}], "download_size": 819495595, "dataset_size": 1188331922.75}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-17T13:03:40+00:00