sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | transformers |
# camembert-ner: model fine-tuned from camemBERT for NER task.
## Introduction
[camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset.
Model was trained on wikiner-fr dataset (~170 634 sentences).
Model was validated on emails/chat data and overperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
## Training data
Training data was classified as follow:
Abbreviation|Description
-|-
O |Outside of a named entity
MISC |Miscellaneous entity
PER |Person’s name
ORG |Organization
LOC |Location
## How to use camembert-ner with HuggingFace
##### Load camembert-ner and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner")
##### Process text sample (from wikipedia)
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.")
[{'entity_group': 'ORG',
'score': 0.9472818374633789,
'word': 'Apple',
'start': 0,
'end': 5},
{'entity_group': 'PER',
'score': 0.9838564991950989,
'word': 'Steve Jobs',
'start': 74,
'end': 85},
{'entity_group': 'LOC',
'score': 0.9831605950991312,
'word': 'Los Altos',
'start': 87,
'end': 97},
{'entity_group': 'LOC',
'score': 0.9834540486335754,
'word': 'Californie',
'start': 100,
'end': 111},
{'entity_group': 'PER',
'score': 0.9841555754343668,
'word': 'Steve Jobs',
'start': 115,
'end': 126},
{'entity_group': 'PER',
'score': 0.9843501806259155,
'word': 'Steve Wozniak',
'start': 127,
'end': 141},
{'entity_group': 'PER',
'score': 0.9841533899307251,
'word': 'Ronald Wayne',
'start': 144,
'end': 157},
{'entity_group': 'ORG',
'score': 0.9468960364659628,
'word': 'Apple Computer',
'start': 243,
'end': 257}]
```
## Model performances (metric: seqeval)
Overall
precision|recall|f1
-|-|-
0.8859|0.8971|0.8914
By entity
entity|precision|recall|f1
-|-|-|-
PER|0.9372|0.9598|0.9483
ORG|0.8099|0.8265|0.8181
LOC|0.8905|0.9005|0.8955
MISC|0.8175|0.8117|0.8146
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
| {"language": "fr", "license": "mit", "datasets": ["Jean-Baptiste/wikiner_fr"], "widget": [{"text": "Je m'appelle jean-baptiste et je vis \u00e0 montr\u00e9al"}, {"text": "george washington est all\u00e9 \u00e0 washington"}]} | token-classification | Jean-Baptiste/camembert-ner | [
"transformers",
"pytorch",
"onnx",
"safetensors",
"camembert",
"token-classification",
"fr",
"dataset:Jean-Baptiste/wikiner_fr",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"fr"
] | TAGS
#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
| camembert-ner: model fine-tuned from camemBERT for NER task.
============================================================
Introduction
------------
[camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset.
Model was trained on wikiner-fr dataset (~170 634 sentences).
Model was validated on emails/chat data and overperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
Training data
-------------
Training data was classified as follow:
How to use camembert-ner with HuggingFace
-----------------------------------------
##### Load camembert-ner and its sub-word tokenizer :
Model performances (metric: seqeval)
------------------------------------
Overall
precision: 0.8859, recall: 0.8971, f1: 0.8914
By entity
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
URL
| [
"##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
"TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
74,
93
] | [
"passage: TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
-0.12312251329421997,
0.06006891280412674,
-0.0006307970616035163,
0.13532602787017822,
0.05115611106157303,
-0.05368868634104729,
0.12866832315921783,
0.09337005019187927,
0.010483354330062866,
0.0351162925362587,
0.20439991354942322,
0.09778563678264618,
-0.04143748804926872,
0.10701397061347961,
-0.10950766503810883,
-0.11915532499551773,
0.07067440450191498,
0.020227214321494102,
0.06013411283493042,
0.12814359366893768,
0.10034970194101334,
-0.12538820505142212,
0.1094801276922226,
0.008840866386890411,
-0.11084974557161331,
0.005565820261836052,
0.01835457980632782,
-0.11517725139856339,
0.09260369837284088,
0.05904261767864227,
0.03618679940700531,
0.07647260278463364,
0.1197347491979599,
-0.1383485645055771,
0.031560856848955154,
-0.008321305736899376,
-0.04958486184477806,
0.04771091043949127,
0.002007309114560485,
-0.06349866092205048,
0.05473518744111061,
-0.020922277122735977,
0.0005724314833059907,
-0.022148141637444496,
-0.051856037229299545,
-0.038874074816703796,
-0.07204504311084747,
0.09866774827241898,
-0.0031541474163532257,
0.06629907339811325,
0.02079075574874878,
0.23568621277809143,
-0.11009867489337921,
0.1265362948179245,
0.08956311643123627,
-0.19509314000606537,
-0.030778750777244568,
-0.07670217752456665,
-0.022549714893102646,
-0.06730222702026367,
-0.047863174229860306,
0.0483345128595829,
0.010373087599873543,
-0.0005784176755696535,
0.12240470200777054,
-0.032651860266923904,
-0.1384473592042923,
0.028877655044198036,
-0.10448601096868515,
-0.09776480495929718,
0.1513885110616684,
0.12144003063440323,
-0.0342273935675621,
-0.081159807741642,
-0.06940048933029175,
0.003619355382397771,
-0.05625476688146591,
-0.08537031710147858,
-0.014067789539694786,
-0.07155998051166534,
-0.08544392883777618,
-0.012940297834575176,
-0.09554402530193329,
-0.09940023720264435,
-0.10724173486232758,
0.1674923449754715,
0.008217299357056618,
0.09851951897144318,
-0.09515320509672165,
0.045783933252096176,
-0.017362093552947044,
-0.061242397874593735,
-0.0002835708437487483,
-0.05015314742922783,
0.025991220027208328,
-0.017307309433817863,
0.013634075410664082,
-0.019494259729981422,
0.09188880771398544,
0.13589970767498016,
-0.08980381488800049,
-0.038935452699661255,
0.08186447620391846,
0.004646393936127424,
0.026405803859233856,
0.11736099421977997,
-0.08147884905338287,
0.038771942257881165,
0.0935552641749382,
-0.004596416838467121,
-0.04141365364193916,
-0.011890728957951069,
-0.13238126039505005,
0.008409439586102962,
0.19848400354385376,
-0.011417122557759285,
-0.028486397117376328,
0.09229854494333267,
0.013471483252942562,
-0.015301493927836418,
0.14575135707855225,
-0.07660501450300217,
0.05178673565387726,
0.028188081458210945,
-0.09878508746623993,
-0.0940948873758316,
0.049777645617723465,
0.005194600205868483,
-0.055165089666843414,
-0.004100691061466932,
-0.05425386130809784,
-0.000010749314242275432,
0.012002975679934025,
-0.11037943512201309,
0.05910015478730202,
-0.050716739147901535,
0.03743746131658554,
-0.2177257239818573,
-0.15615908801555634,
-0.030195074155926704,
0.0177052803337574,
0.01983826234936714,
-0.03522690385580063,
-0.07026001811027527,
-0.04701768979430199,
0.019851582124829292,
-0.010351157747209072,
-0.04723258316516876,
-0.10560622066259384,
0.047865528613328934,
-0.006811218801885843,
0.05114787817001343,
-0.10256493836641312,
0.028239727020263672,
-0.14522187411785126,
-0.04987649247050285,
-0.09217146039009094,
0.04973459988832474,
-0.04942527040839195,
0.07693713158369064,
-0.0897003561258316,
-0.06900528818368912,
-0.041321881115436554,
-0.01877705752849579,
0.032346971333026886,
0.22335703670978546,
-0.08690836280584335,
-0.03324981778860092,
0.055796049535274506,
-0.1017821803689003,
-0.14787466824054718,
0.12972624599933624,
-0.06770749390125275,
0.07874786108732224,
0.0632455050945282,
0.20131391286849976,
0.0933069959282875,
-0.12389246374368668,
-0.03852928802371025,
0.051814284175634384,
-0.15835341811180115,
-0.1267685443162918,
0.03822840750217438,
0.08990777283906937,
-0.07268842309713364,
0.029258813709020615,
-0.030094066634774208,
-0.02263682521879673,
-0.09182240068912506,
-0.06857137382030487,
-0.05171941593289375,
-0.06018507108092308,
-0.003266262821853161,
0.03142646700143814,
0.08453871309757233,
-0.04691615328192711,
-0.04955029487609863,
0.06502195447683334,
0.007080715149641037,
-0.03969667851924896,
0.0391656830906868,
-0.1408945620059967,
0.1460210680961609,
-0.03913751244544983,
0.03289628028869629,
-0.1382928341627121,
-0.033098019659519196,
-0.02129685878753662,
-0.029839908704161644,
0.0757581889629364,
-0.09827820956707001,
0.040802448987960815,
0.04442398622632027,
0.015293818898499012,
-0.017142700031399727,
0.03725949674844742,
0.038324907422065735,
-0.09585537016391754,
-0.13241256773471832,
-0.01866607367992401,
-0.03750445321202278,
0.07530473917722702,
-0.11113569140434265,
0.02190389670431614,
0.055670056492090225,
0.028821676969528198,
-0.01882733218371868,
0.058550767600536346,
0.008004662580788136,
0.014023522846400738,
-0.010136321187019348,
0.017325378954410553,
0.05398876219987869,
0.018788427114486694,
-0.12632359564304352,
0.0826135128736496,
-0.061595723032951355,
0.24470402300357819,
0.08503091335296631,
-0.09110991656780243,
-0.03557498753070831,
-0.0698338970541954,
-0.029728049412369728,
0.009914243593811989,
-0.0632786825299263,
0.0546027235686779,
0.11173712462186813,
-0.046779461205005646,
0.11578328162431717,
-0.14661183953285217,
-0.029452543705701828,
0.04892243444919586,
-0.06346827745437622,
-0.07734128832817078,
0.1628423035144806,
0.02245706133544445,
-0.16782225668430328,
0.07050587236881256,
0.11579831689596176,
-0.028405308723449707,
-0.023884044960141182,
-0.012949926778674126,
0.00038653681986033916,
-0.0050733014941215515,
-0.031068213284015656,
-0.012947122566401958,
0.05309346318244934,
-0.037405677139759064,
0.006331310607492924,
0.04474618658423424,
0.002458580769598484,
-0.008658367209136486,
-0.12357651442289352,
-0.00417828094214201,
0.009951240383088589,
-0.04575064033269882,
-0.08306397497653961,
0.028818387538194656,
0.008642563596367836,
0.09953410923480988,
-0.011271723546087742,
-0.18389689922332764,
0.05677461996674538,
0.02588643878698349,
-0.103205606341362,
0.1799735724925995,
-0.047289274632930756,
-0.18316805362701416,
-0.1004939079284668,
-0.025615140795707703,
-0.12597012519836426,
-0.004942111670970917,
0.11837328970432281,
-0.04975684732198715,
0.0056163957342505455,
-0.15014202892780304,
-0.12119825184345245,
0.07961943745613098,
0.04685528948903084,
-0.005718460772186518,
0.0014090979238972068,
0.004811374936252832,
-0.07775598764419556,
-0.04685245826840401,
-0.08387265354394913,
0.020377691835165024,
0.11995665729045868,
-0.004685711581259966,
0.12948237359523773,
0.12542599439620972,
-0.07649023830890656,
0.03235219791531563,
-0.03936030715703964,
0.19995996356010437,
-0.0004349843366071582,
0.022714590653777122,
0.14579428732395172,
0.003640053328126669,
0.04684845358133316,
0.1103595569729805,
0.057109471410512924,
-0.06237036734819412,
0.02174568921327591,
0.005416116677224636,
-0.06946098804473877,
-0.07812893390655518,
-0.12244964390993118,
0.05155479162931442,
0.03958457335829735,
0.06889301538467407,
0.0754767432808876,
0.09964808821678162,
0.04755594953894615,
0.06148497387766838,
-0.028409374877810478,
0.09218638390302658,
0.06556107848882675,
0.10113679617643356,
0.05205526575446129,
0.14263632893562317,
-0.037669431418180466,
-0.05570041388273239,
0.08155646920204163,
-0.0028470344841480255,
0.008936255238950253,
-0.008965282700955868,
-0.04149409756064415,
0.08139271289110184,
0.12584254145622253,
0.05882606655359268,
0.05840926244854927,
-0.0009319472010247409,
-0.00964971911162138,
-0.003919824026525021,
-0.07468058168888092,
0.007908686995506287,
0.037479691207408905,
-0.05231534317135811,
0.015429342165589333,
-0.16305619478225708,
0.0012505656341090798,
0.0916873961687088,
0.16983945667743683,
0.07019815593957901,
-0.3083627223968506,
-0.1291324645280838,
-0.02119453437626362,
-0.08393243700265884,
0.014066096395254135,
0.034022603183984756,
-0.0193268284201622,
-0.08768490701913834,
-0.025297069922089577,
-0.00011335653107380494,
0.13590054214000702,
-0.02892656996846199,
0.07059385627508163,
-0.005451492499560118,
-0.04307260736823082,
-0.02133031003177166,
0.04070085287094116,
-0.1161670908331871,
0.2654913663864136,
0.02429703064262867,
0.04300377890467644,
-0.08186286687850952,
-0.03795084357261658,
0.010184946469962597,
0.20767651498317719,
0.1533651202917099,
-0.02546783722937107,
-0.08744170516729355,
-0.11704710125923157,
-0.03405064716935158,
0.0356004498898983,
0.014480696991086006,
0.039039745926856995,
0.04251866787672043,
0.01252041943371296,
-0.02999488078057766,
0.010159721598029137,
0.09327118843793869,
-0.09238485246896744,
-0.024957993999123573,
-0.05894974246621132,
0.11421437561511993,
-0.018098246306180954,
-0.011515791527926922,
-0.0566154383122921,
-0.19980747997760773,
0.06085766851902008,
-0.013326898217201233,
0.013871083036065102,
-0.08340016007423401,
0.021034538745880127,
0.01133036520332098,
-0.07656021416187286,
-0.009198387153446674,
-0.05091087892651558,
-0.005517821758985519,
-0.0049402834847569466,
-0.09949376434087753,
0.04257576912641525,
-0.08924922347068787,
-0.07456035166978836,
0.026541579514741898,
0.0394938662648201,
0.031493548303842545,
-0.03366217017173767,
0.04719340428709984,
0.007251590956002474,
-0.08799541741609573,
-0.11055885255336761,
0.030832476913928986,
0.06926312297582626,
0.1362074315547943,
-0.02677621692419052,
-0.07745160907506943,
-0.11224476993083954,
-0.04552954435348511,
0.08607984334230423,
0.06412223726511002,
0.2508895695209503,
-0.08188570290803909,
0.07420612126588821,
0.3023903965950012,
-0.0068739838898181915,
-0.303356409072876,
-0.06533903628587723,
-0.07566706836223602,
-0.0032561528496444225,
-0.029993213713169098,
0.03237363323569298,
0.13954824209213257,
0.08408428728580475,
-0.0361325666308403,
-0.05347590893507004,
-0.24876295030117035,
-0.13157309591770172,
0.1689685434103012,
0.023632051423192024,
0.280364990234375,
-0.034364018589258194,
-0.03324849531054497,
-0.07454578578472137,
-0.09534362703561783,
0.09383127838373184,
-0.06881991773843765,
0.013854287564754486,
0.000059754529502242804,
0.0022169253788888454,
0.005914546083658934,
-0.026710499078035355,
0.07075175642967224,
-0.004639181308448315,
0.11432208120822906,
-0.06560380756855011,
-0.0717313289642334,
0.013174292631447315,
-0.10321217775344849,
0.14420880377292633,
-0.019838258624076843,
0.10554654896259308,
-0.08374468237161636,
-0.03404303640127182,
-0.04088955745100975,
0.14655116200447083,
0.05142626166343689,
-0.004204857163131237,
-0.05996822193264961,
-0.02172444947063923,
0.014542762190103531,
-0.028510456904768944,
0.15965013206005096,
-0.07647132128477097,
0.020471088588237762,
0.22814662754535675,
0.09534361958503723,
-0.164001002907753,
0.10688813030719757,
0.028258053585886955,
-0.08944928646087646,
0.07727766782045364,
-0.07400652021169662,
0.08653716742992401,
0.07377266883850098,
0.007055036723613739,
0.04897240176796913,
0.05622560903429985,
0.0341607965528965,
-0.028545387089252472,
0.03579992055892944,
-0.17285548150539398,
-0.019417865201830864,
-0.0065012723207473755,
-0.06096727401018143,
-0.0006053175893612206,
0.12233449518680573,
0.11266108602285385,
-0.10135956108570099,
-0.0183953158557415,
-0.031142426654696465,
0.03557774797081947,
-0.02337898500263691,
0.07484833896160126,
0.05893039330840111,
0.011824301443994045,
-0.11355815827846527,
0.11892875283956528,
0.07142183184623718,
-0.12781116366386414,
0.005343181546777487,
0.014440488070249557,
-0.15062564611434937,
-0.13928712904453278,
-0.008290526457130909,
0.13553383946418762,
-0.10144949704408646,
-0.10689999908208847,
-0.0791984498500824,
-0.030317164957523346,
0.07659784704446793,
0.2934989631175995,
0.07311985641717911,
0.023257015272974968,
0.010036737658083439,
-0.0018732990138232708,
-0.13021023571491241,
0.10876009613275528,
0.04869173467159271,
-0.013633535243570805,
-0.1414831131696701,
0.011680180206894875,
-0.03289944678544998,
0.17289581894874573,
-0.061185456812381744,
0.006060757674276829,
-0.17012307047843933,
-0.0017575629753991961,
0.0010251005878672004,
0.03788566216826439,
-0.08783126622438431,
0.05916476622223854,
0.008502423763275146,
-0.028171557933092117,
-0.0549452044069767,
0.02207348868250847,
-0.03825550898909569,
0.03602026775479317,
0.060848742723464966,
0.07949723303318024,
-0.13761083781719208,
-0.05452541261911392,
0.009320704266428947,
0.030778538435697556,
0.10520762205123901,
0.10379860550165176,
-0.06782206892967224,
0.03129574656486511,
-0.12078927457332611,
0.007802689913660288,
0.04709339514374733,
-0.00866893120110035,
0.03752479329705238,
-0.07359541952610016,
0.033728159964084625,
0.08281126618385315,
-0.03240741044282913,
0.023628363385796547,
0.09023014456033707,
-0.04398136958479881,
0.04388636723160744,
-0.014492357149720192,
-0.05959254875779152,
-0.0863594114780426,
0.028469908982515335,
0.10754171758890152,
0.03239304572343826,
0.1651088148355484,
-0.07208386808633804,
-0.014252141118049622,
-0.07694322615861893,
-0.0031390609219670296,
0.025857912376523018,
-0.14677704870700836,
-0.23822738230228424,
-0.05444227159023285,
0.056118033826351166,
-0.02898910827934742,
0.16843640804290771,
0.09353809803724289,
-0.005194017663598061,
0.03901427239179611,
0.04860898479819298,
-0.03206812962889671,
0.025154294446110725,
0.16892372071743011,
-0.02460421994328499,
-0.0079316021874547,
-0.000662395847029984,
0.0655539408326149,
0.0041310545057058334,
0.05734790116548538,
0.07026288658380508,
0.17862024903297424,
0.009850956499576569,
0.12244465202093124,
0.03938687965273857,
0.04616183415055275,
-0.01404488179832697,
-0.0639401376247406,
-0.061472442001104355,
0.044992174953222275,
-0.08256535977125168,
0.0693124458193779,
0.13070958852767944,
0.016142522916197777,
0.0438033863902092,
0.04313185438513756,
-0.04438313469290733,
-0.13959908485412598,
-0.19615532457828522,
-0.13116705417633057,
-0.12157323211431503,
-0.0037093476857990026,
-0.048837799578905106,
-0.027549030259251595,
-0.057633984833955765,
0.002775715896859765,
-0.037662290036678314,
0.06890157610177994,
-0.10138677060604095,
0.05232669413089752,
0.063021220266819,
-0.04470820352435112,
-0.06909044086933136,
0.021153023466467857,
-0.002005854621529579,
0.05060039088129997,
-0.012003458105027676,
0.0034280449617654085,
0.005017505958676338,
0.06028187647461891,
0.017276624217629433,
-0.09239613264799118,
-0.07762063294649124,
-0.0414363257586956,
0.02750500477850437,
0.004341522231698036,
0.021916229277849197,
0.07125619798898697,
-0.07531055808067322,
0.023241076618433,
0.2556796073913574,
-0.056205928325653076,
-0.07971126586198807,
-0.10388819128274918,
0.28159040212631226,
0.05941382050514221,
0.08004648238420486,
-0.01152824331074953,
-0.0585445761680603,
0.009758736938238144,
0.12514182925224304,
0.2041126787662506,
-0.0362202450633049,
0.03838970139622688,
-0.021369507536292076,
0.012009361758828163,
0.005694643594324589,
0.03888882324099541,
0.03016759268939495,
0.12273550033569336,
-0.029793769121170044,
-0.022395145148038864,
-0.06796453148126602,
-0.0006846152828074992,
-0.059557072818279266,
0.07547864317893982,
0.0125967338681221,
-0.06584878265857697,
-0.06024011969566345,
0.09554363042116165,
-0.13650135695934296,
-0.048321522772312164,
0.06920292973518372,
-0.03515804931521416,
-0.031439270824193954,
0.06279977411031723,
-0.02264372818171978,
0.017650162801146507,
0.0519917793571949,
-0.05594044551253319,
0.045785918831825256,
-0.005736357066780329,
0.010237311013042927,
-0.10653381794691086,
-0.04700911045074463,
0.02931004762649536,
0.05766327679157257,
0.20801042020320892,
-0.012456461787223816,
0.1794113963842392,
0.06804780662059784,
-0.0018186008092015982,
-0.09203258901834488,
0.13915419578552246,
-0.022742848843336105,
-0.09202422201633453,
0.04614802449941635,
-0.04650076478719711,
0.03670433536171913,
0.007018595468252897,
0.012708798982203007,
-0.14247450232505798,
0.011637249030172825,
-0.08658389002084732,
-0.03111068531870842,
-0.08838674426078796,
0.06715549528598785,
-0.0246268380433321,
0.0930660292506218,
0.018343230709433556,
-0.022908810526132584,
0.016175461933016777,
-0.05677493289113045,
0.0824165791273117,
-0.002154956106096506,
-0.0947936549782753,
-0.00266452319920063,
-0.18775728344917297,
0.07002297043800354,
-0.0674685537815094,
0.054361600428819656,
-0.17861193418502808,
-0.07743771374225616,
0.015416952781379223,
-0.03084408864378929,
0.005488399416208267,
0.0698532909154892,
0.18760384619235992,
0.008794647641479969,
-0.031591933220624924,
-0.056975096464157104,
0.025098493322730064,
0.11362437158823013,
-0.07022178173065186,
-0.08807110041379929
] |
null | null | transformers |
# roberta-large-ner-english: model fine-tuned from roberta-large for NER task
## Introduction
[roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset.
Model was validated on emails/chat data and outperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
## Training data
Training data was classified as follow:
Abbreviation|Description
-|-
O |Outside of a named entity
MISC |Miscellaneous entity
PER |Person’s name
ORG |Organization
LOC |Location
In order to simplify, the prefix B- or I- from original conll2003 was removed.
I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size:
Train | Validation
-|-
17494 | 3250
## How to use roberta-large-ner-english with HuggingFace
##### Load roberta-large-ner-english and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
##### Process text sample (from wikipedia)
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer")
[{'entity_group': 'ORG',
'score': 0.99381506,
'word': ' Apple',
'start': 0,
'end': 5},
{'entity_group': 'PER',
'score': 0.99970853,
'word': ' Steve Jobs',
'start': 29,
'end': 39},
{'entity_group': 'PER',
'score': 0.99981767,
'word': ' Steve Wozniak',
'start': 41,
'end': 54},
{'entity_group': 'PER',
'score': 0.99956465,
'word': ' Ronald Wayne',
'start': 59,
'end': 71},
{'entity_group': 'PER',
'score': 0.9997918,
'word': ' Wozniak',
'start': 92,
'end': 99},
{'entity_group': 'MISC',
'score': 0.99956393,
'word': ' Apple I',
'start': 102,
'end': 109}]
```
## Model performances
Model performances computed on conll2003 validation dataset (computed on the tokens predictions)
entity|precision|recall|f1
-|-|-|-
PER|0.9914|0.9927|0.9920
ORG|0.9627|0.9661|0.9644
LOC|0.9795|0.9862|0.9828
MISC|0.9292|0.9262|0.9277
Overall|0.9740|0.9766|0.9753
On private dataset (email, chat, informal discussion), computed on word predictions:
entity|precision|recall|f1
-|-|-|-
PER|0.8823|0.9116|0.8967
ORG|0.7694|0.7292|0.7487
LOC|0.8619|0.7768|0.8171
By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving:
entity|precision|recall|f1
-|-|-|-
PER|0.9146|0.8287|0.8695
ORG|0.7655|0.6437|0.6993
LOC|0.8727|0.6180|0.7236
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
| {"language": "en", "license": "mit", "datasets": ["conll2003"], "widget": [{"text": "My name is jean-baptiste and I live in montreal"}, {"text": "My name is clara and I live in berkeley, california."}, {"text": "My name is wolfgang and I live in berlin"}], "train-eval-index": [{"config": "conll2003", "task": "token-classification", "task_id": "entity_extraction", "splits": {"eval_split": "validation"}, "col_mapping": {"tokens": "tokens", "ner_tags": "tags"}}]} | token-classification | Jean-Baptiste/roberta-large-ner-english | [
"transformers",
"pytorch",
"tf",
"onnx",
"safetensors",
"roberta",
"token-classification",
"en",
"dataset:conll2003",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
| roberta-large-ner-english: model fine-tuned from roberta-large for NER task
===========================================================================
Introduction
------------
[roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset.
Model was validated on emails/chat data and outperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
Training data
-------------
Training data was classified as follow:
In order to simplify, the prefix B- or I- from original conll2003 was removed.
I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size:
How to use roberta-large-ner-english with HuggingFace
-----------------------------------------------------
##### Load roberta-large-ner-english and its sub-word tokenizer :
Model performances
------------------
Model performances computed on conll2003 validation dataset (computed on the tokens predictions)
On private dataset (email, chat, informal discussion), computed on word predictions:
By comparison on the same private dataset, Spacy (en\_core\_web\_trf-3.2.0) was giving:
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
URL
| [
"##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
"TAGS\n#transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
68,
140
] | [
"passage: TAGS\n#transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL"
] | [
-0.01774117909371853,
0.10427089035511017,
-0.000278701598290354,
0.09751008450984955,
0.036450888961553574,
-0.0554695650935173,
0.1156376376748085,
0.09964258968830109,
-0.0655282735824585,
0.012915674597024918,
0.12383105605840683,
0.06661912053823471,
-0.020259227603673935,
0.11285945773124695,
-0.08284839242696762,
-0.1620488315820694,
0.051367759704589844,
-0.007080709561705589,
0.07151303440332413,
0.1574176549911499,
0.14352168142795563,
-0.13726471364498138,
0.10840378701686859,
0.010329874232411385,
-0.08618971705436707,
0.011303787119686604,
0.009570755995810032,
-0.12373122572898865,
0.07238297909498215,
0.07222246378660202,
0.048526182770729065,
0.03909008949995041,
0.04749519005417824,
-0.13799554109573364,
0.019792553037405014,
0.009341171942651272,
-0.02756665088236332,
0.06155768036842346,
0.05294743925333023,
-0.0701967179775238,
0.07787968963384628,
0.0036720188800245523,
0.06177777796983719,
0.018546590581536293,
-0.09981229901313782,
-0.10576216131448746,
-0.11831119656562805,
0.11883407831192017,
0.028367575258016586,
0.085151806473732,
-0.02935166098177433,
0.27389711141586304,
-0.1544337421655655,
0.120257668197155,
0.1182955950498581,
-0.2957811653614044,
-0.03595834597945213,
0.028448794037103653,
0.012442372739315033,
0.0035223369486629963,
-0.04787059500813484,
0.01407556515187025,
0.019751546904444695,
0.035295046865940094,
0.10753340274095535,
-0.02689984068274498,
-0.20174969732761383,
0.06160122528672218,
-0.14720089733600616,
-0.08179634064435959,
0.2585006654262543,
0.07747802883386612,
-0.028077319264411926,
-0.15840940177440643,
-0.021518411114811897,
-0.02138311043381691,
-0.011870378628373146,
-0.06783181428909302,
-0.006228780373930931,
-0.04779389500617981,
-0.08079077303409576,
0.005895739886909723,
-0.11354601383209229,
-0.046962980180978775,
-0.14460575580596924,
0.17732885479927063,
-0.0005726891104131937,
0.06706850975751877,
-0.10659534484148026,
0.09442955255508423,
0.002264375099912286,
-0.08989807218313217,
-0.019556257873773575,
-0.0864998921751976,
0.02118038199841976,
-0.039589084684848785,
-0.05519432947039604,
-0.05775342881679535,
0.08031310886144638,
0.13589496910572052,
-0.023250844329595566,
-0.02647133357822895,
0.032916706055402756,
0.012683319859206676,
0.08315271139144897,
0.132797971367836,
-0.13791793584823608,
0.017035530880093575,
0.05381544679403305,
-0.021955393254756927,
-0.0006415329407900572,
0.017604269087314606,
-0.10908462107181549,
0.026507873088121414,
0.0950474664568901,
0.026086708530783653,
0.03380126878619194,
0.08939332515001297,
-0.04328816011548042,
-0.03816165402531624,
0.10537780821323395,
-0.12150850147008896,
0.012677873484790325,
0.012047355063259602,
-0.10878702253103256,
-0.06377159059047699,
0.02635551430284977,
0.049237094819545746,
-0.0542132705450058,
-0.023361943662166595,
-0.07011520862579346,
-0.03104035183787346,
-0.023905182257294655,
-0.12811806797981262,
0.06337133049964905,
-0.01913667656481266,
0.012190970592200756,
-0.17464500665664673,
-0.126597061753273,
-0.019322507083415985,
0.0017258106963708997,
-0.02771160751581192,
-0.03236380219459534,
-0.022432539612054825,
-0.03391100466251373,
0.018054034560918808,
-0.027605164796113968,
0.022153858095407486,
-0.08886730670928955,
0.05840504914522171,
-0.015743788331747055,
0.03746829926967621,
-0.054342493414878845,
0.015257498249411583,
-0.17540177702903748,
-0.052325647324323654,
-0.10652551054954529,
0.07589583843946457,
-0.03325367346405983,
0.11222786456346512,
-0.11360260844230652,
-0.08625544607639313,
-0.02823793888092041,
-0.002485174685716629,
0.003039597300812602,
0.20299434661865234,
-0.0950542762875557,
0.0012666976545006037,
0.13181328773498535,
-0.0785217210650444,
-0.17353098094463348,
0.12494345754384995,
-0.06990979611873627,
0.07033918797969818,
0.10422364622354507,
0.1606433093547821,
0.05298839509487152,
-0.04033887758851051,
-0.0666557177901268,
0.06708462536334991,
-0.08292604982852936,
0.003084033727645874,
0.08494037389755249,
0.04122200608253479,
-0.038341399282217026,
0.03439116105437279,
0.0045776632614433765,
-0.048376746475696564,
-0.05512375757098198,
-0.07883629947900772,
-0.04273073747754097,
-0.05920017138123512,
0.03395390883088112,
-0.0002506947494111955,
0.03319573774933815,
-0.0826028361916542,
-0.10821974277496338,
0.05157468467950821,
0.051708463579416275,
-0.018227802589535713,
0.026227856054902077,
-0.16697190701961517,
0.0970175489783287,
-0.028136370703577995,
-0.006725765764713287,
-0.16951493918895721,
-0.057408325374126434,
-0.013338829390704632,
0.06265236437320709,
0.06861628592014313,
0.027020549401640892,
0.03742093965411186,
-0.045956455171108246,
-0.033056654036045074,
0.01581885851919651,
0.0636882483959198,
0.014981778338551521,
-0.08621738851070404,
-0.12303885817527771,
-0.026465699076652527,
-0.0512886643409729,
0.0758933573961258,
-0.0842333436012268,
-0.004277621395885944,
0.11838847398757935,
0.08479966223239899,
0.013652276247739792,
0.024497535079717636,
0.05425859987735748,
-0.010202725417912006,
-0.03593285754323006,
0.0018827130552381277,
0.007606965024024248,
0.01458916999399662,
-0.15950128436088562,
0.09150523692369461,
-0.09088348597288132,
0.17294278740882874,
0.11206816136837006,
-0.03853384405374527,
-0.027597343549132347,
-0.058309439569711685,
-0.06255151331424713,
0.027971193194389343,
-0.04689301177859306,
-0.01753748394548893,
0.16762764751911163,
-0.025818120688199997,
0.0769287720322609,
-0.14907851815223694,
-0.10449039936065674,
0.0020783287473022938,
-0.08427528291940689,
-0.0741247683763504,
0.13418543338775635,
-0.07595682889223099,
-0.1656295359134674,
0.10000032931566238,
0.06565187126398087,
0.0341000072658062,
0.01167420856654644,
-0.007371747400611639,
-0.016053296625614166,
-0.010441754944622517,
-0.020100152119994164,
-0.022372214123606682,
0.00020302397024352103,
-0.05600694939494133,
0.0008166135521605611,
0.08455553650856018,
0.024123871698975563,
0.010309603065252304,
-0.10339826345443726,
-0.003793438896536827,
0.0110671017318964,
-0.030932262539863586,
-0.023840928450226784,
0.03946397081017494,
0.024801082909107208,
0.14604786038398743,
0.021865801885724068,
-0.06649388372898102,
0.05819537490606308,
-0.02407088130712509,
-0.1375126838684082,
0.19745667278766632,
-0.07655959576368332,
-0.24692493677139282,
-0.0557699128985405,
-0.12156432867050171,
-0.08292153477668762,
-0.004656600300222635,
0.08777038007974625,
-0.052922721952199936,
-0.0712488517165184,
-0.16662487387657166,
-0.08241639286279678,
-0.018688848242163658,
0.01792430691421032,
-0.04077857360243797,
0.0219266414642334,
0.018048949539661407,
-0.12089370936155319,
-0.022188901901245117,
-0.029026424512267113,
0.0023775044828653336,
0.08215074986219406,
-0.006238595582544804,
0.08718084543943405,
0.15461522340774536,
-0.02656521275639534,
0.016097484156489372,
-0.07341551035642624,
0.21299396455287933,
-0.037501756101846695,
0.010212162509560585,
0.1618157923221588,
-0.019847242161631584,
0.03441126272082329,
0.13105741143226624,
0.03680713474750519,
-0.0787540078163147,
0.06626400351524353,
-0.019329242408275604,
-0.057751111686229706,
-0.21733595430850983,
-0.14684391021728516,
-0.0049546691589057446,
0.0021859807893633842,
0.0413040854036808,
0.05597314611077309,
0.0823768749833107,
0.04430367797613144,
-0.00490330858156085,
-0.038298722356557846,
0.09061452001333237,
0.08040115982294083,
0.11069570481777191,
0.025747578591108322,
0.1499207466840744,
-0.05884718894958496,
-0.036372262984514236,
0.11762234568595886,
-0.016590891405940056,
0.021565882489085197,
-0.0285047497600317,
0.014973027631640434,
0.09767434000968933,
0.11031441390514374,
0.039817970246076584,
0.01739717461168766,
-0.014048050157725811,
0.014981068670749664,
-0.010416555218398571,
-0.08762100338935852,
-0.0040355101227760315,
0.049013178795576096,
-0.04322231560945511,
-0.007260527461767197,
-0.08958783000707626,
-0.08930443227291107,
0.10478929430246353,
0.20713119208812714,
0.09820371866226196,
-0.31578758358955383,
-0.08814368396997452,
0.0390055812895298,
-0.09983619302511215,
-0.0005178693099878728,
0.04361286759376526,
0.012201336212456226,
-0.11358051747083664,
0.05603169649839401,
0.01242420170456171,
0.09956163167953491,
-0.004027020186185837,
0.015757082030177116,
-0.014039618894457817,
-0.04231938347220421,
-0.018353693187236786,
0.11578274518251419,
-0.18220146000385284,
0.2163601517677307,
0.02745817042887211,
0.0000891543531906791,
-0.1069183200597763,
-0.01681235060095787,
-0.020853932946920395,
0.09353061765432358,
0.15347163379192352,
-0.039972200989723206,
0.04401411488652229,
-0.02345663122832775,
-0.07499518245458603,
0.01817554421722889,
0.02684217318892479,
-0.015218989923596382,
0.07404088973999023,
-0.004878074396401644,
0.005215100944042206,
0.006763812620192766,
0.026650691404938698,
-0.030586710199713707,
-0.08059263974428177,
-0.014351535588502884,
0.0647440180182457,
0.00632825493812561,
-0.04322773218154907,
-0.060260362923145294,
-0.1845126450061798,
0.12417437881231308,
-0.012542788870632648,
-0.05491257458925247,
-0.09774523973464966,
0.07060017436742783,
0.07124657928943634,
-0.04653027653694153,
0.00023059194791130722,
-0.03889007121324539,
0.062200263142585754,
0.040222492069005966,
-0.11204108595848083,
0.05253085121512413,
-0.08642751723527908,
-0.14061197638511658,
0.004380960948765278,
0.14096283912658691,
0.06389787793159485,
0.02052958495914936,
0.03462090715765953,
0.023330505937337875,
-0.08661076426506042,
-0.0974387526512146,
-0.030935440212488174,
0.1278202086687088,
0.15343718230724335,
0.03937990218400955,
-0.036942508071660995,
-0.09339705109596252,
-0.06162124127149582,
0.031150788068771362,
0.1506175994873047,
0.15248920023441315,
-0.10428228229284286,
0.11796760559082031,
0.18220239877700806,
-0.027856100350618362,
-0.2693691551685333,
-0.037266865372657776,
-0.04875728487968445,
0.013785170391201973,
0.050138045102357864,
-0.002676500706002116,
0.14310458302497864,
0.04835926368832588,
-0.028924960643053055,
-0.08946534991264343,
-0.24512280523777008,
-0.1117573156952858,
0.11720632016658783,
-0.001267195912078023,
0.13329508900642395,
-0.06988614797592163,
-0.024719838052988052,
-0.041847098618745804,
-0.10895444452762604,
0.09918243438005447,
-0.09259726852178574,
0.026758810505270958,
0.028922811150550842,
0.051220983266830444,
0.03636224567890167,
-0.04063564911484718,
0.08144370466470718,
-0.00590371061116457,
0.07282131910324097,
-0.10531263798475266,
-0.06384772807359695,
0.053766872733831406,
-0.06883174180984497,
0.14889778196811676,
-0.007112137973308563,
0.0960507020354271,
-0.11817506700754166,
-0.05314752459526062,
-0.07005072385072708,
0.06879075616598129,
0.021979449316859245,
-0.04597676172852516,
-0.13021808862686157,
0.026340385898947716,
0.05594486743211746,
-0.028579842299222946,
0.14470547437667847,
-0.099692702293396,
0.0686803087592125,
0.17920291423797607,
0.24534961581230164,
-0.08910948038101196,
0.03590160235762596,
0.031209995970129967,
-0.09098883718252182,
0.03891759365797043,
-0.15264199674129486,
0.08154167979955673,
0.08802695572376251,
-0.0003263475082349032,
0.07199038565158844,
0.046644918620586395,
-0.03620375692844391,
-0.024433648213744164,
0.06331656873226166,
-0.17110519111156464,
-0.058581676334142685,
-0.03539755940437317,
0.03723195195198059,
-0.1474417746067047,
0.058877550065517426,
0.14042295515537262,
-0.05845274031162262,
-0.049143727868795395,
0.005511706229299307,
0.05356081575155258,
-0.05021792650222778,
0.09456346929073334,
0.04950852319598198,
0.032414454966783524,
-0.10928398370742798,
0.10705018788576126,
0.07073251903057098,
-0.05362904444336891,
0.03670216351747513,
0.013897953554987907,
-0.1405416876077652,
-0.10598403215408325,
-0.03353365510702133,
0.021524323150515556,
-0.01773628406226635,
-0.08238977938890457,
-0.04275744408369064,
-0.10139217972755432,
0.06722233444452286,
0.23970645666122437,
0.09488321840763092,
0.10056422650814056,
0.004278076812624931,
-0.037042807787656784,
-0.0734625905752182,
0.1250074803829193,
0.05793150141835213,
-0.03780202567577362,
-0.1656697690486908,
0.09453976154327393,
-0.010083013214170933,
0.08817777782678604,
-0.056759364902973175,
-0.008785678073763847,
-0.1433400958776474,
0.009619839489459991,
-0.049668390303850174,
0.009321720339357853,
-0.061099570244550705,
0.04124677553772926,
-0.011775764636695385,
-0.03533915430307388,
-0.06792089343070984,
0.009590430185198784,
-0.06769092381000519,
0.036352768540382385,
0.04285406321287155,
0.09115743637084961,
-0.11483284831047058,
-0.03950215131044388,
0.01855369471013546,
0.0164203941822052,
0.12588465213775635,
0.054321981966495514,
-0.0832505077123642,
0.041760820895433426,
-0.09060553461313248,
0.012636045925319195,
0.05690788850188255,
0.03721741959452629,
0.027182932943105698,
-0.10886001586914062,
-0.00680585065856576,
0.08594230562448502,
-0.019785478711128235,
0.06543164700269699,
0.04200900346040726,
-0.08854886144399643,
0.01707238331437111,
0.0011302604107186198,
-0.027107348665595055,
-0.09095872193574905,
0.011710680089890957,
0.09970440715551376,
0.05208490788936615,
0.1647835373878479,
-0.04180615022778511,
-0.0003959591267630458,
-0.12501050531864166,
0.013375152833759785,
-0.02684175595641136,
-0.08445125073194504,
-0.18902456760406494,
-0.015140299685299397,
0.06718053668737411,
-0.03676743432879448,
0.25603970885276794,
0.07793068140745163,
-0.020533746108412743,
0.06833166629076004,
0.059844501316547394,
0.07214348763227463,
0.02454460598528385,
0.15766669809818268,
-0.024389274418354034,
-0.03736099973320961,
0.02458953857421875,
0.002224591327831149,
-0.025482727214694023,
-0.003279323922470212,
0.10742088407278061,
0.15043646097183228,
0.05935126543045044,
0.06599746644496918,
0.0274739358574152,
0.011155471205711365,
0.032857902348041534,
-0.06142636016011238,
-0.04004853963851929,
0.06331006437540054,
-0.08401168137788773,
0.08272191882133484,
0.11772649735212326,
-0.04619632288813591,
0.039008598774671555,
-0.01419268362224102,
-0.03596827760338783,
-0.11874149739742279,
-0.17169472575187683,
-0.12157317250967026,
-0.09374050796031952,
0.0024092860985547304,
-0.119465671479702,
-0.012120487168431282,
0.019060546532273293,
0.028118353337049484,
-0.047145187854766846,
0.03987004607915878,
-0.1420362889766693,
-0.008532814681529999,
0.05452531576156616,
-0.026382779702544212,
-0.0038705640472471714,
0.028616148978471756,
0.00862420815974474,
0.014359909109771252,
0.0458274707198143,
0.007355555426329374,
0.02702796645462513,
0.04854751378297806,
0.006289403419941664,
-0.0948137491941452,
-0.08275391161441803,
-0.04777549207210541,
0.040168095380067825,
0.038671206682920456,
0.045495789498090744,
0.0647701695561409,
-0.04062899202108383,
0.010646495968103409,
0.2674359083175659,
-0.10152282565832138,
-0.05874527245759964,
-0.14819872379302979,
0.21638569235801697,
0.023699967190623283,
0.02697930671274662,
0.02017097920179367,
-0.09817075729370117,
-0.0342201329767704,
0.21106763184070587,
0.2462768852710724,
-0.012932582758367062,
0.009280147030949593,
-0.03313372656702995,
0.015504389069974422,
0.013046352192759514,
0.056446004658937454,
0.059486862272024155,
0.21659314632415771,
-0.051567427814006805,
0.005273975431919098,
-0.04442938417196274,
0.026522163301706314,
0.005513553973287344,
0.06629792600870132,
-0.005922199226915836,
-0.07311315089464188,
-0.057729508727788925,
0.10978066176176071,
-0.13226427137851715,
-0.04595223814249039,
-0.018681632354855537,
-0.093571737408638,
-0.06871869415044785,
0.05202999711036682,
-0.012384301982820034,
0.012104161083698273,
0.07870107144117355,
-0.015775136649608612,
0.010292318649590015,
0.05780687928199768,
0.02005825936794281,
-0.14231474697589874,
-0.040059760212898254,
0.12750302255153656,
0.06373103708028793,
0.16099055111408234,
-0.010913578793406487,
0.17818528413772583,
0.10132734477519989,
-0.03411129489541054,
-0.10150177776813507,
0.081959567964077,
0.014105630107223988,
-0.0548054501414299,
0.0817248746752739,
-0.041200000792741776,
0.04049883782863617,
0.06542116403579712,
0.053920403122901917,
-0.10232666879892349,
0.023269424214959145,
-0.0859701856970787,
0.005624081939458847,
-0.1428007185459137,
0.0618741512298584,
-0.061008330434560776,
0.12063492834568024,
0.10196634382009506,
-0.08602423220872879,
0.00005426217467174865,
-0.0332595631480217,
0.0604817196726799,
-0.03304344788193703,
-0.0631207600235939,
0.018751518800854683,
-0.19687408208847046,
0.020532725378870964,
-0.06654243916273117,
-0.004885553847998381,
-0.21548861265182495,
-0.03418312594294548,
0.011009125038981438,
-0.020985275506973267,
-0.03103013150393963,
0.10495026409626007,
0.13480062782764435,
0.0030601280741393566,
-0.03663736954331398,
0.05200979486107826,
0.01810617186129093,
0.13036581873893738,
-0.10553716123104095,
-0.0595688633620739
] |
null | null | transformers |
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers
## Introduction
This is a model specifically designed to identify tickers in text.
Model was trained on transformed dataset from following Kaggle dataset:
https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020
## How to use roberta-ticker with HuggingFace
##### Load roberta-ticker and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-ticker")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-ticker")
##### Process text sample
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("I am going to buy 100 shares of cake tomorrow")
[{'entity_group': 'TICKER',
'score': 0.9612462520599365,
'word': ' cake',
'start': 32,
'end': 36}]
nlp("I am going to eat a cake tomorrow")
[]
```
## Model performances
```
precision: 0.914157
recall: 0.788824
f1: 0.846878
```
| {"language": "en", "widget": [{"text": "I am going to buy 100 shares of cake tomorrow"}]} | token-classification | Jean-Baptiste/roberta-ticker | [
"transformers",
"pytorch",
"safetensors",
"roberta",
"token-classification",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers
## Introduction
This is a model specifically designed to identify tickers in text.
Model was trained on transformed dataset from following Kaggle dataset:
URL
## How to use roberta-ticker with HuggingFace
##### Load roberta-ticker and its sub-word tokenizer :
## Model performances
| [
"# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers",
"## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL",
"## How to use roberta-ticker with HuggingFace",
"##### Load roberta-ticker and its sub-word tokenizer :",
"## Model performances"
] | [
"TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers",
"## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL",
"## How to use roberta-ticker with HuggingFace",
"##### Load roberta-ticker and its sub-word tokenizer :",
"## Model performances"
] | [
45,
21,
33,
14,
18,
4
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us \n# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL## How to use roberta-ticker with HuggingFace##### Load roberta-ticker and its sub-word tokenizer :## Model performances"
] | [
-0.07043425738811493,
0.05430920422077179,
-0.002025080379098654,
0.09477351605892181,
0.14441198110580444,
-0.01196419820189476,
0.09947595000267029,
0.12837356328964233,
0.13065744936466217,
0.0729011818766594,
0.11943310499191284,
0.21456775069236755,
0.00038070528535172343,
0.2708907425403595,
-0.05777042359113693,
-0.1549379527568817,
0.08090553432703018,
0.04276052117347717,
0.08724749833345413,
0.14391520619392395,
0.10513293743133545,
-0.1171775758266449,
0.10641589760780334,
0.017854344099760056,
-0.13836804032325745,
-0.03063356690108776,
0.037559874355793,
-0.0858670249581337,
0.11150827258825302,
0.01652214489877224,
0.1499207317829132,
0.011293288320302963,
0.04227122291922569,
-0.07697005569934845,
0.03851190581917763,
0.004100956488400698,
0.018261639401316643,
0.07087084650993347,
0.004108633380383253,
-0.05522945150732994,
0.14536187052726746,
-0.039254702627658844,
0.07718735933303833,
0.023538531735539436,
-0.08287020027637482,
-0.15841613709926605,
-0.0594508983194828,
0.1249292716383934,
0.05163804814219475,
0.03993126004934311,
-0.036287594586610794,
0.31679484248161316,
-0.08277791738510132,
0.10613353550434113,
0.22456397116184235,
-0.2561655044555664,
-0.0621233731508255,
-0.009230440482497215,
0.13645850121974945,
-0.0704808309674263,
-0.11215297877788544,
0.01762249879539013,
0.025674235075712204,
-0.027308253571391106,
0.04891005530953407,
-0.08887182921171188,
-0.12935315072536469,
0.00018136361904907972,
-0.15013819932937622,
0.03143937513232231,
0.17853906750679016,
0.04281710088253021,
-0.05705802142620087,
-0.08897718787193298,
-0.036274731159210205,
0.04610006883740425,
-0.07656670361757278,
-0.04628003388643265,
-0.04677548259496689,
-0.04604904353618622,
-0.06189503148198128,
0.032008618116378784,
-0.030120503157377243,
-0.04305876046419144,
-0.025714397430419922,
0.2564567029476166,
-0.010426055639982224,
0.026949191465973854,
-0.1211990937590599,
0.0054907421581447124,
0.05948914214968681,
-0.06586704403162003,
-0.0012528783408924937,
-0.05229482427239418,
-0.027623338624835014,
-0.05165551230311394,
0.0012201577192172408,
-0.00369412824511528,
0.11509034037590027,
0.16385653614997864,
0.20843340456485748,
0.06215992569923401,
-0.07608001679182053,
0.007220007479190826,
0.05085642263293266,
0.1980198472738266,
-0.12700989842414856,
-0.12049836665391922,
0.07546940445899963,
0.026570996269583702,
0.056461039930582047,
-0.05596713721752167,
-0.05177159234881401,
0.013055408373475075,
0.0958164632320404,
0.04643335938453674,
0.022338204085826874,
0.11111870408058167,
-0.05911590903997421,
-0.0037227526772767305,
-0.025700882077217102,
-0.0864318311214447,
-0.0013112236047163606,
0.038934022188186646,
-0.008684546686708927,
-0.007796290796250105,
0.0037857505958527327,
0.00648420350626111,
0.02602567709982395,
0.07070069760084152,
-0.11110351234674454,
-0.030579574406147003,
-0.004436169285327196,
-0.1575862616300583,
-0.013616024516522884,
-0.20895589888095856,
0.05469843000173569,
-0.12308380752801895,
-0.1035061627626419,
0.00015342522237915546,
-0.014158221893012524,
-0.0076446449384093285,
-0.04578924551606178,
-0.07002293318510056,
-0.036051224917173386,
0.04495957866311073,
0.01841128058731556,
0.011107003316283226,
-0.03600112721323967,
0.09602227807044983,
0.012327211908996105,
0.09069748222827911,
-0.01563592255115509,
-0.0417766273021698,
-0.15032443404197693,
-0.008974126540124416,
-0.15051113069057465,
0.008959237486124039,
-0.04449811577796936,
0.08840591460466385,
-0.0789303109049797,
-0.014078370295464993,
-0.005253886338323355,
0.025553081184625626,
0.011609004810452461,
0.16957485675811768,
-0.04261123389005661,
-0.046983979642391205,
0.193816140294075,
-0.12647667527198792,
-0.07865642756223679,
0.0980115458369255,
-0.06797578185796738,
0.17548009753227234,
0.10114169120788574,
0.2803162932395935,
0.10002674907445908,
-0.10625095665454865,
0.021474814042448997,
0.01860332116484642,
-0.1651676744222641,
-0.009372548200190067,
0.05593566223978996,
-0.0036635424476116896,
-0.1917968988418579,
0.018841831013560295,
-0.0757019966840744,
-0.0011237984290346503,
-0.07251357287168503,
-0.04154713451862335,
-0.0045437803491950035,
-0.12129471451044083,
0.11463569104671478,
0.019804686307907104,
-0.021114416420459747,
-0.10016348212957382,
-0.04199347645044327,
-0.1389409303665161,
0.11775238066911697,
-0.051093753427267075,
0.02716926671564579,
-0.18591445684432983,
0.1304413080215454,
-0.04597141221165657,
-0.004188532941043377,
-0.17116083204746246,
0.011794625781476498,
0.008683810941874981,
0.07904936373233795,
0.03576304018497467,
-0.06976664066314697,
0.06115896627306938,
-0.040631022304296494,
0.06365559995174408,
-0.0122856255620718,
0.09214461594820023,
0.02336832694709301,
-0.04712056368589401,
-0.14220857620239258,
-0.013614372350275517,
-0.10156942158937454,
0.041561760008335114,
-0.0725640058517456,
0.007026865612715483,
0.013615197502076626,
0.011567221023142338,
0.05859426409006119,
-0.014255855232477188,
0.052965935319662094,
0.001018426613882184,
-0.0100752804428339,
-0.03971809148788452,
0.09311943501234055,
0.034289345145225525,
-0.022669831290841103,
0.06201986223459244,
-0.06843755394220352,
0.16854217648506165,
0.13131046295166016,
0.07785631716251373,
-0.081847183406353,
0.11538247019052505,
-0.0072241914458572865,
0.02882940135896206,
0.0007389707607217133,
0.019795948639512062,
0.08150263875722885,
0.0026344964280724525,
0.0704801008105278,
-0.04107200354337692,
-0.010187347419559956,
0.0826815739274025,
-0.07599961757659912,
-0.004707070533186197,
0.1268501877784729,
0.016077788546681404,
-0.17435772716999054,
0.032562557607889175,
-0.028989208862185478,
0.031600307673215866,
0.10375778377056122,
-0.002154621994122863,
0.039638157933950424,
-0.027601519599556923,
-0.013322032988071442,
0.02462458238005638,
0.07428398728370667,
-0.13398955762386322,
-0.06522615253925323,
0.05527621880173683,
-0.05629622936248779,
-0.03815167769789696,
-0.07269511371850967,
-0.032867688685655594,
-0.025884049013257027,
0.010860706679522991,
-0.055314287543296814,
0.1468583345413208,
-0.028501857072114944,
0.09961210936307907,
0.036647241562604904,
-0.1065797284245491,
0.008349660784006119,
0.009131456725299358,
-0.09708315879106522,
0.15871170163154602,
-0.020828627049922943,
-0.14831434190273285,
-0.12904129922389984,
-0.2651163935661316,
0.030003126710653305,
0.03335169330239296,
0.06764695048332214,
-0.07414866238832474,
-0.03396676480770111,
-0.055812057107686996,
0.05618120729923248,
0.026165271177887917,
0.011246247217059135,
0.03281334415078163,
-0.04959918558597565,
-0.03914462774991989,
-0.10193803161382675,
-0.02070952206850052,
-0.08533260226249695,
0.05194150656461716,
0.06707213819026947,
-0.042070113122463226,
0.18232892453670502,
0.16240288317203522,
-0.010120531544089317,
0.02410086989402771,
-0.0704018622636795,
0.17061355710029602,
-0.045699719339609146,
0.025954626500606537,
0.13489487767219543,
-0.06265287101268768,
0.056020744144916534,
0.1497657150030136,
-0.00960917491465807,
-0.06907229870557785,
0.03539660573005676,
-0.028259923681616783,
-0.08058740198612213,
-0.10646961629390717,
-0.06738828867673874,
-0.032142385840415955,
0.09977051615715027,
0.04161935672163963,
0.016786839812994003,
-0.08200877159833908,
0.10545001178979874,
0.0877465307712555,
-0.04875767603516579,
0.048944003880023956,
0.09810436517000198,
0.014337276108562946,
0.013702147640287876,
0.12624037265777588,
-0.07912424206733704,
-0.11697521060705185,
0.06346532702445984,
-0.09126897156238556,
0.14857815206050873,
0.046820759773254395,
-0.003670529928058386,
0.07135385274887085,
0.06322669982910156,
0.0834086462855339,
0.1532844454050064,
0.005939164198935032,
0.014041953720152378,
-0.050365280359983444,
-0.03670722246170044,
-0.055819906294345856,
-0.05624442920088768,
-0.03651701658964157,
0.04859073832631111,
-0.12124316394329071,
-0.012257284484803677,
0.06007251888513565,
0.15564490854740143,
0.06368802487850189,
-0.25312477350234985,
-0.04301247373223305,
-0.00485897297039628,
0.016939107328653336,
-0.040905676782131195,
0.03781546652317047,
-0.09313134849071503,
-0.1601763814687729,
-0.02226622961461544,
-0.05396505445241928,
0.06356413662433624,
-0.010410240851342678,
0.02407279796898365,
-0.10836177319288254,
0.043158456683158875,
-0.06005195900797844,
0.0750262662768364,
-0.1507692039012909,
0.19596870243549347,
-0.013872180134057999,
0.09626352787017822,
-0.011485856957733631,
-0.05174977332353592,
0.08305283635854721,
0.03662652149796486,
0.19381287693977356,
-0.051508910953998566,
0.021044688299298286,
-0.20792925357818604,
-0.08907375484704971,
0.06649507582187653,
0.062234677374362946,
-0.03225608170032501,
0.1224045380949974,
-0.08753528445959091,
-0.01239998359233141,
-0.008307723328471184,
0.02935788407921791,
-0.02458006516098976,
-0.05299243703484535,
-0.05872860550880432,
0.032281436026096344,
-0.03599492460489273,
-0.013097303919494152,
-0.04628511890769005,
-0.05756674334406853,
0.05080084130167961,
0.028197448700666428,
-0.00405221339315176,
-0.101674385368824,
-0.07073447853326797,
0.07363281399011612,
-0.10566667467355728,
0.009100859053432941,
-0.05406157672405243,
0.08008011430501938,
-0.02885836735367775,
-0.07855013757944107,
0.019889043644070625,
-0.07532158493995667,
-0.05588313192129135,
-0.04881751164793968,
0.09016973525285721,
0.04511203616857529,
-0.014047304168343544,
0.06400180608034134,
0.015922322869300842,
-0.061763469129800797,
-0.0680139809846878,
0.023780209943652153,
-0.021699579432606697,
-0.06158669292926788,
0.06943657994270325,
-0.059591278433799744,
-0.1588054597377777,
-0.17804723978042603,
0.038223881274461746,
0.1327516734600067,
0.17308390140533447,
-0.06446682661771774,
0.12071005254983902,
0.21084874868392944,
-0.036830224096775055,
-0.3283308446407318,
-0.10819834470748901,
-0.09681649506092072,
0.030028413981199265,
-0.018967319279909134,
-0.05148426443338394,
0.14667774736881256,
-0.09474354237318039,
-0.052559398114681244,
-0.00662515452131629,
-0.21751073002815247,
-0.060208700597286224,
0.2470579892396927,
0.10566502064466476,
0.2948305904865265,
-0.11292508244514465,
-0.03140351176261902,
0.02393091656267643,
-0.1647828370332718,
0.12212958931922913,
-0.19490548968315125,
0.06551855802536011,
-0.008206884376704693,
0.015583956614136696,
0.015839407220482826,
-0.02283875271677971,
0.014246892184019089,
0.007132358383387327,
0.06753607094287872,
-0.046153996139764786,
-0.19394579529762268,
0.10966886579990387,
-0.043152716010808945,
0.05786118656396866,
-0.009096510708332062,
0.07656857371330261,
-0.11461564898490906,
-0.05176035687327385,
-0.09423979371786118,
0.12559567391872406,
0.034613702446222305,
-0.06157159432768822,
-0.1170993372797966,
0.0017132062930613756,
-0.005403578747063875,
0.017210988327860832,
0.04103841632604599,
-0.048275645822286606,
0.05276423320174217,
-0.01778370328247547,
0.13184860348701477,
0.025715433061122894,
-0.029995374381542206,
-0.026162169873714447,
-0.10545841604471207,
0.05976177379488945,
-0.0070649804547429085,
0.008082100190222263,
0.04092594236135483,
0.06004583090543747,
0.060058239847421646,
0.08799288421869278,
-0.03250909969210625,
0.05342131108045578,
0.0589563325047493,
-0.14980585873126984,
0.06812988221645355,
0.05377599224448204,
-0.1397508978843689,
-0.08979737758636475,
0.006407770793884993,
0.11954290419816971,
0.009472988545894623,
-0.061808258295059204,
-0.044829536229372025,
0.008192566223442554,
-0.005144858732819557,
0.07181914895772934,
0.0830184668302536,
0.05618772283196449,
-0.10844532400369644,
0.029995504766702652,
0.028191043063998222,
-0.013909971341490746,
0.05725790560245514,
0.03239427134394646,
-0.14789193868637085,
-0.08277256786823273,
-0.03393498435616493,
0.3828200101852417,
-0.04937203973531723,
-0.02624894119799137,
-0.07791925966739655,
-0.07870282977819443,
0.00897627416998148,
0.28242987394332886,
0.10884767770767212,
0.02417055144906044,
-0.06206917762756348,
-0.047696638852357864,
-0.1602715253829956,
0.09393521398305893,
0.14252984523773193,
-0.022197874262928963,
-0.15790653228759766,
0.03291689604520798,
-0.020778600126504898,
0.07176230102777481,
-0.07132837921380997,
-0.03352821245789528,
-0.1810879111289978,
-0.008937160484492779,
0.12919165194034576,
0.09131326526403427,
-0.008303909562528133,
0.009985889308154583,
-0.017464619129896164,
-0.039140865206718445,
-0.08543048799037933,
-0.016032734885811806,
-0.04532335326075554,
0.027081597596406937,
0.032111141830682755,
0.04624544829130173,
-0.11102909594774246,
-0.05607619136571884,
0.09936793893575668,
-0.06358502060174942,
0.05706271529197693,
0.06880190223455429,
-0.0558171309530735,
0.06742576509714127,
-0.16911625862121582,
-0.02173258550465107,
0.013411863707005978,
-0.07106280326843262,
0.007688621524721384,
-0.1437736451625824,
0.024331221356987953,
-0.0332036092877388,
0.06645061820745468,
0.02839752286672592,
0.18552768230438232,
-0.059882644563913345,
0.07505553960800171,
-0.05739795044064522,
-0.08597714453935623,
-0.025630755349993706,
0.013174514286220074,
0.1294577717781067,
0.08593005686998367,
0.19154340028762817,
-0.06662417948246002,
0.04637403413653374,
-0.08553527295589447,
0.009934782050549984,
-0.03970881924033165,
-0.08836279809474945,
-0.15419267117977142,
-0.05775631219148636,
0.01543483231216669,
-0.04107190668582916,
0.09958712756633759,
0.060789741575717926,
-0.004175402224063873,
-0.005292593035846949,
-0.0425095371901989,
-0.0806957483291626,
0.010101638734340668,
0.2592354416847229,
-0.002966436091810465,
-0.04861479252576828,
0.0464283749461174,
0.018242595717310905,
0.017307821661233902,
0.07300621271133423,
0.10117016732692719,
0.12149078398942947,
0.0880252793431282,
0.10029806196689606,
-0.04586710035800934,
0.04337996616959572,
-0.004063003696501255,
-0.040268950164318085,
-0.027996230870485306,
-0.032270532101392746,
0.07060007005929947,
0.27763983607292175,
0.14771227538585663,
0.009710101410746574,
0.0175949539989233,
-0.0036181644536554813,
-0.05280172452330589,
-0.15055271983146667,
-0.06070245802402496,
-0.10898171365261078,
-0.02459181286394596,
0.03811516985297203,
-0.06417643278837204,
-0.044749028980731964,
0.021138081327080727,
-0.038448382169008255,
-0.0217911284416914,
0.09758958965539932,
-0.1426841765642166,
0.0195281021296978,
0.10828224569559097,
-0.023681065067648888,
-0.17399151623249054,
0.06155123934149742,
-0.01510357391089201,
-0.043607067316770554,
-0.03234417364001274,
0.05025282874703407,
0.0033190641552209854,
-0.05137098208069801,
0.031760770827531815,
-0.12311101704835892,
-0.11336741596460342,
0.008059877902269363,
0.05992601811885834,
0.054041773080825806,
0.05381116643548012,
0.0589609295129776,
-0.07720174640417099,
-0.012129190377891064,
0.20580482482910156,
-0.004742476623505354,
-0.02266695350408554,
-0.09627382457256317,
0.31440848112106323,
-0.02652042731642723,
0.03600846976041794,
-0.038832079619169235,
-0.047298893332481384,
0.0068911220878362656,
0.3521575927734375,
0.12429693341255188,
-0.004899549763649702,
0.021051833406090736,
-0.04915256053209305,
0.02095719240605831,
0.01268753595650196,
0.12323775887489319,
0.053379420191049576,
0.11520630866289139,
-0.05149273946881294,
0.024316685274243355,
-0.0981171503663063,
-0.04553355276584625,
-0.037167422473430634,
0.022580236196517944,
0.04113750904798508,
-0.041821107268333435,
-0.08296145498752594,
0.08496009558439255,
-0.15029039978981018,
-0.1398988664150238,
0.02097214013338089,
-0.12146791070699692,
-0.04333958774805069,
-0.029876679182052612,
-0.09402227401733398,
0.006583362352102995,
0.14072170853614807,
-0.042202457785606384,
0.00340465665794909,
-0.019789516925811768,
0.029820535331964493,
-0.1816149801015854,
-0.0015931461239233613,
0.017659807577729225,
-0.13097479939460754,
0.18736277520656586,
-0.05379443243145943,
0.061137180775403976,
0.11096301674842834,
-0.034427475184202194,
-0.0908360406756401,
0.0940387174487114,
-0.03417597711086273,
0.07930884510278702,
0.048591624945402145,
0.06487102061510086,
-0.008690155111253262,
-0.019523097202181816,
0.021654540672898293,
-0.12507635354995728,
0.039215609431266785,
-0.07935333251953125,
0.002583838766440749,
-0.10312964767217636,
0.06893740594387054,
-0.10833419114351273,
0.12201586365699768,
0.05035405978560448,
-0.02291974425315857,
0.00895637460052967,
-0.018059488385915756,
0.07072888314723969,
0.019138460978865623,
-0.04054064303636551,
-0.05250328406691551,
-0.10680180788040161,
-0.05604437366127968,
-0.0723952054977417,
-0.033812470734119415,
-0.41297996044158936,
-0.008864155039191246,
-0.16198642551898956,
0.011441312730312347,
-0.05416001379489899,
0.07864145934581757,
0.01856149546802044,
0.04021063446998596,
0.0038083542603999376,
0.01677408255636692,
0.034017641097307205,
0.1698797047138214,
-0.11236166954040527,
-0.10078439861536026
] |
null | null | transformers | # Tony Stark | {"tags": ["conversational"]} | text-generation | Jedi33/tonystarkAI | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Tony Stark | [
"# Tony Stark"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Tony Stark"
] | [
51,
4
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Tony Stark"
] | [
-0.009902113117277622,
0.04703092575073242,
-0.004792560823261738,
0.05102533847093582,
0.11070758104324341,
-0.006001671310514212,
0.1689351499080658,
0.15354639291763306,
0.087485671043396,
-0.06368233263492584,
0.1744069755077362,
0.1845807433128357,
-0.032148804515600204,
0.0220029354095459,
-0.029774339869618416,
-0.27449214458465576,
0.002897983882576227,
0.058605968952178955,
-0.01905096508562565,
0.11094433814287186,
0.06985589861869812,
-0.08623053133487701,
0.10216893255710602,
-0.02797718718647957,
-0.11939960718154907,
0.03588785603642464,
0.10603438317775726,
-0.09233473986387253,
0.1790185421705246,
0.08117885887622833,
0.03136921301484108,
0.07323087006807327,
-0.03017660789191723,
-0.1412499099969864,
0.05986158549785614,
0.017605949193239212,
-0.04435102269053459,
0.05982138589024544,
0.07614688575267792,
-0.0830419734120369,
0.11131741106510162,
0.12636612355709076,
-0.04068750888109207,
0.07637108117341995,
-0.1827765703201294,
0.0882139727473259,
-0.0041300286538898945,
0.08629268407821655,
-0.027299625799059868,
0.14601096510887146,
-0.01392268855124712,
0.14113788306713104,
-0.028090281412005424,
0.08744668960571289,
0.08089052885770798,
-0.3399326205253601,
-0.055784922093153,
0.03622918203473091,
0.10742798447608948,
0.05813358724117279,
-0.05890810862183571,
0.1210077628493309,
0.01809534803032875,
-0.0012850048951804638,
0.03233272209763527,
-0.07522382587194443,
-0.15786035358905792,
0.05142369121313095,
-0.042235083878040314,
0.012146096676588058,
0.1820303052663803,
0.014439375139772892,
0.06404263526201248,
-0.057980529963970184,
-0.08524982631206512,
-0.056617382913827896,
0.0601033978164196,
-0.03938226401805878,
-0.09791871905326843,
0.08526740968227386,
-0.08001387119293213,
-0.13413989543914795,
-0.12797550857067108,
-0.015971319749951363,
-0.17528915405273438,
0.1737440526485443,
-0.0009347795275971293,
0.06257802993059158,
-0.1853613704442978,
0.08062296360731125,
0.03477476164698601,
-0.09125887602567673,
0.04399080201983452,
-0.08029478788375854,
0.029316021129488945,
-0.005466883536428213,
-0.029215000569820404,
-0.05269967019557953,
0.043236587196588516,
0.12119286507368088,
-0.0174594484269619,
-0.019711429253220558,
-0.06001782789826393,
0.09752257913351059,
0.017542049288749695,
0.046779461205005646,
-0.024576714262366295,
-0.02579851634800434,
0.03871912136673927,
-0.06545337289571762,
0.0636778399348259,
-0.07816202938556671,
-0.18287712335586548,
0.009473897516727448,
-0.03499792516231537,
-0.006255035754293203,
0.0771118551492691,
0.09467858821153641,
-0.09188076108694077,
-0.026799246668815613,
0.05202526971697807,
0.0016446346417069435,
-0.036747343838214874,
-0.0035469806753098965,
0.008441903628408909,
0.046711266040802,
-0.006004424765706062,
0.058668963611125946,
-0.07659275829792023,
0.040873024612665176,
-0.07566296309232712,
-0.04578576236963272,
-0.0008479959215037525,
-0.03484325855970383,
0.017777319997549057,
-0.008228983730077744,
0.006064427085220814,
-0.11880484223365784,
-0.11168911308050156,
0.0171246025711298,
-0.032059188932180405,
-0.031706009060144424,
-0.11709711700677872,
-0.045067060738801956,
-0.015118695795536041,
0.01711675338447094,
-0.046394672244787216,
-0.0397682785987854,
-0.06368228793144226,
0.07737310230731964,
-0.014922813512384892,
0.11484957486391068,
-0.09971677511930466,
0.0478130467236042,
-0.0929139256477356,
-0.057420581579208374,
-0.03116614557802677,
0.10215511918067932,
0.033502835780382156,
0.0768149122595787,
0.03768439218401909,
-0.022496143355965614,
-0.1261274814605713,
0.06645850092172623,
-0.11082787066698074,
0.25164133310317993,
-0.08130420744419098,
-0.11675139516592026,
0.3070431649684906,
-0.038043878972530365,
-0.1741308867931366,
0.13376836478710175,
0.001034530345350504,
0.017339413985610008,
0.11441249400377274,
0.16684703528881073,
-0.07344331592321396,
-0.0017348923720419407,
0.06627054512500763,
0.11140941083431244,
-0.0974908173084259,
0.037819571793079376,
0.06705664843320847,
0.015070131979882717,
-0.03432774916291237,
-0.015037120319902897,
0.09164191037416458,
0.04815307632088661,
-0.06737105548381805,
-0.036553703248500824,
0.016651498153805733,
-0.01418367400765419,
0.08268613368272781,
0.003993777092546225,
0.09919402748346329,
-0.0693838968873024,
-0.07641643285751343,
-0.1223982647061348,
-0.020030923187732697,
-0.003836879739537835,
0.06019524112343788,
-0.07253430783748627,
-0.001699836109764874,
0.08194330334663391,
0.01702815108001232,
-0.15585441887378693,
-0.03711174800992012,
-0.06571799516677856,
0.2585267722606659,
0.0781068503856659,
0.14481352269649506,
0.027055134996771812,
-0.04727327451109886,
-0.08553479611873627,
0.027494102716445923,
0.0895308330655098,
-0.01807706616818905,
-0.028219731524586678,
-0.14469091594219208,
0.03689898923039436,
-0.06511843949556351,
0.04657882824540138,
-0.0747554674744606,
0.03439456224441528,
0.024087224155664444,
0.10751063376665115,
0.0037398184649646282,
0.007545070722699165,
0.004916959907859564,
0.006751221138983965,
-0.07326976954936981,
-0.0438387468457222,
0.09599903225898743,
-0.02549290470778942,
-0.15641970932483673,
0.16000288724899292,
-0.09664683789014816,
0.2082321047782898,
0.1861369013786316,
-0.31427231431007385,
-0.00023464126570615917,
-0.0029756983276456594,
-0.041841037571430206,
-0.008133272640407085,
-0.015943175181746483,
-0.023712197318673134,
0.17773251235485077,
0.0012080406304448843,
0.13787879049777985,
-0.006868631113320589,
-0.025362012907862663,
-0.07231076806783676,
0.017464281991124153,
-0.013339006341993809,
0.08724194765090942,
0.08058976382017136,
-0.1781879961490631,
0.17594705522060394,
0.1417870819568634,
0.11094054579734802,
0.209528848528862,
0.06712876260280609,
0.03853943943977356,
0.1005130186676979,
-0.07328879088163376,
-0.04452930763363838,
-0.06602383404970169,
-0.19518309831619263,
-0.012524372898042202,
0.01917995512485504,
-0.03940518572926521,
0.0544784851372242,
-0.1321505308151245,
-0.10943444818258286,
-0.011939174495637417,
0.004393692594021559,
-0.03280916064977646,
0.07445104420185089,
0.0018487885827198625,
0.11858393996953964,
0.03266013041138649,
-0.01540109422057867,
0.11214162409305573,
-0.021243242546916008,
-0.09401153773069382,
0.14890886843204498,
-0.11408315598964691,
-0.26240086555480957,
-0.08405881375074387,
-0.09425230324268341,
-0.05267821252346039,
0.08230908960103989,
0.0807853639125824,
-0.11868695169687271,
0.04517136514186859,
0.005905004683881998,
0.12166876345872879,
-0.1567242443561554,
-0.010747946798801422,
0.022373158484697342,
0.03390031307935715,
-0.125478595495224,
-0.06471826881170273,
-0.05859188735485077,
-0.023575330153107643,
-0.10489088296890259,
0.15334564447402954,
-0.10264936834573746,
0.00856542494148016,
0.1542903035879135,
0.04529402777552605,
0.050199802964925766,
-0.0779145285487175,
0.1649208813905716,
-0.10597425699234009,
0.0009149830439127982,
0.19379499554634094,
-0.018787041306495667,
0.04356541484594345,
0.08123710006475449,
0.03677750006318092,
-0.04496534541249275,
0.03498892858624458,
-0.023577891290187836,
-0.03715714067220688,
-0.20026467740535736,
-0.08129172772169113,
-0.08853975683450699,
0.143511563539505,
0.06264153867959976,
0.04208245500922203,
0.16337950527668,
0.0621529147028923,
-0.05738495662808418,
-0.07318708300590515,
0.061924926936626434,
0.06406321376562119,
0.2561522126197815,
-0.05702843517065048,
0.13253195583820343,
-0.007707052398473024,
-0.1252083033323288,
0.08158651739358902,
0.01856699399650097,
-0.0586148239672184,
0.14243081212043762,
0.03095119632780552,
-0.02437487617135048,
0.02873285673558712,
0.07201959192752838,
0.05818576738238335,
0.07527138292789459,
-0.055533383041620255,
-0.022514941170811653,
-0.029253367334604263,
-0.054966479539871216,
0.05603717640042305,
0.02379724569618702,
-0.10820077359676361,
0.01901731640100479,
0.032028477638959885,
0.06400753557682037,
0.09399092197418213,
0.09937800467014313,
-0.1783791184425354,
-0.06965865194797516,
0.08038800954818726,
-0.03438741713762283,
-0.0901201069355011,
0.1004456952214241,
0.08396242558956146,
-0.14134851098060608,
0.10376895219087601,
-0.01557967346161604,
0.12691104412078857,
-0.034607887268066406,
0.1319706290960312,
-0.0710301622748375,
-0.14781662821769714,
0.02093619666993618,
0.09074854105710983,
-0.26588961482048035,
0.18944846093654633,
-0.012527359649538994,
-0.054171640425920486,
-0.09597516804933548,
-0.05290981009602547,
-0.007065899204462767,
0.10678282380104065,
0.18034914135932922,
-0.01400876883417368,
0.07502266764640808,
-0.04298773780465126,
-0.048671141266822815,
0.01885494962334633,
0.09420255571603775,
-0.12338399887084961,
-0.023482928052544594,
-0.03986825793981552,
0.0023177778348326683,
-0.011286242865025997,
0.0577155277132988,
-0.03762787953019142,
-0.1640869677066803,
0.0747380182147026,
0.07021504640579224,
0.1533111184835434,
0.014089783653616905,
-0.06172548979520798,
-0.08035428822040558,
0.24295352399349213,
-0.09572979062795639,
-0.06406468898057938,
-0.09373967349529266,
0.06183694675564766,
-0.039811503142118454,
-0.03759460523724556,
-0.04228820651769638,
-0.027226250618696213,
0.05395518243312836,
-0.13994936645030975,
-0.18661166727542877,
0.15253889560699463,
-0.08093151450157166,
-0.08259666711091995,
-0.05814625322818756,
0.18306848406791687,
-0.0007784694898873568,
0.07075640559196472,
0.012779260985553265,
0.00787702202796936,
-0.13009725511074066,
-0.07801205664873123,
0.07473069429397583,
-0.12137129157781601,
0.02014715038239956,
-0.011963702738285065,
-0.056733183562755585,
0.064469113945961,
-0.06965500861406326,
-0.0818067342042923,
0.32463717460632324,
0.13442489504814148,
-0.0691843181848526,
0.1384136825799942,
-0.002904091961681843,
-0.02997184358537197,
-0.2841474711894989,
-0.08884166926145554,
-0.1308254897594452,
-0.048139531165361404,
0.026186902076005936,
-0.21572567522525787,
0.09631431847810745,
-0.04855744168162346,
0.010481143370270729,
0.058538053184747696,
-0.20696142315864563,
-0.0998917892575264,
0.10747307538986206,
-0.050761085003614426,
0.40350961685180664,
-0.11242691427469254,
-0.07092040777206421,
-0.05306094512343407,
-0.13038313388824463,
0.18679216504096985,
-0.047722868621349335,
0.08884575963020325,
-0.03127482533454895,
0.0773196890950203,
0.005092799197882414,
0.01778322272002697,
0.03875388577580452,
-0.002300684805959463,
-0.06677663326263428,
-0.04870162531733513,
-0.11009646207094193,
0.06198907271027565,
0.04546511918306351,
-0.11407255381345749,
-0.031982194632291794,
-0.025304874405264854,
-0.14274610579013824,
-0.027957187965512276,
-0.12874466180801392,
0.05197281762957573,
0.011736552231013775,
-0.05128505825996399,
0.029450910165905952,
-0.022717775776982307,
-0.027400514110922813,
0.0017944371793419123,
0.27398353815078735,
-0.14149314165115356,
0.2699817419052124,
0.05732902139425278,
0.18935401737689972,
-0.13721880316734314,
0.037851039320230484,
-0.03924936428666115,
-0.06863152980804443,
0.04230710119009018,
-0.057661574333906174,
0.016954537481069565,
0.10828408598899841,
0.0031049747485667467,
0.034227076917886734,
0.12890473008155823,
0.04762817546725273,
0.02645784802734852,
0.1370745450258255,
-0.2796592712402344,
-0.10176582634449005,
-0.09511815756559372,
0.010776510462164879,
0.10684020817279816,
0.03507113829255104,
0.17669634521007538,
-0.018974481150507927,
-0.07719472050666809,
0.01993347890675068,
-0.010081978514790535,
-0.041801970452070236,
-0.00048197124851867557,
-0.000761824136134237,
0.013105301186442375,
-0.10788962244987488,
0.10860108584165573,
-0.002240587491542101,
-0.23214401304721832,
-0.030239485204219818,
0.2105105072259903,
-0.120246022939682,
-0.1191045418381691,
-0.11950024217367172,
0.02218758314847946,
-0.16611778736114502,
0.02597217820584774,
-0.028083624318242073,
-0.15160317718982697,
0.07209888100624084,
0.12061609327793121,
0.030931411311030388,
0.0609290637075901,
-0.07754573971033096,
-0.027568986639380455,
0.047078076750040054,
-0.020253069698810577,
0.0010445340303704143,
-0.03008563257753849,
-0.03869490697979927,
0.07796813547611237,
-0.05035744979977608,
0.18373572826385498,
-0.08350643515586853,
-0.07291051000356674,
-0.11918976157903671,
0.03859224170446396,
-0.03267566114664078,
-0.12763354182243347,
-0.08410551398992538,
-0.0754208043217659,
-0.050589293241500854,
-0.04598134011030197,
-0.049794409424066544,
-0.066445492208004,
-0.09669571369886398,
0.010726984590291977,
-0.04148159176111221,
0.0037692387122660875,
-0.10065583139657974,
0.042449794709682465,
0.09187688678503036,
-0.031157515943050385,
0.1616949588060379,
0.12129625678062439,
-0.0988408699631691,
0.045141566544771194,
-0.09582557529211044,
-0.0960896834731102,
0.057390861213207245,
-0.0030462024733424187,
-0.002989979926496744,
0.14890460669994354,
-0.02799508161842823,
0.03280181437730789,
0.03272053226828575,
0.07071302086114883,
0.04758797958493233,
-0.04592443257570267,
0.05240710452198982,
0.042788200080394745,
-0.07933638244867325,
-0.04884958267211914,
-0.04038063809275627,
0.08989142626523972,
-0.050687141716480255,
0.059917863458395004,
-0.07343003153800964,
0.08101870864629745,
-0.12433535605669022,
0.08202621340751648,
0.030984928831458092,
-0.14415781199932098,
-0.08767589926719666,
-0.0679343044757843,
0.07420427352190018,
-0.010064223781228065,
0.1987726092338562,
-0.045780956745147705,
0.016793206334114075,
0.09539728611707687,
0.06607287377119064,
-0.05645473301410675,
-0.0079249432310462,
0.21418572962284088,
0.11875000596046448,
-0.08173467963933945,
-0.04659026488661766,
0.048518452793359756,
0.023158447816967964,
0.12850330770015717,
0.1993703693151474,
0.048918481916189194,
0.03508377447724342,
0.047995030879974365,
-0.022431926801800728,
0.05926403030753136,
-0.08757226169109344,
-0.17548374831676483,
0.004370998591184616,
0.019418900832533836,
-0.03556711971759796,
0.03457785025238991,
0.13195522129535675,
-0.001425415393896401,
0.0043930066749453545,
-0.030233686789870262,
-0.029975270852446556,
-0.17887167632579803,
-0.15649054944515228,
-0.03913151100277901,
-0.11521672457456589,
0.013048993423581123,
-0.12903396785259247,
0.06901784986257553,
0.008670653216540813,
0.09149512648582458,
-0.07297971099615097,
0.10951551049947739,
0.047214265912771225,
-0.12274456769227982,
0.09993220120668411,
0.008420606143772602,
0.08926285058259964,
-0.037572748959064484,
0.024504659697413445,
-0.04489153251051903,
0.018243640661239624,
0.012802265584468842,
0.05567478761076927,
-0.06122930720448494,
0.010048270225524902,
-0.1517016738653183,
-0.12137595564126968,
-0.053457554429769516,
0.048956602811813354,
-0.032887812703847885,
0.15648086369037628,
-0.02267800271511078,
0.020337477326393127,
0.034622009843587875,
0.2807857096195221,
-0.1095634177327156,
-0.015545347705483437,
-0.0048426855355501175,
0.250670850276947,
-0.004864083137363195,
0.07570630311965942,
-0.055814485996961594,
0.011373988352715969,
-0.0911564975976944,
0.36075952649116516,
0.3480270206928253,
-0.1521255075931549,
0.02389783412218094,
0.0010707898763939738,
0.05805010348558426,
0.13796325027942657,
0.002167553175240755,
0.04306350648403168,
0.11563215404748917,
-0.125677689909935,
-0.002173880347982049,
0.006227367557585239,
0.017794236540794373,
-0.0451834537088871,
0.025293400511145592,
0.07750358432531357,
-0.035834986716508865,
-0.045662183314561844,
0.07530202716588974,
-0.21164479851722717,
0.09087591618299484,
-0.07924686372280121,
-0.234531432390213,
-0.01203125063329935,
-0.014265555888414383,
0.055331822484731674,
0.008714656345546246,
0.09241875261068344,
0.05386130139231682,
-0.057810742408037186,
0.015638208016753197,
0.04877036064863205,
-0.24528105556964874,
0.03895561397075653,
0.07839897274971008,
-0.10571983456611633,
-0.034913014620542526,
-0.05201834440231323,
0.047093600034713745,
0.06125979498028755,
0.05597048997879028,
-0.02415201999247074,
0.0014876550994813442,
-0.007062184624373913,
-0.025383686646819115,
-0.08333949744701385,
0.04581748694181442,
0.022758683189749718,
-0.03767493739724159,
0.09455845504999161,
-0.12120437622070312,
0.04369978606700897,
0.02130700834095478,
-0.04515136405825615,
0.01830964908003807,
0.05159500986337662,
-0.03993929177522659,
0.10726121068000793,
0.09922539442777634,
-0.0165803674608469,
-0.03792892023921013,
-0.02778194658458233,
-0.07420463114976883,
0.010043835267424583,
0.02957344613969326,
-0.12407395243644714,
-0.1262165904045105,
-0.08843196928501129,
0.001738092047162354,
0.019955990836024284,
-0.2650598883628845,
0.011867181397974491,
-0.11716796457767487,
0.021696487441658974,
-0.0912623405456543,
0.05998454615473747,
0.10434761643409729,
-0.0005477798404172063,
0.004436556715518236,
-0.08644765615463257,
0.09931416064500809,
0.09190738201141357,
-0.14038261771202087,
-0.04583370313048363
] |
null | null | null | First 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10.
Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``.
For downloading next 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts1/). | {} | null | Jeevesh8/feather_berts | [
"arxiv:1911.02969",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1911.02969"
] | [] | TAGS
#arxiv-1911.02969 #region-us
| First 50 Feather BERT-s compressed in groups of 10.
Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ''.from_pretrained()''.
For downloading next 50 Feather BERT-s, see here. | [] | [
"TAGS\n#arxiv-1911.02969 #region-us \n"
] | [
15
] | [
"passage: TAGS\n#arxiv-1911.02969 #region-us \n"
] | [
-0.019905919209122658,
0.022140877321362495,
-0.009438413195312023,
-0.023572849109768867,
0.062018100172281265,
0.06408341228961945,
0.06660973280668259,
0.018128344789147377,
0.20054331421852112,
0.04963250458240509,
0.20583219826221466,
0.04001700133085251,
-0.007541907485574484,
0.02479889616370201,
-0.03351658582687378,
-0.1286863088607788,
0.011227240785956383,
0.012107528746128082,
0.07693230360746384,
0.059838104993104935,
-0.04229952022433281,
-0.10282538086175919,
0.029370976611971855,
-0.07067164778709412,
-0.07069263607263565,
0.06392361968755722,
0.027808992192149162,
-0.07472860813140869,
0.12527909874916077,
-0.003188071306794882,
0.16241303086280823,
0.006489957682788372,
-0.006902357563376427,
-0.17674307525157928,
0.018272817134857178,
-0.065772145986557,
-0.08884449303150177,
0.07803965359926224,
0.07707724720239639,
-0.018766796216368675,
-0.022857699543237686,
0.09819246828556061,
-0.05091137811541557,
0.01828310452401638,
-0.3104187846183777,
-0.20229896903038025,
-0.08596301823854446,
-0.004729659762233496,
0.09315460920333862,
0.08672978729009628,
0.044889163225889206,
0.16447092592716217,
-0.039218299090862274,
-0.01987249217927456,
0.16788077354431152,
-0.28378382325172424,
0.007138238754123449,
0.10816898941993713,
-0.046414487063884735,
0.10209256410598755,
-0.0177276823669672,
0.08174346387386322,
0.08992283046245575,
-0.02979339472949505,
-0.19900517165660858,
-0.07206753641366959,
-0.18785381317138672,
0.1388179361820221,
-0.06439584493637085,
-0.10348492115736008,
0.31414595246315,
0.01598355546593666,
0.016909021884202957,
0.21682342886924744,
-0.08409955352544785,
-0.13440358638763428,
0.02732146717607975,
-0.02308996394276619,
0.015565304085612297,
0.0934024229645729,
0.23694320023059845,
-0.02154180034995079,
-0.1512220799922943,
-0.010874718427658081,
-0.23314090073108673,
0.1942194253206253,
-0.05484296754002571,
0.11170387268066406,
-0.20049960911273956,
-0.047082480043172836,
-0.25316330790519714,
-0.021201027557253838,
0.08418016135692596,
-0.05576444789767265,
0.04799962416291237,
0.017279505729675293,
-0.011368771083652973,
-0.02824953757226467,
0.014737574383616447,
0.07983379811048508,
-0.014676784165203571,
0.07381106168031693,
-0.024930641055107117,
0.15527215600013733,
0.05125894770026207,
0.06778452545404434,
0.10435450822114944,
-0.014563973061740398,
-0.009977636858820915,
-0.09073006361722946,
0.03211526945233345,
-0.03461696580052376,
-0.1191505417227745,
-0.06184953823685646,
-0.04989537224173546,
0.08016496896743774,
-0.009044510312378407,
-0.1325589418411255,
-0.07326722890138626,
0.07644717395305634,
0.0536566860973835,
-0.021890783682465553,
-0.07707352936267853,
-0.01586972363293171,
0.0003068837395403534,
-0.017098573967814445,
-0.1128159686923027,
-0.02674257755279541,
0.08284658193588257,
0.08547309786081314,
-0.15225747227668762,
0.01325810607522726,
-0.013300781138241291,
-0.0331624299287796,
0.07136597484350204,
-0.06215616315603256,
0.04158233851194382,
-0.12661509215831757,
-0.03690653294324875,
-0.022494155913591385,
0.017402246594429016,
-0.024545865133404732,
0.12198574841022491,
0.0161698330193758,
0.07009902596473694,
-0.011831524781882763,
-0.03885218873620033,
-0.08506438136100769,
-0.05589566007256508,
0.053661447018384933,
0.044108521193265915,
0.04577133432030678,
-0.13676194846630096,
-0.012601797468960285,
-0.11374082416296005,
0.07100807130336761,
-0.08889175951480865,
-0.10228005796670914,
-0.05933494493365288,
0.16634657979011536,
0.0045534721575677395,
0.06631455570459366,
-0.14528708159923553,
-0.015298706479370594,
0.039026889950037,
0.18806733191013336,
-0.10527069866657257,
-0.03476279601454735,
0.09618321061134338,
-0.1003451943397522,
-0.10191137343645096,
-0.019494904205203056,
0.04781968891620636,
-0.022797808051109314,
0.03628529608249664,
0.3934265077114105,
-0.12896257638931274,
-0.085028275847435,
0.025057267397642136,
0.13820037245750427,
-0.09066881984472275,
-0.19245629012584686,
0.08462782949209213,
-0.10989481210708618,
-0.1590193212032318,
-0.003702788846567273,
0.07308671623468399,
0.02498570829629898,
-0.06350689381361008,
-0.022892503067851067,
0.09229937940835953,
-0.005119131878018379,
0.08738226443529129,
0.04628808796405792,
0.08320853859186172,
-0.07138761878013611,
0.057044852524995804,
-0.1145920604467392,
0.017795249819755554,
0.17683300375938416,
-0.01740446500480175,
-0.01719721034169197,
0.04480615258216858,
-0.09295487403869629,
0.03330022096633911,
-0.12188675254583359,
-0.12059900909662247,
-0.0014176007825881243,
0.11296802014112473,
0.05487997829914093,
0.1582222878932953,
0.09075083583593369,
-0.07649917155504227,
0.02317478507757187,
-0.03150663152337074,
0.059241313487291336,
0.03382549807429314,
-0.018148818984627724,
-0.04040037468075752,
0.08162117004394531,
-0.07111407071352005,
-0.09399908035993576,
-0.16319143772125244,
-0.018280772492289543,
0.03711060807108879,
-0.1163090243935585,
0.04948483034968376,
-0.002419621217995882,
0.03026892989873886,
0.002416949486359954,
0.062332767993211746,
0.02234862558543682,
0.09603023529052734,
-0.008377484045922756,
-0.0030060524586588144,
0.16916947066783905,
-0.10940458625555038,
0.20416125655174255,
0.09070703387260437,
-0.20483247935771942,
-0.034653596580028534,
-0.08417334407567978,
0.01285769883543253,
0.006502806209027767,
0.11016682535409927,
-0.009085253812372684,
0.0282900333404541,
0.010070383548736572,
0.016279248520731926,
-0.014911271631717682,
0.030493736267089844,
-0.025717034935951233,
-0.10092610120773315,
-0.07245655357837677,
0.12015639990568161,
0.05629792809486389,
-0.20009320974349976,
0.12621821463108063,
0.33517512679100037,
0.06436678767204285,
0.13202989101409912,
-0.007253076881170273,
-0.03892655298113823,
-0.017608629539608955,
-0.03554808348417282,
-0.02662407048046589,
0.14451323449611664,
-0.08299728482961655,
-0.050829075276851654,
0.04581576958298683,
0.01532937865704298,
0.0676470398902893,
-0.1433151662349701,
-0.08784773200750351,
-0.012147323228418827,
0.054108574986457825,
-0.16524304449558258,
0.022416455671191216,
-0.0525154285132885,
0.09472773969173431,
0.08912741392850876,
-0.026250921189785004,
0.02680215984582901,
0.0008930191397666931,
-0.06865527480840683,
0.10259673744440079,
-0.16065673530101776,
-0.1276610791683197,
-0.16199663281440735,
-0.11670257151126862,
0.06527223438024521,
0.05683693289756775,
-0.00320877181366086,
-0.17637820541858673,
-0.016249457374215126,
0.08000998944044113,
0.03282756730914116,
-0.19477525353431702,
-0.04163019731640816,
0.14053569734096527,
0.056567661464214325,
-0.0951417088508606,
-0.019777467474341393,
-0.04950202628970146,
-0.16504539549350739,
0.04777052626013756,
0.11007051914930344,
-0.08111471682786942,
0.09098082780838013,
0.16220200061798096,
0.03373856469988823,
0.03741084784269333,
-0.008297759108245373,
0.10849612951278687,
-0.05957828089594841,
-0.09507529437541962,
0.10074665397405624,
-0.07407405227422714,
0.045094262808561325,
0.13571718335151672,
0.03539459407329559,
-0.13806511461734772,
-0.02008579671382904,
-0.04995192587375641,
-0.1083633303642273,
-0.3004862368106842,
-0.04712008684873581,
-0.09259282797574997,
0.16883566975593567,
0.05395642668008804,
0.03972845524549484,
0.03238138183951378,
0.018686722964048386,
0.12405846267938614,
-0.007006965111941099,
-0.08142747730016708,
-0.0040306588634848595,
0.23645129799842834,
-0.03749715909361839,
-0.0392545722424984,
-0.07008637487888336,
0.05314898490905762,
0.10489926487207413,
0.058093417435884476,
0.1292891949415207,
0.21775715053081512,
0.01723262295126915,
0.009230467490851879,
0.02489454858005047,
0.1298171877861023,
0.11590493470430374,
0.053683310747146606,
-0.049168072640895844,
-0.02609703131020069,
0.008459341712296009,
-0.07873321324586868,
0.045403048396110535,
-0.03924090787768364,
-0.1769973784685135,
0.06343413889408112,
-0.18747718632221222,
-0.005704259965568781,
-0.1349080204963684,
0.14780867099761963,
-0.0773061141371727,
0.025648757815361023,
0.045009661465883255,
0.04145878180861473,
-0.05719725787639618,
0.11197361350059509,
0.0216851606965065,
-0.036733873188495636,
0.03784339502453804,
0.03178189694881439,
0.04821009561419487,
-0.022544508799910545,
0.08888879418373108,
-0.17242947220802307,
-0.14364008605480194,
-0.003897652728483081,
0.07201243191957474,
-0.09591557830572128,
0.3883589804172516,
0.024090874940156937,
-0.12819409370422363,
0.007375109475106001,
-0.08520922064781189,
-0.0070450096391141415,
0.03485987335443497,
0.12967905402183533,
0.08019173890352249,
-0.1848374307155609,
-0.13124866783618927,
-0.030635619536042213,
-0.01716293767094612,
0.13640910387039185,
0.027883263304829597,
-0.09644810855388641,
-0.021611619740724564,
0.04030120372772217,
-0.0478513240814209,
0.10679683089256287,
0.025462409481406212,
-0.0581405870616436,
0.024359483271837234,
0.0076074241660535336,
-0.007143609691411257,
0.0317850224673748,
0.038148049265146255,
0.023676622658967972,
-0.03976692259311676,
0.020147655159235,
0.04047973453998566,
-0.07109750062227249,
-0.1120576336979866,
0.13246363401412964,
-0.10718098282814026,
0.008463469333946705,
-0.06836361438035965,
-0.13433368504047394,
-0.08417553454637527,
-0.10012529790401459,
0.14237931370735168,
-0.07982935756444931,
0.07253900170326233,
-0.06240874156355858,
0.129953533411026,
-0.02596093714237213,
0.0745505690574646,
-0.05750703066587448,
0.0881594717502594,
-0.04521595314145088,
-0.0580466166138649,
0.2203069031238556,
-0.17636741697788239,
0.03303765878081322,
0.002596565056592226,
-0.014905067160725594,
-0.013447430916130543,
-0.027695871889591217,
-0.05970638617873192,
0.21707816421985626,
0.3836452066898346,
-0.018958648666739464,
0.13026756048202515,
0.281334787607193,
-0.040024373680353165,
-0.2188936471939087,
-0.05744020640850067,
-0.172106072306633,
-0.048756446689367294,
0.05700432509183884,
-0.19311869144439697,
0.0599699467420578,
0.16715282201766968,
-0.056642863899469376,
0.3496128022670746,
-0.21251928806304932,
-0.005333985202014446,
0.16020157933235168,
-0.09497933834791183,
0.6507019996643066,
-0.08661191910505295,
-0.12678766250610352,
0.011568388901650906,
-0.12416967749595642,
0.07822736352682114,
0.189762145280838,
0.027824506163597107,
-0.04456854611635208,
0.028292009606957436,
0.04138890653848648,
-0.01489343587309122,
0.17488469183444977,
-0.03944272920489311,
0.06290154904127121,
-0.09856703132390976,
-0.28329065442085266,
0.1246957927942276,
-0.043505873531103134,
-0.06074128672480583,
0.14962013065814972,
-0.055555738508701324,
-0.2050972729921341,
0.06024462357163429,
-0.0813000425696373,
-0.013667053543031216,
0.0983264371752739,
-0.06549020856618881,
-0.04005725309252739,
-0.05016520619392395,
-0.15879248082637787,
-0.029385758563876152,
0.33765244483947754,
-0.05345343425869942,
0.2139519453048706,
0.03423229977488518,
-0.012268036603927612,
-0.0775129497051239,
0.0877593457698822,
-0.018140828236937523,
-0.033169422298669815,
0.08178919553756714,
-0.14685946702957153,
-0.005545902997255325,
0.15733706951141357,
0.02386029064655304,
0.013181855902075768,
0.04214417189359665,
-0.06299708783626556,
0.022808225825428963,
0.14823369681835175,
-0.18712428212165833,
-0.024862555786967278,
-0.005416560918092728,
0.03844611719250679,
0.11105810850858688,
-0.00670581916347146,
0.061900507658720016,
0.07129961252212524,
0.0017383419908583164,
0.009039387106895447,
-0.05329334735870361,
-0.060283586382865906,
0.06914418935775757,
0.061448562890291214,
0.0019907336682081223,
-0.057383500039577484,
0.17522047460079193,
0.0601014643907547,
-0.06424450129270554,
-0.016078466549515724,
0.2290717214345932,
-0.05585817992687225,
-0.0634496733546257,
-0.20087046921253204,
0.06157151609659195,
-0.17843253910541534,
-0.04240904375910759,
0.049372415989637375,
0.0037977241445332766,
0.013945478945970535,
0.2192809134721756,
0.023039424791932106,
0.05231047421693802,
0.03735646232962608,
-0.02211962640285492,
0.10448919981718063,
-0.10429859161376953,
-0.11263197660446167,
-0.015481768175959587,
-0.051591187715530396,
-0.13395297527313232,
-0.008061212487518787,
0.11064501851797104,
-0.07513968646526337,
-0.07450554519891739,
-0.18689019978046417,
0.08210641145706177,
-0.042597945779561996,
-0.029608290642499924,
-0.0655745416879654,
-0.058454882353544235,
0.0013646678999066353,
-0.023040756583213806,
-0.08321454375982285,
-0.04364404454827309,
-0.15545259416103363,
0.10113389790058136,
0.008589362725615501,
0.022012650966644287,
-0.02251027338206768,
-0.022445019334554672,
0.11703846603631973,
0.05818888917565346,
0.10345739126205444,
0.18136370182037354,
0.07422754913568497,
0.17543426156044006,
-0.08467340469360352,
-0.06556695699691772,
0.13158364593982697,
-0.011145287193357944,
0.03658336028456688,
0.0996382012963295,
-0.07795087993144989,
-0.004378440324217081,
-0.06846321374177933,
0.033883802592754364,
-0.04909004271030426,
-0.0660458654165268,
-0.03926532343029976,
-0.004642853047698736,
-0.24579544365406036,
0.041736651211977005,
-0.16494405269622803,
0.16469062864780426,
0.0001668782060733065,
0.03705998882651329,
0.07480869442224503,
0.05542207509279251,
-0.003542241407558322,
0.011462785303592682,
0.004884145222604275,
-0.1258423775434494,
-0.03284991905093193,
-0.043031882494688034,
-0.0028343063313513994,
0.01595138944685459,
0.1924969106912613,
-0.08598819375038147,
-0.06887311488389969,
0.02942345105111599,
0.14080710709095,
-0.12699759006500244,
-0.022069502621889114,
0.06446591764688492,
0.10582733154296875,
-0.09941396862268448,
-0.16362322866916656,
0.09331214427947998,
-0.04461829736828804,
-0.03450385853648186,
0.13933797180652618,
0.036224327981472015,
0.1416737139225006,
0.05858878791332245,
-0.01476526539772749,
-0.09321411699056625,
-0.019390946254134178,
-0.058757856488227844,
-0.037416283041238785,
-0.0016404184279963374,
0.0781782940030098,
0.11648255586624146,
0.25098639726638794,
0.05572968348860741,
0.003432695521041751,
-0.09983377158641815,
0.02305644005537033,
-0.12420327961444855,
-0.055066514760255814,
0.01673385314643383,
-0.09583786875009537,
0.04805830493569374,
-0.0063225142657756805,
0.05756368115544319,
0.2985127866268158,
0.028400622308254242,
0.04085150361061096,
0.05444712936878204,
0.0076172444969415665,
-0.16210117936134338,
0.01061649713665247,
-0.010423097759485245,
0.030233031138777733,
-0.09952167421579361,
-0.06865450739860535,
-0.0328703299164772,
-0.17852464318275452,
-0.056493088603019714,
0.01292702741920948,
0.0033708829432725906,
-0.08142121881246567,
-0.07608912140130997,
-0.07331082969903946,
-0.045976996421813965,
0.1299797147512436,
-0.05077696964144707,
0.08260482549667358,
-0.03472910448908806,
0.06668457388877869,
0.0426461435854435,
0.17789120972156525,
-0.01725505292415619,
0.08353006094694138,
0.048125602304935455,
0.07744384557008743,
-0.040985435247421265,
0.14612428843975067,
-0.14138518273830414,
0.006465657614171505,
0.03588071092963219,
0.1700877845287323,
0.18752454221248627,
-0.028315503150224686,
-0.017253190279006958,
0.004243270494043827,
0.05142249912023544,
0.0362434908747673,
0.10327979922294617,
0.030133096501231194,
0.22476160526275635,
-0.08889082074165344,
-0.04905015975236893,
-0.0698251724243164,
0.07313219457864761,
0.005360711365938187,
0.07653364539146423,
0.0736490935087204,
-0.035805631428956985,
-0.11477901041507721,
0.11387797445058823,
-0.11804360151290894,
0.10834427922964096,
0.08113303780555725,
-0.25269314646720886,
-0.03729885444045067,
-0.023577850311994553,
0.12236857414245605,
-0.012278934940695763,
0.1621163934469223,
-0.06927361339330673,
-0.16928823292255402,
-0.16395354270935059,
0.03517627716064453,
-0.30923259258270264,
-0.28056979179382324,
0.07880518585443497,
0.09852597862482071,
0.11964341253042221,
-0.0409666933119297,
0.020127082243561745,
-0.009793122299015522,
0.0076660229824483395,
-0.04252009466290474,
0.054772570729255676,
0.06350374966859818,
0.010290333069860935,
-0.1783556342124939,
-0.06976035237312317,
0.029655607417225838,
0.01550788152962923,
0.07994230091571808,
-0.0824594721198082,
-0.022269194945693016,
0.15864244103431702,
-0.0757126584649086,
0.05899800732731819,
0.02646973542869091,
-0.1174103245139122,
0.06130288913846016,
0.009543427266180515,
0.0249679833650589,
-0.05509275570511818,
-0.02141202986240387,
-0.07080035656690598,
0.09052590280771255,
-0.05398232117295265,
-0.12269563227891922,
0.060367923229932785,
-0.040187448263168335,
0.17134179174900055,
-0.015435761772096157,
-0.07185357064008713,
0.03502530977129936,
-0.10645490884780884,
0.10589177906513214,
-0.06422404199838638,
0.01734383963048458,
0.05084851384162903,
0.00325487507507205,
0.02841273695230484,
-0.22292673587799072,
0.11011844873428345,
0.04589049145579338,
-0.023656560108065605,
-0.0612875334918499
] |
null | null | null | Second 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10.
Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``.
For downloading first 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts/). | {} | null | Jeevesh8/feather_berts1 | [
"arxiv:1911.02969",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1911.02969"
] | [] | TAGS
#arxiv-1911.02969 #region-us
| Second 50 Feather BERT-s compressed in groups of 10.
Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ''.from_pretrained()''.
For downloading first 50 Feather BERT-s, see here. | [] | [
"TAGS\n#arxiv-1911.02969 #region-us \n"
] | [
15
] | [
"passage: TAGS\n#arxiv-1911.02969 #region-us \n"
] | [
-0.019905919209122658,
0.022140877321362495,
-0.009438413195312023,
-0.023572849109768867,
0.062018100172281265,
0.06408341228961945,
0.06660973280668259,
0.018128344789147377,
0.20054331421852112,
0.04963250458240509,
0.20583219826221466,
0.04001700133085251,
-0.007541907485574484,
0.02479889616370201,
-0.03351658582687378,
-0.1286863088607788,
0.011227240785956383,
0.012107528746128082,
0.07693230360746384,
0.059838104993104935,
-0.04229952022433281,
-0.10282538086175919,
0.029370976611971855,
-0.07067164778709412,
-0.07069263607263565,
0.06392361968755722,
0.027808992192149162,
-0.07472860813140869,
0.12527909874916077,
-0.003188071306794882,
0.16241303086280823,
0.006489957682788372,
-0.006902357563376427,
-0.17674307525157928,
0.018272817134857178,
-0.065772145986557,
-0.08884449303150177,
0.07803965359926224,
0.07707724720239639,
-0.018766796216368675,
-0.022857699543237686,
0.09819246828556061,
-0.05091137811541557,
0.01828310452401638,
-0.3104187846183777,
-0.20229896903038025,
-0.08596301823854446,
-0.004729659762233496,
0.09315460920333862,
0.08672978729009628,
0.044889163225889206,
0.16447092592716217,
-0.039218299090862274,
-0.01987249217927456,
0.16788077354431152,
-0.28378382325172424,
0.007138238754123449,
0.10816898941993713,
-0.046414487063884735,
0.10209256410598755,
-0.0177276823669672,
0.08174346387386322,
0.08992283046245575,
-0.02979339472949505,
-0.19900517165660858,
-0.07206753641366959,
-0.18785381317138672,
0.1388179361820221,
-0.06439584493637085,
-0.10348492115736008,
0.31414595246315,
0.01598355546593666,
0.016909021884202957,
0.21682342886924744,
-0.08409955352544785,
-0.13440358638763428,
0.02732146717607975,
-0.02308996394276619,
0.015565304085612297,
0.0934024229645729,
0.23694320023059845,
-0.02154180034995079,
-0.1512220799922943,
-0.010874718427658081,
-0.23314090073108673,
0.1942194253206253,
-0.05484296754002571,
0.11170387268066406,
-0.20049960911273956,
-0.047082480043172836,
-0.25316330790519714,
-0.021201027557253838,
0.08418016135692596,
-0.05576444789767265,
0.04799962416291237,
0.017279505729675293,
-0.011368771083652973,
-0.02824953757226467,
0.014737574383616447,
0.07983379811048508,
-0.014676784165203571,
0.07381106168031693,
-0.024930641055107117,
0.15527215600013733,
0.05125894770026207,
0.06778452545404434,
0.10435450822114944,
-0.014563973061740398,
-0.009977636858820915,
-0.09073006361722946,
0.03211526945233345,
-0.03461696580052376,
-0.1191505417227745,
-0.06184953823685646,
-0.04989537224173546,
0.08016496896743774,
-0.009044510312378407,
-0.1325589418411255,
-0.07326722890138626,
0.07644717395305634,
0.0536566860973835,
-0.021890783682465553,
-0.07707352936267853,
-0.01586972363293171,
0.0003068837395403534,
-0.017098573967814445,
-0.1128159686923027,
-0.02674257755279541,
0.08284658193588257,
0.08547309786081314,
-0.15225747227668762,
0.01325810607522726,
-0.013300781138241291,
-0.0331624299287796,
0.07136597484350204,
-0.06215616315603256,
0.04158233851194382,
-0.12661509215831757,
-0.03690653294324875,
-0.022494155913591385,
0.017402246594429016,
-0.024545865133404732,
0.12198574841022491,
0.0161698330193758,
0.07009902596473694,
-0.011831524781882763,
-0.03885218873620033,
-0.08506438136100769,
-0.05589566007256508,
0.053661447018384933,
0.044108521193265915,
0.04577133432030678,
-0.13676194846630096,
-0.012601797468960285,
-0.11374082416296005,
0.07100807130336761,
-0.08889175951480865,
-0.10228005796670914,
-0.05933494493365288,
0.16634657979011536,
0.0045534721575677395,
0.06631455570459366,
-0.14528708159923553,
-0.015298706479370594,
0.039026889950037,
0.18806733191013336,
-0.10527069866657257,
-0.03476279601454735,
0.09618321061134338,
-0.1003451943397522,
-0.10191137343645096,
-0.019494904205203056,
0.04781968891620636,
-0.022797808051109314,
0.03628529608249664,
0.3934265077114105,
-0.12896257638931274,
-0.085028275847435,
0.025057267397642136,
0.13820037245750427,
-0.09066881984472275,
-0.19245629012584686,
0.08462782949209213,
-0.10989481210708618,
-0.1590193212032318,
-0.003702788846567273,
0.07308671623468399,
0.02498570829629898,
-0.06350689381361008,
-0.022892503067851067,
0.09229937940835953,
-0.005119131878018379,
0.08738226443529129,
0.04628808796405792,
0.08320853859186172,
-0.07138761878013611,
0.057044852524995804,
-0.1145920604467392,
0.017795249819755554,
0.17683300375938416,
-0.01740446500480175,
-0.01719721034169197,
0.04480615258216858,
-0.09295487403869629,
0.03330022096633911,
-0.12188675254583359,
-0.12059900909662247,
-0.0014176007825881243,
0.11296802014112473,
0.05487997829914093,
0.1582222878932953,
0.09075083583593369,
-0.07649917155504227,
0.02317478507757187,
-0.03150663152337074,
0.059241313487291336,
0.03382549807429314,
-0.018148818984627724,
-0.04040037468075752,
0.08162117004394531,
-0.07111407071352005,
-0.09399908035993576,
-0.16319143772125244,
-0.018280772492289543,
0.03711060807108879,
-0.1163090243935585,
0.04948483034968376,
-0.002419621217995882,
0.03026892989873886,
0.002416949486359954,
0.062332767993211746,
0.02234862558543682,
0.09603023529052734,
-0.008377484045922756,
-0.0030060524586588144,
0.16916947066783905,
-0.10940458625555038,
0.20416125655174255,
0.09070703387260437,
-0.20483247935771942,
-0.034653596580028534,
-0.08417334407567978,
0.01285769883543253,
0.006502806209027767,
0.11016682535409927,
-0.009085253812372684,
0.0282900333404541,
0.010070383548736572,
0.016279248520731926,
-0.014911271631717682,
0.030493736267089844,
-0.025717034935951233,
-0.10092610120773315,
-0.07245655357837677,
0.12015639990568161,
0.05629792809486389,
-0.20009320974349976,
0.12621821463108063,
0.33517512679100037,
0.06436678767204285,
0.13202989101409912,
-0.007253076881170273,
-0.03892655298113823,
-0.017608629539608955,
-0.03554808348417282,
-0.02662407048046589,
0.14451323449611664,
-0.08299728482961655,
-0.050829075276851654,
0.04581576958298683,
0.01532937865704298,
0.0676470398902893,
-0.1433151662349701,
-0.08784773200750351,
-0.012147323228418827,
0.054108574986457825,
-0.16524304449558258,
0.022416455671191216,
-0.0525154285132885,
0.09472773969173431,
0.08912741392850876,
-0.026250921189785004,
0.02680215984582901,
0.0008930191397666931,
-0.06865527480840683,
0.10259673744440079,
-0.16065673530101776,
-0.1276610791683197,
-0.16199663281440735,
-0.11670257151126862,
0.06527223438024521,
0.05683693289756775,
-0.00320877181366086,
-0.17637820541858673,
-0.016249457374215126,
0.08000998944044113,
0.03282756730914116,
-0.19477525353431702,
-0.04163019731640816,
0.14053569734096527,
0.056567661464214325,
-0.0951417088508606,
-0.019777467474341393,
-0.04950202628970146,
-0.16504539549350739,
0.04777052626013756,
0.11007051914930344,
-0.08111471682786942,
0.09098082780838013,
0.16220200061798096,
0.03373856469988823,
0.03741084784269333,
-0.008297759108245373,
0.10849612951278687,
-0.05957828089594841,
-0.09507529437541962,
0.10074665397405624,
-0.07407405227422714,
0.045094262808561325,
0.13571718335151672,
0.03539459407329559,
-0.13806511461734772,
-0.02008579671382904,
-0.04995192587375641,
-0.1083633303642273,
-0.3004862368106842,
-0.04712008684873581,
-0.09259282797574997,
0.16883566975593567,
0.05395642668008804,
0.03972845524549484,
0.03238138183951378,
0.018686722964048386,
0.12405846267938614,
-0.007006965111941099,
-0.08142747730016708,
-0.0040306588634848595,
0.23645129799842834,
-0.03749715909361839,
-0.0392545722424984,
-0.07008637487888336,
0.05314898490905762,
0.10489926487207413,
0.058093417435884476,
0.1292891949415207,
0.21775715053081512,
0.01723262295126915,
0.009230467490851879,
0.02489454858005047,
0.1298171877861023,
0.11590493470430374,
0.053683310747146606,
-0.049168072640895844,
-0.02609703131020069,
0.008459341712296009,
-0.07873321324586868,
0.045403048396110535,
-0.03924090787768364,
-0.1769973784685135,
0.06343413889408112,
-0.18747718632221222,
-0.005704259965568781,
-0.1349080204963684,
0.14780867099761963,
-0.0773061141371727,
0.025648757815361023,
0.045009661465883255,
0.04145878180861473,
-0.05719725787639618,
0.11197361350059509,
0.0216851606965065,
-0.036733873188495636,
0.03784339502453804,
0.03178189694881439,
0.04821009561419487,
-0.022544508799910545,
0.08888879418373108,
-0.17242947220802307,
-0.14364008605480194,
-0.003897652728483081,
0.07201243191957474,
-0.09591557830572128,
0.3883589804172516,
0.024090874940156937,
-0.12819409370422363,
0.007375109475106001,
-0.08520922064781189,
-0.0070450096391141415,
0.03485987335443497,
0.12967905402183533,
0.08019173890352249,
-0.1848374307155609,
-0.13124866783618927,
-0.030635619536042213,
-0.01716293767094612,
0.13640910387039185,
0.027883263304829597,
-0.09644810855388641,
-0.021611619740724564,
0.04030120372772217,
-0.0478513240814209,
0.10679683089256287,
0.025462409481406212,
-0.0581405870616436,
0.024359483271837234,
0.0076074241660535336,
-0.007143609691411257,
0.0317850224673748,
0.038148049265146255,
0.023676622658967972,
-0.03976692259311676,
0.020147655159235,
0.04047973453998566,
-0.07109750062227249,
-0.1120576336979866,
0.13246363401412964,
-0.10718098282814026,
0.008463469333946705,
-0.06836361438035965,
-0.13433368504047394,
-0.08417553454637527,
-0.10012529790401459,
0.14237931370735168,
-0.07982935756444931,
0.07253900170326233,
-0.06240874156355858,
0.129953533411026,
-0.02596093714237213,
0.0745505690574646,
-0.05750703066587448,
0.0881594717502594,
-0.04521595314145088,
-0.0580466166138649,
0.2203069031238556,
-0.17636741697788239,
0.03303765878081322,
0.002596565056592226,
-0.014905067160725594,
-0.013447430916130543,
-0.027695871889591217,
-0.05970638617873192,
0.21707816421985626,
0.3836452066898346,
-0.018958648666739464,
0.13026756048202515,
0.281334787607193,
-0.040024373680353165,
-0.2188936471939087,
-0.05744020640850067,
-0.172106072306633,
-0.048756446689367294,
0.05700432509183884,
-0.19311869144439697,
0.0599699467420578,
0.16715282201766968,
-0.056642863899469376,
0.3496128022670746,
-0.21251928806304932,
-0.005333985202014446,
0.16020157933235168,
-0.09497933834791183,
0.6507019996643066,
-0.08661191910505295,
-0.12678766250610352,
0.011568388901650906,
-0.12416967749595642,
0.07822736352682114,
0.189762145280838,
0.027824506163597107,
-0.04456854611635208,
0.028292009606957436,
0.04138890653848648,
-0.01489343587309122,
0.17488469183444977,
-0.03944272920489311,
0.06290154904127121,
-0.09856703132390976,
-0.28329065442085266,
0.1246957927942276,
-0.043505873531103134,
-0.06074128672480583,
0.14962013065814972,
-0.055555738508701324,
-0.2050972729921341,
0.06024462357163429,
-0.0813000425696373,
-0.013667053543031216,
0.0983264371752739,
-0.06549020856618881,
-0.04005725309252739,
-0.05016520619392395,
-0.15879248082637787,
-0.029385758563876152,
0.33765244483947754,
-0.05345343425869942,
0.2139519453048706,
0.03423229977488518,
-0.012268036603927612,
-0.0775129497051239,
0.0877593457698822,
-0.018140828236937523,
-0.033169422298669815,
0.08178919553756714,
-0.14685946702957153,
-0.005545902997255325,
0.15733706951141357,
0.02386029064655304,
0.013181855902075768,
0.04214417189359665,
-0.06299708783626556,
0.022808225825428963,
0.14823369681835175,
-0.18712428212165833,
-0.024862555786967278,
-0.005416560918092728,
0.03844611719250679,
0.11105810850858688,
-0.00670581916347146,
0.061900507658720016,
0.07129961252212524,
0.0017383419908583164,
0.009039387106895447,
-0.05329334735870361,
-0.060283586382865906,
0.06914418935775757,
0.061448562890291214,
0.0019907336682081223,
-0.057383500039577484,
0.17522047460079193,
0.0601014643907547,
-0.06424450129270554,
-0.016078466549515724,
0.2290717214345932,
-0.05585817992687225,
-0.0634496733546257,
-0.20087046921253204,
0.06157151609659195,
-0.17843253910541534,
-0.04240904375910759,
0.049372415989637375,
0.0037977241445332766,
0.013945478945970535,
0.2192809134721756,
0.023039424791932106,
0.05231047421693802,
0.03735646232962608,
-0.02211962640285492,
0.10448919981718063,
-0.10429859161376953,
-0.11263197660446167,
-0.015481768175959587,
-0.051591187715530396,
-0.13395297527313232,
-0.008061212487518787,
0.11064501851797104,
-0.07513968646526337,
-0.07450554519891739,
-0.18689019978046417,
0.08210641145706177,
-0.042597945779561996,
-0.029608290642499924,
-0.0655745416879654,
-0.058454882353544235,
0.0013646678999066353,
-0.023040756583213806,
-0.08321454375982285,
-0.04364404454827309,
-0.15545259416103363,
0.10113389790058136,
0.008589362725615501,
0.022012650966644287,
-0.02251027338206768,
-0.022445019334554672,
0.11703846603631973,
0.05818888917565346,
0.10345739126205444,
0.18136370182037354,
0.07422754913568497,
0.17543426156044006,
-0.08467340469360352,
-0.06556695699691772,
0.13158364593982697,
-0.011145287193357944,
0.03658336028456688,
0.0996382012963295,
-0.07795087993144989,
-0.004378440324217081,
-0.06846321374177933,
0.033883802592754364,
-0.04909004271030426,
-0.0660458654165268,
-0.03926532343029976,
-0.004642853047698736,
-0.24579544365406036,
0.041736651211977005,
-0.16494405269622803,
0.16469062864780426,
0.0001668782060733065,
0.03705998882651329,
0.07480869442224503,
0.05542207509279251,
-0.003542241407558322,
0.011462785303592682,
0.004884145222604275,
-0.1258423775434494,
-0.03284991905093193,
-0.043031882494688034,
-0.0028343063313513994,
0.01595138944685459,
0.1924969106912613,
-0.08598819375038147,
-0.06887311488389969,
0.02942345105111599,
0.14080710709095,
-0.12699759006500244,
-0.022069502621889114,
0.06446591764688492,
0.10582733154296875,
-0.09941396862268448,
-0.16362322866916656,
0.09331214427947998,
-0.04461829736828804,
-0.03450385853648186,
0.13933797180652618,
0.036224327981472015,
0.1416737139225006,
0.05858878791332245,
-0.01476526539772749,
-0.09321411699056625,
-0.019390946254134178,
-0.058757856488227844,
-0.037416283041238785,
-0.0016404184279963374,
0.0781782940030098,
0.11648255586624146,
0.25098639726638794,
0.05572968348860741,
0.003432695521041751,
-0.09983377158641815,
0.02305644005537033,
-0.12420327961444855,
-0.055066514760255814,
0.01673385314643383,
-0.09583786875009537,
0.04805830493569374,
-0.0063225142657756805,
0.05756368115544319,
0.2985127866268158,
0.028400622308254242,
0.04085150361061096,
0.05444712936878204,
0.0076172444969415665,
-0.16210117936134338,
0.01061649713665247,
-0.010423097759485245,
0.030233031138777733,
-0.09952167421579361,
-0.06865450739860535,
-0.0328703299164772,
-0.17852464318275452,
-0.056493088603019714,
0.01292702741920948,
0.0033708829432725906,
-0.08142121881246567,
-0.07608912140130997,
-0.07331082969903946,
-0.045976996421813965,
0.1299797147512436,
-0.05077696964144707,
0.08260482549667358,
-0.03472910448908806,
0.06668457388877869,
0.0426461435854435,
0.17789120972156525,
-0.01725505292415619,
0.08353006094694138,
0.048125602304935455,
0.07744384557008743,
-0.040985435247421265,
0.14612428843975067,
-0.14138518273830414,
0.006465657614171505,
0.03588071092963219,
0.1700877845287323,
0.18752454221248627,
-0.028315503150224686,
-0.017253190279006958,
0.004243270494043827,
0.05142249912023544,
0.0362434908747673,
0.10327979922294617,
0.030133096501231194,
0.22476160526275635,
-0.08889082074165344,
-0.04905015975236893,
-0.0698251724243164,
0.07313219457864761,
0.005360711365938187,
0.07653364539146423,
0.0736490935087204,
-0.035805631428956985,
-0.11477901041507721,
0.11387797445058823,
-0.11804360151290894,
0.10834427922964096,
0.08113303780555725,
-0.25269314646720886,
-0.03729885444045067,
-0.023577850311994553,
0.12236857414245605,
-0.012278934940695763,
0.1621163934469223,
-0.06927361339330673,
-0.16928823292255402,
-0.16395354270935059,
0.03517627716064453,
-0.30923259258270264,
-0.28056979179382324,
0.07880518585443497,
0.09852597862482071,
0.11964341253042221,
-0.0409666933119297,
0.020127082243561745,
-0.009793122299015522,
0.0076660229824483395,
-0.04252009466290474,
0.054772570729255676,
0.06350374966859818,
0.010290333069860935,
-0.1783556342124939,
-0.06976035237312317,
0.029655607417225838,
0.01550788152962923,
0.07994230091571808,
-0.0824594721198082,
-0.022269194945693016,
0.15864244103431702,
-0.0757126584649086,
0.05899800732731819,
0.02646973542869091,
-0.1174103245139122,
0.06130288913846016,
0.009543427266180515,
0.0249679833650589,
-0.05509275570511818,
-0.02141202986240387,
-0.07080035656690598,
0.09052590280771255,
-0.05398232117295265,
-0.12269563227891922,
0.060367923229932785,
-0.040187448263168335,
0.17134179174900055,
-0.015435761772096157,
-0.07185357064008713,
0.03502530977129936,
-0.10645490884780884,
0.10589177906513214,
-0.06422404199838638,
0.01734383963048458,
0.05084851384162903,
0.00325487507507205,
0.02841273695230484,
-0.22292673587799072,
0.11011844873428345,
0.04589049145579338,
-0.023656560108065605,
-0.0612875334918499
] |
null | null | transformers | {"tags": ["conversational"]} | text-generation | Jeffrey/DialoGPT-small-Jeffrey | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
||
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialData
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 297 | 2.2419 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialData", "results": []}]} | fill-mask | Jeska/BertjeWDialData | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialData
===============
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 2.2608
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.15.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
47,
126,
4,
36
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
-0.12065374851226807,
0.07373271882534027,
-0.0020443149842321873,
0.12254910916090012,
0.18039442598819733,
0.029559452086687088,
0.10784023255109787,
0.11188814789056778,
-0.11997489631175995,
0.06087743490934372,
0.14253994822502136,
0.1392887979745865,
0.011802591383457184,
0.14094243943691254,
-0.035414617508649826,
-0.2690497040748596,
-0.024429602548480034,
0.02340823970735073,
-0.11029011011123657,
0.12550245225429535,
0.06660131365060806,
-0.1542072594165802,
0.06647594273090363,
-0.0089122848585248,
-0.20621360838413239,
0.0023363521322607994,
0.009545894339680672,
-0.03994548320770264,
0.13550369441509247,
0.00879976898431778,
0.15832437574863434,
0.003146988805383444,
0.11020449548959732,
-0.1548842191696167,
0.01036149077117443,
0.06622083485126495,
0.019800614565610886,
0.08531860262155533,
0.04802317172288895,
0.00039288715925067663,
0.07896395772695541,
-0.11530713737010956,
0.06111292168498039,
-0.004154501482844353,
-0.13840904831886292,
-0.23493754863739014,
-0.08968362957239151,
0.007892627269029617,
0.07304442673921585,
0.09459351748228073,
-0.015395201742649078,
0.13232538104057312,
-0.09894176572561264,
0.08718324452638626,
0.2445938140153885,
-0.2681722640991211,
-0.0802013948559761,
0.028267186135053635,
-0.002605660120025277,
0.047594428062438965,
-0.10637036710977554,
-0.020072370767593384,
0.04698598012328148,
0.04667680338025093,
0.13704577088356018,
-0.016769682988524437,
-0.05744984745979309,
0.022397447377443314,
-0.14662107825279236,
-0.012101823464035988,
0.043805330991744995,
0.030241338536143303,
-0.025717640295624733,
-0.0289505273103714,
-0.06937872618436813,
-0.19210395216941833,
-0.0435485914349556,
-0.00937949400395155,
0.045395877212285995,
-0.06268365681171417,
-0.10886821150779724,
0.021878765895962715,
-0.08311932533979416,
-0.0665140300989151,
-0.060169048607349396,
0.14173397421836853,
0.04071401432156563,
0.006002486217767,
-0.01417817547917366,
0.1088624894618988,
-0.020974168553948402,
-0.14620918035507202,
0.04541930556297302,
0.04085070639848709,
-0.05378017574548721,
-0.0526614710688591,
-0.06929555535316467,
-0.06962013989686966,
-0.011087947525084019,
0.12041530013084412,
-0.04526018723845482,
0.04394013062119484,
0.03887969255447388,
0.03178185597062111,
-0.09801162779331207,
0.18422706425189972,
-0.08460761606693268,
-0.036602336913347244,
-0.0021401233971118927,
0.07440934330224991,
0.01501188613474369,
-0.015717817470431328,
-0.11227769404649734,
0.018810315057635307,
0.0886293426156044,
0.005042578559368849,
-0.06463321298360825,
0.05598410964012146,
-0.04574289545416832,
-0.01061123888939619,
-0.004410619381815195,
-0.09366355091333389,
0.05042599141597748,
-0.005475554149597883,
-0.08584515750408173,
-0.0104576600715518,
0.015334279276430607,
0.003383458126336336,
-0.012504082173109055,
0.16955113410949707,
-0.10629509389400482,
0.03800706937909126,
-0.11421092599630356,
-0.13670329749584198,
0.009214409627020359,
-0.09198401868343353,
0.013467775657773018,
-0.07102374732494354,
-0.14555630087852478,
-0.018393248319625854,
0.06538791209459305,
-0.059601008892059326,
-0.04149182513356209,
-0.0500485897064209,
-0.0768471211194992,
0.01927102543413639,
-0.006976486183702946,
0.1659935563802719,
-0.05540207400918007,
0.11441221088171005,
0.04672890156507492,
0.09378543496131897,
-0.012255104258656502,
0.05370936542749405,
-0.0736909806728363,
0.022703224793076515,
-0.2365732640028,
0.04578613117337227,
-0.04625805839896202,
0.053925346583127975,
-0.08404875546693802,
-0.11471150070428848,
0.012949112802743912,
-0.010066520422697067,
0.12084725499153137,
0.10405546426773071,
-0.18964844942092896,
-0.08623717725276947,
0.1797553300857544,
-0.04684341698884964,
-0.07767654210329056,
0.13685894012451172,
-0.06821972131729126,
-0.0017550818156450987,
0.05110597237944603,
0.13409113883972168,
0.03447389975190163,
-0.10468880087137222,
0.017393186688423157,
-0.03636755794286728,
0.08546578884124756,
-0.0344366692006588,
0.05683361366391182,
0.0025606881827116013,
0.04475616291165352,
0.009428037330508232,
-0.013093458488583565,
0.06755606830120087,
-0.11611436307430267,
-0.08530489355325699,
-0.015735400840640068,
-0.10233354568481445,
0.07552624493837357,
0.072300985455513,
0.08075965940952301,
-0.09706804901361465,
-0.1057928055524826,
0.05051087588071823,
0.0669037401676178,
-0.06251124292612076,
0.029117144644260406,
-0.05338827893137932,
0.08808518201112747,
-0.09325429052114487,
-0.024640897288918495,
-0.189579039812088,
-0.03724977374076843,
0.005243244115263224,
0.02863352745771408,
0.015996621921658516,
0.007707054261118174,
0.08652234822511673,
0.08802282810211182,
-0.07160282880067825,
-0.006148837972432375,
-0.043842338025569916,
-0.008369815535843372,
-0.151999831199646,
-0.22674283385276794,
-0.04710790142416954,
-0.02249736338853836,
0.1192358136177063,
-0.21792732179164886,
0.014490188099443913,
-0.04275462403893471,
0.08912714570760727,
0.017357682809233665,
-0.024323685094714165,
-0.04665442928671837,
0.09683296084403992,
-0.0234632920473814,
-0.06235611066222191,
0.05973644554615021,
-0.015143183059990406,
-0.0737994983792305,
-0.0633658617734909,
-0.11957275122404099,
0.15704016387462616,
0.1281384378671646,
-0.10866726189851761,
-0.11445757746696472,
0.013814983889460564,
-0.06213417649269104,
-0.03260644152760506,
-0.055890168994665146,
0.04752558842301369,
0.17916017770767212,
0.011268523521721363,
0.14675737917423248,
-0.06089242175221443,
-0.0391484797000885,
0.038034699857234955,
-0.017860496416687965,
0.0345517061650753,
0.11681556701660156,
0.14906778931617737,
-0.04197629168629646,
0.13481327891349792,
0.13495372235774994,
-0.11295688897371292,
0.1246073991060257,
-0.018786288797855377,
-0.10256393998861313,
-0.03838459774851799,
-0.03920114040374756,
0.01815996691584587,
0.13482779264450073,
-0.11039693653583527,
-0.019373973831534386,
0.006844343151897192,
0.013634146191179752,
0.012171449139714241,
-0.2214619666337967,
-0.04829973354935646,
0.04553829878568649,
-0.02157711423933506,
-0.022175518795847893,
-0.028513040393590927,
0.01140620093792677,
0.11895650625228882,
0.011419359594583511,
-0.07786702364683151,
0.012467051856219769,
0.0032182622235268354,
-0.05702691525220871,
0.20213474333286285,
-0.07166840881109238,
-0.11645172536373138,
-0.08389405906200409,
-0.08457928895950317,
-0.030917443335056305,
0.013796104118227959,
0.0269213505089283,
-0.11054806411266327,
-0.02032799832522869,
-0.04827867075800896,
0.02457362972199917,
0.007128669414669275,
0.059200678020715714,
0.007467793300747871,
-0.02398957498371601,
0.06591139733791351,
-0.0873698815703392,
0.000742337666451931,
-0.06328379362821579,
-0.055881958454847336,
0.058508578687906265,
0.06576744467020035,
0.1240604817867279,
0.163884237408638,
-0.023513074964284897,
0.015032085590064526,
-0.025650691241025925,
0.2257867455482483,
-0.08183199167251587,
-0.021976880729198456,
0.08489860594272614,
-0.021736478433012962,
0.05253126472234726,
0.11924838274717331,
0.0731692910194397,
-0.09811188280582428,
0.011201778426766396,
0.055071670562028885,
-0.041691284626722336,
-0.18688291311264038,
-0.029014699161052704,
-0.05731511116027832,
-0.0337555892765522,
0.1062547042965889,
-0.0012875753454864025,
0.0071627055294811726,
0.05359385907649994,
0.053133927285671234,
0.08698936551809311,
-0.07004521042108536,
0.045453332364559174,
0.057065725326538086,
0.0419003926217556,
0.13215798139572144,
-0.02291351556777954,
-0.0865645557641983,
0.020649677142500877,
-0.026369169354438782,
0.23231814801692963,
-0.02431865781545639,
0.10477253049612045,
0.03654935210943222,
0.18254761397838593,
-0.009136448614299297,
0.09576088935136795,
0.001115238294005394,
-0.06261657923460007,
-0.008715171366930008,
-0.04380832985043526,
-0.02716504968702793,
0.01493105199187994,
-0.0019048621179535985,
0.05079128220677376,
-0.13478538393974304,
0.004628276452422142,
0.04397653415799141,
0.26519614458084106,
0.08589721471071243,
-0.3265824019908905,
-0.08617646992206573,
-0.010741673409938812,
-0.01777636632323265,
-0.0013436757726594806,
-0.0015651563880965114,
0.12655270099639893,
-0.07688986510038376,
0.03166162967681885,
-0.07798103243112564,
0.08138452470302582,
-0.024436110630631447,
0.03699686750769615,
0.07293716818094254,
0.1184421107172966,
-0.013501033186912537,
0.0534786656498909,
-0.28585150837898254,
0.3023792803287506,
0.01091748382896185,
0.07422377169132233,
-0.07930784672498703,
-0.0022132480517029762,
0.03541235253214836,
0.015344526618719101,
0.060451801866292953,
-0.01549001969397068,
-0.02804918959736824,
-0.2128770500421524,
-0.06871873885393143,
0.021613677963614464,
0.10836117714643478,
-0.0304518211632967,
0.12224938720464706,
-0.008832341991364956,
-0.015742508694529533,
0.07514678686857224,
0.016041072085499763,
-0.03709114342927933,
-0.08031892776489258,
-0.004325417336076498,
-0.005750732496380806,
-0.09590819478034973,
-0.05570800602436066,
-0.13897284865379333,
-0.11765071004629135,
0.16018860042095184,
0.008037954568862915,
-0.01140540186315775,
-0.12428614497184753,
0.14425130188465118,
0.10169379413127899,
-0.08219115436077118,
0.03858065977692604,
0.018173813819885254,
0.06439968943595886,
0.024096155539155006,
-0.04814806208014488,
0.13015855848789215,
-0.06007874011993408,
-0.17291145026683807,
-0.08272472769021988,
0.08441728353500366,
0.05358629301190376,
0.07783637195825577,
-0.03560664504766464,
0.03683209419250488,
-0.005364908371120691,
-0.07808256149291992,
0.05345701798796654,
-0.035462889820337296,
0.09287036955356598,
0.04175400361418724,
-0.039825599640607834,
0.03064693696796894,
-0.04720371961593628,
-0.011569034308195114,
0.17561182379722595,
0.26867640018463135,
-0.10143914073705673,
-0.003268422093242407,
0.029760630801320076,
-0.05681042745709419,
-0.20292381942272186,
0.07851529866456985,
0.08164427429437637,
0.02703213319182396,
0.04019036144018173,
-0.17929446697235107,
0.1244332566857338,
0.08950444310903549,
-0.0015026222681626678,
0.1278693974018097,
-0.30583861470222473,
-0.1369321048259735,
0.1028447225689888,
0.1443200260400772,
0.1068105548620224,
-0.14302271604537964,
-0.002765424083918333,
-0.010417337529361248,
-0.081727035343647,
0.07551741600036621,
-0.06972527503967285,
0.12781725823879242,
-0.015209194272756577,
0.08794036507606506,
0.017856387421488762,
-0.0780646800994873,
0.10543503612279892,
-0.005041691940277815,
0.09804564714431763,
-0.056778423488140106,
-0.04228284955024719,
0.04406982287764549,
-0.040846165269613266,
-0.01848948560655117,
-0.04569337144494057,
0.011903418228030205,
-0.05917983129620552,
-0.021924395114183426,
-0.08786112070083618,
0.020421279594302177,
-0.04055074602365494,
-0.0644288957118988,
-0.026218635961413383,
0.04600650817155838,
0.06066285818815231,
-0.017939947545528412,
0.0998595654964447,
0.009675704874098301,
0.16445818543434143,
0.0682007372379303,
0.04412467032670975,
-0.04651278629899025,
-0.056130241602659225,
0.014332635328173637,
-0.00622554263100028,
0.04882179945707321,
-0.12474187463521957,
0.016368653625249863,
0.15894967317581177,
0.033545222133398056,
0.12783832848072052,
0.0885031670331955,
-0.03365171700716019,
0.013833468779921532,
0.06192130595445633,
-0.15145419538021088,
-0.06669487059116364,
0.01912078820168972,
-0.08651255071163177,
-0.12890507280826569,
0.02684980072081089,
0.0867617204785347,
-0.06363926082849503,
-0.0088886097073555,
-0.006346403621137142,
0.0066538648679852486,
-0.06306876987218857,
0.23459172248840332,
0.05870409309864044,
0.0550648532807827,
-0.09830917418003082,
0.05174552649259567,
0.056618187576532364,
-0.11472246050834656,
0.018510688096284866,
0.07896408438682556,
-0.06102342903614044,
-0.017280058935284615,
0.10123709589242935,
0.19149146974086761,
-0.02649315819144249,
-0.002938150893896818,
-0.15945489704608917,
-0.10186901688575745,
0.08708033710718155,
0.17796078324317932,
0.08987013250589371,
-0.005889947526156902,
-0.05273090675473213,
0.02836373820900917,
-0.1523369401693344,
0.09461871534585953,
0.06611675769090652,
0.07255681604146957,
-0.12084238976240158,
0.20122651755809784,
-0.006818271242082119,
0.04526733607053757,
-0.025465846061706543,
0.042180366814136505,
-0.12219654023647308,
0.015612627379596233,
-0.12683744728565216,
-0.04547249153256416,
-0.027218546718358994,
-0.015227314084768295,
-0.013750266283750534,
-0.05768263712525368,
-0.05690222606062889,
-0.0008644385379739106,
-0.12180723994970322,
-0.03273040056228638,
0.033416394144296646,
0.009789315983653069,
-0.11407972872257233,
-0.04534829035401344,
0.017618106678128242,
-0.06693587452173233,
0.07273422926664352,
0.04524097964167595,
0.0330943688750267,
0.04724501073360443,
-0.12918917834758759,
-0.007798637729138136,
0.03853444755077362,
-0.006579772103577852,
0.09840945154428482,
-0.09096793085336685,
-0.0049725123681128025,
-0.03433188423514366,
0.0795569196343422,
0.016043521463871002,
0.07147730141878128,
-0.1304088830947876,
0.007241504266858101,
-0.02308356948196888,
-0.09157954901456833,
-0.05497584491968155,
0.03734208643436432,
0.0596267394721508,
0.019983772188425064,
0.1618262529373169,
-0.0942402258515358,
0.07269331067800522,
-0.2235378921031952,
-0.014691474847495556,
-0.01973024569451809,
-0.08816291391849518,
-0.07563627511262894,
-0.04868125915527344,
0.09258586168289185,
-0.06027420237660408,
0.11164458841085434,
0.021391259506344795,
0.07172554731369019,
0.02928203158080578,
-0.05164783447980881,
0.014614077284932137,
0.04278147593140602,
0.16030193865299225,
0.03048987314105034,
-0.058790259063243866,
0.05622684210538864,
0.08051366358995438,
0.11577802151441574,
0.17130047082901,
0.23361465334892273,
0.1298586130142212,
0.04250268638134003,
0.08888658136129379,
0.023134345188736916,
-0.09733691811561584,
-0.16377538442611694,
0.04133358597755432,
-0.0709780678153038,
0.10771708190441132,
-0.02675890177488327,
0.18509195744991302,
0.050996240228414536,
-0.1662551909685135,
0.045220863074064255,
-0.07106852531433105,
-0.10433246940374374,
-0.10864923149347305,
-0.027986321598291397,
-0.07823138684034348,
-0.12392415851354599,
0.005628663580864668,
-0.1022612527012825,
0.021880948916077614,
0.10597449541091919,
0.01953914389014244,
-0.01101958379149437,
0.18452832102775574,
0.0446767620742321,
0.05570864677429199,
0.06053696572780609,
0.03124304488301277,
-0.0026415237225592136,
-0.054546281695365906,
-0.0658930242061615,
-0.024306388571858406,
-0.021547967568039894,
0.04224509000778198,
-0.07685606181621552,
-0.08217613399028778,
0.05803713947534561,
0.013080734759569168,
-0.1128162145614624,
0.019739709794521332,
0.011584663763642311,
0.08595480769872665,
0.05417989194393158,
0.0009330014581792057,
0.028015201911330223,
-0.042888153344392776,
0.1900661140680313,
-0.08728883415460587,
-0.05543860048055649,
-0.11664970219135284,
0.2747616171836853,
0.03037259355187416,
-0.008920404128730297,
0.01912503130733967,
-0.07131079584360123,
0.00045501673594117165,
0.22491514682769775,
0.21140645444393158,
-0.11711803078651428,
-0.005776707082986832,
0.02092069573700428,
-0.01413391251116991,
-0.04117795452475548,
0.11023061722517014,
0.1278172731399536,
0.05928134173154831,
-0.10719309747219086,
-0.06578175723552704,
-0.059013210237026215,
-0.027827585116028786,
-0.028189463540911674,
0.03237675502896309,
0.06099376827478409,
0.034237511456012726,
-0.049175702035427094,
0.052917029708623886,
-0.059467900544404984,
-0.1321210116147995,
0.09344501048326492,
-0.2410150021314621,
-0.1906404197216034,
-0.008139349520206451,
0.0743621289730072,
0.00522011611610651,
0.07633549720048904,
-0.02695903740823269,
-0.007920761592686176,
0.07451444864273071,
-0.025573378428816795,
-0.044814758002758026,
-0.09826250374317169,
0.09624586254358292,
-0.09708252549171448,
0.20121446251869202,
-0.04961228370666504,
0.04316405951976776,
0.13591162860393524,
0.07775482535362244,
-0.06656345725059509,
0.04022839665412903,
0.05863220617175102,
-0.09568619728088379,
0.017571110278367996,
0.14020386338233948,
-0.04986892640590668,
0.05071297287940979,
0.04619082435965538,
-0.13295696675777435,
0.03600345551967621,
-0.10821528732776642,
-0.0490521602332592,
-0.03581985831260681,
-0.03310529887676239,
-0.05578457564115524,
0.13116350769996643,
0.24975337088108063,
-0.02259281650185585,
0.024449605494737625,
-0.06787685304880142,
-0.0033585005439817905,
0.05170154199004173,
0.08109539747238159,
-0.09048058092594147,
-0.25586971640586853,
0.029979992657899857,
0.042832545936107635,
-0.019348694011569023,
-0.25129446387290955,
-0.08810251206159592,
0.02974608726799488,
-0.0818127989768982,
-0.0930110365152359,
0.09972769021987915,
0.053915563970804214,
0.07189468294382095,
-0.060042623430490494,
-0.08890451490879059,
-0.07781321555376053,
0.15481171011924744,
-0.1657717525959015,
-0.09172952175140381
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALL
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.1739 | 1.0 | 1542 | 2.0150 |
| 2.0759 | 2.0 | 3084 | 1.9918 |
| 2.0453 | 3.0 | 4626 | 2.0132 |
| 1.9936 | 4.0 | 6168 | 1.9341 |
| 1.9659 | 5.0 | 7710 | 1.9140 |
| 1.9545 | 6.0 | 9252 | 1.9418 |
| 1.9104 | 7.0 | 10794 | 1.9179 |
| 1.8991 | 8.0 | 12336 | 1.9157 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALL | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALL
==================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9469
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 8.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11451145261526108,
0.06744582206010818,
-0.0024179848842322826,
0.12415674328804016,
0.17843733727931976,
0.026060249656438828,
0.10474907606840134,
0.11881844699382782,
-0.1328774243593216,
0.0508759506046772,
0.1398126780986786,
0.15220369398593903,
0.009593113325536251,
0.145427867770195,
-0.03298795223236084,
-0.2754986882209778,
-0.02905980870127678,
0.031520597636699677,
-0.11123418807983398,
0.12548600137233734,
0.07173175364732742,
-0.15825918316841125,
0.06639459729194641,
-0.00424781022593379,
-0.2052444964647293,
0.014026155695319176,
0.01127718947827816,
-0.04331035166978836,
0.1367698758840561,
-0.0007286630570888519,
0.1488737016916275,
0.002529381774365902,
0.10369808226823807,
-0.15198443830013275,
0.011141622439026833,
0.06806982308626175,
0.021156921982765198,
0.08701417595148087,
0.05170152336359024,
0.001167483045719564,
0.09021644294261932,
-0.11651921272277832,
0.06020684912800789,
-0.003915857989341021,
-0.14055930078029633,
-0.2663560211658478,
-0.08640053868293762,
-0.0013209377648308873,
0.07128345966339111,
0.0934339165687561,
-0.014078186824917793,
0.14634869992733002,
-0.09202747046947479,
0.09240611642599106,
0.2527276277542114,
-0.2707374095916748,
-0.07805382460355759,
0.029675962403416634,
-0.004547545220702887,
0.04896168038249016,
-0.10835056006908417,
-0.01658647321164608,
0.047593988478183746,
0.04868391901254654,
0.14332334697246552,
-0.021065115928649902,
-0.05762001872062683,
0.023234736174345016,
-0.14455731213092804,
-0.008242425508797169,
0.05450514331459999,
0.02894761599600315,
-0.02463909238576889,
-0.03498736768960953,
-0.07099322974681854,
-0.17436446249485016,
-0.03478781133890152,
-0.016244733706116676,
0.04992794990539551,
-0.06191322207450867,
-0.10882595926523209,
0.014646326191723347,
-0.08407813310623169,
-0.0625673308968544,
-0.05528499558568001,
0.1433773636817932,
0.041552960872650146,
0.010694725438952446,
-0.01532532088458538,
0.10721427947282791,
-0.027522966265678406,
-0.1458098441362381,
0.047797318547964096,
0.03918475657701492,
-0.04294730722904205,
-0.0493757426738739,
-0.07068973779678345,
-0.08627695590257645,
-0.014866785146296024,
0.11577026546001434,
-0.06461282074451447,
0.047182608395814896,
0.03420156240463257,
0.031736019998788834,
-0.09925146400928497,
0.18135899305343628,
-0.07319553941488266,
-0.027954887598752975,
-0.007127848453819752,
0.07165781408548355,
0.014897345565259457,
-0.013225116766989231,
-0.11086246371269226,
0.020326318219304085,
0.08437492698431015,
-0.00025655419449321926,
-0.07262856513261795,
0.057449135929346085,
-0.050333667546510696,
-0.014302488416433334,
-0.008775977417826653,
-0.09632612019777298,
0.05115086957812309,
-0.010007382370531559,
-0.08943802118301392,
-0.017793947830796242,
0.01602920889854431,
0.005989808589220047,
-0.01275907177478075,
0.1711786985397339,
-0.09859951585531235,
0.0407627709209919,
-0.11778827011585236,
-0.1339053511619568,
0.0005270183319225907,
-0.09246321022510529,
0.016912855207920074,
-0.06621916592121124,
-0.1533694863319397,
-0.017688702791929245,
0.07395780086517334,
-0.05505272001028061,
-0.03846057131886482,
-0.043263062834739685,
-0.06568355858325958,
0.01617109403014183,
-0.007573022972792387,
0.1741989701986313,
-0.05433705821633339,
0.11281870305538177,
0.05211898684501648,
0.09944925457239151,
-0.009527478367090225,
0.05419185757637024,
-0.08143357932567596,
0.017229698598384857,
-0.23865175247192383,
0.03971823304891586,
-0.041982002556324005,
0.05353383719921112,
-0.08084326982498169,
-0.11986232548952103,
0.006913185119628906,
-0.009026844054460526,
0.11609289050102234,
0.09819254279136658,
-0.18960554897785187,
-0.08935173600912094,
0.184734508395195,
-0.051335666328668594,
-0.07694638520479202,
0.13362930715084076,
-0.0707809180021286,
0.009656699374318123,
0.05132773518562317,
0.15142251551151276,
0.029081497341394424,
-0.10385110229253769,
0.03269614279270172,
-0.04114317148923874,
0.07404576241970062,
-0.03250114619731903,
0.05213624984025955,
-0.005161542445421219,
0.04696198180317879,
0.013633513823151588,
-0.0031171804293990135,
0.06161685287952423,
-0.11320991814136505,
-0.08389239013195038,
-0.017113052308559418,
-0.09861866384744644,
0.07290239632129669,
0.07848310470581055,
0.08461117744445801,
-0.11093157529830933,
-0.10322294384241104,
0.047638844698667526,
0.0622306689620018,
-0.05954362452030182,
0.03423825278878212,
-0.04830276221036911,
0.07668273150920868,
-0.0825687125325203,
-0.023881569504737854,
-0.19116802513599396,
-0.014447699300944805,
0.008164145983755589,
0.020615573972463608,
0.012998780235648155,
0.013022682629525661,
0.09224911034107208,
0.08534630388021469,
-0.07799550890922546,
-0.01021848525851965,
-0.04021085053682327,
-0.010062926448881626,
-0.14720620214939117,
-0.22538240253925323,
-0.03911618888378143,
-0.025826791301369667,
0.0984671488404274,
-0.21001850068569183,
0.017416872084140778,
-0.045249730348587036,
0.09569153934717178,
0.022242004051804543,
-0.024754421785473824,
-0.04441112279891968,
0.09417351335287094,
-0.019511867314577103,
-0.06140314042568207,
0.06528917700052261,
-0.015657024458050728,
-0.07223402708768845,
-0.06428626924753189,
-0.1242770254611969,
0.15866871178150177,
0.12669812142848969,
-0.11617856472730637,
-0.11114358901977539,
0.008896978572010994,
-0.06591596454381943,
-0.030396247282624245,
-0.051592353731393814,
0.0494113489985466,
0.17845232784748077,
0.002388955559581518,
0.15112370252609253,
-0.06344219297170639,
-0.04148118197917938,
0.03669448569417,
-0.023767169564962387,
0.029687024652957916,
0.11724147200584412,
0.13439254462718964,
-0.04617166146636009,
0.1321779191493988,
0.146901935338974,
-0.10784294456243515,
0.13968488574028015,
-0.021989021450281143,
-0.09858918190002441,
-0.035472676157951355,
-0.04059496149420738,
0.015534289181232452,
0.1284755915403366,
-0.10646950453519821,
-0.016974495723843575,
0.01021660678088665,
0.016067758202552795,
0.013388111256062984,
-0.22128430008888245,
-0.047310370951890945,
0.04761677235364914,
-0.020862167701125145,
-0.010791468434035778,
-0.019104721024632454,
0.0103643499314785,
0.11859670281410217,
0.00726417126134038,
-0.07120601087808609,
0.01543432753533125,
0.004001788794994354,
-0.05257526785135269,
0.19868823885917664,
-0.07678790390491486,
-0.12240947037935257,
-0.08188427984714508,
-0.08463965356349945,
-0.033024150878190994,
0.015545081347227097,
0.03791771084070206,
-0.12091364711523056,
-0.020106105133891106,
-0.04957238957285881,
0.021566683426499367,
-0.00007104247197275981,
0.05707702785730362,
0.013637600466609001,
-0.020766649395227432,
0.07468880712985992,
-0.09316489845514297,
-0.003204686800017953,
-0.0673602893948555,
-0.05043404921889305,
0.06451977789402008,
0.06850764900445938,
0.11893858760595322,
0.1523914933204651,
-0.02555120550096035,
0.02154209092259407,
-0.026738541200757027,
0.2216431051492691,
-0.07866907119750977,
-0.023220809176564217,
0.0974227711558342,
-0.014213102869689465,
0.05817759037017822,
0.11052166670560837,
0.07156539708375931,
-0.09882240742444992,
0.013797841034829617,
0.05638666823506355,
-0.04485076665878296,
-0.18572640419006348,
-0.023810749873518944,
-0.05617174133658409,
-0.036382317543029785,
0.10506176203489304,
0.0009748040465638041,
0.015095969662070274,
0.049254000186920166,
0.058639343827962875,
0.0732831358909607,
-0.06597467511892319,
0.047150369733572006,
0.06223325431346893,
0.041711967438459396,
0.13355058431625366,
-0.022890353575348854,
-0.08833108842372894,
0.02078258991241455,
-0.03390689566731453,
0.22756840288639069,
-0.023718005046248436,
0.09054001420736313,
0.04151972010731697,
0.17414772510528564,
-0.014137008227407932,
0.09789932519197464,
-0.005520340520888567,
-0.06513641774654388,
-0.012465986423194408,
-0.045154765248298645,
-0.022233854979276657,
0.016843780875205994,
-0.006006503477692604,
0.05381041020154953,
-0.1309662014245987,
0.007767810951918364,
0.048896390944719315,
0.2629217803478241,
0.07845991104841232,
-0.32392406463623047,
-0.082877017557621,
-0.013950767926871777,
-0.013003372587263584,
0.0010083791567012668,
-0.0004313176905270666,
0.12248580157756805,
-0.076382577419281,
0.04123115539550781,
-0.08045821636915207,
0.08142556995153427,
-0.013868180103600025,
0.04443013668060303,
0.07128853350877762,
0.12483575940132141,
-0.011462726630270481,
0.05532000586390495,
-0.2984391450881958,
0.302550345659256,
0.012767341919243336,
0.07788658887147903,
-0.07860834151506424,
0.0015172208659350872,
0.03260638192296028,
0.012586542405188084,
0.059970054775476456,
-0.016285831108689308,
-0.04462091624736786,
-0.20461013913154602,
-0.05507555231451988,
0.019135335460305214,
0.11406921595335007,
-0.025970924645662308,
0.1121831014752388,
-0.0060101659037172794,
-0.012096213176846504,
0.07719723880290985,
0.015667300671339035,
-0.04617975279688835,
-0.07853411883115768,
-0.0052353753708302975,
-0.0011437424691393971,
-0.1076357364654541,
-0.056596603244543076,
-0.13791662454605103,
-0.11874189227819443,
0.1666433960199356,
0.03259274736046791,
-0.014840146526694298,
-0.12531647086143494,
0.14016631245613098,
0.0964890718460083,
-0.0794185996055603,
0.03624757006764412,
0.016578732058405876,
0.055372968316078186,
0.0232998039573431,
-0.04906719550490379,
0.13482621312141418,
-0.0600581094622612,
-0.16889095306396484,
-0.08491528779268265,
0.08985064178705215,
0.05039016902446747,
0.07497314363718033,
-0.036250390112400055,
0.03878295421600342,
-0.009618337266147137,
-0.07372630387544632,
0.07248946279287338,
-0.04371282085776329,
0.10187552869319916,
0.03476756811141968,
-0.043395884335041046,
0.039370108395814896,
-0.04728594049811363,
-0.016840437427163124,
0.17295517027378082,
0.27546510100364685,
-0.10044016689062119,
0.006392445880919695,
0.03006855957210064,
-0.055485401302576065,
-0.19317488372325897,
0.07783489674329758,
0.08062770217657089,
0.021005850285291672,
0.054627902805805206,
-0.18238574266433716,
0.11785382032394409,
0.08672048151493073,
-0.0007782136090099812,
0.11993413418531418,
-0.30400845408439636,
-0.13694089651107788,
0.1029021367430687,
0.1463581621646881,
0.11229301244020462,
-0.14054660499095917,
-0.00009155577572528273,
-0.0073150815442204475,
-0.07909656316041946,
0.06735589355230331,
-0.07963838428258896,
0.12782976031303406,
-0.02135179378092289,
0.08644802123308182,
0.01717817224562168,
-0.07917492091655731,
0.10247984528541565,
-0.010690205730497837,
0.10505235940217972,
-0.05992365628480911,
-0.03004154935479164,
0.050522580742836,
-0.0393158458173275,
-0.01467001810669899,
-0.05010100081562996,
0.015550010837614536,
-0.06349386274814606,
-0.018779853358864784,
-0.09038778394460678,
0.027946697548031807,
-0.03784801438450813,
-0.07254672050476074,
-0.025608908385038376,
0.044969186186790466,
0.060210779309272766,
-0.01933467760682106,
0.10544165968894958,
0.01106764655560255,
0.17651036381721497,
0.08699735254049301,
0.042604245245456696,
-0.05266279727220535,
-0.056398600339889526,
0.012686642818152905,
-0.0026730033569037914,
0.05063008517026901,
-0.12622347474098206,
0.018370654433965683,
0.15710563957691193,
0.027868544682860374,
0.12824124097824097,
0.08674782514572144,
-0.0366470068693161,
0.014258516021072865,
0.06388599425554276,
-0.16197609901428223,
-0.06367089599370956,
0.01776427961885929,
-0.0878637433052063,
-0.12087954580783844,
0.03266683220863342,
0.08099627494812012,
-0.05671758949756622,
-0.006694954354315996,
-0.00617583142593503,
0.006417445372790098,
-0.06256978958845139,
0.23488207161426544,
0.0578671433031559,
0.05420547351241112,
-0.09470432251691818,
0.05603533238172531,
0.050925061106681824,
-0.11218996345996857,
0.021472951397299767,
0.07939039915800095,
-0.062086474150419235,
-0.01507863961160183,
0.10645690560340881,
0.1948757767677307,
-0.014727276749908924,
-0.006282424554228783,
-0.16496755182743073,
-0.09663388133049011,
0.08510605990886688,
0.15319930016994476,
0.09368956834077835,
-0.016567599028348923,
-0.05623023211956024,
0.029816022142767906,
-0.14815159142017365,
0.09423578530550003,
0.06601490080356598,
0.07175320386886597,
-0.12003469467163086,
0.19956962764263153,
-0.0048187896609306335,
0.04446955397725105,
-0.024756230413913727,
0.03967522457242012,
-0.11661585420370102,
0.015839511528611183,
-0.11699043959379196,
-0.05957230553030968,
-0.02210228145122528,
-0.01809069886803627,
-0.013678787276148796,
-0.05843643844127655,
-0.056085389107465744,
0.003932444844394922,
-0.1258743852376938,
-0.03310162201523781,
0.03888293728232384,
0.007589357905089855,
-0.1118316799402237,
-0.051577143371105194,
0.016359930858016014,
-0.06164610758423805,
0.06677581369876862,
0.043176207691431046,
0.028058798983693123,
0.044589050114154816,
-0.12844914197921753,
-0.009015552699565887,
0.04463648051023483,
-0.011072836816310883,
0.09231620281934738,
-0.0873100534081459,
-0.008676404133439064,
-0.02996591478586197,
0.08151230216026306,
0.013737178407609463,
0.06957080215215683,
-0.13436225056648254,
0.014106427319347858,
-0.02322656847536564,
-0.10102953761816025,
-0.054594799876213074,
0.03615492209792137,
0.054546184837818146,
0.023644521832466125,
0.170267716050148,
-0.09773297607898712,
0.07090768218040466,
-0.22337466478347778,
-0.016895849257707596,
-0.014585703611373901,
-0.0944121703505516,
-0.07065900415182114,
-0.04369676113128662,
0.08967188000679016,
-0.06531214714050293,
0.11680398136377335,
0.03399249166250229,
0.06504164636135101,
0.03134205564856529,
-0.06417588889598846,
0.017208334058523178,
0.03272281959652901,
0.1635548174381256,
0.021328795701265335,
-0.05825289338827133,
0.06896596401929855,
0.08034330606460571,
0.1157747209072113,
0.17514362931251526,
0.23275871574878693,
0.139502614736557,
0.03979048505425453,
0.08303145319223404,
0.01790076121687889,
-0.09035114198923111,
-0.17552441358566284,
0.03566687926650047,
-0.058784034103155136,
0.11252065747976303,
-0.02464325726032257,
0.17943735420703888,
0.059058886021375656,
-0.1667918711900711,
0.05106523633003235,
-0.068172886967659,
-0.10011043399572372,
-0.11229026317596436,
-0.031068336218595505,
-0.0778576135635376,
-0.12894640862941742,
0.00720744114369154,
-0.10024713724851608,
0.028492728248238564,
0.09934128075838089,
0.015683593228459358,
-0.012123120948672295,
0.18821991980075836,
0.04662557318806648,
0.05357050150632858,
0.05827611684799194,
0.02755170688033104,
-0.009526058100163937,
-0.0511382594704628,
-0.06313328444957733,
-0.027731604874134064,
-0.022283749654889107,
0.036477673798799515,
-0.07948779314756393,
-0.08730433136224747,
0.04795614257454872,
0.0071819196455180645,
-0.11086483299732208,
0.01948367804288864,
0.015351765789091587,
0.08196297287940979,
0.04441077634692192,
0.0006195926107466221,
0.02240576595067978,
-0.0443149209022522,
0.19603735208511353,
-0.087704598903656,
-0.05451371148228645,
-0.10988974571228027,
0.28270092606544495,
0.04056387022137642,
-0.005557967349886894,
0.017049221321940422,
-0.07420320808887482,
-0.001121093169786036,
0.22286923229694366,
0.2212417870759964,
-0.10722208768129349,
-0.005107996519654989,
0.017550649121403694,
-0.013283696956932545,
-0.036661554127931595,
0.11040385812520981,
0.13265520334243774,
0.03781992942094803,
-0.10133355855941772,
-0.05341862514615059,
-0.063313789665699,
-0.02555086463689804,
-0.04132038727402687,
0.03627285361289978,
0.067914679646492,
0.03166627138853073,
-0.045270342379808426,
0.049064673483371735,
-0.04136848822236061,
-0.12866485118865967,
0.08713705092668533,
-0.24182437360286713,
-0.18499872088432312,
-0.004699095152318478,
0.07853048294782639,
0.004531956743448973,
0.07812709361314774,
-0.027340078726410866,
-0.005483565386384726,
0.06512369960546494,
-0.024747351184487343,
-0.04521225765347481,
-0.10318783670663834,
0.09804686903953552,
-0.1287534534931183,
0.20284761488437653,
-0.04984920471906662,
0.04224155843257904,
0.1330602616071701,
0.07023777812719345,
-0.05904677137732506,
0.04548249393701553,
0.05395326018333435,
-0.09237457811832428,
0.009931769222021103,
0.1402112990617752,
-0.045551229268312454,
0.044891227036714554,
0.04435598850250244,
-0.1354033201932907,
0.03378521278500557,
-0.10717662423849106,
-0.05065016821026802,
-0.03160833939909935,
-0.02899300679564476,
-0.056053563952445984,
0.12598733603954315,
0.25013524293899536,
-0.018799247220158577,
0.025365296751260757,
-0.07343708723783493,
0.000176723362528719,
0.0584653876721859,
0.06411974132061005,
-0.09494553506374359,
-0.2522852420806885,
0.02990000694990158,
0.05620906129479408,
-0.025399738922715187,
-0.25025972723960876,
-0.09355414658784866,
0.026407252997159958,
-0.08541316539049149,
-0.09137050062417984,
0.0938313826918602,
0.04897518828511238,
0.0716768354177475,
-0.058430030941963196,
-0.0909036174416542,
-0.07717451453208923,
0.15719074010849,
-0.16680742800235748,
-0.08601480722427368
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALL03
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 8.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.1951 | 1.0 | 1542 | 2.0285 |
| 2.0918 | 2.0 | 3084 | 1.9989 |
| 2.0562 | 3.0 | 4626 | 2.0162 |
| 2.0012 | 4.0 | 6168 | 1.9330 |
| 1.9705 | 5.0 | 7710 | 1.9151 |
| 1.9571 | 6.0 | 9252 | 1.9419 |
| 1.9113 | 7.0 | 10794 | 1.9175 |
| 1.8988 | 8.0 | 12336 | 1.9143 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL03", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALL03 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALL03
====================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9459
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 8.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
145,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 8.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11801748722791672,
0.08996207267045975,
-0.003106638789176941,
0.10894761979579926,
0.1474793702363968,
0.01787993125617504,
0.13437871634960175,
0.13868118822574615,
-0.12374002486467361,
0.06930898129940033,
0.13408112525939941,
0.13371138274669647,
0.021147072315216064,
0.17680443823337555,
-0.043843407183885574,
-0.2794286012649536,
0.0018981698667630553,
0.02557888813316822,
-0.13533461093902588,
0.11460740119218826,
0.07418926805257797,
-0.14494356513023376,
0.07607785612344742,
0.004530465230345726,
-0.18422240018844604,
0.0026076575741171837,
0.0035109028685837984,
-0.061562567949295044,
0.11678045988082886,
0.005711324512958527,
0.13122619688510895,
0.025447504594922066,
0.1020941212773323,
-0.14732564985752106,
0.006558792199939489,
0.07372456043958664,
0.01594250276684761,
0.09678977727890015,
0.04853855073451996,
-0.012688810005784035,
0.07595174014568329,
-0.11175569146871567,
0.07954367995262146,
0.013018951751291752,
-0.1404401957988739,
-0.29678764939308167,
-0.10166146606206894,
0.009191619232296944,
0.06964916735887527,
0.07114442437887192,
-0.006051254458725452,
0.16334529221057892,
-0.049231573939323425,
0.10037191957235336,
0.2890615165233612,
-0.27465733885765076,
-0.07511141151189804,
0.015511061064898968,
0.018560752272605896,
0.0400339737534523,
-0.10229194909334183,
-0.01171176042407751,
0.03800571337342262,
0.040688905864953995,
0.1483372449874878,
-0.009332720190286636,
-0.0250194501131773,
0.00709895882755518,
-0.14224481582641602,
-0.022527355700731277,
0.07705408334732056,
0.016800934448838234,
-0.03423263877630234,
-0.048477135598659515,
-0.08290120214223862,
-0.20402967929840088,
-0.0496780127286911,
-0.0025456214789301157,
0.05057768151164055,
-0.07051767408847809,
-0.12433663010597229,
0.020473286509513855,
-0.0632772222161293,
-0.07044808566570282,
-0.028920892626047134,
0.18676531314849854,
0.04839123785495758,
0.023596664890646935,
-0.03939277306199074,
0.09690194576978683,
-0.018298588693141937,
-0.17788541316986084,
0.023176511749625206,
0.02710845321416855,
-0.049194540828466415,
-0.03687576204538345,
-0.057989925146102905,
-0.07081153243780136,
0.0001607396698091179,
0.17006084322929382,
-0.07934632897377014,
0.07053413987159729,
0.02288932539522648,
0.019462386146187782,
-0.07994388043880463,
0.18000459671020508,
-0.05836322158575058,
-0.0135085079818964,
-0.014825710095465183,
0.07021922618150711,
0.03359116613864899,
-0.026213355362415314,
-0.08761061728000641,
0.041456274688243866,
0.08450453728437424,
0.018401043489575386,
-0.04699314758181572,
0.05115257948637009,
-0.03433686122298241,
-0.009885776787996292,
0.04443606361746788,
-0.10804713517427444,
0.05483409762382507,
-0.005713947117328644,
-0.09155252575874329,
-0.017935531213879585,
0.01309950277209282,
-0.007211419753730297,
-0.0028560259379446507,
0.16462676227092743,
-0.09933605790138245,
0.02089393511414528,
-0.10464323312044144,
-0.14194229245185852,
0.01249726489186287,
-0.09454110264778137,
0.0029035431798547506,
-0.06317594647407532,
-0.13509126007556915,
-0.01174577884376049,
0.07714837044477463,
-0.06822677701711655,
-0.018584035336971283,
-0.025870194658637047,
-0.09166300296783447,
0.04261616989970207,
-0.006921213585883379,
0.14471296966075897,
-0.06379629671573639,
0.10089843720197678,
0.06220593303442001,
0.1086057722568512,
-0.008190006017684937,
0.04223156347870827,
-0.07217743992805481,
0.034025393426418304,
-0.26824164390563965,
0.038388416171073914,
-0.0761197954416275,
0.04697411134839058,
-0.09581698477268219,
-0.11439740657806396,
0.038415562361478806,
-0.012360254302620888,
0.11648757755756378,
0.10787651687860489,
-0.18562252819538116,
-0.08357992023229599,
0.18392781913280487,
-0.08013243973255157,
-0.09275995939970016,
0.11796765774488449,
-0.04981319233775139,
-0.017567424103617668,
0.041994448751211166,
0.14559125900268555,
0.03865532949566841,
-0.12526701390743256,
-0.008884848095476627,
-0.05572674050927162,
0.08449437469244003,
-0.03007531724870205,
0.060326483100652695,
0.0034301027189940214,
0.07654210180044174,
0.0046753413043916225,
-0.0034071297850459814,
0.030525824055075645,
-0.11548106372356415,
-0.08078847825527191,
-0.033248357474803925,
-0.08650937676429749,
0.06444211304187775,
0.06604652106761932,
0.07006417959928513,
-0.11617637425661087,
-0.11625941097736359,
0.061931222677230835,
0.07425425201654434,
-0.06638620793819427,
0.040742453187704086,
-0.07227398455142975,
0.07642415165901184,
-0.0712122991681099,
-0.015974242240190506,
-0.19983649253845215,
-0.05419178307056427,
0.022525042295455933,
-0.01616726629436016,
0.011763847433030605,
-0.02680937945842743,
0.09910543262958527,
0.09075555205345154,
-0.07457949221134186,
-0.01810886338353157,
-0.04031944274902344,
-0.004861963447183371,
-0.12330195307731628,
-0.23673290014266968,
-0.06210198998451233,
-0.03882642090320587,
0.07110758125782013,
-0.16665132343769073,
0.02173634245991707,
0.013982248492538929,
0.1271495223045349,
0.04232580587267876,
-0.031242385506629944,
-0.03206218406558037,
0.0795459970831871,
-0.024559667333960533,
-0.07946259528398514,
0.04352061450481415,
-0.01032489724457264,
-0.0709751695394516,
-0.04864611104130745,
-0.13286221027374268,
0.16026097536087036,
0.12934163212776184,
-0.03299351781606674,
-0.10580151528120041,
0.01973542384803295,
-0.06939671188592911,
-0.029646238312125206,
-0.05086926370859146,
0.04378540813922882,
0.13827674090862274,
0.021084295585751534,
0.1408916860818863,
-0.0692807137966156,
-0.056131646037101746,
0.053822215646505356,
-0.01979483850300312,
0.004803673829883337,
0.10174792259931564,
0.09456667304039001,
-0.06161900982260704,
0.13151133060455322,
0.12958693504333496,
-0.08620737493038177,
0.12885688245296478,
-0.05065105855464935,
-0.08194572478532791,
-0.04171064868569374,
-0.03717663884162903,
0.036105912178754807,
0.14284148812294006,
-0.07808396965265274,
-0.01996586285531521,
0.019871681928634644,
0.02012328803539276,
0.0027996760327368975,
-0.20065447688102722,
-0.016193155199289322,
0.03794682025909424,
-0.03504049777984619,
-0.029208896681666374,
-0.017082398757338524,
0.00647759810090065,
0.11143026500940323,
0.007493041921406984,
-0.06024922803044319,
0.006784175988286734,
0.00927023682743311,
-0.04212556034326553,
0.19408869743347168,
-0.09199607372283936,
-0.10816037654876709,
-0.09577146917581558,
-0.09282924234867096,
-0.05531701445579529,
0.004997533746063709,
0.04831922799348831,
-0.1205524280667305,
-0.04391739144921303,
-0.05499603599309921,
0.007780988700687885,
0.012155119329690933,
0.06198074296116829,
0.032963406294584274,
-0.014541824348270893,
0.077210433781147,
-0.10767994821071625,
-0.008400749415159225,
-0.04701419547200203,
-0.021627921611070633,
0.053236667066812515,
0.0722893550992012,
0.10774809122085571,
0.13829079270362854,
-0.0233716182410717,
0.03969726711511612,
-0.020227324217557907,
0.22161175310611725,
-0.08125948160886765,
-0.005733655299991369,
0.10252977907657623,
-0.010447494685649872,
0.07392768561840057,
0.11688782274723053,
0.07216620445251465,
-0.1062309518456459,
0.012181133031845093,
0.04974788427352905,
-0.05027880519628525,
-0.20035313069820404,
-0.023278996348381042,
-0.04088078439235687,
-0.024433566257357597,
0.11323826760053635,
0.021358998492360115,
0.007867027074098587,
0.04649748653173447,
0.03344079479575157,
0.054190896451473236,
-0.05163780599832535,
0.07646040618419647,
0.056885477155447006,
0.060078855603933334,
0.13862305879592896,
-0.03568524867296219,
-0.06396624445915222,
0.029087936505675316,
-0.023728705942630768,
0.21906393766403198,
-0.025640396401286125,
0.12960486114025116,
0.03704838827252388,
0.14878195524215698,
-0.0011653053807094693,
0.10393796861171722,
0.0016120125073939562,
-0.044255562126636505,
-0.003825967898592353,
-0.05614304915070534,
-0.011753165163099766,
0.010746808722615242,
-0.022438181564211845,
0.03950464725494385,
-0.12139300256967545,
0.029551517218351364,
0.04849329590797424,
0.29190540313720703,
0.07440675795078278,
-0.3424391746520996,
-0.08937373012304306,
-0.001991129945963621,
-0.01662156730890274,
-0.01784970797598362,
-0.0031232957262545824,
0.11524420976638794,
-0.0642663985490799,
0.07985745370388031,
-0.0858198031783104,
0.08225038647651672,
-0.02941608801484108,
0.026462215930223465,
0.08648056536912918,
0.12551864981651306,
-0.018355876207351685,
0.02887437678873539,
-0.2709018290042877,
0.302334725856781,
0.021674085408449173,
0.07912532240152359,
-0.07485990226268768,
0.022326895967125893,
0.02012762613594532,
0.011912028305232525,
0.05035495385527611,
-0.019464315846562386,
-0.10756011307239532,
-0.19091033935546875,
-0.08436861634254456,
0.009200049564242363,
0.125708669424057,
-0.017159102484583855,
0.1257624477148056,
-0.00679648807272315,
-0.030898934230208397,
0.06467112898826599,
-0.030076486989855766,
-0.0532100535929203,
-0.07639501243829727,
0.017040809616446495,
0.0021425632294267416,
-0.08162093907594681,
-0.061827871948480606,
-0.13229365646839142,
-0.07439874857664108,
0.16503405570983887,
0.02349846437573433,
-0.03933381289243698,
-0.14684179425239563,
0.09736424684524536,
0.13216006755828857,
-0.08173857629299164,
0.04241031035780907,
0.006125946529209614,
0.09593712538480759,
0.013202058151364326,
-0.0617913156747818,
0.139130100607872,
-0.06512734293937683,
-0.19991232454776764,
-0.06944818794727325,
0.09296771138906479,
0.04015793278813362,
0.06648468971252441,
-0.043784867972135544,
0.0589367039501667,
0.0036942772567272186,
-0.07715775817632675,
0.07197846472263336,
-0.04261559993028641,
0.09017644822597504,
0.01150916051119566,
-0.015481125563383102,
0.04161589965224266,
-0.04098474234342575,
-0.0051374295726418495,
0.1285090297460556,
0.29736271500587463,
-0.09660040587186813,
0.026681749150156975,
0.0579473152756691,
-0.04234939068555832,
-0.1856994330883026,
0.04683207347989082,
0.0709681436419487,
0.003199065802618861,
0.01878739707171917,
-0.1877821832895279,
0.09468454867601395,
0.08208511024713516,
-0.016538521274924278,
0.11031045019626617,
-0.2902756929397583,
-0.14034971594810486,
0.09250175952911377,
0.13332143425941467,
0.0742286667227745,
-0.15997064113616943,
-0.022684648633003235,
-0.02216600440442562,
-0.11369262635707855,
0.08092007786035538,
-0.08438346534967422,
0.12101668864488602,
-0.02349330298602581,
0.06734437495470047,
0.010865679942071438,
-0.07391327619552612,
0.11678612977266312,
-0.00047968895523808897,
0.10516532510519028,
-0.04967387393116951,
-0.010196788236498833,
0.08478736132383347,
-0.06252612173557281,
0.0075685251504182816,
-0.059510428458452225,
0.026049772277474403,
-0.05332762002944946,
-0.010666698217391968,
-0.08527036756277084,
0.017969902604818344,
-0.03795497119426727,
-0.05713585019111633,
-0.03411709517240524,
0.03532854840159416,
0.051105935126543045,
-0.038121290504932404,
0.16637936234474182,
0.029770104214549065,
0.17111894488334656,
0.12884776294231415,
0.04075823724269867,
-0.06404812633991241,
-0.06660173833370209,
0.023425957188010216,
-0.014936261810362339,
0.05670920014381409,
-0.148973748087883,
0.029295476153492928,
0.14367522299289703,
0.035214491188526154,
0.10646766424179077,
0.08415255695581436,
-0.048373039811849594,
0.015572039410471916,
0.06468449532985687,
-0.15784616768360138,
-0.07074818760156631,
0.029364511370658875,
-0.04724692553281784,
-0.1262868344783783,
0.06235544756054878,
0.10321708023548126,
-0.054571423679590225,
-0.006082409061491489,
-0.002256518229842186,
0.019441116601228714,
-0.03165626525878906,
0.2442285269498825,
0.05015505105257034,
0.07209178060293198,
-0.11528422683477402,
0.07998862862586975,
0.045362699776887894,
-0.10228253901004791,
0.03916385769844055,
0.10224657505750656,
-0.06493469327688217,
-0.0014075984945520759,
0.09687697887420654,
0.16315388679504395,
-0.02653520368039608,
-0.01296901609748602,
-0.1832677721977234,
-0.10587403178215027,
0.09008675813674927,
0.18892742693424225,
0.06972718238830566,
-0.0053942459635436535,
-0.039973385632038116,
0.03817098215222359,
-0.1475306749343872,
0.09677732735872269,
0.06994640827178955,
0.09251005202531815,
-0.12819401919841766,
0.1643318086862564,
-0.009222772903740406,
0.038030412048101425,
-0.02253798581659794,
0.036202047020196915,
-0.12799569964408875,
0.006740174256265163,
-0.1206674724817276,
-0.040250275284051895,
-0.03661919757723808,
-0.018680237233638763,
-0.017508340999484062,
-0.05978258326649666,
-0.06471363455057144,
0.012232943437993526,
-0.12352301925420761,
-0.04177254065871239,
0.02518507093191147,
-0.003046354278922081,
-0.1379385143518448,
-0.03166913241147995,
0.018146805465221405,
-0.09285252541303635,
0.0688171535730362,
0.048746079206466675,
0.017481494694948196,
0.04053869470953941,
-0.06910847872495651,
-0.023301614448428154,
0.04352659732103348,
-0.02313464879989624,
0.10429894924163818,
-0.11321942508220673,
-0.019418776035308838,
-0.03893647342920303,
0.07010828703641891,
0.015855323523283005,
0.0888826921582222,
-0.12593410909175873,
0.024393467232584953,
-0.02834206074476242,
-0.07890459895133972,
-0.05182769522070885,
0.045572102069854736,
0.1017441377043724,
0.013124664314091206,
0.1589561104774475,
-0.08960165828466415,
0.054140813648700714,
-0.21679210662841797,
-0.013456678949296474,
-0.005604938138276339,
-0.12116976827383041,
-0.05966762453317642,
-0.017186027020215988,
0.09574536234140396,
-0.07487867772579193,
0.11263023316860199,
0.005269098095595837,
0.0653931200504303,
0.046774737536907196,
-0.056061796844005585,
-0.02634376659989357,
0.042702142149209976,
0.1467711329460144,
0.027813678607344627,
-0.04749660938978195,
0.08070527762174606,
0.06355017423629761,
0.10388161242008209,
0.13493941724300385,
0.24422414600849152,
0.11143381893634796,
0.0515270009636879,
0.09537118673324585,
0.03208550438284874,
-0.09409170597791672,
-0.1881590634584427,
0.05350306257605553,
-0.05877136439085007,
0.13622736930847168,
-0.01907787285745144,
0.14206179976463318,
0.07292573899030685,
-0.16216935217380524,
0.05308962240815163,
-0.056345924735069275,
-0.09734082967042923,
-0.12553323805332184,
-0.021706005558371544,
-0.08386898785829544,
-0.14190994203090668,
0.006550916004925966,
-0.10701234638690948,
0.044682398438453674,
0.07929811626672745,
0.018523316830396652,
0.02136227861046791,
0.1743502914905548,
0.04300614446401596,
0.059574391692876816,
0.04810498654842377,
0.03043641336262226,
-0.02610831893980503,
-0.015475019812583923,
-0.07218334823846817,
-0.01847204379737377,
-0.007479798048734665,
0.036594849079847336,
-0.045987844467163086,
-0.07940863072872162,
0.06332564353942871,
0.015520678833127022,
-0.12044694274663925,
0.020633194595575333,
0.01795203424990177,
0.07761547714471817,
0.0371011421084404,
0.0027286948170512915,
0.021877817809581757,
-0.03939567133784294,
0.19805608689785004,
-0.09893888235092163,
-0.05497540906071663,
-0.1222846731543541,
0.27768903970718384,
0.02791440486907959,
-0.014654790982604027,
0.02898654155433178,
-0.07657629996538162,
-0.04050388187170029,
0.17489856481552124,
0.19906283915042877,
-0.050688982009887695,
-0.007382212206721306,
0.01142422016710043,
-0.01799643039703369,
-0.039647176861763,
0.11268438398838043,
0.11362560838460922,
0.04556828737258911,
-0.08320339769124985,
-0.05324659124016762,
-0.05197250843048096,
-0.04884055256843567,
-0.04821915552020073,
0.050586048513650894,
0.046003907918930054,
0.020168090239167213,
-0.04241184517741203,
0.05152035504579544,
-0.04297911003232002,
-0.1367945671081543,
0.08334677666425705,
-0.2324065864086151,
-0.18566833436489105,
-0.0009187099640257657,
0.07407203316688538,
0.0074935182929039,
0.08274804800748825,
0.0020215853583067656,
-0.01729613170027733,
0.0862697884440422,
-0.01327475719153881,
-0.04836384207010269,
-0.11432734876871109,
0.09922140091657639,
-0.14717738330364227,
0.2081252634525299,
-0.04436808079481125,
0.03226831927895546,
0.135573610663414,
0.04672089219093323,
-0.09487595409154892,
0.02657969854772091,
0.059488341212272644,
-0.11535096168518066,
-0.0036932798102498055,
0.16148507595062256,
-0.05132368952035904,
0.06115128844976425,
0.033733490854501724,
-0.1303631216287613,
0.00832446850836277,
-0.07533977925777435,
-0.03443554416298866,
-0.030802972614765167,
-0.03846565634012222,
-0.04727043956518173,
0.12140245735645294,
0.23656420409679413,
-0.030195731669664383,
0.02335682325065136,
-0.06534560024738312,
0.018071025609970093,
0.06248150393366814,
0.03976229578256607,
-0.08026895672082901,
-0.2814224660396576,
0.03344497084617615,
0.07772819697856903,
-0.012465909123420715,
-0.2399546504020691,
-0.08725560456514359,
0.037234608083963394,
-0.06654734909534454,
-0.08944212645292282,
0.08854103833436966,
0.054377730935811996,
0.06706786155700684,
-0.05933266133069992,
-0.07162181288003922,
-0.0770159438252449,
0.15954764187335968,
-0.1866539567708969,
-0.07169610261917114
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALL04
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9717
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2954 | 1.0 | 1542 | 2.0372 |
| 2.2015 | 2.0 | 3084 | 2.0104 |
| 2.1661 | 3.0 | 4626 | 2.0372 |
| 2.1186 | 4.0 | 6168 | 1.9549 |
| 2.0939 | 5.0 | 7710 | 1.9438 |
| 2.0867 | 6.0 | 9252 | 1.9648 |
| 2.0462 | 7.0 | 10794 | 1.9465 |
| 2.0315 | 8.0 | 12336 | 1.9412 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL04", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALL04 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALL04
====================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9717
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 8.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11451145261526108,
0.06744582206010818,
-0.0024179848842322826,
0.12415674328804016,
0.17843733727931976,
0.026060249656438828,
0.10474907606840134,
0.11881844699382782,
-0.1328774243593216,
0.0508759506046772,
0.1398126780986786,
0.15220369398593903,
0.009593113325536251,
0.145427867770195,
-0.03298795223236084,
-0.2754986882209778,
-0.02905980870127678,
0.031520597636699677,
-0.11123418807983398,
0.12548600137233734,
0.07173175364732742,
-0.15825918316841125,
0.06639459729194641,
-0.00424781022593379,
-0.2052444964647293,
0.014026155695319176,
0.01127718947827816,
-0.04331035166978836,
0.1367698758840561,
-0.0007286630570888519,
0.1488737016916275,
0.002529381774365902,
0.10369808226823807,
-0.15198443830013275,
0.011141622439026833,
0.06806982308626175,
0.021156921982765198,
0.08701417595148087,
0.05170152336359024,
0.001167483045719564,
0.09021644294261932,
-0.11651921272277832,
0.06020684912800789,
-0.003915857989341021,
-0.14055930078029633,
-0.2663560211658478,
-0.08640053868293762,
-0.0013209377648308873,
0.07128345966339111,
0.0934339165687561,
-0.014078186824917793,
0.14634869992733002,
-0.09202747046947479,
0.09240611642599106,
0.2527276277542114,
-0.2707374095916748,
-0.07805382460355759,
0.029675962403416634,
-0.004547545220702887,
0.04896168038249016,
-0.10835056006908417,
-0.01658647321164608,
0.047593988478183746,
0.04868391901254654,
0.14332334697246552,
-0.021065115928649902,
-0.05762001872062683,
0.023234736174345016,
-0.14455731213092804,
-0.008242425508797169,
0.05450514331459999,
0.02894761599600315,
-0.02463909238576889,
-0.03498736768960953,
-0.07099322974681854,
-0.17436446249485016,
-0.03478781133890152,
-0.016244733706116676,
0.04992794990539551,
-0.06191322207450867,
-0.10882595926523209,
0.014646326191723347,
-0.08407813310623169,
-0.0625673308968544,
-0.05528499558568001,
0.1433773636817932,
0.041552960872650146,
0.010694725438952446,
-0.01532532088458538,
0.10721427947282791,
-0.027522966265678406,
-0.1458098441362381,
0.047797318547964096,
0.03918475657701492,
-0.04294730722904205,
-0.0493757426738739,
-0.07068973779678345,
-0.08627695590257645,
-0.014866785146296024,
0.11577026546001434,
-0.06461282074451447,
0.047182608395814896,
0.03420156240463257,
0.031736019998788834,
-0.09925146400928497,
0.18135899305343628,
-0.07319553941488266,
-0.027954887598752975,
-0.007127848453819752,
0.07165781408548355,
0.014897345565259457,
-0.013225116766989231,
-0.11086246371269226,
0.020326318219304085,
0.08437492698431015,
-0.00025655419449321926,
-0.07262856513261795,
0.057449135929346085,
-0.050333667546510696,
-0.014302488416433334,
-0.008775977417826653,
-0.09632612019777298,
0.05115086957812309,
-0.010007382370531559,
-0.08943802118301392,
-0.017793947830796242,
0.01602920889854431,
0.005989808589220047,
-0.01275907177478075,
0.1711786985397339,
-0.09859951585531235,
0.0407627709209919,
-0.11778827011585236,
-0.1339053511619568,
0.0005270183319225907,
-0.09246321022510529,
0.016912855207920074,
-0.06621916592121124,
-0.1533694863319397,
-0.017688702791929245,
0.07395780086517334,
-0.05505272001028061,
-0.03846057131886482,
-0.043263062834739685,
-0.06568355858325958,
0.01617109403014183,
-0.007573022972792387,
0.1741989701986313,
-0.05433705821633339,
0.11281870305538177,
0.05211898684501648,
0.09944925457239151,
-0.009527478367090225,
0.05419185757637024,
-0.08143357932567596,
0.017229698598384857,
-0.23865175247192383,
0.03971823304891586,
-0.041982002556324005,
0.05353383719921112,
-0.08084326982498169,
-0.11986232548952103,
0.006913185119628906,
-0.009026844054460526,
0.11609289050102234,
0.09819254279136658,
-0.18960554897785187,
-0.08935173600912094,
0.184734508395195,
-0.051335666328668594,
-0.07694638520479202,
0.13362930715084076,
-0.0707809180021286,
0.009656699374318123,
0.05132773518562317,
0.15142251551151276,
0.029081497341394424,
-0.10385110229253769,
0.03269614279270172,
-0.04114317148923874,
0.07404576241970062,
-0.03250114619731903,
0.05213624984025955,
-0.005161542445421219,
0.04696198180317879,
0.013633513823151588,
-0.0031171804293990135,
0.06161685287952423,
-0.11320991814136505,
-0.08389239013195038,
-0.017113052308559418,
-0.09861866384744644,
0.07290239632129669,
0.07848310470581055,
0.08461117744445801,
-0.11093157529830933,
-0.10322294384241104,
0.047638844698667526,
0.0622306689620018,
-0.05954362452030182,
0.03423825278878212,
-0.04830276221036911,
0.07668273150920868,
-0.0825687125325203,
-0.023881569504737854,
-0.19116802513599396,
-0.014447699300944805,
0.008164145983755589,
0.020615573972463608,
0.012998780235648155,
0.013022682629525661,
0.09224911034107208,
0.08534630388021469,
-0.07799550890922546,
-0.01021848525851965,
-0.04021085053682327,
-0.010062926448881626,
-0.14720620214939117,
-0.22538240253925323,
-0.03911618888378143,
-0.025826791301369667,
0.0984671488404274,
-0.21001850068569183,
0.017416872084140778,
-0.045249730348587036,
0.09569153934717178,
0.022242004051804543,
-0.024754421785473824,
-0.04441112279891968,
0.09417351335287094,
-0.019511867314577103,
-0.06140314042568207,
0.06528917700052261,
-0.015657024458050728,
-0.07223402708768845,
-0.06428626924753189,
-0.1242770254611969,
0.15866871178150177,
0.12669812142848969,
-0.11617856472730637,
-0.11114358901977539,
0.008896978572010994,
-0.06591596454381943,
-0.030396247282624245,
-0.051592353731393814,
0.0494113489985466,
0.17845232784748077,
0.002388955559581518,
0.15112370252609253,
-0.06344219297170639,
-0.04148118197917938,
0.03669448569417,
-0.023767169564962387,
0.029687024652957916,
0.11724147200584412,
0.13439254462718964,
-0.04617166146636009,
0.1321779191493988,
0.146901935338974,
-0.10784294456243515,
0.13968488574028015,
-0.021989021450281143,
-0.09858918190002441,
-0.035472676157951355,
-0.04059496149420738,
0.015534289181232452,
0.1284755915403366,
-0.10646950453519821,
-0.016974495723843575,
0.01021660678088665,
0.016067758202552795,
0.013388111256062984,
-0.22128430008888245,
-0.047310370951890945,
0.04761677235364914,
-0.020862167701125145,
-0.010791468434035778,
-0.019104721024632454,
0.0103643499314785,
0.11859670281410217,
0.00726417126134038,
-0.07120601087808609,
0.01543432753533125,
0.004001788794994354,
-0.05257526785135269,
0.19868823885917664,
-0.07678790390491486,
-0.12240947037935257,
-0.08188427984714508,
-0.08463965356349945,
-0.033024150878190994,
0.015545081347227097,
0.03791771084070206,
-0.12091364711523056,
-0.020106105133891106,
-0.04957238957285881,
0.021566683426499367,
-0.00007104247197275981,
0.05707702785730362,
0.013637600466609001,
-0.020766649395227432,
0.07468880712985992,
-0.09316489845514297,
-0.003204686800017953,
-0.0673602893948555,
-0.05043404921889305,
0.06451977789402008,
0.06850764900445938,
0.11893858760595322,
0.1523914933204651,
-0.02555120550096035,
0.02154209092259407,
-0.026738541200757027,
0.2216431051492691,
-0.07866907119750977,
-0.023220809176564217,
0.0974227711558342,
-0.014213102869689465,
0.05817759037017822,
0.11052166670560837,
0.07156539708375931,
-0.09882240742444992,
0.013797841034829617,
0.05638666823506355,
-0.04485076665878296,
-0.18572640419006348,
-0.023810749873518944,
-0.05617174133658409,
-0.036382317543029785,
0.10506176203489304,
0.0009748040465638041,
0.015095969662070274,
0.049254000186920166,
0.058639343827962875,
0.0732831358909607,
-0.06597467511892319,
0.047150369733572006,
0.06223325431346893,
0.041711967438459396,
0.13355058431625366,
-0.022890353575348854,
-0.08833108842372894,
0.02078258991241455,
-0.03390689566731453,
0.22756840288639069,
-0.023718005046248436,
0.09054001420736313,
0.04151972010731697,
0.17414772510528564,
-0.014137008227407932,
0.09789932519197464,
-0.005520340520888567,
-0.06513641774654388,
-0.012465986423194408,
-0.045154765248298645,
-0.022233854979276657,
0.016843780875205994,
-0.006006503477692604,
0.05381041020154953,
-0.1309662014245987,
0.007767810951918364,
0.048896390944719315,
0.2629217803478241,
0.07845991104841232,
-0.32392406463623047,
-0.082877017557621,
-0.013950767926871777,
-0.013003372587263584,
0.0010083791567012668,
-0.0004313176905270666,
0.12248580157756805,
-0.076382577419281,
0.04123115539550781,
-0.08045821636915207,
0.08142556995153427,
-0.013868180103600025,
0.04443013668060303,
0.07128853350877762,
0.12483575940132141,
-0.011462726630270481,
0.05532000586390495,
-0.2984391450881958,
0.302550345659256,
0.012767341919243336,
0.07788658887147903,
-0.07860834151506424,
0.0015172208659350872,
0.03260638192296028,
0.012586542405188084,
0.059970054775476456,
-0.016285831108689308,
-0.04462091624736786,
-0.20461013913154602,
-0.05507555231451988,
0.019135335460305214,
0.11406921595335007,
-0.025970924645662308,
0.1121831014752388,
-0.0060101659037172794,
-0.012096213176846504,
0.07719723880290985,
0.015667300671339035,
-0.04617975279688835,
-0.07853411883115768,
-0.0052353753708302975,
-0.0011437424691393971,
-0.1076357364654541,
-0.056596603244543076,
-0.13791662454605103,
-0.11874189227819443,
0.1666433960199356,
0.03259274736046791,
-0.014840146526694298,
-0.12531647086143494,
0.14016631245613098,
0.0964890718460083,
-0.0794185996055603,
0.03624757006764412,
0.016578732058405876,
0.055372968316078186,
0.0232998039573431,
-0.04906719550490379,
0.13482621312141418,
-0.0600581094622612,
-0.16889095306396484,
-0.08491528779268265,
0.08985064178705215,
0.05039016902446747,
0.07497314363718033,
-0.036250390112400055,
0.03878295421600342,
-0.009618337266147137,
-0.07372630387544632,
0.07248946279287338,
-0.04371282085776329,
0.10187552869319916,
0.03476756811141968,
-0.043395884335041046,
0.039370108395814896,
-0.04728594049811363,
-0.016840437427163124,
0.17295517027378082,
0.27546510100364685,
-0.10044016689062119,
0.006392445880919695,
0.03006855957210064,
-0.055485401302576065,
-0.19317488372325897,
0.07783489674329758,
0.08062770217657089,
0.021005850285291672,
0.054627902805805206,
-0.18238574266433716,
0.11785382032394409,
0.08672048151493073,
-0.0007782136090099812,
0.11993413418531418,
-0.30400845408439636,
-0.13694089651107788,
0.1029021367430687,
0.1463581621646881,
0.11229301244020462,
-0.14054660499095917,
-0.00009155577572528273,
-0.0073150815442204475,
-0.07909656316041946,
0.06735589355230331,
-0.07963838428258896,
0.12782976031303406,
-0.02135179378092289,
0.08644802123308182,
0.01717817224562168,
-0.07917492091655731,
0.10247984528541565,
-0.010690205730497837,
0.10505235940217972,
-0.05992365628480911,
-0.03004154935479164,
0.050522580742836,
-0.0393158458173275,
-0.01467001810669899,
-0.05010100081562996,
0.015550010837614536,
-0.06349386274814606,
-0.018779853358864784,
-0.09038778394460678,
0.027946697548031807,
-0.03784801438450813,
-0.07254672050476074,
-0.025608908385038376,
0.044969186186790466,
0.060210779309272766,
-0.01933467760682106,
0.10544165968894958,
0.01106764655560255,
0.17651036381721497,
0.08699735254049301,
0.042604245245456696,
-0.05266279727220535,
-0.056398600339889526,
0.012686642818152905,
-0.0026730033569037914,
0.05063008517026901,
-0.12622347474098206,
0.018370654433965683,
0.15710563957691193,
0.027868544682860374,
0.12824124097824097,
0.08674782514572144,
-0.0366470068693161,
0.014258516021072865,
0.06388599425554276,
-0.16197609901428223,
-0.06367089599370956,
0.01776427961885929,
-0.0878637433052063,
-0.12087954580783844,
0.03266683220863342,
0.08099627494812012,
-0.05671758949756622,
-0.006694954354315996,
-0.00617583142593503,
0.006417445372790098,
-0.06256978958845139,
0.23488207161426544,
0.0578671433031559,
0.05420547351241112,
-0.09470432251691818,
0.05603533238172531,
0.050925061106681824,
-0.11218996345996857,
0.021472951397299767,
0.07939039915800095,
-0.062086474150419235,
-0.01507863961160183,
0.10645690560340881,
0.1948757767677307,
-0.014727276749908924,
-0.006282424554228783,
-0.16496755182743073,
-0.09663388133049011,
0.08510605990886688,
0.15319930016994476,
0.09368956834077835,
-0.016567599028348923,
-0.05623023211956024,
0.029816022142767906,
-0.14815159142017365,
0.09423578530550003,
0.06601490080356598,
0.07175320386886597,
-0.12003469467163086,
0.19956962764263153,
-0.0048187896609306335,
0.04446955397725105,
-0.024756230413913727,
0.03967522457242012,
-0.11661585420370102,
0.015839511528611183,
-0.11699043959379196,
-0.05957230553030968,
-0.02210228145122528,
-0.01809069886803627,
-0.013678787276148796,
-0.05843643844127655,
-0.056085389107465744,
0.003932444844394922,
-0.1258743852376938,
-0.03310162201523781,
0.03888293728232384,
0.007589357905089855,
-0.1118316799402237,
-0.051577143371105194,
0.016359930858016014,
-0.06164610758423805,
0.06677581369876862,
0.043176207691431046,
0.028058798983693123,
0.044589050114154816,
-0.12844914197921753,
-0.009015552699565887,
0.04463648051023483,
-0.011072836816310883,
0.09231620281934738,
-0.0873100534081459,
-0.008676404133439064,
-0.02996591478586197,
0.08151230216026306,
0.013737178407609463,
0.06957080215215683,
-0.13436225056648254,
0.014106427319347858,
-0.02322656847536564,
-0.10102953761816025,
-0.054594799876213074,
0.03615492209792137,
0.054546184837818146,
0.023644521832466125,
0.170267716050148,
-0.09773297607898712,
0.07090768218040466,
-0.22337466478347778,
-0.016895849257707596,
-0.014585703611373901,
-0.0944121703505516,
-0.07065900415182114,
-0.04369676113128662,
0.08967188000679016,
-0.06531214714050293,
0.11680398136377335,
0.03399249166250229,
0.06504164636135101,
0.03134205564856529,
-0.06417588889598846,
0.017208334058523178,
0.03272281959652901,
0.1635548174381256,
0.021328795701265335,
-0.05825289338827133,
0.06896596401929855,
0.08034330606460571,
0.1157747209072113,
0.17514362931251526,
0.23275871574878693,
0.139502614736557,
0.03979048505425453,
0.08303145319223404,
0.01790076121687889,
-0.09035114198923111,
-0.17552441358566284,
0.03566687926650047,
-0.058784034103155136,
0.11252065747976303,
-0.02464325726032257,
0.17943735420703888,
0.059058886021375656,
-0.1667918711900711,
0.05106523633003235,
-0.068172886967659,
-0.10011043399572372,
-0.11229026317596436,
-0.031068336218595505,
-0.0778576135635376,
-0.12894640862941742,
0.00720744114369154,
-0.10024713724851608,
0.028492728248238564,
0.09934128075838089,
0.015683593228459358,
-0.012123120948672295,
0.18821991980075836,
0.04662557318806648,
0.05357050150632858,
0.05827611684799194,
0.02755170688033104,
-0.009526058100163937,
-0.0511382594704628,
-0.06313328444957733,
-0.027731604874134064,
-0.022283749654889107,
0.036477673798799515,
-0.07948779314756393,
-0.08730433136224747,
0.04795614257454872,
0.0071819196455180645,
-0.11086483299732208,
0.01948367804288864,
0.015351765789091587,
0.08196297287940979,
0.04441077634692192,
0.0006195926107466221,
0.02240576595067978,
-0.0443149209022522,
0.19603735208511353,
-0.087704598903656,
-0.05451371148228645,
-0.10988974571228027,
0.28270092606544495,
0.04056387022137642,
-0.005557967349886894,
0.017049221321940422,
-0.07420320808887482,
-0.001121093169786036,
0.22286923229694366,
0.2212417870759964,
-0.10722208768129349,
-0.005107996519654989,
0.017550649121403694,
-0.013283696956932545,
-0.036661554127931595,
0.11040385812520981,
0.13265520334243774,
0.03781992942094803,
-0.10133355855941772,
-0.05341862514615059,
-0.063313789665699,
-0.02555086463689804,
-0.04132038727402687,
0.03627285361289978,
0.067914679646492,
0.03166627138853073,
-0.045270342379808426,
0.049064673483371735,
-0.04136848822236061,
-0.12866485118865967,
0.08713705092668533,
-0.24182437360286713,
-0.18499872088432312,
-0.004699095152318478,
0.07853048294782639,
0.004531956743448973,
0.07812709361314774,
-0.027340078726410866,
-0.005483565386384726,
0.06512369960546494,
-0.024747351184487343,
-0.04521225765347481,
-0.10318783670663834,
0.09804686903953552,
-0.1287534534931183,
0.20284761488437653,
-0.04984920471906662,
0.04224155843257904,
0.1330602616071701,
0.07023777812719345,
-0.05904677137732506,
0.04548249393701553,
0.05395326018333435,
-0.09237457811832428,
0.009931769222021103,
0.1402112990617752,
-0.045551229268312454,
0.044891227036714554,
0.04435598850250244,
-0.1354033201932907,
0.03378521278500557,
-0.10717662423849106,
-0.05065016821026802,
-0.03160833939909935,
-0.02899300679564476,
-0.056053563952445984,
0.12598733603954315,
0.25013524293899536,
-0.018799247220158577,
0.025365296751260757,
-0.07343708723783493,
0.000176723362528719,
0.0584653876721859,
0.06411974132061005,
-0.09494553506374359,
-0.2522852420806885,
0.02990000694990158,
0.05620906129479408,
-0.025399738922715187,
-0.25025972723960876,
-0.09355414658784866,
0.026407252997159958,
-0.08541316539049149,
-0.09137050062417984,
0.0938313826918602,
0.04897518828511238,
0.0716768354177475,
-0.058430030941963196,
-0.0909036174416542,
-0.07717451453208923,
0.15719074010849,
-0.16680742800235748,
-0.08601480722427368
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9438
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2122 | 1.0 | 871 | 2.0469 |
| 2.0961 | 2.0 | 1742 | 2.0117 |
| 2.0628 | 3.0 | 2613 | 2.0040 |
| 2.0173 | 4.0 | 3484 | 1.9901 |
| 1.9772 | 5.0 | 4355 | 1.9711 |
| 1.9455 | 6.0 | 5226 | 1.9785 |
| 1.917 | 7.0 | 6097 | 1.9380 |
| 1.8933 | 8.0 | 6968 | 1.9651 |
| 1.8708 | 9.0 | 7839 | 1.9915 |
| 1.862 | 10.0 | 8710 | 1.9310 |
| 1.8545 | 11.0 | 9581 | 1.9422 |
| 1.8231 | 12.0 | 10452 | 1.9310 |
| 1.8141 | 13.0 | 11323 | 1.9362 |
| 1.7939 | 14.0 | 12194 | 1.9334 |
| 1.8035 | 15.0 | 13065 | 1.9197 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly
=======================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9438
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 15.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11446443945169449,
0.06717226654291153,
-0.0024003107100725174,
0.1227196455001831,
0.17863358557224274,
0.025574419647455215,
0.10377510637044907,
0.11867111921310425,
-0.13505135476589203,
0.051216013729572296,
0.1403486132621765,
0.15154588222503662,
0.009993188083171844,
0.14683690667152405,
-0.0338284969329834,
-0.27477312088012695,
-0.02947975881397724,
0.030940353870391846,
-0.11442168056964874,
0.12597358226776123,
0.07165069133043289,
-0.15805241465568542,
0.06632984429597855,
-0.003396418411284685,
-0.20527711510658264,
0.013715743087232113,
0.011630512773990631,
-0.043206751346588135,
0.1366770714521408,
-0.00008676491415826604,
0.1490674912929535,
0.002225251169875264,
0.10304708033800125,
-0.15069080889225006,
0.011298748664557934,
0.0682578831911087,
0.02192630246281624,
0.08771390467882156,
0.05168699845671654,
0.001031670137308538,
0.09015069156885147,
-0.11805778741836548,
0.05972745269536972,
-0.0033947727642953396,
-0.14082780480384827,
-0.266671746969223,
-0.0865166112780571,
-0.0010725685860961676,
0.0713328868150711,
0.09324394911527634,
-0.014101427048444748,
0.14556722342967987,
-0.09249891340732574,
0.09193623811006546,
0.2533341944217682,
-0.26966503262519836,
-0.07832328230142593,
0.029845694079995155,
-0.005393081344664097,
0.04789382964372635,
-0.1080937385559082,
-0.016179651021957397,
0.047616444528102875,
0.04818732291460037,
0.1450098752975464,
-0.02057538367807865,
-0.05681426823139191,
0.023176534101366997,
-0.14439482986927032,
-0.008562917821109295,
0.0533183254301548,
0.028546785935759544,
-0.024249231442809105,
-0.03483915701508522,
-0.07144037634134293,
-0.1736259162425995,
-0.03523368015885353,
-0.016237732023000717,
0.05054820328950882,
-0.062112223356962204,
-0.10848496854305267,
0.013938880525529385,
-0.08338683843612671,
-0.06306524574756622,
-0.056299272924661636,
0.1438896805047989,
0.04117104411125183,
0.010272963903844357,
-0.016308289021253586,
0.10680937767028809,
-0.028326477855443954,
-0.14567595720291138,
0.04768730700016022,
0.038880348205566406,
-0.04332627356052399,
-0.04979283735156059,
-0.07022160291671753,
-0.0871993750333786,
-0.0145565802231431,
0.11621391028165817,
-0.06699681282043457,
0.0463111512362957,
0.0347941555082798,
0.031412266194820404,
-0.09936648607254028,
0.1809193193912506,
-0.07459007948637009,
-0.0282931886613369,
-0.00596454506739974,
0.07093967497348785,
0.01517152227461338,
-0.012362775392830372,
-0.11003349721431732,
0.019713813439011574,
0.08305998146533966,
0.0003889831423293799,
-0.07197798788547516,
0.057246290147304535,
-0.049712665379047394,
-0.013648293912410736,
-0.009435481391847134,
-0.09613604098558426,
0.05045674368739128,
-0.01030712015926838,
-0.09053894877433777,
-0.018230117857456207,
0.016652552410960197,
0.005216042976826429,
-0.01250811293721199,
0.17208710312843323,
-0.09973593056201935,
0.04036284610629082,
-0.11765570193529129,
-0.1345061957836151,
0.0004889937117695808,
-0.09225721657276154,
0.016587069258093834,
-0.06579234451055527,
-0.15471607446670532,
-0.017119113355875015,
0.07351193577051163,
-0.05556120350956917,
-0.03916539251804352,
-0.04299819841980934,
-0.06612029671669006,
0.01638803631067276,
-0.007387949153780937,
0.1753806322813034,
-0.05392162501811981,
0.1128285601735115,
0.0522700697183609,
0.09910134971141815,
-0.007821077480912209,
0.05426241084933281,
-0.08187833428382874,
0.017684390768408775,
-0.24005722999572754,
0.04054364189505577,
-0.041911352425813675,
0.054437052458524704,
-0.08173198997974396,
-0.12023375928401947,
0.005775774363428354,
-0.009724476374685764,
0.11663475632667542,
0.09923580288887024,
-0.18899759650230408,
-0.0898641049861908,
0.1849271059036255,
-0.05048763006925583,
-0.07642824947834015,
0.13275784254074097,
-0.07065881043672562,
0.00940108671784401,
0.050950467586517334,
0.15114188194274902,
0.0283109899610281,
-0.10507923364639282,
0.03337334096431732,
-0.04024546965956688,
0.07190915942192078,
-0.03263520449399948,
0.05269227921962738,
-0.005372113082557917,
0.046030983328819275,
0.012646818533539772,
-0.0043232375755906105,
0.062353555113077164,
-0.11375723779201508,
-0.08414365351200104,
-0.017550714313983917,
-0.0994618833065033,
0.07273036241531372,
0.07817034423351288,
0.08499142527580261,
-0.11049642413854599,
-0.1034374088048935,
0.04867733642458916,
0.06254146993160248,
-0.05923940986394882,
0.034061431884765625,
-0.04788589105010033,
0.07745061069726944,
-0.08287005126476288,
-0.023346809670329094,
-0.19150348007678986,
-0.014537202194333076,
0.007254783995449543,
0.01853029802441597,
0.013675951398909092,
0.01235165260732174,
0.09276030957698822,
0.08593626320362091,
-0.07780832797288895,
-0.00970643013715744,
-0.04015461355447769,
-0.01000872440636158,
-0.1465800404548645,
-0.2255762666463852,
-0.03860832378268242,
-0.02542431466281414,
0.09861684590578079,
-0.20984892547130585,
0.017503131181001663,
-0.04711373150348663,
0.09615378826856613,
0.022007247433066368,
-0.024579724296927452,
-0.04320181906223297,
0.0932672768831253,
-0.019517932087183,
-0.06155901402235031,
0.06436535716056824,
-0.01582803763449192,
-0.07114559412002563,
-0.06348742544651031,
-0.12348868697881699,
0.15840278565883636,
0.12690699100494385,
-0.1159059926867485,
-0.11159130185842514,
0.009221622720360756,
-0.06601744145154953,
-0.030289648100733757,
-0.052613526582717896,
0.04986663907766342,
0.17761284112930298,
0.0021440100390464067,
0.1519421637058258,
-0.06428442895412445,
-0.04233931005001068,
0.03652466461062431,
-0.02368958853185177,
0.030154705047607422,
0.11815089732408524,
0.13441960513591766,
-0.048056453466415405,
0.13347691297531128,
0.1465303748846054,
-0.1081736758351326,
0.13983678817749023,
-0.021962054073810577,
-0.09949680417776108,
-0.03608384728431702,
-0.04087335616350174,
0.01537366397678852,
0.12816762924194336,
-0.10488837957382202,
-0.016318146139383316,
0.010605710558593273,
0.015711838379502296,
0.012790882959961891,
-0.22038467228412628,
-0.04735083505511284,
0.048192981630563736,
-0.021444622427225113,
-0.011841662228107452,
-0.018065933138132095,
0.011085893958806992,
0.11881157755851746,
0.007617101073265076,
-0.0693855881690979,
0.014786607585847378,
0.00432772608473897,
-0.05192013084888458,
0.19894827902317047,
-0.07707449793815613,
-0.12301073223352432,
-0.08124236762523651,
-0.08287222683429718,
-0.032666031271219254,
0.015076962299644947,
0.03705080598592758,
-0.1217571347951889,
-0.020654067397117615,
-0.04876549541950226,
0.02297333814203739,
-0.0006015334511175752,
0.057095639407634735,
0.013398819603025913,
-0.020934579893946648,
0.07536552846431732,
-0.09359385073184967,
-0.0026560910046100616,
-0.0671832486987114,
-0.04942901059985161,
0.06306781619787216,
0.06952892243862152,
0.11913415044546127,
0.1515287607908249,
-0.026755204424262047,
0.02103271707892418,
-0.026823751628398895,
0.2239217609167099,
-0.07884270697832108,
-0.023766187950968742,
0.0977979227900505,
-0.012666629627346992,
0.057880107313394547,
0.10987928509712219,
0.07171086221933365,
-0.09847686439752579,
0.013264334760606289,
0.05684846267104149,
-0.0443912148475647,
-0.18666374683380127,
-0.024477070197463036,
-0.05651982128620148,
-0.03748345002532005,
0.10456293076276779,
0.0002881302498281002,
0.01634266972541809,
0.048125408589839935,
0.057482849806547165,
0.07406590133905411,
-0.06618736684322357,
0.0474381148815155,
0.06332125514745712,
0.042063597589731216,
0.13313627243041992,
-0.02344897761940956,
-0.08827363699674606,
0.021093212068080902,
-0.034788478165864944,
0.22775833308696747,
-0.02372768148779869,
0.0912514328956604,
0.04114189371466637,
0.1735667735338211,
-0.013566559180617332,
0.09797549247741699,
-0.005350897554308176,
-0.06525025516748428,
-0.012296626344323158,
-0.04540646821260452,
-0.02207638882100582,
0.016627805307507515,
-0.006047502160072327,
0.05369963496923447,
-0.1303539127111435,
0.008005093783140182,
0.04930342733860016,
0.26328355073928833,
0.07730773091316223,
-0.32314491271972656,
-0.0837644636631012,
-0.014144230633974075,
-0.01335538923740387,
0.0006016470724716783,
-0.0009233084856532514,
0.12229949235916138,
-0.07664754986763,
0.041103679686784744,
-0.0808790922164917,
0.0823269635438919,
-0.012816714122891426,
0.04407665506005287,
0.07086426019668579,
0.1267252266407013,
-0.011824537068605423,
0.05470992624759674,
-0.297780305147171,
0.3041474521160126,
0.013331199064850807,
0.07782700657844543,
-0.07777808606624603,
0.0008298757602460682,
0.033712100237607956,
0.012331202626228333,
0.06080023944377899,
-0.016170993447303772,
-0.04371767118573189,
-0.20388662815093994,
-0.054963186383247375,
0.018009856343269348,
0.11388912051916122,
-0.025855697691440582,
0.11132849007844925,
-0.006235414184629917,
-0.012864752672612667,
0.07771346718072891,
0.014059348031878471,
-0.04682200774550438,
-0.07737039774656296,
-0.005687583237886429,
-0.0020432963501662016,
-0.1079832911491394,
-0.056268032640218735,
-0.13777214288711548,
-0.119219571352005,
0.165839284658432,
0.03085443563759327,
-0.014669104479253292,
-0.12562941014766693,
0.14143791794776917,
0.097053162753582,
-0.079604871571064,
0.037618476897478104,
0.015567338094115257,
0.05586712434887886,
0.02306324616074562,
-0.049820877611637115,
0.13422614336013794,
-0.06059427931904793,
-0.1682363748550415,
-0.0846293568611145,
0.08923781663179398,
0.04987676441669464,
0.07542935013771057,
-0.03701715171337128,
0.03833187371492386,
-0.009680100716650486,
-0.07352204620838165,
0.07224258780479431,
-0.04405130818486214,
0.1025390475988388,
0.03492631018161774,
-0.04263141751289368,
0.03834512084722519,
-0.04718400910496712,
-0.016352133825421333,
0.1734723299741745,
0.27638503909111023,
-0.10105661302804947,
0.006186463870108128,
0.030158862471580505,
-0.05522879585623741,
-0.1932988166809082,
0.07924816012382507,
0.08099137991666794,
0.021651996299624443,
0.053617924451828,
-0.1825971156358719,
0.11724286526441574,
0.08666850626468658,
-0.0010730242356657982,
0.11849899590015411,
-0.30387014150619507,
-0.1373956948518753,
0.10259243845939636,
0.14633238315582275,
0.1120084598660469,
-0.1397075653076172,
-0.00013894036237616092,
-0.007340680807828903,
-0.07773714512586594,
0.06826671957969666,
-0.07965221256017685,
0.12763424217700958,
-0.02105751447379589,
0.08665576577186584,
0.01737992838025093,
-0.0793665423989296,
0.10278157889842987,
-0.012873997911810875,
0.10555833578109741,
-0.05961575359106064,
-0.02897457964718342,
0.05112381651997566,
-0.03917490318417549,
-0.013856528326869011,
-0.049780651926994324,
0.016332199797034264,
-0.061890970915555954,
-0.01884656772017479,
-0.0903577208518982,
0.02870122715830803,
-0.03785732388496399,
-0.0726814866065979,
-0.026481952518224716,
0.04602941498160362,
0.06003402918577194,
-0.01916665770113468,
0.10480023920536041,
0.011072395369410515,
0.1762985736131668,
0.08532746136188507,
0.04332393780350685,
-0.05074299871921539,
-0.05662643909454346,
0.014110544696450233,
-0.0022071260027587414,
0.05132346600294113,
-0.1279875487089157,
0.018070949241518974,
0.15730039775371552,
0.02848128229379654,
0.12786440551280975,
0.08584985136985779,
-0.03686714544892311,
0.013266142457723618,
0.06356464326381683,
-0.16222526133060455,
-0.06543781608343124,
0.01741475984454155,
-0.08804243057966232,
-0.12033648788928986,
0.032217469066381454,
0.08021596819162369,
-0.05726213380694389,
-0.007192946504801512,
-0.005960612092167139,
0.00628467695787549,
-0.06260813027620316,
0.23517544567584991,
0.05844959244132042,
0.054356761276721954,
-0.09506230801343918,
0.0561576746404171,
0.051480188965797424,
-0.11190223693847656,
0.021473905071616173,
0.08031507581472397,
-0.06184633448719978,
-0.014615113846957684,
0.10699273645877838,
0.19579702615737915,
-0.01491053868085146,
-0.006197001319378614,
-0.16434161365032196,
-0.09666872024536133,
0.0857916995882988,
0.15664781630039215,
0.09299091249704361,
-0.017441026866436005,
-0.05604149401187897,
0.03040161356329918,
-0.14791356027126312,
0.09464459866285324,
0.0664794072508812,
0.07099272310733795,
-0.11984080076217651,
0.2000644952058792,
-0.0042800637893378735,
0.04428686201572418,
-0.02510656602680683,
0.04008559510111809,
-0.11664532124996185,
0.01569346897304058,
-0.11719363927841187,
-0.059910912066698074,
-0.022212475538253784,
-0.018079422414302826,
-0.01430139597505331,
-0.05898979306221008,
-0.056499164551496506,
0.004090521018952131,
-0.12583747506141663,
-0.032812897115945816,
0.03870145604014397,
0.007583698723465204,
-0.1124676987528801,
-0.05145418643951416,
0.016518782824277878,
-0.06111352890729904,
0.06633821129798889,
0.043811723589897156,
0.028177032247185707,
0.04452286288142204,
-0.1293003261089325,
-0.009039761498570442,
0.04416385293006897,
-0.01114794984459877,
0.09344176203012466,
-0.08845710009336472,
-0.008409450761973858,
-0.030076514929533005,
0.08169760555028915,
0.013117056339979172,
0.06839661300182343,
-0.13386845588684082,
0.014375538565218449,
-0.023018084466457367,
-0.10041893273591995,
-0.05459180474281311,
0.03594084829092026,
0.05542115494608879,
0.02374398522078991,
0.16976119577884674,
-0.09713079035282135,
0.07146517932415009,
-0.22354640066623688,
-0.017012260854244232,
-0.015194527804851532,
-0.09537573158740997,
-0.07154753804206848,
-0.0435401052236557,
0.08986061811447144,
-0.06547321379184723,
0.11676564812660217,
0.0354275219142437,
0.06514079868793488,
0.0322006531059742,
-0.06277615576982498,
0.01675853505730629,
0.03244694694876671,
0.16302500665187836,
0.021770242601633072,
-0.05777576565742493,
0.06952828168869019,
0.08098142594099045,
0.11625812947750092,
0.17437905073165894,
0.23357579112052917,
0.13962042331695557,
0.0399165004491806,
0.08279462158679962,
0.018079711124300957,
-0.09125801175832748,
-0.17546367645263672,
0.036045320332050323,
-0.05881824344396591,
0.11241718381643295,
-0.024700451642274857,
0.17999175190925598,
0.06054862216114998,
-0.16758471727371216,
0.05207543820142746,
-0.06789537519216537,
-0.1000860184431076,
-0.1131782978773117,
-0.03205343708395958,
-0.07731430232524872,
-0.12870176136493683,
0.007307180669158697,
-0.09985770285129547,
0.028684359043836594,
0.09784923493862152,
0.015333864837884903,
-0.012487886473536491,
0.18884985148906708,
0.04693208634853363,
0.05296985059976578,
0.0581163726747036,
0.027494462206959724,
-0.009404405020177364,
-0.05235512927174568,
-0.06331607699394226,
-0.02695963904261589,
-0.022932231426239014,
0.036435846239328384,
-0.07975631207227707,
-0.08788920938968658,
0.04818220064043999,
0.007519838400185108,
-0.11045201867818832,
0.019464949145913124,
0.016195638105273247,
0.08166341483592987,
0.045472707599401474,
0.00023792663705535233,
0.022898415103554726,
-0.044710565358400345,
0.19616812467575073,
-0.08763516694307327,
-0.054768260568380356,
-0.10979538410902023,
0.2839820086956024,
0.04023880884051323,
-0.0057985056191682816,
0.017461303621530533,
-0.07350768893957138,
-0.0014097231905907393,
0.2245873659849167,
0.22172558307647705,
-0.10667462646961212,
-0.005490572191774845,
0.0167226642370224,
-0.013443375937640667,
-0.03659188002347946,
0.10939174890518188,
0.13278727233409882,
0.037429820746183395,
-0.10163231939077377,
-0.052766527980566025,
-0.06377588957548141,
-0.02610962651669979,
-0.040600452572107315,
0.03622657433152199,
0.06735213100910187,
0.031139271333813667,
-0.04430193454027176,
0.04949566721916199,
-0.04227505996823311,
-0.12987732887268066,
0.08651312440633774,
-0.24139176309108734,
-0.18490085005760193,
-0.005304740741848946,
0.0775989219546318,
0.0050234803929924965,
0.07744603604078293,
-0.02661534957587719,
-0.005196603946387768,
0.06448208540678024,
-0.024933403357863426,
-0.044857438653707504,
-0.10527297109365463,
0.0987497940659523,
-0.12826958298683167,
0.20292948186397552,
-0.04964794963598251,
0.04143191874027252,
0.13315913081169128,
0.0700044184923172,
-0.05980123579502106,
0.044892825186252594,
0.0546855628490448,
-0.09296529740095139,
0.010215692222118378,
0.14104650914669037,
-0.04563262686133385,
0.04542120173573494,
0.0433858223259449,
-0.13530333340168,
0.033737342804670334,
-0.10708785057067871,
-0.050718169659376144,
-0.03182822838425636,
-0.028283854946494102,
-0.05538250878453255,
0.12603959441184998,
0.25030192732810974,
-0.018443366512656212,
0.025768913328647614,
-0.07441432029008865,
0.00016198177763726562,
0.058798693120479584,
0.06434784829616547,
-0.09457577764987946,
-0.25296688079833984,
0.029842829331755638,
0.05613131448626518,
-0.024912482127547264,
-0.24912193417549133,
-0.09317322820425034,
0.0258046705275774,
-0.0849565863609314,
-0.0907263532280922,
0.09337224066257477,
0.04922035336494446,
0.07178553193807602,
-0.05785740539431572,
-0.09090294688940048,
-0.07674597203731537,
0.15677154064178467,
-0.16615276038646698,
-0.08466650545597076
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly02
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2438 | 1.0 | 871 | 2.1122 |
| 2.1235 | 2.0 | 1742 | 2.0784 |
| 2.0712 | 3.0 | 2613 | 2.0679 |
| 2.0034 | 4.0 | 3484 | 2.0546 |
| 1.9375 | 5.0 | 4355 | 2.0277 |
| 1.8911 | 6.0 | 5226 | 2.0364 |
| 1.8454 | 7.0 | 6097 | 1.9812 |
| 1.808 | 8.0 | 6968 | 2.0175 |
| 1.7716 | 9.0 | 7839 | 2.0286 |
| 1.7519 | 10.0 | 8710 | 1.9653 |
| 1.7358 | 11.0 | 9581 | 1.9817 |
| 1.7084 | 12.0 | 10452 | 1.9633 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly02", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly02 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly02
=========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9043
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 12.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11445117741823196,
0.06728150695562363,
-0.0023989879991859198,
0.12324590981006622,
0.17799827456474304,
0.02587374858558178,
0.10445954650640488,
0.11768180876970291,
-0.1345534324645996,
0.051090557128190994,
0.14032204449176788,
0.15159578621387482,
0.010045296512544155,
0.14676028490066528,
-0.03440885245800018,
-0.2747102379798889,
-0.029541965574026108,
0.03143243491649628,
-0.11304823309183121,
0.12588182091712952,
0.07217507809400558,
-0.15852253139019012,
0.06673406064510345,
-0.0031713303178548813,
-0.20497611165046692,
0.014160306192934513,
0.011043929494917393,
-0.04363783448934555,
0.13617965579032898,
-0.0008084694272838533,
0.1493104100227356,
0.002525205258280039,
0.10330737382173538,
-0.15103651583194733,
0.010942012071609497,
0.06781208515167236,
0.021949373185634613,
0.08779389411211014,
0.05164983123540878,
0.000546563882380724,
0.08894893527030945,
-0.11819927394390106,
0.06096767634153366,
-0.004256035201251507,
-0.14082591235637665,
-0.2655567228794098,
-0.0866238921880722,
-0.0005622187163680792,
0.07233669608831406,
0.0935276448726654,
-0.014570622704923153,
0.14500340819358826,
-0.09306493401527405,
0.09199502319097519,
0.25277888774871826,
-0.27160006761550903,
-0.07901203632354736,
0.030626637861132622,
-0.004160960204899311,
0.0487823449075222,
-0.10880097001791,
-0.016520265489816666,
0.04867525026202202,
0.04800749942660332,
0.1455308049917221,
-0.021015921607613564,
-0.054560668766498566,
0.024636754766106606,
-0.14491666853427887,
-0.009608007967472076,
0.056177716702222824,
0.029228253290057182,
-0.02449752204120159,
-0.03554113954305649,
-0.0700380802154541,
-0.1755874752998352,
-0.034834105521440506,
-0.016409950330853462,
0.05014912411570549,
-0.06321368366479874,
-0.10911795496940613,
0.014082765206694603,
-0.08437833935022354,
-0.06304608285427094,
-0.055342212319374084,
0.14243319630622864,
0.04155107960104942,
0.010061779990792274,
-0.016797784715890884,
0.10787681490182877,
-0.02737247198820114,
-0.14520280063152313,
0.048123233020305634,
0.03814459592103958,
-0.04395242780447006,
-0.05021674931049347,
-0.07042073458433151,
-0.0862237811088562,
-0.015259106643497944,
0.1163908913731575,
-0.06499446928501129,
0.04679450765252113,
0.03500794619321823,
0.03108951635658741,
-0.0984707772731781,
0.18124140799045563,
-0.07437078654766083,
-0.027856284752488136,
-0.007859647274017334,
0.07291962951421738,
0.013376588933169842,
-0.012127417139708996,
-0.10919401049613953,
0.019288118928670883,
0.08357833325862885,
0.0008069048053584993,
-0.07313715666532516,
0.057467926293611526,
-0.0499550998210907,
-0.013923256658017635,
-0.011051825247704983,
-0.09623032063245773,
0.05015331879258156,
-0.010408549569547176,
-0.09022709727287292,
-0.01753304712474346,
0.016299575567245483,
0.005763893481343985,
-0.012445990927517414,
0.17317244410514832,
-0.09991948306560516,
0.03975658863782883,
-0.1174575537443161,
-0.13391292095184326,
-0.000635624339338392,
-0.09351056814193726,
0.016646139323711395,
-0.06539323925971985,
-0.15389344096183777,
-0.017740989103913307,
0.07374097406864166,
-0.05543173849582672,
-0.03954514488577843,
-0.04460541158914566,
-0.06624060869216919,
0.015764936804771423,
-0.007117767818272114,
0.17700080573558807,
-0.053861312568187714,
0.1131817027926445,
0.05262216553092003,
0.0997750461101532,
-0.006517330184578896,
0.05396624282002449,
-0.08146236836910248,
0.017560023814439774,
-0.23885324597358704,
0.040368348360061646,
-0.042139291763305664,
0.053658876568078995,
-0.08240225166082382,
-0.12025009095668793,
0.005697694607079029,
-0.009532429277896881,
0.115414559841156,
0.09924120455980301,
-0.18843762576580048,
-0.08977352827787399,
0.18526829779148102,
-0.05031883344054222,
-0.0770651251077652,
0.13274137675762177,
-0.07109476625919342,
0.010533192194998264,
0.05119730159640312,
0.1501428782939911,
0.02857455238699913,
-0.1051999181509018,
0.03210704028606415,
-0.04136711359024048,
0.07299255579710007,
-0.03163779526948929,
0.05203934386372566,
-0.005656232126057148,
0.044352974742650986,
0.012380575761198997,
-0.005847411695867777,
0.06197474151849747,
-0.11366450041532516,
-0.08449151366949081,
-0.017088793218135834,
-0.09994720667600632,
0.07430731505155563,
0.07736814022064209,
0.085584856569767,
-0.11056511104106903,
-0.10332616418600082,
0.04536600038409233,
0.06278917193412781,
-0.05898711457848549,
0.03370204567909241,
-0.048297103494405746,
0.07598749548196793,
-0.0838051587343216,
-0.02346143126487732,
-0.19137722253799438,
-0.012961382046341896,
0.007235435303300619,
0.020459288731217384,
0.012809493578970432,
0.012570043094456196,
0.09301461279392242,
0.08462745696306229,
-0.07805852591991425,
-0.011158758774399757,
-0.04124234989285469,
-0.009922381490468979,
-0.14686085283756256,
-0.2257431298494339,
-0.03865473344922066,
-0.025504237040877342,
0.09967125952243805,
-0.21008577942848206,
0.017358677461743355,
-0.04712451621890068,
0.09587492048740387,
0.022692527621984482,
-0.024012140929698944,
-0.04361067712306976,
0.09359081834554672,
-0.018959976732730865,
-0.06063093990087509,
0.06398894637823105,
-0.0167207270860672,
-0.07140041887760162,
-0.06495233625173569,
-0.12336041778326035,
0.1581059694290161,
0.12637944519519806,
-0.11485712975263596,
-0.11146888136863708,
0.008138260804116726,
-0.06618260592222214,
-0.030522648245096207,
-0.05244194716215134,
0.04969404265284538,
0.17753247916698456,
0.002052542520686984,
0.15107682347297668,
-0.06413090974092484,
-0.042903874069452286,
0.03694143518805504,
-0.023909635841846466,
0.029734553769230843,
0.11862768977880478,
0.13408586382865906,
-0.047927506268024445,
0.13289126753807068,
0.14774027466773987,
-0.1083611324429512,
0.13999684154987335,
-0.02237151563167572,
-0.10011554509401321,
-0.03655225411057472,
-0.039781056344509125,
0.0156608484685421,
0.1289312094449997,
-0.1060812845826149,
-0.016899192705750465,
0.010492135770618916,
0.015327404253184795,
0.012789140455424786,
-0.22056880593299866,
-0.04742247983813286,
0.04771032556891441,
-0.020290780812501907,
-0.010936587117612362,
-0.018189221620559692,
0.0114847207441926,
0.11820195615291595,
0.007500159554183483,
-0.07027609646320343,
0.015117640607059002,
0.003978862427175045,
-0.05184721574187279,
0.1989661455154419,
-0.07634223997592926,
-0.1220659613609314,
-0.08052778244018555,
-0.08348441123962402,
-0.032341551035642624,
0.014563257806003094,
0.037018489092588425,
-0.12195698171854019,
-0.020425863564014435,
-0.04866141080856323,
0.022946147248148918,
-0.0003791400813497603,
0.05759007856249809,
0.014259029179811478,
-0.020745836198329926,
0.07435720413923264,
-0.0930844321846962,
-0.0024290140718221664,
-0.06773820519447327,
-0.049871332943439484,
0.06338903307914734,
0.06895103305578232,
0.11880655586719513,
0.15076258778572083,
-0.025793062523007393,
0.021616848185658455,
-0.0273048784583807,
0.22349104285240173,
-0.0793321430683136,
-0.024907562881708145,
0.09577742964029312,
-0.013394133187830448,
0.057567328214645386,
0.10918793827295303,
0.0712202787399292,
-0.09871707856655121,
0.014159444719552994,
0.05686797574162483,
-0.04344501718878746,
-0.18711987137794495,
-0.024212351068854332,
-0.05607552081346512,
-0.03536594659090042,
0.1055862084031105,
-0.00009309783490607515,
0.016248730942606926,
0.04901488870382309,
0.05808071419596672,
0.07403356581926346,
-0.06596488505601883,
0.04724251106381416,
0.0627499669790268,
0.04123375192284584,
0.13276225328445435,
-0.023872310295701027,
-0.08897559344768524,
0.019857820123434067,
-0.03325432166457176,
0.22956004738807678,
-0.022717611864209175,
0.08989213407039642,
0.041750628501176834,
0.17441828548908234,
-0.014494956471025944,
0.09912379831075668,
-0.005970174912363291,
-0.06528693437576294,
-0.011960179544985294,
-0.045381028205156326,
-0.021254850551486015,
0.01724601536989212,
-0.005062554031610489,
0.053925711661577225,
-0.1314612179994583,
0.007314831018447876,
0.04907446727156639,
0.26376527547836304,
0.07733184844255447,
-0.32287508249282837,
-0.08254467695951462,
-0.014005370438098907,
-0.013068098574876785,
0.0014165597967803478,
-0.0004950655275024474,
0.12187855690717697,
-0.07709652930498123,
0.040606871247291565,
-0.08150535076856613,
0.08160386979579926,
-0.014081800356507301,
0.04387514665722847,
0.070524200797081,
0.12576235830783844,
-0.012219688855111599,
0.05467621237039566,
-0.2990266680717468,
0.30456477403640747,
0.013256540521979332,
0.07846721261739731,
-0.07852780073881149,
0.0008126749307848513,
0.032355163246393204,
0.01180318184196949,
0.062088098376989365,
-0.016697948798537254,
-0.04247192665934563,
-0.20402030646800995,
-0.05519448220729828,
0.01833166368305683,
0.11460407823324203,
-0.027952047064900398,
0.11255229264497757,
-0.005555315408855677,
-0.012940406799316406,
0.07715166360139847,
0.014629393815994263,
-0.04716721922159195,
-0.07800276577472687,
-0.00525699881836772,
-0.0016711234347894788,
-0.10820241272449493,
-0.05682846158742905,
-0.1379770189523697,
-0.11915187537670135,
0.16400952637195587,
0.030716989189386368,
-0.01423563901335001,
-0.12459772080183029,
0.13967755436897278,
0.09796416759490967,
-0.07884971052408218,
0.037639815360307693,
0.016888251528143883,
0.054467253386974335,
0.02265656180679798,
-0.04855307564139366,
0.13463975489139557,
-0.06033257767558098,
-0.1682402789592743,
-0.08416552096605301,
0.09053535759449005,
0.050855498760938644,
0.07435273379087448,
-0.03703262284398079,
0.03808271512389183,
-0.01014847494661808,
-0.07332565635442734,
0.07269064337015152,
-0.04404602572321892,
0.10273142904043198,
0.035449713468551636,
-0.04262813925743103,
0.03631634637713432,
-0.04772915318608284,
-0.016142934560775757,
0.17297819256782532,
0.2759019732475281,
-0.10038059204816818,
0.00567920645698905,
0.02976960875093937,
-0.05525039881467819,
-0.19129489362239838,
0.07931093871593475,
0.08056899160146713,
0.022099969908595085,
0.05453373119235039,
-0.182546928524971,
0.11702758073806763,
0.08633586764335632,
-0.000801188696641475,
0.11900481581687927,
-0.3060283064842224,
-0.13659781217575073,
0.1031385064125061,
0.14575044810771942,
0.11032295227050781,
-0.13926982879638672,
-0.0001931757724378258,
-0.006863278802484274,
-0.07810457795858383,
0.06810558587312698,
-0.07994456589221954,
0.12808242440223694,
-0.02092280238866806,
0.0865321084856987,
0.017708363011479378,
-0.0794229730963707,
0.10218943655490875,
-0.012089531868696213,
0.10586988180875778,
-0.05880697816610336,
-0.029940735548734665,
0.050418298691511154,
-0.03892137482762337,
-0.013722129166126251,
-0.05082039535045624,
0.0161112230271101,
-0.06222406029701233,
-0.018900947645306587,
-0.09019938856363297,
0.028323963284492493,
-0.03868551924824715,
-0.07269427180290222,
-0.026590976864099503,
0.045982476323843,
0.059748608618974686,
-0.01886732690036297,
0.10417661815881729,
0.01168170664459467,
0.17519184947013855,
0.08534922450780869,
0.04456533119082451,
-0.04821070656180382,
-0.05753270909190178,
0.013395381160080433,
-0.0026869173161685467,
0.051548607647418976,
-0.1280219703912735,
0.0175346527248621,
0.1568804681301117,
0.027569491416215897,
0.12836863100528717,
0.08618514239788055,
-0.03738906979560852,
0.013147474266588688,
0.06371741741895676,
-0.16315573453903198,
-0.06566715240478516,
0.017663100734353065,
-0.08809445798397064,
-0.1207600086927414,
0.033427171409130096,
0.07987688481807709,
-0.05699245631694794,
-0.0076500289142131805,
-0.0063487146981060505,
0.006290177349001169,
-0.06284739822149277,
0.23587967455387115,
0.056996893137693405,
0.05465458706021309,
-0.09452871978282928,
0.05665590241551399,
0.05154642462730408,
-0.11366696655750275,
0.021581850945949554,
0.079635851085186,
-0.06152266263961792,
-0.014465127140283585,
0.10488177835941315,
0.1968449503183365,
-0.013440988026559353,
-0.0054796128533780575,
-0.16434459388256073,
-0.09665723145008087,
0.08561552315950394,
0.15521714091300964,
0.09253421425819397,
-0.017232870683073997,
-0.055882032960653305,
0.031011460348963737,
-0.14878462255001068,
0.09520716965198517,
0.06726683676242828,
0.07136745750904083,
-0.12038501352071762,
0.1990194171667099,
-0.0051663583144545555,
0.04405423253774643,
-0.024331776425242424,
0.04008607938885689,
-0.11652570217847824,
0.015863044187426567,
-0.11564862728118896,
-0.060366712510585785,
-0.02180652692914009,
-0.018271485343575478,
-0.014381935819983482,
-0.05820445716381073,
-0.055890996009111404,
0.00420782808214426,
-0.12562668323516846,
-0.03281093388795853,
0.039637405425310135,
0.008765069767832756,
-0.11160936206579208,
-0.051310472190380096,
0.01662592589855194,
-0.06171445548534393,
0.06703175604343414,
0.04363629221916199,
0.027895962819457054,
0.044612254947423935,
-0.1283077448606491,
-0.007823166437447071,
0.04390239715576172,
-0.01186966709792614,
0.09323332458734512,
-0.08907467126846313,
-0.00903647392988205,
-0.030822429805994034,
0.08275070786476135,
0.013292979449033737,
0.06801602989435196,
-0.1345728635787964,
0.013507378287613392,
-0.022656351327896118,
-0.09978411346673965,
-0.05471692234277725,
0.03564799949526787,
0.05546017736196518,
0.023490747436881065,
0.17030291259288788,
-0.09700122475624084,
0.07151749730110168,
-0.22329704463481903,
-0.016720809042453766,
-0.01487321499735117,
-0.09497477859258652,
-0.07004618644714355,
-0.044059544801712036,
0.08975284546613693,
-0.06656767427921295,
0.11632555723190308,
0.034461308270692825,
0.06424900144338608,
0.03196870908141136,
-0.06367176026105881,
0.01648540422320366,
0.03361836448311806,
0.16393661499023438,
0.021607838571071625,
-0.05852251499891281,
0.06849197298288345,
0.08097776025533676,
0.11573823541402817,
0.17554594576358795,
0.2329140454530716,
0.139560729265213,
0.03977411240339279,
0.08319123834371567,
0.018019532784819603,
-0.09095204621553421,
-0.1752091646194458,
0.03722897917032242,
-0.057875171303749084,
0.11231468617916107,
-0.025150874629616737,
0.17991666495800018,
0.06057266145944595,
-0.16727282106876373,
0.051233306527137756,
-0.06795750558376312,
-0.10019414871931076,
-0.1118297204375267,
-0.03199024125933647,
-0.07734530419111252,
-0.12880074977874756,
0.007620187941938639,
-0.10035219043493271,
0.028118841350078583,
0.09758386760950089,
0.01569378934800625,
-0.012610076926648617,
0.18937718868255615,
0.0470820814371109,
0.05404576659202576,
0.05985728278756142,
0.027772145345807076,
-0.009149732068181038,
-0.05229007080197334,
-0.06296943873167038,
-0.027318092063069344,
-0.023664088919758797,
0.03589480742812157,
-0.08069787919521332,
-0.08866633474826813,
0.048067107796669006,
0.008412407711148262,
-0.11026046425104141,
0.01963319070637226,
0.01560311671346426,
0.08233935385942459,
0.04511743783950806,
0.0006048186914995313,
0.022354360669851303,
-0.04496821388602257,
0.1960984766483307,
-0.08852297812700272,
-0.0535680428147316,
-0.11052834242582321,
0.28126758337020874,
0.04049054905772209,
-0.0053489175625145435,
0.017960814759135246,
-0.07390890270471573,
-0.00034230249002575874,
0.22394973039627075,
0.220890611410141,
-0.10580507665872574,
-0.004971591290086508,
0.01682410016655922,
-0.013244702480733395,
-0.03766844794154167,
0.10838937759399414,
0.13329289853572845,
0.037523847073316574,
-0.10190685093402863,
-0.05207188427448273,
-0.06350873410701752,
-0.025801312178373337,
-0.03979915753006935,
0.035402607172727585,
0.06825242191553116,
0.031015973538160324,
-0.044298943132162094,
0.049945902079343796,
-0.04128504544496536,
-0.1277194768190384,
0.08678866177797318,
-0.2411750853061676,
-0.1850801259279251,
-0.005817885510623455,
0.07862131297588348,
0.0043832226656377316,
0.07801113277673721,
-0.02729618549346924,
-0.006687674205750227,
0.06421096622943878,
-0.02462306246161461,
-0.04393292963504791,
-0.10588269680738449,
0.09854627400636673,
-0.127890482544899,
0.20263999700546265,
-0.04912785068154335,
0.041361257433891296,
0.13283927738666534,
0.06936367601156235,
-0.05967895686626434,
0.044694770127534866,
0.05447901785373688,
-0.09208963811397552,
0.010530120693147182,
0.14133808016777039,
-0.04558129981160164,
0.0468674972653389,
0.04326999932527542,
-0.13476347923278809,
0.03401297703385353,
-0.10657624900341034,
-0.049543771892786026,
-0.03226077929139137,
-0.027653438970446587,
-0.055608198046684265,
0.1258496344089508,
0.2504115104675293,
-0.018798386678099632,
0.02613183856010437,
-0.07375986874103546,
0.0008245318895205855,
0.059163205325603485,
0.06460727751255035,
-0.09482689946889877,
-0.25203603506088257,
0.02945922501385212,
0.057396337389945984,
-0.024989619851112366,
-0.24953031539916992,
-0.09259393811225891,
0.025586673989892006,
-0.0847366601228714,
-0.09106212854385376,
0.093185655772686,
0.0509665422141552,
0.072184257209301,
-0.058051034808158875,
-0.09076467156410217,
-0.07735837250947952,
0.1573055535554886,
-0.16625376045703888,
-0.0852835476398468
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly03
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 24.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log | 1.0 | 435 | 2.0751 |
| 2.1982 | 2.0 | 870 | 2.0465 |
| 2.0841 | 3.0 | 1305 | 2.0420 |
| 2.0374 | 4.0 | 1740 | 2.0325 |
| 1.9731 | 5.0 | 2175 | 2.0075 |
| 1.9248 | 6.0 | 2610 | 2.0219 |
| 1.8848 | 7.0 | 3045 | 1.9770 |
| 1.8848 | 8.0 | 3480 | 2.0093 |
| 1.8419 | 9.0 | 3915 | 2.0298 |
| 1.804 | 10.0 | 4350 | 1.9681 |
| 1.7817 | 11.0 | 4785 | 1.9938 |
| 1.7472 | 12.0 | 5220 | 1.9654 |
| 1.7075 | 13.0 | 5655 | 1.9797 |
| 1.6976 | 14.0 | 6090 | 1.9691 |
| 1.6748 | 15.0 | 6525 | 1.9568 |
| 1.6748 | 16.0 | 6960 | 1.9618 |
| 1.6528 | 17.0 | 7395 | 1.9843 |
| 1.6335 | 18.0 | 7830 | 1.9265 |
| 1.6179 | 19.0 | 8265 | 1.9598 |
| 1.5992 | 20.0 | 8700 | 1.9331 |
| 1.583 | 21.0 | 9135 | 1.9795 |
| 1.5699 | 22.0 | 9570 | 2.0073 |
| 1.5703 | 23.0 | 10005 | 1.9308 |
| 1.5703 | 24.0 | 10440 | 1.9285 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly03", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly03 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly03
=========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9995
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 24.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 24.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 24.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 24.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11613088101148605,
0.06722069531679153,
-0.002352311508730054,
0.12330061197280884,
0.17875970900058746,
0.02535843290388584,
0.10378412157297134,
0.11729174852371216,
-0.13561390340328217,
0.05154953524470329,
0.1402551829814911,
0.15097883343696594,
0.010257020592689514,
0.14615173637866974,
-0.034313131123781204,
-0.2741629481315613,
-0.02919098362326622,
0.03257308527827263,
-0.11210080981254578,
0.12531572580337524,
0.07250460237264633,
-0.15949313342571259,
0.06616577506065369,
-0.003077052067965269,
-0.20559291541576385,
0.013973258435726166,
0.011195925064384937,
-0.043692149221897125,
0.13640715181827545,
-0.0008685234352014959,
0.15029685199260712,
0.0013268127804622054,
0.10317115485668182,
-0.1505158245563507,
0.010938945226371288,
0.06908732652664185,
0.022770600393414497,
0.08825773745775223,
0.05154446139931679,
0.0022175791673362255,
0.09000495821237564,
-0.11857040226459503,
0.06015991419553757,
-0.004558897577226162,
-0.14028744399547577,
-0.2631799280643463,
-0.08671197295188904,
-0.0005745943053625524,
0.07132408022880554,
0.09428850561380386,
-0.014408471062779427,
0.1472478210926056,
-0.09158400446176529,
0.09208303689956665,
0.2549016773700714,
-0.27158012986183167,
-0.07855866849422455,
0.03194509819149971,
-0.005499565973877907,
0.048816390335559845,
-0.10827092826366425,
-0.016558099538087845,
0.048560045659542084,
0.04790894314646721,
0.14467766880989075,
-0.020299609750509262,
-0.057849571108818054,
0.024691127240657806,
-0.14538106322288513,
-0.009072103537619114,
0.0558585524559021,
0.0305460374802351,
-0.023654431104660034,
-0.0364212729036808,
-0.07089357078075409,
-0.17653782665729523,
-0.03427472338080406,
-0.016545061022043228,
0.049552012234926224,
-0.06313681602478027,
-0.10861845314502716,
0.01693488471210003,
-0.083696149289608,
-0.06266965717077255,
-0.05467763915657997,
0.14045731723308563,
0.04168009012937546,
0.009329198859632015,
-0.017859583720564842,
0.10721199214458466,
-0.027836699038743973,
-0.1453482210636139,
0.048504166305065155,
0.03856317326426506,
-0.04286085441708565,
-0.05057655647397041,
-0.07081035524606705,
-0.0906902551651001,
-0.015693631023168564,
0.11309768259525299,
-0.06531847268342972,
0.04715113714337349,
0.03601805865764618,
0.03133614733815193,
-0.09931488335132599,
0.1826263815164566,
-0.07485677301883698,
-0.027524001896381378,
-0.008329098112881184,
0.07269001752138138,
0.012795692309737206,
-0.012160244397819042,
-0.10855844616889954,
0.018603011965751648,
0.08345977216959,
-0.0010932740988209844,
-0.07403402030467987,
0.05773436278104782,
-0.05017116665840149,
-0.01390055287629366,
-0.008699233643710613,
-0.09541305899620056,
0.050074074417352676,
-0.01062075886875391,
-0.09072832018136978,
-0.015911510214209557,
0.016385307535529137,
0.004744504578411579,
-0.013500940054655075,
0.1742868423461914,
-0.09997069835662842,
0.03945965692400932,
-0.11868541687726974,
-0.13440421223640442,
-0.00040337623795494437,
-0.0941719189286232,
0.017006076872348785,
-0.06596338748931885,
-0.15143126249313354,
-0.01799020916223526,
0.07386905699968338,
-0.05408719554543495,
-0.039118122309446335,
-0.04490111768245697,
-0.06541460007429123,
0.01597442291676998,
-0.007745542097836733,
0.1752564013004303,
-0.0537131130695343,
0.11295221745967865,
0.051353905349969864,
0.09942790120840073,
-0.007963895797729492,
0.054160814732313156,
-0.08149417489767075,
0.0166967511177063,
-0.23907512426376343,
0.03950853645801544,
-0.04131339490413666,
0.054065853357315063,
-0.08133547753095627,
-0.11985036730766296,
0.004535019863396883,
-0.008507562801241875,
0.1173766702413559,
0.09869574010372162,
-0.18914367258548737,
-0.0894530862569809,
0.18591707944869995,
-0.049810491502285004,
-0.0785456970334053,
0.13333918154239655,
-0.07154006510972977,
0.009916366077959538,
0.051806312054395676,
0.14955301582813263,
0.029539067298173904,
-0.1045355275273323,
0.031429264694452286,
-0.0408586747944355,
0.07402762770652771,
-0.03471357002854347,
0.05020364746451378,
-0.005577795207500458,
0.04561954364180565,
0.012526307255029678,
-0.0028265323489904404,
0.06348899751901627,
-0.11358466744422913,
-0.08390804380178452,
-0.01810137927532196,
-0.09911250323057175,
0.0725792646408081,
0.07855981588363647,
0.08547482639551163,
-0.1114438846707344,
-0.10282982885837555,
0.045834705233573914,
0.06262511759996414,
-0.059681154787540436,
0.033707160502672195,
-0.047638364136219025,
0.07614855468273163,
-0.08343607932329178,
-0.023287998512387276,
-0.19221003353595734,
-0.011456068605184555,
0.0070672775618731976,
0.020233556628227234,
0.012026220560073853,
0.012973317876458168,
0.09235646575689316,
0.0834842324256897,
-0.07712873071432114,
-0.010490643791854382,
-0.03978201746940613,
-0.01002864446491003,
-0.14876636862754822,
-0.2250354140996933,
-0.03819778934121132,
-0.025205934420228004,
0.09598001837730408,
-0.21033413708209991,
0.017252136021852493,
-0.04740072414278984,
0.0953802838921547,
0.022623026743531227,
-0.02449481189250946,
-0.04404269903898239,
0.09472264349460602,
-0.019039945676922798,
-0.06079566478729248,
0.06363299489021301,
-0.016097676008939743,
-0.07069902122020721,
-0.06552214175462723,
-0.12348712980747223,
0.15808221697807312,
0.1270085722208023,
-0.11624834686517715,
-0.11129959672689438,
0.008274310268461704,
-0.06507313996553421,
-0.03010292910039425,
-0.0523688904941082,
0.050897981971502304,
0.1771281361579895,
0.0023567327298223972,
0.1510622650384903,
-0.06459199637174606,
-0.04169696569442749,
0.037323351949453354,
-0.02390369586646557,
0.03041732870042324,
0.11932069808244705,
0.1335122436285019,
-0.04701720178127289,
0.13271449506282806,
0.14837677776813507,
-0.10865279287099838,
0.13896717131137848,
-0.022920433431863785,
-0.09997546672821045,
-0.034592073410749435,
-0.03987423703074455,
0.01567295752465725,
0.12887181341648102,
-0.1067897155880928,
-0.01791311614215374,
0.009729623794555664,
0.01607363484799862,
0.01325880829244852,
-0.22053158283233643,
-0.0471310131251812,
0.04911334440112114,
-0.019943609833717346,
-0.010159862227737904,
-0.01813521608710289,
0.010845527984201908,
0.11784132570028305,
0.007047888822853565,
-0.07178492844104767,
0.01484436821192503,
0.004311698023229837,
-0.05254942178726196,
0.19938308000564575,
-0.07601058483123779,
-0.1228540688753128,
-0.08085472881793976,
-0.08198019117116928,
-0.03233473747968674,
0.014178850688040257,
0.03706017881631851,
-0.12240076065063477,
-0.01988215744495392,
-0.04875188320875168,
0.021802078932523727,
0.00162327173165977,
0.056998059153556824,
0.014039886184036732,
-0.020973939448595047,
0.07477372139692307,
-0.09301907569169998,
-0.002156211994588375,
-0.06801024824380875,
-0.04853992909193039,
0.06249288097023964,
0.06818550080060959,
0.11987569183111191,
0.15322494506835938,
-0.02752021513879299,
0.021978775039315224,
-0.026617540046572685,
0.22302474081516266,
-0.07837774604558945,
-0.025675658136606216,
0.09663710743188858,
-0.013516353443264961,
0.057281073182821274,
0.10855283588171005,
0.07157594710588455,
-0.0981513112783432,
0.014067488722503185,
0.05662192031741142,
-0.044058702886104584,
-0.18667247891426086,
-0.024182287976145744,
-0.056270573288202286,
-0.036091677844524384,
0.1053944006562233,
0.00015698086644988507,
0.015744488686323166,
0.05034444481134415,
0.059052951633930206,
0.07313471287488937,
-0.06741722673177719,
0.046681538224220276,
0.0603325255215168,
0.0425412617623806,
0.1326090693473816,
-0.024307193234562874,
-0.08917836844921112,
0.019476328045129776,
-0.034715261310338974,
0.22795671224594116,
-0.023268433287739754,
0.09015072882175446,
0.04118010029196739,
0.17584209144115448,
-0.01456837821751833,
0.1005396619439125,
-0.006679165177047253,
-0.06590737402439117,
-0.012950119562447071,
-0.0456392765045166,
-0.022199833765625954,
0.0168727096170187,
-0.006907213944941759,
0.055258091539144516,
-0.13280141353607178,
0.008855071850121021,
0.04942195117473602,
0.26420730352401733,
0.07845037430524826,
-0.32350197434425354,
-0.08240977674722672,
-0.01505179051309824,
-0.012371789664030075,
0.00020643684547394514,
0.0010839467868208885,
0.12242414802312851,
-0.07586817443370819,
0.038816049695014954,
-0.08112547546625137,
0.0825434997677803,
-0.015192801132798195,
0.04418344795703888,
0.07000962644815445,
0.1269359588623047,
-0.012506308034062386,
0.05479111894965172,
-0.30095532536506653,
0.3050791919231415,
0.013347957283258438,
0.07836595177650452,
-0.07894919812679291,
0.0005332350265234709,
0.031620483845472336,
0.012013426050543785,
0.06013505905866623,
-0.016655946150422096,
-0.04283895343542099,
-0.20442770421504974,
-0.05322132259607315,
0.019417699426412582,
0.11389200389385223,
-0.025287847965955734,
0.111457958817482,
-0.004843391012400389,
-0.012555588968098164,
0.07825743407011032,
0.015553800389170647,
-0.047202348709106445,
-0.07776832580566406,
-0.0068329027853906155,
0.0014462590916082263,
-0.1088927686214447,
-0.056048039346933365,
-0.13742445409297943,
-0.12138022482395172,
0.16342277824878693,
0.033424217253923416,
-0.013459376059472561,
-0.1235319972038269,
0.13906174898147583,
0.09659280627965927,
-0.07941490411758423,
0.037456318736076355,
0.017182448878884315,
0.05326375365257263,
0.02223210223019123,
-0.04896043986082077,
0.13601788878440857,
-0.05949888378381729,
-0.16669993102550507,
-0.08470123261213303,
0.08802652359008789,
0.0522976890206337,
0.07387546449899673,
-0.03746933862566948,
0.03793444484472275,
-0.010178021155297756,
-0.07320167124271393,
0.07053091377019882,
-0.044986873865127563,
0.10259824246168137,
0.03539367765188217,
-0.041317060589790344,
0.037158649414777756,
-0.04794897884130478,
-0.015566746704280376,
0.1727287620306015,
0.27316200733184814,
-0.10056792944669724,
0.0031440940219908953,
0.03118395246565342,
-0.05565691739320755,
-0.19067496061325073,
0.08068027347326279,
0.07916409522294998,
0.022334543988108635,
0.0548718236386776,
-0.18129755556583405,
0.11777949333190918,
0.08641042560338974,
-0.0005306897219270468,
0.11761896312236786,
-0.30647537112236023,
-0.13665643334388733,
0.10552236437797546,
0.14565512537956238,
0.1105784922838211,
-0.1388658583164215,
0.0008548307814635336,
-0.0072319395840168,
-0.0795019343495369,
0.06688240170478821,
-0.07940322905778885,
0.12697649002075195,
-0.02075393684208393,
0.08530115336179733,
0.018141860142350197,
-0.08045303076505661,
0.10113908350467682,
-0.011241287924349308,
0.10700146853923798,
-0.0589107982814312,
-0.029470117762684822,
0.04829002171754837,
-0.039334025233983994,
-0.012802948243916035,
-0.0511094406247139,
0.016994642093777657,
-0.06224394217133522,
-0.018503397703170776,
-0.0900150015950203,
0.027348505333065987,
-0.037763725966215134,
-0.07250014692544937,
-0.02729332074522972,
0.045879725366830826,
0.05997534096240997,
-0.018860969692468643,
0.10732974112033844,
0.011978592723608017,
0.17725440859794617,
0.08470563590526581,
0.044062815606594086,
-0.05241258442401886,
-0.057192690670490265,
0.013823325745761395,
-0.001893386128358543,
0.052269164472818375,
-0.12791520357131958,
0.017644841223955154,
0.15806591510772705,
0.027573388069868088,
0.1278035044670105,
0.08591949194669724,
-0.03784872218966484,
0.012846377678215504,
0.06350304931402206,
-0.16320563852787018,
-0.062341105192899704,
0.016765763983130455,
-0.08816777169704437,
-0.12082885205745697,
0.0346602238714695,
0.07923074811697006,
-0.05812240391969681,
-0.006712770089507103,
-0.00615276675671339,
0.004869780503213406,
-0.06375529617071152,
0.236627459526062,
0.05801085755228996,
0.054866474121809006,
-0.0941544845700264,
0.05588558688759804,
0.051580868661403656,
-0.11470861732959747,
0.02157267928123474,
0.07862024009227753,
-0.061679113656282425,
-0.013886885717511177,
0.1077364906668663,
0.19528500735759735,
-0.013651932589709759,
-0.0062306830659508705,
-0.16426502168178558,
-0.09639929980039597,
0.08517874032258987,
0.15605227649211884,
0.09355974942445755,
-0.017092810943722725,
-0.05607292056083679,
0.029661498963832855,
-0.14945478737354279,
0.09461626410484314,
0.06751109659671783,
0.07204078882932663,
-0.12154542654752731,
0.20050007104873657,
-0.0049940128810703754,
0.04361953213810921,
-0.023700006306171417,
0.04060809314250946,
-0.1170603409409523,
0.016224319115281105,
-0.11720851808786392,
-0.06136921048164368,
-0.022612575441598892,
-0.018031233921647072,
-0.015107586048543453,
-0.05638432502746582,
-0.05478016659617424,
0.003791539929807186,
-0.1254889816045761,
-0.031943947076797485,
0.0400848388671875,
0.007881846278905869,
-0.11111680418252945,
-0.050872497260570526,
0.015634700655937195,
-0.06017240881919861,
0.06557627022266388,
0.041853874921798706,
0.027408679947257042,
0.044963665306568146,
-0.13043764233589172,
-0.00742344232276082,
0.04445277154445648,
-0.011441157199442387,
0.09374459087848663,
-0.08609373867511749,
-0.007642024662345648,
-0.030238991603255272,
0.08297348022460938,
0.012892116792500019,
0.0673530101776123,
-0.13467924296855927,
0.012962223961949348,
-0.022717244923114777,
-0.0984051302075386,
-0.05479177460074425,
0.03576095029711723,
0.055766504257917404,
0.023683590814471245,
0.16971898078918457,
-0.09753113240003586,
0.07049216330051422,
-0.22378523647785187,
-0.01702948845922947,
-0.014081035740673542,
-0.09542901068925858,
-0.07075061649084091,
-0.0440499447286129,
0.09050510078668594,
-0.06654997169971466,
0.1158815324306488,
0.035798344761133194,
0.06360556930303574,
0.032079748809337616,
-0.06456249952316284,
0.01625674217939377,
0.03325113281607628,
0.1637546420097351,
0.020956452935934067,
-0.0583820566534996,
0.06906118243932724,
0.0820605531334877,
0.11645615100860596,
0.17723317444324493,
0.23375144600868225,
0.14008201658725739,
0.038662251085042953,
0.08434830605983734,
0.01785435900092125,
-0.08952176570892334,
-0.17335742712020874,
0.035544876009225845,
-0.058581121265888214,
0.1128353402018547,
-0.025172492489218712,
0.17901957035064697,
0.05921115353703499,
-0.16623397171497345,
0.05088160187005997,
-0.06911388039588928,
-0.10035058110952377,
-0.11244045943021774,
-0.032112911343574524,
-0.07713796943426132,
-0.12881627678871155,
0.0069524324499070644,
-0.10073301196098328,
0.02775457315146923,
0.10033851861953735,
0.015791090205311775,
-0.013497816398739815,
0.18998397886753082,
0.048281870782375336,
0.05526061728596687,
0.06126867234706879,
0.027742506936192513,
-0.008615483529865742,
-0.053371232002973557,
-0.0633995532989502,
-0.02688094787299633,
-0.022666575387120247,
0.03610016033053398,
-0.08108849823474884,
-0.08796047419309616,
0.048396602272987366,
0.009311139583587646,
-0.10985231399536133,
0.01913514919579029,
0.015453226864337921,
0.08291249722242355,
0.04554109647870064,
0.0012987267691642046,
0.02240963652729988,
-0.045455873012542725,
0.1943630576133728,
-0.0882391557097435,
-0.05347989872097969,
-0.11051496863365173,
0.2808976471424103,
0.04108111932873726,
-0.00501229427754879,
0.01756703294813633,
-0.07376232743263245,
-0.0005843131220899522,
0.22339999675750732,
0.22039055824279785,
-0.10726262629032135,
-0.004949812777340412,
0.016049344092607498,
-0.013282150030136108,
-0.039111893624067307,
0.11008139699697495,
0.13352718949317932,
0.03764839470386505,
-0.10084866732358932,
-0.05173029378056526,
-0.06425096094608307,
-0.02549663931131363,
-0.04033424332737923,
0.0336323156952858,
0.06862106919288635,
0.03126455470919609,
-0.043940238654613495,
0.04979841411113739,
-0.041474342346191406,
-0.1270243227481842,
0.08486036956310272,
-0.24192675948143005,
-0.18476377427577972,
-0.00575207220390439,
0.07774573564529419,
0.0049393875524401665,
0.07697905600070953,
-0.027864526957273483,
-0.0057530771009624004,
0.06389357149600983,
-0.024676049128174782,
-0.042632944881916046,
-0.10650809109210968,
0.09751450270414352,
-0.1288485825061798,
0.20176415145397186,
-0.04838492348790169,
0.04021197929978371,
0.1328095644712448,
0.07035040110349655,
-0.05913980305194855,
0.044307976961135864,
0.053635839372873306,
-0.09183528274297714,
0.010089350864291191,
0.1383795291185379,
-0.04509183391928673,
0.047231756150722504,
0.04351924732327461,
-0.1357509344816208,
0.034550707787275314,
-0.10951226949691772,
-0.048298731446266174,
-0.03333953768014908,
-0.027643436565995216,
-0.05489308014512062,
0.12617050111293793,
0.25064098834991455,
-0.018276849761605263,
0.026121072471141815,
-0.072832390666008,
-0.00003294646739959717,
0.0577341765165329,
0.06395944952964783,
-0.09447833150625229,
-0.2511124312877655,
0.0303819440305233,
0.056921396404504776,
-0.026135381311178207,
-0.2497641146183014,
-0.09239766001701355,
0.02670545130968094,
-0.08646995574235916,
-0.09010311216115952,
0.09330115467309952,
0.05115620419383049,
0.07256461679935455,
-0.05867057293653488,
-0.08862330764532089,
-0.07791901379823685,
0.1578764021396637,
-0.16576644778251648,
-0.08608928322792053
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly05
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.9349 | 1.0 | 871 | 2.9642 |
| 2.9261 | 2.0 | 1742 | 2.9243 |
| 2.8409 | 3.0 | 2613 | 2.8895 |
| 2.7308 | 4.0 | 3484 | 2.8394 |
| 2.6042 | 5.0 | 4355 | 2.7703 |
| 2.4671 | 6.0 | 5226 | 2.7522 |
| 2.3481 | 7.0 | 6097 | 2.6339 |
| 2.2493 | 8.0 | 6968 | 2.6224 |
| 2.1233 | 9.0 | 7839 | 2.5637 |
| 2.0194 | 10.0 | 8710 | 2.4896 |
| 1.9178 | 11.0 | 9581 | 2.4689 |
| 1.8588 | 12.0 | 10452 | 2.4663 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly05", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly05 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly05
=========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 2.3921
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 12.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
126,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.10767599940299988,
0.0618104413151741,
-0.002324130153283477,
0.11923123151063919,
0.1801162213087082,
0.024585388600826263,
0.10501129180192947,
0.12192989885807037,
-0.14048682153224945,
0.047140683978796005,
0.14068011939525604,
0.14926816523075104,
0.009418516419827938,
0.14266279339790344,
-0.031168268993496895,
-0.277103066444397,
-0.027005033567547798,
0.03308820351958275,
-0.1128813698887825,
0.12508727610111237,
0.07735969126224518,
-0.15540137887001038,
0.06826517730951309,
-0.008047087118029594,
-0.20529425144195557,
0.013355099596083164,
0.010712847113609314,
-0.04139328375458717,
0.13978716731071472,
0.0006866775802336633,
0.14601632952690125,
0.001885846839286387,
0.10788638889789581,
-0.15819530189037323,
0.010384972207248211,
0.06693193316459656,
0.022498175501823425,
0.08490394800901413,
0.0488891676068306,
0.004089091904461384,
0.09550925344228745,
-0.11459074914455414,
0.060140155255794525,
-0.00257736979983747,
-0.14480341970920563,
-0.26403892040252686,
-0.08247888088226318,
0.000415066780988127,
0.07066425681114197,
0.09424968808889389,
-0.015955748036503792,
0.1401263326406479,
-0.09986327588558197,
0.09434699267148972,
0.2602621018886566,
-0.2660031318664551,
-0.07975274324417114,
0.04365333914756775,
-0.0020935803186148405,
0.04509908705949783,
-0.11298856139183044,
-0.019810426980257034,
0.049622297286987305,
0.049003716558218,
0.1410229206085205,
-0.02026207558810711,
-0.050742197781801224,
0.022862020879983902,
-0.14306776225566864,
-0.011806540191173553,
0.05380785092711449,
0.030116848647594452,
-0.024752246215939522,
-0.032588813453912735,
-0.06522389501333237,
-0.17866361141204834,
-0.03848057985305786,
-0.013890166766941547,
0.04827531799674034,
-0.06148511916399002,
-0.11245371401309967,
0.02689540572464466,
-0.0802420824766159,
-0.06179122254252434,
-0.053599923849105835,
0.14404763281345367,
0.04429187253117561,
0.00708194961771369,
-0.012331070378422737,
0.11212588846683502,
-0.03131302818655968,
-0.14435845613479614,
0.04241873696446419,
0.04215918108820915,
-0.03921554610133171,
-0.05493401736021042,
-0.07114345580339432,
-0.07633060961961746,
-0.011376059614121914,
0.1242077499628067,
-0.06431224942207336,
0.049632150679826736,
0.04051254689693451,
0.02932310476899147,
-0.10014958679676056,
0.18395763635635376,
-0.06897249072790146,
-0.031382426619529724,
-0.009683610871434212,
0.07392102479934692,
0.006948576308786869,
-0.011011671274900436,
-0.10924782603979111,
0.02061157487332821,
0.09253145754337311,
0.0036656130105257034,
-0.07375887036323547,
0.06320638954639435,
-0.043342042714357376,
-0.014753966592252254,
-0.015729326754808426,
-0.09591452777385712,
0.04556158930063248,
-0.01620490662753582,
-0.09094598144292831,
-0.019134284928441048,
0.01563432440161705,
0.0063547976315021515,
-0.014726032502949238,
0.17015188932418823,
-0.09753739088773727,
0.0391978956758976,
-0.11880579590797424,
-0.13222715258598328,
-0.0013649662723764777,
-0.08314037322998047,
0.018440714105963707,
-0.0678461417555809,
-0.1522536724805832,
-0.020533487200737,
0.07273536175489426,
-0.056539420038461685,
-0.044117409735918045,
-0.04799870774149895,
-0.06744173914194107,
0.014317985624074936,
-0.009028134867548943,
0.17467865347862244,
-0.05525296926498413,
0.11639362573623657,
0.057726383209228516,
0.09915975481271744,
-0.0039033901412039995,
0.053905077278614044,
-0.08100318908691406,
0.015915777534246445,
-0.2383124828338623,
0.04091889038681984,
-0.04057975858449936,
0.05433895066380501,
-0.08124998211860657,
-0.122654490172863,
0.008471356704831123,
-0.007861180230975151,
0.11538293212652206,
0.09789501130580902,
-0.1828436404466629,
-0.0878189355134964,
0.186320498585701,
-0.0496748723089695,
-0.07785960286855698,
0.13219581544399261,
-0.0706651583313942,
0.016646388918161392,
0.053841836750507355,
0.1438499540090561,
0.027783090248703957,
-0.1029403954744339,
0.030495837330818176,
-0.043838001787662506,
0.07748932391405106,
-0.025307413190603256,
0.04958381876349449,
0.0030527643393725157,
0.0478288009762764,
0.017097286880016327,
-0.008897371590137482,
0.06359754502773285,
-0.11866042017936707,
-0.08335430175065994,
-0.01812201738357544,
-0.09935774654150009,
0.07415325939655304,
0.08046402037143707,
0.08698046207427979,
-0.10990922898054123,
-0.10125739872455597,
0.04978610947728157,
0.0675426721572876,
-0.06195735186338425,
0.034772586077451706,
-0.04791496321558952,
0.07331986725330353,
-0.07939723134040833,
-0.020539280027151108,
-0.19206373393535614,
-0.012657392770051956,
0.006621650420129299,
0.016676655039191246,
0.01702149771153927,
0.017200781032443047,
0.09243925660848618,
0.08379113674163818,
-0.08489293605089188,
-0.008063139393925667,
-0.04268497973680496,
-0.007771391421556473,
-0.1490853726863861,
-0.22000841796398163,
-0.03914986178278923,
-0.02236628159880638,
0.10052134841680527,
-0.21543070673942566,
0.01778804138302803,
-0.04717769846320152,
0.0941498875617981,
0.017708614468574524,
-0.02399023063480854,
-0.04989355057477951,
0.09529247879981995,
-0.02034098654985428,
-0.06453453749418259,
0.06788679957389832,
-0.01597665250301361,
-0.06969119608402252,
-0.06832962483167648,
-0.12293855845928192,
0.15865474939346313,
0.1254458725452423,
-0.12248829752206802,
-0.11672244220972061,
0.01328288484364748,
-0.06658779084682465,
-0.03217242285609245,
-0.05647076293826103,
0.04935141280293465,
0.1788998544216156,
0.0023967993911355734,
0.15057478845119476,
-0.06161520630121231,
-0.040743984282016754,
0.03306347876787186,
-0.02722018212080002,
0.03853461146354675,
0.12111464887857437,
0.12672029435634613,
-0.04361939802765846,
0.1307850480079651,
0.1429004967212677,
-0.10925690829753876,
0.13262148201465607,
-0.026720289140939713,
-0.09661105275154114,
-0.036021746695041656,
-0.042717691510915756,
0.016837257891893387,
0.12053661793470383,
-0.0984979048371315,
-0.017656659707427025,
0.007588573265820742,
0.01667092926800251,
0.011185378767549992,
-0.21835780143737793,
-0.04750286787748337,
0.04704788327217102,
-0.022312583401799202,
-0.0018920076545327902,
-0.01942257024347782,
0.010655360296368599,
0.11743424832820892,
0.010363149456679821,
-0.07146136462688446,
0.01602768711745739,
0.0037466466892510653,
-0.04980560019612312,
0.20055070519447327,
-0.0700271725654602,
-0.12390094995498657,
-0.07983841001987457,
-0.08355268090963364,
-0.0345211885869503,
0.014590389095246792,
0.0357293039560318,
-0.11989030987024307,
-0.020102646201848984,
-0.0482134185731411,
0.023997975513339043,
-0.0010274382075294852,
0.05490114912390709,
0.011638505384325981,
-0.015856068581342697,
0.07599708437919617,
-0.09183082729578018,
-0.004036024212837219,
-0.06280015408992767,
-0.06015888601541519,
0.0652032271027565,
0.060131050646305084,
0.1121724471449852,
0.15246166288852692,
-0.02723110094666481,
0.02097897045314312,
-0.02803143672645092,
0.22500960528850555,
-0.07970091700553894,
-0.025310473516583443,
0.09853581339120865,
-0.008358780294656754,
0.05566934496164322,
0.10776109248399734,
0.0705585852265358,
-0.10255008190870285,
0.01920989714562893,
0.058470625430345535,
-0.043106645345687866,
-0.1779482662677765,
-0.021710233762860298,
-0.053594641387462616,
-0.032721858471632004,
0.11216157674789429,
-0.0017899031518027186,
0.024628296494483948,
0.046148911118507385,
0.056695014238357544,
0.07583427429199219,
-0.06274054944515228,
0.05260308459401131,
0.06616529077291489,
0.04209494963288307,
0.13334238529205322,
-0.024925431236624718,
-0.08927737176418304,
0.019488943740725517,
-0.03632901981472969,
0.2290322631597519,
-0.019744273275136948,
0.08532676845788956,
0.04040365666151047,
0.1735864281654358,
-0.012424572370946407,
0.09513134509325027,
-0.004394794348627329,
-0.06633569300174713,
-0.012775663286447525,
-0.0441896915435791,
-0.02968219481408596,
0.013765748590230942,
-0.006687848828732967,
0.04969676584005356,
-0.13250215351581573,
-0.0009134851861745119,
0.04737164080142975,
0.26512372493743896,
0.07730452716350555,
-0.3162519931793213,
-0.08540961146354675,
-0.011971591971814632,
-0.019285406917333603,
0.00022432130936067551,
0.000988120911642909,
0.11178819835186005,
-0.08471086621284485,
0.035387326031923294,
-0.07900480180978775,
0.08292535692453384,
-0.021679654717445374,
0.04796915501356125,
0.06749249249696732,
0.1205759048461914,
-0.011382585391402245,
0.05860491469502449,
-0.3099394738674164,
0.3025675117969513,
0.00881011039018631,
0.07674138993024826,
-0.07843876630067825,
-0.0030639811884611845,
0.03383968770503998,
0.016890808939933777,
0.05435965210199356,
-0.014828549697995186,
-0.05221862345933914,
-0.21258248388767242,
-0.048512350767850876,
0.0166010782122612,
0.11437449604272842,
-0.027687830850481987,
0.11485065519809723,
-0.012132321484386921,
-0.007357007823884487,
0.07808950543403625,
0.013268543407320976,
-0.042813777923583984,
-0.07279125601053238,
-0.005454027093946934,
-0.004365411587059498,
-0.09011438488960266,
-0.0598602294921875,
-0.13533514738082886,
-0.12004438787698746,
0.16352783143520355,
0.029364561662077904,
-0.011323192156851292,
-0.12494591623544693,
0.14468315243721008,
0.0957234725356102,
-0.08010275661945343,
0.036555640399456024,
0.01659395359456539,
0.05633421987295151,
0.02687343768775463,
-0.0474640391767025,
0.12818455696105957,
-0.057969965040683746,
-0.17047083377838135,
-0.07868038862943649,
0.08577712625265121,
0.04900866746902466,
0.07645303755998611,
-0.03679483383893967,
0.03762371465563774,
-0.009715850464999676,
-0.07669518142938614,
0.059365712106227875,
-0.04868168756365776,
0.09961110353469849,
0.03518297150731087,
-0.04389914125204086,
0.04559607803821564,
-0.04858974739909172,
-0.0219303909689188,
0.16914191842079163,
0.27794119715690613,
-0.09887056797742844,
0.00020555660012178123,
0.030768072232604027,
-0.05642249435186386,
-0.19402079284191132,
0.06910489499568939,
0.08547960966825485,
0.020930828526616096,
0.053854480385780334,
-0.1769101619720459,
0.12088901549577713,
0.08483226597309113,
0.0005992091610096395,
0.11459210515022278,
-0.30102333426475525,
-0.138192281126976,
0.10510318726301193,
0.1440245658159256,
0.11220504343509674,
-0.14086630940437317,
0.004370440263301134,
-0.012535659596323967,
-0.08392952382564545,
0.06548546999692917,
-0.06833883374929428,
0.13468649983406067,
-0.022409003227949142,
0.08720801770687103,
0.01914312317967415,
-0.07637853175401688,
0.10193165391683578,
-0.011704136617481709,
0.10907616466283798,
-0.06492991745471954,
-0.03520170599222183,
0.04851042479276657,
-0.04141194745898247,
-0.015590506605803967,
-0.049180030822753906,
0.016528889536857605,
-0.06367578357458115,
-0.01835303194820881,
-0.09079721570014954,
0.02593720145523548,
-0.0396183542907238,
-0.07450872659683228,
-0.029211029410362244,
0.05296088010072708,
0.06043244153261185,
-0.016897788271307945,
0.10958042740821838,
0.004795475862920284,
0.1816420704126358,
0.08800329267978668,
0.03862655907869339,
-0.05067817121744156,
-0.05253898724913597,
0.012679068371653557,
0.0007461431669071317,
0.04534738510847092,
-0.1318882405757904,
0.019115125760436058,
0.15901407599449158,
0.026626404374837875,
0.13364464044570923,
0.08563723415136337,
-0.030911099165678024,
0.009187472984194756,
0.061720557510852814,
-0.15694725513458252,
-0.058718662708997726,
0.017817193642258644,
-0.08284790813922882,
-0.12347308546304703,
0.029923854395747185,
0.08037654310464859,
-0.0611904077231884,
-0.0074598821811378,
-0.005852262023836374,
0.006862450856715441,
-0.06673450022935867,
0.23616378009319305,
0.05818316712975502,
0.05740419775247574,
-0.09321188181638718,
0.057188380509614944,
0.05422423779964447,
-0.10303836315870285,
0.017779022455215454,
0.07831557095050812,
-0.06030045822262764,
-0.013121247291564941,
0.1142757460474968,
0.19487348198890686,
-0.024961549788713455,
-0.006341548636555672,
-0.16779440641403198,
-0.09962711483240128,
0.08522982895374298,
0.1566767543554306,
0.09563034027814865,
-0.010598398745059967,
-0.05377259477972984,
0.030436065047979355,
-0.14976239204406738,
0.09213162213563919,
0.0673646330833435,
0.07050172239542007,
-0.11605865508317947,
0.2066938430070877,
-0.0028613184113055468,
0.04574556276202202,
-0.02497665211558342,
0.03642737492918968,
-0.12170931696891785,
0.018692443147301674,
-0.11464264988899231,
-0.06088060885667801,
-0.018115663900971413,
-0.014354932121932507,
-0.013138201087713242,
-0.0588097982108593,
-0.05260419100522995,
0.003825442399829626,
-0.12658321857452393,
-0.031226465478539467,
0.03818332776427269,
0.012024808675050735,
-0.10322344303131104,
-0.051476191729307175,
0.017736375331878662,
-0.060670237988233566,
0.06193874776363373,
0.03853030875325203,
0.02846289426088333,
0.04697831720113754,
-0.12933678925037384,
-0.0029492287430912256,
0.036708589643239975,
-0.011755253188312054,
0.08800438791513443,
-0.09512537717819214,
-0.011082085780799389,
-0.03012356534600258,
0.08664708584547043,
0.018370363861322403,
0.05889655649662018,
-0.1346263438463211,
0.013212766498327255,
-0.027703337371349335,
-0.09995745867490768,
-0.0531754232943058,
0.03615903481841087,
0.05365466699004173,
0.022548077628016472,
0.16600844264030457,
-0.09967132657766342,
0.06871721148490906,
-0.2242666631937027,
-0.01742446981370449,
-0.01519167423248291,
-0.09970913827419281,
-0.07288461923599243,
-0.05000825598835945,
0.08936165273189545,
-0.060808852314949036,
0.11469674855470657,
0.028436703607439995,
0.07146794348955154,
0.033372506499290466,
-0.06539972126483917,
0.01135304942727089,
0.03146854788064957,
0.16682149469852448,
0.0251180287450552,
-0.057985179126262665,
0.06824009120464325,
0.08375056087970734,
0.11051136255264282,
0.1715664267539978,
0.22752372920513153,
0.13659444451332092,
0.03267771005630493,
0.0807439312338829,
0.012766184285283089,
-0.0853617712855339,
-0.16590233147144318,
0.04497174918651581,
-0.05601951852440834,
0.10734722018241882,
-0.028676586225628853,
0.18548054993152618,
0.05932164564728737,
-0.16881658136844635,
0.055720504373311996,
-0.07185286283493042,
-0.10012191534042358,
-0.10847274214029312,
-0.030201144516468048,
-0.07800471782684326,
-0.13324898481369019,
0.00743449991568923,
-0.10179122537374496,
0.03272727131843567,
0.10641060024499893,
0.018397239968180656,
-0.013808059506118298,
0.18673835694789886,
0.03989776223897934,
0.05361570045351982,
0.06140103563666344,
0.020777855068445206,
-0.009160990826785564,
-0.057633768767118454,
-0.06341683864593506,
-0.030372992157936096,
-0.01736021228134632,
0.03749442845582962,
-0.07877203077077866,
-0.08635985851287842,
0.044388264417648315,
0.009895107708871365,
-0.11020946502685547,
0.023290470242500305,
0.015451833605766296,
0.08574707806110382,
0.04929196462035179,
-0.0025749278720468283,
0.02286950871348381,
-0.043396953493356705,
0.19901710748672485,
-0.08849500119686127,
-0.06905146688222885,
-0.10836479067802429,
0.2903837561607361,
0.04445460066199303,
-0.006546125281602144,
0.014109295792877674,
-0.07009435445070267,
0.0014718060847371817,
0.22749049961566925,
0.20825617015361786,
-0.1045166403055191,
-0.007159668952226639,
0.016783922910690308,
-0.014130610041320324,
-0.03483497351408005,
0.10759484022855759,
0.13014943897724152,
0.027210190892219543,
-0.10351242870092392,
-0.04999707639217377,
-0.057486411184072495,
-0.027406148612499237,
-0.041142649948596954,
0.03247757628560066,
0.06653225421905518,
0.03297970071434975,
-0.047002509236335754,
0.0469018891453743,
-0.04647856950759888,
-0.1294284611940384,
0.08576823770999908,
-0.24051564931869507,
-0.18104341626167297,
-0.005170375108718872,
0.0722891315817833,
0.0053555723279714584,
0.07511448115110397,
-0.027837319299578667,
-0.0013340158620849252,
0.058542270213365555,
-0.025544892996549606,
-0.03522270545363426,
-0.1081983894109726,
0.10146418958902359,
-0.11850340664386749,
0.19415047764778137,
-0.05136720463633537,
0.037972401827573776,
0.13369755446910858,
0.06383202970027924,
-0.058323342353105545,
0.04815952107310295,
0.05304406210780144,
-0.09429659694433212,
0.010752483271062374,
0.14271771907806396,
-0.04481228068470955,
0.04578417167067528,
0.04102609306573868,
-0.13965198397636414,
0.03508506342768669,
-0.094152070581913,
-0.048354942351579666,
-0.03229929879307747,
-0.02942955493927002,
-0.05159471184015274,
0.12992040812969208,
0.2547949254512787,
-0.021192016080021858,
0.021985553205013275,
-0.07842961698770523,
0.0009937372524291277,
0.054097115993499756,
0.05967731773853302,
-0.09782404452562332,
-0.25227129459381104,
0.03249774128198624,
0.0589296817779541,
-0.02807089313864708,
-0.2452576458454132,
-0.09629984945058823,
0.029297679662704468,
-0.08676539361476898,
-0.09088601917028427,
0.1005231961607933,
0.04853013902902603,
0.0705479085445404,
-0.05636316537857056,
-0.10436370968818665,
-0.0788814052939415,
0.1608184278011322,
-0.16482120752334595,
-0.09000274538993835
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly07
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3589 | 1.0 | 871 | 2.2805 |
| 2.2563 | 2.0 | 1742 | 2.2501 |
| 2.1936 | 3.0 | 2613 | 2.2419 |
| 2.11 | 4.0 | 3484 | 2.2301 |
| 2.0311 | 5.0 | 4355 | 2.2320 |
| 1.969 | 6.0 | 5226 | 2.2276 |
| 1.9148 | 7.0 | 6097 | 2.1621 |
| 1.8569 | 8.0 | 6968 | 2.1876 |
| 1.7978 | 9.0 | 7839 | 2.2011 |
| 1.7602 | 10.0 | 8710 | 2.1280 |
| 1.7166 | 11.0 | 9581 | 2.1644 |
| 1.6651 | 12.0 | 10452 | 2.1246 |
| 1.6141 | 13.0 | 11323 | 2.1264 |
| 1.5759 | 14.0 | 12194 | 2.1143 |
| 1.5478 | 15.0 | 13065 | 2.0982 |
| 1.5311 | 16.0 | 13936 | 2.0993 |
| 1.5187 | 17.0 | 14807 | 2.0979 |
| 1.4809 | 18.0 | 15678 | 2.0338 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly07", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly07 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly07
=========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 2.1135
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 18.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 18.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 18.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
126,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 18.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.10907967388629913,
0.05906915292143822,
-0.002275015925988555,
0.11936096847057343,
0.18092846870422363,
0.024744724854826927,
0.10359925776720047,
0.1220761314034462,
-0.13972795009613037,
0.047986965626478195,
0.14072144031524658,
0.1506306380033493,
0.00968952663242817,
0.1435047835111618,
-0.03134799376130104,
-0.27503257989883423,
-0.027140488848090172,
0.033593058586120605,
-0.11082788556814194,
0.12523435056209564,
0.07652878016233444,
-0.1563861072063446,
0.06803262233734131,
-0.008970966562628746,
-0.20578713715076447,
0.01377725601196289,
0.011201326735317707,
-0.04151105508208275,
0.13983985781669617,
0.0013337770942598581,
0.14660966396331787,
0.0012127450900152326,
0.10709280520677567,
-0.15667706727981567,
0.010783575475215912,
0.06834415346384048,
0.022865043953061104,
0.08469126373529434,
0.04903467372059822,
0.0038633500225842,
0.09647025167942047,
-0.11455930024385452,
0.05970611050724983,
-0.0023846642579883337,
-0.1443229764699936,
-0.266436904668808,
-0.08264072239398956,
-0.0013916593743488193,
0.06990575045347214,
0.09497233480215073,
-0.01616012677550316,
0.1412392258644104,
-0.09858087450265884,
0.09523764252662659,
0.2598434388637543,
-0.26506325602531433,
-0.07923853397369385,
0.04359344765543938,
-0.0021131536923348904,
0.04613563418388367,
-0.11152864992618561,
-0.02009052410721779,
0.0495515875518322,
0.049197979271411896,
0.14131222665309906,
-0.019416464492678642,
-0.05255572125315666,
0.021761620417237282,
-0.14317138493061066,
-0.011248084716498852,
0.0529693067073822,
0.029787641018629074,
-0.024002844467759132,
-0.033797625452280045,
-0.0652489885687828,
-0.1794799417257309,
-0.038531556725502014,
-0.013440307229757309,
0.04842986539006233,
-0.0607256218791008,
-0.1113659143447876,
0.02860700711607933,
-0.07939375936985016,
-0.061894338577985764,
-0.05439832806587219,
0.14430835843086243,
0.044817883521318436,
0.007423862349241972,
-0.013112998567521572,
0.11077262461185455,
-0.03147424757480621,
-0.14462606608867645,
0.0431051105260849,
0.041659023612737656,
-0.03916042298078537,
-0.05448438972234726,
-0.07194595783948898,
-0.07769757509231567,
-0.010640065185725689,
0.12245818972587585,
-0.06541162729263306,
0.0495111458003521,
0.039199307560920715,
0.029587624594569206,
-0.10109822452068329,
0.18432271480560303,
-0.06888212263584137,
-0.030394164845347404,
-0.008693170733749866,
0.07278580218553543,
0.007468423806130886,
-0.010388894937932491,
-0.1086401492357254,
0.02156638354063034,
0.09176005423069,
0.0029976891819387674,
-0.07363995909690857,
0.06339851021766663,
-0.04319475591182709,
-0.01439841277897358,
-0.014260607771575451,
-0.09586285799741745,
0.04543403536081314,
-0.016167063266038895,
-0.09053352475166321,
-0.01938008889555931,
0.014811198227107525,
0.005159946624189615,
-0.01596619002521038,
0.1702212393283844,
-0.09727505594491959,
0.03857943415641785,
-0.11998964846134186,
-0.13339748978614807,
-0.0017541470006108284,
-0.0828327164053917,
0.018427958711981773,
-0.06756750494241714,
-0.1520090401172638,
-0.02092917449772358,
0.0722900778055191,
-0.05619298294186592,
-0.042848534882068634,
-0.046276722103357315,
-0.06657563149929047,
0.014142103493213654,
-0.00959386583417654,
0.17397409677505493,
-0.05554448440670967,
0.11666622012853622,
0.056928735226392746,
0.09875158965587616,
-0.003324550809338689,
0.054963089525699615,
-0.08159731328487396,
0.015238284133374691,
-0.23802238702774048,
0.041325777769088745,
-0.04080759361386299,
0.05591641366481781,
-0.0799824520945549,
-0.12293030321598053,
0.00850759632885456,
-0.007088568061590195,
0.1168290376663208,
0.09734287112951279,
-0.18253961205482483,
-0.08815784007310867,
0.18723981082439423,
-0.049496348947286606,
-0.07835595309734344,
0.13274972140789032,
-0.07053788751363754,
0.013089803047478199,
0.05453556403517723,
0.1446196734905243,
0.026464741677045822,
-0.10240817815065384,
0.03159724548459053,
-0.043685223907232285,
0.07694915682077408,
-0.02647712454199791,
0.048823677003383636,
0.0038952892646193504,
0.047458499670028687,
0.018110686913132668,
-0.006725043058395386,
0.06435415893793106,
-0.11906316876411438,
-0.08274148404598236,
-0.0194147527217865,
-0.09867221862077713,
0.07185730338096619,
0.08210467547178268,
0.0861729234457016,
-0.11096090823411942,
-0.1009991466999054,
0.04811767488718033,
0.06702964752912521,
-0.06241763383150101,
0.033919550478458405,
-0.0468292310833931,
0.07461743801832199,
-0.07888869196176529,
-0.02055649645626545,
-0.19232210516929626,
-0.012868927791714668,
0.006808376871049404,
0.017081599682569504,
0.016793182119727135,
0.01683218777179718,
0.09162156283855438,
0.08400432765483856,
-0.08425986021757126,
-0.007677605841308832,
-0.04075073450803757,
-0.008322170004248619,
-0.14903517067432404,
-0.22004516422748566,
-0.038581401109695435,
-0.022386759519577026,
0.09724240005016327,
-0.21598008275032043,
0.017506172880530357,
-0.048425205051898956,
0.09335049241781235,
0.016794521361589432,
-0.02438567765057087,
-0.04926423728466034,
0.09646819531917572,
-0.02025453932583332,
-0.06479154527187347,
0.06841114908456802,
-0.015619328245520592,
-0.06924617290496826,
-0.06824672222137451,
-0.12234467267990112,
0.1600279062986374,
0.1258457452058792,
-0.12361790984869003,
-0.11801552027463913,
0.014334159903228283,
-0.06684991717338562,
-0.031764835119247437,
-0.056359659880399704,
0.05071331560611725,
0.18006488680839539,
0.002346616704016924,
0.15124590694904327,
-0.06169099360704422,
-0.04050649702548981,
0.033492326736450195,
-0.02619086392223835,
0.038949448615312576,
0.12214343994855881,
0.12664930522441864,
-0.042663946747779846,
0.13090255856513977,
0.1420302540063858,
-0.10914887487888336,
0.13256821036338806,
-0.02735651284456253,
-0.09605610370635986,
-0.03410207852721214,
-0.04280006140470505,
0.016187291592359543,
0.12012658268213272,
-0.09875454008579254,
-0.018364589661359787,
0.00803080853074789,
0.01615942269563675,
0.011148929595947266,
-0.21771691739559174,
-0.04759596288204193,
0.04742678999900818,
-0.02277049422264099,
-0.0012531044194474816,
-0.01854146458208561,
0.010959452949464321,
0.11830363422632217,
0.009323214180767536,
-0.07189618796110153,
0.015247809700667858,
0.0038821641355752945,
-0.049441754817962646,
0.20095232129096985,
-0.0704616829752922,
-0.12475010007619858,
-0.07925793528556824,
-0.08221296221017838,
-0.035569947212934494,
0.014248657040297985,
0.03609436750411987,
-0.12149088084697723,
-0.020366709679365158,
-0.047999363392591476,
0.023471632972359657,
-0.0016621475806459785,
0.054411765187978745,
0.010781075805425644,
-0.016919272020459175,
0.07549308985471725,
-0.09222730249166489,
-0.00430477736517787,
-0.06359325349330902,
-0.06046563759446144,
0.06562134623527527,
0.06052934005856514,
0.11249038577079773,
0.15316668152809143,
-0.02775253728032112,
0.02092827670276165,
-0.028201453387737274,
0.22504118084907532,
-0.07926612347364426,
-0.025265272706747055,
0.09993696957826614,
-0.007008690387010574,
0.055081989616155624,
0.10817086696624756,
0.07073894888162613,
-0.10286550968885422,
0.018792811781167984,
0.05860111862421036,
-0.043948251754045486,
-0.17917366325855255,
-0.022362878546118736,
-0.05439174920320511,
-0.0350266695022583,
0.11148200184106827,
-0.001543102553114295,
0.024783946573734283,
0.04623604193329811,
0.05581735074520111,
0.07466551661491394,
-0.06398221105337143,
0.05211828276515007,
0.06639611721038818,
0.04234787076711655,
0.13468541204929352,
-0.02433530054986477,
-0.08893615752458572,
0.020362919196486473,
-0.03755952790379524,
0.2299986630678177,
-0.02133254148066044,
0.08636539429426193,
0.04054039344191551,
0.17348046600818634,
-0.01199390646070242,
0.09486804902553558,
-0.005246167071163654,
-0.06616467237472534,
-0.01271763164550066,
-0.04400185868144035,
-0.03032681904733181,
0.012049340642988682,
-0.008968554437160492,
0.05006755143404007,
-0.13205257058143616,
-0.001848673797212541,
0.0476594902575016,
0.26414573192596436,
0.07620123028755188,
-0.3174751102924347,
-0.0852082148194313,
-0.0129429055377841,
-0.018949607387185097,
-0.001411938457749784,
0.0011378027265891433,
0.11136040836572647,
-0.08358356356620789,
0.03553837537765503,
-0.07817458361387253,
0.08385754376649857,
-0.020931808277964592,
0.04780619591474533,
0.06738269329071045,
0.12165716290473938,
-0.011637682095170021,
0.058094993233680725,
-0.31116923689842224,
0.3031792640686035,
0.008802310563623905,
0.0766284242272377,
-0.07874133437871933,
-0.002780684269964695,
0.03403845429420471,
0.017799420282244682,
0.05390619859099388,
-0.015002500265836716,
-0.0540400929749012,
-0.21260929107666016,
-0.04706762731075287,
0.017480893060564995,
0.11269388347864151,
-0.025978295132517815,
0.11277472972869873,
-0.011793596670031548,
-0.007094177883118391,
0.07805643230676651,
0.01343057956546545,
-0.04263333976268768,
-0.07179433852434158,
-0.006161110009998083,
-0.0031306061428040266,
-0.09081219881772995,
-0.058807436376810074,
-0.1355454921722412,
-0.12105526030063629,
0.1648535579442978,
0.029270384460687637,
-0.012257695198059082,
-0.12566335499286652,
0.14546437561511993,
0.09476684033870697,
-0.08048959076404572,
0.03624776750802994,
0.015645230188965797,
0.05568452924489975,
0.027109893038868904,
-0.04939282312989235,
0.12860186398029327,
-0.05812222883105278,
-0.1700616329908371,
-0.07900505512952805,
0.08421320468187332,
0.048246730118989944,
0.07668422907590866,
-0.03792058676481247,
0.03833453729748726,
-0.01048552431166172,
-0.07692614197731018,
0.05932186171412468,
-0.04910103231668472,
0.10037244856357574,
0.03552563115954399,
-0.044441260397434235,
0.04467381536960602,
-0.04819133132696152,
-0.022376136854290962,
0.1684170514345169,
0.2763156592845917,
-0.09917052835226059,
-0.0002705446968320757,
0.03134452924132347,
-0.057060372084379196,
-0.19438029825687408,
0.06931192427873611,
0.08505138009786606,
0.020667245611548424,
0.05270322784781456,
-0.17729218304157257,
0.12175041437149048,
0.0855361744761467,
0.0006613243604078889,
0.11551402509212494,
-0.2988154888153076,
-0.13904233276844025,
0.10677860677242279,
0.14505378901958466,
0.11639149487018585,
-0.14141543209552765,
0.005422431509941816,
-0.012075487524271011,
-0.08233894407749176,
0.06400509923696518,
-0.06692738085985184,
0.1341536045074463,
-0.0232031662017107,
0.08703280240297318,
0.01911471225321293,
-0.07672170549631119,
0.10098662227392197,
-0.011644207872450352,
0.11029530316591263,
-0.06516563147306442,
-0.03263482823967934,
0.04723084717988968,
-0.04160330817103386,
-0.014815128408372402,
-0.050406865775585175,
0.01746032014489174,
-0.06423290818929672,
-0.018606163561344147,
-0.09155519306659698,
0.02611839585006237,
-0.03879700228571892,
-0.07430475205183029,
-0.029594669118523598,
0.05266549065709114,
0.06065985932946205,
-0.017792128026485443,
0.10991385579109192,
0.004181896336376667,
0.18477942049503326,
0.08598305284976959,
0.03739220276474953,
-0.05453779175877571,
-0.05294148251414299,
0.013407675549387932,
0.001194908982142806,
0.046052802354097366,
-0.13104930520057678,
0.018655087798833847,
0.16011394560337067,
0.02681889198720455,
0.13309042155742645,
0.0855751782655716,
-0.030340595170855522,
0.008903429843485355,
0.06103990599513054,
-0.15671910345554352,
-0.057095788419246674,
0.01747829094529152,
-0.08368408679962158,
-0.12165389955043793,
0.029817301779985428,
0.07936353236436844,
-0.061481863260269165,
-0.007292164955288172,
-0.006655652076005936,
0.006804210599511862,
-0.06571036577224731,
0.23669931292533875,
0.058589063584804535,
0.05733316391706467,
-0.0946425050497055,
0.05643780902028084,
0.05480712652206421,
-0.10358697921037674,
0.018148818984627724,
0.07868324220180511,
-0.06057899072766304,
-0.013618123717606068,
0.11711930483579636,
0.1957625448703766,
-0.024520689621567726,
-0.0072087012231349945,
-0.16774657368659973,
-0.10046428442001343,
0.085974782705307,
0.15749713778495789,
0.09638091921806335,
-0.010831216350197792,
-0.05322103202342987,
0.02892763912677765,
-0.14944444596767426,
0.09260895848274231,
0.06628727167844772,
0.07061532139778137,
-0.11526476591825485,
0.20654508471488953,
-0.0015483236638829112,
0.04516322538256645,
-0.025613848119974136,
0.03652096539735794,
-0.1220194473862648,
0.019108058884739876,
-0.11478474736213684,
-0.060739193111658096,
-0.018037203699350357,
-0.014133532531559467,
-0.013376128859817982,
-0.0587942861020565,
-0.052346765995025635,
0.004478846676647663,
-0.1265561282634735,
-0.03040153719484806,
0.0384330153465271,
0.012008334510028362,
-0.1043517217040062,
-0.05164538696408272,
0.01645350642502308,
-0.05961351841688156,
0.0607885867357254,
0.03814925625920296,
0.028139378875494003,
0.04619484394788742,
-0.13096113502979279,
-0.002972868736833334,
0.03625202551484108,
-0.011162188835442066,
0.08760368824005127,
-0.09396325051784515,
-0.009520634077489376,
-0.02905471995472908,
0.08460041880607605,
0.018614815548062325,
0.05796666815876961,
-0.13477003574371338,
0.012839543633162975,
-0.02700270153582096,
-0.09952899813652039,
-0.05308708921074867,
0.03620551526546478,
0.054091453552246094,
0.023062553256750107,
0.16477933526039124,
-0.10031066834926605,
0.06800901889801025,
-0.2252451330423355,
-0.018310999497771263,
-0.015228025615215302,
-0.10117679089307785,
-0.07325596362352371,
-0.049230072647333145,
0.09029316157102585,
-0.060168080031871796,
0.11680876463651657,
0.030729763209819794,
0.0715806782245636,
0.03325610235333443,
-0.06479712575674057,
0.011845383793115616,
0.0307228434830904,
0.16556178033351898,
0.024092068895697594,
-0.05763836205005646,
0.06881976127624512,
0.08393242955207825,
0.1103755310177803,
0.1730983704328537,
0.2282208651304245,
0.13741806149482727,
0.03339286521077156,
0.07962242513895035,
0.013414365239441395,
-0.08585631847381592,
-0.16559556126594543,
0.041411396116018295,
-0.05651570111513138,
0.1086578518152237,
-0.028255878016352654,
0.18440411984920502,
0.058597952127456665,
-0.1683616042137146,
0.057346221059560776,
-0.072581946849823,
-0.09979745000600815,
-0.1088353842496872,
-0.030171170830726624,
-0.077804796397686,
-0.13340890407562256,
0.007333711721003056,
-0.10225806385278702,
0.032588113099336624,
0.10715124756097794,
0.01884550414979458,
-0.014559730887413025,
0.18734383583068848,
0.042475294321775436,
0.05316363647580147,
0.06157837435603142,
0.020945485681295395,
-0.009812512435019016,
-0.058512765914201736,
-0.06401391327381134,
-0.02975686453282833,
-0.01748822256922722,
0.03786325827240944,
-0.07815343886613846,
-0.08672530949115753,
0.04439052194356918,
0.009704569354653358,
-0.11010811477899551,
0.02306855469942093,
0.015699898824095726,
0.08528465032577515,
0.05070504918694496,
-0.0027286510448902845,
0.023070821538567543,
-0.04347608983516693,
0.1983409970998764,
-0.0868389680981636,
-0.0680549368262291,
-0.1077733114361763,
0.29219383001327515,
0.044417016208171844,
-0.007605062332004309,
0.014138185419142246,
-0.06903865933418274,
0.0005201809690333903,
0.22812870144844055,
0.2083110511302948,
-0.10347269475460052,
-0.007545419968664646,
0.016522470861673355,
-0.014439382590353489,
-0.03469238430261612,
0.10965884476900101,
0.13091525435447693,
0.02788122557103634,
-0.10322267562150955,
-0.05005200579762459,
-0.05785467103123665,
-0.027693340554833412,
-0.04181181266903877,
0.032194167375564575,
0.06710613518953323,
0.032194893807172775,
-0.04650895670056343,
0.046564724296331406,
-0.0468234121799469,
-0.13010254502296448,
0.08685524016618729,
-0.2400975525379181,
-0.18138264119625092,
-0.005548656918108463,
0.07252921909093857,
0.005464566871523857,
0.0738227441906929,
-0.02719288505613804,
-0.00010177071089856327,
0.057688064873218536,
-0.026416733860969543,
-0.03470508009195328,
-0.10943455249071121,
0.10085999220609665,
-0.1202784925699234,
0.1941722333431244,
-0.05117722228169441,
0.03774566575884819,
0.13339410722255707,
0.06466398388147354,
-0.058106712996959686,
0.049155496060848236,
0.052622292190790176,
-0.09444204717874527,
0.011118795722723007,
0.1420115828514099,
-0.044678736478090286,
0.04497531056404114,
0.04144219309091568,
-0.1397329866886139,
0.03500012308359146,
-0.09671998769044876,
-0.048929329961538315,
-0.031920306384563446,
-0.02854049578309059,
-0.05153173953294754,
0.1300322562456131,
0.25570300221443176,
-0.020486747846007347,
0.021795857697725296,
-0.07933364808559418,
0.00042134374962188303,
0.053657472133636475,
0.05991992726922035,
-0.09733269363641739,
-0.2533007860183716,
0.033382050693035126,
0.0605301558971405,
-0.028560593724250793,
-0.24567846953868866,
-0.0957942083477974,
0.029022930189967155,
-0.08714866638183594,
-0.09120519459247589,
0.09993982315063477,
0.04804970696568489,
0.07087282091379166,
-0.056505829095840454,
-0.10374469310045242,
-0.07796650379896164,
0.16013510525226593,
-0.16522137820720673,
-0.08903289586305618
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly09
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2439 | 1.0 | 871 | 2.1102 |
| 2.1235 | 2.0 | 1742 | 2.0785 |
| 2.0709 | 3.0 | 2613 | 2.0689 |
| 2.0033 | 4.0 | 3484 | 2.0565 |
| 1.9386 | 5.0 | 4355 | 2.0290 |
| 1.8909 | 6.0 | 5226 | 2.0366 |
| 1.8449 | 7.0 | 6097 | 1.9809 |
| 1.8078 | 8.0 | 6968 | 2.0177 |
| 1.7709 | 9.0 | 7839 | 2.0289 |
| 1.7516 | 10.0 | 8710 | 1.9645 |
| 1.7354 | 11.0 | 9581 | 1.9810 |
| 1.7073 | 12.0 | 10452 | 1.9631 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly09", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly09 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly09
=========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9043
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 12.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11445117741823196,
0.06728150695562363,
-0.0023989879991859198,
0.12324590981006622,
0.17799827456474304,
0.02587374858558178,
0.10445954650640488,
0.11768180876970291,
-0.1345534324645996,
0.051090557128190994,
0.14032204449176788,
0.15159578621387482,
0.010045296512544155,
0.14676028490066528,
-0.03440885245800018,
-0.2747102379798889,
-0.029541965574026108,
0.03143243491649628,
-0.11304823309183121,
0.12588182091712952,
0.07217507809400558,
-0.15852253139019012,
0.06673406064510345,
-0.0031713303178548813,
-0.20497611165046692,
0.014160306192934513,
0.011043929494917393,
-0.04363783448934555,
0.13617965579032898,
-0.0008084694272838533,
0.1493104100227356,
0.002525205258280039,
0.10330737382173538,
-0.15103651583194733,
0.010942012071609497,
0.06781208515167236,
0.021949373185634613,
0.08779389411211014,
0.05164983123540878,
0.000546563882380724,
0.08894893527030945,
-0.11819927394390106,
0.06096767634153366,
-0.004256035201251507,
-0.14082591235637665,
-0.2655567228794098,
-0.0866238921880722,
-0.0005622187163680792,
0.07233669608831406,
0.0935276448726654,
-0.014570622704923153,
0.14500340819358826,
-0.09306493401527405,
0.09199502319097519,
0.25277888774871826,
-0.27160006761550903,
-0.07901203632354736,
0.030626637861132622,
-0.004160960204899311,
0.0487823449075222,
-0.10880097001791,
-0.016520265489816666,
0.04867525026202202,
0.04800749942660332,
0.1455308049917221,
-0.021015921607613564,
-0.054560668766498566,
0.024636754766106606,
-0.14491666853427887,
-0.009608007967472076,
0.056177716702222824,
0.029228253290057182,
-0.02449752204120159,
-0.03554113954305649,
-0.0700380802154541,
-0.1755874752998352,
-0.034834105521440506,
-0.016409950330853462,
0.05014912411570549,
-0.06321368366479874,
-0.10911795496940613,
0.014082765206694603,
-0.08437833935022354,
-0.06304608285427094,
-0.055342212319374084,
0.14243319630622864,
0.04155107960104942,
0.010061779990792274,
-0.016797784715890884,
0.10787681490182877,
-0.02737247198820114,
-0.14520280063152313,
0.048123233020305634,
0.03814459592103958,
-0.04395242780447006,
-0.05021674931049347,
-0.07042073458433151,
-0.0862237811088562,
-0.015259106643497944,
0.1163908913731575,
-0.06499446928501129,
0.04679450765252113,
0.03500794619321823,
0.03108951635658741,
-0.0984707772731781,
0.18124140799045563,
-0.07437078654766083,
-0.027856284752488136,
-0.007859647274017334,
0.07291962951421738,
0.013376588933169842,
-0.012127417139708996,
-0.10919401049613953,
0.019288118928670883,
0.08357833325862885,
0.0008069048053584993,
-0.07313715666532516,
0.057467926293611526,
-0.0499550998210907,
-0.013923256658017635,
-0.011051825247704983,
-0.09623032063245773,
0.05015331879258156,
-0.010408549569547176,
-0.09022709727287292,
-0.01753304712474346,
0.016299575567245483,
0.005763893481343985,
-0.012445990927517414,
0.17317244410514832,
-0.09991948306560516,
0.03975658863782883,
-0.1174575537443161,
-0.13391292095184326,
-0.000635624339338392,
-0.09351056814193726,
0.016646139323711395,
-0.06539323925971985,
-0.15389344096183777,
-0.017740989103913307,
0.07374097406864166,
-0.05543173849582672,
-0.03954514488577843,
-0.04460541158914566,
-0.06624060869216919,
0.015764936804771423,
-0.007117767818272114,
0.17700080573558807,
-0.053861312568187714,
0.1131817027926445,
0.05262216553092003,
0.0997750461101532,
-0.006517330184578896,
0.05396624282002449,
-0.08146236836910248,
0.017560023814439774,
-0.23885324597358704,
0.040368348360061646,
-0.042139291763305664,
0.053658876568078995,
-0.08240225166082382,
-0.12025009095668793,
0.005697694607079029,
-0.009532429277896881,
0.115414559841156,
0.09924120455980301,
-0.18843762576580048,
-0.08977352827787399,
0.18526829779148102,
-0.05031883344054222,
-0.0770651251077652,
0.13274137675762177,
-0.07109476625919342,
0.010533192194998264,
0.05119730159640312,
0.1501428782939911,
0.02857455238699913,
-0.1051999181509018,
0.03210704028606415,
-0.04136711359024048,
0.07299255579710007,
-0.03163779526948929,
0.05203934386372566,
-0.005656232126057148,
0.044352974742650986,
0.012380575761198997,
-0.005847411695867777,
0.06197474151849747,
-0.11366450041532516,
-0.08449151366949081,
-0.017088793218135834,
-0.09994720667600632,
0.07430731505155563,
0.07736814022064209,
0.085584856569767,
-0.11056511104106903,
-0.10332616418600082,
0.04536600038409233,
0.06278917193412781,
-0.05898711457848549,
0.03370204567909241,
-0.048297103494405746,
0.07598749548196793,
-0.0838051587343216,
-0.02346143126487732,
-0.19137722253799438,
-0.012961382046341896,
0.007235435303300619,
0.020459288731217384,
0.012809493578970432,
0.012570043094456196,
0.09301461279392242,
0.08462745696306229,
-0.07805852591991425,
-0.011158758774399757,
-0.04124234989285469,
-0.009922381490468979,
-0.14686085283756256,
-0.2257431298494339,
-0.03865473344922066,
-0.025504237040877342,
0.09967125952243805,
-0.21008577942848206,
0.017358677461743355,
-0.04712451621890068,
0.09587492048740387,
0.022692527621984482,
-0.024012140929698944,
-0.04361067712306976,
0.09359081834554672,
-0.018959976732730865,
-0.06063093990087509,
0.06398894637823105,
-0.0167207270860672,
-0.07140041887760162,
-0.06495233625173569,
-0.12336041778326035,
0.1581059694290161,
0.12637944519519806,
-0.11485712975263596,
-0.11146888136863708,
0.008138260804116726,
-0.06618260592222214,
-0.030522648245096207,
-0.05244194716215134,
0.04969404265284538,
0.17753247916698456,
0.002052542520686984,
0.15107682347297668,
-0.06413090974092484,
-0.042903874069452286,
0.03694143518805504,
-0.023909635841846466,
0.029734553769230843,
0.11862768977880478,
0.13408586382865906,
-0.047927506268024445,
0.13289126753807068,
0.14774027466773987,
-0.1083611324429512,
0.13999684154987335,
-0.02237151563167572,
-0.10011554509401321,
-0.03655225411057472,
-0.039781056344509125,
0.0156608484685421,
0.1289312094449997,
-0.1060812845826149,
-0.016899192705750465,
0.010492135770618916,
0.015327404253184795,
0.012789140455424786,
-0.22056880593299866,
-0.04742247983813286,
0.04771032556891441,
-0.020290780812501907,
-0.010936587117612362,
-0.018189221620559692,
0.0114847207441926,
0.11820195615291595,
0.007500159554183483,
-0.07027609646320343,
0.015117640607059002,
0.003978862427175045,
-0.05184721574187279,
0.1989661455154419,
-0.07634223997592926,
-0.1220659613609314,
-0.08052778244018555,
-0.08348441123962402,
-0.032341551035642624,
0.014563257806003094,
0.037018489092588425,
-0.12195698171854019,
-0.020425863564014435,
-0.04866141080856323,
0.022946147248148918,
-0.0003791400813497603,
0.05759007856249809,
0.014259029179811478,
-0.020745836198329926,
0.07435720413923264,
-0.0930844321846962,
-0.0024290140718221664,
-0.06773820519447327,
-0.049871332943439484,
0.06338903307914734,
0.06895103305578232,
0.11880655586719513,
0.15076258778572083,
-0.025793062523007393,
0.021616848185658455,
-0.0273048784583807,
0.22349104285240173,
-0.0793321430683136,
-0.024907562881708145,
0.09577742964029312,
-0.013394133187830448,
0.057567328214645386,
0.10918793827295303,
0.0712202787399292,
-0.09871707856655121,
0.014159444719552994,
0.05686797574162483,
-0.04344501718878746,
-0.18711987137794495,
-0.024212351068854332,
-0.05607552081346512,
-0.03536594659090042,
0.1055862084031105,
-0.00009309783490607515,
0.016248730942606926,
0.04901488870382309,
0.05808071419596672,
0.07403356581926346,
-0.06596488505601883,
0.04724251106381416,
0.0627499669790268,
0.04123375192284584,
0.13276225328445435,
-0.023872310295701027,
-0.08897559344768524,
0.019857820123434067,
-0.03325432166457176,
0.22956004738807678,
-0.022717611864209175,
0.08989213407039642,
0.041750628501176834,
0.17441828548908234,
-0.014494956471025944,
0.09912379831075668,
-0.005970174912363291,
-0.06528693437576294,
-0.011960179544985294,
-0.045381028205156326,
-0.021254850551486015,
0.01724601536989212,
-0.005062554031610489,
0.053925711661577225,
-0.1314612179994583,
0.007314831018447876,
0.04907446727156639,
0.26376527547836304,
0.07733184844255447,
-0.32287508249282837,
-0.08254467695951462,
-0.014005370438098907,
-0.013068098574876785,
0.0014165597967803478,
-0.0004950655275024474,
0.12187855690717697,
-0.07709652930498123,
0.040606871247291565,
-0.08150535076856613,
0.08160386979579926,
-0.014081800356507301,
0.04387514665722847,
0.070524200797081,
0.12576235830783844,
-0.012219688855111599,
0.05467621237039566,
-0.2990266680717468,
0.30456477403640747,
0.013256540521979332,
0.07846721261739731,
-0.07852780073881149,
0.0008126749307848513,
0.032355163246393204,
0.01180318184196949,
0.062088098376989365,
-0.016697948798537254,
-0.04247192665934563,
-0.20402030646800995,
-0.05519448220729828,
0.01833166368305683,
0.11460407823324203,
-0.027952047064900398,
0.11255229264497757,
-0.005555315408855677,
-0.012940406799316406,
0.07715166360139847,
0.014629393815994263,
-0.04716721922159195,
-0.07800276577472687,
-0.00525699881836772,
-0.0016711234347894788,
-0.10820241272449493,
-0.05682846158742905,
-0.1379770189523697,
-0.11915187537670135,
0.16400952637195587,
0.030716989189386368,
-0.01423563901335001,
-0.12459772080183029,
0.13967755436897278,
0.09796416759490967,
-0.07884971052408218,
0.037639815360307693,
0.016888251528143883,
0.054467253386974335,
0.02265656180679798,
-0.04855307564139366,
0.13463975489139557,
-0.06033257767558098,
-0.1682402789592743,
-0.08416552096605301,
0.09053535759449005,
0.050855498760938644,
0.07435273379087448,
-0.03703262284398079,
0.03808271512389183,
-0.01014847494661808,
-0.07332565635442734,
0.07269064337015152,
-0.04404602572321892,
0.10273142904043198,
0.035449713468551636,
-0.04262813925743103,
0.03631634637713432,
-0.04772915318608284,
-0.016142934560775757,
0.17297819256782532,
0.2759019732475281,
-0.10038059204816818,
0.00567920645698905,
0.02976960875093937,
-0.05525039881467819,
-0.19129489362239838,
0.07931093871593475,
0.08056899160146713,
0.022099969908595085,
0.05453373119235039,
-0.182546928524971,
0.11702758073806763,
0.08633586764335632,
-0.000801188696641475,
0.11900481581687927,
-0.3060283064842224,
-0.13659781217575073,
0.1031385064125061,
0.14575044810771942,
0.11032295227050781,
-0.13926982879638672,
-0.0001931757724378258,
-0.006863278802484274,
-0.07810457795858383,
0.06810558587312698,
-0.07994456589221954,
0.12808242440223694,
-0.02092280238866806,
0.0865321084856987,
0.017708363011479378,
-0.0794229730963707,
0.10218943655490875,
-0.012089531868696213,
0.10586988180875778,
-0.05880697816610336,
-0.029940735548734665,
0.050418298691511154,
-0.03892137482762337,
-0.013722129166126251,
-0.05082039535045624,
0.0161112230271101,
-0.06222406029701233,
-0.018900947645306587,
-0.09019938856363297,
0.028323963284492493,
-0.03868551924824715,
-0.07269427180290222,
-0.026590976864099503,
0.045982476323843,
0.059748608618974686,
-0.01886732690036297,
0.10417661815881729,
0.01168170664459467,
0.17519184947013855,
0.08534922450780869,
0.04456533119082451,
-0.04821070656180382,
-0.05753270909190178,
0.013395381160080433,
-0.0026869173161685467,
0.051548607647418976,
-0.1280219703912735,
0.0175346527248621,
0.1568804681301117,
0.027569491416215897,
0.12836863100528717,
0.08618514239788055,
-0.03738906979560852,
0.013147474266588688,
0.06371741741895676,
-0.16315573453903198,
-0.06566715240478516,
0.017663100734353065,
-0.08809445798397064,
-0.1207600086927414,
0.033427171409130096,
0.07987688481807709,
-0.05699245631694794,
-0.0076500289142131805,
-0.0063487146981060505,
0.006290177349001169,
-0.06284739822149277,
0.23587967455387115,
0.056996893137693405,
0.05465458706021309,
-0.09452871978282928,
0.05665590241551399,
0.05154642462730408,
-0.11366696655750275,
0.021581850945949554,
0.079635851085186,
-0.06152266263961792,
-0.014465127140283585,
0.10488177835941315,
0.1968449503183365,
-0.013440988026559353,
-0.0054796128533780575,
-0.16434459388256073,
-0.09665723145008087,
0.08561552315950394,
0.15521714091300964,
0.09253421425819397,
-0.017232870683073997,
-0.055882032960653305,
0.031011460348963737,
-0.14878462255001068,
0.09520716965198517,
0.06726683676242828,
0.07136745750904083,
-0.12038501352071762,
0.1990194171667099,
-0.0051663583144545555,
0.04405423253774643,
-0.024331776425242424,
0.04008607938885689,
-0.11652570217847824,
0.015863044187426567,
-0.11564862728118896,
-0.060366712510585785,
-0.02180652692914009,
-0.018271485343575478,
-0.014381935819983482,
-0.05820445716381073,
-0.055890996009111404,
0.00420782808214426,
-0.12562668323516846,
-0.03281093388795853,
0.039637405425310135,
0.008765069767832756,
-0.11160936206579208,
-0.051310472190380096,
0.01662592589855194,
-0.06171445548534393,
0.06703175604343414,
0.04363629221916199,
0.027895962819457054,
0.044612254947423935,
-0.1283077448606491,
-0.007823166437447071,
0.04390239715576172,
-0.01186966709792614,
0.09323332458734512,
-0.08907467126846313,
-0.00903647392988205,
-0.030822429805994034,
0.08275070786476135,
0.013292979449033737,
0.06801602989435196,
-0.1345728635787964,
0.013507378287613392,
-0.022656351327896118,
-0.09978411346673965,
-0.05471692234277725,
0.03564799949526787,
0.05546017736196518,
0.023490747436881065,
0.17030291259288788,
-0.09700122475624084,
0.07151749730110168,
-0.22329704463481903,
-0.016720809042453766,
-0.01487321499735117,
-0.09497477859258652,
-0.07004618644714355,
-0.044059544801712036,
0.08975284546613693,
-0.06656767427921295,
0.11632555723190308,
0.034461308270692825,
0.06424900144338608,
0.03196870908141136,
-0.06367176026105881,
0.01648540422320366,
0.03361836448311806,
0.16393661499023438,
0.021607838571071625,
-0.05852251499891281,
0.06849197298288345,
0.08097776025533676,
0.11573823541402817,
0.17554594576358795,
0.2329140454530716,
0.139560729265213,
0.03977411240339279,
0.08319123834371567,
0.018019532784819603,
-0.09095204621553421,
-0.1752091646194458,
0.03722897917032242,
-0.057875171303749084,
0.11231468617916107,
-0.025150874629616737,
0.17991666495800018,
0.06057266145944595,
-0.16727282106876373,
0.051233306527137756,
-0.06795750558376312,
-0.10019414871931076,
-0.1118297204375267,
-0.03199024125933647,
-0.07734530419111252,
-0.12880074977874756,
0.007620187941938639,
-0.10035219043493271,
0.028118841350078583,
0.09758386760950089,
0.01569378934800625,
-0.012610076926648617,
0.18937718868255615,
0.0470820814371109,
0.05404576659202576,
0.05985728278756142,
0.027772145345807076,
-0.009149732068181038,
-0.05229007080197334,
-0.06296943873167038,
-0.027318092063069344,
-0.023664088919758797,
0.03589480742812157,
-0.08069787919521332,
-0.08866633474826813,
0.048067107796669006,
0.008412407711148262,
-0.11026046425104141,
0.01963319070637226,
0.01560311671346426,
0.08233935385942459,
0.04511743783950806,
0.0006048186914995313,
0.022354360669851303,
-0.04496821388602257,
0.1960984766483307,
-0.08852297812700272,
-0.0535680428147316,
-0.11052834242582321,
0.28126758337020874,
0.04049054905772209,
-0.0053489175625145435,
0.017960814759135246,
-0.07390890270471573,
-0.00034230249002575874,
0.22394973039627075,
0.220890611410141,
-0.10580507665872574,
-0.004971591290086508,
0.01682410016655922,
-0.013244702480733395,
-0.03766844794154167,
0.10838937759399414,
0.13329289853572845,
0.037523847073316574,
-0.10190685093402863,
-0.05207188427448273,
-0.06350873410701752,
-0.025801312178373337,
-0.03979915753006935,
0.035402607172727585,
0.06825242191553116,
0.031015973538160324,
-0.044298943132162094,
0.049945902079343796,
-0.04128504544496536,
-0.1277194768190384,
0.08678866177797318,
-0.2411750853061676,
-0.1850801259279251,
-0.005817885510623455,
0.07862131297588348,
0.0043832226656377316,
0.07801113277673721,
-0.02729618549346924,
-0.006687674205750227,
0.06421096622943878,
-0.02462306246161461,
-0.04393292963504791,
-0.10588269680738449,
0.09854627400636673,
-0.127890482544899,
0.20263999700546265,
-0.04912785068154335,
0.041361257433891296,
0.13283927738666534,
0.06936367601156235,
-0.05967895686626434,
0.044694770127534866,
0.05447901785373688,
-0.09208963811397552,
0.010530120693147182,
0.14133808016777039,
-0.04558129981160164,
0.0468674972653389,
0.04326999932527542,
-0.13476347923278809,
0.03401297703385353,
-0.10657624900341034,
-0.049543771892786026,
-0.03226077929139137,
-0.027653438970446587,
-0.055608198046684265,
0.1258496344089508,
0.2504115104675293,
-0.018798386678099632,
0.02613183856010437,
-0.07375986874103546,
0.0008245318895205855,
0.059163205325603485,
0.06460727751255035,
-0.09482689946889877,
-0.25203603506088257,
0.02945922501385212,
0.057396337389945984,
-0.024989619851112366,
-0.24953031539916992,
-0.09259393811225891,
0.025586673989892006,
-0.0847366601228714,
-0.09106212854385376,
0.093185655772686,
0.0509665422141552,
0.072184257209301,
-0.058051034808158875,
-0.09076467156410217,
-0.07735837250947952,
0.1573055535554886,
-0.16625376045703888,
-0.0852835476398468
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly128
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2326 | 1.0 | 871 | 2.1509 |
| 2.1375 | 2.0 | 1742 | 2.1089 |
| 2.0442 | 3.0 | 2613 | 2.0655 |
| 2.0116 | 4.0 | 3484 | 2.0433 |
| 1.9346 | 5.0 | 4355 | 2.0134 |
| 1.9056 | 6.0 | 5226 | 1.9956 |
| 1.8295 | 7.0 | 6097 | 2.0287 |
| 1.8204 | 8.0 | 6968 | 2.0173 |
| 1.7928 | 9.0 | 7839 | 2.0251 |
| 1.7357 | 10.0 | 8710 | 2.0148 |
| 1.7318 | 11.0 | 9581 | 1.9274 |
| 1.7311 | 12.0 | 10452 | 1.9314 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly128", "results": []}]} | fill-mask | Jeska/BertjeWDialDataALLQonly128 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataALLQonly128
==========================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 2.0364
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 12.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
127,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.11445117741823196,
0.06728150695562363,
-0.0023989879991859198,
0.12324590981006622,
0.17799827456474304,
0.02587374858558178,
0.10445954650640488,
0.11768180876970291,
-0.1345534324645996,
0.051090557128190994,
0.14032204449176788,
0.15159578621387482,
0.010045296512544155,
0.14676028490066528,
-0.03440885245800018,
-0.2747102379798889,
-0.029541965574026108,
0.03143243491649628,
-0.11304823309183121,
0.12588182091712952,
0.07217507809400558,
-0.15852253139019012,
0.06673406064510345,
-0.0031713303178548813,
-0.20497611165046692,
0.014160306192934513,
0.011043929494917393,
-0.04363783448934555,
0.13617965579032898,
-0.0008084694272838533,
0.1493104100227356,
0.002525205258280039,
0.10330737382173538,
-0.15103651583194733,
0.010942012071609497,
0.06781208515167236,
0.021949373185634613,
0.08779389411211014,
0.05164983123540878,
0.000546563882380724,
0.08894893527030945,
-0.11819927394390106,
0.06096767634153366,
-0.004256035201251507,
-0.14082591235637665,
-0.2655567228794098,
-0.0866238921880722,
-0.0005622187163680792,
0.07233669608831406,
0.0935276448726654,
-0.014570622704923153,
0.14500340819358826,
-0.09306493401527405,
0.09199502319097519,
0.25277888774871826,
-0.27160006761550903,
-0.07901203632354736,
0.030626637861132622,
-0.004160960204899311,
0.0487823449075222,
-0.10880097001791,
-0.016520265489816666,
0.04867525026202202,
0.04800749942660332,
0.1455308049917221,
-0.021015921607613564,
-0.054560668766498566,
0.024636754766106606,
-0.14491666853427887,
-0.009608007967472076,
0.056177716702222824,
0.029228253290057182,
-0.02449752204120159,
-0.03554113954305649,
-0.0700380802154541,
-0.1755874752998352,
-0.034834105521440506,
-0.016409950330853462,
0.05014912411570549,
-0.06321368366479874,
-0.10911795496940613,
0.014082765206694603,
-0.08437833935022354,
-0.06304608285427094,
-0.055342212319374084,
0.14243319630622864,
0.04155107960104942,
0.010061779990792274,
-0.016797784715890884,
0.10787681490182877,
-0.02737247198820114,
-0.14520280063152313,
0.048123233020305634,
0.03814459592103958,
-0.04395242780447006,
-0.05021674931049347,
-0.07042073458433151,
-0.0862237811088562,
-0.015259106643497944,
0.1163908913731575,
-0.06499446928501129,
0.04679450765252113,
0.03500794619321823,
0.03108951635658741,
-0.0984707772731781,
0.18124140799045563,
-0.07437078654766083,
-0.027856284752488136,
-0.007859647274017334,
0.07291962951421738,
0.013376588933169842,
-0.012127417139708996,
-0.10919401049613953,
0.019288118928670883,
0.08357833325862885,
0.0008069048053584993,
-0.07313715666532516,
0.057467926293611526,
-0.0499550998210907,
-0.013923256658017635,
-0.011051825247704983,
-0.09623032063245773,
0.05015331879258156,
-0.010408549569547176,
-0.09022709727287292,
-0.01753304712474346,
0.016299575567245483,
0.005763893481343985,
-0.012445990927517414,
0.17317244410514832,
-0.09991948306560516,
0.03975658863782883,
-0.1174575537443161,
-0.13391292095184326,
-0.000635624339338392,
-0.09351056814193726,
0.016646139323711395,
-0.06539323925971985,
-0.15389344096183777,
-0.017740989103913307,
0.07374097406864166,
-0.05543173849582672,
-0.03954514488577843,
-0.04460541158914566,
-0.06624060869216919,
0.015764936804771423,
-0.007117767818272114,
0.17700080573558807,
-0.053861312568187714,
0.1131817027926445,
0.05262216553092003,
0.0997750461101532,
-0.006517330184578896,
0.05396624282002449,
-0.08146236836910248,
0.017560023814439774,
-0.23885324597358704,
0.040368348360061646,
-0.042139291763305664,
0.053658876568078995,
-0.08240225166082382,
-0.12025009095668793,
0.005697694607079029,
-0.009532429277896881,
0.115414559841156,
0.09924120455980301,
-0.18843762576580048,
-0.08977352827787399,
0.18526829779148102,
-0.05031883344054222,
-0.0770651251077652,
0.13274137675762177,
-0.07109476625919342,
0.010533192194998264,
0.05119730159640312,
0.1501428782939911,
0.02857455238699913,
-0.1051999181509018,
0.03210704028606415,
-0.04136711359024048,
0.07299255579710007,
-0.03163779526948929,
0.05203934386372566,
-0.005656232126057148,
0.044352974742650986,
0.012380575761198997,
-0.005847411695867777,
0.06197474151849747,
-0.11366450041532516,
-0.08449151366949081,
-0.017088793218135834,
-0.09994720667600632,
0.07430731505155563,
0.07736814022064209,
0.085584856569767,
-0.11056511104106903,
-0.10332616418600082,
0.04536600038409233,
0.06278917193412781,
-0.05898711457848549,
0.03370204567909241,
-0.048297103494405746,
0.07598749548196793,
-0.0838051587343216,
-0.02346143126487732,
-0.19137722253799438,
-0.012961382046341896,
0.007235435303300619,
0.020459288731217384,
0.012809493578970432,
0.012570043094456196,
0.09301461279392242,
0.08462745696306229,
-0.07805852591991425,
-0.011158758774399757,
-0.04124234989285469,
-0.009922381490468979,
-0.14686085283756256,
-0.2257431298494339,
-0.03865473344922066,
-0.025504237040877342,
0.09967125952243805,
-0.21008577942848206,
0.017358677461743355,
-0.04712451621890068,
0.09587492048740387,
0.022692527621984482,
-0.024012140929698944,
-0.04361067712306976,
0.09359081834554672,
-0.018959976732730865,
-0.06063093990087509,
0.06398894637823105,
-0.0167207270860672,
-0.07140041887760162,
-0.06495233625173569,
-0.12336041778326035,
0.1581059694290161,
0.12637944519519806,
-0.11485712975263596,
-0.11146888136863708,
0.008138260804116726,
-0.06618260592222214,
-0.030522648245096207,
-0.05244194716215134,
0.04969404265284538,
0.17753247916698456,
0.002052542520686984,
0.15107682347297668,
-0.06413090974092484,
-0.042903874069452286,
0.03694143518805504,
-0.023909635841846466,
0.029734553769230843,
0.11862768977880478,
0.13408586382865906,
-0.047927506268024445,
0.13289126753807068,
0.14774027466773987,
-0.1083611324429512,
0.13999684154987335,
-0.02237151563167572,
-0.10011554509401321,
-0.03655225411057472,
-0.039781056344509125,
0.0156608484685421,
0.1289312094449997,
-0.1060812845826149,
-0.016899192705750465,
0.010492135770618916,
0.015327404253184795,
0.012789140455424786,
-0.22056880593299866,
-0.04742247983813286,
0.04771032556891441,
-0.020290780812501907,
-0.010936587117612362,
-0.018189221620559692,
0.0114847207441926,
0.11820195615291595,
0.007500159554183483,
-0.07027609646320343,
0.015117640607059002,
0.003978862427175045,
-0.05184721574187279,
0.1989661455154419,
-0.07634223997592926,
-0.1220659613609314,
-0.08052778244018555,
-0.08348441123962402,
-0.032341551035642624,
0.014563257806003094,
0.037018489092588425,
-0.12195698171854019,
-0.020425863564014435,
-0.04866141080856323,
0.022946147248148918,
-0.0003791400813497603,
0.05759007856249809,
0.014259029179811478,
-0.020745836198329926,
0.07435720413923264,
-0.0930844321846962,
-0.0024290140718221664,
-0.06773820519447327,
-0.049871332943439484,
0.06338903307914734,
0.06895103305578232,
0.11880655586719513,
0.15076258778572083,
-0.025793062523007393,
0.021616848185658455,
-0.0273048784583807,
0.22349104285240173,
-0.0793321430683136,
-0.024907562881708145,
0.09577742964029312,
-0.013394133187830448,
0.057567328214645386,
0.10918793827295303,
0.0712202787399292,
-0.09871707856655121,
0.014159444719552994,
0.05686797574162483,
-0.04344501718878746,
-0.18711987137794495,
-0.024212351068854332,
-0.05607552081346512,
-0.03536594659090042,
0.1055862084031105,
-0.00009309783490607515,
0.016248730942606926,
0.04901488870382309,
0.05808071419596672,
0.07403356581926346,
-0.06596488505601883,
0.04724251106381416,
0.0627499669790268,
0.04123375192284584,
0.13276225328445435,
-0.023872310295701027,
-0.08897559344768524,
0.019857820123434067,
-0.03325432166457176,
0.22956004738807678,
-0.022717611864209175,
0.08989213407039642,
0.041750628501176834,
0.17441828548908234,
-0.014494956471025944,
0.09912379831075668,
-0.005970174912363291,
-0.06528693437576294,
-0.011960179544985294,
-0.045381028205156326,
-0.021254850551486015,
0.01724601536989212,
-0.005062554031610489,
0.053925711661577225,
-0.1314612179994583,
0.007314831018447876,
0.04907446727156639,
0.26376527547836304,
0.07733184844255447,
-0.32287508249282837,
-0.08254467695951462,
-0.014005370438098907,
-0.013068098574876785,
0.0014165597967803478,
-0.0004950655275024474,
0.12187855690717697,
-0.07709652930498123,
0.040606871247291565,
-0.08150535076856613,
0.08160386979579926,
-0.014081800356507301,
0.04387514665722847,
0.070524200797081,
0.12576235830783844,
-0.012219688855111599,
0.05467621237039566,
-0.2990266680717468,
0.30456477403640747,
0.013256540521979332,
0.07846721261739731,
-0.07852780073881149,
0.0008126749307848513,
0.032355163246393204,
0.01180318184196949,
0.062088098376989365,
-0.016697948798537254,
-0.04247192665934563,
-0.20402030646800995,
-0.05519448220729828,
0.01833166368305683,
0.11460407823324203,
-0.027952047064900398,
0.11255229264497757,
-0.005555315408855677,
-0.012940406799316406,
0.07715166360139847,
0.014629393815994263,
-0.04716721922159195,
-0.07800276577472687,
-0.00525699881836772,
-0.0016711234347894788,
-0.10820241272449493,
-0.05682846158742905,
-0.1379770189523697,
-0.11915187537670135,
0.16400952637195587,
0.030716989189386368,
-0.01423563901335001,
-0.12459772080183029,
0.13967755436897278,
0.09796416759490967,
-0.07884971052408218,
0.037639815360307693,
0.016888251528143883,
0.054467253386974335,
0.02265656180679798,
-0.04855307564139366,
0.13463975489139557,
-0.06033257767558098,
-0.1682402789592743,
-0.08416552096605301,
0.09053535759449005,
0.050855498760938644,
0.07435273379087448,
-0.03703262284398079,
0.03808271512389183,
-0.01014847494661808,
-0.07332565635442734,
0.07269064337015152,
-0.04404602572321892,
0.10273142904043198,
0.035449713468551636,
-0.04262813925743103,
0.03631634637713432,
-0.04772915318608284,
-0.016142934560775757,
0.17297819256782532,
0.2759019732475281,
-0.10038059204816818,
0.00567920645698905,
0.02976960875093937,
-0.05525039881467819,
-0.19129489362239838,
0.07931093871593475,
0.08056899160146713,
0.022099969908595085,
0.05453373119235039,
-0.182546928524971,
0.11702758073806763,
0.08633586764335632,
-0.000801188696641475,
0.11900481581687927,
-0.3060283064842224,
-0.13659781217575073,
0.1031385064125061,
0.14575044810771942,
0.11032295227050781,
-0.13926982879638672,
-0.0001931757724378258,
-0.006863278802484274,
-0.07810457795858383,
0.06810558587312698,
-0.07994456589221954,
0.12808242440223694,
-0.02092280238866806,
0.0865321084856987,
0.017708363011479378,
-0.0794229730963707,
0.10218943655490875,
-0.012089531868696213,
0.10586988180875778,
-0.05880697816610336,
-0.029940735548734665,
0.050418298691511154,
-0.03892137482762337,
-0.013722129166126251,
-0.05082039535045624,
0.0161112230271101,
-0.06222406029701233,
-0.018900947645306587,
-0.09019938856363297,
0.028323963284492493,
-0.03868551924824715,
-0.07269427180290222,
-0.026590976864099503,
0.045982476323843,
0.059748608618974686,
-0.01886732690036297,
0.10417661815881729,
0.01168170664459467,
0.17519184947013855,
0.08534922450780869,
0.04456533119082451,
-0.04821070656180382,
-0.05753270909190178,
0.013395381160080433,
-0.0026869173161685467,
0.051548607647418976,
-0.1280219703912735,
0.0175346527248621,
0.1568804681301117,
0.027569491416215897,
0.12836863100528717,
0.08618514239788055,
-0.03738906979560852,
0.013147474266588688,
0.06371741741895676,
-0.16315573453903198,
-0.06566715240478516,
0.017663100734353065,
-0.08809445798397064,
-0.1207600086927414,
0.033427171409130096,
0.07987688481807709,
-0.05699245631694794,
-0.0076500289142131805,
-0.0063487146981060505,
0.006290177349001169,
-0.06284739822149277,
0.23587967455387115,
0.056996893137693405,
0.05465458706021309,
-0.09452871978282928,
0.05665590241551399,
0.05154642462730408,
-0.11366696655750275,
0.021581850945949554,
0.079635851085186,
-0.06152266263961792,
-0.014465127140283585,
0.10488177835941315,
0.1968449503183365,
-0.013440988026559353,
-0.0054796128533780575,
-0.16434459388256073,
-0.09665723145008087,
0.08561552315950394,
0.15521714091300964,
0.09253421425819397,
-0.017232870683073997,
-0.055882032960653305,
0.031011460348963737,
-0.14878462255001068,
0.09520716965198517,
0.06726683676242828,
0.07136745750904083,
-0.12038501352071762,
0.1990194171667099,
-0.0051663583144545555,
0.04405423253774643,
-0.024331776425242424,
0.04008607938885689,
-0.11652570217847824,
0.015863044187426567,
-0.11564862728118896,
-0.060366712510585785,
-0.02180652692914009,
-0.018271485343575478,
-0.014381935819983482,
-0.05820445716381073,
-0.055890996009111404,
0.00420782808214426,
-0.12562668323516846,
-0.03281093388795853,
0.039637405425310135,
0.008765069767832756,
-0.11160936206579208,
-0.051310472190380096,
0.01662592589855194,
-0.06171445548534393,
0.06703175604343414,
0.04363629221916199,
0.027895962819457054,
0.044612254947423935,
-0.1283077448606491,
-0.007823166437447071,
0.04390239715576172,
-0.01186966709792614,
0.09323332458734512,
-0.08907467126846313,
-0.00903647392988205,
-0.030822429805994034,
0.08275070786476135,
0.013292979449033737,
0.06801602989435196,
-0.1345728635787964,
0.013507378287613392,
-0.022656351327896118,
-0.09978411346673965,
-0.05471692234277725,
0.03564799949526787,
0.05546017736196518,
0.023490747436881065,
0.17030291259288788,
-0.09700122475624084,
0.07151749730110168,
-0.22329704463481903,
-0.016720809042453766,
-0.01487321499735117,
-0.09497477859258652,
-0.07004618644714355,
-0.044059544801712036,
0.08975284546613693,
-0.06656767427921295,
0.11632555723190308,
0.034461308270692825,
0.06424900144338608,
0.03196870908141136,
-0.06367176026105881,
0.01648540422320366,
0.03361836448311806,
0.16393661499023438,
0.021607838571071625,
-0.05852251499891281,
0.06849197298288345,
0.08097776025533676,
0.11573823541402817,
0.17554594576358795,
0.2329140454530716,
0.139560729265213,
0.03977411240339279,
0.08319123834371567,
0.018019532784819603,
-0.09095204621553421,
-0.1752091646194458,
0.03722897917032242,
-0.057875171303749084,
0.11231468617916107,
-0.025150874629616737,
0.17991666495800018,
0.06057266145944595,
-0.16727282106876373,
0.051233306527137756,
-0.06795750558376312,
-0.10019414871931076,
-0.1118297204375267,
-0.03199024125933647,
-0.07734530419111252,
-0.12880074977874756,
0.007620187941938639,
-0.10035219043493271,
0.028118841350078583,
0.09758386760950089,
0.01569378934800625,
-0.012610076926648617,
0.18937718868255615,
0.0470820814371109,
0.05404576659202576,
0.05985728278756142,
0.027772145345807076,
-0.009149732068181038,
-0.05229007080197334,
-0.06296943873167038,
-0.027318092063069344,
-0.023664088919758797,
0.03589480742812157,
-0.08069787919521332,
-0.08866633474826813,
0.048067107796669006,
0.008412407711148262,
-0.11026046425104141,
0.01963319070637226,
0.01560311671346426,
0.08233935385942459,
0.04511743783950806,
0.0006048186914995313,
0.022354360669851303,
-0.04496821388602257,
0.1960984766483307,
-0.08852297812700272,
-0.0535680428147316,
-0.11052834242582321,
0.28126758337020874,
0.04049054905772209,
-0.0053489175625145435,
0.017960814759135246,
-0.07390890270471573,
-0.00034230249002575874,
0.22394973039627075,
0.220890611410141,
-0.10580507665872574,
-0.004971591290086508,
0.01682410016655922,
-0.013244702480733395,
-0.03766844794154167,
0.10838937759399414,
0.13329289853572845,
0.037523847073316574,
-0.10190685093402863,
-0.05207188427448273,
-0.06350873410701752,
-0.025801312178373337,
-0.03979915753006935,
0.035402607172727585,
0.06825242191553116,
0.031015973538160324,
-0.044298943132162094,
0.049945902079343796,
-0.04128504544496536,
-0.1277194768190384,
0.08678866177797318,
-0.2411750853061676,
-0.1850801259279251,
-0.005817885510623455,
0.07862131297588348,
0.0043832226656377316,
0.07801113277673721,
-0.02729618549346924,
-0.006687674205750227,
0.06421096622943878,
-0.02462306246161461,
-0.04393292963504791,
-0.10588269680738449,
0.09854627400636673,
-0.127890482544899,
0.20263999700546265,
-0.04912785068154335,
0.041361257433891296,
0.13283927738666534,
0.06936367601156235,
-0.05967895686626434,
0.044694770127534866,
0.05447901785373688,
-0.09208963811397552,
0.010530120693147182,
0.14133808016777039,
-0.04558129981160164,
0.0468674972653389,
0.04326999932527542,
-0.13476347923278809,
0.03401297703385353,
-0.10657624900341034,
-0.049543771892786026,
-0.03226077929139137,
-0.027653438970446587,
-0.055608198046684265,
0.1258496344089508,
0.2504115104675293,
-0.018798386678099632,
0.02613183856010437,
-0.07375986874103546,
0.0008245318895205855,
0.059163205325603485,
0.06460727751255035,
-0.09482689946889877,
-0.25203603506088257,
0.02945922501385212,
0.057396337389945984,
-0.024989619851112366,
-0.24953031539916992,
-0.09259393811225891,
0.025586673989892006,
-0.0847366601228714,
-0.09106212854385376,
0.093185655772686,
0.0509665422141552,
0.072184257209301,
-0.058051034808158875,
-0.09076467156410217,
-0.07735837250947952,
0.1573055535554886,
-0.16625376045703888,
-0.0852835476398468
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataQA20k
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9208
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1713 | 1.0 | 1542 | 2.0098 |
| 2.0736 | 2.0 | 3084 | 1.9853 |
| 2.0543 | 3.0 | 4626 | 2.0134 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataQA20k", "results": []}]} | fill-mask | Jeska/BertjeWDialDataQA20k | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| BertjeWDialDataQA20k
====================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.9208
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
126,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.10797874629497528,
0.06169113516807556,
-0.0023454641923308372,
0.12076464295387268,
0.17719529569149017,
0.024387231096625328,
0.10634475946426392,
0.12132340669631958,
-0.1390615701675415,
0.04866985231637955,
0.1400878131389618,
0.14877435564994812,
0.010645112954080105,
0.14237560331821442,
-0.027202602475881577,
-0.28121569752693176,
-0.02567976340651512,
0.0343296118080616,
-0.1121198907494545,
0.12550215423107147,
0.07127565890550613,
-0.1561807543039322,
0.0683969184756279,
-0.0009880892466753721,
-0.2010541707277298,
0.013970608823001385,
0.008662424981594086,
-0.04473037272691727,
0.13643383979797363,
-0.0029590525664389133,
0.14686353504657745,
0.0050791907124221325,
0.10413065552711487,
-0.15809477865695953,
0.01103929616510868,
0.06803859770298004,
0.02056722156703472,
0.08669605106115341,
0.048524267971515656,
0.00385455135256052,
0.08237160742282867,
-0.11162851750850677,
0.062879778444767,
-0.0016940705245360732,
-0.14133143424987793,
-0.26922154426574707,
-0.0843936875462532,
0.002762342570349574,
0.07363652437925339,
0.09380175173282623,
-0.014048061333596706,
0.14759430289268494,
-0.09325283765792847,
0.09054585546255112,
0.2591034471988678,
-0.27466344833374023,
-0.07931113988161087,
0.028666673228144646,
0.0025390724185854197,
0.04532751813530922,
-0.10710560530424118,
-0.01853179559111595,
0.04955476149916649,
0.05010986328125,
0.14801855385303497,
-0.020228836685419083,
-0.04507004842162132,
0.022526349872350693,
-0.14553479850292206,
-0.009800284169614315,
0.05331217125058174,
0.02770044282078743,
-0.026910005137324333,
-0.03793012723326683,
-0.06962493807077408,
-0.17905084788799286,
-0.035173624753952026,
-0.018084583804011345,
0.04972047731280327,
-0.06128569319844246,
-0.1128302589058876,
0.016023442149162292,
-0.08453226089477539,
-0.06379072368144989,
-0.05153554305434227,
0.14902664721012115,
0.0445733480155468,
0.008280063979327679,
-0.013753262348473072,
0.11233430355787277,
-0.023241017013788223,
-0.14853228628635406,
0.04624834656715393,
0.03827420622110367,
-0.039573535323143005,
-0.0513654462993145,
-0.06870389729738235,
-0.08747263997793198,
-0.01586701162159443,
0.12323737889528275,
-0.05994841456413269,
0.049226343631744385,
0.03445876017212868,
0.03302353248000145,
-0.09654192626476288,
0.18420453369617462,
-0.07194212079048157,
-0.021945033222436905,
-0.009259546175599098,
0.07767868041992188,
0.01592281088232994,
-0.01338940765708685,
-0.11324459314346313,
0.023672446608543396,
0.0854407548904419,
0.0036772883031517267,
-0.07255616039037704,
0.06076803803443909,
-0.04730862006545067,
-0.014591990038752556,
-0.008289347402751446,
-0.09503985196352005,
0.04882564768195152,
-0.01108482014387846,
-0.08524631708860397,
-0.016562042757868767,
0.015965480357408524,
0.0055153025314211845,
-0.0119066396728158,
0.17316105961799622,
-0.10030139237642288,
0.036547377705574036,
-0.11688222736120224,
-0.13181014358997345,
0.0027584864292293787,
-0.08679424971342087,
0.01525078248232603,
-0.06930187344551086,
-0.14625398814678192,
-0.012898043729364872,
0.07707501947879791,
-0.055282093584537506,
-0.041075289249420166,
-0.040850330144166946,
-0.0684027299284935,
0.015106426551938057,
-0.008310173638164997,
0.16847525537014008,
-0.05515706166625023,
0.11422621458768845,
0.05749179422855377,
0.0967295691370964,
-0.0007399420137517154,
0.0526483952999115,
-0.08277179300785065,
0.02054661139845848,
-0.24753403663635254,
0.03410419449210167,
-0.04239153861999512,
0.0513862743973732,
-0.08190269023180008,
-0.12178321182727814,
0.006497851572930813,
-0.008326001465320587,
0.11413650959730148,
0.09928646683692932,
-0.18347175419330597,
-0.09283352643251419,
0.1843269169330597,
-0.05476655438542366,
-0.08004771173000336,
0.13631980121135712,
-0.06849414110183716,
0.010734260082244873,
0.048920515924692154,
0.14523957669734955,
0.02890586480498314,
-0.10696767270565033,
0.03044552356004715,
-0.04365900158882141,
0.07697634398937225,
-0.025319579988718033,
0.052444346249103546,
-0.0025676388759166002,
0.04682108759880066,
0.014279721304774284,
-0.009211772121489048,
0.06329537183046341,
-0.11168914288282394,
-0.08388012647628784,
-0.017777591943740845,
-0.09566666930913925,
0.07505572587251663,
0.07691529393196106,
0.08539864420890808,
-0.10944521427154541,
-0.1076989620923996,
0.05103323608636856,
0.06184157356619835,
-0.060749612748622894,
0.038547541946172714,
-0.04985152557492256,
0.07856951653957367,
-0.08674032986164093,
-0.0217924565076828,
-0.18619690835475922,
-0.012526295147836208,
0.010954529978334904,
0.015559818595647812,
0.014764782041311264,
0.01254089456051588,
0.09277226775884628,
0.08760855346918106,
-0.08372525125741959,
-0.014563885517418385,
-0.047208454459905624,
-0.008633631281554699,
-0.1454664170742035,
-0.2245543897151947,
-0.04456629976630211,
-0.02597346156835556,
0.09361328929662704,
-0.206212118268013,
0.020223598927259445,
-0.042969297617673874,
0.09786131978034973,
0.023592371493577957,
-0.02279440127313137,
-0.04704238846898079,
0.09469790756702423,
-0.020252078771591187,
-0.061627261340618134,
0.06346362829208374,
-0.014562283642590046,
-0.07322635501623154,
-0.06212858110666275,
-0.1278490424156189,
0.1614343225955963,
0.12772071361541748,
-0.11803127825260162,
-0.11263766139745712,
0.011432533152401447,
-0.0687788724899292,
-0.0324568897485733,
-0.052862536162137985,
0.04556769132614136,
0.17698514461517334,
0.005903986282646656,
0.15262775123119354,
-0.06481336057186127,
-0.04451565816998482,
0.036786582320928574,
-0.024381745606660843,
0.02896943874657154,
0.11381910741329193,
0.13461247086524963,
-0.043967001140117645,
0.1337590366601944,
0.1488211303949356,
-0.10759220272302628,
0.14059831202030182,
-0.024673009291291237,
-0.09718946367502213,
-0.037699658423662186,
-0.040551770478487015,
0.019026076421141624,
0.1284916251897812,
-0.10108181089162827,
-0.01858903467655182,
0.007032785098999739,
0.015239776112139225,
0.011879509314894676,
-0.21932369470596313,
-0.046548180282115936,
0.04912605509161949,
-0.020538127049803734,
-0.005500302650034428,
-0.018585143610835075,
0.008344843052327633,
0.11533880978822708,
0.010883402079343796,
-0.06967984139919281,
0.0171296838670969,
0.004302854649722576,
-0.05154404044151306,
0.1984543353319168,
-0.0736541673541069,
-0.12290482968091965,
-0.08544991165399551,
-0.08400072902441025,
-0.03511829301714897,
0.015897111967206,
0.036985162645578384,
-0.12285520136356354,
-0.019330600276589394,
-0.04968840256333351,
0.02580314315855503,
-0.004375379998236895,
0.05756033584475517,
0.008994526229798794,
-0.01950105093419552,
0.07648575305938721,
-0.0935293510556221,
-0.002507637022063136,
-0.061913736164569855,
-0.054091546684503555,
0.05991421267390251,
0.06524708867073059,
0.11520610004663467,
0.15166030824184418,
-0.022942252457141876,
0.02089489996433258,
-0.02693047560751438,
0.21900327503681183,
-0.08005453646183014,
-0.02403433620929718,
0.09831766784191132,
-0.017946191132068634,
0.05961837247014046,
0.10794615000486374,
0.07208145409822464,
-0.09685468673706055,
0.015121123753488064,
0.05675655975937843,
-0.04353945702314377,
-0.18253302574157715,
-0.018860040232539177,
-0.05477563291788101,
-0.027157068252563477,
0.10799124836921692,
0.00247296504676342,
0.01819397695362568,
0.048426516354084015,
0.053953904658555984,
0.07229698449373245,
-0.06428691744804382,
0.054405372589826584,
0.06506331264972687,
0.040646057575941086,
0.13241232931613922,
-0.022937070578336716,
-0.09363282471895218,
0.017430247738957405,
-0.027393052354454994,
0.22310087084770203,
-0.016995148733258247,
0.09375763684511185,
0.04137847572565079,
0.1713765561580658,
-0.014070103876292706,
0.09767723828554153,
-0.006204597651958466,
-0.06475495547056198,
-0.012770446017384529,
-0.046233758330345154,
-0.021346278488636017,
0.01704157330095768,
-0.002516632666811347,
0.05661385878920555,
-0.1320337951183319,
0.004914979916065931,
0.050647277384996414,
0.27071675658226013,
0.07557646185159683,
-0.31662270426750183,
-0.08336163312196732,
-0.011103478260338306,
-0.020230509340763092,
0.003106034593656659,
0.002032426418736577,
0.11777397990226746,
-0.07954437285661697,
0.03913252428174019,
-0.08363457769155502,
0.08034411817789078,
-0.019012417644262314,
0.04513316601514816,
0.07242129743099213,
0.1233779639005661,
-0.011666602455079556,
0.05493137612938881,
-0.2990167438983917,
0.3023558557033539,
0.012494510971009731,
0.0766032487154007,
-0.07712634652853012,
0.0029692829120904207,
0.03270568326115608,
0.014556590467691422,
0.05864680930972099,
-0.01758197508752346,
-0.044264595955610275,
-0.2079678773880005,
-0.05596322938799858,
0.015940213575959206,
0.11438370496034622,
-0.03131784871220589,
0.11480432003736496,
-0.007838690653443336,
-0.01168372854590416,
0.07771054655313492,
0.02647876925766468,
-0.04384586960077286,
-0.07640551775693893,
-0.002318204380571842,
-0.0073388987220823765,
-0.10408473759889603,
-0.06003955751657486,
-0.1394048035144806,
-0.11752457916736603,
0.16763761639595032,
0.028543591499328613,
-0.01258360967040062,
-0.1254757046699524,
0.13150277733802795,
0.09440430998802185,
-0.07786504179239273,
0.03736508637666702,
0.015328273177146912,
0.06122949346899986,
0.019762126728892326,
-0.049844078719615936,
0.13458268344402313,
-0.060978978872299194,
-0.17209747433662415,
-0.08331134170293808,
0.09264889359474182,
0.04852723330259323,
0.07509145140647888,
-0.039286352694034576,
0.038015324622392654,
-0.006803861819207668,
-0.07348885387182236,
0.07095816731452942,
-0.050099026411771774,
0.10245013982057571,
0.026564059779047966,
-0.04550287127494812,
0.04782195761799812,
-0.04660174995660782,
-0.016014931723475456,
0.16978217661380768,
0.2768409550189972,
-0.0983811467885971,
0.006143986247479916,
0.033804718405008316,
-0.05340520665049553,
-0.19127845764160156,
0.07292477041482925,
0.07975921034812927,
0.019501717761158943,
0.05477295443415642,
-0.18382368981838226,
0.11757496744394302,
0.08239894360303879,
-0.0024987414944916964,
0.11639434099197388,
-0.29967495799064636,
-0.13742488622665405,
0.10237429291009903,
0.14397788047790527,
0.10583054274320602,
-0.1403905600309372,
0.0012602709466591477,
-0.009603163227438927,
-0.0809655711054802,
0.06653611361980438,
-0.07818126678466797,
0.13084980845451355,
-0.021318264305591583,
0.08353115618228912,
0.01709914579987526,
-0.0791078433394432,
0.0996667668223381,
-0.015145240351557732,
0.10422510653734207,
-0.0601816363632679,
-0.032127927988767624,
0.05151750519871712,
-0.04078133776783943,
-0.014479145407676697,
-0.05806468427181244,
0.012629730626940727,
-0.06231176108121872,
-0.019629498943686485,
-0.0900069996714592,
0.02713729813694954,
-0.04079045355319977,
-0.07517793774604797,
-0.02528604492545128,
0.04838261380791664,
0.06143126264214516,
-0.020006107166409492,
0.11312267184257507,
0.011367060244083405,
0.18059051036834717,
0.092306949198246,
0.04743862897157669,
-0.047802817076444626,
-0.057860858738422394,
0.012370823882520199,
-0.006764992605894804,
0.052400439977645874,
-0.12587548792362213,
0.01689910888671875,
0.15321923792362213,
0.0244818814098835,
0.1280285120010376,
0.08751171827316284,
-0.039944838732481,
0.010551907122135162,
0.061925534158945084,
-0.16199396550655365,
-0.06379722058773041,
0.01588040217757225,
-0.08312937617301941,
-0.12386353313922882,
0.034644704312086105,
0.07927325367927551,
-0.0599929615855217,
-0.008404628373682499,
-0.00026882285601459444,
0.00524057587608695,
-0.06408371031284332,
0.22950363159179688,
0.05798862501978874,
0.056269772350788116,
-0.09133880585432053,
0.05823829025030136,
0.05032414197921753,
-0.1069076880812645,
0.022581661120057106,
0.07864491641521454,
-0.06065354123711586,
-0.01331899594515562,
0.10565129667520523,
0.19227907061576843,
-0.013018482364714146,
-0.0053007700480520725,
-0.17096355557441711,
-0.10046815127134323,
0.08262304216623306,
0.15638872981071472,
0.0924406349658966,
-0.014087659306824207,
-0.057549115270376205,
0.037450578063726425,
-0.14808745682239532,
0.09638026356697083,
0.06339748948812485,
0.07481903582811356,
-0.12110389024019241,
0.20165185630321503,
-0.0023519631940871477,
0.04540124535560608,
-0.024369696155190468,
0.039675522595644,
-0.12064968794584274,
0.01832856610417366,
-0.1186385303735733,
-0.06425609439611435,
-0.02113596722483635,
-0.0192364901304245,
-0.015939898788928986,
-0.05708395317196846,
-0.05683712661266327,
0.00421491963788867,
-0.12597614526748657,
-0.031700313091278076,
0.039619531482458115,
0.008650287985801697,
-0.10914276540279388,
-0.04783983528614044,
0.018810845911502838,
-0.06636784970760345,
0.06645481288433075,
0.04064822569489479,
0.0274006649851799,
0.0450257882475853,
-0.11925329267978668,
-0.007654853630810976,
0.040901269763708115,
-0.012421454302966595,
0.08806943148374557,
-0.09512468427419662,
-0.012058909982442856,
-0.03231952711939812,
0.07864147424697876,
0.013821580447256565,
0.06986451148986816,
-0.1348918378353119,
0.013670573942363262,
-0.02101481705904007,
-0.10142967104911804,
-0.05229370668530464,
0.033949051052331924,
0.05462091788649559,
0.020412033423781395,
0.17047379910945892,
-0.0987621396780014,
0.07208327949047089,
-0.22530986368656158,
-0.015764130279421806,
-0.012338848784565926,
-0.09814579784870148,
-0.07151736319065094,
-0.04449089989066124,
0.08588464558124542,
-0.06812579184770584,
0.1178491935133934,
0.026488950476050377,
0.06534663587808609,
0.03554874658584595,
-0.06458675861358643,
0.018041299656033516,
0.032922420650720596,
0.1626530885696411,
0.02131432667374611,
-0.059755828231573105,
0.06598502397537231,
0.07746878266334534,
0.11279194056987762,
0.17039483785629272,
0.22923356294631958,
0.13345639407634735,
0.039659224450588226,
0.0841994434595108,
0.0230836421251297,
-0.08595798909664154,
-0.17853327095508575,
0.0335715189576149,
-0.055611588060855865,
0.11266369372606277,
-0.024844592437148094,
0.18408697843551636,
0.0653575211763382,
-0.16474579274654388,
0.051467813551425934,
-0.06838840246200562,
-0.09707315266132355,
-0.11272577941417694,
-0.03688635304570198,
-0.07570474594831467,
-0.1309046894311905,
0.00946113932877779,
-0.09805268049240112,
0.02467971481382847,
0.09485778957605362,
0.01628427393734455,
-0.011926916427910328,
0.19391345977783203,
0.0509919747710228,
0.054534029215574265,
0.05956663563847542,
0.026045383885502815,
-0.010041346773505211,
-0.050929900258779526,
-0.06268398463726044,
-0.029763832688331604,
-0.021876642480492592,
0.034730710089206696,
-0.07862260937690735,
-0.08825704455375671,
0.04769444838166237,
0.011444400064647198,
-0.11291849613189697,
0.020310305058956146,
0.013587074354290962,
0.08393348753452301,
0.04824679344892502,
-0.0030725356191396713,
0.022086627781391144,
-0.044566959142684937,
0.1888400763273239,
-0.09093134105205536,
-0.05393405258655548,
-0.11029355227947235,
0.28417640924453735,
0.03803814575076103,
-0.007460754364728928,
0.015625908970832825,
-0.07336743175983429,
-0.0038781689945608377,
0.22585608065128326,
0.21879518032073975,
-0.10234028100967407,
-0.0038013311568647623,
0.021143730729818344,
-0.014080441556870937,
-0.03818890452384949,
0.10588468611240387,
0.13026809692382812,
0.03497174382209778,
-0.10138988494873047,
-0.054435648024082184,
-0.06130024790763855,
-0.028917688876390457,
-0.03892677649855614,
0.04012558236718178,
0.06846465915441513,
0.030867042019963264,
-0.04785151034593582,
0.04520891234278679,
-0.04480704665184021,
-0.12591439485549927,
0.08468035608530045,
-0.2384120672941208,
-0.18110354244709015,
-0.0052521806210279465,
0.07989197224378586,
0.0026375511661171913,
0.07881349325180054,
-0.02567218244075775,
-0.005148065742105246,
0.06439325958490372,
-0.02213624119758606,
-0.038687922060489655,
-0.10519906133413315,
0.10189641267061234,
-0.12166663259267807,
0.2013057917356491,
-0.049984853714704514,
0.03770234063267708,
0.13252873718738556,
0.06816112995147705,
-0.056798648089170456,
0.04330524802207947,
0.05679813399910927,
-0.0971447229385376,
0.004379313439130783,
0.14282341301441193,
-0.045753736048936844,
0.048252131789922714,
0.04254879057407379,
-0.13535363972187042,
0.03523631766438484,
-0.10169212520122528,
-0.05160968750715256,
-0.03205385431647301,
-0.02803674526512623,
-0.05475020036101341,
0.12621916830539703,
0.25304868817329407,
-0.019652996212244034,
0.01891965977847576,
-0.07627543061971664,
0.0017906022258102894,
0.06146157532930374,
0.05852726846933365,
-0.09278583526611328,
-0.2561497688293457,
0.029087282717227936,
0.06015259027481079,
-0.02604636363685131,
-0.2524730861186981,
-0.09756335616111755,
0.03135739639401436,
-0.08496206998825073,
-0.09578145295381546,
0.09122159332036972,
0.04962455853819847,
0.0734141394495964,
-0.057936836034059525,
-0.08949693292379379,
-0.07768319547176361,
0.15581010282039642,
-0.1698206067085266,
-0.08488611876964569
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6223
- Accuracy: 0.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.4666 | 1.0 | 1320 | 2.3355 | 0.5768 |
| 1.5293 | 2.0 | 2640 | 1.1118 | 0.8144 |
| 0.8031 | 3.0 | 3960 | 0.6362 | 0.8803 |
| 0.2985 | 4.0 | 5280 | 0.5119 | 0.8958 |
| 0.1284 | 5.0 | 6600 | 0.5023 | 0.8931 |
| 0.0842 | 6.0 | 7920 | 0.5246 | 0.9022 |
| 0.0414 | 7.0 | 9240 | 0.5581 | 0.9013 |
| 0.0372 | 8.0 | 10560 | 0.5721 | 0.9004 |
| 0.0292 | 9.0 | 11880 | 0.5469 | 0.9141 |
| 0.0257 | 10.0 | 13200 | 0.5871 | 0.9059 |
| 0.0189 | 11.0 | 14520 | 0.6181 | 0.9049 |
| 0.0104 | 12.0 | 15840 | 0.6184 | 0.9068 |
| 0.009 | 13.0 | 17160 | 0.6013 | 0.9049 |
| 0.0051 | 14.0 | 18480 | 0.6205 | 0.9059 |
| 0.0035 | 15.0 | 19800 | 0.6223 | 0.9068 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTje | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTje
=============================================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6223
* Accuracy: 0.9068
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 15.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
99,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09336703270673752,
0.03876446560025215,
-0.002121740486472845,
0.10906461626291275,
0.2084173709154129,
0.035335879772901535,
0.1060706377029419,
0.1045105904340744,
-0.11486591398715973,
0.028234295547008514,
0.11614616215229034,
0.16727720201015472,
0.00029892855673097074,
0.07880248129367828,
-0.06386703252792358,
-0.2744946777820587,
-0.03212713450193405,
0.04605712741613388,
-0.08792176842689514,
0.12690331041812897,
0.07471168041229248,
-0.16021659970283508,
0.07312978059053421,
-0.015813391655683517,
-0.24244022369384766,
0.023385604843497276,
0.029372403398156166,
-0.06366924941539764,
0.14853623509407043,
0.012802856042981148,
0.1605411320924759,
0.0037878123112022877,
0.094363734126091,
-0.16116786003112793,
0.015960369259119034,
0.06752918660640717,
0.012057315558195114,
0.08705782145261765,
0.0661109909415245,
-0.009762334637343884,
0.12527617812156677,
-0.09955628961324692,
0.06392444670200348,
0.009019391611218452,
-0.12588372826576233,
-0.21314020454883575,
-0.06122072413563728,
-0.0014758848119527102,
0.04595173895359039,
0.0995827466249466,
-0.008047586306929588,
0.14665722846984863,
-0.10219147056341171,
0.10283816605806351,
0.22172728180885315,
-0.25987282395362854,
-0.08316468447446823,
0.04775267466902733,
-0.007379245012998581,
0.10499560087919235,
-0.12160256505012512,
-0.005357413552701473,
0.05742470920085907,
0.06072206422686577,
0.12283967435359955,
-0.02680813893675804,
-0.10217253118753433,
0.024568993598222733,
-0.14736409485340118,
0.003185510402545333,
0.059532854706048965,
0.01144635770469904,
-0.015202652662992477,
-0.01638116128742695,
-0.07497605681419373,
-0.149191752076149,
-0.04266583174467087,
-0.02715897746384144,
0.04516834393143654,
-0.058258797973394394,
-0.0913267582654953,
-0.0002900406252592802,
-0.10127727687358856,
-0.06421700865030289,
-0.07390541583299637,
0.1798708289861679,
0.041131507605314255,
0.018968529999256134,
-0.048071764409542084,
0.10674363374710083,
0.003027983009815216,
-0.13654828071594238,
0.04619765281677246,
0.028035862371325493,
-0.013776292093098164,
-0.056094005703926086,
-0.07517137378454208,
-0.10751034319400787,
-0.004479082766920328,
0.06146906316280365,
-0.05861104652285576,
0.05662321299314499,
0.019853446632623672,
0.03539276495575905,
-0.09543661028146744,
0.19639340043067932,
-0.034169234335422516,
-0.01979999989271164,
0.0015470990911126137,
0.051243577152490616,
-0.0030587047804147005,
-0.0210280604660511,
-0.10938558727502823,
0.003362789284437895,
0.11353092640638351,
0.0008665377972647548,
-0.07777063548564911,
0.06843682378530502,
-0.02980048768222332,
-0.025436516851186752,
-0.030098527669906616,
-0.10025946795940399,
0.0471191443502903,
0.003905318910256028,
-0.09515687078237534,
0.014006443321704865,
0.017119385302066803,
0.0037932225968688726,
-0.024352096021175385,
0.1733492612838745,
-0.08701992779970169,
0.049774736166000366,
-0.11610505729913712,
-0.12831996381282806,
0.007212121970951557,
-0.0764056071639061,
0.015012143179774284,
-0.09425979852676392,
-0.13148169219493866,
-0.018718650564551353,
0.05296655744314194,
-0.03146277740597725,
-0.02619299851357937,
-0.053103357553482056,
-0.07628505676984787,
0.014997465535998344,
-0.01735779456794262,
0.16282516717910767,
-0.050320446491241455,
0.11678281426429749,
0.05067465081810951,
0.07255851477384567,
-0.061148520559072495,
0.05600620433688164,
-0.07982970774173737,
-0.009820893406867981,
-0.21234416961669922,
0.05414067953824997,
-0.05213198810815811,
0.05900543928146362,
-0.06312166154384613,
-0.1219920888543129,
0.006057024002075195,
0.0006711955065838993,
0.08966623246669769,
0.0893721804022789,
-0.17443746328353882,
-0.09269410371780396,
0.14789727330207825,
-0.05988117307424545,
-0.08220082521438599,
0.11404623836278915,
-0.06879935413599014,
0.018274515867233276,
0.09250108897686005,
0.16519847512245178,
0.06077146157622337,
-0.0766107589006424,
0.025010479614138603,
-0.020089009776711464,
0.06782656908035278,
-0.061143092811107635,
0.0386381521821022,
0.01826315000653267,
0.010603958740830421,
0.032545819878578186,
-0.021090159192681313,
0.06405968219041824,
-0.1178477555513382,
-0.08233171701431274,
-0.03796367719769478,
-0.09964708983898163,
0.06529715657234192,
0.09130798280239105,
0.10585878789424896,
-0.10082384198904037,
-0.06589321792125702,
0.10334783792495728,
0.05258534848690033,
-0.05941972881555557,
0.032143767923116684,
-0.04878683760762215,
0.06029476970434189,
-0.04899170994758606,
-0.017204659059643745,
-0.20977069437503815,
-0.0304772537201643,
0.004354814998805523,
0.04108604043722153,
0.032364800572395325,
0.03154289722442627,
0.08748669177293777,
0.0680389255285263,
-0.07125910371541977,
0.0009633043082430959,
-0.02561463601887226,
-0.012265628203749657,
-0.15776261687278748,
-0.20209340751171112,
-0.018160199746489525,
-0.01668037474155426,
0.08142562210559845,
-0.22046861052513123,
0.03053419478237629,
-0.026002300903201103,
0.08036002516746521,
0.010601656511425972,
-0.010417292825877666,
-0.06233601272106171,
0.10484069585800171,
-0.026663344353437424,
-0.041402485221624374,
0.07583020627498627,
-0.020853383466601372,
-0.08202274143695831,
-0.07602781057357788,
-0.10609752684831619,
0.18953737616539001,
0.1426188349723816,
-0.16878679394721985,
-0.0827636793255806,
0.018075915053486824,
-0.05557015538215637,
-0.014371173456311226,
-0.05884214863181114,
0.04800587147474289,
0.20455347001552582,
-0.004903443157672882,
0.15766875445842743,
-0.05970916152000427,
-0.03440948575735092,
0.016063839197158813,
-0.02007492445409298,
0.04429217055439949,
0.12203541398048401,
0.12272652983665466,
-0.06018006056547165,
0.12413942813873291,
0.13797231018543243,
-0.1196996346116066,
0.1413242220878601,
-0.020690854638814926,
-0.07388386130332947,
0.0011316079180687666,
-0.03965749219059944,
0.0005194662371650338,
0.09290192276239395,
-0.1301320493221283,
-0.020407479256391525,
0.0005721646593883634,
0.025406613945961,
0.031684864312410355,
-0.2316289097070694,
-0.042797546833753586,
0.029152479022741318,
-0.018154017627239227,
-0.010899238288402557,
-0.021001335233449936,
0.024370145052671432,
0.12726029753684998,
-0.0026971441693603992,
-0.06263533234596252,
0.01884501799941063,
-0.003914184402674437,
-0.07123959809541702,
0.21957583725452423,
-0.07080460339784622,
-0.12735849618911743,
-0.09790121763944626,
-0.082473523914814,
-0.05347684025764465,
0.015655122697353363,
0.04280151054263115,
-0.13607758283615112,
-0.01327482145279646,
-0.03699031099677086,
0.043460212647914886,
-0.00024910553474910557,
0.0568624846637249,
0.0012723890831694007,
-0.0053224945440888405,
0.0622733049094677,
-0.10818804055452347,
-0.00393871683627367,
-0.08555121719837189,
-0.0792367085814476,
0.05193626135587692,
0.061172835528850555,
0.11335181444883347,
0.17811445891857147,
-0.04612233489751816,
0.009056239388883114,
-0.02750541642308235,
0.22331377863883972,
-0.07234229892492294,
-0.03890277072787285,
0.11360820382833481,
-0.024520738050341606,
0.04662015289068222,
0.09130730479955673,
0.0827990174293518,
-0.09565135091543198,
0.010884515941143036,
0.04105282947421074,
-0.04805201292037964,
-0.22286304831504822,
-0.04087125509977341,
-0.053073950111866,
-0.04049002751708031,
0.08340637385845184,
0.021436041221022606,
0.020483538508415222,
0.059183601289987564,
0.058152467012405396,
0.08763270825147629,
-0.05142006278038025,
0.03842248022556305,
0.10855667293071747,
0.04619012400507927,
0.1330922245979309,
-0.040021222084760666,
-0.08403778821229935,
0.025073442608118057,
-0.044379398226737976,
0.21638338267803192,
-0.011683628894388676,
0.07222255319356918,
0.04082602635025978,
0.16404712200164795,
0.006639821920543909,
0.08360341936349869,
-0.0017412800807505846,
-0.0624554306268692,
-0.001118966843932867,
-0.037637773901224136,
-0.04545208811759949,
0.004673761781305075,
-0.04499676078557968,
0.06023328751325607,
-0.13197556138038635,
-0.013390390202403069,
0.05608711764216423,
0.2165096402168274,
0.020811300724744797,
-0.31129324436187744,
-0.07643834501504898,
0.0017427034908905625,
-0.024781225249171257,
-0.005438338965177536,
0.014003867283463478,
0.12171529978513718,
-0.0863209217786789,
0.03392878174781799,
-0.07167810201644897,
0.0940634161233902,
-0.03641887381672859,
0.05282535031437874,
0.06114727258682251,
0.11675001680850983,
-0.006270803511142731,
0.06708360463380814,
-0.3227105140686035,
0.2692115306854248,
0.009164308197796345,
0.08424495160579681,
-0.08034161478281021,
-0.016721677035093307,
0.03614258021116257,
0.05831972509622574,
0.02277258038520813,
-0.01945851370692253,
-0.006000726483762264,
-0.2027343362569809,
-0.032970961183309555,
0.04017556831240654,
0.12926214933395386,
-0.006737550720572472,
0.0928598940372467,
-0.013317293487489223,
0.004764672834426165,
0.08459611982107162,
-0.03467591851949692,
-0.05827246978878975,
-0.07806345075368881,
-0.02717811055481434,
0.013790191151201725,
-0.08474089205265045,
-0.048207081854343414,
-0.13106796145439148,
-0.13395380973815918,
0.14399269223213196,
0.00295681762509048,
-0.015100609511137009,
-0.1199524849653244,
0.13296401500701904,
0.06592265516519547,
-0.0853208377957344,
0.02751440554857254,
0.014598694629967213,
0.058318350464105606,
0.030982011929154396,
-0.08066824823617935,
0.1113462895154953,
-0.05641482025384903,
-0.1561286449432373,
-0.060957882553339005,
0.09010317176580429,
0.05091742426156998,
0.07168794423341751,
-0.024388901889324188,
0.016469821333885193,
-0.016347063705325127,
-0.09195505082607269,
0.03789996728301048,
-0.016460977494716644,
0.06111421436071396,
0.03501850739121437,
-0.06031563878059387,
-0.012720806524157524,
-0.059647515416145325,
-0.007881846278905869,
0.1921088695526123,
0.21529841423034668,
-0.0876484215259552,
-0.0009083531913347542,
0.036096785217523575,
-0.06903427094221115,
-0.20900042355060577,
0.10206075012683868,
0.08449702709913254,
0.0063143763691186905,
0.03982977569103241,
-0.17545351386070251,
0.1547313779592514,
0.09285631775856018,
0.0026921771932393312,
0.12124889343976974,
-0.31638994812965393,
-0.13622049987316132,
0.1026165634393692,
0.1730472594499588,
0.15155868232250214,
-0.14989209175109863,
-0.012385126203298569,
-0.02848351001739502,
-0.0953906774520874,
0.1041484922170639,
-0.09516632556915283,
0.11923183500766754,
-0.024797478690743446,
0.09557989984750748,
0.01254934724420309,
-0.06443760544061661,
0.09740549325942993,
0.011134806089103222,
0.10321801900863647,
-0.0660613402724266,
-0.051399584859609604,
0.03908625245094299,
-0.025462454184889793,
-0.02201062999665737,
-0.04321391135454178,
0.01665583625435829,
-0.0790521502494812,
-0.019596034660935402,
-0.10205202549695969,
0.03391660004854202,
-0.031236784532666206,
-0.06165354326367378,
-0.027714133262634277,
0.020214952528476715,
0.04611080139875412,
-0.01481281965970993,
0.13340574502944946,
-0.0028680344112217426,
0.18816998600959778,
0.09003422409296036,
0.08311983197927475,
-0.06885002553462982,
-0.032246097922325134,
0.0026740161702036858,
-0.003666093572974205,
0.06038370355963707,
-0.14563462138175964,
0.020513152703642845,
0.1589592844247818,
0.027120662853121758,
0.11726957559585571,
0.10066139698028564,
-0.013667294755578041,
0.017325302585959435,
0.07126230001449585,
-0.16582763195037842,
-0.07831209152936935,
-0.0015979345189407468,
-0.07990874350070953,
-0.1008070558309555,
0.06396004557609558,
0.08338054269552231,
-0.07414641231298447,
-0.0032109541352838278,
-0.01209314540028572,
-0.01757820136845112,
-0.06517504900693893,
0.2237202227115631,
0.07721460610628128,
0.04526018351316452,
-0.10249565541744232,
0.06640075147151947,
0.052076227962970734,
-0.09295931458473206,
0.0006289049633778632,
0.09430128335952759,
-0.07556427270174026,
-0.022848546504974365,
0.1104045957326889,
0.20323090255260468,
-0.05349951609969139,
-0.015825645998120308,
-0.14634394645690918,
-0.116368867456913,
0.07333993166685104,
0.18740886449813843,
0.11006806790828705,
-0.01325505506247282,
-0.07889655977487564,
0.03603468835353851,
-0.14157776534557343,
0.07122818380594254,
0.036678001284599304,
0.07499437779188156,
-0.13177840411663055,
0.20464009046554565,
0.010175896808505058,
0.043632134795188904,
-0.03667605295777321,
0.029177721589803696,
-0.1115393117070198,
0.027873283252120018,
-0.13446040451526642,
-0.051175806671381,
0.009347401559352875,
-0.007823827676475048,
-0.00953651126474142,
-0.07241051644086838,
-0.05950700864195824,
0.0018072620732709765,
-0.12902699410915375,
-0.015221139416098595,
0.034500397741794586,
0.022737178951501846,
-0.1193656325340271,
-0.039407264441251755,
0.00966417696326971,
-0.05285695195198059,
0.05128222331404686,
0.05581524968147278,
0.006621095351874828,
0.08707239478826523,
-0.16738873720169067,
-0.023460254073143005,
0.07165541499853134,
0.00126813689712435,
0.08770545572042465,
-0.029719648882746696,
-0.0009933444671332836,
-0.004005884286016226,
0.10544446855783463,
0.0316457524895668,
0.0828455239534378,
-0.1299273818731308,
0.01742585375905037,
-0.037247851490974426,
-0.09912624955177307,
-0.06116289272904396,
0.038348905742168427,
0.0682281106710434,
0.022619981318712234,
0.17828698456287384,
-0.09031671285629272,
0.057803574949502945,
-0.21946969628334045,
-0.007959400303661823,
-0.011768152937293053,
-0.1155204251408577,
-0.10817614197731018,
-0.059920575469732285,
0.08563613891601562,
-0.0553295761346817,
0.11689941585063934,
0.045733895152807236,
0.0698462724685669,
0.03522034361958504,
-0.02575766108930111,
-0.009150002151727676,
0.029931725934147835,
0.20401889085769653,
0.05151151865720749,
-0.04349742457270622,
0.07410157471895218,
0.07381821423768997,
0.11281486600637436,
0.1318245828151703,
0.24234679341316223,
0.1495424211025238,
-0.02819078043103218,
0.09413746744394302,
0.028081778436899185,
-0.05000196024775505,
-0.1490212231874466,
0.019463740289211273,
-0.06937336176633835,
0.09768009930849075,
-0.032087668776512146,
0.19599832594394684,
0.048234473913908005,
-0.15814830362796783,
0.04416783154010773,
-0.07362562417984009,
-0.10230196267366409,
-0.1143115907907486,
0.005645607598125935,
-0.08187368512153625,
-0.1423112452030182,
0.01228472962975502,
-0.11249727010726929,
0.021623646840453148,
0.11173003911972046,
0.018618185073137283,
-0.023122021928429604,
0.19131481647491455,
0.03786763176321983,
0.032728035002946854,
0.07851514220237732,
0.009276486933231354,
-0.012853904627263546,
-0.08727490156888962,
-0.06384733319282532,
-0.03370128199458122,
-0.008956956677138805,
0.03230464085936546,
-0.06319168955087662,
-0.09536692500114441,
0.03547166287899017,
-0.019120510667562485,
-0.10879667103290558,
0.02968784049153328,
0.02532043121755123,
0.07869492471218109,
0.050205688923597336,
-0.004727001301944256,
0.010616326704621315,
-0.032783880829811096,
0.22804883122444153,
-0.08722879737615585,
-0.06954488903284073,
-0.07983273267745972,
0.2906087040901184,
0.05147464945912361,
0.005363771226257086,
0.01629883050918579,
-0.07058257609605789,
-0.009167015552520752,
0.2446458488702774,
0.21125948429107666,
-0.12545117735862732,
-0.007548075169324875,
0.006552600767463446,
-0.006196154747158289,
-0.015491597354412079,
0.1466057151556015,
0.13063473999500275,
0.05443140119314194,
-0.1077040508389473,
-0.039159443229436874,
-0.047586727887392044,
-0.010081320069730282,
-0.03223530203104019,
0.06360919773578644,
0.06418328732252121,
0.016827989369630814,
-0.05730448663234711,
0.06300592422485352,
-0.07416266202926636,
-0.11890266835689545,
0.06266354769468307,
-0.23233382403850555,
-0.17197959125041962,
-0.01662149466574192,
0.11457869410514832,
-0.009630844928324223,
0.07489801198244095,
-0.024816397577524185,
-0.0015053770039230585,
0.04063744843006134,
-0.028106514364480972,
-0.06820470094680786,
-0.0881182998418808,
0.10151511430740356,
-0.12786075472831726,
0.17378397285938263,
-0.04779573529958725,
0.06519950926303864,
0.11966364830732346,
0.06775128841400146,
-0.040767423808574677,
0.0494510792195797,
0.035631999373435974,
-0.10627297312021255,
0.01513387355953455,
0.12341620773077011,
-0.037508249282836914,
0.03650202602148056,
0.043841563165187836,
-0.137833833694458,
0.0325886532664299,
-0.09363042563199997,
-0.06036953628063202,
-0.03866581618785858,
-0.049379970878362656,
-0.05762411653995514,
0.11531343311071396,
0.2381136566400528,
-0.006260459311306477,
0.026829686015844345,
-0.0851396769285202,
-0.0010713451774790883,
0.04545141011476517,
0.0560356043279171,
-0.09536270052194595,
-0.25594890117645264,
0.007328096777200699,
0.07455028593540192,
-0.034688401967287064,
-0.24733160436153412,
-0.07923408597707748,
0.012567304074764252,
-0.06947416067123413,
-0.09488549083471298,
0.08210547268390656,
0.0663101077079773,
0.053794458508491516,
-0.05214888975024223,
-0.11882571876049042,
-0.07126691937446594,
0.1648705154657364,
-0.16189318895339966,
-0.08687634021043777
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5112
- Accuracy: 0.9004
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 4.1505 | 1.0 | 1320 | 3.3293 | 0.3793 |
| 2.7333 | 2.0 | 2640 | 2.2295 | 0.6133 |
| 2.0189 | 3.0 | 3960 | 1.5134 | 0.7587 |
| 1.2504 | 4.0 | 5280 | 1.0765 | 0.8282 |
| 0.7733 | 5.0 | 6600 | 0.7937 | 0.8629 |
| 0.5217 | 6.0 | 7920 | 0.6438 | 0.8784 |
| 0.3148 | 7.0 | 9240 | 0.5733 | 0.8857 |
| 0.2067 | 8.0 | 10560 | 0.5362 | 0.8912 |
| 0.1507 | 9.0 | 11880 | 0.5098 | 0.8903 |
| 0.1024 | 10.0 | 13200 | 0.5078 | 0.8976 |
| 0.0837 | 11.0 | 14520 | 0.5054 | 0.8967 |
| 0.0608 | 12.0 | 15840 | 0.5062 | 0.8958 |
| 0.0426 | 13.0 | 17160 | 0.5072 | 0.9013 |
| 0.0374 | 14.0 | 18480 | 0.5110 | 0.9040 |
| 0.0346 | 15.0 | 19800 | 0.5112 | 0.9004 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTje2
==============================================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5112
* Accuracy: 0.9004
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
* lr\_scheduler\_type: linear
* num\_epochs: 15.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
99,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09341918677091599,
0.036673009395599365,
-0.0020830645225942135,
0.1086936667561531,
0.21000397205352783,
0.035140007734298706,
0.10597741603851318,
0.10398545116186142,
-0.1154140904545784,
0.028980636969208717,
0.11689186096191406,
0.16894188523292542,
0.0003083174233324826,
0.07906772196292877,
-0.0637938603758812,
-0.2733166515827179,
-0.03172715753316879,
0.045229509472846985,
-0.0883903056383133,
0.12715557217597961,
0.07432013750076294,
-0.16051214933395386,
0.07301877439022064,
-0.015923799946904182,
-0.24198736250400543,
0.023404620587825775,
0.028275279328227043,
-0.06323514133691788,
0.14871682226657867,
0.012522495351731777,
0.16091890633106232,
0.004025778733193874,
0.09402408450841904,
-0.16070422530174255,
0.01596086286008358,
0.06855406612157822,
0.012489812448620796,
0.0869806632399559,
0.06526248157024384,
-0.01104714721441269,
0.12342367321252823,
-0.1001298651099205,
0.0642508938908577,
0.009921819902956486,
-0.12672938406467438,
-0.21364766359329224,
-0.061724934726953506,
-0.003220280399546027,
0.0446256548166275,
0.10122185945510864,
-0.008891391567885876,
0.1461016684770584,
-0.10232667624950409,
0.1028975397348404,
0.22116594016551971,
-0.25850072503089905,
-0.08324955403804779,
0.05012086406350136,
-0.008572238497436047,
0.10439001768827438,
-0.12214497476816177,
-0.005318083334714174,
0.05799787491559982,
0.060379862785339355,
0.12313073873519897,
-0.026115979999303818,
-0.10258693248033524,
0.02448987402021885,
-0.14750488102436066,
0.00337476609274745,
0.05903809890151024,
0.011369621381163597,
-0.014578677713871002,
-0.01590592786669731,
-0.07463967800140381,
-0.15124958753585815,
-0.04306749254465103,
-0.02581852115690708,
0.0454103983938694,
-0.05872597172856331,
-0.09107769280672073,
0.0016497226897627115,
-0.10055257380008698,
-0.06339389830827713,
-0.07445815950632095,
0.17902418971061707,
0.04144059121608734,
0.018693173304200172,
-0.04767163097858429,
0.10639625787734985,
0.003225114895030856,
-0.13698884844779968,
0.04622149094939232,
0.02913338877260685,
-0.01375187560915947,
-0.056386031210422516,
-0.07543057948350906,
-0.10659469664096832,
-0.0036290455609560013,
0.05922660231590271,
-0.059938471764326096,
0.0572274811565876,
0.019467534497380257,
0.034272149205207825,
-0.09451954066753387,
0.1958184391260147,
-0.03448772802948952,
-0.01778102107346058,
0.0017672294052317739,
0.05146248638629913,
-0.004051568452268839,
-0.02051989920437336,
-0.10808061063289642,
0.0053596049547195435,
0.11396750062704086,
0.0017563162837177515,
-0.07834187895059586,
0.07037818431854248,
-0.029355941340327263,
-0.024770906195044518,
-0.030690038576722145,
-0.10083846002817154,
0.04655340686440468,
0.003661970142275095,
-0.0949474647641182,
0.012972251512110233,
0.016765793785452843,
0.0019264617003500462,
-0.025046702474355698,
0.1734483242034912,
-0.0883946567773819,
0.04969625174999237,
-0.11676237732172012,
-0.1296253353357315,
0.006245332770049572,
-0.07656735926866531,
0.01455613598227501,
-0.0928274616599083,
-0.13178646564483643,
-0.02001614309847355,
0.0531700998544693,
-0.03215659037232399,
-0.02605133131146431,
-0.053870998322963715,
-0.07703591138124466,
0.014879236929118633,
-0.016896242275834084,
0.1658691167831421,
-0.050388943403959274,
0.11720872670412064,
0.05129740387201309,
0.07211665064096451,
-0.05836837366223335,
0.05713485926389694,
-0.08040149509906769,
-0.010052519850432873,
-0.21435967087745667,
0.05551721900701523,
-0.05486832559108734,
0.059755098074674606,
-0.06428133696317673,
-0.12143980711698532,
0.006432301830500364,
0.0005070320330560207,
0.09008147567510605,
0.08973392844200134,
-0.173749640583992,
-0.09268851578235626,
0.1470586359500885,
-0.05974433943629265,
-0.08222134411334991,
0.11253714561462402,
-0.06955724954605103,
0.018074430525302887,
0.09144872426986694,
0.16492536664009094,
0.05974201112985611,
-0.07675564289093018,
0.023823833093047142,
-0.021337296813726425,
0.06703083962202072,
-0.060429610311985016,
0.036315854638814926,
0.01873893290758133,
0.009102999232709408,
0.03281312435865402,
-0.020256640389561653,
0.0638485699892044,
-0.11869558691978455,
-0.08203772455453873,
-0.038349248468875885,
-0.09919828176498413,
0.06370479613542557,
0.09208685159683228,
0.10519497841596603,
-0.10077188163995743,
-0.06642932444810867,
0.10025962442159653,
0.05215580761432648,
-0.05945253744721413,
0.031109565868973732,
-0.04783830791711807,
0.05977991595864296,
-0.05046163871884346,
-0.0163447055965662,
-0.21107862889766693,
-0.03242583945393562,
0.004200879484415054,
0.04167616739869118,
0.03321047127246857,
0.03067130036652088,
0.08695393055677414,
0.06744806468486786,
-0.0711047351360321,
0.0015741225797683,
-0.024823201820254326,
-0.012007392011582851,
-0.1568051278591156,
-0.20319335162639618,
-0.017857879400253296,
-0.017092349007725716,
0.081108957529068,
-0.21993862092494965,
0.030274182558059692,
-0.026524357497692108,
0.07846177369356155,
0.009543225169181824,
-0.01065221056342125,
-0.06120734289288521,
0.10520121455192566,
-0.02637358196079731,
-0.04171295836567879,
0.07540977001190186,
-0.021706560626626015,
-0.08065199851989746,
-0.07551407814025879,
-0.10612154752016068,
0.186799556016922,
0.1432259976863861,
-0.16905583441257477,
-0.08519995212554932,
0.019618965685367584,
-0.0556814968585968,
-0.014212161302566528,
-0.05985686182975769,
0.04941945895552635,
0.20516878366470337,
-0.005034571513533592,
0.1570615917444229,
-0.0589924082159996,
-0.03408306464552879,
0.017696617171168327,
-0.01971786469221115,
0.04484826698899269,
0.12369700521230698,
0.12463302910327911,
-0.0612020269036293,
0.12512162327766418,
0.13662908971309662,
-0.11855995655059814,
0.14052174985408783,
-0.022302284836769104,
-0.07364236563444138,
0.0013993012253195047,
-0.04002968594431877,
0.00044183104182593524,
0.09320645034313202,
-0.1308426558971405,
-0.020181741565465927,
0.0005148616037331522,
0.025495611131191254,
0.03125628083944321,
-0.2315271943807602,
-0.0426342748105526,
0.02889646589756012,
-0.018433384597301483,
-0.011419721879065037,
-0.021310199052095413,
0.025898931547999382,
0.12703552842140198,
-0.0033612765837460756,
-0.06256905943155289,
0.01793161779642105,
-0.0035892731975764036,
-0.07019028812646866,
0.22099684178829193,
-0.07066649943590164,
-0.12591224908828735,
-0.09620511531829834,
-0.08378976583480835,
-0.054223380982875824,
0.014625422656536102,
0.042586881667375565,
-0.1375235617160797,
-0.014496655203402042,
-0.0369696207344532,
0.045463453978300095,
-0.0005399578367359936,
0.0557238906621933,
0.0008104066364467144,
-0.006264080759137869,
0.0612272247672081,
-0.10948293656110764,
-0.0039012841880321503,
-0.08628033101558685,
-0.08032925426959991,
0.05231329798698425,
0.06210770457983017,
0.11279556900262833,
0.17785315215587616,
-0.04646530747413635,
0.009302240796387196,
-0.02792254090309143,
0.2249675840139389,
-0.07289895415306091,
-0.03896327316761017,
0.11164256185293198,
-0.02195499837398529,
0.04658900573849678,
0.09177976101636887,
0.08348552882671356,
-0.09650072455406189,
0.010943811386823654,
0.042667731642723083,
-0.047864604741334915,
-0.22319048643112183,
-0.041274167597293854,
-0.052577584981918335,
-0.040529221296310425,
0.0833902508020401,
0.021239712834358215,
0.020681161433458328,
0.05937857925891876,
0.05846809223294258,
0.08690162748098373,
-0.05235115438699722,
0.03818715736269951,
0.11077947914600372,
0.045858800411224365,
0.1331908106803894,
-0.040342800319194794,
-0.08357306569814682,
0.024342091754078865,
-0.04437656328082085,
0.21985642611980438,
-0.01168062910437584,
0.07332887500524521,
0.041888102889060974,
0.16324225068092346,
0.006455437745898962,
0.08407843858003616,
-0.002212973777204752,
-0.06288199871778488,
-0.0008415711927227676,
-0.03747200220823288,
-0.0443682037293911,
0.002418785821646452,
-0.04728861525654793,
0.059461019933223724,
-0.13188979029655457,
-0.014542258344590664,
0.05523834377527237,
0.21607591211795807,
0.019795352593064308,
-0.3108059763908386,
-0.07638219743967056,
0.0003383287403266877,
-0.024332745000720024,
-0.005521606653928757,
0.013978165574371815,
0.11895010620355606,
-0.0856693759560585,
0.03300032392144203,
-0.0717506930232048,
0.0948115810751915,
-0.03650787100195885,
0.052618566900491714,
0.061580590903759,
0.11852782219648361,
-0.0072626578621566296,
0.06707916408777237,
-0.322207510471344,
0.271477609872818,
0.009387640282511711,
0.08412028849124908,
-0.08086096495389938,
-0.01678743027150631,
0.03615749254822731,
0.05757211893796921,
0.022439034655690193,
-0.01954629458487034,
-0.005091194063425064,
-0.20344668626785278,
-0.032439809292554855,
0.04012106731534004,
0.1289805918931961,
-0.007078983820974827,
0.09353342652320862,
-0.012935393489897251,
0.0047384509816765785,
0.08493953198194504,
-0.03346753865480423,
-0.058671485632658005,
-0.07816484570503235,
-0.027494633570313454,
0.014393705874681473,
-0.08575624227523804,
-0.04709314927458763,
-0.13173577189445496,
-0.13579989969730377,
0.14236193895339966,
0.005558183882385492,
-0.0152243971824646,
-0.11993147432804108,
0.13397106528282166,
0.0670427456498146,
-0.08506985008716583,
0.027519257739186287,
0.013371788896620274,
0.05549505725502968,
0.031004585325717926,
-0.08103252947330475,
0.11180157214403152,
-0.05616123601794243,
-0.1560230255126953,
-0.06088097020983696,
0.08831337839365005,
0.050262462347745895,
0.07131786644458771,
-0.02575567550957203,
0.017386404797434807,
-0.017377199605107307,
-0.09264665842056274,
0.03850433975458145,
-0.01897696778178215,
0.061457857489585876,
0.03519259765744209,
-0.0611417293548584,
-0.013489081524312496,
-0.060248278081417084,
-0.008121493272483349,
0.19102753698825836,
0.21589425206184387,
-0.08772335201501846,
-0.0022582937963306904,
0.03663797304034233,
-0.06875073909759521,
-0.20945008099079132,
0.10239745676517487,
0.0845222994685173,
0.005727828945964575,
0.03859865665435791,
-0.17683473229408264,
0.15594127774238586,
0.09295867383480072,
0.002681843703612685,
0.1234358698129654,
-0.31572359800338745,
-0.13615332543849945,
0.10325058549642563,
0.17360804975032806,
0.15173372626304626,
-0.15084373950958252,
-0.011504219844937325,
-0.026744337752461433,
-0.09498101472854614,
0.10441173613071442,
-0.09306437522172928,
0.12102576345205307,
-0.023934630677103996,
0.09739118069410324,
0.012095536105334759,
-0.06455500423908234,
0.09580878913402557,
0.011869527399539948,
0.10457251965999603,
-0.06526213139295578,
-0.051182474941015244,
0.04026641696691513,
-0.024788573384284973,
-0.021059755235910416,
-0.04327429085969925,
0.017225371673703194,
-0.07768091559410095,
-0.019267350435256958,
-0.10266000032424927,
0.0343179851770401,
-0.031826701015233994,
-0.06189312785863876,
-0.028004271909594536,
0.020494304597377777,
0.04633217304944992,
-0.01639081910252571,
0.13313914835453033,
-0.0031545832753181458,
0.18926052749156952,
0.090241439640522,
0.08109105378389359,
-0.06867266446352005,
-0.03262285143136978,
0.003861791454255581,
-0.0035124868154525757,
0.06047685816884041,
-0.14643685519695282,
0.019821222871541977,
0.15882959961891174,
0.027294375002384186,
0.11685715615749359,
0.10119388997554779,
-0.013492264784872532,
0.01654590480029583,
0.07017634809017181,
-0.16501954197883606,
-0.08072850853204727,
-0.0005945318262092769,
-0.08045507967472076,
-0.10020694881677628,
0.06466640532016754,
0.08251267671585083,
-0.07443613559007645,
-0.0033468182664364576,
-0.012043004855513573,
-0.017437132075428963,
-0.06384618580341339,
0.22432659566402435,
0.07733441889286041,
0.0463411808013916,
-0.10379869490861893,
0.06679921597242355,
0.0536920540034771,
-0.09472241997718811,
0.000628030626103282,
0.09512937068939209,
-0.07552216947078705,
-0.023201316595077515,
0.11123047769069672,
0.20577707886695862,
-0.05268123745918274,
-0.013741560280323029,
-0.14644871652126312,
-0.11765453964471817,
0.07418091595172882,
0.18999148905277252,
0.1092735305428505,
-0.012972273863852024,
-0.0781833603978157,
0.03611335530877113,
-0.14324691891670227,
0.07230374217033386,
0.03616759181022644,
0.07486217468976974,
-0.1301204264163971,
0.20220136642456055,
0.010464244522154331,
0.04360613599419594,
-0.03676113858819008,
0.028578350320458412,
-0.11158827692270279,
0.027685534209012985,
-0.13318507373332977,
-0.051264308393001556,
0.009438219480216503,
-0.0078537343069911,
-0.009350590407848358,
-0.07205931097269058,
-0.05853043496608734,
0.002308878116309643,
-0.12892961502075195,
-0.01570378988981247,
0.03489227965474129,
0.023387443274259567,
-0.11998501420021057,
-0.038986071944236755,
0.008931904099881649,
-0.05217858403921127,
0.05086958780884743,
0.05550367385149002,
0.0060069262981414795,
0.08609634637832642,
-0.16770963370800018,
-0.02283632755279541,
0.07088848948478699,
0.0006575505249202251,
0.08888306468725204,
-0.03156943991780281,
-0.0009754948550835252,
-0.005171516910195351,
0.10607121139764786,
0.03140518441796303,
0.08247866481542587,
-0.13084864616394043,
0.018282145261764526,
-0.036618296056985855,
-0.09892252087593079,
-0.060397546738386154,
0.038074791431427,
0.06846980005502701,
0.02182028256356716,
0.1775616556406021,
-0.09044475853443146,
0.05854480341076851,
-0.22026632726192474,
-0.00827367790043354,
-0.011898238211870193,
-0.11662101000547409,
-0.1082349419593811,
-0.0597226582467556,
0.08642562478780746,
-0.05598929524421692,
0.11653099209070206,
0.04728858172893524,
0.07009853422641754,
0.03511646389961243,
-0.024349553510546684,
-0.010681695304811,
0.0300762839615345,
0.2034938931465149,
0.05146580934524536,
-0.0434110127389431,
0.07451071590185165,
0.07457882910966873,
0.1119801253080368,
0.13324914872646332,
0.24288541078567505,
0.15004852414131165,
-0.027174262329936028,
0.09312105178833008,
0.027928568422794342,
-0.05179725959897041,
-0.14714720845222473,
0.02121657133102417,
-0.06949073076248169,
0.0987086221575737,
-0.03267264738678932,
0.19466723501682281,
0.046477265655994415,
-0.15646852552890778,
0.046278711408376694,
-0.07453523576259613,
-0.1023305132985115,
-0.11410633474588394,
0.005538968835026026,
-0.08142609149217606,
-0.14267143607139587,
0.012840035371482372,
-0.11298685520887375,
0.02192642353475094,
0.11252280324697495,
0.01957380585372448,
-0.02276499755680561,
0.19282925128936768,
0.03936001658439636,
0.03292202949523926,
0.07842976599931717,
0.00961192138493061,
-0.013348340056836605,
-0.08911006152629852,
-0.06267309188842773,
-0.03322785720229149,
-0.009531764313578606,
0.03205372393131256,
-0.06230456754565239,
-0.09615709632635117,
0.036116696894168854,
-0.019341768696904182,
-0.1091618537902832,
0.029683057218790054,
0.025351347401738167,
0.07852154225111008,
0.05268438160419464,
-0.005772966891527176,
0.011538667604327202,
-0.03303243964910507,
0.22881032526493073,
-0.08658124506473541,
-0.06993245333433151,
-0.07939836382865906,
0.2926032543182373,
0.050788868218660355,
0.004733097739517689,
0.01620369777083397,
-0.07024848461151123,
-0.009535026736557484,
0.24609975516796112,
0.2124444842338562,
-0.1243332102894783,
-0.007640883792191744,
0.006810091435909271,
-0.006425063591450453,
-0.015127507038414478,
0.14688633382320404,
0.13114036619663239,
0.05416295304894447,
-0.108786940574646,
-0.03858931362628937,
-0.04798699915409088,
-0.010569145902991295,
-0.03273182362318039,
0.06266733258962631,
0.06538118422031403,
0.016534121707081795,
-0.05757574737071991,
0.06278231739997864,
-0.07538516819477081,
-0.11911758035421371,
0.06396874040365219,
-0.2325386255979538,
-0.17155849933624268,
-0.018266864120960236,
0.11422283947467804,
-0.009275875985622406,
0.07457959651947021,
-0.02421570010483265,
-0.0012075628619641066,
0.04019669443368912,
-0.02890736423432827,
-0.06666802614927292,
-0.08969347178936005,
0.10106251388788223,
-0.12862396240234375,
0.1734980046749115,
-0.0481356680393219,
0.06361892074346542,
0.1202312484383583,
0.0673680305480957,
-0.042399805039167404,
0.05027143657207489,
0.035667065531015396,
-0.10666608810424805,
0.015047452412545681,
0.1229054406285286,
-0.03715616837143898,
0.03666716814041138,
0.04220803081989288,
-0.13838571310043335,
0.03347665071487427,
-0.0930849090218544,
-0.05996216461062431,
-0.03833157941699028,
-0.04914060980081558,
-0.05723017454147339,
0.11524665355682373,
0.23941536247730255,
-0.005666085984557867,
0.027366304770112038,
-0.0861983597278595,
-0.0019461297197267413,
0.045384351164102554,
0.055560432374477386,
-0.09576926380395889,
-0.2568199038505554,
0.007728114724159241,
0.07674800604581833,
-0.0347573347389698,
-0.24829192459583282,
-0.07802275568246841,
0.013734911568462849,
-0.06936580687761307,
-0.09468678385019302,
0.08142592757940292,
0.06687666475772858,
0.0549718514084816,
-0.05236184969544411,
-0.11902393400669098,
-0.07074502110481262,
0.16548676788806915,
-0.16174639761447906,
-0.08670314401388168
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog
This model is a fine-tuned version of [outputDA/checkpoint-7710](https://huggingface.co/outputDA/checkpoint-7710) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5025
- Accuracy: 0.9077
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.9925 | 1.0 | 1320 | 3.0954 | 0.4223 |
| 2.5041 | 2.0 | 2640 | 1.9762 | 0.6563 |
| 1.8061 | 3.0 | 3960 | 1.3196 | 0.7952 |
| 1.0694 | 4.0 | 5280 | 0.9304 | 0.8510 |
| 0.6479 | 5.0 | 6600 | 0.6875 | 0.8821 |
| 0.4408 | 6.0 | 7920 | 0.5692 | 0.8976 |
| 0.2542 | 7.0 | 9240 | 0.5291 | 0.8949 |
| 0.1709 | 8.0 | 10560 | 0.5038 | 0.9059 |
| 0.1181 | 9.0 | 11880 | 0.4885 | 0.9049 |
| 0.0878 | 10.0 | 13200 | 0.4900 | 0.9049 |
| 0.0702 | 11.0 | 14520 | 0.4930 | 0.9086 |
| 0.0528 | 12.0 | 15840 | 0.4987 | 0.9113 |
| 0.0406 | 13.0 | 17160 | 0.5009 | 0.9113 |
| 0.0321 | 14.0 | 18480 | 0.5017 | 0.9104 |
| 0.0308 | 15.0 | 19800 | 0.5025 | 0.9077 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTje2\_DAdialog
========================================================
This model is a fine-tuned version of outputDA/checkpoint-7710 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5025
* Accuracy: 0.9077
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
* lr\_scheduler\_type: linear
* num\_epochs: 15.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
99,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09341918677091599,
0.036673009395599365,
-0.0020830645225942135,
0.1086936667561531,
0.21000397205352783,
0.035140007734298706,
0.10597741603851318,
0.10398545116186142,
-0.1154140904545784,
0.028980636969208717,
0.11689186096191406,
0.16894188523292542,
0.0003083174233324826,
0.07906772196292877,
-0.0637938603758812,
-0.2733166515827179,
-0.03172715753316879,
0.045229509472846985,
-0.0883903056383133,
0.12715557217597961,
0.07432013750076294,
-0.16051214933395386,
0.07301877439022064,
-0.015923799946904182,
-0.24198736250400543,
0.023404620587825775,
0.028275279328227043,
-0.06323514133691788,
0.14871682226657867,
0.012522495351731777,
0.16091890633106232,
0.004025778733193874,
0.09402408450841904,
-0.16070422530174255,
0.01596086286008358,
0.06855406612157822,
0.012489812448620796,
0.0869806632399559,
0.06526248157024384,
-0.01104714721441269,
0.12342367321252823,
-0.1001298651099205,
0.0642508938908577,
0.009921819902956486,
-0.12672938406467438,
-0.21364766359329224,
-0.061724934726953506,
-0.003220280399546027,
0.0446256548166275,
0.10122185945510864,
-0.008891391567885876,
0.1461016684770584,
-0.10232667624950409,
0.1028975397348404,
0.22116594016551971,
-0.25850072503089905,
-0.08324955403804779,
0.05012086406350136,
-0.008572238497436047,
0.10439001768827438,
-0.12214497476816177,
-0.005318083334714174,
0.05799787491559982,
0.060379862785339355,
0.12313073873519897,
-0.026115979999303818,
-0.10258693248033524,
0.02448987402021885,
-0.14750488102436066,
0.00337476609274745,
0.05903809890151024,
0.011369621381163597,
-0.014578677713871002,
-0.01590592786669731,
-0.07463967800140381,
-0.15124958753585815,
-0.04306749254465103,
-0.02581852115690708,
0.0454103983938694,
-0.05872597172856331,
-0.09107769280672073,
0.0016497226897627115,
-0.10055257380008698,
-0.06339389830827713,
-0.07445815950632095,
0.17902418971061707,
0.04144059121608734,
0.018693173304200172,
-0.04767163097858429,
0.10639625787734985,
0.003225114895030856,
-0.13698884844779968,
0.04622149094939232,
0.02913338877260685,
-0.01375187560915947,
-0.056386031210422516,
-0.07543057948350906,
-0.10659469664096832,
-0.0036290455609560013,
0.05922660231590271,
-0.059938471764326096,
0.0572274811565876,
0.019467534497380257,
0.034272149205207825,
-0.09451954066753387,
0.1958184391260147,
-0.03448772802948952,
-0.01778102107346058,
0.0017672294052317739,
0.05146248638629913,
-0.004051568452268839,
-0.02051989920437336,
-0.10808061063289642,
0.0053596049547195435,
0.11396750062704086,
0.0017563162837177515,
-0.07834187895059586,
0.07037818431854248,
-0.029355941340327263,
-0.024770906195044518,
-0.030690038576722145,
-0.10083846002817154,
0.04655340686440468,
0.003661970142275095,
-0.0949474647641182,
0.012972251512110233,
0.016765793785452843,
0.0019264617003500462,
-0.025046702474355698,
0.1734483242034912,
-0.0883946567773819,
0.04969625174999237,
-0.11676237732172012,
-0.1296253353357315,
0.006245332770049572,
-0.07656735926866531,
0.01455613598227501,
-0.0928274616599083,
-0.13178646564483643,
-0.02001614309847355,
0.0531700998544693,
-0.03215659037232399,
-0.02605133131146431,
-0.053870998322963715,
-0.07703591138124466,
0.014879236929118633,
-0.016896242275834084,
0.1658691167831421,
-0.050388943403959274,
0.11720872670412064,
0.05129740387201309,
0.07211665064096451,
-0.05836837366223335,
0.05713485926389694,
-0.08040149509906769,
-0.010052519850432873,
-0.21435967087745667,
0.05551721900701523,
-0.05486832559108734,
0.059755098074674606,
-0.06428133696317673,
-0.12143980711698532,
0.006432301830500364,
0.0005070320330560207,
0.09008147567510605,
0.08973392844200134,
-0.173749640583992,
-0.09268851578235626,
0.1470586359500885,
-0.05974433943629265,
-0.08222134411334991,
0.11253714561462402,
-0.06955724954605103,
0.018074430525302887,
0.09144872426986694,
0.16492536664009094,
0.05974201112985611,
-0.07675564289093018,
0.023823833093047142,
-0.021337296813726425,
0.06703083962202072,
-0.060429610311985016,
0.036315854638814926,
0.01873893290758133,
0.009102999232709408,
0.03281312435865402,
-0.020256640389561653,
0.0638485699892044,
-0.11869558691978455,
-0.08203772455453873,
-0.038349248468875885,
-0.09919828176498413,
0.06370479613542557,
0.09208685159683228,
0.10519497841596603,
-0.10077188163995743,
-0.06642932444810867,
0.10025962442159653,
0.05215580761432648,
-0.05945253744721413,
0.031109565868973732,
-0.04783830791711807,
0.05977991595864296,
-0.05046163871884346,
-0.0163447055965662,
-0.21107862889766693,
-0.03242583945393562,
0.004200879484415054,
0.04167616739869118,
0.03321047127246857,
0.03067130036652088,
0.08695393055677414,
0.06744806468486786,
-0.0711047351360321,
0.0015741225797683,
-0.024823201820254326,
-0.012007392011582851,
-0.1568051278591156,
-0.20319335162639618,
-0.017857879400253296,
-0.017092349007725716,
0.081108957529068,
-0.21993862092494965,
0.030274182558059692,
-0.026524357497692108,
0.07846177369356155,
0.009543225169181824,
-0.01065221056342125,
-0.06120734289288521,
0.10520121455192566,
-0.02637358196079731,
-0.04171295836567879,
0.07540977001190186,
-0.021706560626626015,
-0.08065199851989746,
-0.07551407814025879,
-0.10612154752016068,
0.186799556016922,
0.1432259976863861,
-0.16905583441257477,
-0.08519995212554932,
0.019618965685367584,
-0.0556814968585968,
-0.014212161302566528,
-0.05985686182975769,
0.04941945895552635,
0.20516878366470337,
-0.005034571513533592,
0.1570615917444229,
-0.0589924082159996,
-0.03408306464552879,
0.017696617171168327,
-0.01971786469221115,
0.04484826698899269,
0.12369700521230698,
0.12463302910327911,
-0.0612020269036293,
0.12512162327766418,
0.13662908971309662,
-0.11855995655059814,
0.14052174985408783,
-0.022302284836769104,
-0.07364236563444138,
0.0013993012253195047,
-0.04002968594431877,
0.00044183104182593524,
0.09320645034313202,
-0.1308426558971405,
-0.020181741565465927,
0.0005148616037331522,
0.025495611131191254,
0.03125628083944321,
-0.2315271943807602,
-0.0426342748105526,
0.02889646589756012,
-0.018433384597301483,
-0.011419721879065037,
-0.021310199052095413,
0.025898931547999382,
0.12703552842140198,
-0.0033612765837460756,
-0.06256905943155289,
0.01793161779642105,
-0.0035892731975764036,
-0.07019028812646866,
0.22099684178829193,
-0.07066649943590164,
-0.12591224908828735,
-0.09620511531829834,
-0.08378976583480835,
-0.054223380982875824,
0.014625422656536102,
0.042586881667375565,
-0.1375235617160797,
-0.014496655203402042,
-0.0369696207344532,
0.045463453978300095,
-0.0005399578367359936,
0.0557238906621933,
0.0008104066364467144,
-0.006264080759137869,
0.0612272247672081,
-0.10948293656110764,
-0.0039012841880321503,
-0.08628033101558685,
-0.08032925426959991,
0.05231329798698425,
0.06210770457983017,
0.11279556900262833,
0.17785315215587616,
-0.04646530747413635,
0.009302240796387196,
-0.02792254090309143,
0.2249675840139389,
-0.07289895415306091,
-0.03896327316761017,
0.11164256185293198,
-0.02195499837398529,
0.04658900573849678,
0.09177976101636887,
0.08348552882671356,
-0.09650072455406189,
0.010943811386823654,
0.042667731642723083,
-0.047864604741334915,
-0.22319048643112183,
-0.041274167597293854,
-0.052577584981918335,
-0.040529221296310425,
0.0833902508020401,
0.021239712834358215,
0.020681161433458328,
0.05937857925891876,
0.05846809223294258,
0.08690162748098373,
-0.05235115438699722,
0.03818715736269951,
0.11077947914600372,
0.045858800411224365,
0.1331908106803894,
-0.040342800319194794,
-0.08357306569814682,
0.024342091754078865,
-0.04437656328082085,
0.21985642611980438,
-0.01168062910437584,
0.07332887500524521,
0.041888102889060974,
0.16324225068092346,
0.006455437745898962,
0.08407843858003616,
-0.002212973777204752,
-0.06288199871778488,
-0.0008415711927227676,
-0.03747200220823288,
-0.0443682037293911,
0.002418785821646452,
-0.04728861525654793,
0.059461019933223724,
-0.13188979029655457,
-0.014542258344590664,
0.05523834377527237,
0.21607591211795807,
0.019795352593064308,
-0.3108059763908386,
-0.07638219743967056,
0.0003383287403266877,
-0.024332745000720024,
-0.005521606653928757,
0.013978165574371815,
0.11895010620355606,
-0.0856693759560585,
0.03300032392144203,
-0.0717506930232048,
0.0948115810751915,
-0.03650787100195885,
0.052618566900491714,
0.061580590903759,
0.11852782219648361,
-0.0072626578621566296,
0.06707916408777237,
-0.322207510471344,
0.271477609872818,
0.009387640282511711,
0.08412028849124908,
-0.08086096495389938,
-0.01678743027150631,
0.03615749254822731,
0.05757211893796921,
0.022439034655690193,
-0.01954629458487034,
-0.005091194063425064,
-0.20344668626785278,
-0.032439809292554855,
0.04012106731534004,
0.1289805918931961,
-0.007078983820974827,
0.09353342652320862,
-0.012935393489897251,
0.0047384509816765785,
0.08493953198194504,
-0.03346753865480423,
-0.058671485632658005,
-0.07816484570503235,
-0.027494633570313454,
0.014393705874681473,
-0.08575624227523804,
-0.04709314927458763,
-0.13173577189445496,
-0.13579989969730377,
0.14236193895339966,
0.005558183882385492,
-0.0152243971824646,
-0.11993147432804108,
0.13397106528282166,
0.0670427456498146,
-0.08506985008716583,
0.027519257739186287,
0.013371788896620274,
0.05549505725502968,
0.031004585325717926,
-0.08103252947330475,
0.11180157214403152,
-0.05616123601794243,
-0.1560230255126953,
-0.06088097020983696,
0.08831337839365005,
0.050262462347745895,
0.07131786644458771,
-0.02575567550957203,
0.017386404797434807,
-0.017377199605107307,
-0.09264665842056274,
0.03850433975458145,
-0.01897696778178215,
0.061457857489585876,
0.03519259765744209,
-0.0611417293548584,
-0.013489081524312496,
-0.060248278081417084,
-0.008121493272483349,
0.19102753698825836,
0.21589425206184387,
-0.08772335201501846,
-0.0022582937963306904,
0.03663797304034233,
-0.06875073909759521,
-0.20945008099079132,
0.10239745676517487,
0.0845222994685173,
0.005727828945964575,
0.03859865665435791,
-0.17683473229408264,
0.15594127774238586,
0.09295867383480072,
0.002681843703612685,
0.1234358698129654,
-0.31572359800338745,
-0.13615332543849945,
0.10325058549642563,
0.17360804975032806,
0.15173372626304626,
-0.15084373950958252,
-0.011504219844937325,
-0.026744337752461433,
-0.09498101472854614,
0.10441173613071442,
-0.09306437522172928,
0.12102576345205307,
-0.023934630677103996,
0.09739118069410324,
0.012095536105334759,
-0.06455500423908234,
0.09580878913402557,
0.011869527399539948,
0.10457251965999603,
-0.06526213139295578,
-0.051182474941015244,
0.04026641696691513,
-0.024788573384284973,
-0.021059755235910416,
-0.04327429085969925,
0.017225371673703194,
-0.07768091559410095,
-0.019267350435256958,
-0.10266000032424927,
0.0343179851770401,
-0.031826701015233994,
-0.06189312785863876,
-0.028004271909594536,
0.020494304597377777,
0.04633217304944992,
-0.01639081910252571,
0.13313914835453033,
-0.0031545832753181458,
0.18926052749156952,
0.090241439640522,
0.08109105378389359,
-0.06867266446352005,
-0.03262285143136978,
0.003861791454255581,
-0.0035124868154525757,
0.06047685816884041,
-0.14643685519695282,
0.019821222871541977,
0.15882959961891174,
0.027294375002384186,
0.11685715615749359,
0.10119388997554779,
-0.013492264784872532,
0.01654590480029583,
0.07017634809017181,
-0.16501954197883606,
-0.08072850853204727,
-0.0005945318262092769,
-0.08045507967472076,
-0.10020694881677628,
0.06466640532016754,
0.08251267671585083,
-0.07443613559007645,
-0.0033468182664364576,
-0.012043004855513573,
-0.017437132075428963,
-0.06384618580341339,
0.22432659566402435,
0.07733441889286041,
0.0463411808013916,
-0.10379869490861893,
0.06679921597242355,
0.0536920540034771,
-0.09472241997718811,
0.000628030626103282,
0.09512937068939209,
-0.07552216947078705,
-0.023201316595077515,
0.11123047769069672,
0.20577707886695862,
-0.05268123745918274,
-0.013741560280323029,
-0.14644871652126312,
-0.11765453964471817,
0.07418091595172882,
0.18999148905277252,
0.1092735305428505,
-0.012972273863852024,
-0.0781833603978157,
0.03611335530877113,
-0.14324691891670227,
0.07230374217033386,
0.03616759181022644,
0.07486217468976974,
-0.1301204264163971,
0.20220136642456055,
0.010464244522154331,
0.04360613599419594,
-0.03676113858819008,
0.028578350320458412,
-0.11158827692270279,
0.027685534209012985,
-0.13318507373332977,
-0.051264308393001556,
0.009438219480216503,
-0.0078537343069911,
-0.009350590407848358,
-0.07205931097269058,
-0.05853043496608734,
0.002308878116309643,
-0.12892961502075195,
-0.01570378988981247,
0.03489227965474129,
0.023387443274259567,
-0.11998501420021057,
-0.038986071944236755,
0.008931904099881649,
-0.05217858403921127,
0.05086958780884743,
0.05550367385149002,
0.0060069262981414795,
0.08609634637832642,
-0.16770963370800018,
-0.02283632755279541,
0.07088848948478699,
0.0006575505249202251,
0.08888306468725204,
-0.03156943991780281,
-0.0009754948550835252,
-0.005171516910195351,
0.10607121139764786,
0.03140518441796303,
0.08247866481542587,
-0.13084864616394043,
0.018282145261764526,
-0.036618296056985855,
-0.09892252087593079,
-0.060397546738386154,
0.038074791431427,
0.06846980005502701,
0.02182028256356716,
0.1775616556406021,
-0.09044475853443146,
0.05854480341076851,
-0.22026632726192474,
-0.00827367790043354,
-0.011898238211870193,
-0.11662101000547409,
-0.1082349419593811,
-0.0597226582467556,
0.08642562478780746,
-0.05598929524421692,
0.11653099209070206,
0.04728858172893524,
0.07009853422641754,
0.03511646389961243,
-0.024349553510546684,
-0.010681695304811,
0.0300762839615345,
0.2034938931465149,
0.05146580934524536,
-0.0434110127389431,
0.07451071590185165,
0.07457882910966873,
0.1119801253080368,
0.13324914872646332,
0.24288541078567505,
0.15004852414131165,
-0.027174262329936028,
0.09312105178833008,
0.027928568422794342,
-0.05179725959897041,
-0.14714720845222473,
0.02121657133102417,
-0.06949073076248169,
0.0987086221575737,
-0.03267264738678932,
0.19466723501682281,
0.046477265655994415,
-0.15646852552890778,
0.046278711408376694,
-0.07453523576259613,
-0.1023305132985115,
-0.11410633474588394,
0.005538968835026026,
-0.08142609149217606,
-0.14267143607139587,
0.012840035371482372,
-0.11298685520887375,
0.02192642353475094,
0.11252280324697495,
0.01957380585372448,
-0.02276499755680561,
0.19282925128936768,
0.03936001658439636,
0.03292202949523926,
0.07842976599931717,
0.00961192138493061,
-0.013348340056836605,
-0.08911006152629852,
-0.06267309188842773,
-0.03322785720229149,
-0.009531764313578606,
0.03205372393131256,
-0.06230456754565239,
-0.09615709632635117,
0.036116696894168854,
-0.019341768696904182,
-0.1091618537902832,
0.029683057218790054,
0.025351347401738167,
0.07852154225111008,
0.05268438160419464,
-0.005772966891527176,
0.011538667604327202,
-0.03303243964910507,
0.22881032526493073,
-0.08658124506473541,
-0.06993245333433151,
-0.07939836382865906,
0.2926032543182373,
0.050788868218660355,
0.004733097739517689,
0.01620369777083397,
-0.07024848461151123,
-0.009535026736557484,
0.24609975516796112,
0.2124444842338562,
-0.1243332102894783,
-0.007640883792191744,
0.006810091435909271,
-0.006425063591450453,
-0.015127507038414478,
0.14688633382320404,
0.13114036619663239,
0.05416295304894447,
-0.108786940574646,
-0.03858931362628937,
-0.04798699915409088,
-0.010569145902991295,
-0.03273182362318039,
0.06266733258962631,
0.06538118422031403,
0.016534121707081795,
-0.05757574737071991,
0.06278231739997864,
-0.07538516819477081,
-0.11911758035421371,
0.06396874040365219,
-0.2325386255979538,
-0.17155849933624268,
-0.018266864120960236,
0.11422283947467804,
-0.009275875985622406,
0.07457959651947021,
-0.02421570010483265,
-0.0012075628619641066,
0.04019669443368912,
-0.02890736423432827,
-0.06666802614927292,
-0.08969347178936005,
0.10106251388788223,
-0.12862396240234375,
0.1734980046749115,
-0.0481356680393219,
0.06361892074346542,
0.1202312484383583,
0.0673680305480957,
-0.042399805039167404,
0.05027143657207489,
0.035667065531015396,
-0.10666608810424805,
0.015047452412545681,
0.1229054406285286,
-0.03715616837143898,
0.03666716814041138,
0.04220803081989288,
-0.13838571310043335,
0.03347665071487427,
-0.0930849090218544,
-0.05996216461062431,
-0.03833157941699028,
-0.04914060980081558,
-0.05723017454147339,
0.11524665355682373,
0.23941536247730255,
-0.005666085984557867,
0.027366304770112038,
-0.0861983597278595,
-0.0019461297197267413,
0.045384351164102554,
0.055560432374477386,
-0.09576926380395889,
-0.2568199038505554,
0.007728114724159241,
0.07674800604581833,
-0.0347573347389698,
-0.24829192459583282,
-0.07802275568246841,
0.013734911568462849,
-0.06936580687761307,
-0.09468678385019302,
0.08142592757940292,
0.06687666475772858,
0.0549718514084816,
-0.05236184969544411,
-0.11902393400669098,
-0.07074502110481262,
0.16548676788806915,
-0.16174639761447906,
-0.08670314401388168
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 |
| 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 |
| 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 |
| 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 |
| 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 |
| 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 |
| 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 |
| 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 |
| 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 |
| 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 |
| 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 |
| 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 |
| 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 |
| 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 |
| 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTje2\_DAdialogQonly
=============================================================
This model is a fine-tuned version of outputDAQonly/checkpoint-8710 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5008
* Accuracy: 0.9068
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
* lr\_scheduler\_type: linear
* num\_epochs: 15.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
99,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09341918677091599,
0.036673009395599365,
-0.0020830645225942135,
0.1086936667561531,
0.21000397205352783,
0.035140007734298706,
0.10597741603851318,
0.10398545116186142,
-0.1154140904545784,
0.028980636969208717,
0.11689186096191406,
0.16894188523292542,
0.0003083174233324826,
0.07906772196292877,
-0.0637938603758812,
-0.2733166515827179,
-0.03172715753316879,
0.045229509472846985,
-0.0883903056383133,
0.12715557217597961,
0.07432013750076294,
-0.16051214933395386,
0.07301877439022064,
-0.015923799946904182,
-0.24198736250400543,
0.023404620587825775,
0.028275279328227043,
-0.06323514133691788,
0.14871682226657867,
0.012522495351731777,
0.16091890633106232,
0.004025778733193874,
0.09402408450841904,
-0.16070422530174255,
0.01596086286008358,
0.06855406612157822,
0.012489812448620796,
0.0869806632399559,
0.06526248157024384,
-0.01104714721441269,
0.12342367321252823,
-0.1001298651099205,
0.0642508938908577,
0.009921819902956486,
-0.12672938406467438,
-0.21364766359329224,
-0.061724934726953506,
-0.003220280399546027,
0.0446256548166275,
0.10122185945510864,
-0.008891391567885876,
0.1461016684770584,
-0.10232667624950409,
0.1028975397348404,
0.22116594016551971,
-0.25850072503089905,
-0.08324955403804779,
0.05012086406350136,
-0.008572238497436047,
0.10439001768827438,
-0.12214497476816177,
-0.005318083334714174,
0.05799787491559982,
0.060379862785339355,
0.12313073873519897,
-0.026115979999303818,
-0.10258693248033524,
0.02448987402021885,
-0.14750488102436066,
0.00337476609274745,
0.05903809890151024,
0.011369621381163597,
-0.014578677713871002,
-0.01590592786669731,
-0.07463967800140381,
-0.15124958753585815,
-0.04306749254465103,
-0.02581852115690708,
0.0454103983938694,
-0.05872597172856331,
-0.09107769280672073,
0.0016497226897627115,
-0.10055257380008698,
-0.06339389830827713,
-0.07445815950632095,
0.17902418971061707,
0.04144059121608734,
0.018693173304200172,
-0.04767163097858429,
0.10639625787734985,
0.003225114895030856,
-0.13698884844779968,
0.04622149094939232,
0.02913338877260685,
-0.01375187560915947,
-0.056386031210422516,
-0.07543057948350906,
-0.10659469664096832,
-0.0036290455609560013,
0.05922660231590271,
-0.059938471764326096,
0.0572274811565876,
0.019467534497380257,
0.034272149205207825,
-0.09451954066753387,
0.1958184391260147,
-0.03448772802948952,
-0.01778102107346058,
0.0017672294052317739,
0.05146248638629913,
-0.004051568452268839,
-0.02051989920437336,
-0.10808061063289642,
0.0053596049547195435,
0.11396750062704086,
0.0017563162837177515,
-0.07834187895059586,
0.07037818431854248,
-0.029355941340327263,
-0.024770906195044518,
-0.030690038576722145,
-0.10083846002817154,
0.04655340686440468,
0.003661970142275095,
-0.0949474647641182,
0.012972251512110233,
0.016765793785452843,
0.0019264617003500462,
-0.025046702474355698,
0.1734483242034912,
-0.0883946567773819,
0.04969625174999237,
-0.11676237732172012,
-0.1296253353357315,
0.006245332770049572,
-0.07656735926866531,
0.01455613598227501,
-0.0928274616599083,
-0.13178646564483643,
-0.02001614309847355,
0.0531700998544693,
-0.03215659037232399,
-0.02605133131146431,
-0.053870998322963715,
-0.07703591138124466,
0.014879236929118633,
-0.016896242275834084,
0.1658691167831421,
-0.050388943403959274,
0.11720872670412064,
0.05129740387201309,
0.07211665064096451,
-0.05836837366223335,
0.05713485926389694,
-0.08040149509906769,
-0.010052519850432873,
-0.21435967087745667,
0.05551721900701523,
-0.05486832559108734,
0.059755098074674606,
-0.06428133696317673,
-0.12143980711698532,
0.006432301830500364,
0.0005070320330560207,
0.09008147567510605,
0.08973392844200134,
-0.173749640583992,
-0.09268851578235626,
0.1470586359500885,
-0.05974433943629265,
-0.08222134411334991,
0.11253714561462402,
-0.06955724954605103,
0.018074430525302887,
0.09144872426986694,
0.16492536664009094,
0.05974201112985611,
-0.07675564289093018,
0.023823833093047142,
-0.021337296813726425,
0.06703083962202072,
-0.060429610311985016,
0.036315854638814926,
0.01873893290758133,
0.009102999232709408,
0.03281312435865402,
-0.020256640389561653,
0.0638485699892044,
-0.11869558691978455,
-0.08203772455453873,
-0.038349248468875885,
-0.09919828176498413,
0.06370479613542557,
0.09208685159683228,
0.10519497841596603,
-0.10077188163995743,
-0.06642932444810867,
0.10025962442159653,
0.05215580761432648,
-0.05945253744721413,
0.031109565868973732,
-0.04783830791711807,
0.05977991595864296,
-0.05046163871884346,
-0.0163447055965662,
-0.21107862889766693,
-0.03242583945393562,
0.004200879484415054,
0.04167616739869118,
0.03321047127246857,
0.03067130036652088,
0.08695393055677414,
0.06744806468486786,
-0.0711047351360321,
0.0015741225797683,
-0.024823201820254326,
-0.012007392011582851,
-0.1568051278591156,
-0.20319335162639618,
-0.017857879400253296,
-0.017092349007725716,
0.081108957529068,
-0.21993862092494965,
0.030274182558059692,
-0.026524357497692108,
0.07846177369356155,
0.009543225169181824,
-0.01065221056342125,
-0.06120734289288521,
0.10520121455192566,
-0.02637358196079731,
-0.04171295836567879,
0.07540977001190186,
-0.021706560626626015,
-0.08065199851989746,
-0.07551407814025879,
-0.10612154752016068,
0.186799556016922,
0.1432259976863861,
-0.16905583441257477,
-0.08519995212554932,
0.019618965685367584,
-0.0556814968585968,
-0.014212161302566528,
-0.05985686182975769,
0.04941945895552635,
0.20516878366470337,
-0.005034571513533592,
0.1570615917444229,
-0.0589924082159996,
-0.03408306464552879,
0.017696617171168327,
-0.01971786469221115,
0.04484826698899269,
0.12369700521230698,
0.12463302910327911,
-0.0612020269036293,
0.12512162327766418,
0.13662908971309662,
-0.11855995655059814,
0.14052174985408783,
-0.022302284836769104,
-0.07364236563444138,
0.0013993012253195047,
-0.04002968594431877,
0.00044183104182593524,
0.09320645034313202,
-0.1308426558971405,
-0.020181741565465927,
0.0005148616037331522,
0.025495611131191254,
0.03125628083944321,
-0.2315271943807602,
-0.0426342748105526,
0.02889646589756012,
-0.018433384597301483,
-0.011419721879065037,
-0.021310199052095413,
0.025898931547999382,
0.12703552842140198,
-0.0033612765837460756,
-0.06256905943155289,
0.01793161779642105,
-0.0035892731975764036,
-0.07019028812646866,
0.22099684178829193,
-0.07066649943590164,
-0.12591224908828735,
-0.09620511531829834,
-0.08378976583480835,
-0.054223380982875824,
0.014625422656536102,
0.042586881667375565,
-0.1375235617160797,
-0.014496655203402042,
-0.0369696207344532,
0.045463453978300095,
-0.0005399578367359936,
0.0557238906621933,
0.0008104066364467144,
-0.006264080759137869,
0.0612272247672081,
-0.10948293656110764,
-0.0039012841880321503,
-0.08628033101558685,
-0.08032925426959991,
0.05231329798698425,
0.06210770457983017,
0.11279556900262833,
0.17785315215587616,
-0.04646530747413635,
0.009302240796387196,
-0.02792254090309143,
0.2249675840139389,
-0.07289895415306091,
-0.03896327316761017,
0.11164256185293198,
-0.02195499837398529,
0.04658900573849678,
0.09177976101636887,
0.08348552882671356,
-0.09650072455406189,
0.010943811386823654,
0.042667731642723083,
-0.047864604741334915,
-0.22319048643112183,
-0.041274167597293854,
-0.052577584981918335,
-0.040529221296310425,
0.0833902508020401,
0.021239712834358215,
0.020681161433458328,
0.05937857925891876,
0.05846809223294258,
0.08690162748098373,
-0.05235115438699722,
0.03818715736269951,
0.11077947914600372,
0.045858800411224365,
0.1331908106803894,
-0.040342800319194794,
-0.08357306569814682,
0.024342091754078865,
-0.04437656328082085,
0.21985642611980438,
-0.01168062910437584,
0.07332887500524521,
0.041888102889060974,
0.16324225068092346,
0.006455437745898962,
0.08407843858003616,
-0.002212973777204752,
-0.06288199871778488,
-0.0008415711927227676,
-0.03747200220823288,
-0.0443682037293911,
0.002418785821646452,
-0.04728861525654793,
0.059461019933223724,
-0.13188979029655457,
-0.014542258344590664,
0.05523834377527237,
0.21607591211795807,
0.019795352593064308,
-0.3108059763908386,
-0.07638219743967056,
0.0003383287403266877,
-0.024332745000720024,
-0.005521606653928757,
0.013978165574371815,
0.11895010620355606,
-0.0856693759560585,
0.03300032392144203,
-0.0717506930232048,
0.0948115810751915,
-0.03650787100195885,
0.052618566900491714,
0.061580590903759,
0.11852782219648361,
-0.0072626578621566296,
0.06707916408777237,
-0.322207510471344,
0.271477609872818,
0.009387640282511711,
0.08412028849124908,
-0.08086096495389938,
-0.01678743027150631,
0.03615749254822731,
0.05757211893796921,
0.022439034655690193,
-0.01954629458487034,
-0.005091194063425064,
-0.20344668626785278,
-0.032439809292554855,
0.04012106731534004,
0.1289805918931961,
-0.007078983820974827,
0.09353342652320862,
-0.012935393489897251,
0.0047384509816765785,
0.08493953198194504,
-0.03346753865480423,
-0.058671485632658005,
-0.07816484570503235,
-0.027494633570313454,
0.014393705874681473,
-0.08575624227523804,
-0.04709314927458763,
-0.13173577189445496,
-0.13579989969730377,
0.14236193895339966,
0.005558183882385492,
-0.0152243971824646,
-0.11993147432804108,
0.13397106528282166,
0.0670427456498146,
-0.08506985008716583,
0.027519257739186287,
0.013371788896620274,
0.05549505725502968,
0.031004585325717926,
-0.08103252947330475,
0.11180157214403152,
-0.05616123601794243,
-0.1560230255126953,
-0.06088097020983696,
0.08831337839365005,
0.050262462347745895,
0.07131786644458771,
-0.02575567550957203,
0.017386404797434807,
-0.017377199605107307,
-0.09264665842056274,
0.03850433975458145,
-0.01897696778178215,
0.061457857489585876,
0.03519259765744209,
-0.0611417293548584,
-0.013489081524312496,
-0.060248278081417084,
-0.008121493272483349,
0.19102753698825836,
0.21589425206184387,
-0.08772335201501846,
-0.0022582937963306904,
0.03663797304034233,
-0.06875073909759521,
-0.20945008099079132,
0.10239745676517487,
0.0845222994685173,
0.005727828945964575,
0.03859865665435791,
-0.17683473229408264,
0.15594127774238586,
0.09295867383480072,
0.002681843703612685,
0.1234358698129654,
-0.31572359800338745,
-0.13615332543849945,
0.10325058549642563,
0.17360804975032806,
0.15173372626304626,
-0.15084373950958252,
-0.011504219844937325,
-0.026744337752461433,
-0.09498101472854614,
0.10441173613071442,
-0.09306437522172928,
0.12102576345205307,
-0.023934630677103996,
0.09739118069410324,
0.012095536105334759,
-0.06455500423908234,
0.09580878913402557,
0.011869527399539948,
0.10457251965999603,
-0.06526213139295578,
-0.051182474941015244,
0.04026641696691513,
-0.024788573384284973,
-0.021059755235910416,
-0.04327429085969925,
0.017225371673703194,
-0.07768091559410095,
-0.019267350435256958,
-0.10266000032424927,
0.0343179851770401,
-0.031826701015233994,
-0.06189312785863876,
-0.028004271909594536,
0.020494304597377777,
0.04633217304944992,
-0.01639081910252571,
0.13313914835453033,
-0.0031545832753181458,
0.18926052749156952,
0.090241439640522,
0.08109105378389359,
-0.06867266446352005,
-0.03262285143136978,
0.003861791454255581,
-0.0035124868154525757,
0.06047685816884041,
-0.14643685519695282,
0.019821222871541977,
0.15882959961891174,
0.027294375002384186,
0.11685715615749359,
0.10119388997554779,
-0.013492264784872532,
0.01654590480029583,
0.07017634809017181,
-0.16501954197883606,
-0.08072850853204727,
-0.0005945318262092769,
-0.08045507967472076,
-0.10020694881677628,
0.06466640532016754,
0.08251267671585083,
-0.07443613559007645,
-0.0033468182664364576,
-0.012043004855513573,
-0.017437132075428963,
-0.06384618580341339,
0.22432659566402435,
0.07733441889286041,
0.0463411808013916,
-0.10379869490861893,
0.06679921597242355,
0.0536920540034771,
-0.09472241997718811,
0.000628030626103282,
0.09512937068939209,
-0.07552216947078705,
-0.023201316595077515,
0.11123047769069672,
0.20577707886695862,
-0.05268123745918274,
-0.013741560280323029,
-0.14644871652126312,
-0.11765453964471817,
0.07418091595172882,
0.18999148905277252,
0.1092735305428505,
-0.012972273863852024,
-0.0781833603978157,
0.03611335530877113,
-0.14324691891670227,
0.07230374217033386,
0.03616759181022644,
0.07486217468976974,
-0.1301204264163971,
0.20220136642456055,
0.010464244522154331,
0.04360613599419594,
-0.03676113858819008,
0.028578350320458412,
-0.11158827692270279,
0.027685534209012985,
-0.13318507373332977,
-0.051264308393001556,
0.009438219480216503,
-0.0078537343069911,
-0.009350590407848358,
-0.07205931097269058,
-0.05853043496608734,
0.002308878116309643,
-0.12892961502075195,
-0.01570378988981247,
0.03489227965474129,
0.023387443274259567,
-0.11998501420021057,
-0.038986071944236755,
0.008931904099881649,
-0.05217858403921127,
0.05086958780884743,
0.05550367385149002,
0.0060069262981414795,
0.08609634637832642,
-0.16770963370800018,
-0.02283632755279541,
0.07088848948478699,
0.0006575505249202251,
0.08888306468725204,
-0.03156943991780281,
-0.0009754948550835252,
-0.005171516910195351,
0.10607121139764786,
0.03140518441796303,
0.08247866481542587,
-0.13084864616394043,
0.018282145261764526,
-0.036618296056985855,
-0.09892252087593079,
-0.060397546738386154,
0.038074791431427,
0.06846980005502701,
0.02182028256356716,
0.1775616556406021,
-0.09044475853443146,
0.05854480341076851,
-0.22026632726192474,
-0.00827367790043354,
-0.011898238211870193,
-0.11662101000547409,
-0.1082349419593811,
-0.0597226582467556,
0.08642562478780746,
-0.05598929524421692,
0.11653099209070206,
0.04728858172893524,
0.07009853422641754,
0.03511646389961243,
-0.024349553510546684,
-0.010681695304811,
0.0300762839615345,
0.2034938931465149,
0.05146580934524536,
-0.0434110127389431,
0.07451071590185165,
0.07457882910966873,
0.1119801253080368,
0.13324914872646332,
0.24288541078567505,
0.15004852414131165,
-0.027174262329936028,
0.09312105178833008,
0.027928568422794342,
-0.05179725959897041,
-0.14714720845222473,
0.02121657133102417,
-0.06949073076248169,
0.0987086221575737,
-0.03267264738678932,
0.19466723501682281,
0.046477265655994415,
-0.15646852552890778,
0.046278711408376694,
-0.07453523576259613,
-0.1023305132985115,
-0.11410633474588394,
0.005538968835026026,
-0.08142609149217606,
-0.14267143607139587,
0.012840035371482372,
-0.11298685520887375,
0.02192642353475094,
0.11252280324697495,
0.01957380585372448,
-0.02276499755680561,
0.19282925128936768,
0.03936001658439636,
0.03292202949523926,
0.07842976599931717,
0.00961192138493061,
-0.013348340056836605,
-0.08911006152629852,
-0.06267309188842773,
-0.03322785720229149,
-0.009531764313578606,
0.03205372393131256,
-0.06230456754565239,
-0.09615709632635117,
0.036116696894168854,
-0.019341768696904182,
-0.1091618537902832,
0.029683057218790054,
0.025351347401738167,
0.07852154225111008,
0.05268438160419464,
-0.005772966891527176,
0.011538667604327202,
-0.03303243964910507,
0.22881032526493073,
-0.08658124506473541,
-0.06993245333433151,
-0.07939836382865906,
0.2926032543182373,
0.050788868218660355,
0.004733097739517689,
0.01620369777083397,
-0.07024848461151123,
-0.009535026736557484,
0.24609975516796112,
0.2124444842338562,
-0.1243332102894783,
-0.007640883792191744,
0.006810091435909271,
-0.006425063591450453,
-0.015127507038414478,
0.14688633382320404,
0.13114036619663239,
0.05416295304894447,
-0.108786940574646,
-0.03858931362628937,
-0.04798699915409088,
-0.010569145902991295,
-0.03273182362318039,
0.06266733258962631,
0.06538118422031403,
0.016534121707081795,
-0.05757574737071991,
0.06278231739997864,
-0.07538516819477081,
-0.11911758035421371,
0.06396874040365219,
-0.2325386255979538,
-0.17155849933624268,
-0.018266864120960236,
0.11422283947467804,
-0.009275875985622406,
0.07457959651947021,
-0.02421570010483265,
-0.0012075628619641066,
0.04019669443368912,
-0.02890736423432827,
-0.06666802614927292,
-0.08969347178936005,
0.10106251388788223,
-0.12862396240234375,
0.1734980046749115,
-0.0481356680393219,
0.06361892074346542,
0.1202312484383583,
0.0673680305480957,
-0.042399805039167404,
0.05027143657207489,
0.035667065531015396,
-0.10666608810424805,
0.015047452412545681,
0.1229054406285286,
-0.03715616837143898,
0.03666716814041138,
0.04220803081989288,
-0.13838571310043335,
0.03347665071487427,
-0.0930849090218544,
-0.05996216461062431,
-0.03833157941699028,
-0.04914060980081558,
-0.05723017454147339,
0.11524665355682373,
0.23941536247730255,
-0.005666085984557867,
0.027366304770112038,
-0.0861983597278595,
-0.0019461297197267413,
0.045384351164102554,
0.055560432374477386,
-0.09576926380395889,
-0.2568199038505554,
0.007728114724159241,
0.07674800604581833,
-0.0347573347389698,
-0.24829192459583282,
-0.07802275568246841,
0.013734911568462849,
-0.06936580687761307,
-0.09468678385019302,
0.08142592757940292,
0.06687666475772858,
0.0549718514084816,
-0.05236184969544411,
-0.11902393400669098,
-0.07074502110481262,
0.16548676788806915,
-0.16174639761447906,
-0.08670314401388168
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4978
- Accuracy: 0.9031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 330 | 3.9692 | 0.2249 |
| 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 |
| 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 |
| 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 |
| 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 |
| 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 |
| 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 |
| 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 |
| 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 |
| 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 |
| 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 |
| 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 |
| 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 |
| 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 |
| 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 |
| 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 |
| 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 |
| 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 |
| 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 |
| 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 |
| 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 |
| 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 |
| 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 |
| 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 |
| 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 |
| 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 |
| 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 |
| 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 |
| 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 |
| 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTje2\_DAdialogQonly09
===============================================================
This model is a fine-tuned version of outputDAQonly09/ on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4978
* Accuracy: 0.9031
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
99,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09467612951993942,
0.03680520877242088,
-0.001966754673048854,
0.11011061817407608,
0.20773202180862427,
0.034512683749198914,
0.10677079111337662,
0.10422021895647049,
-0.11640086024999619,
0.027838006615638733,
0.11804917454719543,
0.17185164988040924,
0.0008215710986405611,
0.0786476731300354,
-0.06540696322917938,
-0.27193528413772583,
-0.03318779543042183,
0.04556978493928909,
-0.08406390994787216,
0.12773114442825317,
0.0746925100684166,
-0.16016429662704468,
0.07421087473630905,
-0.016628216952085495,
-0.24012808501720428,
0.02439260482788086,
0.028727315366268158,
-0.06285250931978226,
0.14972291886806488,
0.011908264830708504,
0.16160063445568085,
0.0024330723099410534,
0.09728053212165833,
-0.16091850399971008,
0.015992557629942894,
0.0687180906534195,
0.012896396219730377,
0.08605138212442398,
0.06352656334638596,
-0.01243496686220169,
0.1255664974451065,
-0.10173266381025314,
0.06285199522972107,
0.007568803150206804,
-0.12698988616466522,
-0.21180275082588196,
-0.06333018839359283,
-0.0048000020906329155,
0.043229613453149796,
0.10215117782354355,
-0.008266407996416092,
0.14872080087661743,
-0.0996994823217392,
0.10416968166828156,
0.22162014245986938,
-0.263099730014801,
-0.08267813175916672,
0.05051512271165848,
-0.006909004412591457,
0.10597293078899384,
-0.12099655717611313,
-0.005961600691080093,
0.05790315940976143,
0.06077037379145622,
0.12207984179258347,
-0.02877475693821907,
-0.10004613548517227,
0.0248364619910717,
-0.1467105597257614,
0.003478293539956212,
0.060599155724048615,
0.012545042671263218,
-0.016078095883131027,
-0.01680075377225876,
-0.0735660120844841,
-0.15091630816459656,
-0.04188317432999611,
-0.02408290095627308,
0.045015886425971985,
-0.05777924135327339,
-0.09397216886281967,
0.0013897898606956005,
-0.10072410106658936,
-0.06349434703588486,
-0.07419140636920929,
0.17803940176963806,
0.041309621185064316,
0.019283631816506386,
-0.04793258383870125,
0.10717272013425827,
0.003578766016289592,
-0.1369243860244751,
0.04755197465419769,
0.02793240174651146,
-0.013576316647231579,
-0.05650104954838753,
-0.07615330815315247,
-0.1087542325258255,
-0.004255576059222221,
0.060889098793268204,
-0.059250377118587494,
0.05807998776435852,
0.020045354962348938,
0.034884966909885406,
-0.09477641433477402,
0.19644922018051147,
-0.032831329852342606,
-0.023558389395475388,
0.0007645527366548777,
0.05112569034099579,
-0.0027068175841122866,
-0.01943434402346611,
-0.10867005586624146,
0.003434670390561223,
0.11036311089992523,
0.0006191438878886402,
-0.0806320458650589,
0.07004253566265106,
-0.029648255556821823,
-0.023763930425047874,
-0.0317307747900486,
-0.09962213039398193,
0.04529418423771858,
0.0018385329749435186,
-0.09596602618694305,
0.01261073723435402,
0.01666243188083172,
0.0038356464356184006,
-0.024608660489320755,
0.17093560099601746,
-0.08640523254871368,
0.049802836030721664,
-0.11687928438186646,
-0.12948662042617798,
0.004970384296029806,
-0.07861917465925217,
0.015404822304844856,
-0.092626191675663,
-0.13513900339603424,
-0.021850712597370148,
0.05291074141860008,
-0.0319860614836216,
-0.023927511647343636,
-0.05490007624030113,
-0.07409496605396271,
0.015814293175935745,
-0.01741974614560604,
0.1658981293439865,
-0.05114564672112465,
0.11732517182826996,
0.04945613816380501,
0.07356158643960953,
-0.061807308346033096,
0.055925652384757996,
-0.0805603638291359,
-0.010952172800898552,
-0.2090785950422287,
0.05678873136639595,
-0.05149712413549423,
0.0583706796169281,
-0.06339403241872787,
-0.12130310386419296,
0.005096754990518093,
0.0021915656980127096,
0.09073101729154587,
0.08795899897813797,
-0.17653098702430725,
-0.09174402803182602,
0.1515803337097168,
-0.05760747194290161,
-0.08096404373645782,
0.1121600791811943,
-0.07162220776081085,
0.019821232184767723,
0.09402830898761749,
0.16335366666316986,
0.05519961938261986,
-0.07452741265296936,
0.024161290377378464,
-0.02059124782681465,
0.06710181385278702,
-0.061923783272504807,
0.03565249964594841,
0.01662612520158291,
0.00989122036844492,
0.031197478994727135,
-0.018005145713686943,
0.06391172111034393,
-0.11817709356546402,
-0.0814778059720993,
-0.0375986285507679,
-0.10079236328601837,
0.06173047795891762,
0.09032635390758514,
0.10574840754270554,
-0.103458933532238,
-0.06714872270822525,
0.09658542275428772,
0.05308566242456436,
-0.06033196672797203,
0.03189261630177498,
-0.04803856462240219,
0.05542577803134918,
-0.04852654039859772,
-0.018867366015911102,
-0.21110470592975616,
-0.02889476902782917,
0.0042801531963050365,
0.04639118164777756,
0.033605512231588364,
0.03224727883934975,
0.08823634684085846,
0.06634078919887543,
-0.07107344269752502,
0.0008538611000403762,
-0.02333945222198963,
-0.012437930330634117,
-0.1571599394083023,
-0.20183204114437103,
-0.016886031255126,
-0.017920801416039467,
0.07918931543827057,
-0.21887941658496857,
0.029207048937678337,
-0.02864934131503105,
0.07701323181390762,
0.010551242157816887,
-0.010885722935199738,
-0.061206549406051636,
0.10693268477916718,
-0.026874758303165436,
-0.04270840808749199,
0.07637335360050201,
-0.02059103734791279,
-0.08322959393262863,
-0.07736849039793015,
-0.10565478354692459,
0.1815166026353836,
0.14231057465076447,
-0.16968108713626862,
-0.08575344830751419,
0.01718650758266449,
-0.05456508323550224,
-0.014123174361884594,
-0.05912122502923012,
0.04970133677124977,
0.20731720328330994,
-0.004370083566755056,
0.15724194049835205,
-0.058989133685827255,
-0.0341360978782177,
0.014581244438886642,
-0.022216252982616425,
0.046756502240896225,
0.12355437129735947,
0.12057396024465561,
-0.06464654207229614,
0.12390440702438354,
0.13486139476299286,
-0.11878833174705505,
0.1417614221572876,
-0.02149587869644165,
-0.07397370785474777,
0.00026399444323033094,
-0.03928816318511963,
0.000042669675167417154,
0.09267301112413406,
-0.12883572280406952,
-0.021336399018764496,
0.00025420193560421467,
0.02568785473704338,
0.030608586966991425,
-0.23194779455661774,
-0.04360447824001312,
0.028911061584949493,
-0.018133752048015594,
-0.008517105132341385,
-0.021490102633833885,
0.024990251287817955,
0.12703196704387665,
-0.003489483380690217,
-0.06325030326843262,
0.01907394453883171,
-0.004460160620510578,
-0.06944501399993896,
0.22057706117630005,
-0.07060276716947556,
-0.12554040551185608,
-0.09617093205451965,
-0.08579396456480026,
-0.05252235010266304,
0.015867970883846283,
0.04130830615758896,
-0.13722577691078186,
-0.013282863423228264,
-0.03612599894404411,
0.043426159769296646,
0.0027037356048822403,
0.055239465087652206,
0.0024708439595997334,
-0.005748168099671602,
0.060261037200689316,
-0.10824965685606003,
-0.0059218453243374825,
-0.08713356405496597,
-0.07969484478235245,
0.05273263901472092,
0.06012345477938652,
0.11226212978363037,
0.17560259997844696,
-0.04558173567056656,
0.010486626997590065,
-0.027685493230819702,
0.22252675890922546,
-0.0718037560582161,
-0.03835534676909447,
0.113083615899086,
-0.022523274645209312,
0.04705072194337845,
0.08933449536561966,
0.08389003574848175,
-0.0971679612994194,
0.012463918887078762,
0.042425766587257385,
-0.049403153359889984,
-0.22271986305713654,
-0.040508925914764404,
-0.05232061445713043,
-0.043275509029626846,
0.0833301842212677,
0.019741369411349297,
0.019481511786580086,
0.061514344066381454,
0.059757646173238754,
0.08719455450773239,
-0.05362739413976669,
0.03711026906967163,
0.10546834021806717,
0.046551357954740524,
0.13295787572860718,
-0.041478853672742844,
-0.08497538417577744,
0.026160413399338722,
-0.04284922778606415,
0.21826207637786865,
-0.010864727199077606,
0.07517299801111221,
0.041643474251031876,
0.16378360986709595,
0.005019716918468475,
0.08435969799757004,
-0.0027245839592069387,
-0.06266596913337708,
-0.0017194802640005946,
-0.037472084164619446,
-0.04723430797457695,
0.004452673252671957,
-0.047640182077884674,
0.060142479836940765,
-0.13007132709026337,
-0.012048481963574886,
0.05449346452951431,
0.2174605429172516,
0.021917875856161118,
-0.3128768503665924,
-0.07516457885503769,
0.0015080159064382315,
-0.023098334670066833,
-0.007060202304273844,
0.015318312682211399,
0.11876554042100906,
-0.08698161691427231,
0.03483409807085991,
-0.07140933722257614,
0.09398995339870453,
-0.04169318079948425,
0.05137860029935837,
0.05886729434132576,
0.11630701273679733,
-0.0076744272373616695,
0.06546252220869064,
-0.3221755027770996,
0.2707003355026245,
0.00857559684664011,
0.08366338908672333,
-0.08239047974348068,
-0.01605687290430069,
0.036258552223443985,
0.05610004812479019,
0.025427071377635002,
-0.019724758341908455,
-0.00509617617353797,
-0.2027684450149536,
-0.03305315598845482,
0.039173100143671036,
0.12897785007953644,
-0.005282171536237001,
0.09496745467185974,
-0.012671086937189102,
0.006633053068071604,
0.08402547240257263,
-0.03569686785340309,
-0.057928331196308136,
-0.07892465591430664,
-0.02994639240205288,
0.018150920048356056,
-0.08687888830900192,
-0.047968994826078415,
-0.1301921159029007,
-0.13458098471164703,
0.14398673176765442,
0.008944535627961159,
-0.016708798706531525,
-0.11927276104688644,
0.13292458653450012,
0.0661223754286766,
-0.08492706716060638,
0.02562510222196579,
0.015167958103120327,
0.05292302742600441,
0.03169209882616997,
-0.0791562870144844,
0.11155896633863449,
-0.05424613878130913,
-0.15257084369659424,
-0.06171056255698204,
0.08900817483663559,
0.05348080396652222,
0.07049596309661865,
-0.02506622113287449,
0.016576329246163368,
-0.018677115440368652,
-0.09139236062765121,
0.03848231956362724,
-0.02109081670641899,
0.06432328373193741,
0.037863679230213165,
-0.060242947190999985,
-0.012788855470716953,
-0.05809705704450607,
-0.007809943053871393,
0.19408228993415833,
0.21298463642597198,
-0.08703020215034485,
-0.0018730281153693795,
0.033313363790512085,
-0.06878533214330673,
-0.20777899026870728,
0.10164055973291397,
0.08368385583162308,
0.007377461064606905,
0.03915354609489441,
-0.17714449763298035,
0.15469300746917725,
0.09246084839105606,
0.0040832394734025,
0.12187383323907852,
-0.3170901834964752,
-0.13523100316524506,
0.10480060428380966,
0.17261409759521484,
0.151689812541008,
-0.14991521835327148,
-0.011583356186747551,
-0.028991639614105225,
-0.09399797767400742,
0.10358715802431107,
-0.09396933764219284,
0.12211893498897552,
-0.023655492812395096,
0.0991889014840126,
0.012559477239847183,
-0.06435362994670868,
0.09494449198246002,
0.012257719412446022,
0.10617673397064209,
-0.0669277086853981,
-0.05070723965764046,
0.0391804575920105,
-0.024626141414046288,
-0.020656317472457886,
-0.04509864002466202,
0.016915859654545784,
-0.07947812974452972,
-0.01939009502530098,
-0.10120246559381485,
0.034225352108478546,
-0.030961357057094574,
-0.06271937489509583,
-0.028105415403842926,
0.021421724930405617,
0.046099551022052765,
-0.01524907536804676,
0.13280044496059418,
-0.004192209802567959,
0.1873048096895218,
0.08787240833044052,
0.0838974118232727,
-0.06635002791881561,
-0.03226642683148384,
0.0030391872860491276,
-0.0035254163667559624,
0.05860807001590729,
-0.14520590007305145,
0.0193948894739151,
0.15772941708564758,
0.025432726368308067,
0.11744613945484161,
0.09919537603855133,
-0.012430956587195396,
0.01788007840514183,
0.07038810849189758,
-0.16352781653404236,
-0.07352314889431,
0.0004556920030154288,
-0.08321357518434525,
-0.09742755442857742,
0.06475094705820084,
0.0835929736495018,
-0.07035206258296967,
-0.0030361516401171684,
-0.013967064209282398,
-0.017931867390871048,
-0.0648936927318573,
0.22356177866458893,
0.07675715535879135,
0.04384777322411537,
-0.1032583937048912,
0.06676430255174637,
0.05150066688656807,
-0.08890858292579651,
0.0025099790655076504,
0.09539235383272171,
-0.07548172771930695,
-0.021662935614585876,
0.11099452525377274,
0.20801016688346863,
-0.056986209005117416,
-0.01441109273582697,
-0.14582768082618713,
-0.11614613980054855,
0.07293732464313507,
0.18707811832427979,
0.10941999405622482,
-0.013280890882015228,
-0.07970421016216278,
0.03331192210316658,
-0.14212262630462646,
0.07011435925960541,
0.03706733509898186,
0.07341035455465317,
-0.1286325305700302,
0.20322063565254211,
0.009686343371868134,
0.04093891754746437,
-0.03550361841917038,
0.029380235821008682,
-0.11053521186113358,
0.02877925895154476,
-0.13877061009407043,
-0.05107302963733673,
0.009641091339290142,
-0.007578901946544647,
-0.010621595196425915,
-0.06964647769927979,
-0.05721505731344223,
0.0020786195527762175,
-0.12806877493858337,
-0.015584323555231094,
0.0357092060148716,
0.023314764723181725,
-0.11826369166374207,
-0.03972161188721657,
0.008120573125779629,
-0.0505453385412693,
0.05005376785993576,
0.05572466924786568,
0.006149496883153915,
0.08464981615543365,
-0.16590802371501923,
-0.020949840545654297,
0.07061094045639038,
0.0013167947763577104,
0.08735281229019165,
-0.030011232942342758,
-0.0010587502038106322,
-0.004914626479148865,
0.10684894770383835,
0.03135105222463608,
0.08436895161867142,
-0.12979261577129364,
0.01850278116762638,
-0.03524318337440491,
-0.09787093847990036,
-0.060976628214120865,
0.03978723660111427,
0.07030196487903595,
0.022804005071520805,
0.17632867395877838,
-0.09078595787286758,
0.05690973624587059,
-0.21983540058135986,
-0.008374243043363094,
-0.01088247075676918,
-0.11605625599622726,
-0.1093970313668251,
-0.0617557056248188,
0.08661699295043945,
-0.054757632315158844,
0.11734937876462936,
0.04664922505617142,
0.06694982200860977,
0.03328965604305267,
-0.025383129715919495,
-0.007138505578041077,
0.028686335310339928,
0.20427998900413513,
0.05042702332139015,
-0.04531913623213768,
0.07461826503276825,
0.07462990283966064,
0.11272227019071579,
0.1307133436203003,
0.24132199585437775,
0.14986735582351685,
-0.023061001673340797,
0.09309548139572144,
0.02722272090613842,
-0.050944313406944275,
-0.14658300578594208,
0.01848461478948593,
-0.06764350831508636,
0.09441333264112473,
-0.03188889101147652,
0.197687566280365,
0.04266085848212242,
-0.1573069542646408,
0.0449209101498127,
-0.07348345220088959,
-0.10329338163137436,
-0.11396469175815582,
0.002847587689757347,
-0.08189040422439575,
-0.13917464017868042,
0.012529319152235985,
-0.11333032697439194,
0.022012772038578987,
0.11224238574504852,
0.018645180389285088,
-0.023286880925297737,
0.19246859848499298,
0.0348290279507637,
0.03233487159013748,
0.07890012860298157,
0.010649817995727062,
-0.011694909073412418,
-0.08920986205339432,
-0.06485912948846817,
-0.03431638330221176,
-0.009109068661928177,
0.03226100653409958,
-0.06315268576145172,
-0.09417679160833359,
0.03584761917591095,
-0.017922084778547287,
-0.10771369189023972,
0.028326794505119324,
0.02679378353059292,
0.08133159577846527,
0.053134746849536896,
-0.004216799046844244,
0.011422601528465748,
-0.03383602574467659,
0.22584469616413116,
-0.08716975152492523,
-0.06999729573726654,
-0.07876261323690414,
0.2882649898529053,
0.05071435496211052,
0.00551636004820466,
0.01574365422129631,
-0.07007566094398499,
-0.006714112590998411,
0.2447909563779831,
0.2128065973520279,
-0.12714235484600067,
-0.007701932452619076,
0.005465769674628973,
-0.006353175733238459,
-0.016394667327404022,
0.14579282701015472,
0.13168945908546448,
0.05204911157488823,
-0.10927478969097137,
-0.038983628153800964,
-0.047627922147512436,
-0.009704816155135632,
-0.032933272421360016,
0.06303627789020538,
0.06451079249382019,
0.016809826716780663,
-0.05809640511870384,
0.06293002516031265,
-0.07323718070983887,
-0.11955393105745316,
0.0660870149731636,
-0.23241929709911346,
-0.17220960557460785,
-0.01608717069029808,
0.11300057172775269,
-0.009584701620042324,
0.07474847137928009,
-0.02495892159640789,
-0.000442144344560802,
0.03994668647646904,
-0.028583591803908348,
-0.06738966703414917,
-0.08771850168704987,
0.10095337778329849,
-0.13171842694282532,
0.1716783493757248,
-0.04768293723464012,
0.06475242227315903,
0.12047679722309113,
0.06713224947452545,
-0.04071556031703949,
0.05400599539279938,
0.034817181527614594,
-0.10428297519683838,
0.01566999964416027,
0.12045054882764816,
-0.03795677796006203,
0.03907701000571251,
0.04265126585960388,
-0.1368994414806366,
0.0344192236661911,
-0.0896901860833168,
-0.06073988229036331,
-0.039537083357572556,
-0.05000338330864906,
-0.059046920388936996,
0.11691955476999283,
0.23853561282157898,
-0.005488237831741571,
0.028794411569833755,
-0.08461232483386993,
-0.001793482224456966,
0.04694237932562828,
0.052971869707107544,
-0.09753260016441345,
-0.25418537855148315,
0.007639923598617315,
0.07926391810178757,
-0.03550799936056137,
-0.24872620403766632,
-0.07918728142976761,
0.011989575810730457,
-0.06965389847755432,
-0.09420652687549591,
0.08128117024898529,
0.06479528546333313,
0.05604931712150574,
-0.05145813152194023,
-0.11354820430278778,
-0.07080280035734177,
0.16483289003372192,
-0.16068118810653687,
-0.08776278793811798
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTjeDIAL
This model is a fine-tuned version of [Jeska/BertjeWDialDataQA20k](https://huggingface.co/Jeska/BertjeWDialDataQA20k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8355
- Accuracy: 0.6322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.4418 | 1.0 | 1457 | 2.3866 | 0.5406 |
| 1.7742 | 2.0 | 2914 | 1.9365 | 0.6069 |
| 1.1313 | 3.0 | 4371 | 1.8355 | 0.6322 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTjeDIAL", "results": []}]} | text-classification | Jeska/VaccinChatSentenceClassifierDutch_fromBERTjeDIAL | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| VaccinChatSentenceClassifierDutch\_fromBERTjeDIAL
=================================================
This model is a fine-tuned version of Jeska/BertjeWDialDataQA20k on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.8355
* Accuracy: 0.6322
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.13.0.dev0
* Pytorch 1.10.0
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
47,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09086547046899796,
0.041407596319913864,
-0.0021421995479613543,
0.11213591694831848,
0.2111326903104782,
0.03492865711450577,
0.11349185556173325,
0.10132823139429092,
-0.12078394740819931,
0.026162775233387947,
0.11589962244033813,
0.17038264870643616,
0.0008814383181743324,
0.07906799763441086,
-0.06345929950475693,
-0.27343589067459106,
-0.028447400778532028,
0.0441705696284771,
-0.08829762786626816,
0.12715508043766022,
0.0793907567858696,
-0.16000904142856598,
0.07662647217512131,
-0.012228487990796566,
-0.24403518438339233,
0.023569853976368904,
0.028996486216783524,
-0.06584148854017258,
0.1475600153207779,
0.011013282462954521,
0.1625390499830246,
0.0038883481174707413,
0.09772451967000961,
-0.15951837599277496,
0.013358937576413155,
0.06860805302858353,
0.014068331569433212,
0.08604823797941208,
0.066997230052948,
-0.008242612704634666,
0.11679549515247345,
-0.09795202314853668,
0.06809785962104797,
0.011301650665700436,
-0.1241229996085167,
-0.21116586029529572,
-0.06415790319442749,
-0.005053109023720026,
0.05020206794142723,
0.09672906994819641,
-0.0057963235303759575,
0.1518242210149765,
-0.102882020175457,
0.10258264094591141,
0.2210901975631714,
-0.26469886302948,
-0.08461551368236542,
0.04776974394917488,
0.0004425923398230225,
0.10787658393383026,
-0.11719868332147598,
-0.002299776067957282,
0.05729641020298004,
0.06207555904984474,
0.12436933070421219,
-0.02715000882744789,
-0.10390140861272812,
0.02384803630411625,
-0.1481824815273285,
0.006006856914609671,
0.06953555345535278,
0.011550327762961388,
-0.01714351586997509,
-0.019122717902064323,
-0.07237763702869415,
-0.14639773964881897,
-0.03911270946264267,
-0.03216830641031265,
0.04708384349942207,
-0.06001453474164009,
-0.09518920630216599,
-0.0005660873139277101,
-0.09946717321872711,
-0.06538800150156021,
-0.07178919017314911,
0.17982004582881927,
0.03864578902721405,
0.02160830982029438,
-0.046753935515880585,
0.10506491363048553,
0.0069922213442623615,
-0.13424260914325714,
0.045636799186468124,
0.025020869448781013,
-0.016202522441744804,
-0.05993026867508888,
-0.07461465150117874,
-0.10874380171298981,
-0.0035019905772060156,
0.06551255285739899,
-0.054395269602537155,
0.0569482259452343,
0.01873752288520336,
0.03320882096886635,
-0.0909818634390831,
0.20116831362247467,
-0.031413786113262177,
-0.021912794560194016,
-0.0011273634154349566,
0.051404133439064026,
-0.0015477758133783937,
-0.023144328966736794,
-0.1119166687130928,
0.004706810228526592,
0.11636333912611008,
0.004585373215377331,
-0.07837289571762085,
0.06826429069042206,
-0.03098713606595993,
-0.03004762902855873,
-0.028473807498812675,
-0.10014698654413223,
0.05024745315313339,
0.0003324899007566273,
-0.09190575778484344,
0.015249100513756275,
0.013659960590302944,
0.007932559587061405,
-0.024119358509778976,
0.17125049233436584,
-0.08804149180650711,
0.04942362383008003,
-0.11408752202987671,
-0.12769237160682678,
0.003823749488219619,
-0.07404465228319168,
0.011749634519219398,
-0.09547358751296997,
-0.13267622888088226,
-0.015749698504805565,
0.05305098369717598,
-0.030550064519047737,
-0.030400622636079788,
-0.05148574709892273,
-0.07652658969163895,
0.01150998380035162,
-0.01750403456389904,
0.1628173589706421,
-0.05019402876496315,
0.11341100931167603,
0.05269329994916916,
0.0691259503364563,
-0.06409164518117905,
0.05548339709639549,
-0.07964320480823517,
-0.006702570244669914,
-0.21693190932273865,
0.05327508598566055,
-0.05210280790925026,
0.05984298512339592,
-0.06333339214324951,
-0.12038128077983856,
0.015015101991593838,
-0.0002970752539113164,
0.08942411094903946,
0.08347949385643005,
-0.1773649901151657,
-0.09167793393135071,
0.13829682767391205,
-0.059633541852235794,
-0.08576581627130508,
0.11356209963560104,
-0.06745115667581558,
0.01578642800450325,
0.0922079011797905,
0.1603313386440277,
0.05778538063168526,
-0.07476077973842621,
0.023836340755224228,
-0.02220205031335354,
0.0661027655005455,
-0.06313446909189224,
0.03937223181128502,
0.016373397782444954,
0.005804535932838917,
0.03456534817814827,
-0.023303315043449402,
0.0591624490916729,
-0.11711335182189941,
-0.0834507867693901,
-0.03849204257130623,
-0.1010136678814888,
0.06591714173555374,
0.08682418614625931,
0.10196100175380707,
-0.1033494770526886,
-0.06665019690990448,
0.10740671306848526,
0.05171774700284004,
-0.0559396855533123,
0.031982000917196274,
-0.05095507949590683,
0.06155899167060852,
-0.05055250972509384,
-0.01934192143380642,
-0.20654354989528656,
-0.03680241107940674,
0.007389058358967304,
0.04615095257759094,
0.02960772067308426,
0.023804007098078728,
0.08564348518848419,
0.07180602848529816,
-0.06954725086688995,
-0.001734386314637959,
-0.026563027873635292,
-0.009003935381770134,
-0.1582002490758896,
-0.20224380493164062,
-0.02364809438586235,
-0.014890933409333229,
0.0849335640668869,
-0.21799319982528687,
0.029402628540992737,
-0.029899856075644493,
0.08349134773015976,
0.008606710471212864,
-0.010000787675380707,
-0.06622444838285446,
0.10687403380870819,
-0.029440026730298996,
-0.044497016817331314,
0.07418464869260788,
-0.021087558940052986,
-0.08222001791000366,
-0.07824291288852692,
-0.10958141088485718,
0.18556472659111023,
0.14133897423744202,
-0.16891303658485413,
-0.08329714089632034,
0.0202387236058712,
-0.055522941052913666,
-0.01457393728196621,
-0.060422178357839584,
0.04659373313188553,
0.19952265918254852,
-0.0051412433385849,
0.15669775009155273,
-0.05851558968424797,
-0.03589089214801788,
0.014918919652700424,
-0.021160373464226723,
0.04206698760390282,
0.1147371456027031,
0.12495340406894684,
-0.05993657931685448,
0.12366192042827606,
0.14567798376083374,
-0.11912072449922562,
0.1376250833272934,
-0.020290955901145935,
-0.06929926574230194,
-0.00256646447815001,
-0.04231399670243263,
0.0026977607049047947,
0.09253792464733124,
-0.12316273897886276,
-0.02029433101415634,
0.0002419801603537053,
0.02476540580391884,
0.02798680029809475,
-0.2288104146718979,
-0.03988249599933624,
0.028707152232527733,
-0.01580488309264183,
-0.002119380747899413,
-0.026240916922688484,
0.026081977412104607,
0.12608380615711212,
-0.0014238087460398674,
-0.06537848711013794,
0.024331888183951378,
-0.0016149836592376232,
-0.07099409401416779,
0.2183418869972229,
-0.07541580498218536,
-0.12531572580337524,
-0.09938929229974747,
-0.08617723733186722,
-0.061384137719869614,
0.01652348041534424,
0.040132757276296616,
-0.13425390422344208,
-0.01681341603398323,
-0.0386892706155777,
0.04215354844927788,
-0.002508735517039895,
0.058682069182395935,
0.0031449315138161182,
-0.006176904309540987,
0.06625908613204956,
-0.10900425910949707,
-0.004568278323858976,
-0.08221279829740524,
-0.08462663739919662,
0.0509757325053215,
0.06270956993103027,
0.1106487438082695,
0.17646658420562744,
-0.0469968281686306,
0.009979316964745522,
-0.02509613335132599,
0.22593636810779572,
-0.06856618076562881,
-0.03869182989001274,
0.11023568361997604,
-0.025832558050751686,
0.04799310117959976,
0.09199327975511551,
0.08209764212369919,
-0.09790768474340439,
0.011812865734100342,
0.04131579026579857,
-0.048036523163318634,
-0.2218555510044098,
-0.04243696108460426,
-0.05005119740962982,
-0.039261236786842346,
0.08156052231788635,
0.021711383014917374,
0.024724924936890602,
0.060371238738298416,
0.0596134290099144,
0.09194059669971466,
-0.05268649011850357,
0.04165639728307724,
0.11116809397935867,
0.04796519875526428,
0.13620036840438843,
-0.036948684602975845,
-0.08545538783073425,
0.024669203907251358,
-0.04351016879081726,
0.21391014754772186,
-0.008399834856390953,
0.07404986023902893,
0.0406101793050766,
0.16425877809524536,
0.004227010998874903,
0.08339947462081909,
0.0029418631456792355,
-0.05965142697095871,
-0.0013849420938640833,
-0.038545381277799606,
-0.04591388255357742,
0.003585699712857604,
-0.04023456200957298,
0.06539655476808548,
-0.12956523895263672,
-0.008933555334806442,
0.05830273777246475,
0.22230111062526703,
0.019498247653245926,
-0.31740450859069824,
-0.07296453416347504,
0.0026011283043771982,
-0.024368835613131523,
-0.007343446370214224,
0.012129922397434711,
0.11696629226207733,
-0.08777090907096863,
0.036344002932310104,
-0.07145953178405762,
0.09316311031579971,
-0.035915110260248184,
0.05208677425980568,
0.06489090621471405,
0.12302539497613907,
-0.005738046020269394,
0.06595302373170853,
-0.32064923644065857,
0.2612234055995941,
0.011032995767891407,
0.08443043380975723,
-0.07987077534198761,
-0.012462371960282326,
0.03289002180099487,
0.061464060097932816,
0.019024457782506943,
-0.01890498399734497,
-0.0057218438014388084,
-0.20559455454349518,
-0.03419722989201546,
0.03878146782517433,
0.12875622510910034,
-0.00813150405883789,
0.09471310675144196,
-0.01655115932226181,
0.006168002728372812,
0.08288517594337463,
-0.031549595296382904,
-0.0622485987842083,
-0.07729536294937134,
-0.026128148660063744,
0.014889289624989033,
-0.08334843069314957,
-0.049289681017398834,
-0.13008476793766022,
-0.13293586671352386,
0.1543656438589096,
0.006388477515429258,
-0.01726064458489418,
-0.12224673479795456,
0.12474020570516586,
0.06752008944749832,
-0.08051364123821259,
0.026218974962830544,
0.014668043702840805,
0.06253566592931747,
0.031208263710141182,
-0.07874445617198944,
0.11095378547906876,
-0.057547427713871,
-0.1583729386329651,
-0.06292147934436798,
0.08991924673318863,
0.048513952642679214,
0.06840439140796661,
-0.02397019974887371,
0.018095213919878006,
-0.013292452320456505,
-0.09129168838262558,
0.03676735982298851,
-0.012026098556816578,
0.05752822756767273,
0.034662287682294846,
-0.05528153479099274,
-0.007967129349708557,
-0.05813038721680641,
-0.007595807779580355,
0.18887579441070557,
0.21602793037891388,
-0.08704935014247894,
-0.00023756170412525535,
0.03487762063741684,
-0.06810816377401352,
-0.20328347384929657,
0.09851996600627899,
0.08209583908319473,
0.003325013443827629,
0.045738738030195236,
-0.17055262625217438,
0.16025912761688232,
0.09446713328361511,
0.0017719501629471779,
0.11879990249872208,
-0.3123520612716675,
-0.13639312982559204,
0.10227127373218536,
0.17270950973033905,
0.14490200579166412,
-0.14756456017494202,
-0.013637298718094826,
-0.03143918141722679,
-0.09339747577905655,
0.10936055332422256,
-0.09242057800292969,
0.11839964240789413,
-0.02389388158917427,
0.09595376253128052,
0.011409925296902657,
-0.06102843955159187,
0.09925805777311325,
0.012024068273603916,
0.10104285180568695,
-0.0667051300406456,
-0.048368893563747406,
0.04297412931919098,
-0.027766574174165726,
-0.023920046165585518,
-0.047265514731407166,
0.016308607533574104,
-0.07975843548774719,
-0.019076835364103317,
-0.0985812172293663,
0.03671852499246597,
-0.03228253498673439,
-0.06373130530118942,
-0.025190845131874084,
0.018315719440579414,
0.04491983726620674,
-0.01810404099524021,
0.12725473940372467,
0.004834563937038183,
0.1845049262046814,
0.09322301298379898,
0.0873522013425827,
-0.0689718946814537,
-0.03062009997665882,
0.0010561667149886489,
-0.006631037686020136,
0.06267223507165909,
-0.13468526303768158,
0.02182120271027088,
0.15521107614040375,
0.021395986899733543,
0.11617761105298996,
0.1013258844614029,
-0.013784567825496197,
0.014282071962952614,
0.06931043416261673,
-0.1674240529537201,
-0.07226131856441498,
-0.0006102969637140632,
-0.07480139285326004,
-0.1037302240729332,
0.06621440500020981,
0.084909588098526,
-0.07132329046726227,
-0.004698404110968113,
-0.011141180992126465,
-0.016889574006199837,
-0.06728202849626541,
0.22251185774803162,
0.07527193427085876,
0.04586256667971611,
-0.10324212908744812,
0.06577844172716141,
0.053921010345220566,
-0.08181054890155792,
0.0015781392576172948,
0.09385572373867035,
-0.0744129866361618,
-0.01990373618900776,
0.1111188754439354,
0.2055722177028656,
-0.05541530251502991,
-0.018105439841747284,
-0.14758966863155365,
-0.11937668174505234,
0.07025407999753952,
0.1781969666481018,
0.10923157632350922,
-0.011863957159221172,
-0.07642671465873718,
0.0353802889585495,
-0.14345936477184296,
0.07118180394172668,
0.03432757034897804,
0.07979361712932587,
-0.13556765019893646,
0.20174191892147064,
0.00948998425155878,
0.04569897800683975,
-0.035995353013277054,
0.02965284138917923,
-0.11109127849340439,
0.027050036936998367,
-0.13638289272785187,
-0.05387217178940773,
0.009654194116592407,
-0.006503930781036615,
-0.007921810261905193,
-0.07186534255743027,
-0.061486076563596725,
0.002834334271028638,
-0.12644058465957642,
-0.01959291286766529,
0.036490634083747864,
0.02544473297894001,
-0.1199556514620781,
-0.03915617614984512,
0.009609653614461422,
-0.054562460631132126,
0.05276606231927872,
0.052593111991882324,
0.008652693592011929,
0.0851614847779274,
-0.16459698975086212,
-0.02676267921924591,
0.0704256147146225,
0.0021232471335679293,
0.09117264300584793,
-0.03270001709461212,
-0.004612844903022051,
-0.0012843918520957232,
0.10607301443815231,
0.03039836883544922,
0.08464136719703674,
-0.13045881688594818,
0.014605184085667133,
-0.03677486255764961,
-0.10319230705499649,
-0.059370070695877075,
0.035316020250320435,
0.07138435542583466,
0.020860202610492706,
0.18349656462669373,
-0.09146258980035782,
0.05659572035074234,
-0.21946929395198822,
-0.007913815788924694,
-0.011993843130767345,
-0.11272239685058594,
-0.11044026166200638,
-0.05930986627936363,
0.08333513140678406,
-0.055531688034534454,
0.12127447873353958,
0.04673081263899803,
0.07397155463695526,
0.03671996295452118,
-0.01987806148827076,
-0.00936384778469801,
0.03165247291326523,
0.20268653333187103,
0.05058162659406662,
-0.04152994602918625,
0.07583467662334442,
0.07152397930622101,
0.11421119421720505,
0.1264323741197586,
0.23986339569091797,
0.1444593369960785,
-0.03240840509533882,
0.09305742383003235,
0.03107963688671589,
-0.04888608306646347,
-0.15236221253871918,
0.01868312992155552,
-0.07003957033157349,
0.09606867283582687,
-0.03057926893234253,
0.1933717280626297,
0.04419105872511864,
-0.15785017609596252,
0.041703034192323685,
-0.07363774627447128,
-0.10255016386508942,
-0.11577365547418594,
0.006887461990118027,
-0.0828234851360321,
-0.1435118466615677,
0.011198818683624268,
-0.11180800944566727,
0.02198384702205658,
0.11425922065973282,
0.017850026488304138,
-0.02203105390071869,
0.1862228810787201,
0.038331206887960434,
0.03888064622879028,
0.07120261341333389,
0.008210406638681889,
-0.012702331878244877,
-0.08654775470495224,
-0.06565460562705994,
-0.03754153847694397,
-0.0015235672472044826,
0.03511641547083855,
-0.06367427110671997,
-0.09582307934761047,
0.035753991454839706,
-0.017439724877476692,
-0.11149298399686813,
0.031084029003977776,
0.02101791463792324,
0.07262062281370163,
0.04344138503074646,
-0.00271058757789433,
0.010866206139326096,
-0.032676130533218384,
0.2200659215450287,
-0.08771663159132004,
-0.0729115754365921,
-0.08191857486963272,
0.2904256284236908,
0.04678088799118996,
0.004922099877148867,
0.017320170998573303,
-0.07041577994823456,
-0.011995603330433369,
0.23773813247680664,
0.21225978434085846,
-0.1267564743757248,
-0.00925656221807003,
0.0028362020384520292,
-0.008283739909529686,
-0.018925374373793602,
0.14603912830352783,
0.12819431722164154,
0.04730665311217308,
-0.10469812154769897,
-0.03413091599941254,
-0.04933188110589981,
-0.010629715397953987,
-0.033646609634160995,
0.06187228485941887,
0.06422121822834015,
0.01855100691318512,
-0.05686389282345772,
0.060724999755620956,
-0.07285838574171066,
-0.11232339590787888,
0.06409957259893417,
-0.22574542462825775,
-0.17411845922470093,
-0.016242345795035362,
0.1178336963057518,
-0.012224624864757061,
0.0757157951593399,
-0.025516720488667488,
-0.000913801253773272,
0.04276777803897858,
-0.029564378783106804,
-0.06764613837003708,
-0.08682141453027725,
0.10390403866767883,
-0.1294374316930771,
0.17796443402767181,
-0.04614483192563057,
0.0660073459148407,
0.11934743076562881,
0.06651339679956436,
-0.0426921471953392,
0.049809664487838745,
0.035383440554142,
-0.10470234602689743,
0.01834690198302269,
0.12180130183696747,
-0.03887386620044708,
0.03996839001774788,
0.041652195155620575,
-0.13891208171844482,
0.03164110332727432,
-0.08918234705924988,
-0.058586832135915756,
-0.03669523820281029,
-0.050625745207071304,
-0.057471536099910736,
0.11614324897527695,
0.23794671893119812,
-0.007297487463802099,
0.02646194025874138,
-0.08482874929904938,
-0.0005669136880896986,
0.04549764096736908,
0.0525800958275795,
-0.09564894437789917,
-0.2582598924636841,
0.0064028967171907425,
0.07972308993339539,
-0.03682900220155716,
-0.24469079077243805,
-0.07952110469341278,
0.01151456218212843,
-0.07071767747402191,
-0.09742230921983719,
0.08379898965358734,
0.06845308840274811,
0.054177988320589066,
-0.0528673455119133,
-0.10761697590351105,
-0.07512839138507843,
0.16285152733325958,
-0.1611355096101761,
-0.08638758957386017
] |
null | null | transformers |
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 22144706
- CO2 Emissions (in grams): 27.135492487925884
## Validation Metrics
- Loss: 1.81697416305542
- Accuracy: 0.6377269139700079
- Macro F1: 0.5181293370145044
- Micro F1: 0.6377269139700079
- Weighted F1: 0.631117826235572
- Macro Precision: 0.5371452512845428
- Micro Precision: 0.6377269139700079
- Weighted Precision: 0.6655055695465463
- Macro Recall: 0.5609328178925124
- Micro Recall: 0.6377269139700079
- Weighted Recall: 0.6377269139700079
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` | {"language": "unk", "tags": "autonlp", "datasets": ["Jeska/autonlp-data-vaccinfaq"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 27.135492487925884} | text-classification | Jeska/autonlp-vaccinfaq-22144706 | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"unk",
"dataset:Jeska/autonlp-data-vaccinfaq",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"unk"
] | TAGS
#transformers #pytorch #bert #text-classification #autonlp #unk #dataset-Jeska/autonlp-data-vaccinfaq #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 22144706
- CO2 Emissions (in grams): 27.135492487925884
## Validation Metrics
- Loss: 1.81697416305542
- Accuracy: 0.6377269139700079
- Macro F1: 0.5181293370145044
- Micro F1: 0.6377269139700079
- Weighted F1: 0.631117826235572
- Macro Precision: 0.5371452512845428
- Micro Precision: 0.6377269139700079
- Weighted Precision: 0.6655055695465463
- Macro Recall: 0.5609328178925124
- Micro Recall: 0.6377269139700079
- Weighted Recall: 0.6377269139700079
## Usage
You can use cURL to access this model:
Or Python API:
| [
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 22144706\n- CO2 Emissions (in grams): 27.135492487925884",
"## Validation Metrics\n\n- Loss: 1.81697416305542\n- Accuracy: 0.6377269139700079\n- Macro F1: 0.5181293370145044\n- Micro F1: 0.6377269139700079\n- Weighted F1: 0.631117826235572\n- Macro Precision: 0.5371452512845428\n- Micro Precision: 0.6377269139700079\n- Weighted Precision: 0.6655055695465463\n- Macro Recall: 0.5609328178925124\n- Micro Recall: 0.6377269139700079\n- Weighted Recall: 0.6377269139700079",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #autonlp #unk #dataset-Jeska/autonlp-data-vaccinfaq #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 22144706\n- CO2 Emissions (in grams): 27.135492487925884",
"## Validation Metrics\n\n- Loss: 1.81697416305542\n- Accuracy: 0.6377269139700079\n- Macro F1: 0.5181293370145044\n- Micro F1: 0.6377269139700079\n- Weighted F1: 0.631117826235572\n- Macro Precision: 0.5371452512845428\n- Micro Precision: 0.6377269139700079\n- Weighted Precision: 0.6655055695465463\n- Macro Recall: 0.5609328178925124\n- Micro Recall: 0.6377269139700079\n- Weighted Recall: 0.6377269139700079",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
67,
43,
146,
17
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #unk #dataset-Jeska/autonlp-data-vaccinfaq #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 22144706\n- CO2 Emissions (in grams): 27.135492487925884## Validation Metrics\n\n- Loss: 1.81697416305542\n- Accuracy: 0.6377269139700079\n- Macro F1: 0.5181293370145044\n- Micro F1: 0.6377269139700079\n- Weighted F1: 0.631117826235572\n- Macro Precision: 0.5371452512845428\n- Micro Precision: 0.6377269139700079\n- Weighted Precision: 0.6655055695465463\n- Macro Recall: 0.5609328178925124\n- Micro Recall: 0.6377269139700079\n- Weighted Recall: 0.6377269139700079## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
-0.09173665195703506,
0.16733002662658691,
-0.004328340291976929,
0.07014463096857071,
0.10465074330568314,
0.050929006189107895,
0.08676508814096451,
0.14728401601314545,
0.033960018306970596,
0.1435280591249466,
0.12432858347892761,
0.1728178858757019,
0.06818776577711105,
0.19107437133789062,
-0.08580759167671204,
-0.14488977193832397,
0.03584938496351242,
0.013035222887992859,
0.05466395244002342,
0.06573493778705597,
0.0759517177939415,
-0.060274314135313034,
0.10304819047451019,
-0.010152210481464863,
-0.07349219918251038,
0.0203731507062912,
0.0893116444349289,
-0.0867394357919693,
0.06004636362195015,
0.09763555973768234,
0.10798081755638123,
-0.016370775178074837,
0.0837974026799202,
-0.14317195117473602,
-0.01988786645233631,
0.044941987842321396,
-0.02059742622077465,
0.08662192523479462,
0.16061292588710785,
0.007593839429318905,
0.03908226266503334,
-0.10916274785995483,
0.08004070073366165,
0.08260101079940796,
-0.08233674615621567,
-0.13070228695869446,
-0.11907847970724106,
0.057051267474889755,
0.10492885857820511,
0.06506132334470749,
-0.004560652654618025,
0.17457813024520874,
-0.02556268312036991,
0.08579812198877335,
0.0300632081925869,
-0.2492908537387848,
-0.029242290183901787,
0.15172655880451202,
-0.0024585656356066465,
-0.04067793861031532,
-0.006673590745776892,
0.017811600118875504,
0.050135381519794464,
-0.0007221472333185375,
0.013880196027457714,
-0.04495757073163986,
-0.05751968175172806,
-0.019057048484683037,
-0.12065640091896057,
-0.050935424864292145,
0.17748723924160004,
0.026459679007530212,
-0.06631454080343246,
-0.08480934798717499,
-0.05770282819867134,
-0.1282014548778534,
-0.054083697497844696,
-0.056517284363508224,
0.007538659498095512,
-0.037587475031614304,
-0.009845156222581863,
0.09097794443368912,
-0.027313970029354095,
-0.05224990099668503,
-0.1330803483724594,
-0.019006997346878052,
0.01430011261254549,
0.051022425293922424,
0.007866104133427143,
-0.003761298255994916,
-0.053716372698545456,
-0.039896197617053986,
-0.02072841115295887,
0.015891974791884422,
-0.11907615512609482,
-0.07944883406162262,
0.018480617552995682,
0.07915481925010681,
0.05591045320034027,
0.2026023268699646,
0.0018030832288786769,
0.09663055092096329,
0.04881254956126213,
-0.029040029272437096,
-0.04566482827067375,
0.10370943695306778,
-0.11485207080841064,
-0.11185544729232788,
0.0393151231110096,
-0.02824094146490097,
-0.001004667836241424,
-0.039938438683748245,
-0.06777730584144592,
-0.053801435977220535,
0.043920546770095825,
0.06656002998352051,
0.021173769608139992,
0.022171711549162865,
-0.06470604985952377,
-0.051923397928476334,
0.06184173375368118,
-0.08040571957826614,
0.05652480199933052,
0.012544574216008186,
-0.09270383417606354,
0.13162833452224731,
0.0471721775829792,
0.002358388854190707,
-0.09675958007574081,
0.0216694213449955,
-0.12775415182113647,
-0.02214546874165535,
-0.07465171068906784,
-0.1314963698387146,
0.055782053619623184,
0.038421113044023514,
-0.0014837878989055753,
-0.13136230409145355,
-0.14080390334129333,
-0.04541600123047829,
-0.006116623058915138,
-0.10448786616325378,
-0.05849035084247589,
0.0002224469935754314,
-0.03626655787229538,
0.06496848165988922,
0.005960735492408276,
0.04233371093869209,
-0.03833692520856857,
0.0009093767148442566,
0.039789583534002304,
0.0843057706952095,
-0.033299095928668976,
0.01065523736178875,
-0.033418208360672,
0.03219544142484665,
-0.10880272835493088,
0.037210095673799515,
-0.09976852685213089,
0.013169108889997005,
-0.1793430596590042,
-0.035943109542131424,
0.10980008542537689,
-0.04287618398666382,
0.06665783375501633,
0.0934680625796318,
-0.10781432688236237,
0.004408540204167366,
0.12433670461177826,
-0.038207996636629105,
-0.10508187860250473,
0.07437127828598022,
0.022623298689723015,
0.027553079649806023,
0.011988169513642788,
0.09451895207166672,
0.11700045317411423,
-0.13093994557857513,
-0.0912158265709877,
-0.0016222478589043021,
0.033397071063518524,
-0.0428219772875309,
0.09465006738901138,
-0.04424167051911354,
-0.12828485667705536,
0.002121145837008953,
0.08882757276296616,
-0.01601923629641533,
-0.061496660113334656,
-0.06260396540164948,
-0.019317183643579483,
-0.03482605889439583,
0.018107963725924492,
-0.04168890044093132,
0.0162813700735569,
-0.021995602175593376,
-0.07349308580160141,
0.04582798853516579,
0.15674476325511932,
-0.025249309837818146,
-0.028143538162112236,
-0.1719757616519928,
0.07551764696836472,
-0.09829733520746231,
-0.030415546149015427,
-0.17898988723754883,
-0.06882590800523758,
0.02585042454302311,
-0.13806074857711792,
-0.00407917145639658,
-0.025887828320264816,
0.0741429328918457,
0.0622706413269043,
0.04904751479625702,
0.030608877539634705,
0.0882420688867569,
-0.003558847587555647,
-0.11242716759443283,
-0.0710986852645874,
-0.036661744117736816,
0.0006311593460850418,
0.2618583142757416,
-0.19264860451221466,
-0.008304961025714874,
0.01787124015390873,
0.06288411468267441,
-0.009353548288345337,
-0.03905368596315384,
-0.03324010968208313,
0.05727101489901543,
0.0018229983979836106,
-0.040420737117528915,
0.05285435542464256,
-0.050899289548397064,
-0.03504820913076401,
-0.019130941480398178,
-0.24738946557044983,
0.13794700801372528,
0.11201426386833191,
0.04377226158976555,
-0.08280011266469955,
-0.05774587020277977,
0.03945527598261833,
-0.04433716833591461,
0.005377122201025486,
-0.013100327923893929,
0.09114879369735718,
0.03799455240368843,
0.09590880572795868,
-0.03771043196320534,
-0.01892741024494171,
0.03878410905599594,
-0.04249109700322151,
-0.017024682834744453,
0.175152987241745,
0.0951990932226181,
-0.11798842251300812,
0.06361023336648941,
0.009501890279352665,
-0.07504018396139145,
0.02979687787592411,
0.03881755843758583,
-0.0551413968205452,
-0.08228542655706406,
-0.0441896915435791,
0.07071617990732193,
0.029675962403416634,
-0.012076715007424355,
0.08998215198516846,
0.0821852907538414,
-0.015343491919338703,
0.014947905205190182,
-0.07488669455051422,
0.019153786823153496,
0.013637182302772999,
-0.0343746654689312,
-0.03629061579704285,
0.03272976353764534,
0.03707217797636986,
0.12053932994604111,
0.0009607621468603611,
-0.026294231414794922,
0.006242949049919844,
0.005905223079025745,
-0.11915987730026245,
0.2361651211977005,
-0.12489356845617294,
-0.17835824191570282,
-0.16974449157714844,
-0.1972215324640274,
-0.0492040179669857,
-0.05871397629380226,
-0.005268249195069075,
-0.05881834402680397,
-0.12853005528450012,
-0.06566060334444046,
-0.041456665843725204,
-0.01987469010055065,
-0.03763231635093689,
0.014276675879955292,
-0.009242305532097816,
0.08439416438341141,
-0.11264114826917648,
-0.017946619540452957,
0.015220054425299168,
-0.10225515812635422,
0.08168186247348785,
0.001725277048535645,
0.08865710347890854,
0.17762772738933563,
-0.02484869211912155,
0.023351304233074188,
0.006280786823481321,
0.24777624011039734,
0.025153713300824165,
0.004256393760442734,
0.2000698298215866,
0.06601506471633911,
0.050941068679094315,
0.11545338481664658,
0.05214376002550125,
-0.07593069225549698,
-0.019425323233008385,
0.06553901731967926,
-0.007477662060409784,
-0.22992922365665436,
-0.17899295687675476,
0.0004829782119486481,
0.03890249878168106,
0.12894631922245026,
0.015857798978686333,
0.08824800699949265,
0.09417568147182465,
0.03306364268064499,
0.07050766795873642,
-0.07614968717098236,
0.071757473051548,
0.14735564589500427,
0.03346880525350571,
0.13849586248397827,
-0.03909393772482872,
0.025710206478834152,
0.10279964655637741,
-0.004736336413770914,
0.0851551964879036,
0.10247746109962463,
0.0974823385477066,
-0.006506777834147215,
0.0938352420926094,
0.04730192571878433,
0.10338857024908066,
0.07193005830049515,
-0.019416339695453644,
0.0327560231089592,
-0.07894673943519592,
-0.07600194960832596,
0.0072817555628716946,
0.01961340941488743,
0.014922271482646465,
-0.09606201201677322,
0.041433531790971756,
-0.002671352121978998,
0.05440806970000267,
0.10921446979045868,
-0.4324968159198761,
-0.043448418378829956,
0.016155794262886047,
-0.033087775111198425,
-0.12283171713352203,
-0.02585582248866558,
-0.02816009894013405,
-0.13808631896972656,
0.03363442048430443,
-0.0070981900207698345,
0.12055940181016922,
-0.06786081194877625,
-0.02716323547065258,
-0.048082541674375534,
0.07205063104629517,
-0.009522635489702225,
0.07041162997484207,
-0.1355992555618286,
0.16585582494735718,
0.04492482170462608,
0.03844355419278145,
-0.08084022998809814,
0.020472770556807518,
0.015290829353034496,
0.002734716283157468,
0.1380225121974945,
0.02300313301384449,
-0.19076651334762573,
-0.32802486419677734,
-0.15296994149684906,
0.011234885081648827,
-0.008103786036372185,
0.0071617127396166325,
0.10571611672639847,
-0.0425567589700222,
-0.019092125818133354,
-0.03022582270205021,
0.0019010636024177074,
-0.11211002618074417,
-0.07819686084985733,
0.04913540929555893,
0.09374792128801346,
-0.006084714084863663,
-0.02602102980017662,
-0.011823371052742004,
-0.021998470649123192,
0.11021984368562698,
-0.12740859389305115,
-0.03730200603604317,
-0.14390665292739868,
0.009725186973810196,
0.15651044249534607,
-0.1185108870267868,
0.0676862895488739,
-0.020231513306498528,
0.0688740685582161,
-0.005305538885295391,
-0.12675942480564117,
0.07961432635784149,
-0.0677160695195198,
-0.0497371107339859,
-0.020423099398612976,
0.027239762246608734,
-0.013991189189255238,
0.07574298232793808,
0.06542103737592697,
0.025255907326936722,
-0.03476482629776001,
-0.11455812305212021,
0.010719872079789639,
0.03415422886610031,
0.11621222645044327,
0.029128238558769226,
-0.03817262500524521,
-0.06582239270210266,
-0.05702506750822067,
0.05374746397137642,
0.12894894182682037,
0.3378834128379822,
-0.06476181000471115,
-0.0101427361369133,
0.07551579177379608,
-0.04762532562017441,
-0.20861433446407318,
-0.057638682425022125,
0.03564103692770004,
0.008691255003213882,
-0.049390293657779694,
-0.10311979055404663,
0.15356841683387756,
0.18942436575889587,
-0.028548305854201317,
-0.014862087555229664,
-0.24040208756923676,
-0.13268546760082245,
0.16893620789051056,
0.07260815799236298,
0.045740894973278046,
-0.16314320266246796,
-0.04961136728525162,
-0.10461264848709106,
-0.10467804968357086,
0.1672716736793518,
-0.050356026738882065,
0.06591463088989258,
-0.0337657667696476,
0.09443739801645279,
0.036215879023075104,
-0.057508066296577454,
0.20815211534500122,
-0.02359785884618759,
-0.003103231079876423,
-0.03376138210296631,
-0.03044448047876358,
-0.01430879533290863,
-0.06896639615297318,
0.08943372219800949,
0.047016728669404984,
0.0473812110722065,
-0.2356833517551422,
-0.005989115685224533,
-0.0013475499581545591,
0.07118993252515793,
-0.0426529161632061,
-0.03201257809996605,
-0.017610833048820496,
0.0373600535094738,
-0.019350571557879448,
-0.023608608171343803,
-0.015579268336296082,
-0.0444103479385376,
0.07453218102455139,
0.2067883163690567,
0.07257818430662155,
-0.02384738065302372,
-0.06757234036922455,
0.057259928435087204,
-0.06653084605932236,
0.043819449841976166,
-0.08710864186286926,
0.05513323098421097,
0.11913862824440002,
0.019328122958540916,
0.07514504343271255,
0.027902964502573013,
-0.04611290618777275,
-0.023692509159445763,
0.04999205470085144,
-0.11225300282239914,
0.04460928216576576,
0.024280838668346405,
0.09315113723278046,
-0.1032910943031311,
-0.07409096509218216,
0.15017879009246826,
0.01710103079676628,
-0.03369511663913727,
0.015439602546393871,
0.007355387322604656,
-0.02144554629921913,
0.26720812916755676,
0.0030753856990486383,
0.09965626895427704,
-0.1034901812672615,
0.030971448868513107,
0.1114564836025238,
-0.11099575459957123,
0.021528348326683044,
0.08600781857967377,
-0.08758850395679474,
-0.07089841365814209,
-0.01856885850429535,
0.10074818134307861,
-0.1351519227027893,
-0.06627285480499268,
0.02390226349234581,
-0.0810869112610817,
0.06546567380428314,
0.17420147359371185,
0.06734059005975723,
-0.021748755127191544,
0.004687218461185694,
-0.09896055608987808,
-0.1295945942401886,
0.03843870013952255,
0.07225681841373444,
0.012979034334421158,
-0.08287329226732254,
0.15758560597896576,
-0.025430094450712204,
0.007245302200317383,
-0.016411006450653076,
0.02074657566845417,
-0.20941302180290222,
-0.04421276971697807,
-0.10312384366989136,
0.06484678387641907,
-0.058078985661268234,
0.022103335708379745,
0.010064813308417797,
0.020918989554047585,
-0.06907407194375992,
-0.005637954920530319,
-0.06367868930101395,
-0.06667846441268921,
0.017021330073475838,
0.06798148900270462,
-0.07794439047574997,
-0.037407036870718,
0.07640650123357773,
-0.03773711994290352,
0.05266783758997917,
0.08521752059459686,
0.06948549300432205,
0.00520185474306345,
-0.024143541231751442,
-0.002264791401103139,
0.05980832874774933,
0.05253869295120239,
0.08852515369653702,
-0.2082638144493103,
0.050668321549892426,
-0.00837868731468916,
0.009810803458094597,
0.05075767636299133,
0.09001684933900833,
-0.09859936684370041,
-0.006792901549488306,
-0.12319527566432953,
-0.0582093670964241,
-0.09014031291007996,
0.021683568134903908,
0.11795313656330109,
0.014917580410838127,
0.05516478419303894,
-0.06665822863578796,
0.04038034379482269,
-0.1774478554725647,
-0.004590329248458147,
-0.050822388380765915,
-0.033836476504802704,
0.024548200890421867,
-0.01451471634209156,
0.0962817594408989,
-0.01901989057660103,
0.11068373173475266,
-0.03418164327740669,
0.05003303661942482,
0.026118384674191475,
0.06396497786045074,
-0.006575079169124365,
-0.029776139184832573,
0.1804262101650238,
0.11383219808340073,
0.022569691762328148,
0.08678106218576431,
0.09365876019001007,
0.043467745184898376,
0.026889421045780182,
0.042095113545656204,
0.02924012951552868,
-0.1016138568520546,
0.07469052076339722,
-0.002203085459768772,
-0.14545519649982452,
-0.02860158495604992,
0.10673118382692337,
-0.07699300348758698,
0.03476816415786743,
-0.028303595259785652,
0.013610823079943657,
0.1452203243970871,
-0.1134839877486229,
0.012971777468919754,
-0.00695224292576313,
-0.07070910185575485,
-0.2126440554857254,
-0.10754657536745071,
-0.12732967734336853,
-0.03077590838074684,
-0.03298075124621391,
-0.11471444368362427,
0.014599204994738102,
0.12969724833965302,
0.022232646122574806,
0.03669273853302002,
0.05605361983180046,
-0.18856041133403778,
-0.0005222430918365717,
-0.07222641259431839,
-0.0010779359145089984,
-0.01221432164311409,
-0.047673992812633514,
-0.029822148382663727,
0.028640467673540115,
0.01962544582784176,
0.0773327499628067,
0.023666290566325188,
0.012742666527628899,
0.10344363003969193,
-0.013474546372890472,
-0.08337393403053284,
-0.04556189477443695,
0.02026817761361599,
-0.0013269142946228385,
0.14264534413814545,
0.032726891338825226,
0.005565011873841286,
-0.033255670219659805,
0.16069838404655457,
-0.07245662808418274,
0.008152037858963013,
-0.12467147409915924,
0.25233322381973267,
-0.012482703663408756,
0.08263459801673889,
0.006446863990277052,
0.009671849198639393,
-0.020043913275003433,
0.21875348687171936,
0.08574746549129486,
-0.011798858642578125,
-0.03995415195822716,
0.035390451550483704,
-0.010413986630737782,
-0.041999462991952896,
0.10328732430934906,
0.045823778957128525,
0.14823071658611298,
-0.06708881258964539,
0.04222717881202698,
0.006609947420656681,
-0.019636085256934166,
-0.11643065512180328,
0.041699301451444626,
0.02444019913673401,
-0.01115447748452425,
0.0479637011885643,
0.08708477020263672,
-0.09869451820850372,
0.0716697946190834,
0.06326740980148315,
-0.07222343236207962,
-0.14295855164527893,
0.017108509317040443,
-0.057199906557798386,
-0.04217998683452606,
0.09439092129468918,
-0.058970652520656586,
-0.018437718972563744,
0.07119961827993393,
-0.0159202441573143,
-0.17164288461208344,
-0.07720622420310974,
0.001969137927517295,
0.1268008053302765,
0.28108662366867065,
0.0376751534640789,
0.12955911457538605,
0.1838115006685257,
-0.023172181099653244,
-0.16372723877429962,
0.06246984377503395,
0.025932570919394493,
-0.1385614275932312,
0.13430120050907135,
0.05424164608120918,
-0.04435544088482857,
0.15078814327716827,
0.042455244809389114,
-0.1670197695493698,
-0.01201339066028595,
0.03413854539394379,
0.06150805577635765,
-0.02983824349939823,
0.01080469973385334,
-0.08909597247838974,
0.11735862493515015,
0.13837771117687225,
-0.05633945018053055,
-0.006338621024042368,
-0.038189783692359924,
0.09028133749961853,
-0.001197437522932887,
-0.025339817628264427,
-0.03603962063789368,
-0.12679044902324677,
0.07124838978052139,
-0.20511333644390106,
0.018922511488199234,
-0.2641809284687042,
-0.02124342881143093,
-0.021721990779042244,
-0.04313238337635994,
-0.07325253635644913,
0.10303491353988647,
0.03824829310178757,
-0.011213007383048534,
-0.056139055639505386,
-0.15272024273872375,
0.0031966427341103554,
0.1393471658229828,
-0.11194968223571777,
-0.12132587283849716
] |
null | null | null | `LOREN` is an interpretable fact verification model trained on [FEVER](https://fever.ai), which aims to predict the veracity of a textual claim against a trustworthy knowledge source such as Wikipedia.
`LOREN` also decomposes the verification and makes accurate and faithful phrase-level veracity predictions without any phrasal veracity supervision.
This repo hosts the following pre-trained models for `LOREN`:
- `fact_checking/`: the verification models based on BERT (large) and RoBERTa (large), respectively.
- `mrc_seq2seq/`: the generative machine reading comprehension model based on BART (base).
- `evidence_retrieval/`: the evidence sentence ranking models, which are copied directly from [KGAT](https://github.com/thunlp/KernelGAT).
More technical details can be found at [this GitHub Repo](https://github.com/jiangjiechen/LOREN).
Please check out our AAAI 2022 paper for more details: "[LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification](https://arxiv.org/abs/2012.13577)". | {} | null | jiangjiechen/loren | [
"arxiv:2012.13577",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2012.13577"
] | [] | TAGS
#arxiv-2012.13577 #region-us
| 'LOREN' is an interpretable fact verification model trained on FEVER, which aims to predict the veracity of a textual claim against a trustworthy knowledge source such as Wikipedia.
'LOREN' also decomposes the verification and makes accurate and faithful phrase-level veracity predictions without any phrasal veracity supervision.
This repo hosts the following pre-trained models for 'LOREN':
- 'fact_checking/': the verification models based on BERT (large) and RoBERTa (large), respectively.
- 'mrc_seq2seq/': the generative machine reading comprehension model based on BART (base).
- 'evidence_retrieval/': the evidence sentence ranking models, which are copied directly from KGAT.
More technical details can be found at this GitHub Repo.
Please check out our AAAI 2022 paper for more details: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". | [] | [
"TAGS\n#arxiv-2012.13577 #region-us \n"
] | [
14
] | [
"passage: TAGS\n#arxiv-2012.13577 #region-us \n"
] | [
-0.04160771146416664,
0.11153522878885269,
-0.00984238926321268,
-0.028267867863178253,
0.06750163435935974,
0.069266177713871,
0.05423784255981445,
0.020898588001728058,
0.20825155079364777,
0.024243183434009552,
0.17139668762683868,
0.0606507733464241,
-0.010682488791644573,
0.04263956844806671,
-0.013927964493632317,
-0.12460730969905853,
0.0547051839530468,
-0.03134506940841675,
0.022956252098083496,
0.05625627934932709,
-0.01878557913005352,
-0.10561370104551315,
0.013083335943520069,
-0.07494422048330307,
-0.06073920428752899,
0.07669847458600998,
0.044555168598890305,
-0.056247513741254807,
0.1377759873867035,
0.0058930241502821445,
0.18175946176052094,
0.01747925952076912,
-0.06046070158481598,
-0.2049628645181656,
0.021430689841508865,
-0.06667514890432358,
-0.08391416072845459,
0.07763462513685226,
0.09687144309282303,
0.014453370124101639,
0.04348354414105415,
0.12467503547668457,
-0.04309053719043732,
0.03867160528898239,
-0.2831829786300659,
-0.1660274714231491,
-0.09529415518045425,
-0.008151166141033173,
0.09643135964870453,
0.07491802424192429,
0.03455892577767372,
0.1323314756155014,
-0.07133635878562927,
-0.017509331926703453,
0.09195036441087723,
-0.27783703804016113,
0.03586198389530182,
0.11534130573272705,
-0.036016762256622314,
0.1096557080745697,
-0.0008642777102068067,
0.07300574332475662,
0.08537216484546661,
-0.019186802208423615,
-0.19927535951137543,
-0.042679812759160995,
-0.16238582134246826,
0.13176938891410828,
-0.05780966579914093,
-0.10386461764574051,
0.33212459087371826,
0.04664891958236694,
0.0255595650523901,
0.21091683208942413,
-0.0657830610871315,
-0.08131971955299377,
0.05063508823513985,
-0.034908100962638855,
-0.00025095665478147566,
0.09687749296426773,
0.1900557428598404,
-0.006599274929612875,
-0.16666118800640106,
-0.008251526392996311,
-0.24777156114578247,
0.10688718408346176,
-0.04874046519398689,
0.0989825576543808,
-0.2181524932384491,
-0.02918916568160057,
-0.22407354414463043,
0.0014877640642225742,
0.041226014494895935,
-0.08296374976634979,
0.00976366363465786,
0.018978416919708252,
-0.0002897481026593596,
0.027154942974448204,
0.04643995687365532,
0.06107562035322189,
-0.03998420760035515,
0.07095606625080109,
-0.008897889405488968,
0.15462252497673035,
0.03417321667075157,
0.010969925671815872,
0.057529423385858536,
0.020628830417990685,
-0.019831333309412003,
-0.09709390997886658,
0.016867905855178833,
-0.03533640131354332,
-0.10434769093990326,
-0.06647524237632751,
-0.09999370574951172,
0.10615146160125732,
0.019389357417821884,
-0.13671988248825073,
-0.12499051541090012,
0.08005409687757492,
0.04469197988510132,
-0.012755661271512508,
-0.07905230671167374,
-0.01584840752184391,
-0.011439276859164238,
-0.011223848909139633,
-0.09418371319770813,
0.021844444796442986,
0.09183158725500107,
0.07893528044223785,
-0.1645527482032776,
-0.016760937869548798,
-0.007586447522044182,
-0.03297504410147667,
0.09999539703130722,
-0.017660249024629593,
0.06435375660657883,
-0.11665865778923035,
0.01438605785369873,
-0.013093341141939163,
-0.004778413102030754,
-0.01363087072968483,
0.07934843003749847,
0.044114936143159866,
0.06474939733743668,
-0.02444719895720482,
-0.04475878179073334,
-0.12371459603309631,
-0.0643196702003479,
0.04543953761458397,
0.050736505538225174,
0.028340816497802734,
-0.12752744555473328,
-0.030954185873270035,
-0.0952061116695404,
0.056196555495262146,
-0.06222260743379593,
-0.0995897501707077,
-0.06816279143095016,
0.19153250753879547,
-0.045545294880867004,
0.03532680496573448,
-0.1850644201040268,
-0.02321236953139305,
0.03797249123454094,
0.2299438863992691,
-0.09838252514600754,
-0.040413547307252884,
0.09135658293962479,
-0.11899977177381516,
-0.13071554899215698,
-0.04481397941708565,
0.04722331836819649,
0.015698052942752838,
0.05829058587551117,
0.3200226426124573,
-0.09724251180887222,
-0.09973344206809998,
-0.010675724595785141,
0.13571318984031677,
-0.10307081788778305,
-0.1979203224182129,
0.10985897481441498,
-0.11479438841342926,
-0.16221213340759277,
-0.022843176499009132,
0.08898935467004776,
0.0438716821372509,
-0.07206223905086517,
-0.02304689772427082,
0.08643792569637299,
-0.022990666329860687,
0.08758500963449478,
0.04627538472414017,
0.06794364005327225,
-0.05160796642303467,
0.08379437774419785,
-0.03825439140200615,
0.03058708645403385,
0.1888970285654068,
-0.005100686103105545,
-0.03652195632457733,
0.034538011997938156,
-0.14275860786437988,
0.0080755315721035,
-0.14833801984786987,
-0.16894538700580597,
-0.02591443434357643,
0.04145751893520355,
0.04813004285097122,
0.1347508281469345,
0.10374774783849716,
-0.11533854901790619,
0.016079364344477654,
-0.010855157859623432,
0.037462081760168076,
0.04443899169564247,
0.004411074332892895,
-0.03392550349235535,
0.08279638737440109,
-0.05834066867828369,
-0.06391511112451553,
-0.15142856538295746,
-0.03430509567260742,
0.09580837190151215,
-0.058549344539642334,
0.059535425156354904,
-0.0031520084012299776,
0.048534732311964035,
-0.0031192125752568245,
0.05522191524505615,
0.030969835817813873,
0.10638276487588882,
-0.014450679533183575,
-0.015941789373755455,
0.13317975401878357,
-0.033736634999513626,
0.2767161428928375,
0.1050158217549324,
-0.1326236128807068,
-0.005433676298707724,
-0.09294462203979492,
0.014716502279043198,
0.002530992031097412,
0.12742650508880615,
0.004738802555948496,
-0.011138745583593845,
0.007909994572401047,
-0.012341401539742947,
-0.001602815231308341,
0.06223828345537186,
-0.011896420270204544,
-0.06273550540208817,
-0.06085756793618202,
0.13006651401519775,
0.08808091282844543,
-0.16732385754585266,
0.11530852317810059,
0.323432058095932,
0.08206992596387863,
0.1038762703537941,
-0.03227953612804413,
-0.05432473123073578,
-0.006787888705730438,
-0.006915458478033543,
-0.03045579046010971,
0.10824094712734222,
-0.07402224093675613,
-0.007313074544072151,
0.04966788738965988,
0.03608520328998566,
0.07078969478607178,
-0.14146682620048523,
-0.11809374392032623,
0.0059776389971375465,
0.037087298929691315,
-0.23489761352539062,
0.031206399202346802,
-0.066066212952137,
0.10058171302080154,
0.09498577564954758,
-0.008423622697591782,
0.07547803968191147,
-0.015825796872377396,
-0.07022033631801605,
0.10799047350883484,
-0.16686055064201355,
-0.14105194807052612,
-0.140281081199646,
-0.07319924235343933,
0.03633005917072296,
0.05857512727379799,
0.00029074441408738494,
-0.20112313330173492,
-0.02913404256105423,
0.08881909400224686,
0.030483176931738853,
-0.19024130702018738,
-0.020397232845425606,
0.12812869250774384,
0.04868907853960991,
-0.04968629777431488,
-0.021786127239465714,
-0.02398143894970417,
-0.12501366436481476,
0.04347299039363861,
0.08162917196750641,
-0.09986355900764465,
0.13286340236663818,
0.14368361234664917,
0.04038393497467041,
0.027596773579716682,
0.00635570241138339,
0.14309895038604736,
-0.08140833675861359,
-0.10750460624694824,
0.14382706582546234,
-0.04934273287653923,
0.054828230291604996,
0.15442326664924622,
0.04093487933278084,
-0.10954646021127701,
-0.0017855566693469882,
-0.053675327450037,
-0.09604724496603012,
-0.31173431873321533,
-0.050805315375328064,
-0.1012977659702301,
0.1484106183052063,
0.02697058394551277,
0.05631985887885094,
0.015538775362074375,
0.03703184425830841,
0.13064095377922058,
-0.07527406513690948,
-0.061911292374134064,
-0.0022689334582537413,
0.23826082050800323,
-0.050208643078804016,
-0.035266466438770294,
-0.11268496513366699,
0.05736958980560303,
0.12346941977739334,
0.07798925042152405,
0.10636045783758163,
0.2102441042661667,
0.0034732529893517494,
0.020562775433063507,
0.07507790625095367,
0.14088605344295502,
0.11637600511312485,
0.03580041602253914,
-0.06529417634010315,
-0.010804182849824429,
0.018007002770900726,
-0.05064203590154648,
0.05720941722393036,
-0.05080321803689003,
-0.2017611712217331,
0.016087941825389862,
-0.18413537740707397,
0.007566723506897688,
-0.14056092500686646,
0.16761034727096558,
-0.08955609798431396,
0.0003889588115271181,
0.041832856833934784,
0.051958486437797546,
-0.06520853191614151,
0.11603692173957825,
0.04239945113658905,
-0.01617894321680069,
0.01206438709050417,
0.027833091095089912,
0.05275389179587364,
-0.013064159080386162,
0.08334537595510483,
-0.14320354163646698,
-0.13761486113071442,
-0.004295450169593096,
0.09962929040193558,
-0.10912881791591644,
0.36661213636398315,
0.008381243795156479,
-0.1458681970834732,
0.030276529490947723,
-0.08993667364120483,
-0.014285402372479439,
0.0840119943022728,
0.13086529076099396,
0.07001616805791855,
-0.18750780820846558,
-0.10829446464776993,
0.017434319481253624,
0.02013891190290451,
0.11430922895669937,
0.015027955174446106,
-0.12033823132514954,
-0.022222066298127174,
0.05532701313495636,
-0.0206170491874218,
0.040192753076553345,
0.004613886121660471,
-0.05546547845005989,
0.04719531536102295,
0.029148127883672714,
0.06901814788579941,
0.0413876473903656,
0.03081011027097702,
0.04157949984073639,
0.012711201794445515,
-0.04638046771287918,
0.03761400654911995,
-0.07506406307220459,
-0.13706380128860474,
0.15145713090896606,
-0.10723510384559631,
0.02871062606573105,
-0.06697641313076019,
-0.14571791887283325,
-0.05086073651909828,
-0.12297088652849197,
0.16578009724617004,
-0.07595434784889221,
0.10170166194438934,
-0.057895686477422714,
0.09890581667423248,
-0.060547418892383575,
0.0650331974029541,
-0.07783404737710953,
0.08069057762622833,
-0.04566750302910805,
-0.06784741580486298,
0.1559949666261673,
-0.17230384051799774,
0.08624805510044098,
0.027176931500434875,
0.005536017939448357,
0.03442123159766197,
0.003655583830550313,
-0.06779546290636063,
0.19583362340927124,
0.35311055183410645,
-0.03488962724804878,
0.11362588405609131,
0.2861369550228119,
-0.03506176918745041,
-0.21733172237873077,
-0.05942175164818764,
-0.19060362875461578,
-0.047545090317726135,
0.08528663218021393,
-0.21121996641159058,
0.05334107205271721,
0.1712736040353775,
-0.09163263440132141,
0.2991517186164856,
-0.20689523220062256,
0.004286888986825943,
0.10956717282533646,
-0.085331991314888,
0.6207759380340576,
-0.10393696278333664,
-0.1260664314031601,
0.008643626235425472,
-0.1740657389163971,
0.07366447895765305,
0.11015793681144714,
-0.0015510735101997852,
-0.0018041817238554358,
0.03036959283053875,
0.04096470773220062,
-0.02754392847418785,
0.22299960255622864,
-0.04871741309762001,
0.04377521201968193,
-0.10367922484874725,
-0.2257823646068573,
0.02921576052904129,
-0.03695779666304588,
-0.05727492272853851,
0.14534562826156616,
0.009635639376938343,
-0.2083156257867813,
0.04717306047677994,
-0.06711506843566895,
-0.012446587905287743,
0.10252910852432251,
-0.04733148217201233,
-0.062196627259254456,
-0.024248866364359856,
-0.13098494708538055,
-0.01896040327847004,
0.3614197373390198,
-0.07797280699014664,
0.22364357113838196,
0.011651146225631237,
0.03200581669807434,
-0.06580796837806702,
0.03665143996477127,
-0.02519327774643898,
-0.04025585949420929,
0.09019454568624496,
-0.2181588113307953,
0.033122651278972626,
0.18316835165023804,
0.010609462857246399,
0.00769856246188283,
0.058614473789930344,
-0.0408034585416317,
0.03846060484647751,
0.18690276145935059,
-0.18845456838607788,
-0.030981697142124176,
-0.00375183392316103,
0.037240490317344666,
0.10159891843795776,
0.023933283984661102,
0.07654985785484314,
0.07799703627824783,
0.014002306386828423,
0.020210035145282745,
-0.020268427208065987,
-0.06799347698688507,
0.05100312829017639,
0.04383645951747894,
-0.007807583548128605,
-0.06994711607694626,
0.16205090284347534,
0.05680854991078377,
-0.1253579705953598,
-0.04111579433083534,
0.15124088525772095,
-0.05336513742804527,
-0.057850733399391174,
-0.22128039598464966,
-0.02450624853372574,
-0.2073969841003418,
-0.055502504110336304,
0.043884098529815674,
0.008586880750954151,
-0.002687065163627267,
0.20199528336524963,
0.008220112882554531,
0.06527858972549438,
0.053961317986249924,
-0.04979289323091507,
0.08621204644441605,
-0.1129184290766716,
-0.10648342967033386,
-0.045672789216041565,
-0.1173221692442894,
-0.19106782972812653,
-0.01627913862466812,
0.10418135672807693,
-0.07063060998916626,
-0.0848294198513031,
-0.1818353235721588,
0.06492991745471954,
-0.1068200021982193,
-0.05354166030883789,
-0.03950037062168121,
-0.04892114922404289,
0.0018662156071513891,
-0.05045785382390022,
-0.07775955647230148,
-0.03528926521539688,
-0.17569081485271454,
0.09696081280708313,
0.004302054177969694,
0.056036576628685,
-0.010694521479308605,
-0.013747465796768665,
0.13741983473300934,
0.06169106438755989,
0.11456993967294693,
0.15349829196929932,
0.05907052010297775,
0.19101211428642273,
-0.07752834260463715,
-0.03788885846734047,
0.14370916783809662,
-0.03800467401742935,
0.030913906171917915,
0.10325472056865692,
-0.07461531460285187,
0.018186284229159355,
-0.06303131580352783,
0.037953268736600876,
-0.07224913686513901,
-0.0732273980975151,
-0.05544658377766609,
0.000956841220613569,
-0.21730844676494598,
0.02961628884077072,
-0.1696578860282898,
0.1776326298713684,
0.012185578234493732,
0.06368348002433777,
0.07592831552028656,
0.034080203622579575,
0.016544757410883904,
0.027698993682861328,
-0.006230560597032309,
-0.10271421074867249,
-0.04093554988503456,
-0.0430007204413414,
-0.005277788266539574,
-0.00007476968312403187,
0.20527863502502441,
-0.12864825129508972,
-0.008559471927583218,
0.0306252334266901,
0.12015281617641449,
-0.09887443482875824,
-0.018499981611967087,
0.07261526584625244,
0.11825965344905853,
-0.06791041046380997,
-0.14104053378105164,
0.11035092920064926,
-0.07963414490222931,
-0.0640818253159523,
0.11845612525939941,
0.03826254606246948,
0.10173894464969635,
0.03771059215068817,
-0.01286599226295948,
-0.05252055823802948,
0.026580054312944412,
-0.0760594978928566,
-0.04255115985870361,
-0.017377322539687157,
0.053974706679582596,
0.08024773001670837,
0.29023444652557373,
0.0624636672437191,
-0.0032814755104482174,
-0.12347736954689026,
0.02597026340663433,
-0.12177452445030212,
-0.04546776041388512,
0.0023460956290364265,
-0.1410132646560669,
0.049505770206451416,
-0.019537582993507385,
0.04692681133747101,
0.3271522521972656,
0.0413535051047802,
0.01588291861116886,
0.0448288768529892,
-0.0028987813275307417,
-0.14012520015239716,
-0.03492823615670204,
0.0006058977451175451,
0.0403667688369751,
-0.05420636758208275,
-0.08068178594112396,
-0.004675276577472687,
-0.14270709455013275,
-0.076112762093544,
0.02448360063135624,
-0.029108216986060143,
-0.0820658951997757,
-0.0747595727443695,
-0.058745186775922775,
-0.07116815447807312,
0.1810235232114792,
-0.0639321431517601,
0.16788680851459503,
-0.029516832903027534,
0.05110307037830353,
0.0446275994181633,
0.1943829357624054,
-0.034822650253772736,
0.11672753840684891,
0.002796431304886937,
0.13808417320251465,
-0.06491696834564209,
0.15513911843299866,
-0.14050520956516266,
-0.029450783506035805,
-0.005296932999044657,
0.15844255685806274,
0.13645826280117035,
-0.05147666856646538,
-0.02342546544969082,
-0.012149951420724392,
0.06089203804731369,
0.04146745800971985,
0.09346861392259598,
0.036797281354665756,
0.26172053813934326,
-0.05675545707345009,
-0.02791062369942665,
-0.026892710477113724,
0.11491052061319351,
0.03776510804891586,
0.05000878870487213,
0.03920349106192589,
-0.0198855921626091,
-0.10874804854393005,
0.14682668447494507,
-0.09042676538228989,
0.04149593412876129,
0.050715021789073944,
-0.1968480944633484,
-0.04398934170603752,
-0.018951930105686188,
0.12763991951942444,
-0.010899152606725693,
0.14158479869365692,
-0.09058710932731628,
-0.1713041216135025,
-0.149718776345253,
0.05883552506566048,
-0.30502498149871826,
-0.2916228175163269,
0.08902674913406372,
0.1315423846244812,
0.09458493441343307,
-0.02032666653394699,
0.04291620850563049,
-0.019243471324443817,
0.006794538348913193,
-0.08857103437185287,
0.035819634795188904,
0.07100867480039597,
-0.058127064257860184,
-0.1841307431459427,
-0.07374705374240875,
0.046690985560417175,
-0.006672706920653582,
0.08436579257249832,
-0.05574555695056915,
-0.028770701959729195,
0.08596151322126389,
-0.06068199872970581,
0.04994963854551315,
0.03797254338860512,
-0.11428233981132507,
0.04980748891830444,
0.04269573464989662,
0.015420249663293362,
-0.03519468009471893,
-0.011367435567080975,
-0.02955835685133934,
0.06802716851234436,
-0.08410386741161346,
-0.11472924798727036,
0.0902784988284111,
-0.028246048837900162,
0.12491880357265472,
-0.004286923911422491,
-0.07483100891113281,
0.03840551897883415,
-0.09309736639261246,
0.1221294105052948,
-0.04146895557641983,
0.03844435513019562,
0.05773057043552399,
-0.018185382708907127,
0.0342964343726635,
-0.21642762422561646,
0.11021658033132553,
0.032721683382987976,
-0.006936307530850172,
-0.07647088170051575
] |
null | null | null | {} | null | Jihyun22/bert-base-finetuned-ner | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
||
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-finetuned-nli
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1357
- Accuracy: 0.756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 196 | 0.7357 | 0.156 |
| No log | 2.0 | 392 | 0.5952 | 0.0993 |
| 0.543 | 3.0 | 588 | 0.5630 | 0.099 |
| 0.543 | 4.0 | 784 | 0.5670 | 0.079 |
| 0.543 | 5.0 | 980 | 0.5795 | 0.078 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "datasets": ["klue"], "metrics": ["accuracy"], "model_index": [{"name": "bert-base-finetuned-nli", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "klue", "type": "klue", "args": "nli"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.756}}]}]} | text-classification | Jihyun22/bert-base-finetuned-nli | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:klue",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #autotrain_compatible #endpoints_compatible #region-us
| bert-base-finetuned-nli
=======================
This model is a fine-tuned version of klue/bert-base on the klue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1357
* Accuracy: 0.756
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 128
* eval\_batch\_size: 128
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.9.2
* Pytorch 1.9.0+cu102
* Datasets 1.11.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
49,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
-0.08215795457363129,
0.046403899788856506,
-0.0009341021650470793,
0.11210165917873383,
0.21910260617733002,
0.03446920961141586,
0.10205847024917603,
0.10190808027982712,
-0.11981029808521271,
0.006382265128195286,
0.11914552003145218,
0.16445939242839813,
0.0016733580268919468,
0.11430398374795914,
-0.060555439442396164,
-0.2848478853702545,
-0.02408934198319912,
0.03755245357751846,
-0.09806746989488602,
0.13185544312000275,
0.08515286445617676,
-0.16030630469322205,
0.08221936225891113,
-0.019320406019687653,
-0.2551131546497345,
0.017689580097794533,
0.028357286006212234,
-0.06808265298604965,
0.1452888399362564,
0.015603980049490929,
0.16135823726654053,
-0.006067779380828142,
0.09582061320543289,
-0.1648944765329361,
0.009284456260502338,
0.049415696412324905,
0.026179471984505653,
0.07124018669128418,
0.04159443452954292,
-0.003557729534804821,
0.10981518775224686,
-0.1281116008758545,
0.059288717806339264,
0.003441695123910904,
-0.12526029348373413,
-0.19819769263267517,
-0.06559213995933533,
0.009850292466580868,
0.05681962892413139,
0.10073456913232803,
-0.009638112038373947,
0.13766224682331085,
-0.11638614535331726,
0.10507749766111374,
0.21675224602222443,
-0.25373575091362,
-0.07476755976676941,
0.029200520366430283,
-0.0137795340269804,
0.07939895987510681,
-0.12220682203769684,
-0.014369015581905842,
0.06040045619010925,
0.040864281356334686,
0.11470972001552582,
-0.03844698891043663,
-0.1368514448404312,
0.02545207366347313,
-0.1481979340314865,
-0.009483936242759228,
0.10563486069440842,
0.016990574076771736,
-0.01814647950232029,
-0.007426712196320295,
-0.05520706996321678,
-0.15086184442043304,
-0.03407267853617668,
-0.003794134361669421,
0.03240741044282913,
-0.07252492755651474,
-0.10984282940626144,
0.01786813698709011,
-0.09063407778739929,
-0.06814179569482803,
-0.06398946791887283,
0.2021927386522293,
0.04514319822192192,
0.007679386530071497,
-0.030706677585840225,
0.11482211202383041,
0.012190581299364567,
-0.13630512356758118,
0.049027182161808014,
0.020286213606595993,
-0.017325520515441895,
-0.0592111274600029,
-0.08302202820777893,
-0.06745930016040802,
0.00030545389745384455,
0.07004653662443161,
-0.04373127594590187,
0.048917144536972046,
0.044225554913282394,
0.022325025871396065,
-0.08038311451673508,
0.21008050441741943,
-0.02671663835644722,
-0.020891515538096428,
0.004089653957635164,
0.049887605011463165,
-0.017877522855997086,
-0.010387791320681572,
-0.10605938732624054,
-0.017200199887156487,
0.12383369356393814,
0.016080863773822784,
-0.09110867232084274,
0.0834474042057991,
-0.031264133751392365,
-0.025563163682818413,
-0.04393552616238594,
-0.10228001326322556,
0.04700052738189697,
-0.001884547295048833,
-0.09753791987895966,
-0.0005597159615717828,
0.004138157702982426,
0.012347484938800335,
-0.013157639652490616,
0.16498713195323944,
-0.08828093856573105,
0.04316997528076172,
-0.11479861289262772,
-0.13107027113437653,
-0.005435054190456867,
-0.076563261449337,
0.02941100485622883,
-0.10811596363782883,
-0.13839128613471985,
-0.01613037846982479,
0.04503021016716957,
-0.01803242228925228,
-0.0466642826795578,
-0.06584098190069199,
-0.08430776000022888,
0.017330139875411987,
-0.01245938241481781,
0.16274987161159515,
-0.05613882467150688,
0.12200713902711868,
0.05031110718846321,
0.07297106832265854,
-0.04930507019162178,
0.05577480047941208,
-0.08956314623355865,
-0.011791872791945934,
-0.22153986990451813,
0.06014617532491684,
-0.05508950725197792,
0.062057022005319595,
-0.06484607607126236,
-0.12774693965911865,
0.03858216851949692,
-0.00222332333214581,
0.08688174188137054,
0.09376721829175949,
-0.15950065851211548,
-0.08605929464101791,
0.13815410435199738,
-0.056425027549266815,
-0.08990555256605148,
0.10383152216672897,
-0.07573917508125305,
0.03750475123524666,
0.0927262157201767,
0.15863452851772308,
0.08736936002969742,
-0.06441110372543335,
0.008244170807301998,
-0.017865929752588272,
0.06751137226819992,
-0.043714314699172974,
0.0411808118224144,
0.035290125757455826,
-0.03850378841161728,
0.039531297981739044,
-0.037309106439352036,
0.08178640902042389,
-0.11833575367927551,
-0.08467677980661392,
-0.03755200654268265,
-0.11100979894399643,
0.09327708929777145,
0.07287045568227768,
0.10514656454324722,
-0.09951277077198029,
-0.05518105626106262,
0.12028511613607407,
0.06654136627912521,
-0.06027296185493469,
0.024043593555688858,
-0.03990904614329338,
0.03887583315372467,
-0.03233949840068817,
-0.020759381353855133,
-0.19501230120658875,
-0.03744043782353401,
0.008951452560722828,
0.040484923869371414,
0.02698255144059658,
0.013181422837078571,
0.06877772510051727,
0.06297768652439117,
-0.07403574138879776,
-0.014273096807301044,
-0.04137580469250679,
0.004125345032662153,
-0.15286767482757568,
-0.18845516443252563,
-0.013224384747445583,
-0.006687270011752844,
0.10005885362625122,
-0.1980566680431366,
0.026559464633464813,
-0.01863517425954342,
0.07737091183662415,
-0.0009632911533117294,
0.0039099399000406265,
-0.05776100233197212,
0.11691568046808243,
-0.017057878896594048,
-0.03495151922106743,
0.07273902744054794,
-0.013609588146209717,
-0.07502523064613342,
-0.06862744688987732,
-0.08900077641010284,
0.1622079610824585,
0.14333389699459076,
-0.13502241671085358,
-0.09726613759994507,
0.019416339695453644,
-0.05356292799115181,
-0.023081349208950996,
-0.05426347255706787,
0.034262239933013916,
0.21623574197292328,
-0.01569901965558529,
0.14864341914653778,
-0.05466516315937042,
-0.046176016330718994,
0.01103690080344677,
-0.022128747776150703,
0.05318107083439827,
0.12731847167015076,
0.11544227600097656,
-0.07963649183511734,
0.12348838895559311,
0.1361476629972458,
-0.12367787212133408,
0.1446656882762909,
-0.040048204362392426,
-0.06162751466035843,
-0.010041986592113972,
-0.04907416179776192,
-0.008769603446125984,
0.09649527817964554,
-0.12515662610530853,
-0.02235376462340355,
0.0020271374378353357,
0.024627940729260445,
0.018502971157431602,
-0.22519364953041077,
-0.04485977441072464,
0.025088656693696976,
-0.014103205874562263,
-0.017260702326893806,
-0.013742176815867424,
0.03121039643883705,
0.11969678848981857,
0.01337213721126318,
-0.0661882683634758,
0.0327991247177124,
-0.001127145136706531,
-0.06955720484256744,
0.22689411044120789,
-0.09339184314012527,
-0.12679673731327057,
-0.09817156195640564,
-0.06672655045986176,
-0.057423822581768036,
0.008059991523623466,
0.04630662128329277,
-0.13100600242614746,
-0.012441818602383137,
-0.02914971113204956,
0.05902520939707756,
-0.007320328615605831,
0.0654556080698967,
-0.007800823077559471,
-0.0024587472435086966,
0.04517168179154396,
-0.10171039402484894,
-0.009529541246592999,
-0.061106640845537186,
-0.07884786278009415,
0.05971941351890564,
0.0536779910326004,
0.11883384734392166,
0.16896222531795502,
-0.05530422553420067,
0.0042677284218370914,
-0.03263665363192558,
0.23709627985954285,
-0.07016978412866592,
-0.04171404615044594,
0.09323319047689438,
-0.020644469186663628,
0.0444083996117115,
0.1083279550075531,
0.06990574300289154,
-0.08914931118488312,
0.032667286694049835,
0.03585366904735565,
-0.03724847733974457,
-0.2029905468225479,
-0.04862292855978012,
-0.04898081347346306,
-0.03384045511484146,
0.08358990401029587,
0.0037309913896024227,
0.004251269623637199,
0.06908436119556427,
0.06454358994960785,
0.0990350991487503,
-0.0516611710190773,
0.046188924461603165,
0.12325466424226761,
0.048536911606788635,
0.12242123484611511,
-0.0410526804625988,
-0.09110848605632782,
0.02254665084183216,
-0.05666882544755936,
0.227426216006279,
-0.025241602212190628,
0.041771236807107925,
0.04517469182610512,
0.1592005491256714,
0.010018419474363327,
0.09483987092971802,
0.009504956193268299,
-0.04993603378534317,
-0.0018033242085948586,
-0.031877413392066956,
-0.05169279873371124,
0.008488602004945278,
-0.04242495074868202,
0.06275741755962372,
-0.14930717647075653,
-0.023338422179222107,
0.05976450443267822,
0.2286379337310791,
0.03628286346793175,
-0.30346959829330444,
-0.09044376760721207,
0.005006534047424793,
-0.030690478160977364,
-0.010464946739375591,
0.01850033737719059,
0.11240129917860031,
-0.1223379448056221,
0.023235447704792023,
-0.07087410241365433,
0.08846484869718552,
-0.04476789012551308,
0.04808273911476135,
0.050549544394016266,
0.10497377812862396,
-0.008408787660300732,
0.07564232498407364,
-0.32836127281188965,
0.2705545127391815,
-0.001515038195066154,
0.07901746779680252,
-0.07437732815742493,
-0.02350371889770031,
0.03906076028943062,
0.05994502082467079,
0.0077054984867572784,
-0.0054433392360806465,
-0.034320730715990067,
-0.2384023815393448,
-0.025561638176441193,
0.048250265419483185,
0.1272597312927246,
-0.023575525730848312,
0.10820422321557999,
-0.024839606136083603,
0.0019025172805413604,
0.07823239266872406,
-0.02753565087914467,
-0.07778417319059372,
-0.07323390245437622,
-0.03839587792754173,
0.0141605818644166,
-0.019518155604600906,
-0.047899894416332245,
-0.12361467629671097,
-0.11554991453886032,
0.13193024694919586,
0.010264926590025425,
-0.03433205932378769,
-0.11086391657590866,
0.11049594730138779,
0.08176052570343018,
-0.08920326828956604,
0.03821248188614845,
0.020091433078050613,
0.05217462405562401,
0.034000229090452194,
-0.07059194892644882,
0.10346970707178116,
-0.054987866431474686,
-0.1719607561826706,
-0.05359717458486557,
0.08263964205980301,
0.05521872267127037,
0.06770181655883789,
-0.01996353268623352,
0.02008286863565445,
-0.020155224949121475,
-0.10018857568502426,
0.01845858059823513,
-0.0010417727753520012,
0.07394777238368988,
0.062229257076978683,
-0.07259919494390488,
-0.00020506037981249392,
-0.07322593033313751,
-0.019689632579684258,
0.20906129479408264,
0.22107133269309998,
-0.09277527034282684,
-0.004814145155251026,
0.023803934454917908,
-0.0681789442896843,
-0.21354612708091736,
0.09172937273979187,
0.09243273735046387,
0.010067312978208065,
0.014676542952656746,
-0.17849871516227722,
0.14516915380954742,
0.08141452074050903,
0.008182068355381489,
0.09614776074886322,
-0.320613831281662,
-0.1393575668334961,
0.10388755798339844,
0.17147700488567352,
0.16172084212303162,
-0.13248474895954132,
-0.0020400909706950188,
-0.03861507400870323,
-0.09750712662935257,
0.11769945174455643,
-0.06853695958852768,
0.12568233907222748,
-0.027933962643146515,
0.10276854783296585,
0.012206363491714,
-0.054246608167886734,
0.0997883528470993,
0.027346184477210045,
0.1008840873837471,
-0.06549075990915298,
-0.07514926791191101,
0.0364743135869503,
-0.03908957540988922,
-0.014363120310008526,
-0.04193485900759697,
0.03251408413052559,
-0.10710174590349197,
-0.011908255517482758,
-0.10608997195959091,
0.04179342836141586,
-0.03135741874575615,
-0.06906727701425552,
-0.03356309235095978,
0.023713456466794014,
0.05366216599941254,
-0.019822413101792336,
0.09017686545848846,
0.01532299630343914,
0.15973784029483795,
0.05694849416613579,
0.07008771598339081,
-0.030344249680638313,
-0.025321001186966896,
0.01190348993986845,
-0.009135150350630283,
0.06048817187547684,
-0.1260654777288437,
0.022663535550236702,
0.16106237471103668,
0.029975835233926773,
0.12130844593048096,
0.10035058856010437,
-0.0007099664071574807,
0.013258861377835274,
0.06519808620214462,
-0.1706850677728653,
-0.04211948439478874,
-0.018521355465054512,
-0.0871838852763176,
-0.10292023420333862,
0.041834063827991486,
0.09222884476184845,
-0.07778704166412354,
-0.014277189038693905,
-0.025739761069417,
-0.01853727363049984,
-0.06576839834451675,
0.21776846051216125,
0.08356079459190369,
0.05553498864173889,
-0.10300001502037048,
0.06622049957513809,
0.045883290469646454,
-0.08588895201683044,
0.01093087438493967,
0.07877064496278763,
-0.09200405329465866,
-0.02420145459473133,
0.12475372105836868,
0.1970227062702179,
-0.07100453972816467,
-0.017528027296066284,
-0.14035376906394958,
-0.12477047741413116,
0.07008225470781326,
0.1991349309682846,
0.11170229315757751,
0.003138922154903412,
-0.06497733294963837,
0.028372514992952347,
-0.14513660967350006,
0.08991392701864243,
0.047016650438308716,
0.07698468863964081,
-0.14066912233829498,
0.21284933388233185,
-0.0020492838229984045,
0.05846786126494408,
-0.03285268694162369,
0.029694434255361557,
-0.1344076544046402,
0.022592898458242416,
-0.11341738700866699,
-0.04965287074446678,
0.012873588129878044,
-0.003712118836119771,
-0.011697481386363506,
-0.07270989567041397,
-0.048632923513650894,
0.008006393909454346,
-0.1287280172109604,
-0.016517920419573784,
0.03289748728275299,
0.03781334310770035,
-0.10679051280021667,
-0.05611172318458557,
0.03146304935216904,
-0.06329356878995895,
0.05322861298918724,
0.06592242419719696,
0.016007529571652412,
0.09070316702127457,
-0.14120133221149445,
-0.01863107457756996,
0.06721259653568268,
0.0009840617422014475,
0.08239701390266418,
-0.06927437335252762,
0.0015474146930500865,
-0.015228396281599998,
0.11490431427955627,
0.04158675670623779,
0.08994263410568237,
-0.13054725527763367,
0.01565575785934925,
-0.02051612362265587,
-0.0906587466597557,
-0.060836490243673325,
0.028338950127363205,
0.07504129409790039,
0.02113078534603119,
0.18313665688037872,
-0.09700767695903778,
0.05829305201768875,
-0.18829534947872162,
-0.014632374048233032,
-0.022091273218393326,
-0.12132403999567032,
-0.11572077125310898,
-0.07022840529680252,
0.08263908326625824,
-0.04671059548854828,
0.11616361141204834,
0.04959713667631149,
0.07601329684257507,
0.029358476400375366,
-0.03580350801348686,
-0.009591949172317982,
0.04386294633150101,
0.23009727895259857,
0.04938867315649986,
-0.048551712185144424,
0.0711427703499794,
0.08319467306137085,
0.10419458150863647,
0.11935565620660782,
0.23643411695957184,
0.1352512091398239,
-0.01944577880203724,
0.08738914877176285,
0.02401367574930191,
-0.04717705398797989,
-0.14720839262008667,
-0.005380838178098202,
-0.06790768355131149,
0.09519573301076889,
-0.04558974876999855,
0.21309179067611694,
0.01942996308207512,
-0.17154008150100708,
0.0457901656627655,
-0.07233680784702301,
-0.11147700250148773,
-0.1008962094783783,
0.01944722980260849,
-0.08570250868797302,
-0.1477365791797638,
0.01379119511693716,
-0.1186705008149147,
0.015752112492918968,
0.11281301081180573,
0.005239304155111313,
-0.013106819242238998,
0.1915184110403061,
0.02852160483598709,
0.030894162133336067,
0.08796251565217972,
0.002128374297171831,
-0.02761407569050789,
-0.08637387305498123,
-0.05796351283788681,
-0.03891891986131668,
-0.017937378957867622,
0.030147647485136986,
-0.058858275413513184,
-0.11373032629489899,
0.02475637011229992,
-0.011049333028495312,
-0.09833322465419769,
0.022873500362038612,
0.02440776862204075,
0.08763324469327927,
0.030466487631201744,
0.011095831170678139,
0.007486545946449041,
-0.02887086011469364,
0.24773307144641876,
-0.09091717004776001,
-0.09515836834907532,
-0.08886519819498062,
0.29631686210632324,
0.05624325945973396,
0.0063970573246479034,
0.023334205150604248,
-0.07671984285116196,
-0.012952468357980251,
0.24192620813846588,
0.19365353882312775,
-0.1087670624256134,
0.002403270686045289,
-0.00995717290788889,
-0.008992417715489864,
-0.011338724754750729,
0.1473020315170288,
0.13377277553081512,
0.03558235615491867,
-0.11059528589248657,
-0.029238184913992882,
-0.053743891417980194,
-0.015246975235641003,
-0.02979334630072117,
0.04742603376507759,
0.05544571205973625,
-0.0039045982994139194,
-0.06061575934290886,
0.0647578090429306,
-0.08638478815555573,
-0.12612347304821014,
0.054982516914606094,
-0.2287990152835846,
-0.15758420526981354,
-0.02015620283782482,
0.08975829929113388,
0.004760224837809801,
0.07987581193447113,
-0.0277240127325058,
0.002516405191272497,
0.05096231400966644,
-0.01886988990008831,
-0.06765977293252945,
-0.09643440693616867,
0.10442930459976196,
-0.11005475372076035,
0.15328972041606903,
-0.046056073158979416,
0.09293241798877716,
0.12131674587726593,
0.059178225696086884,
-0.04792383313179016,
0.0545397512614727,
0.04185614734888077,
-0.0974968671798706,
0.01856469176709652,
0.12346771359443665,
-0.04141848534345627,
0.05059877038002014,
0.035044752061367035,
-0.13364368677139282,
0.037669405341148376,
-0.07022620737552643,
-0.03664393723011017,
-0.05066762492060661,
-0.048579566180706024,
-0.06368859112262726,
0.12347079813480377,
0.2534909248352051,
-0.02282821759581566,
0.03105417639017105,
-0.07605510205030441,
-0.0023890752345323563,
0.03938060998916626,
0.049213409423828125,
-0.09536202251911163,
-0.24583333730697632,
-0.004961328115314245,
0.0891454890370369,
-0.024743176996707916,
-0.2316562980413437,
-0.08145923167467117,
-0.0003301702963653952,
-0.06404832750558853,
-0.08828753978013992,
0.10200906544923782,
0.05129282921552658,
0.04195761680603027,
-0.0521320141851902,
-0.13694022595882416,
-0.08537543565034866,
0.16822677850723267,
-0.16371020674705505,
-0.09775656461715698
] |
null | null | null | {} | null | Jihyun22/roberta-base-finetuned-nli | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
||
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# testing
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6644
- Accuracy: 0.6814
- F1: 0.8105
- Combined Score: 0.7459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
### Training results
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.11.0
- Tokenizers 0.10.3
| {"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "testing", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.6813725490196079, "name": "Accuracy"}, {"type": "f1", "value": 0.8104956268221574, "name": "F1"}]}]}]} | text-classification | LysandreJik/testing | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
# testing
This model is a fine-tuned version of distilbert-base-uncased on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6644
- Accuracy: 0.6814
- F1: 0.8105
- Combined Score: 0.7459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
### Training results
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.11.0
- Tokenizers 0.10.3
| [
"# testing\n\nThis model is a fine-tuned version of distilbert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.6644\n- Accuracy: 0.6814\n- F1: 0.8105\n- Combined Score: 0.7459",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10",
"### Training results",
"### Framework versions\n\n- Transformers 4.11.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"# testing\n\nThis model is a fine-tuned version of distilbert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.6644\n- Accuracy: 0.6814\n- F1: 0.8105\n- Combined Score: 0.7459",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10",
"### Training results",
"### Framework versions\n\n- Transformers 4.11.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
69,
71,
6,
12,
8,
3,
89,
4,
37
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# testing\n\nThis model is a fine-tuned version of distilbert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.6644\n- Accuracy: 0.6814\n- F1: 0.8105\n- Combined Score: 0.7459## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10### Training results### Framework versions\n\n- Transformers 4.11.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
-0.15349727869033813,
0.1761215478181839,
-0.002130843000486493,
0.10474056005477905,
0.14256349205970764,
0.032616689801216125,
0.05013978108763695,
0.15934422612190247,
-0.08131082355976105,
0.08081651479005814,
0.1097191870212555,
0.0773235559463501,
0.05388288199901581,
0.1423761397600174,
-0.01734750159084797,
-0.20209555327892303,
0.012184622697532177,
0.001893295324407518,
-0.07456811517477036,
0.11792038381099701,
0.12119467556476593,
-0.07199332118034363,
0.08463901281356812,
0.030092986300587654,
-0.1513347625732422,
-0.00900935847312212,
-0.00591196957975626,
-0.05182358995079994,
0.09467075765132904,
0.015696698799729347,
0.04386778175830841,
0.011575227603316307,
0.08084235340356827,
-0.1810072511434555,
-0.002246028510853648,
0.06384145468473434,
0.04194018617272377,
0.09720978140830994,
0.0601886510848999,
0.021056795492768288,
0.03963160142302513,
-0.11435725539922714,
0.0762169361114502,
0.05918799713253975,
-0.08147171884775162,
-0.2151637077331543,
-0.11274268478155136,
0.06863817572593689,
0.06499117612838745,
0.10252389311790466,
0.007540826685726643,
0.15629535913467407,
-0.02701750583946705,
0.07439694553613663,
0.1802050620317459,
-0.24487414956092834,
-0.05395824834704399,
0.05312952399253845,
0.06730259209871292,
0.060293830931186676,
-0.10130190849304199,
-0.005365882068872452,
0.05049314349889755,
0.03490827605128288,
0.08743839710950851,
-0.018506141379475594,
-0.006946239620447159,
-0.023796463385224342,
-0.1147172823548317,
-0.07810822874307632,
0.23151834309101105,
0.05564828962087631,
-0.08194202184677124,
-0.11520233750343323,
-0.04880435764789581,
-0.12036112695932388,
-0.011282466351985931,
-0.02961752936244011,
0.019144807010889053,
-0.024620894342660904,
-0.055634040385484695,
-0.061372894793748856,
-0.07003657519817352,
-0.05944279581308365,
0.030777789652347565,
0.08920043706893921,
0.029251381754875183,
0.021870868280529976,
0.0031242715194821358,
0.1148148849606514,
-0.022753175348043442,
-0.14886653423309326,
-0.06617940962314606,
-0.01357332058250904,
-0.0545051172375679,
-0.048725441098213196,
-0.043512098491191864,
0.004870975390076637,
0.023179007694125175,
0.14036230742931366,
-0.049658067524433136,
0.07267523556947708,
0.043623510748147964,
-0.002116201678290963,
-0.03770258650183678,
0.20101147890090942,
-0.029589762911200523,
-0.0426996573805809,
0.02888166531920433,
0.11924626678228378,
0.011020350269973278,
-0.015107054263353348,
-0.06696170568466187,
-0.030377114191651344,
0.13634224236011505,
0.07611652463674545,
-0.010210688225924969,
0.01898837462067604,
-0.05881274864077568,
-0.03432926908135414,
0.08908112347126007,
-0.13399310410022736,
0.027181154116988182,
-0.018075158819556236,
-0.09198152273893356,
-0.06947502493858337,
0.03138897195458412,
-0.018545623868703842,
-0.041787512600421906,
0.009676900692284107,
-0.09097937494516373,
-0.00698665389791131,
-0.05912689119577408,
-0.03712114691734314,
0.009429480880498886,
-0.06371639668941498,
0.0032824771478772163,
-0.07200419902801514,
-0.19770070910453796,
-0.05869271978735924,
0.021596940234303474,
-0.055714186280965805,
-0.07229787856340408,
0.001138294581323862,
-0.05899960920214653,
0.0261406097561121,
0.004043657332658768,
0.10957413911819458,
-0.02767477184534073,
0.08280148357152939,
0.058382485061883926,
0.007069986313581467,
0.048018746078014374,
0.05424687638878822,
-0.09436865150928497,
0.05442281812429428,
-0.09211748838424683,
0.10220465809106827,
-0.09261965751647949,
0.029104163870215416,
-0.13632041215896606,
-0.10198911279439926,
0.02659192495048046,
-0.042114295065402985,
0.0724378228187561,
0.144032284617424,
-0.13387160003185272,
-0.01417671050876379,
0.10185617208480835,
-0.06569570302963257,
-0.1181233823299408,
0.08647625893354416,
-0.017289871349930763,
0.03083050809800625,
0.042776502668857574,
0.12755560874938965,
0.15025700628757477,
-0.08707521855831146,
-0.02858724631369114,
0.040693238377571106,
0.06447409093379974,
0.00700760493054986,
0.1069568321108818,
-0.03452613577246666,
0.001555947121232748,
0.030364183709025383,
-0.09593170136213303,
-0.018237033858895302,
-0.07089398801326752,
-0.08140869438648224,
-0.0867823138833046,
-0.07173782587051392,
0.04883039742708206,
0.036320555955171585,
0.02061675488948822,
-0.07091795653104782,
-0.1162261962890625,
0.04214385151863098,
0.14845606684684753,
-0.044595830142498016,
0.011305597610771656,
-0.07085125893354416,
0.07662910223007202,
-0.07581490278244019,
-0.02242506854236126,
-0.21649034321308136,
-0.09578964114189148,
0.06396915763616562,
-0.10997238755226135,
0.00878089852631092,
-0.01697680726647377,
0.05005859211087227,
0.06381911039352417,
-0.02467910572886467,
-0.044815629720687866,
-0.10341162234544754,
-0.015540006570518017,
-0.09580971300601959,
-0.13799278438091278,
-0.06736543774604797,
-0.025784257799386978,
0.18359394371509552,
-0.20526616275310516,
0.009663310833275318,
0.03003644570708275,
0.11744824051856995,
0.002869186457246542,
-0.07079456746578217,
0.021073969081044197,
-0.00025591664598323405,
-0.014987942762672901,
-0.1181352362036705,
0.036465827375650406,
0.03361566737294197,
-0.09883608669042587,
-0.039627719670534134,
-0.13223020732402802,
0.07148545980453491,
0.07034709304571152,
0.08156055957078934,
-0.08433422446250916,
-0.002806950593367219,
-0.05907769501209259,
-0.04282521829009056,
-0.07681703567504883,
-0.02011893503367901,
0.17365476489067078,
0.01209466066211462,
0.13970546424388885,
-0.0777033343911171,
-0.07554405927658081,
0.01754690892994404,
0.0018488435307517648,
-0.0375715009868145,
0.08915521949529648,
-0.01986405812203884,
-0.1350770890712738,
0.10146357119083405,
0.10411638021469116,
-0.020133906975388527,
0.10158481448888779,
-0.0694621130824089,
-0.08740407973527908,
-0.04431375488638878,
0.016793524846434593,
0.0025775376707315445,
0.11770480871200562,
-0.09615546464920044,
0.01766381226480007,
0.06113557890057564,
0.029834944754838943,
0.028656303882598877,
-0.15979696810245514,
0.002075196010991931,
0.04879079759120941,
-0.04490917921066284,
0.007654883433133364,
0.004573838785290718,
-0.00279177981428802,
0.0750964879989624,
0.02390473149716854,
-0.0023782444186508656,
0.05050479248166084,
-0.009129788726568222,
-0.08602317422628403,
0.18892177939414978,
-0.11983668059110641,
-0.19705219566822052,
-0.1656172126531601,
0.07018092274665833,
-0.09080348163843155,
-0.021454185247421265,
0.021442202851176262,
-0.0654081404209137,
-0.05106958746910095,
-0.07690304517745972,
-0.03371647745370865,
-0.06772772967815399,
-0.014968931674957275,
0.05862763151526451,
-0.00429871492087841,
0.12273532152175903,
-0.1354295015335083,
0.001048604492098093,
0.021420173346996307,
-0.06522443145513535,
-0.017921119928359985,
0.032944194972515106,
0.1026887521147728,
0.09287713468074799,
-0.010286408476531506,
0.03234555199742317,
-0.009512174874544144,
0.2704131603240967,
-0.08237840980291367,
-0.020411023870110512,
0.17671708762645721,
0.02690846100449562,
0.07049050182104111,
0.08285990357398987,
0.020655890926718712,
-0.08351899683475494,
0.011916685849428177,
0.01655009388923645,
-0.02145933359861374,
-0.23833128809928894,
-0.02830495312809944,
-0.027946660295128822,
-0.06775263696908951,
0.09607205539941788,
0.05946023389697075,
0.06273333728313446,
0.07024083286523819,
-0.0299186073243618,
0.04349193349480629,
-0.033075544983148575,
0.08717519044876099,
0.12899021804332733,
0.046708639711141586,
0.08684338629245758,
-0.041020043194293976,
0.009096789173781872,
0.06926365941762924,
0.01365579105913639,
0.245118647813797,
-0.029851065948605537,
0.18750396370887756,
0.021787302568554878,
0.15464456379413605,
-0.021443761885166168,
0.03426381200551987,
0.02391798608005047,
0.012749453075230122,
0.020665215328335762,
-0.06460351496934891,
-0.05042644590139389,
0.009144612587988377,
-0.021712616086006165,
0.06672456115484238,
-0.10273084789514542,
0.033882997930049896,
0.009574765339493752,
0.22094008326530457,
0.047189876437187195,
-0.3171761929988861,
-0.09888280183076859,
-0.00328063010238111,
0.00023058007354848087,
-0.09586689621210098,
-0.01690290868282318,
0.07875970751047134,
-0.15915602445602417,
0.05886468291282654,
-0.06440617889165878,
0.09753815829753876,
-0.04722718149423599,
-0.006656009238213301,
0.07501259446144104,
0.09873515367507935,
0.0046523273922502995,
0.10299652069807053,
-0.20327652990818024,
0.19083978235721588,
0.025818532332777977,
0.08324137330055237,
-0.062220942229032516,
0.04901371896266937,
0.031687669456005096,
0.09998124092817307,
0.11992979049682617,
0.004781119525432587,
-0.04681609198451042,
-0.18730716407299042,
-0.1041516661643982,
0.01572473905980587,
0.08906884491443634,
-0.06410310417413712,
0.06634165346622467,
-0.0640198215842247,
0.005713273771107197,
0.017895326018333435,
-0.04982740059494972,
-0.14630170166492462,
-0.11724227666854858,
0.047440290451049805,
-0.007295345887541771,
0.002304546069353819,
-0.08915159851312637,
-0.09254451841115952,
0.0013697778340429068,
0.17440742254257202,
0.0033394265919923782,
-0.07408527284860611,
-0.16726092994213104,
0.07120764255523682,
0.14628300070762634,
-0.08861882984638214,
0.023029999807476997,
-0.026772543787956238,
0.15259072184562683,
0.04979752004146576,
-0.07362749427556992,
0.033427853137254715,
-0.05527683347463608,
-0.18707139790058136,
-0.035627495497465134,
0.15213054418563843,
0.00195377878844738,
0.05367348715662956,
0.01475727278739214,
0.031069759279489517,
-0.013960725627839565,
-0.09603387117385864,
0.009236474521458149,
0.03594297915697098,
0.07152137160301208,
0.044535327702760696,
-0.01261758990585804,
0.07468230277299881,
-0.05485215783119202,
-0.024016529321670532,
0.1291249692440033,
0.19816601276397705,
-0.09390145540237427,
0.03903133422136307,
0.028394250199198723,
-0.06865038722753525,
-0.1670519858598709,
0.03151845932006836,
0.10628795623779297,
0.02340579219162464,
0.03832026198506355,
-0.154486283659935,
0.07748038321733475,
0.10626101493835449,
-0.04236368089914322,
0.08843884617090225,
-0.3072856068611145,
-0.12777523696422577,
0.06213026121258736,
0.10462357848882675,
0.00928443018347025,
-0.14886391162872314,
-0.07210410386323929,
-0.020222386345267296,
-0.1212700828909874,
0.055005185306072235,
-0.027178144082427025,
0.11172299832105637,
-0.03238866850733757,
0.052564579993486404,
0.030836069956421852,
-0.03435472398996353,
0.1957537680864334,
0.02923552878201008,
0.05247065797448158,
-0.03959476947784424,
0.05741503834724426,
0.09989112615585327,
-0.07803282141685486,
0.09548962861299515,
-0.028721796348690987,
0.09672608226537704,
-0.18136799335479736,
-0.009080621413886547,
-0.055074840784072876,
0.06764015555381775,
-0.06803371757268906,
-0.042152635753154755,
-0.03925272077322006,
0.046356938779354095,
0.026623405516147614,
-0.039216548204422,
0.0716741606593132,
0.033375658094882965,
0.06702181696891785,
0.14089225232601166,
0.07319549471139908,
0.011452881619334221,
-0.19587953388690948,
-0.002837721724063158,
-0.010980090126395226,
0.04866023361682892,
-0.14571769535541534,
0.03191233426332474,
0.1106535792350769,
0.04600203409790993,
0.12412342429161072,
0.016649777069687843,
-0.06518926471471786,
0.005602214485406876,
0.025715172290802002,
-0.08763832598924637,
-0.1533273607492447,
-0.05750496685504913,
-0.032070741057395935,
-0.1673266738653183,
0.012597806751728058,
0.10844238102436066,
-0.04696958139538765,
-0.018393492326140404,
-0.025538289919495583,
0.010357233695685863,
-0.0069564636796712875,
0.20751900970935822,
0.07106053084135056,
0.07966878265142441,
-0.08847741037607193,
0.11980172246694565,
0.07120034843683243,
-0.0634174570441246,
0.027304213494062424,
0.0433155857026577,
-0.09599415957927704,
-0.03583023324608803,
0.05272793769836426,
0.11010804027318954,
-0.04571577161550522,
-0.05193343758583069,
-0.08571885526180267,
-0.0637989491224289,
0.04984989017248154,
0.034159887582063675,
0.08447185158729553,
0.02622603066265583,
-0.025294512510299683,
-0.022520041093230247,
-0.12929414212703705,
0.10642093420028687,
0.05937262624502182,
0.07159559428691864,
-0.17802856862545013,
0.04852674528956413,
0.012433575466275215,
0.08190292119979858,
-0.013982942327857018,
-0.009691069833934307,
-0.05822788551449776,
-0.03471127524971962,
-0.11334174871444702,
0.017390761524438858,
-0.021501366049051285,
0.004648416303098202,
-0.021437177434563637,
-0.06097276508808136,
-0.02910454012453556,
0.07406291365623474,
-0.057192400097846985,
-0.10066471993923187,
0.006675469223409891,
0.0564238578081131,
-0.12164871394634247,
-0.01338274497538805,
0.03165702894330025,
-0.10544740408658981,
0.08686520904302597,
0.04429170861840248,
0.028450561687350273,
0.0052778045646846294,
0.00041359898750670254,
0.016972007229924202,
0.012460039928555489,
0.02890319563448429,
0.0441964827477932,
-0.12403792887926102,
0.012564750388264656,
-0.024180660024285316,
0.014474362134933472,
0.015763534232974052,
0.07401484996080399,
-0.13835404813289642,
-0.054020773619413376,
-0.05795912817120552,
-0.011080525815486908,
-0.06419012695550919,
0.05620107054710388,
0.10851718485355377,
0.0533759668469429,
0.16278165578842163,
-0.05002323538064957,
0.04379698634147644,
-0.22521506249904633,
-0.028816260397434235,
-0.019755380228161812,
-0.0561838261783123,
-0.08192794024944305,
-0.024585654959082603,
0.07885358482599258,
-0.045599717646837234,
0.09701209515333176,
-0.020936204120516777,
0.13929849863052368,
0.03983288258314133,
0.04074801877140999,
0.03945915400981903,
-0.007269950117915869,
0.15421275794506073,
0.05726372078061104,
0.0015359865501523018,
0.12805572152137756,
0.001935044419951737,
0.06160229817032814,
0.012215291149914265,
0.10269694030284882,
0.13032644987106323,
-0.01946759596467018,
0.07506256550550461,
0.030340319499373436,
-0.07832905650138855,
-0.16203191876411438,
0.0564524382352829,
-0.008750399574637413,
0.11525271832942963,
-0.025682324543595314,
0.11496872454881668,
0.1005614772439003,
-0.17709338665008545,
0.06319642812013626,
-0.05269021913409233,
-0.10623171180486679,
-0.09837067127227783,
-0.07962087541818619,
-0.08887260407209396,
-0.12436531484127045,
0.009801361709833145,
-0.11145410686731339,
0.026264691725373268,
0.09752701967954636,
-0.014185206033289433,
-0.028545860201120377,
0.15064866840839386,
-0.03248780593276024,
-0.013156089000403881,
0.05798313021659851,
-0.004179915878921747,
-0.003715972416102886,
-0.02356122061610222,
-0.03675258159637451,
0.058580536395311356,
0.006610836833715439,
0.10270831733942032,
-0.03408006206154823,
0.004276988562196493,
0.029511332511901855,
-0.027245352044701576,
-0.0900702252984047,
0.006975085940212011,
0.019215596839785576,
0.016421440988779068,
0.04499617591500282,
0.0405159592628479,
0.018425876274704933,
-0.03671862930059433,
0.26889315247535706,
-0.04659922420978546,
-0.039766184985637665,
-0.12878522276878357,
0.15551896393299103,
0.04261326044797897,
-0.04130027815699577,
0.08666494488716125,
-0.11106564104557037,
0.00786256417632103,
0.14284853637218475,
0.11404424160718918,
-0.03768828511238098,
-0.03159008547663689,
-0.001612490159459412,
-0.02304200269281864,
-0.03933907672762871,
0.11035364866256714,
0.08728291839361191,
-0.005260054022073746,
-0.06185378506779671,
0.006821737624704838,
-0.02655887044966221,
-0.04395848885178566,
-0.07034770399332047,
0.0771736279129982,
0.009483454748988152,
0.01254013366997242,
-0.02597430907189846,
0.07246408611536026,
0.03907009959220886,
-0.13448651134967804,
0.038916829973459244,
-0.14197297394275665,
-0.1791277974843979,
-0.021450281143188477,
0.04900236055254936,
-0.01306965947151184,
0.04778975248336792,
0.018306352198123932,
0.016183657571673393,
0.1357097625732422,
-0.02479451522231102,
-0.084752656519413,
-0.10025890916585922,
0.08793334662914276,
-0.08293070644140244,
0.231318399310112,
0.0038117021322250366,
0.07370803505182266,
0.11481189727783203,
0.006111208349466324,
-0.17354103922843933,
0.02794325351715088,
0.07703238725662231,
-0.020450208336114883,
0.06133177876472473,
0.14969098567962646,
-0.00846655759960413,
0.04003305360674858,
0.02996141090989113,
-0.10474130511283875,
-0.041186295449733734,
-0.040879860520362854,
0.023692496120929718,
-0.08506500720977783,
-0.005033730063587427,
-0.06443946808576584,
0.16521042585372925,
0.19047003984451294,
-0.06440596282482147,
-0.017129741609096527,
-0.07518965005874634,
0.02617691457271576,
0.05775957182049751,
0.08366744965314865,
-0.006509612780064344,
-0.19127459824085236,
0.013146812096238136,
0.0004162921686656773,
0.006696123164147139,
-0.2146146446466446,
-0.11117390543222427,
0.049872130155563354,
-0.07309304922819138,
-0.029528040438890457,
0.11716580390930176,
0.007028930354863405,
0.019839780405163765,
-0.03090844117105007,
-0.04699930176138878,
-0.06320418417453766,
0.13317228853702545,
-0.15692786872386932,
-0.06263028085231781
] |
null | null | transformers |
# Jimmy's character DialoGPT model | {"tags": ["conversational"]} | text-generation | JimmyHodl/DialoGPT-medium | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Jimmy's character DialoGPT model | [
"# Jimmy's character DialoGPT model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Jimmy's character DialoGPT model"
] | [
51,
10
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Jimmy's character DialoGPT model"
] | [
-0.0018047982593998313,
0.09091305732727051,
-0.006014914717525244,
0.010970808565616608,
0.1331617385149002,
0.0021953678224235773,
0.1175965964794159,
0.14118249714374542,
0.04096602648496628,
-0.050165049731731415,
0.11567860841751099,
0.14065484702587128,
-0.01534039992839098,
0.09087006002664566,
-0.02101823315024376,
-0.2832459807395935,
0.037098634988069534,
0.036550864577293396,
0.10841025412082672,
0.08359524607658386,
0.06629102677106857,
-0.026723302900791168,
0.08343307673931122,
0.017203038558363914,
-0.1442945897579193,
0.0295291468501091,
0.07515031099319458,
-0.09819019585847855,
0.12079326063394547,
0.06593654304742813,
-0.044429220259189606,
0.04926326870918274,
-0.05087072029709816,
-0.15352340042591095,
0.0413602776825428,
-0.009071427397429943,
-0.04182874783873558,
0.006284885108470917,
-0.00993825402110815,
-0.061551086604595184,
0.17120406031608582,
0.11642108112573624,
0.025697559118270874,
0.0385764017701149,
-0.17000310122966766,
-0.0740748718380928,
0.05544426664710045,
0.06750321388244629,
0.05919695273041725,
0.12341383099555969,
-0.06958717107772827,
0.04928019642829895,
-0.08795623481273651,
0.08255182206630707,
0.10921774059534073,
-0.2965485453605652,
-0.0005814852192997932,
0.15417949855327606,
0.09559065848588943,
0.0358443520963192,
-0.05195578932762146,
0.10140529274940491,
0.016688043251633644,
-0.016714217141270638,
-0.005225971806794405,
-0.09414128959178925,
-0.11401647329330444,
0.03179572895169258,
-0.06578181684017181,
-0.03422955423593521,
0.20625588297843933,
-0.01470472663640976,
0.05940413475036621,
-0.08732981234788895,
-0.03780370578169823,
0.04679330065846443,
-0.02034693956375122,
-0.03383119776844978,
-0.11903372406959534,
0.10830650478601456,
-0.04991947486996651,
-0.13970720767974854,
-0.13581879436969757,
-0.046148426830768585,
-0.17068108916282654,
0.15968212485313416,
0.039081934839487076,
0.0530223473906517,
-0.22421111166477203,
0.05252871662378311,
-0.18218927085399628,
-0.09532267600297928,
0.03959488496184349,
-0.0653417780995369,
0.04100792482495308,
-0.003567046718671918,
-0.026351720094680786,
-0.012618334032595158,
0.10035524517297745,
0.11143997311592102,
-0.02461785450577736,
0.01005980372428894,
-0.01606079936027527,
0.00583847938105464,
0.08089976757764816,
0.12365595251321793,
-0.00020723709894809872,
-0.00026798673206940293,
0.03609449043869972,
-0.06323632597923279,
-0.019092340022325516,
-0.08213971555233002,
-0.1839774250984192,
-0.026776956394314766,
0.07846800982952118,
-0.0018653766019269824,
0.07682076096534729,
0.1507110446691513,
0.011182017624378204,
-0.04973701387643814,
0.05373029038310051,
-0.001914597349241376,
-0.02844163402915001,
0.00711729284375906,
-0.00940135307610035,
0.08687738329172134,
-0.009000103920698166,
0.04934331402182579,
-0.11596523225307465,
0.01930694840848446,
-0.041178490966558456,
-0.05950745567679405,
0.0088588772341609,
-0.016469528898596764,
0.004142462275922298,
0.01770956814289093,
0.03782929480075836,
-0.1318550556898117,
-0.1686323881149292,
0.01204556692391634,
-0.035927340388298035,
-0.03927501291036606,
-0.14799712598323822,
-0.10565737634897232,
-0.03665630891919136,
0.020772479474544525,
-0.03662312775850296,
-0.052787039428949356,
-0.041375257074832916,
0.0728382021188736,
0.020099328830838203,
0.11098011583089828,
-0.07044781744480133,
0.07610291242599487,
-0.06586377322673798,
-0.05029648169875145,
-0.14153048396110535,
0.0985025018453598,
0.03710030019283295,
0.05578038468956947,
-0.010883670300245285,
0.0013006320223212242,
-0.11180391162633896,
0.07583415508270264,
-0.07405021786689758,
0.21085526049137115,
-0.04424937069416046,
-0.12804096937179565,
0.2950989007949829,
-0.02623857371509075,
-0.10094915330410004,
0.18391437828540802,
0.01618128828704357,
0.07204142212867737,
0.12945550680160522,
0.27024850249290466,
0.07757728546857834,
-0.014966285787522793,
0.11665750294923782,
0.13778717815876007,
-0.04454293102025986,
0.04420430585741997,
0.014510725624859333,
-0.05790482461452484,
0.004976483527570963,
0.04093229025602341,
0.10671946406364441,
0.05005079507827759,
-0.04452557489275932,
-0.0030467703472822905,
0.0005920585826970637,
-0.004198234528303146,
0.10654063522815704,
-0.02107517421245575,
0.06795014441013336,
-0.03882055729627609,
-0.07567042857408524,
-0.15138070285320282,
0.024728458374738693,
-0.02613856829702854,
0.034366875886917114,
-0.12789610028266907,
0.03231782093644142,
0.10030229389667511,
0.09647851437330246,
-0.11627448350191116,
-0.0047606173902750015,
-0.04408023878931999,
0.13675542175769806,
0.04066561535000801,
0.041535235941410065,
0.022847332060337067,
-0.07563671469688416,
-0.0233745314180851,
0.042110033333301544,
0.14642131328582764,
-0.014288448728621006,
-0.010161977261304855,
-0.1426687091588974,
0.12080826610326767,
-0.03138476610183716,
0.038212232291698456,
-0.06287765502929688,
0.011245685629546642,
-0.038411945104599,
0.056300465017557144,
-0.03134872391819954,
0.010400280356407166,
0.000600242055952549,
-0.040164463222026825,
-0.040973544120788574,
-0.0006825090968050063,
0.05330662056803703,
-0.009889569133520126,
-0.023311760276556015,
0.214060977101326,
-0.18208032846450806,
0.0835380107164383,
0.1841556280851364,
-0.2513655424118042,
0.021520644426345825,
0.03509049117565155,
0.03315001353621483,
-0.014033191837370396,
0.022717172279953957,
-0.03403420373797417,
0.2277248203754425,
-0.05740873143076897,
0.1621575802564621,
-0.007522894535213709,
0.01612650416791439,
-0.021246690303087234,
-0.0873802974820137,
0.0041174511425197124,
0.07454145699739456,
0.10627477616071701,
-0.09833020716905594,
0.14627227187156677,
0.0432564914226532,
0.06143883243203163,
0.22196471691131592,
0.01964489370584488,
0.009288973174989223,
0.06359083950519562,
-0.03696201741695404,
-0.07059960812330246,
-0.047285716980695724,
-0.3698239028453827,
-0.04854239523410797,
0.04173654690384865,
0.029400596395134926,
0.09339980036020279,
-0.09330999851226807,
-0.05235762149095535,
0.025768330320715904,
-0.035006098449230194,
-0.003100719302892685,
0.15473319590091705,
0.0075372010469436646,
0.09686025977134705,
0.008450374007225037,
-0.06738922744989395,
0.038639288395643234,
-0.0041550216265022755,
-0.10544636100530624,
0.1763526350259781,
-0.11532794684171677,
-0.30855831503868103,
-0.13664501905441284,
-0.21520820260047913,
-0.03855717182159424,
0.06674880534410477,
0.10230984538793564,
-0.14573220908641815,
-0.0009619905613362789,
-0.0004001666675321758,
0.15617462992668152,
-0.1552411913871765,
-0.005878915078938007,
0.0021967263892292976,
-0.019597897306084633,
-0.15367862582206726,
-0.017088664695620537,
-0.08214741945266724,
-0.01792951300740242,
-0.06069570779800415,
0.1000012755393982,
-0.16942253708839417,
-0.032554298639297485,
0.2230960875749588,
0.04749155044555664,
0.04758129641413689,
-0.058559849858284,
0.1958795040845871,
-0.07889781892299652,
-0.006305536720901728,
0.250108003616333,
-0.07101243734359741,
0.037849072366952896,
0.11954637616872787,
-0.03750619292259216,
-0.044142697006464005,
0.03538339212536812,
-0.06676161289215088,
-0.05551564693450928,
-0.17914701998233795,
-0.09498576819896698,
-0.1093212142586708,
0.2028168886899948,
0.0236028041690588,
0.02396790310740471,
0.22623130679130554,
0.004777261987328529,
-0.021833645179867744,
0.029870547354221344,
0.08561216294765472,
0.07193441689014435,
0.4104950428009033,
-0.06528596580028534,
0.09756628423929214,
0.01437185239046812,
-0.08620979636907578,
0.031482744961977005,
-0.05598260834813118,
0.02700001187622547,
0.12063034623861313,
0.15680468082427979,
-0.009464518167078495,
0.05291558802127838,
0.0885501354932785,
-0.020852915942668915,
0.0224373210221529,
-0.061006322503089905,
0.005583943333476782,
-0.02580590546131134,
-0.037594374269247055,
0.014474817551672459,
0.07994944602251053,
-0.1704532504081726,
-0.029057106003165245,
0.07059448957443237,
-0.01909426972270012,
0.01176515780389309,
0.10217703133821487,
-0.11251742392778397,
-0.04678358882665634,
0.04570165276527405,
-0.024386269971728325,
-0.11228813976049423,
0.07663331925868988,
0.10347799956798553,
-0.10654792189598083,
-0.015415969304740429,
0.07266256213188171,
0.08367803692817688,
-0.0619058832526207,
0.11764290183782578,
-0.11837198585271835,
-0.061018045991659164,
-0.0131222540512681,
0.10994137078523636,
-0.30626630783081055,
0.15082384645938873,
-0.0073671480640769005,
-0.03176606819033623,
-0.08996018767356873,
-0.024053798988461494,
-0.02889372408390045,
0.1269800066947937,
0.10907173901796341,
-0.007888931781053543,
0.012672793120145798,
0.055500615388154984,
-0.06264248490333557,
0.015048461966216564,
0.10623819380998611,
-0.08353512734174728,
-0.028956333175301552,
-0.09207040816545486,
-0.0018298343056812882,
0.01956256851553917,
0.043907906860113144,
0.03289327025413513,
-0.14263448119163513,
0.07849999517202377,
0.08731283992528915,
0.0355629101395607,
0.008133210241794586,
-0.001437201164662838,
-0.05198623239994049,
0.20944462716579437,
0.09806814044713974,
-0.07321237772703171,
-0.05526634678244591,
0.01905416138470173,
0.0013654555659741163,
-0.09060098230838776,
0.005406802054494619,
-0.05212557315826416,
0.05607295036315918,
-0.06311708688735962,
-0.19113539159297943,
0.09826362878084183,
-0.09932944178581238,
-0.01711069606244564,
-0.04671381786465645,
0.20983029901981354,
-0.007912041619420052,
0.035513993352651596,
0.0615062341094017,
-0.0045243375934660435,
-0.10129205137491226,
-0.04117050766944885,
0.029590677469968796,
0.053885772824287415,
-0.07352501899003983,
-0.005714150611311197,
0.01093608234077692,
-0.1780506670475006,
-0.08394505083560944,
-0.07460224628448486,
0.3116540312767029,
0.13861607015132904,
-0.038367439061403275,
0.13127551972866058,
0.10041075944900513,
-0.04726526886224747,
-0.24323830008506775,
-0.10543322563171387,
-0.1109316349029541,
-0.042930785566568375,
-0.06968394666910172,
-0.20053867995738983,
0.06934287399053574,
-0.13320229947566986,
0.01229935884475708,
0.06434507668018341,
-0.3040632903575897,
-0.11530695110559464,
0.2292032241821289,
-0.06767062097787857,
0.45907023549079895,
-0.06729914993047714,
-0.06608130037784576,
-0.01251382939517498,
-0.16596290469169617,
0.10347919166088104,
0.07592178136110306,
0.09777265787124634,
0.0056864055804908276,
0.20651774108409882,
0.04768195003271103,
0.04755747318267822,
0.018668629229068756,
0.0000039831948015489615,
-0.12386417388916016,
-0.07801604270935059,
-0.10668901354074478,
-0.04514407366514206,
0.01386276911944151,
0.002596701495349407,
-0.03470056504011154,
0.01682305335998535,
-0.15899145603179932,
-0.07468370348215103,
-0.13617734611034393,
-0.007493059616535902,
0.009121905080974102,
-0.05062447860836983,
0.023517778143286705,
-0.04945790022611618,
-0.002098239492624998,
0.0026968694292008877,
0.06579526513814926,
-0.1362249255180359,
0.16633550822734833,
0.04373573511838913,
0.12722258269786835,
-0.07704062759876251,
-0.00274866446852684,
-0.023631572723388672,
-0.06726016849279404,
0.03374423086643219,
-0.15680637955665588,
0.024727795273065567,
0.06286271661520004,
0.018979666754603386,
0.0915600061416626,
0.07333170622587204,
-0.050895191729068756,
-0.0367463044822216,
0.10911603271961212,
-0.29831650853157043,
-0.10371056199073792,
-0.07316353917121887,
0.028005056083202362,
0.0706741213798523,
0.031377680599689484,
0.14719074964523315,
-0.01736956648528576,
-0.05436507984995842,
0.0030132520478218794,
0.02934400364756584,
0.0011139363050460815,
0.035233817994594574,
-0.02684641070663929,
0.028733626008033752,
-0.11478427052497864,
0.041653823107481,
0.0020151662174612284,
-0.06825054436922073,
0.024935001507401466,
0.11871379613876343,
-0.08896244317293167,
-0.11420945078134537,
-0.07044526189565659,
0.08375376462936401,
-0.04495667666196823,
0.005325783975422382,
-0.01876816153526306,
-0.11697715520858765,
0.04304865375161171,
0.15739135444164276,
0.03808104991912842,
0.038673561066389084,
-0.06922391802072525,
-0.018275635316967964,
-0.029669612646102905,
0.027851691469550133,
0.03849726542830467,
-0.04390817880630493,
-0.024095892906188965,
0.051845502108335495,
-0.019242193549871445,
0.14489895105361938,
-0.07350027561187744,
-0.11038188636302948,
-0.1571490317583084,
0.033905576914548874,
-0.04890173301100731,
-0.10701684653759003,
-0.07343749701976776,
-0.044889602810144424,
0.009715935215353966,
-0.06997568905353546,
-0.023541446775197983,
-0.03819053992629051,
-0.09081120789051056,
-0.003810982219874859,
-0.04704378917813301,
0.023519467562437057,
-0.08222798258066177,
0.06777476519346237,
0.082237109541893,
-0.04013392701745033,
0.12572847306728363,
0.14880643784999847,
-0.09118740260601044,
0.12689989805221558,
-0.08262209594249725,
-0.07331257313489914,
0.056222908198833466,
0.008492431603372097,
0.06112351641058922,
0.11346010863780975,
0.0004886484821327031,
0.01027655228972435,
0.047119881957769394,
0.042632244527339935,
-0.010385037399828434,
-0.06821227073669434,
0.055034250020980835,
0.004814665298908949,
-0.11183776706457138,
-0.004718606360256672,
-0.007372567895799875,
0.042393915355205536,
0.005639785900712013,
0.0912393182516098,
-0.0829015001654625,
0.07366562634706497,
-0.03323148563504219,
0.029544511809945107,
0.005101832095533609,
-0.10588588565587997,
0.06837305426597595,
-0.08188843727111816,
0.04875019192695618,
0.006232478190213442,
0.10328276455402374,
0.04844430088996887,
0.003610523184761405,
0.027889523655176163,
0.01821276545524597,
0.07427802681922913,
-0.010616857558488846,
0.1466895490884781,
0.09339775890111923,
-0.08561426401138306,
-0.05619204789400101,
0.09220590442419052,
0.071935273706913,
0.0961049273610115,
0.09740546345710754,
-0.04222305491566658,
-0.041145164519548416,
0.05323649197816849,
0.011736063286662102,
0.03717932850122452,
-0.15442846715450287,
-0.15742944180965424,
-0.09119325876235962,
0.056223295629024506,
-0.049335379153490067,
0.14985914528369904,
0.14789386093616486,
-0.02464350126683712,
0.025266820564866066,
-0.049644749611616135,
-0.055968474596738815,
-0.19736690819263458,
-0.22404365241527557,
-0.05249864608049393,
-0.1598953753709793,
0.006997664459049702,
-0.12907588481903076,
0.06074091047048569,
0.04077538475394249,
0.09062188863754272,
-0.11755078285932541,
0.07846370339393616,
0.1285506784915924,
-0.1570626050233841,
0.08984401822090149,
-0.04754331707954407,
0.05928201228380203,
-0.029379844665527344,
0.04317893460392952,
-0.02265101857483387,
0.051484908908605576,
0.04314744472503662,
0.03694630041718483,
-0.0607316717505455,
0.037998296320438385,
-0.1678387075662613,
-0.08744620531797409,
-0.05613996461033821,
0.02565290406346321,
-0.01910947449505329,
0.10882743448019028,
0.04919063299894333,
-0.028989864513278008,
0.04914074018597603,
0.28445494174957275,
-0.03132215142250061,
-0.09650199860334396,
-0.054686032235622406,
0.22532148659229279,
-0.0026495461352169514,
0.05706538259983063,
-0.05651164799928665,
0.001046071294695139,
-0.11119997501373291,
0.36916103959083557,
0.20714782178401947,
-0.04445416480302811,
0.011569241993129253,
0.0003505168133415282,
0.0379851758480072,
0.10610871762037277,
0.07426287233829498,
0.10315059870481491,
0.19425146281719208,
-0.0346335768699646,
-0.021801214665174484,
-0.03095141611993313,
-0.029645249247550964,
-0.034122638404369354,
-0.008247235789895058,
0.10133995115756989,
-0.05496172979474068,
-0.04628610983490944,
0.10782556235790253,
-0.2709310054779053,
0.07423682510852814,
-0.16449348628520966,
-0.19712704420089722,
-0.039911143481731415,
-0.010328712873160839,
0.15334157645702362,
0.05909615755081177,
0.10400690883398056,
0.010225119069218636,
-0.01204767357558012,
-0.0643129050731659,
0.013652672059834003,
-0.17422917485237122,
0.020838098600506783,
0.07535560429096222,
-0.11229194700717926,
-0.004489503335207701,
-0.03319229930639267,
0.06010228022933006,
0.0580001175403595,
0.07551243901252747,
0.021790511906147003,
0.0194287970662117,
-0.02235289104282856,
-0.03783987835049629,
-0.011149993166327477,
0.08275985717773438,
0.007921012118458748,
-0.04351646825671196,
0.10361843556165695,
-0.0812215507030487,
0.022504791617393494,
-0.06806618720293045,
-0.011987426318228245,
0.011447373777627945,
0.048953209072351456,
-0.07843953371047974,
0.054759010672569275,
0.08522946387529373,
-0.0403129942715168,
-0.05274505168199539,
-0.017549948766827583,
-0.030475689098238945,
-0.0018080269219353795,
-0.0101793073117733,
-0.1271776258945465,
-0.1381828486919403,
-0.10118718445301056,
0.0032358046155422926,
0.02561633288860321,
-0.17571187019348145,
0.05827545002102852,
-0.11580220609903336,
0.0551900677382946,
-0.10514019429683685,
0.1243249773979187,
0.11693763732910156,
0.031178107485175133,
-0.017436213791370392,
-0.04647839814424515,
0.05745315924286842,
0.11404267698526382,
-0.1521671712398529,
-0.11884316056966782
] |
null | null | transformers |
# KrELECTRA-base-mecab
Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer)
## Usage
### Load model and tokenizer
```python
>>> from transformers import AutoTokenizer, AutoModelForPreTraining
>>> model = AutoModelForPreTraining.from_pretrained("Jinhwan/krelectra-base-mecab")
>>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab")
```
### Tokenizer example
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'])
[2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
| {"language": "ko", "license": "apache-2.0", "tags": ["korean"]} | null | Jinhwan/krelectra-base-mecab | [
"transformers",
"pytorch",
"electra",
"pretraining",
"korean",
"ko",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ko"
] | TAGS
#transformers #pytorch #electra #pretraining #korean #ko #license-apache-2.0 #endpoints_compatible #region-us
|
# KrELECTRA-base-mecab
Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer)
## Usage
### Load model and tokenizer
### Tokenizer example
'''python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'])
[2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
| [
"# KrELECTRA-base-mecab\nKorean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer)",
"## Usage",
"### Load model and tokenizer",
"### Tokenizer example\n\n'''python\n>>> from transformers import AutoTokenizer\n>>> tokenizer = AutoTokenizer.from_pretrained(\"Jinhwan/krelectra-base-mecab\")\n>>> tokenizer.tokenize(\"[CLS] 한국어 ELECTRA를 공유합니다. [SEP]\")\n['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']\n>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'])\n[2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]"
] | [
"TAGS\n#transformers #pytorch #electra #pretraining #korean #ko #license-apache-2.0 #endpoints_compatible #region-us \n",
"# KrELECTRA-base-mecab\nKorean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer)",
"## Usage",
"### Load model and tokenizer",
"### Tokenizer example\n\n'''python\n>>> from transformers import AutoTokenizer\n>>> tokenizer = AutoTokenizer.from_pretrained(\"Jinhwan/krelectra-base-mecab\")\n>>> tokenizer.tokenize(\"[CLS] 한국어 ELECTRA를 공유합니다. [SEP]\")\n['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']\n>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'])\n[2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]"
] | [
40,
35,
3,
9,
250
] | [
"passage: TAGS\n#transformers #pytorch #electra #pretraining #korean #ko #license-apache-2.0 #endpoints_compatible #region-us \n# KrELECTRA-base-mecab\nKorean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer)## Usage### Load model and tokenizer### Tokenizer example\n\n'''python\n>>> from transformers import AutoTokenizer\n>>> tokenizer = AutoTokenizer.from_pretrained(\"Jinhwan/krelectra-base-mecab\")\n>>> tokenizer.tokenize(\"[CLS] 한국어 ELECTRA를 공유합니다. [SEP]\")\n['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']\n>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'])\n[2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]"
] | [
0.0006802678108215332,
-0.06473805010318756,
-0.009457414969801903,
0.0065482426434755325,
0.12496187537908554,
-0.0071745761670172215,
0.10260917246341705,
0.05719389021396637,
-0.026637116447091103,
0.10708653926849365,
0.0922991931438446,
0.18979015946388245,
0.03585024178028107,
0.13309291005134583,
-0.008705119602382183,
-0.3079407513141632,
0.0947059616446495,
-0.03981632739305496,
0.07876573503017426,
0.056259166449308395,
0.08192040771245956,
-0.027275213971734047,
0.0907370075583458,
-0.0467778742313385,
-0.05523846670985222,
0.014943459071218967,
-0.07560008764266968,
-0.1486833691596985,
0.04555502533912659,
-0.0207406934350729,
0.04924621433019638,
0.004699236713349819,
-0.0013051808346062899,
-0.24811342358589172,
0.003049291670322418,
0.010454629547894001,
-0.04900214076042175,
-0.012616411782801151,
0.03516640141606331,
-0.0523783341050148,
0.156154602766037,
-0.08664343506097794,
0.04047728702425957,
-0.04104307293891907,
-0.06919937580823898,
-0.15915918350219727,
-0.015241836197674274,
0.016042809933423996,
0.1756051629781723,
0.012015262618660927,
-0.008520223200321198,
0.1474737972021103,
-0.05533307418227196,
0.07788361608982086,
0.1135518029332161,
-0.32568100094795227,
-0.02667263336479664,
-0.02539040707051754,
0.04655573144555092,
0.027545547112822533,
-0.042132142931222916,
-0.04507121443748474,
-0.02175973355770111,
0.04025812819600105,
0.034597788006067276,
-0.0955948755145073,
-0.05962535738945007,
-0.043579742312431335,
-0.08479244261980057,
-0.023890843614935875,
0.1992374211549759,
-0.004915683064609766,
0.019678449258208275,
-0.07966895401477814,
-0.03040584735572338,
-0.17104682326316833,
-0.07422015070915222,
0.015898199751973152,
0.027472274377942085,
0.0007488879491575062,
0.01115408819168806,
0.008775387890636921,
-0.05263383686542511,
-0.0728815421462059,
-0.0847858116030693,
0.1870003193616867,
0.07609695941209793,
-0.02883717603981495,
-0.006602495443075895,
0.029766419902443886,
0.025834498926997185,
-0.16997748613357544,
-0.045250389724969864,
-0.045871615409851074,
-0.08148060739040375,
0.009733688086271286,
0.015056458301842213,
-0.06730224192142487,
0.13319635391235352,
0.20536397397518158,
-0.0033800648525357246,
0.16426043212413788,
-0.04597611352801323,
0.0007848202949389815,
0.005541928578168154,
0.1099238321185112,
0.002743055811151862,
0.10576696693897247,
-0.057332202792167664,
0.00009079890878638253,
0.015294313430786133,
-0.03520829230546951,
-0.06836215406656265,
0.09483670443296432,
0.06593269854784012,
0.07188645005226135,
-0.0889301747083664,
0.1447022408246994,
-0.039260342717170715,
0.008418919518589973,
0.10777539759874344,
-0.1234489232301712,
0.02904021553695202,
0.07177574187517166,
-0.054140664637088776,
0.010863946750760078,
-0.04226332902908325,
0.030287887901067734,
-0.05775810778141022,
0.015949394553899765,
-0.008491273038089275,
0.025962423533201218,
-0.09300150722265244,
-0.07183968275785446,
0.052068036049604416,
-0.10654393583536148,
0.03418968990445137,
-0.13916273415088654,
-0.08627145737409592,
-0.061256054788827896,
0.03732625022530556,
-0.036718837916851044,
0.03071828931570053,
-0.13242550194263458,
-0.10816938430070877,
0.05978347733616829,
-0.056552134454250336,
-0.014212112873792648,
-0.06014793738722801,
-0.0036804594565182924,
-0.06987103819847107,
0.05674755573272705,
0.05296095833182335,
0.05515410378575325,
-0.10932629555463791,
0.06521918624639511,
-0.27990102767944336,
0.055703528225421906,
-0.14525316655635834,
0.09389831870794296,
-0.09857918322086334,
-0.029577123001217842,
0.02337080053985119,
0.019352570176124573,
0.04973910376429558,
0.07156883180141449,
-0.11390885710716248,
-0.03408973664045334,
0.12592773139476776,
-0.11814217269420624,
-0.04755031317472458,
0.07607285678386688,
-0.01181056909263134,
-0.028272707015275955,
-0.010204906575381756,
0.21955302357673645,
-0.006185972131788731,
-0.042508676648139954,
-0.017901554703712463,
0.003141277702525258,
-0.04467667639255524,
-0.023601818829774857,
0.05827311426401138,
-0.07509760558605194,
0.02948783151805401,
0.021731404587626457,
0.0020190568175166845,
0.03832649812102318,
-0.010196889750659466,
0.0016883036587387323,
0.04141593724489212,
-0.02200721576809883,
0.03979850560426712,
-0.001339466543868184,
0.0679791271686554,
-0.08226598799228668,
-0.03900059685111046,
0.14426827430725098,
0.012734699063003063,
-0.08373758941888809,
0.013162649236619473,
-0.0831892266869545,
-0.028697658330202103,
0.07340145111083984,
0.01923062466084957,
-0.131503164768219,
-0.08402197062969208,
0.0907803624868393,
-0.07516428828239441,
0.016745224595069885,
-0.12523606419563293,
0.06294609606266022,
0.032582517713308334,
0.07583196461200714,
-0.0351148284971714,
0.015094486065208912,
0.04421358183026314,
0.02844204008579254,
-0.127778559923172,
-0.023467032238841057,
-0.07066325098276138,
0.0016399469459429383,
-0.045654360204935074,
0.029477009549736977,
0.06821351498365402,
0.16262947022914886,
-0.018740447238087654,
0.03348183259367943,
0.037790462374687195,
0.1118236854672432,
0.043830785900354385,
-0.021043751388788223,
0.02696559578180313,
0.043141234666109085,
-0.03488333523273468,
0.14980022609233856,
-0.16708441078662872,
0.035064201802015305,
0.13778571784496307,
-0.009657730348408222,
-0.039652019739151,
0.013161425478756428,
0.013375379145145416,
-0.032326918095350266,
0.0639890655875206,
0.045345041900873184,
0.24393130838871002,
0.05861874297261238,
0.14797720313072205,
-0.04524572193622589,
-0.021694162860512733,
0.022762587293982506,
-0.10696042329072952,
-0.0746435597538948,
0.11979112029075623,
0.06791702657938004,
-0.15731936693191528,
0.1173044964671135,
0.020557083189487457,
-0.08194904029369354,
0.21391180157661438,
-0.06706260144710541,
-0.005416072905063629,
-0.06074392795562744,
0.054089512676000595,
-0.003068499034270644,
-0.009922537952661514,
-0.080755814909935,
-0.07156341522932053,
0.030114678665995598,
0.011325185187160969,
0.04277785122394562,
-0.09502089023590088,
0.02947874926030636,
-0.03916938602924347,
-0.025192121043801308,
0.09130734950304031,
0.10536003112792969,
0.05634617432951927,
0.009487123228609562,
0.012299143709242344,
-0.10893220454454422,
0.007908837869763374,
-0.005513857584446669,
-0.07510822266340256,
0.20436592400074005,
-0.20736286044120789,
-0.08179254084825516,
-0.10153242200613022,
-0.05251322314143181,
0.00757818017154932,
-0.02365949936211109,
0.06090926006436348,
-0.07884915918111801,
-0.029630711302161217,
-0.06517796218395233,
-0.038468748331069946,
0.00688167242333293,
-0.03943115845322609,
0.0472615621984005,
-0.023028993979096413,
-0.07900370657444,
-0.07196706533432007,
-0.06371729075908661,
-0.0034377628471702337,
-0.04395071417093277,
0.07334817945957184,
-0.07622505724430084,
0.07038815319538116,
0.07715466618537903,
0.006457920651882887,
0.03782028704881668,
-0.04172458127140999,
0.07248182594776154,
-0.03846403956413269,
-0.018622420728206635,
0.10111331939697266,
-0.06493132561445236,
0.08363736420869827,
0.14975468814373016,
0.03458147495985031,
-0.048317380249500275,
0.028973029926419258,
-0.015987558290362358,
-0.04882374778389931,
-0.21185989677906036,
-0.02577495016157627,
-0.05315229669213295,
0.06092437356710434,
0.053130991756916046,
0.06732728332281113,
0.09043849259614944,
0.04295506328344345,
0.054195694625377655,
0.0031140341889113188,
0.0034439237788319588,
0.08782927691936493,
0.2083444446325302,
0.09393725544214249,
0.0426727794110775,
-0.03830211982131004,
-0.06445610523223877,
-0.023608772084116936,
-0.013807269744575024,
0.1382831335067749,
0.07305832207202911,
0.10999125242233276,
0.09144001454114914,
0.08857876062393188,
0.07529931515455246,
0.03660396859049797,
-0.03742546960711479,
0.05372275784611702,
0.026089439168572426,
-0.05950821191072464,
-0.04355109855532646,
0.044107262045145035,
0.04219353199005127,
-0.09610140323638916,
-0.04285740107297897,
0.08839502930641174,
0.0972244143486023,
0.20727404952049255,
-0.03302649408578873,
-0.24811714887619019,
0.03371834009885788,
0.028206543996930122,
-0.04219494387507439,
-0.033823803067207336,
0.02170824632048607,
0.05990446358919144,
-0.1187862828373909,
0.10283336788415909,
0.008036192506551743,
0.02259014919400215,
-0.11702612787485123,
0.025058584287762642,
0.0878974050283432,
0.07181666791439056,
0.031160088256001472,
0.009142836555838585,
-0.2293325960636139,
0.2344573587179184,
-0.015148905105888844,
0.0595463290810585,
-0.05437155440449715,
0.06650207936763763,
0.03065055049955845,
-0.09176264703273773,
0.06741022318601608,
-0.03271651640534401,
-0.3615824282169342,
-0.12047608196735382,
-0.06574250757694244,
0.06681272387504578,
0.12957832217216492,
-0.035201892256736755,
0.05078069865703583,
0.048846714198589325,
-0.04601959511637688,
-0.06843715906143188,
-0.10670629143714905,
-0.10320360213518143,
-0.07026933133602142,
0.019771702587604523,
0.006882576271891594,
0.08185631036758423,
-0.026185711845755577,
-0.023948052898049355,
-0.10868813097476959,
0.06011636555194855,
-0.10432200878858566,
-0.09697118401527405,
-0.08575356751680374,
-0.0934644341468811,
0.1116267517209053,
-0.11477286368608475,
0.07167881727218628,
-0.03664246201515198,
-0.03564416244626045,
-0.004537603817880154,
-0.09751178324222565,
0.1309971660375595,
-0.011599261313676834,
-0.08438753336668015,
0.00021056584955658764,
0.06023574247956276,
0.01820864900946617,
0.007952366024255753,
0.017583753913640976,
0.0713750496506691,
0.058512069284915924,
-0.14626964926719666,
0.005123525857925415,
-0.04313238337635994,
0.07434964179992676,
-0.006420455407351255,
-0.1055409386754036,
-0.056734804064035416,
-0.045048560947179794,
0.015617583878338337,
0.1181786060333252,
0.2114512324333191,
-0.045730143785476685,
0.04581867530941963,
0.1600836217403412,
-0.04897543787956238,
-0.14135859906673431,
-0.14019455015659332,
0.07635913789272308,
-0.0028237327933311462,
-0.13138814270496368,
-0.26863357424736023,
0.019678441807627678,
0.13085342943668365,
0.012593625113368034,
-0.12352906167507172,
-0.2073444426059723,
-0.12682580947875977,
0.16059720516204834,
0.019065124914050102,
-0.08147726953029633,
-0.11338318884372711,
-0.09819485992193222,
0.010103510692715645,
-0.11818957328796387,
0.0844748243689537,
-0.11595295369625092,
0.0628126785159111,
0.03270428255200386,
-0.031986478716135025,
0.0008204456535167992,
-0.03749886527657509,
0.12461119145154953,
0.10869895666837692,
0.06657794117927551,
-0.06922650337219238,
-0.06790544837713242,
-0.012761407531797886,
-0.019675293937325478,
0.16938531398773193,
-0.11360732465982437,
-0.024886440485715866,
-0.16316576302051544,
0.010442757979035378,
-0.05745326727628708,
0.028095534071326256,
0.006293373182415962,
-0.010028542019426823,
0.0006129336543381214,
0.00022383476607501507,
0.04166066274046898,
-0.001566973514854908,
0.16589048504829407,
0.016615422442555428,
0.12015291303396225,
0.1967785805463791,
0.07209194451570511,
0.02729368768632412,
0.017854182049632072,
0.011650701984763145,
-0.03733263164758682,
0.0457364022731781,
-0.08154360949993134,
-0.0002766496909316629,
0.09274251759052277,
-0.03861553221940994,
0.06989611685276031,
0.026134878396987915,
-0.057370562106370926,
0.040106575936079025,
0.09588950872421265,
-0.07323409616947174,
-0.029329897835850716,
0.03836185485124588,
0.040398359298706055,
0.08288510888814926,
-0.014307035133242607,
0.12024176865816116,
-0.0302895400673151,
-0.016997244209051132,
-0.01700519770383835,
-0.013647475279867649,
-0.005102104507386684,
0.1184559017419815,
0.01813044771552086,
0.06858096271753311,
-0.09140795469284058,
0.06747958064079285,
0.030279774218797684,
-0.08516843616962433,
0.10888490080833435,
0.15021686255931854,
-0.13520851731300354,
-0.05910749360918999,
0.06439311057329178,
0.15948764979839325,
0.006890777964144945,
-0.07228273153305054,
-0.09538619220256805,
-0.13224680721759796,
0.0394597128033638,
0.19672822952270508,
0.06296440958976746,
0.03796984255313873,
0.01201900839805603,
-0.013973651453852654,
0.036224666982889175,
0.0532660186290741,
0.026291100308299065,
0.03228062018752098,
-0.0576876699924469,
0.07423058897256851,
0.022616371512413025,
0.08586884289979935,
-0.00469284038990736,
-0.013593853451311588,
-0.17715336382389069,
0.01291061844676733,
0.05794265866279602,
-0.010342812165617943,
-0.13120092451572418,
-0.010901303961873055,
0.046668749302625656,
-0.01307535357773304,
-0.06283360719680786,
-0.007770902942866087,
-0.11017747968435287,
-0.012967475689947605,
-0.04766495153307915,
0.12278660386800766,
-0.08831898868083954,
-0.0525193028151989,
0.07253191620111465,
-0.11423806846141815,
0.03666352108120918,
0.09492909908294678,
-0.018945135176181793,
0.06342168897390366,
-0.03779592365026474,
-0.010283970274031162,
0.07664474099874496,
0.020010480657219887,
0.045084401965141296,
-0.020621420815587044,
0.015317595563828945,
0.01339484378695488,
0.04249321669340134,
0.016470827162265778,
0.06414841115474701,
-0.11838997900485992,
0.08391908556222916,
-0.03309931978583336,
-0.05138838663697243,
-0.08080903440713882,
0.028815975412726402,
0.11848227679729462,
-0.013297327794134617,
0.11343792080879211,
-0.09360942989587784,
0.05698410049080849,
-0.01610596477985382,
-0.017759427428245544,
0.023409031331539154,
-0.1462976038455963,
0.07086830586194992,
-0.05703634396195412,
0.06353866308927536,
-0.03019578382372856,
0.15010599792003632,
0.044626686722040176,
-0.036384567618370056,
0.025884976610541344,
-0.009809098206460476,
-0.06126288324594498,
0.1361430138349533,
0.11215429753065109,
0.09262143075466156,
-0.015423915348947048,
-0.0022361166775226593,
-0.02573113702237606,
-0.020496677607297897,
-0.09447505325078964,
0.04190320894122124,
0.12821534276008606,
0.08831903338432312,
0.08967816829681396,
0.1806430220603943,
-0.07572025805711746,
-0.0672798678278923,
0.025503380224108696,
-0.06515134125947952,
0.10987042635679245,
-0.05762903019785881,
0.10237912833690643,
0.10805773735046387,
-0.09935550391674042,
0.04365655779838562,
0.05724651739001274,
-0.0782870426774025,
-0.1252051144838333,
-0.08821400254964828,
-0.08940150588750839,
-0.10990923643112183,
0.04947727918624878,
-0.05405683442950249,
0.008186260238289833,
0.12941844761371613,
0.02093002013862133,
0.07833241671323776,
0.08696462959051132,
0.03174225986003876,
-0.009904613718390465,
0.10093633830547333,
-0.05602940544486046,
0.020167429000139236,
-0.05587860569357872,
-0.0702030211687088,
-0.016807837411761284,
-0.0335724875330925,
-0.009961677715182304,
0.02924821712076664,
-0.017465800046920776,
0.04096145182847977,
-0.07658173143863678,
-0.06795422732830048,
0.0632469430565834,
0.010625425726175308,
-0.0685942992568016,
-0.015390737913548946,
0.06685285270214081,
-0.10063865780830383,
0.02653639204800129,
0.03475447744131088,
-0.028248680755496025,
-0.10437379777431488,
-0.1550697386264801,
0.08651836961507797,
0.08046694844961166,
0.07517988234758377,
0.03908076137304306,
-0.024750936776399612,
-0.08955223113298416,
0.11738774925470352,
0.13361229002475739,
0.07763636857271194,
0.03243495151400566,
0.027777429670095444,
0.02143269218504429,
0.013196839019656181,
0.0714060440659523,
0.11437081545591354,
0.07050508260726929,
-0.03544796258211136,
-0.004715212620794773,
-0.07775356620550156,
-0.06986923515796661,
-0.1606290191411972,
-0.06063161790370941,
0.04422027990221977,
-0.07077683508396149,
0.0014579608105123043,
0.12490729987621307,
-0.19620399177074432,
-0.0003568011161405593,
0.020042335614562035,
-0.05026400089263916,
-0.10505498945713043,
0.027067916467785835,
0.10783323645591736,
0.09219931811094284,
0.04000536724925041,
0.016148077324032784,
-0.10859224945306778,
0.027464967221021652,
0.05173356831073761,
-0.09964880347251892,
0.011625254526734352,
0.035891514271497726,
-0.06980397552251816,
0.11146394908428192,
-0.019965559244155884,
0.10668530315160751,
0.09668363630771637,
0.030730584636330605,
-0.038741424679756165,
0.11625245958566666,
0.1082102581858635,
-0.07113437354564667,
0.09052842855453491,
0.03080149181187153,
0.0012845611199736595,
0.06590274721384048,
0.004363865591585636,
-0.07664700597524643,
0.06721004843711853,
-0.03641504794359207,
0.0004971695016138256,
-0.04949401319026947,
-0.014561372809112072,
-0.08492866903543472,
0.09093349426984787,
0.1541765034198761,
0.02165474370121956,
-0.0005807302659377456,
0.012087688781321049,
0.017264751717448235,
-0.020526859909296036,
-0.09287422150373459,
-0.10787476599216461,
-0.14906063675880432,
0.0032590115442872047,
0.013853641226887703,
0.07384870946407318,
-0.016292234882712364,
-0.04638463258743286,
0.0018424208974465728,
0.037491098046302795,
-0.08248405158519745,
0.015298311598598957,
0.07684128731489182,
0.025050761178135872,
-0.06645011901855469,
-0.19370095431804657,
0.006623268127441406,
0.0911649540066719,
-0.1262078732252121,
-0.07792621105909348
] |
null | null | null | for test | {"license": "afl-3.0"} | null | Jira/first_test | [
"license:afl-3.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#license-afl-3.0 #region-us
| for test | [] | [
"TAGS\n#license-afl-3.0 #region-us \n"
] | [
14
] | [
"passage: TAGS\n#license-afl-3.0 #region-us \n"
] | [
0.008753168396651745,
0.010755471885204315,
-0.008034512400627136,
-0.02672768384218216,
0.03509393706917763,
0.05347553640604019,
0.16242533922195435,
0.040053483098745346,
0.14092452824115753,
-0.08147699385881424,
0.14438313245773315,
0.09214922040700912,
0.008235580287873745,
0.05333785340189934,
-0.023586034774780273,
-0.1253821700811386,
0.06997176259756088,
-0.048492807894945145,
0.09017202258110046,
0.036828670650720596,
0.013134396634995937,
-0.03675081953406334,
0.009383250027894974,
-0.03734258562326431,
-0.07141533493995667,
0.03619592264294624,
0.05569666624069214,
-0.057362888008356094,
0.0799034982919693,
0.006738719996064901,
0.09579167515039444,
0.08478225022554398,
0.008890209719538689,
-0.26278549432754517,
0.0007071002619341016,
-0.09059765934944153,
-0.11217844486236572,
0.01625429280102253,
0.04260224103927612,
0.030448410660028458,
0.056091614067554474,
0.12762685120105743,
-0.007983789779245853,
0.06515372544527054,
-0.20527002215385437,
-0.2059105783700943,
-0.1556715965270996,
0.002098596654832363,
0.08675763010978699,
0.04696588218212128,
0.08996804803609848,
0.12026572227478027,
-0.14555490016937256,
-0.003944577183574438,
0.08109316229820251,
-0.3745465874671936,
0.07407249510288239,
0.1925913691520691,
0.05120871961116791,
0.06867295503616333,
0.00604937132447958,
0.09104618430137634,
0.09892469644546509,
-0.02631869912147522,
-0.05079203099012375,
-0.07588499039411545,
0.006119055207818747,
0.11875969916582108,
-0.024397362023591995,
-0.08467355370521545,
0.31145530939102173,
0.02563508413732052,
-0.049584079533815384,
0.06275829672813416,
0.026263300329446793,
-0.054741811007261276,
0.008360193111002445,
0.01980578899383545,
0.0613296702504158,
0.13849608600139618,
0.1628756821155548,
-0.05773881450295448,
-0.16607268154621124,
-0.036845967173576355,
-0.24027040600776672,
0.14699432253837585,
-0.016099506989121437,
0.11533231288194656,
-0.1388247013092041,
0.01715315878391266,
-0.14108917117118835,
-0.0023541392292827368,
-0.07900776714086533,
-0.07196745276451111,
0.07172603160142899,
-0.002186801750212908,
-0.05099836364388466,
0.12724310159683228,
0.06973118335008621,
0.1879224181175232,
-0.017256516963243484,
0.019226469099521637,
-0.08608978986740112,
0.15177422761917114,
-0.030627187341451645,
0.036500997841358185,
0.15999256074428558,
0.10788919776678085,
0.005767544265836477,
-0.1496984362602234,
0.06589630246162415,
-0.026361286640167236,
-0.16079562902450562,
0.005154280923306942,
-0.1659497618675232,
0.18641406297683716,
-0.06972140818834305,
-0.09694287180900574,
-0.09682965278625488,
0.07409264892339706,
0.15402883291244507,
-0.027402006089687347,
-0.03470829874277115,
0.003735062899067998,
0.019251380115747452,
-0.06822319328784943,
-0.057438306510448456,
0.054559376090765,
0.11804192513227463,
0.11214876174926758,
-0.11501550674438477,
-0.007325900252908468,
-0.008555654436349869,
0.04430820047855377,
0.10739894956350327,
-0.10757720470428467,
0.056852877140045166,
-0.1079331785440445,
-0.16673454642295837,
0.04231709986925125,
0.014014575630426407,
-0.03442351892590523,
0.0830291360616684,
0.08569234609603882,
0.053554926067590714,
-0.0473451130092144,
-0.09551909565925598,
-0.08479722589254379,
-0.08218173682689667,
0.07462060451507568,
-0.012898063287138939,
-0.018112748861312866,
-0.27853357791900635,
-0.022058721631765366,
-0.1230451688170433,
0.05328255146741867,
0.04087410867214203,
-0.10249730199575424,
-0.12592610716819763,
0.15683050453662872,
-0.024220502004027367,
0.002431738656014204,
-0.08368620276451111,
0.026211291551589966,
-0.048524968326091766,
0.0668516531586647,
-0.10135363787412643,
-0.04123204946517944,
0.07362912595272064,
-0.14918960630893707,
-0.17220591008663177,
-0.0304839089512825,
0.009714790619909763,
0.029358886182308197,
0.049478549510240555,
0.3429420292377472,
-0.07034267485141754,
-0.16343039274215698,
0.12272711843252182,
0.14529412984848022,
-0.13301606476306915,
-0.2873625159263611,
0.1612548679113388,
-0.16213791072368622,
-0.20033025741577148,
0.028021428734064102,
-0.04689563065767288,
0.06182903051376343,
-0.03625156357884407,
-0.07931706309318542,
0.04461381584405899,
-0.021643750369548798,
-0.033309563994407654,
0.0019129624124616385,
0.041837844997644424,
-0.08816152065992355,
0.09145233780145645,
-0.00192086526658386,
0.00566850695759058,
0.12781481444835663,
0.012344236485660076,
-0.06584645807743073,
0.04928157851099968,
-0.0037218944635242224,
-0.04252559691667557,
-0.03794047236442566,
-0.10018554329872131,
0.024059534072875977,
0.01742956042289734,
0.08407004177570343,
0.1511029601097107,
0.03188927099108696,
-0.029376549646258354,
0.012849422171711922,
0.03276551514863968,
0.04850853979587555,
0.07412625849246979,
0.041736483573913574,
-0.036218419671058655,
0.02490135282278061,
-0.03356074541807175,
-0.08051284402608871,
-0.009309140034019947,
-0.0375010222196579,
0.09185773134231567,
-0.08241290599107742,
0.0005091946222819388,
0.05278698354959488,
-0.023707954213023186,
0.000612711301073432,
0.049096591770648956,
0.020446602255105972,
0.14722570776939392,
0.020908793434500694,
-0.046982746571302414,
0.17953981459140778,
-0.04879876226186752,
0.2847701609134674,
0.16128011047840118,
-0.019648002460598946,
0.007303719874471426,
-0.13936761021614075,
-0.004732327535748482,
0.010488107800483704,
0.07557506859302521,
0.014775355346500874,
-0.028286980465054512,
-0.009353994391858578,
0.03711384907364845,
-0.04725084453821182,
0.033043667674064636,
-0.015142763964831829,
-0.0802370086312294,
-0.14477337896823883,
-0.0006972756236791611,
0.23140133917331696,
-0.17512647807598114,
0.11609572917222977,
0.4195462763309479,
0.11131560802459717,
0.13712528347969055,
-0.11534896492958069,
-0.013948447071015835,
-0.07174360007047653,
0.0121318893507123,
-0.02805631421506405,
0.15315881371498108,
-0.017494000494480133,
0.01132681779563427,
0.04965641722083092,
0.06032390147447586,
0.08157417923212051,
-0.17762547731399536,
-0.16655784845352173,
0.0022906193044036627,
-0.04442157223820686,
-0.1272505223751068,
0.06075926125049591,
-0.08827293664216995,
0.03582426533102989,
0.03605031222105026,
-0.1273019164800644,
0.16896606981754303,
-0.02625114843249321,
-0.07064588367938995,
0.06469646841287613,
-0.18502794206142426,
-0.09657866507768631,
-0.18161828815937042,
-0.1536455750465393,
-0.006958403624594212,
0.034024499356746674,
0.061314668506383896,
-0.016311801970005035,
-0.05982258543372154,
0.031133852899074554,
-0.07171338051557541,
-0.16577042639255524,
-0.03616353124380112,
0.03994353115558624,
0.08257527649402618,
-0.031418103724718094,
-0.09038427472114563,
-0.0839306190609932,
-0.054515957832336426,
-0.0020589439664036036,
0.04440879076719284,
-0.07424329221248627,
0.10985688120126724,
0.11057892441749573,
0.02110244520008564,
0.08137944340705872,
-0.07808539271354675,
0.11242719739675522,
-0.0033466776367276907,
-0.13772159814834595,
0.12420617043972015,
0.0056322477757930756,
0.03180329129099846,
0.1830817461013794,
0.10037888586521149,
-0.12786968052387238,
-0.015034746378660202,
-0.09192165732383728,
-0.14170941710472107,
-0.23844344913959503,
-0.056982722133398056,
-0.08888638019561768,
0.10424958169460297,
-0.006121540442109108,
0.10905987024307251,
0.09699548035860062,
0.03838837891817093,
0.1161021813750267,
-0.08633590489625931,
-0.005078883841633797,
0.02606230042874813,
0.25743305683135986,
-0.03465048596262932,
0.019178586080670357,
-0.15390096604824066,
0.034600839018821716,
0.17175456881523132,
0.12243327498435974,
0.15978804230690002,
0.3156108856201172,
0.049057405441999435,
0.1527671217918396,
0.10787264257669449,
0.09820245206356049,
0.0739857628941536,
0.05339839309453964,
-0.03964909538626671,
-0.053004685789346695,
-0.017756573855876923,
0.0220456812530756,
0.050101008266210556,
0.03589414432644844,
-0.1923171728849411,
0.0005783190135844052,
-0.24328166246414185,
-0.008168976753950119,
-0.025380399078130722,
0.10773807018995285,
-0.06799247860908508,
0.13935789465904236,
0.07668933272361755,
0.07277584075927734,
-0.003943530842661858,
0.1482781618833542,
-0.07450206577777863,
-0.053504254668951035,
0.08725883066654205,
0.020613932982087135,
0.049089495092630386,
0.08094680309295654,
0.04991792142391205,
-0.03031032904982567,
-0.15434174239635468,
0.04195761680603027,
0.13019238412380219,
-0.2354137897491455,
0.3013542890548706,
0.015893274918198586,
-0.06690904498100281,
-0.007231666706502438,
-0.05429763346910477,
-0.005190412048250437,
0.15006470680236816,
0.13962078094482422,
0.02786046266555786,
-0.15056174993515015,
-0.14339596033096313,
-0.007600650191307068,
0.00042068943730555475,
0.0955064594745636,
0.030752897262573242,
-0.13425275683403015,
-0.05256078019738197,
0.07763459533452988,
0.0001802187762223184,
0.12501665949821472,
-0.10201626271009445,
-0.09110905975103378,
0.015847448259592056,
0.09730920195579529,
-0.026151174679398537,
-0.055053841322660446,
0.04487500339746475,
-0.08920347690582275,
0.09577423334121704,
-0.043940529227256775,
0.038090042769908905,
-0.09511511027812958,
-0.2647014856338501,
0.03377658128738403,
-0.022190455347299576,
-0.01199654396623373,
-0.05813368037343025,
-0.14286790788173676,
-0.10359059274196625,
-0.18725767731666565,
0.10764319449663162,
-0.06986436247825623,
0.044491276144981384,
-0.04264041781425476,
0.13703489303588867,
-0.10903941094875336,
0.02745825983583927,
0.005719272885471582,
0.03735606372356415,
0.011147742159664631,
-0.12125100195407867,
0.1060623824596405,
-0.12851393222808838,
0.055106859654188156,
0.013698268681764603,
-0.009177718311548233,
0.052972692996263504,
0.05372212827205658,
-0.08462123572826385,
0.1819797158241272,
0.3603562116622925,
-0.03231661021709442,
0.2370062619447708,
0.2880840003490448,
-0.11138498783111572,
-0.20341217517852783,
-0.13207152485847473,
-0.27263081073760986,
-0.10022523999214172,
0.17018315196037292,
-0.1372794210910797,
0.008330847136676311,
0.20456604659557343,
-0.13212686777114868,
0.21064718067646027,
-0.190934956073761,
-0.0394204705953598,
0.15203210711479187,
0.007333556190133095,
0.4284004867076874,
-0.10776462405920029,
-0.12441983819007874,
-0.014240311458706856,
-0.20177865028381348,
0.15057320892810822,
0.014109564945101738,
0.06166108325123787,
-0.01671275869011879,
-0.07823274284601212,
-0.027071714401245117,
-0.0367279052734375,
0.2255428582429886,
-0.03499592840671539,
0.10605200380086899,
-0.08823390305042267,
-0.09703722596168518,
0.19100531935691833,
-0.011623011901974678,
0.04336350038647652,
-0.07191255688667297,
-0.04140729084610939,
-0.06276042759418488,
0.01532602496445179,
-0.010914352722465992,
0.058250732719898224,
0.019680466502904892,
-0.08988431096076965,
-0.09390363097190857,
0.022033264860510826,
-0.10866273939609528,
-0.05809082090854645,
0.2964078187942505,
-0.022320399060845375,
0.04969184845685959,
0.10358764976263046,
0.008129941299557686,
-0.15272291004657745,
0.008948219940066338,
-0.09097429364919662,
-0.07989400625228882,
0.04116840288043022,
-0.10726210474967957,
-0.017137760296463966,
0.1093006506562233,
-0.05443880707025528,
0.09075399488210678,
0.0863042101264,
-0.06561503559350967,
0.027242328971624374,
0.17439740896224976,
-0.07327050715684891,
-0.059575848281383514,
0.04065581411123276,
0.008235640823841095,
0.14339162409305573,
0.030913956463336945,
0.02260705828666687,
0.05458084121346474,
0.04398562014102936,
0.002282993169501424,
0.0261455737054348,
-0.13706088066101074,
-0.02635054849088192,
0.030809488147497177,
-0.013092185370624065,
-0.11155838519334793,
0.20455631613731384,
0.020040912553668022,
0.019760429859161377,
-0.038037821650505066,
0.0831717923283577,
-0.052855730056762695,
-0.05872052162885666,
-0.18490642309188843,
0.014469532296061516,
-0.17495082318782806,
-0.12871263921260834,
0.015285915695130825,
-0.11658786237239838,
-0.013081356883049011,
0.04189981892704964,
0.060914184898138046,
0.12087730318307877,
0.01051577553153038,
-0.024489592760801315,
0.11526867002248764,
-0.0976206362247467,
-0.22563526034355164,
0.01541835069656372,
-0.09861482679843903,
-0.13499459624290466,
0.020025700330734253,
0.058955032378435135,
-0.060630347579717636,
-0.08970177173614502,
-0.15207888185977936,
0.09733223915100098,
-0.12550853192806244,
-0.024451756849884987,
-0.09888383746147156,
-0.017075909301638603,
0.05422823503613472,
-0.042893700301647186,
-0.0624353364109993,
0.00470120320096612,
-0.16934318840503693,
0.03862188383936882,
0.0512625016272068,
0.07076962292194366,
-0.056429073214530945,
-0.021583672612905502,
0.07352035492658615,
0.07194388657808304,
0.10108170658349991,
0.03749685361981392,
0.04573621600866318,
0.152642160654068,
-0.13993598520755768,
-0.04170350357890129,
0.1245628297328949,
-0.025157703086733818,
0.012786269187927246,
0.04074930027127266,
-0.0508972704410553,
0.11668232083320618,
-0.06402528285980225,
0.07170248031616211,
-0.11309247463941574,
-0.14004117250442505,
-0.08156826347112656,
-0.0015122571494430304,
-0.18242135643959045,
0.03324837610125542,
-0.15760686993598938,
0.1950657218694687,
0.031046543270349503,
0.1470218151807785,
0.06255415081977844,
-0.017392277717590332,
0.03385024517774582,
-0.006330179516226053,
-0.01667098142206669,
-0.07813457399606705,
-0.13221806287765503,
-0.050527174025774,
-0.10310433804988861,
-0.005147517193108797,
0.40283718705177307,
0.018858926370739937,
-0.15154439210891724,
0.05251606926321983,
0.11105755716562271,
0.05311525613069534,
-0.0054802438244223595,
0.2469642460346222,
0.05138275772333145,
-0.00969523936510086,
-0.10690707713365555,
0.03909376636147499,
-0.054247044026851654,
-0.21725359559059143,
0.1345042884349823,
0.0659661516547203,
0.003302863333374262,
0.03334417939186096,
0.10935825109481812,
-0.09311416745185852,
-0.0007472969591617584,
-0.09223255515098572,
0.1232665479183197,
-0.002198708476498723,
0.03697584569454193,
0.02965942770242691,
0.2003161609172821,
-0.05057566240429878,
0.011449634097516537,
-0.0406554751098156,
0.0038373556453734636,
-0.18011528253555298,
-0.12784789502620697,
0.024188438430428505,
-0.10774293541908264,
0.08279231935739517,
0.016020895913243294,
0.06200118362903595,
0.2661651372909546,
0.044888753443956375,
-0.026182672008872032,
-0.05388949438929558,
-0.15634845197200775,
-0.04881242290139198,
-0.03577232360839844,
-0.022616492584347725,
0.0013991834130138159,
-0.1326848715543747,
-0.08546474575996399,
-0.03024584986269474,
-0.17112430930137634,
-0.04299236461520195,
0.02287301793694496,
0.008462020196020603,
-0.03883974254131317,
-0.12475224584341049,
-0.030301176011562347,
-0.05739569664001465,
0.0987088531255722,
-0.004930231720209122,
0.2104266881942749,
0.007272524293512106,
0.01935337297618389,
0.07344827055931091,
0.06888408213853836,
-0.011571877636015415,
-0.07279741019010544,
0.013499039225280285,
0.14626683294773102,
0.012222286313772202,
0.13522686064243317,
-0.05511900410056114,
-0.009501541033387184,
-0.005363747011870146,
0.18324944376945496,
0.28103107213974,
-0.05351873114705086,
0.014517785981297493,
-0.023645929992198944,
0.028225770220160484,
0.06996022164821625,
0.1896839439868927,
-0.00891613308340311,
0.18425105512142181,
-0.06741002202033997,
0.01283250842243433,
-0.03316991776227951,
0.04415792599320412,
-0.029425909742712975,
0.06627979874610901,
0.05284757912158966,
-0.09140392392873764,
-0.08504153788089752,
0.13556954264640808,
-0.08786775916814804,
0.1818382292985916,
0.128840371966362,
-0.06670024245977402,
0.03109366074204445,
-0.004850509576499462,
0.1276601403951645,
-0.02988019958138466,
0.0772196501493454,
-0.11596747487783432,
-0.10146927833557129,
-0.11439874768257141,
0.02979649044573307,
-0.3446876108646393,
-0.1813364326953888,
0.0912625640630722,
0.1619640737771988,
0.2029469907283783,
0.008809657767415047,
0.12008193880319595,
-0.004887307994067669,
0.08560380339622498,
-0.06953258067369461,
0.18241946399211884,
0.04244358837604523,
-0.019195832312107086,
-0.10771452635526657,
-0.20020459592342377,
-0.014956747181713581,
-0.010720182210206985,
0.02458147704601288,
0.013997627422213554,
0.03403183072805405,
0.08746704459190369,
-0.09995671361684799,
0.007046419661492109,
-0.022924145683646202,
-0.12467554956674576,
0.06491661071777344,
-0.04621043801307678,
0.008684191852807999,
-0.060470301657915115,
-0.029917964711785316,
0.012953607365489006,
0.10703669488430023,
-0.18915635347366333,
-0.06376741826534271,
0.1508788764476776,
-0.007510605733841658,
0.18251629173755646,
-0.036295726895332336,
-0.11287029832601547,
-0.013529711402952671,
-0.08369173854589462,
0.0853905975818634,
-0.11776289343833923,
0.047322001308202744,
0.11452312022447586,
-0.0066723907366395,
0.0199806559830904,
-0.23096983134746552,
0.044158827513456345,
-0.0327242948114872,
-0.05298640578985214,
-0.05213373154401779
] |
null | null | transformers |
# XLM-roBERTa-large-it-mnli
## Version 0.1
| | matched-it acc | mismatched-it acc |
| -------------------------------------------------------------------------------- |----------------|-------------------|
| XLM-roBERTa-large-it-mnli | 84.75 | 85.39 |
## Model Description
This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline).
## Intended Usage
This model is intended to be used for zero-shot text classification of italian texts.
Since the base model was pre-trained trained on 100 different languages, the
model has shown some effectiveness in languages beyond those listed above as
well. See the full list of pre-trained languages in appendix A of the
[XLM Roberata paper](https://arxiv.org/abs/1911.02116)
For English-only classification, it is recommended to use
[bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or
[a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
#### With the zero-shot classification pipeline
The model can be loaded with the `zero-shot-classification` pipeline like so:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True)
```
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
classify in another:
```python
# we will classify the following wikipedia entry about Sardinia"
sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna."
# we can specify candidate labels in Italian:
candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"]
classifier(sequence_to_classify, candidate_labels)
# {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'],
# 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]}
```
The default hypothesis template is the English, `This text is {}`. With this model better results are achieving when providing a translated template:
```python
sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna."
candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"]
hypothesis_template = "si parla di {}"
# classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
# 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]}
```
#### With manual PyTorch
```python
# pose sequence as a NLI premise and label as a hypothesis
from transformers import AutoModelForSequenceClassification, AutoTokenizer
nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli')
tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli')
premise = sequence
hypothesis = f'si parla di {}.'
# run through model pre-trained on MNLI
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
truncation_strategy='only_first')
logits = nli_model(x.to(device))[0]
# we throw away "neutral" (dim 1) and take the probability of
# "entailment" (2) as the probability of the label being true
entail_contradiction_logits = logits[:,[0,2]]
probs = entail_contradiction_logits.softmax(dim=1)
prob_label_is_true = probs[:,1]
```
## Training
## Version 0.1
The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.
| metric | value |
|----------------- |------- |
| learning_rate | 4e-6 |
| optimizer | AdamW |
| batch_size | 80 |
| mcc | 0.77 |
| train_loss | 0.34 |
| eval_loss | 0.40 |
| stopped_at_step | 9754 |
## Version 0.0
This model was pre-trained on set of 100 languages, as described in
[the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training. | {"language": "it", "license": "mit", "tags": ["text-classification", "pytorch", "tensorflow"], "datasets": ["multi_nli", "glue"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "La seconda guerra mondiale vide contrapporsi, tra il 1939 e il 1945, le cosiddette potenze dell'Asse e gli Alleati che, come gi\u00e0 accaduto ai belligeranti della prima guerra mondiale, si combatterono su gran parte del pianeta; il conflitto ebbe inizio il 1\u00ba settembre 1939 con l'attacco della Germania nazista alla Polonia e termin\u00f2, nel teatro europeo, l'8 maggio 1945 con la resa tedesca e, in quello asiatico, il successivo 2 settembre con la resa dell'Impero giapponese dopo i bombardamenti atomici di Hiroshima e Nagasaki.", "candidate_labels": "guerra, storia, moda, cibo", "multi_class": true}], "model-index": [{"name": "Jiva/xlm-roberta-large-it-mnli", "results": [{"task": {"type": "natural-language-inference", "name": "Natural Language Inference"}, "dataset": {"name": "glue", "type": "glue", "config": "mnli", "split": "validation_matched"}, "metrics": [{"type": "accuracy", "value": 0.8819154355578197, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjY3MTgxNjg2ZGZmYjRjNmUyYWMwYzA3M2I3M2U0ZTYxZTFlNWY0Y2Y3MjZhYmVmM2U0OTZlYmJiMzU0MWRiMiIsInZlcnNpb24iOjF9.jgND_l7mc3EtHPiAPbAas7YaNnNZ5FSZNmIDOHSEpqV87lGL2XL4seol_MspagWmoQAN_RGdSM9nsIQH364EAw"}, {"type": "precision", "value": 0.8814638070461666, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY0MjQ0ZDkyMzA3NmU2YmYzMGUyNTJmNWUxMTI4MTI5YzhiNjA2MzZiZDBmMTc4ODdhMzcxNTMyM2Y0MWIwOCIsInZlcnNpb24iOjF9.BCDxzHFaXZWISV2qkXimdnIxGT3qVos-tcBv3Yp9VntL2ot4e-Nifman-Yb4XwmHccTxBnf3TY0DxEE55vF9BQ"}, {"type": "precision", "value": 0.8819154355578197, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTlkZWIzNTBhNmFkNzkwNzg3ODcxNmU3YjgwODBmMmE5Njc3M2RmMDk0ZGFjZWYwMDBmNzVjOTQ3NGYyZjI3ZSIsInZlcnNpb24iOjF9.ejVcvVSUBWSMbvpxlkVi73qzkwNBgD5C1GBTandyWbk3bOas7fJ26x0duI6sNkgz-Y3Q_3pI-LJSCZgtPhP0Bw"}, {"type": "precision", "value": 0.881571663280083, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFkMWI2MTIwNjRmYjgxYjZiNWJmZWZmNzAxNDcwODdjYzg2MTAwM2I5YWRjYWQ0MzA5MTk5MTFlZDI5NGQ4MiIsInZlcnNpb24iOjF9.GrHhqY6L8AJEy0XaNzR2QI2nnwJUen8Ay5sKVh0gBN3jAv-DWwNrjVZgeclGgH4pOdRxxlNCOkZyPnEEon4eAA"}, {"type": "recall", "value": 0.8802419956104793, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjFhNjA2M2IxZGQwYjE3YzIzZGRkMTM1MDg5OTBiNTY3YjE1YjE0ZDlkNmI1ZmY5ZmM5OTZkOTk2ODI3Mzc3YiIsInZlcnNpb24iOjF9.yWoQSRCGGu6mNhjak6fPM-w01kAlDK8lDVdlKserf19gEeiB4vyPfklrp4HdlRFadfUB7pJ2iloTCkDj_jPYBA"}, {"type": "recall", "value": 0.8819154355578197, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ1N2FhNmRiMWY5YmIwODgzNjI2YjY2NzgwNmQ2ZDRmN2UzNTg3MWQ0NDhmMjMzNjc2NGExMjliNWYxMDRjZSIsInZlcnNpb24iOjF9.XGiAwKlPkFwimVDK2CJ37oi8mz2KkJMxAanTJNFcW_Lwa-9T9--yZNtS3t1pfbUP2NeXxCzW_8DlxnM7RcG2DA"}, {"type": "recall", "value": 0.8819154355578197, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU1OWFjN2ZmYjVlNWJjZTVmZDQ0MmVjZmFkMmU2OTkzZTcxZDkyZTlmN2E0NjFkOTE4YzU1ZjVjYWMxYjViYSIsInZlcnNpb24iOjF9.HpRWd_-NXIgZemTCIcpK2lpe4bt2fro_NgWX2wuvN4uWVdKsYKr9v5W8EOEv4xWzdbgtlllCG9UCc3-7YqBAAg"}, {"type": "f1", "value": 0.8802937937959167, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2U1OGNmZDMxZTUwNDgxZjIzYWM2ZGQzZTg1NmNjMjdjNTkxNTk0MGI2ZDlkYjVmODFiZTllZmE0NzZlZWVlOCIsInZlcnNpb24iOjF9.7NupnTf-kIv0pIoof-2XHp7ESavQeTDDRGs3bTF3F0UJsorY8WO7I_qyoGiuPmLWtwFsNJjybQdMahM_oss7Ag"}, {"type": "f1", "value": 0.8819154355578197, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODA2MGU2MzM5OWRjMTk4OGYxNTIxMjUyNWI0YjU5ZWRlMDZhMWRjMjk1MmQzZDg0YTYzYzY4M2U3OWFhNzEwNiIsInZlcnNpb24iOjF9.dIYUojg4cbbQCP6rlp2tbX72tMR5ROtUZYFDJBgHD8_KfEAr9nNoLeP2cvFCYcFe8MyQh7LADTK5l0PTt3B0AQ"}, {"type": "f1", "value": 0.8811955957302677, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I2ZDQ4NWY5NmNmZjNjOWRjNGUyYzcyZWNjNzA0MGJlZmRkYWIwNjVmYmFlNjRmMjAwMWIwMTJjNDY1MjYxNyIsInZlcnNpb24iOjF9.LII2Vu8rWWbjWU55Yenf4ZsSpReiPsoBmHH1XwgVu7HgTtL-TnRaCCxSTJ0i0jnK8sa2kKqXw1RndE1HL1GbBQ"}, {"type": "loss", "value": 0.3171548545360565, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGYxNDA4YzBjMGU5MDBjNGQwOThlMzZkNWFjNDg4MzdiNWFiNGM2ZmQyOTZmNTBkMTE1OGI1NzhmMGM3ZWJjYSIsInZlcnNpb24iOjF9._yP8hC7siIQkSG8-R9RLlIYqqyh8sobk-jN1-QELU0iv9VS54df_7nNPy8hGUVx-TAntaIeFyQ8DLVcM_vVDDw"}]}]}]} | zero-shot-classification | Jiva/xlm-roberta-large-it-mnli | [
"transformers",
"pytorch",
"safetensors",
"xlm-roberta",
"text-classification",
"tensorflow",
"zero-shot-classification",
"it",
"dataset:multi_nli",
"dataset:glue",
"arxiv:1911.02116",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1911.02116"
] | [
"it"
] | TAGS
#transformers #pytorch #safetensors #xlm-roberta #text-classification #tensorflow #zero-shot-classification #it #dataset-multi_nli #dataset-glue #arxiv-1911.02116 #license-mit #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
| XLM-roBERTa-large-it-mnli
=========================
Version 0.1
-----------
matched-it acc: XLM-roBERTa-large-it-mnli, mismatched-it acc: 84.75
Model Description
-----------------
This model takes xlm-roberta-large and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face ZeroShotClassificationPipeline.
Intended Usage
--------------
This model is intended to be used for zero-shot text classification of italian texts.
Since the base model was pre-trained trained on 100 different languages, the
model has shown some effectiveness in languages beyond those listed above as
well. See the full list of pre-trained languages in appendix A of the
XLM Roberata paper
For English-only classification, it is recommended to use
bart-large-mnli or
a distilled bart MNLI model.
#### With the zero-shot classification pipeline
The model can be loaded with the 'zero-shot-classification' pipeline like so:
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
classify in another:
The default hypothesis template is the English, 'This text is {}'. With this model better results are achieving when providing a translated template:
#### With manual PyTorch
Training
--------
Version 0.1
-----------
The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.
Version 0.0
-----------
This model was pre-trained on set of 100 languages, as described in
the original paper. It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.
| [
"#### With the zero-shot classification pipeline\n\n\nThe model can be loaded with the 'zero-shot-classification' pipeline like so:\n\n\nYou can then classify in any of the above languages. You can even pass the labels in one language and the sequence to\nclassify in another:\n\n\nThe default hypothesis template is the English, 'This text is {}'. With this model better results are achieving when providing a translated template:",
"#### With manual PyTorch\n\n\nTraining\n--------\n\n\nVersion 0.1\n-----------\n\n\nThe model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.\n\n\n\nVersion 0.0\n-----------\n\n\nThis model was pre-trained on set of 100 languages, as described in\nthe original paper. It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training."
] | [
"TAGS\n#transformers #pytorch #safetensors #xlm-roberta #text-classification #tensorflow #zero-shot-classification #it #dataset-multi_nli #dataset-glue #arxiv-1911.02116 #license-mit #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"#### With the zero-shot classification pipeline\n\n\nThe model can be loaded with the 'zero-shot-classification' pipeline like so:\n\n\nYou can then classify in any of the above languages. You can even pass the labels in one language and the sequence to\nclassify in another:\n\n\nThe default hypothesis template is the English, 'This text is {}'. With this model better results are achieving when providing a translated template:",
"#### With manual PyTorch\n\n\nTraining\n--------\n\n\nVersion 0.1\n-----------\n\n\nThe model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.\n\n\n\nVersion 0.0\n-----------\n\n\nThis model was pre-trained on set of 100 languages, as described in\nthe original paper. It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training."
] | [
94,
100,
188
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #xlm-roberta #text-classification #tensorflow #zero-shot-classification #it #dataset-multi_nli #dataset-glue #arxiv-1911.02116 #license-mit #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n#### With the zero-shot classification pipeline\n\n\nThe model can be loaded with the 'zero-shot-classification' pipeline like so:\n\n\nYou can then classify in any of the above languages. You can even pass the labels in one language and the sequence to\nclassify in another:\n\n\nThe default hypothesis template is the English, 'This text is {}'. With this model better results are achieving when providing a translated template:#### With manual PyTorch\n\n\nTraining\n--------\n\n\nVersion 0.1\n-----------\n\n\nThe model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model.\n\n\n\nVersion 0.0\n-----------\n\n\nThis model was pre-trained on set of 100 languages, as described in\nthe original paper. It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training."
] | [
-0.1011115238070488,
0.0938265398144722,
-0.0017227398930117488,
0.06675045937299728,
0.11919008940458298,
0.03806468844413757,
0.06902291625738144,
0.0981120765209198,
-0.09927289932966232,
0.10107481479644775,
0.029859621077775955,
0.11654355376958847,
0.047286681830883026,
0.1736769676208496,
0.01163515169173479,
-0.2695237398147583,
0.08646842837333679,
-0.047090981155633926,
-0.02405165694653988,
0.08384726196527481,
0.09105707705020905,
-0.07917040586471558,
0.019141683354973793,
-0.05161987990140915,
-0.05788777396082878,
-0.0043693408370018005,
0.0001885014644358307,
-0.052237000316381454,
0.13065199553966522,
0.05863860622048378,
0.08088982105255127,
0.023878339678049088,
0.06507611274719238,
-0.18230214715003967,
0.009899189695715904,
0.0905979722738266,
0.02453126385807991,
0.038861650973558426,
0.038417037576436996,
0.03789696842432022,
0.16151294112205505,
-0.08809132128953934,
-0.002252961043268442,
0.05613227188587189,
-0.07924044132232666,
-0.12814809381961823,
-0.11053751409053802,
-0.007347166072577238,
0.10525155067443848,
0.11134346574544907,
-0.05101750046014786,
0.09552016109228134,
-0.027623403817415237,
0.08950290083885193,
0.12354423105716705,
-0.2811032235622406,
-0.009443526156246662,
0.13379165530204773,
0.014600366353988647,
0.055069200694561005,
-0.06336358189582825,
0.07450280338525772,
0.02383478172123432,
0.02926497347652912,
-0.027159208431839943,
-0.022083830088377,
-0.08956588059663773,
-0.043437790125608444,
-0.14143715798854828,
0.021908016875386238,
0.129838228225708,
-0.0005147376214154065,
-0.07557159662246704,
-0.15384221076965332,
-0.05063827335834503,
-0.11873136460781097,
-0.025270042940974236,
-0.07420457899570465,
0.009452048689126968,
0.010751943103969097,
0.038978397846221924,
-0.11798949539661407,
-0.07535824924707413,
-0.030683442950248718,
-0.07316114008426666,
0.16555187106132507,
0.038903895765542984,
-0.013954419642686844,
-0.020648356527090073,
0.08612817525863647,
-0.10558745265007019,
-0.0034322598949074745,
-0.050570473074913025,
-0.022737300023436546,
-0.08877948671579361,
-0.026904340833425522,
-0.056584618985652924,
-0.14815029501914978,
-0.038951415568590164,
0.11380847543478012,
-0.09639346599578857,
-0.009324760176241398,
-0.015828881412744522,
0.07490769028663635,
-0.0007947328267619014,
0.09794346243143082,
-0.10286825150251389,
-0.0689767450094223,
0.03908122703433037,
-0.024632247164845467,
0.026012465357780457,
-0.024441467598080635,
-0.08248593658208847,
-0.06491822004318237,
0.013478191569447517,
0.13831055164337158,
-0.02330545336008072,
0.086509108543396,
0.007069669663906097,
-0.03479616716504097,
-0.0481870099902153,
-0.16304099559783936,
0.011964182369410992,
-0.020960945636034012,
-0.06402639299631119,
0.05191504955291748,
0.013440901413559914,
-0.07287751883268356,
-0.10727739334106445,
0.042076703161001205,
-0.052617285400629044,
-0.02500450611114502,
-0.07940995693206787,
-0.14369140565395355,
0.027499336749315262,
-0.14713001251220703,
-0.07351845502853394,
-0.09129638224840164,
-0.10377374291419983,
-0.04686586186289787,
0.010572141967713833,
-0.02290370874106884,
0.027956660836935043,
-0.12517887353897095,
-0.03210197761654854,
-0.014455457217991352,
-0.004623686894774437,
0.0031919083558022976,
-0.02010774239897728,
0.012818544171750546,
-0.06494222581386566,
0.0899721086025238,
-0.03773870691657066,
0.014455011114478111,
-0.09357200562953949,
0.000047183097194647416,
-0.13397318124771118,
0.0991615355014801,
-0.00721182394772768,
-0.007417583838105202,
-0.08381292223930359,
-0.08815338462591171,
-0.08059617877006531,
0.03256754204630852,
0.06069834157824516,
0.12610936164855957,
-0.22889405488967896,
-0.04752363637089729,
0.1892726719379425,
-0.1240886002779007,
-0.013406980782747269,
0.11237896233797073,
0.0031262580305337906,
0.07704261690378189,
0.08883601427078247,
0.10491014271974564,
0.044773876667022705,
-0.022560730576515198,
-0.06905646622180939,
-0.02843472547829151,
-0.07045693695545197,
0.004095159471035004,
0.009022727608680725,
-0.0034660545643419027,
0.06363266706466675,
0.04816998913884163,
-0.039927154779434204,
0.019058221951127052,
-0.020328713580965996,
-0.07856663316488266,
0.002760633360594511,
-0.012297884561121464,
-0.009668894112110138,
0.01618095487356186,
0.019145717844367027,
-0.01581580564379692,
-0.07380091398954391,
-0.007300453260540962,
0.12621301412582397,
-0.09576548635959625,
0.09815584868192673,
-0.04204482212662697,
0.09664436429738998,
0.001650041900575161,
0.023429976776242256,
-0.17827005684375763,
-0.10908699780702591,
0.00861071702092886,
-0.08087681233882904,
0.03434879332780838,
0.053881432861089706,
0.03313003480434418,
0.07966960966587067,
-0.076978899538517,
0.004438613075762987,
-0.03478165343403816,
-0.04613520950078964,
-0.06257651001214981,
-0.12730684876441956,
-0.039127517491579056,
-0.04498404636979103,
0.11261670291423798,
-0.22133158147335052,
0.011715015396475792,
-0.018131136894226074,
0.06574829667806625,
0.010975916869938374,
-0.016281310468912125,
-0.006025168113410473,
0.04379866272211075,
-0.05470404401421547,
-0.05912147834897041,
0.07344689965248108,
0.0010503744706511497,
-0.08265553414821625,
0.09587811678647995,
-0.2277820110321045,
-0.1711064726114273,
0.08626404404640198,
-0.0026112357154488564,
-0.10455071181058884,
-0.01711958460509777,
-0.06672211736440659,
0.024752996861934662,
-0.07014377415180206,
0.04226186126470566,
0.03497571498155594,
0.05807267874479294,
0.12125854939222336,
-0.09685493260622025,
-0.005228949245065451,
0.012490952387452126,
-0.007927537895739079,
-0.07867156714200974,
0.08617555350065231,
0.05105007812380791,
-0.19509373605251312,
0.07350636273622513,
0.023993460461497307,
-0.04605685546994209,
0.21516689658164978,
0.07105270773172379,
-0.09816277772188187,
-0.03757059946656227,
0.038020506501197815,
0.029700372368097305,
0.0506165474653244,
-0.017248746007680893,
0.01232598815113306,
0.026765329763293266,
0.08185679465532303,
0.07330265641212463,
-0.07977186888456345,
0.01923433318734169,
0.00717137148603797,
-0.07797902822494507,
0.04304416477680206,
0.03574907034635544,
-0.019178641960024834,
0.11653175950050354,
0.0016499047633260489,
-0.0018340954557061195,
-0.018548142164945602,
-0.009582582861185074,
-0.0827036127448082,
0.2048351764678955,
-0.11561091989278793,
-0.2602526545524597,
-0.12891697883605957,
0.07638673484325409,
-0.1358378529548645,
0.0007859633769840002,
0.01735782064497471,
-0.08319781720638275,
-0.06689928472042084,
-0.10808132588863373,
0.04356925189495087,
-0.0298226997256279,
-0.030455591157078743,
-0.10440100729465485,
0.04649471119046211,
-0.019255902618169785,
-0.11552678048610687,
0.015104210935533047,
-0.0523194819688797,
-0.10909056663513184,
-0.008487124927341938,
-0.02662549912929535,
0.04134907200932503,
0.15545080602169037,
-0.04730482026934624,
0.05977007374167442,
-0.01655101589858532,
0.08950429409742355,
-0.07982141524553299,
0.052430521696805954,
0.08559565991163254,
0.07861937582492828,
0.006343234330415726,
0.11302880942821503,
-0.020501673221588135,
-0.09727641940116882,
0.02623811550438404,
0.10421020537614822,
-0.05315467342734337,
-0.20056769251823425,
-0.11389744281768799,
-0.08660886436700821,
0.01767800562083721,
0.03996172547340393,
0.056726060807704926,
-0.00535309873521328,
0.01542008388787508,
-0.07764582335948944,
-0.0963745042681694,
0.0419950969517231,
0.06361393630504608,
0.028726862743496895,
-0.03851907327771187,
0.08962382376194,
-0.031118685379624367,
-0.01926390826702118,
0.10929210484027863,
0.030794432386755943,
0.21786879003047943,
-0.04143071174621582,
0.12268003076314926,
0.0719539001584053,
0.08302740007638931,
0.0186898335814476,
0.10172373801469803,
-0.03168832138180733,
-0.0252483319491148,
0.015658792108297348,
-0.065779909491539,
0.00656301761046052,
0.02492896467447281,
0.02723386511206627,
-0.04628853127360344,
-0.081351138651371,
0.03167354315519333,
0.08731058984994888,
0.14466923475265503,
0.09039581567049026,
-0.24493348598480225,
-0.0698639377951622,
-0.026364419609308243,
0.0069559495896101,
-0.06045997515320778,
0.004878863226622343,
0.14051023125648499,
-0.05874646455049515,
0.03254394978284836,
-0.07920663803815842,
0.06272286176681519,
-0.06162170693278313,
-0.011265651322901249,
0.0003687844437081367,
0.09526713192462921,
-0.00738810608163476,
0.10868077725172043,
-0.137518972158432,
0.1784384548664093,
0.03289703279733658,
0.11641330271959305,
-0.027637869119644165,
-0.029939686879515648,
0.0204683355987072,
0.08303745836019516,
0.21562668681144714,
0.04704125598073006,
-0.21486131846904755,
-0.1855190396308899,
-0.043546099215745926,
-0.018049271777272224,
0.1485249102115631,
0.005747279152274132,
0.08368870615959167,
-0.027208402752876282,
0.005337849725037813,
-0.004373964387923479,
0.08632351458072662,
-0.0768224373459816,
-0.16284388303756714,
0.05241034924983978,
0.11283741146326065,
-0.01773020066320896,
-0.007238978054374456,
-0.07405805587768555,
-0.01597902737557888,
0.26579877734184265,
-0.03861004486680031,
0.006289076991379261,
-0.1422812044620514,
0.10114406794309616,
0.09074271470308304,
-0.09384505450725555,
0.04087617248296738,
-0.017862873151898384,
0.10995671153068542,
-0.07719777524471283,
-0.06524626165628433,
0.05081146955490112,
-0.05177655816078186,
-0.06649187207221985,
0.03468097746372223,
0.08037389069795609,
0.05518551543354988,
-0.0011224661720916629,
0.05361742898821831,
0.028972700238227844,
0.06971367448568344,
-0.10483238101005554,
-0.04333696886897087,
0.1204998642206192,
0.11585389077663422,
0.07791207730770111,
-0.20794393122196198,
0.004128466825932264,
-0.08899548649787903,
-0.019004354253411293,
0.23681363463401794,
0.225551038980484,
-0.09223975241184235,
0.05871496722102165,
0.16424979269504547,
-0.13154064118862152,
-0.23999354243278503,
0.01162866223603487,
-0.006769347004592419,
0.07436253130435944,
-0.03752860054373741,
-0.1416638046503067,
0.01679462194442749,
0.09928808361291885,
0.015433991327881813,
0.05119073763489723,
-0.3330775797367096,
-0.12915843725204468,
0.06335162371397018,
0.06662226468324661,
0.1797608733177185,
-0.011984378099441528,
0.0178956538438797,
-0.060062285512685776,
0.10088460892438889,
0.1632797122001648,
-0.10567886382341385,
0.1673356294631958,
0.016944801434874535,
-0.022841734811663628,
0.036844152957201004,
-0.05455726757645607,
0.10429508984088898,
0.030054956674575806,
0.06673494726419449,
-0.04995244741439819,
0.015285658650100231,
0.09244988113641739,
-0.044140011072158813,
0.1562732309103012,
0.01882217638194561,
0.0503937304019928,
-0.04325399175286293,
-0.0833352655172348,
-0.07070069760084152,
0.1081356480717659,
-0.05468345433473587,
-0.06459473818540573,
-0.0468476340174675,
0.14744234085083008,
0.07744675874710083,
0.004282016772776842,
0.022381743416190147,
-0.07797001302242279,
0.05934089794754982,
0.08757428079843521,
0.08635678887367249,
-0.014710547402501106,
0.018108246847987175,
0.05493983253836632,
0.0016432960983365774,
0.07393652945756912,
0.044430311769247055,
0.05137776583433151,
0.13182850182056427,
-0.0006363489665091038,
0.11629389226436615,
0.04882514476776123,
-0.08328670263290405,
-0.034861259162425995,
0.07965041697025299,
-0.12721338868141174,
-0.18327724933624268,
0.005409530829638243,
-0.05053816735744476,
-0.02436547912657261,
0.08328362554311752,
0.14340193569660187,
-0.048031244426965714,
0.011550537310540676,
0.013024505227804184,
0.06080787628889084,
-0.03004622645676136,
0.13175050914287567,
0.020013371482491493,
0.003113384125754237,
-0.053490106016397476,
0.16097743809223175,
0.03668668866157532,
-0.1854092925786972,
0.04920956492424011,
0.1314743459224701,
-0.14271467924118042,
-0.08525344729423523,
-0.0006485487101599574,
0.04129866138100624,
-0.09417682886123657,
-0.08143666386604309,
-0.06351995468139648,
-0.03790910542011261,
0.004184529650956392,
0.01512917224317789,
0.00544318463653326,
0.045968733727931976,
-0.09268852323293686,
-0.0419977605342865,
-0.12896889448165894,
0.05374053120613098,
0.036140378564596176,
0.0036652488633990288,
-0.03635096549987793,
0.19503310322761536,
0.015196511521935463,
0.01631973683834076,
-0.029512936249375343,
-0.03398533910512924,
-0.03146950155496597,
0.004071818199008703,
0.08386009186506271,
-0.04348503053188324,
-0.06301815062761307,
-0.02958335354924202,
-0.04467602074146271,
0.013990243896842003,
-0.04569493606686592,
-0.01265713106840849,
-0.08787272125482559,
-0.04499906674027443,
-0.0910232812166214,
-0.014122272841632366,
-0.09570381045341492,
-0.0027620792388916016,
-0.05354209616780281,
-0.05557690188288689,
0.09559188783168793,
0.03752117604017258,
-0.006819851230829954,
0.09459976851940155,
-0.08781936764717102,
0.006684861145913601,
-0.012399023398756981,
0.036787714809179306,
0.023094480857253075,
-0.14041005074977875,
0.021440189331769943,
0.0618225559592247,
0.0382334440946579,
0.0230543352663517,
-0.04442187771201134,
-0.11468750983476639,
-0.009787609800696373,
-0.04830928519368172,
-0.023776112124323845,
-0.07702293992042542,
0.08517838269472122,
-0.004756601992994547,
0.05800286680459976,
0.14123322069644928,
-0.07217045873403549,
0.057145390659570694,
-0.09741468727588654,
0.002876455895602703,
0.001967898802831769,
-0.06594394892454147,
0.05600864067673683,
-0.017328675836324692,
0.04801363870501518,
-0.05432147532701492,
0.0624997615814209,
0.013279987499117851,
-0.0005949243204668164,
0.017077352851629257,
-0.09217087179422379,
-0.06389832496643066,
-0.012066254392266273,
0.1758546382188797,
0.05060189589858055,
-0.01733844354748726,
0.010720481164753437,
0.07112917304039001,
0.018484435975551605,
0.16038945317268372,
0.2466718703508377,
0.13304464519023895,
0.1516488492488861,
0.11843176186084747,
0.002652338705956936,
-0.08893585205078125,
-0.047638095915317535,
0.10954424738883972,
-0.11066103726625443,
0.08648332953453064,
-0.018498621881008148,
0.06669753044843674,
0.2293974757194519,
-0.1796882152557373,
0.135337233543396,
0.025197310373187065,
-0.12112163007259369,
-0.1557464599609375,
-0.2856442928314209,
-0.059075843542814255,
-0.04972625523805618,
-0.0006484004552476108,
-0.1228535994887352,
0.02853553183376789,
0.013389401137828827,
0.07343892008066177,
-0.03688925877213478,
0.10921137034893036,
-0.11640415340662003,
-0.06724406033754349,
0.05835539475083351,
0.016077080741524696,
0.04907259717583656,
0.021913236007094383,
-0.044059205800294876,
0.019138552248477936,
-0.02021726965904236,
0.07864829152822495,
0.04028436541557312,
0.10958319902420044,
0.03951108083128929,
-0.034481316804885864,
-0.013078052550554276,
-0.043851036578416824,
0.014376230537891388,
0.07441462576389313,
0.12537160515785217,
0.036812566220760345,
-0.11495941877365112,
-0.010709652677178383,
0.17488086223602295,
-0.025661233812570572,
-0.11728569120168686,
-0.12081969529390335,
0.20450277626514435,
0.12146072834730148,
0.04533481225371361,
-0.054702065885066986,
-0.07716270536184311,
0.020924706012010574,
0.1640351563692093,
0.22595268487930298,
0.033978454768657684,
-0.021197393536567688,
0.03747834637761116,
-0.010844407603144646,
0.01137711200863123,
0.07505269348621368,
0.053429242223501205,
0.17558248341083527,
-0.023732617497444153,
0.07513339817523956,
-0.05865168571472168,
0.025896413251757622,
-0.0334688238799572,
0.19862322509288788,
0.0014863483374938369,
0.01898224465548992,
-0.0749664157629013,
0.05657779797911644,
-0.016130177304148674,
-0.08846843987703323,
0.02539966069161892,
-0.08145757019519806,
-0.13251949846744537,
-0.051100365817546844,
0.009459048509597778,
-0.021211978048086166,
0.08216123282909393,
-0.010245080105960369,
0.005864262580871582,
0.08141342550516129,
0.00017433536413591355,
-0.06795019656419754,
-0.17862088978290558,
0.005585679784417152,
0.0038869904819875956,
0.1960000991821289,
0.0039290208369493484,
-0.02722073160111904,
0.10639645904302597,
-0.018961366266012192,
-0.08654649555683136,
0.08941959589719772,
-0.013021105900406837,
0.02456997148692608,
0.0797966867685318,
0.13893286883831024,
-0.06636983156204224,
0.0433943010866642,
0.006187390070408583,
-0.12794119119644165,
0.07806675136089325,
-0.05306561291217804,
-0.09990204125642776,
-0.07234004139900208,
0.08872304111719131,
-0.04873044416308403,
0.16050651669502258,
0.20954687893390656,
0.005960854701697826,
0.01131589338183403,
-0.08991938829421997,
0.03380314260721207,
-0.02082514576613903,
0.02282891981303692,
0.015809310600161552,
-0.1625751107931137,
0.011220098473131657,
-0.028056221082806587,
0.011235331185162067,
-0.22635439038276672,
-0.05127151310443878,
0.08108459413051605,
-0.0656743273139,
-0.056878916919231415,
0.10883130878210068,
0.043313197791576385,
0.03739379346370697,
-0.029717864468693733,
-0.13698112964630127,
0.054536450654268265,
0.08731112629175186,
-0.09857726097106934,
-0.11378554254770279
] |
null | null | transformers |
# My Awesome Model | {"tags": ["conversational"]} | text-generation | Jllama/dialoGPT-small-Joshua-test | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# My Awesome Model | [
"# My Awesome Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# My Awesome Model"
] | [
51,
4
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Awesome Model"
] | [
-0.05259015038609505,
0.05521034821867943,
-0.005910294596105814,
0.017722278833389282,
0.15250112116336823,
0.02286236733198166,
0.07657632976770401,
0.09513414651155472,
-0.025391526520252228,
-0.047348517924547195,
0.15119488537311554,
0.19781284034252167,
-0.020334534347057343,
0.101333387196064,
-0.04688440263271332,
-0.3143521845340729,
0.06439975649118423,
0.05463787540793419,
-0.015605635941028595,
0.12023304402828217,
0.09468326717615128,
-0.0530015267431736,
0.08742043375968933,
-0.012155864387750626,
-0.1293085366487503,
-0.0027921805158257484,
-0.002384399762377143,
-0.10180269181728363,
0.11194873601198196,
0.033712033182382584,
0.05166437849402428,
0.0182647667825222,
-0.05843055993318558,
-0.139859139919281,
0.03845210000872612,
-0.015005595050752163,
-0.05602653697133064,
0.05648263916373253,
0.059830192476511,
-0.07164353132247925,
0.1669619083404541,
0.13275989890098572,
-0.04237370565533638,
0.056127581745386124,
-0.17620700597763062,
0.017941240221261978,
0.01800798624753952,
0.019184142351150513,
0.05306641012430191,
0.10830496996641159,
-0.03932326287031174,
0.09217294305562973,
-0.11410652846097946,
0.08313368260860443,
0.07800983637571335,
-0.29151955246925354,
-0.025312699377536774,
0.10440942645072937,
0.06437138468027115,
0.048375632613897324,
-0.013386772945523262,
0.0621674507856369,
0.02149512618780136,
0.008602659218013287,
0.02225899137556553,
-0.06727100163698196,
-0.05789240449666977,
0.032748885452747345,
-0.0967593789100647,
-0.03634428232908249,
0.19753605127334595,
-0.024647634476423264,
0.053590498864650726,
-0.06265407055616379,
-0.11300963163375854,
-0.039751436561346054,
-0.050429005175828934,
-0.029761891812086105,
-0.05090925097465515,
0.09489558637142181,
0.004352911841124296,
-0.09534718841314316,
-0.13405443727970123,
-0.01370926946401596,
-0.1618979275226593,
0.15892250835895538,
0.012579603120684624,
0.046201955527067184,
-0.19210097193717957,
0.11465331166982651,
-0.03857925534248352,
-0.08259090781211853,
0.030513519421219826,
-0.12010065466165543,
0.03160654753446579,
-0.008132083341479301,
-0.019599268212914467,
-0.049325279891490936,
0.061037879437208176,
0.08101806789636612,
0.018783701583743095,
0.005755073390901089,
0.018167443573474884,
0.05343452841043472,
0.05891622602939606,
0.10033947974443436,
-0.02891627699136734,
-0.0625043511390686,
0.0025436533614993095,
-0.12051084637641907,
-0.01122665498405695,
-0.05357983708381653,
-0.18095199763774872,
0.002246231772005558,
0.02455340512096882,
0.05192234739661217,
0.011778532527387142,
0.09955989569425583,
-0.028496338054537773,
-0.026898741722106934,
0.06898727267980576,
0.002862759632989764,
-0.015707949176430702,
-0.005368964280933142,
-0.010934269987046719,
0.11485416442155838,
-0.023099146783351898,
0.04774846136569977,
-0.12022071331739426,
0.020393015816807747,
-0.07851235568523407,
-0.0019349842332303524,
-0.06214260309934616,
-0.04864754155278206,
-0.0019346009939908981,
-0.06985589861869812,
0.021118074655532837,
-0.14833110570907593,
-0.17990200221538544,
-0.005064866971224546,
0.021302316337823868,
-0.052403319627046585,
-0.09162671118974686,
-0.0982397273182869,
-0.02586611732840538,
0.03574685752391815,
-0.05873546749353409,
0.013170980848371983,
-0.06884536147117615,
0.06542801111936569,
0.0029820678755640984,
0.05682007595896721,
-0.14085575938224792,
0.08719147741794586,
-0.12582023441791534,
-0.023288866505026817,
-0.061977192759513855,
0.1109607070684433,
0.024780582636594772,
0.1267160177230835,
0.004311583004891872,
-0.0033308975398540497,
-0.08729329705238342,
0.08271238207817078,
-0.04243258014321327,
0.22770646214485168,
-0.10479787737131119,
-0.08809807151556015,
0.2632525563240051,
-0.05423165112733841,
-0.16432519257068634,
0.10179096460342407,
-0.014350244775414467,
0.12198644131422043,
0.13850919902324677,
0.16080057621002197,
0.007628654129803181,
0.03313867375254631,
0.10115300863981247,
0.08631709218025208,
-0.08573295921087265,
-0.0611947737634182,
0.023627014830708504,
-0.011463395319879055,
-0.10670105367898941,
0.046802595257759094,
0.04794782027602196,
0.08188598603010178,
-0.04982871189713478,
-0.028600862249732018,
-0.01972118206322193,
-0.044152840971946716,
0.05264130234718323,
0.007675500120967627,
0.13217447698116302,
-0.03674980252981186,
-0.03692879155278206,
-0.023745311424136162,
0.01699630729854107,
-0.03115241602063179,
0.007061392068862915,
-0.05687357112765312,
0.11091547459363937,
-0.03406180441379547,
0.051789235323667526,
-0.16953988373279572,
-0.04873261600732803,
-0.02087729424238205,
0.1402055323123932,
0.04973345249891281,
0.1329866498708725,
0.06287940591573715,
-0.010758201591670513,
0.00859389640390873,
0.007998145185410976,
0.13181665539741516,
0.007865442894399166,
-0.07660657912492752,
-0.047718439251184464,
0.09176599979400635,
-0.05973208695650101,
0.06147782504558563,
-0.098741315305233,
-0.004747362341731787,
-0.01433002483099699,
0.08674649894237518,
0.006352655589580536,
0.029382232576608658,
-0.006192679051309824,
0.003654100699350238,
-0.06161240115761757,
0.017873648554086685,
0.12492607533931732,
-0.01421504095196724,
-0.07439801841974258,
0.22084392607212067,
-0.15798072516918182,
0.18006981909275055,
0.18165533244609833,
-0.3081994652748108,
0.024602634832262993,
-0.08860466629266739,
-0.036338552832603455,
0.03426366671919823,
0.0491504967212677,
-0.034147560596466064,
0.16587987542152405,
-0.016766328364610672,
0.201018825173378,
-0.03547777235507965,
-0.01287798210978508,
-0.010399105958640575,
-0.03656993433833122,
-0.010632630437612534,
0.09065473079681396,
0.15122920274734497,
-0.1677125245332718,
0.18270380795001984,
0.1660280078649521,
0.06873020529747009,
0.17776396870613098,
0.034313347190618515,
-0.006856906693428755,
0.07112615555524826,
-0.022670727223157883,
-0.07675548642873764,
-0.049287427216768265,
-0.26302891969680786,
-0.027947327122092247,
0.06471601128578186,
0.04510856419801712,
0.11924877762794495,
-0.10971947014331818,
-0.037208184599876404,
0.010892451740801334,
-0.013165894895792007,
0.02132410928606987,
0.09682225435972214,
0.01171150617301464,
0.11804302036762238,
-0.021027036011219025,
-0.05209195241332054,
0.0898953229188919,
0.02727191150188446,
-0.0787680521607399,
0.19168277084827423,
-0.10074768215417862,
-0.3233809769153595,
-0.11354339867830276,
-0.18166927993297577,
-0.017843691632151604,
0.05878754332661629,
0.08049646019935608,
-0.09228580445051193,
-0.02625267766416073,
-0.01639235019683838,
0.0758359357714653,
-0.09145816415548325,
-0.015880629420280457,
-0.09367848187685013,
0.034986745566129684,
-0.10827737301588058,
-0.07011983543634415,
-0.05141967162489891,
-0.03368452936410904,
-0.04457031562924385,
0.13157756626605988,
-0.12242637574672699,
0.06396433711051941,
0.2076517641544342,
0.06227295100688934,
0.05622440204024315,
-0.0229496993124485,
0.23288212716579437,
-0.10842552781105042,
0.02383521944284439,
0.1717897206544876,
-0.03566030040383339,
0.0727933868765831,
0.13435456156730652,
0.006721907295286655,
-0.08144525438547134,
0.03465581312775612,
-0.04592517390847206,
-0.08630958944559097,
-0.20441576838493347,
-0.14156180620193481,
-0.12814727425575256,
0.07913564145565033,
0.03285396471619606,
0.05478321388363838,
0.15024253726005554,
0.11386489123106003,
0.007987297140061855,
0.00976672861725092,
-0.006888182368129492,
0.05438044294714928,
0.17482298612594604,
-0.05838097631931305,
0.10041683167219162,
-0.037591226398944855,
-0.1924494504928589,
0.08022978901863098,
0.04309763014316559,
0.08280511945486069,
0.07474655658006668,
0.0856199786067009,
0.013537914492189884,
0.03723837807774544,
0.10897084325551987,
0.1165735274553299,
0.031679023057222366,
-0.038079675287008286,
-0.04882059991359711,
-0.026300756260752678,
-0.03285675123333931,
0.05745977535843849,
0.07790146768093109,
-0.1608346849679947,
-0.06348084658384323,
-0.06350091099739075,
0.07662643492221832,
0.09017108380794525,
0.11811108142137527,
-0.21219493448734283,
0.01579318381845951,
0.092556893825531,
-0.0494147390127182,
-0.1304239183664322,
0.07402537018060684,
-0.00466050673276186,
-0.1397053301334381,
0.037663187831640244,
-0.014095795340836048,
0.1359514445066452,
-0.0778401643037796,
0.10336452722549438,
-0.08307972550392151,
-0.06147889420390129,
0.03632286190986633,
0.1355396956205368,
-0.30774354934692383,
0.2137020230293274,
-0.022472934797406197,
-0.05296783149242401,
-0.10508129745721817,
-0.011727629229426384,
0.020913105458021164,
0.09079049527645111,
0.10090240091085434,
-0.0025442070327699184,
0.0061299679800868034,
-0.0345483273267746,
-0.053218815475702286,
0.024456629529595375,
0.07957815378904343,
-0.08542889356613159,
0.0017540202243253589,
-0.02361489273607731,
-0.004407065454870462,
-0.032844748347997665,
-0.01189463958144188,
-0.011617658659815788,
-0.16786961257457733,
0.06556065380573273,
-0.002625665394589305,
0.11129079759120941,
0.03491498529911041,
0.0024013579823076725,
-0.1009332686662674,
0.19977013766765594,
0.01796281896531582,
-0.08052749931812286,
-0.08830537647008896,
-0.03254766762256622,
0.03660419583320618,
-0.06121435388922691,
0.027481911703944206,
-0.06916457414627075,
0.033381566405296326,
-0.06441576033830643,
-0.18325145542621613,
0.1268530637025833,
-0.10945470631122589,
-0.03609596937894821,
-0.04321056231856346,
0.18323224782943726,
-0.00929707009345293,
-0.0011623724130913615,
0.05866571143269539,
0.0032208464108407497,
-0.1347510665655136,
-0.10740556567907333,
0.020214511081576347,
-0.015275230631232262,
0.009142245166003704,
0.05559912323951721,
-0.009665844030678272,
0.00045268211397342384,
-0.039558928459882736,
-0.023234419524669647,
0.32348164916038513,
0.10732097923755646,
-0.04944206401705742,
0.17007054388523102,
0.13087597489356995,
-0.0827672928571701,
-0.30699312686920166,
-0.10971353948116302,
-0.10529600828886032,
-0.026918673887848854,
-0.037983208894729614,
-0.19617970287799835,
0.09504909813404083,
-0.03528566658496857,
-0.022136637941002846,
0.11253651231527328,
-0.2759084105491638,
-0.0770430713891983,
0.1826775223016739,
0.003314757253974676,
0.3998824954032898,
-0.10265109688043594,
-0.08777514100074768,
-0.06741699576377869,
-0.1120782196521759,
0.2033512443304062,
-0.05560711398720741,
0.08663415163755417,
-0.00517998356372118,
0.15513743460178375,
0.055607251822948456,
-0.02176513522863388,
0.08932057023048401,
-0.005811662413179874,
-0.0546204075217247,
-0.1219351515173912,
-0.03444604203104973,
-0.009159418754279613,
0.007239421829581261,
0.03589896112680435,
-0.04242607578635216,
0.01279151439666748,
-0.1399589478969574,
-0.045490626245737076,
-0.0764620453119278,
0.024699507281184196,
0.021008269861340523,
-0.0652410089969635,
-0.01643640361726284,
-0.03945036977529526,
-0.012804778292775154,
0.03164318576455116,
0.15236099064350128,
-0.06478006392717361,
0.1476556956768036,
0.04904455319046974,
0.15412139892578125,
-0.14745712280273438,
-0.02258288487792015,
-0.06896031647920609,
-0.05498642474412918,
0.04900865629315376,
-0.10053684562444687,
0.050061121582984924,
0.1202658861875534,
-0.0742902010679245,
0.0987328365445137,
0.0922594666481018,
-0.01938629150390625,
0.0012483424507081509,
0.1226617842912674,
-0.2489612102508545,
-0.07742628455162048,
-0.10509459674358368,
0.013337249867618084,
0.10138551890850067,
0.06995654851198196,
0.17304721474647522,
-0.0037713919300585985,
-0.036284226924180984,
-0.0064643872901797295,
0.025414984673261642,
-0.03540204465389252,
0.05724727362394333,
-0.002706433180719614,
0.016663886606693268,
-0.15213344991207123,
0.060368724167346954,
-0.00024176653823815286,
-0.1438901126384735,
-0.013603870756924152,
0.16073721647262573,
-0.11208858340978622,
-0.15145981311798096,
-0.007263668347150087,
0.13685113191604614,
-0.13171035051345825,
-0.03302847594022751,
-0.03708777576684952,
-0.170182466506958,
0.07439173012971878,
0.1024777740240097,
0.08549231290817261,
0.08025266975164413,
-0.06620611250400543,
-0.00807863101363182,
-0.011656313203275204,
-0.026087598875164986,
0.031810320913791656,
-0.023377234116196632,
-0.09044221043586731,
0.03872343525290489,
-0.026654237881302834,
0.13591371476650238,
-0.09607382118701935,
-0.09331836551427841,
-0.135749951004982,
0.039314381778240204,
-0.12405620515346527,
-0.08138058334589005,
-0.12200927734375,
-0.0591500885784626,
0.00224387738853693,
-0.0001289021165575832,
-0.035674065351486206,
-0.06687422841787338,
-0.13582271337509155,
0.04366770386695862,
-0.04484611004590988,
0.0013091047294437885,
-0.040241483598947525,
0.04561002552509308,
0.06766383349895477,
-0.03493715822696686,
0.13722217082977295,
0.11722734570503235,
-0.07864081114530563,
0.08946478366851807,
-0.16657429933547974,
-0.0683990865945816,
0.08854512125253677,
0.008173754438757896,
0.06165994703769684,
0.06743349134922028,
0.033807408064603806,
0.06109451875090599,
0.04151686280965805,
0.03488299250602722,
0.01739438995718956,
-0.09271225333213806,
0.015541021712124348,
0.022296719253063202,
-0.1294609159231186,
-0.04801803454756737,
-0.029226921498775482,
0.00939185917377472,
0.008117396384477615,
0.11003357172012329,
-0.0426274873316288,
0.09439733624458313,
-0.05888751894235611,
0.036728594452142715,
0.016222506761550903,
-0.16461637616157532,
-0.020102784037590027,
-0.11915475130081177,
0.028684545308351517,
-0.0033096212428063154,
0.25625869631767273,
0.06346847862005234,
0.020517030730843544,
0.01250078622251749,
0.08567021042108536,
0.07241600006818771,
0.02562166005373001,
0.1956365555524826,
0.10854171961545944,
-0.05020022392272949,
-0.12334850430488586,
0.09686340391635895,
0.034720368683338165,
0.06432123482227325,
0.13385434448719025,
-0.026959087699651718,
0.002498799469321966,
0.11019360274076462,
0.011678861454129219,
0.04961980879306793,
-0.09859088063240051,
-0.16400282084941864,
-0.00994415208697319,
0.061864156275987625,
-0.04559077322483063,
0.12240655720233917,
0.11382720619440079,
-0.020697353407740593,
0.03180128335952759,
-0.010503606870770454,
-0.05694027617573738,
-0.16998925805091858,
-0.1630837321281433,
-0.08357038348913193,
-0.11794789135456085,
-0.0027763545513153076,
-0.11386270076036453,
0.013879159465432167,
0.06452289968729019,
0.0604364387691021,
-0.09019444137811661,
0.08891061693429947,
0.0687386617064476,
-0.11843101680278778,
0.08828350901603699,
-0.033263903111219406,
0.07249268144369125,
0.0015160300536081195,
0.003872724948450923,
-0.13800905644893646,
0.032393742352724075,
-0.008493867702782154,
0.04159298539161682,
-0.09244006127119064,
0.022458361461758614,
-0.11297028511762619,
-0.07659684121608734,
-0.07971972227096558,
0.05093973129987717,
-0.03541257977485657,
0.1390930563211441,
0.001295371213927865,
-0.035233911126852036,
0.024190181866288185,
0.22729112207889557,
-0.06350252777338028,
-0.030667411163449287,
-0.0618741400539875,
0.21414142847061157,
0.024466563016176224,
0.10703565180301666,
-0.016775688156485558,
0.019240234047174454,
-0.0764411985874176,
0.3689337372779846,
0.344390869140625,
-0.1225387305021286,
-0.0015968306688591838,
0.031062176451086998,
0.036916591227054596,
0.11621878296136856,
0.12602226436138153,
0.057955991476774216,
0.2995031177997589,
-0.08396036922931671,
-0.002026971662417054,
-0.02688612788915634,
-0.03624163940548897,
-0.04409930482506752,
0.10547586530447006,
0.06835740804672241,
-0.03330419585108757,
-0.027012333273887634,
0.1376710683107376,
-0.2966996431350708,
0.12323499470949173,
-0.15714547038078308,
-0.1487535685300827,
-0.06873904913663864,
-0.005042468197643757,
0.08589684963226318,
0.04748665541410446,
0.1069009080529213,
-0.019124338403344154,
-0.08203735202550888,
0.05766449123620987,
0.0320524163544178,
-0.22844897210597992,
0.011852608993649483,
0.08361081779003143,
-0.06153005734086037,
0.011767351068556309,
-0.017906347289681435,
0.038472190499305725,
0.07790610194206238,
0.025976579636335373,
-0.032770540565252304,
0.06325861811637878,
-0.005814229138195515,
-0.05033424496650696,
0.04302205145359039,
0.05059972032904625,
0.017107632011175156,
-0.1511564701795578,
0.07320158183574677,
-0.1762860119342804,
0.0566408596932888,
-0.005331212189048529,
-0.04948166385293007,
0.000018263708625454456,
0.01998119056224823,
-0.06808236241340637,
0.05880929157137871,
0.0952666699886322,
-0.012173139490187168,
-0.002317852806299925,
-0.056667573750019073,
0.007662574760615826,
-0.0679154172539711,
-0.0747012197971344,
-0.10497893393039703,
-0.1338900774717331,
-0.11392296850681305,
0.10846775025129318,
-0.011928223073482513,
-0.19833622872829437,
0.02906924858689308,
-0.11258108913898468,
0.04933213070034981,
-0.13360801339149475,
0.08599711954593658,
0.1282832771539688,
0.021543797105550766,
-0.01265349704772234,
0.04020093381404877,
0.01591683179140091,
0.08550478518009186,
-0.09200563281774521,
-0.10515180230140686
] |
null | null | transformers |
# roberta-base-bne-finetuned-catalonia-independence-detector
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the catalonia_independence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9415
- Accuracy: 0.7881
<details>
## Model description
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 378 | 0.5534 | 0.7558 |
| 0.6089 | 2.0 | 756 | 0.5315 | 0.7643 |
| 0.2678 | 3.0 | 1134 | 0.7336 | 0.7816 |
| 0.0605 | 4.0 | 1512 | 0.8809 | 0.7866 |
| 0.0605 | 5.0 | 1890 | 0.9415 | 0.7881 |
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector"
independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
independence_analysis(
"Junqueras, sobre la decisión judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegará de Europa"
)
# Output:
[{'label': 'FAVOR', 'score': 0.9936726093292236}]
independence_analysis(
"El desafío independentista queda adormecido, y eso que el Gobierno ha sido muy claro en que su propuesta para Cataluña es una agenda de reencuentro, centrada en inversiones e infraestructuras")
# Output:
[{'label': 'AGAINST', 'score': 0.7508948445320129}]
independence_analysis(
"Desconvocada la manifestación del domingo en Barcelona en apoyo a Puigdemont"
)
# Output:
[{'label': 'NEUTRAL', 'score': 0.9966907501220703}]
```
[](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(SPANISH).ipynb#scrollTo=uNMOXJz38W6U)
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
## Citation
Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;)
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/) | {"language": "es", "license": "apache-2.0", "tags": ["spanish"], "datasets": ["catalonia_independence"], "metrics": ["accuracy"], "widget": [{"text": "Junqueras, sobre la decisi\u00f3n judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegar\u00e1 de Europa"}, {"text": "Desconvocada la manifestaci\u00f3n del domingo en Barcelona en apoyo a Puigdemont"}], "model-index": [{"name": "roberta-base-bne-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "args": "spanish"}, "metrics": [{"type": "accuracy", "value": 0.7880893300248138, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "config": "catalan", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.4592039800995025, "name": "Accuracy", "verified": true}, {"type": "precision", "value": 0.6104489964825159, "name": "Precision Macro", "verified": true}, {"type": "precision", "value": 0.4592039800995025, "name": "Precision Micro", "verified": true}, {"type": "precision", "value": 0.6167123723406555, "name": "Precision Weighted", "verified": true}, {"type": "recall", "value": 0.4146479268294389, "name": "Recall Macro", "verified": true}, {"type": "recall", "value": 0.4592039800995025, "name": "Recall Micro", "verified": true}, {"type": "recall", "value": 0.4592039800995025, "name": "Recall Weighted", "verified": true}, {"type": "f1", "value": 0.33416407167650636, "name": "F1 Macro", "verified": true}, {"type": "f1", "value": 0.4592039800995025, "name": "F1 Micro", "verified": true}, {"type": "f1", "value": 0.34549318538357193, "name": "F1 Weighted", "verified": true}, {"type": "loss", "value": 3.393402099609375, "name": "loss", "verified": true}]}]}]} | text-classification | JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"spanish",
"es",
"dataset:catalonia_independence",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #spanish #es #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
| roberta-base-bne-finetuned-catalonia-independence-detector
==========================================================
This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the catalonia\_independence dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9415
* Accuracy: 0.7881
Model description
-----------------
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Model in action
Fast usage with pipelines:

>
> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.
>
>
>
>
> Created by Jonatan Luna | LinkedIn
>
>
>
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #spanish #es #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
72,
98,
4,
20,
85
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #spanish #es #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
-0.11004551500082016,
0.1969572752714157,
-0.004482971038669348,
0.12082399427890778,
0.11374111473560333,
0.011580325663089752,
0.12182343006134033,
0.16658742725849152,
-0.015491281636059284,
0.08176304399967194,
0.06038767844438553,
0.1934276968240738,
0.05879847705364227,
0.11484769731760025,
-0.06490424275398254,
-0.20039807260036469,
0.01643838733434677,
-0.04121295362710953,
-0.10354836285114288,
0.0813574492931366,
0.0722939521074295,
-0.06986653804779053,
0.11270539462566376,
0.002615826902911067,
-0.04599950462579727,
0.02023344486951828,
-0.004496612120419741,
-0.0819440633058548,
0.11604686826467514,
0.062482479959726334,
0.07799551635980606,
0.05346599966287613,
0.07414654642343521,
-0.22340109944343567,
0.005093648098409176,
0.05339450389146805,
0.013824726454913616,
0.09617279469966888,
0.1060587465763092,
-0.03582229092717171,
0.06318223476409912,
-0.12620024383068085,
0.07113637775182724,
0.03411412611603737,
-0.1525258868932724,
-0.18997305631637573,
-0.15059827268123627,
0.0352126844227314,
0.06776130199432373,
0.06403058022260666,
0.028063025325536728,
0.09904508292675018,
-0.03783753141760826,
0.04783628135919571,
0.20823101699352264,
-0.23255577683448792,
-0.04682610556483269,
0.03808662295341492,
0.03477517515420914,
0.046240661293268204,
-0.05693408474326134,
-0.010735854506492615,
0.034077782183885574,
0.021882345899939537,
0.10258883982896805,
-0.05127211660146713,
-0.06801013648509979,
-0.02164616994559765,
-0.08679429441690445,
-0.0807303637266159,
0.14990833401679993,
0.03726591542363167,
-0.027822382748126984,
-0.07185281813144684,
-0.08051188290119171,
-0.03423069417476654,
-0.03452758118510246,
-0.002017322927713394,
0.07080411911010742,
-0.014988572336733341,
0.03399227187037468,
-0.034249961376190186,
-0.07686332613229752,
-0.00955901201814413,
0.004948607180267572,
0.05273491144180298,
0.04314863681793213,
0.023922786116600037,
0.03951764851808548,
0.08205380290746689,
0.0953545942902565,
-0.13106411695480347,
0.03479357436299324,
0.0005209509981796145,
0.014326299540698528,
-0.02766234427690506,
0.02044280618429184,
-0.02573893778026104,
0.06974131613969803,
0.11812973022460938,
-0.16521666944026947,
0.0471479557454586,
0.034666758030653,
0.05117606371641159,
-0.05322171747684479,
0.14561036229133606,
-0.0885096937417984,
-0.07819858193397522,
0.05284436047077179,
0.04051396623253822,
0.02334783971309662,
-0.008392988704144955,
-0.11943923681974411,
-0.015270216390490532,
0.04064701497554779,
0.07679828256368637,
0.04584227502346039,
0.04936475306749344,
-0.06991089135408401,
-0.055355608463287354,
0.14543257653713226,
-0.09829229861497879,
0.06241116672754288,
0.030492346733808517,
-0.0908624455332756,
-0.012762023136019707,
0.016269337385892868,
0.002967205597087741,
-0.06027918681502342,
0.0352972112596035,
-0.02932734414935112,
-0.020439662039279938,
-0.09189886599779129,
-0.13371707499027252,
0.06527884304523468,
-0.03256361931562424,
-0.004288835916668177,
-0.09666615724563599,
-0.13697388768196106,
-0.08457330614328384,
0.1055806428194046,
-0.07664395123720169,
-0.07119106501340866,
-0.08002960681915283,
-0.049478333443403244,
0.03805147111415863,
-0.027515003457665443,
0.04352518171072006,
-0.09283208847045898,
0.05847008526325226,
-0.025055132806301117,
0.06200801208615303,
-0.008984274230897427,
0.021845027804374695,
-0.08137790113687515,
0.055598240345716476,
-0.17416326701641083,
0.09128965437412262,
-0.06994688510894775,
0.08291270583868027,
-0.14485473930835724,
-0.06491763889789581,
0.041291169822216034,
0.01854649931192398,
0.058275263756513596,
0.129563570022583,
-0.15003016591072083,
-0.02850821614265442,
0.1622685045003891,
-0.03700856491923332,
-0.11897599697113037,
0.09919964522123337,
-0.03440677374601364,
0.049464721232652664,
0.05853164568543434,
0.1731792390346527,
0.06942255049943924,
-0.11952394992113113,
0.01079338788986206,
-0.020784126594662666,
0.002195026958361268,
-0.09121448546648026,
0.07448133826255798,
-0.020256124436855316,
0.0658135786652565,
0.014239446260035038,
-0.03875463455915451,
0.028804264962673187,
-0.03432429954409599,
-0.07050454616546631,
0.019826704636216164,
-0.05534794554114342,
-0.028656482696533203,
0.029673269018530846,
0.02793537639081478,
-0.05835631117224693,
-0.06810402870178223,
0.0025247714947909117,
0.05445491522550583,
-0.04592437297105789,
0.024821823462843895,
-0.07578375935554504,
0.09821156412363052,
-0.05708139389753342,
0.0007668038597330451,
-0.13610513508319855,
-0.04159841686487198,
0.02119840867817402,
-0.008290945552289486,
0.02723759599030018,
0.04803331568837166,
0.05844077467918396,
0.02705545723438263,
-0.050071921199560165,
-0.028654687106609344,
0.01588367484509945,
-0.009780935011804104,
-0.04585970565676689,
-0.20876383781433105,
-0.01677459105849266,
-0.024633698165416718,
0.07095513492822647,
-0.19726386666297913,
0.022072233259677887,
-0.0017224648036062717,
0.07486990839242935,
0.0417272187769413,
0.015565035864710808,
0.019643953070044518,
0.05477703735232353,
-0.037950024008750916,
-0.0940927043557167,
0.07886803150177002,
0.02596285194158554,
-0.031171727925539017,
0.06293343007564545,
-0.10318908840417862,
0.08369633555412292,
0.08488454669713974,
-0.03390422463417053,
-0.060971908271312714,
0.012773585505783558,
-0.04688882455229759,
-0.004132510162889957,
-0.022083401679992676,
0.0532110258936882,
0.12891685962677002,
0.027512619271874428,
0.15494568645954132,
-0.11928942799568176,
-0.03974102437496185,
0.020293941721320152,
-0.07687541097402573,
-0.012828994542360306,
0.15113946795463562,
0.08381768316030502,
-0.07641568779945374,
0.12370821833610535,
0.035170599818229675,
-0.006475798785686493,
0.12053918838500977,
-0.010377686470746994,
-0.03692789375782013,
-0.024060776457190514,
0.044341374188661575,
0.05246218293905258,
0.10778005421161652,
-0.004863671958446503,
0.025633124634623528,
0.03901810571551323,
0.02514437958598137,
0.02807222306728363,
-0.1831919401884079,
-0.00022480456391349435,
0.023419776931405067,
-0.08234921842813492,
-0.0006485693156719208,
0.014826776459813118,
0.028603659942746162,
0.08814530074596405,
0.05071917176246643,
-0.053834088146686554,
-0.012448567897081375,
-0.019612781703472137,
-0.08137091994285583,
0.16670557856559753,
-0.08619312196969986,
-0.19725379347801208,
-0.13168470561504364,
-0.0729086622595787,
-0.020169466733932495,
0.02016320638358593,
0.04593837261199951,
-0.06279196590185165,
-0.04749293252825737,
-0.08461979776620865,
0.0007130057783797383,
0.04037880897521973,
-0.07546786963939667,
0.0054885149002075195,
0.07353286445140839,
0.05193502828478813,
-0.104399673640728,
-0.009201355278491974,
0.012188130058348179,
-0.01127892080694437,
-0.012407980859279633,
-0.00223543425090611,
0.11964362114667892,
0.09702612459659576,
0.0073490687645971775,
0.010480571538209915,
-0.016630634665489197,
0.23183239996433258,
-0.07565640658140182,
0.02739313803613186,
0.14757008850574493,
0.025105327367782593,
0.07234983891248703,
0.18431632220745087,
0.051482390612363815,
-0.08592192828655243,
-0.037775639444589615,
0.030476225540041924,
-0.02080169878900051,
-0.26606956124305725,
-0.0847867801785469,
-0.05279643461108208,
0.03475330397486687,
0.10604992508888245,
0.05604212358593941,
-0.011604605242609978,
0.056617967784404755,
-0.004456374328583479,
0.08896870911121368,
-0.007385913748294115,
0.07974384725093842,
0.12932682037353516,
0.05609525367617607,
0.028702279552817345,
-0.06896431744098663,
-0.02741263620555401,
0.086587093770504,
0.11943415552377701,
0.12927287817001343,
-0.016095489263534546,
0.1718369424343109,
0.05523816868662834,
0.13444307446479797,
-0.036709923297166824,
0.03807245194911957,
-0.016128942370414734,
0.026544012129306793,
-0.03625797480344772,
-0.048085540533065796,
-0.03993818163871765,
0.0029026921838521957,
-0.028474092483520508,
-0.009771487675607204,
-0.0827832818031311,
0.00002987725383718498,
0.06492684781551361,
0.29441115260124207,
0.009291145950555801,
-0.306831032037735,
-0.06425084918737411,
0.02533487044274807,
-0.016834283247590065,
-0.047911353409290314,
-0.011166681535542011,
0.08377578109502792,
-0.11700157076120377,
0.06728789210319519,
-0.0414593406021595,
0.1170765608549118,
-0.1598156988620758,
0.015174861066043377,
0.09591994434595108,
0.10818301886320114,
0.02115449495613575,
0.07613560557365417,
-0.17970417439937592,
0.2571965754032135,
0.02255146950483322,
0.05405682325363159,
-0.04684276133775711,
0.02157740667462349,
0.0035280894953757524,
0.03462087735533714,
0.10921324044466019,
0.011615647003054619,
-0.11152011156082153,
-0.17868833243846893,
-0.10759130865335464,
-0.0026127935852855444,
0.010866244323551655,
-0.05753381550312042,
0.10711926221847534,
-0.02464235946536064,
-0.032623715698719025,
0.0023017588537186384,
-0.058867912739515305,
-0.07067541033029556,
-0.16200120747089386,
0.010104337707161903,
-0.013062488287687302,
-0.06942210346460342,
-0.04992000758647919,
-0.050003666430711746,
-0.0802634060382843,
0.16319593787193298,
-0.03615490347146988,
-0.06409572809934616,
-0.1290162205696106,
0.006646895781159401,
0.08597661554813385,
-0.09144327789545059,
0.01000541914254427,
-0.013885593973100185,
0.0568426139652729,
-0.004429901950061321,
-0.0633457824587822,
0.11759626120328903,
-0.09969720989465714,
-0.15108975768089294,
-0.06801790744066238,
0.10129654407501221,
-0.010960769839584827,
0.046559687703847885,
0.02237255685031414,
-0.009711635299026966,
-0.004066473338752985,
-0.08046148717403412,
-0.008636939339339733,
0.0320601612329483,
0.06662353128194809,
-0.0161111019551754,
-0.1003127247095108,
-0.027855075895786285,
-0.053410861641168594,
-0.0528513565659523,
0.1491469293832779,
0.27340054512023926,
-0.08288367092609406,
0.07642994821071625,
0.0694430023431778,
-0.10839056968688965,
-0.18061406910419464,
-0.024102581664919853,
0.021622275933623314,
-0.013145451433956623,
0.011609490029513836,
-0.17550444602966309,
-0.01246533915400505,
0.08536795526742935,
-0.026202399283647537,
0.08016287535429001,
-0.34525978565216064,
-0.10866814106702805,
-0.0022276686504483223,
0.09695272147655487,
0.06377562880516052,
-0.12467300891876221,
-0.07526426762342453,
-0.0785292387008667,
-0.10869874805212021,
0.1083517000079155,
-0.011164786294102669,
0.0948101058602333,
-0.01070017833262682,
0.0712379515171051,
0.013312071561813354,
-0.03109130822122097,
0.12010829150676727,
-0.04649731144309044,
0.06724917888641357,
-0.04784710705280304,
0.005717363674193621,
0.0813685953617096,
-0.07979410886764526,
0.0491773784160614,
-0.047409847378730774,
0.006523945368826389,
-0.09772556275129318,
-0.025819044560194016,
-0.06818245351314545,
0.03714416176080704,
-0.04878285154700279,
-0.030557822436094284,
-0.06657446920871735,
0.05855494365096092,
0.1482812911272049,
-0.006409370340406895,
0.09457181394100189,
0.01148681715130806,
0.09274986386299133,
0.1426393985748291,
0.08152616769075394,
-0.020742839202284813,
-0.017204012721776962,
0.00413912208750844,
-0.0022040419280529022,
0.017020193859934807,
-0.14937663078308105,
0.04614909365773201,
0.1233673095703125,
-0.03274308145046234,
0.08397283405065536,
0.017480673268437386,
-0.07929474860429764,
0.015958502888679504,
0.08758445829153061,
-0.11103066802024841,
-0.13984093070030212,
0.017770657315850258,
-0.013990961015224457,
-0.07927447557449341,
-0.03868614137172699,
0.12365559488534927,
-0.05480735003948212,
-0.04452067241072655,
0.0132609773427248,
0.028868330642580986,
-0.0020339228212833405,
0.14013265073299408,
0.05080679431557655,
0.029887989163398743,
-0.07949274778366089,
0.11508400738239288,
0.07635217159986496,
-0.10709074884653091,
0.010727224871516228,
0.13371729850769043,
-0.0826924741268158,
-0.04350313916802406,
0.1228996142745018,
0.17043034732341766,
-0.09377697855234146,
-0.07033484429121017,
-0.15565723180770874,
-0.07955522835254669,
0.054655175656080246,
0.0712580606341362,
0.040054794400930405,
0.010599304921925068,
0.02133563533425331,
-0.007906187325716019,
-0.08368445187807083,
0.08641840517520905,
0.07114657014608383,
0.02367394231259823,
-0.14470547437667847,
0.03274129703640938,
-0.007284685503691435,
0.0116205345839262,
0.004197392147034407,
0.04449021816253662,
-0.14084632694721222,
0.004711769055575132,
-0.09892809391021729,
0.05206739902496338,
-0.06730762124061584,
0.01907125674188137,
-0.03859386593103409,
-0.016889022663235664,
-0.04908610135316849,
0.0038840940687805414,
-0.10652600973844528,
-0.038279566913843155,
-0.030910618603229523,
0.09720729291439056,
-0.10983308404684067,
-0.028882749378681183,
0.01884198561310768,
-0.06500101834535599,
0.055779483169317245,
-0.03690211474895477,
-0.023492898792028427,
0.009277606382966042,
-0.152780681848526,
-0.003415039973333478,
0.03549293056130409,
0.02964640036225319,
0.11227371543645859,
-0.10770233720541,
0.014808416366577148,
0.013351629488170147,
-0.0006081280880607665,
0.00043316950905136764,
0.08821586519479752,
-0.1124025285243988,
0.034515634179115295,
-0.004056413192301989,
-0.09600908309221268,
-0.042249590158462524,
0.09566853195428848,
0.1280730962753296,
-0.007821849547326565,
0.155756875872612,
-0.0930183008313179,
0.03800554201006889,
-0.19297918677330017,
-0.0158014465123415,
0.03626113012433052,
-0.05967499688267708,
-0.08735485374927521,
-0.0222182534635067,
0.07529626786708832,
-0.02875923365354538,
0.14616626501083374,
0.06542550027370453,
0.07943158596754074,
0.009287567809224129,
-0.06297849118709564,
-0.05982363596558571,
0.02340945415198803,
0.07688011229038239,
-0.02452114038169384,
-0.0034468004014343023,
0.054887473583221436,
0.016337459906935692,
0.07791854441165924,
0.06822230666875839,
0.14662840962409973,
0.1831393986940384,
0.17665110528469086,
0.07570487260818481,
0.07479026913642883,
-0.057626206427812576,
-0.15431998670101166,
0.05023292079567909,
0.00022648050799034536,
0.11462290585041046,
-0.04852476343512535,
0.1253436952829361,
0.09324853122234344,
-0.1899508386850357,
0.09353742748498917,
-0.041839007288217545,
-0.050474029034376144,
-0.11363186687231064,
-0.16348128020763397,
-0.077335886657238,
-0.1301657259464264,
-0.009938371367752552,
-0.10485412925481796,
0.027744928374886513,
0.04431556537747383,
0.000696894305292517,
-0.006343142595142126,
0.04935185983777046,
0.016802387312054634,
-0.029400501400232315,
0.0496973991394043,
0.033456478267908096,
0.014705668203532696,
-0.053967662155628204,
-0.036117248237133026,
-0.026571709662675858,
0.02198304422199726,
0.0392519012093544,
0.03802291676402092,
-0.00853041186928749,
0.054183777421712875,
-0.0454348623752594,
-0.08563821017742157,
0.006311044562608004,
0.02679738961160183,
0.056563131511211395,
0.10414406657218933,
0.03412386775016785,
-0.014201310463249683,
0.01508827693760395,
0.26128387451171875,
-0.056827716529369354,
-0.05084853991866112,
-0.13670068979263306,
0.15259402990341187,
0.01389537937939167,
-0.010813640430569649,
0.03122079372406006,
-0.08297757059335709,
-0.019140569493174553,
0.21338248252868652,
0.23387126624584198,
-0.09452182054519653,
-0.031121406704187393,
-0.021784884855151176,
0.005180425941944122,
-0.033442359417676926,
0.10433117300271988,
0.08530152589082718,
0.08012041449546814,
-0.07495273649692535,
-0.05889264494180679,
-0.03308933228254318,
0.011910737492144108,
-0.07461893558502197,
0.14047102630138397,
-0.02757451869547367,
0.005026429425925016,
-0.03755500167608261,
0.10932448506355286,
-0.09320733696222305,
-0.18568924069404602,
0.054341286420822144,
-0.20167803764343262,
-0.1699499785900116,
-0.03299940750002861,
0.06887173652648926,
0.01512233167886734,
0.08042900264263153,
0.014765854924917221,
-0.04010479897260666,
0.09600997716188431,
-0.01233030203729868,
-0.07361119240522385,
-0.07989438623189926,
0.053455013781785965,
-0.0466902069747448,
0.2630516290664673,
-0.020973268896341324,
0.004257718101143837,
0.14528754353523254,
0.011510937474668026,
-0.14902742207050323,
0.013374246656894684,
0.06149611994624138,
-0.044653333723545074,
0.043734561651945114,
0.030247388407588005,
-0.0353526808321476,
0.07897700369358063,
0.05234694480895996,
-0.08524275571107864,
0.025388706475496292,
0.03133386746048927,
-0.017714854329824448,
-0.06884052604436874,
-0.005357984919101,
-0.06750185787677765,
0.10133332759141922,
0.1707393378019333,
-0.012789321132004261,
0.03181279078125954,
-0.06611239165067673,
0.04205268993973732,
0.0268569253385067,
0.02567264251410961,
-0.07401271909475327,
-0.1937161684036255,
0.010185389779508114,
0.019131707027554512,
0.04275315999984741,
-0.1489829570055008,
-0.06438180804252625,
-0.01745973713696003,
-0.046588998287916183,
-0.0896429494023323,
0.11363109946250916,
0.041711777448654175,
0.05622047185897827,
-0.028195179998874664,
-0.06942053884267807,
-0.040464818477630615,
0.15563207864761353,
-0.11717329174280167,
-0.06196250393986702
] |
null | null | transformers |
# roberta-base-bne-finetuned-ciberbullying-spanish
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect ciberbullying on Spanish.
It achieves the following results on the evaluation set:
- Loss: 0.1657
- Accuracy: 0.9607
## Training and evaluation data
I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 360k sentences.
## Training procedure
<details>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.1512 | 1.0 | 22227 | 0.9501 | 0.1418 |
| 0.1253 | 2.0 | 44454 | 0.9567 | 0.1499 |
| 0.0973 | 3.0 | 66681 | 0.9594 | 0.1397 |
| 0.0658 | 4.0 | 88908 | 0.9607 | 0.1657 |
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-bne-finetuned-ciberbullying-spanish"
bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
bullying_analysis(
"Desde que te vi me enamoré de ti."
)
# Output:
[{'label': 'Not_bullying', 'score': 0.9995710253715515}]
bullying_analysis(
"Eres tan fea que cuando eras pequeña te echaban de comer por debajo de la puerta."
)
# Output:
[{'label': 'Bullying', 'score': 0.9918262958526611}]
```
[](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(SPANISH).ipynb)
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/) | {"language": "es", "tags": ["spanish"], "metrics": ["accuracy"], "widget": [{"text": "Eres mas peque\u00f1o que un pitufo!"}, {"text": "Eres muy feo!"}, {"text": "Odio tu forma de hablar!"}, {"text": "Eres tan fea que cuando eras peque\u00f1a te echaban de comer por debajo de la puerta."}]} | text-classification | JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"spanish",
"es",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #spanish #es #autotrain_compatible #endpoints_compatible #has_space #region-us
| roberta-base-bne-finetuned-ciberbullying-spanish
================================================
This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect ciberbullying on Spanish.
It achieves the following results on the evaluation set:
* Loss: 0.1657
* Accuracy: 0.9607
Training and evaluation data
----------------------------
I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 360k sentences.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Model in action
Fast usage with pipelines:
 and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Model in action\n\n\nFast usage with pipelines:\n\n\n on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2869
- Accuracy: 0.9012
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3222 | 1.0 | 1255 | 0.2869 | 0.9012 |
| 0.2418 | 2.0 | 2510 | 0.3125 | 0.8987 |
| 0.1726 | 3.0 | 3765 | 0.4120 | 0.8943 |
| 0.0685 | 4.0 | 5020 | 0.5239 | 0.8919 |
| 0.0245 | 5.0 | 6275 | 0.5910 | 0.8947 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-bne-finetuned-mnli", "results": []}]} | text-classification | JonatanGk/roberta-base-bne-finetuned-hate-speech-offensive-spanish | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| roberta-base-bne-finetuned-mnli
===============================
This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2869
* Accuracy: 0.9012
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
61,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.1060149148106575,
0.06619393080472946,
-0.002371125854551792,
0.12090526521205902,
0.17108631134033203,
0.014962554909288883,
0.12940713763237,
0.11142797768115997,
-0.10844290256500244,
0.019851837307214737,
0.12019568681716919,
0.1765066236257553,
0.005095230881124735,
0.09737301617860794,
-0.0639607161283493,
-0.24615459144115448,
-0.007811868097633123,
0.03548092767596245,
-0.0701170563697815,
0.1400802582502365,
0.0940532386302948,
-0.1389540284872055,
0.07773841917514801,
0.0015976167051121593,
-0.18439488112926483,
0.008395262062549591,
0.01619972661137581,
-0.07387793064117432,
0.157476544380188,
0.015513531863689423,
0.13763141632080078,
0.013773600570857525,
0.07767512649297714,
-0.18559196591377258,
0.015905119478702545,
0.051151446998119354,
-0.00009687485726317391,
0.0863691195845604,
0.0656467005610466,
-0.030336230993270874,
0.12739646434783936,
-0.08575814962387085,
0.05691148713231087,
0.020737815648317337,
-0.12106675654649734,
-0.2287938892841339,
-0.07486340403556824,
0.029166515916585922,
0.0702480748295784,
0.11416156589984894,
-0.003354431129992008,
0.14220349490642548,
-0.09510325640439987,
0.09900043159723282,
0.23240338265895844,
-0.28936198353767395,
-0.06526890397071838,
0.02763042412698269,
0.01110299862921238,
0.08119204640388489,
-0.11085934937000275,
-0.024018460884690285,
0.052506010979413986,
0.04338368400931358,
0.13688766956329346,
-0.0349455289542675,
-0.12736770510673523,
0.016624117270112038,
-0.14857594668865204,
-0.034100186079740524,
0.1328321248292923,
0.02238634042441845,
-0.03660081326961517,
-0.04526956006884575,
-0.0632687509059906,
-0.13714036345481873,
-0.03557983413338661,
-0.00397366750985384,
0.03698565065860748,
-0.03723737224936485,
-0.06827333569526672,
-0.007076497655361891,
-0.11696792393922806,
-0.07607574760913849,
-0.07143852859735489,
0.1613805592060089,
0.04651132598519325,
0.01136134471744299,
-0.03588869050145149,
0.11201070994138718,
0.025776686146855354,
-0.12947632372379303,
0.022834537550807,
0.026118850335478783,
0.01992543786764145,
-0.03847774863243103,
-0.057115230709314346,
-0.06433295458555222,
0.0278361476957798,
0.1120324656367302,
-0.07925021648406982,
0.03600210323929787,
0.02877196855843067,
0.04791468381881714,
-0.11323106288909912,
0.1800261288881302,
-0.036341480910778046,
0.003305780002847314,
0.023738905787467957,
0.05854475498199463,
0.03509502485394478,
-0.006639415863901377,
-0.11561169475317001,
0.004285982809960842,
0.10459470748901367,
0.03692121058702469,
-0.06696156412363052,
0.07345741242170334,
-0.04835953935980797,
-0.008517519570887089,
0.01000308059155941,
-0.09970374405384064,
0.022108837962150574,
0.013583425432443619,
-0.07452800124883652,
-0.0399131216108799,
0.029956212267279625,
0.011857636272907257,
-0.022353317588567734,
0.12239620834589005,
-0.07532769441604614,
0.03438044339418411,
-0.08702976256608963,
-0.11764545738697052,
0.014150267466902733,
-0.08576267212629318,
0.026287153363227844,
-0.11541704833507538,
-0.17759443819522858,
-0.006326086353510618,
0.0354217030107975,
-0.006969383452087641,
-0.043011248111724854,
-0.05269971862435341,
-0.08134427666664124,
0.0031210079323500395,
-0.013398606330156326,
0.11954788863658905,
-0.0655316486954689,
0.11710426956415176,
0.03830081969499588,
0.05177053436636925,
-0.03875710070133209,
0.047318603843450546,
-0.11700496822595596,
0.002574642188847065,
-0.17102205753326416,
0.03178469464182854,
-0.05288700759410858,
0.07574878633022308,
-0.07218917459249496,
-0.10516680777072906,
0.016601836308836937,
0.001069517689757049,
0.06608884781599045,
0.09858985245227814,
-0.1588493287563324,
-0.07595797628164291,
0.1748959720134735,
-0.08674648404121399,
-0.1292549967765808,
0.1279245764017105,
-0.061268400400877,
0.03308393061161041,
0.07436399161815643,
0.17182253301143646,
0.08455701917409897,
-0.069547139108181,
0.020136509090662003,
0.005416523665189743,
0.04549408331513405,
-0.06971944123506546,
0.06753770262002945,
-0.005316706839948893,
-0.020108724012970924,
0.02802198939025402,
-0.037988416850566864,
0.06082981079816818,
-0.09565810859203339,
-0.09417048841714859,
-0.04522309824824333,
-0.10433778911828995,
0.06257585436105728,
0.07440686970949173,
0.0731942281126976,
-0.11350015550851822,
-0.07396195083856583,
0.03997058793902397,
0.0845491960644722,
-0.060182567685842514,
0.02469051070511341,
-0.05584800988435745,
0.07852762937545776,
-0.02740989439189434,
-0.021101785823702812,
-0.18248407542705536,
-0.021336238831281662,
0.003169022500514984,
0.011219881474971771,
0.007518231403082609,
0.0027316107880324125,
0.07390625774860382,
0.07804715633392334,
-0.05523264408111572,
-0.03216984122991562,
-0.02247009053826332,
-0.005785732995718718,
-0.12138431519269943,
-0.1999949961900711,
-0.00919762346893549,
-0.026342343538999557,
0.1339932233095169,
-0.21656817197799683,
0.05068260431289673,
-0.015465162694454193,
0.059414297342300415,
0.014217128977179527,
0.0013230275362730026,
-0.030650055035948753,
0.08716856688261032,
-0.04047881066799164,
-0.043357882648706436,
0.07213347405195236,
0.006101681385189295,
-0.0931086391210556,
-0.03401627764105797,
-0.122788205742836,
0.19716866314411163,
0.1422441303730011,
-0.12211711704730988,
-0.07644500583410263,
0.0044807554222643375,
-0.05772560089826584,
-0.020729532465338707,
-0.05892452597618103,
0.04334505274891853,
0.16745559871196747,
-0.01565510220825672,
0.15666471421718597,
-0.08151371777057648,
-0.04335656389594078,
0.021988483145833015,
-0.04474939778447151,
0.0381682924926281,
0.13955728709697723,
0.08968281745910645,
-0.07172694057226181,
0.14538289606571198,
0.16029207408428192,
-0.10469737648963928,
0.12652920186519623,
-0.046353455632925034,
-0.05704767256975174,
0.001760984188877046,
0.0035940869711339474,
0.008025573566555977,
0.09716716408729553,
-0.13466624915599823,
0.002440502168610692,
0.016913697123527527,
0.013905741274356842,
0.014270415529608727,
-0.2405817061662674,
-0.05056203529238701,
0.03127726912498474,
-0.04462889954447746,
-0.014330454170703888,
-0.014855331741273403,
0.015432409010827541,
0.11449792981147766,
-0.013214812614023685,
-0.08847629278898239,
0.0382651686668396,
0.004179240670055151,
-0.08316382020711899,
0.23117955029010773,
-0.08329486101865768,
-0.15839746594429016,
-0.11974114924669266,
-0.061929941177368164,
-0.04766486585140228,
0.018309161067008972,
0.07479630410671234,
-0.09457019716501236,
-0.02358260191977024,
-0.07777377218008041,
0.021501056849956512,
0.0032939112279564142,
0.03602223098278046,
-0.006654930301010609,
0.010254953056573868,
0.07275478541851044,
-0.11369814723730087,
-0.0052208853885531425,
-0.06400500982999802,
-0.08892400562763214,
0.058402661234140396,
0.05215149000287056,
0.12437354028224945,
0.15210425853729248,
-0.02874620631337166,
-0.00165789935272187,
-0.03814905881881714,
0.2067974954843521,
-0.05894094333052635,
-0.038599517196416855,
0.14760854840278625,
-0.010306484065949917,
0.05777328461408615,
0.10743462294340134,
0.07099329680204391,
-0.07946403324604034,
0.014301070012152195,
0.028701893985271454,
-0.04151173308491707,
-0.23856399953365326,
-0.046286020427942276,
-0.04740942269563675,
0.012042375281453133,
0.08299244940280914,
0.039995256811380386,
0.042598284780979156,
0.0774206593632698,
0.025317542254924774,
0.05458741635084152,
-0.019155019894242287,
0.055414557456970215,
0.1079062819480896,
0.046951327472925186,
0.12759274244308472,
-0.05482174828648567,
-0.0756264179944992,
0.03396374359726906,
-0.027744200080633163,
0.2176274210214615,
-0.00912580918520689,
0.11282780021429062,
0.06568481028079987,
0.188224658370018,
0.004141294863075018,
0.08705159276723862,
-0.008683944121003151,
-0.044066693633794785,
-0.0043693846091628075,
-0.047340262681245804,
-0.0327911376953125,
0.008128734305500984,
-0.09845053404569626,
0.07779841870069504,
-0.1306067258119583,
0.0002740735362749547,
0.06627390533685684,
0.2321188896894455,
0.02709260769188404,
-0.3168542683124542,
-0.0910913273692131,
0.00558611610904336,
-0.021440263837575912,
-0.013575566932559013,
0.032882485538721085,
0.09995943307876587,
-0.08953787386417389,
0.031962692737579346,
-0.06728290021419525,
0.08981587737798691,
-0.03792199119925499,
0.047908566892147064,
0.04420049861073494,
0.09221808612346649,
-0.005304649472236633,
0.08888709545135498,
-0.3147464096546173,
0.27747952938079834,
0.0006938184960745275,
0.07984480261802673,
-0.07240299880504608,
-0.00932433269917965,
0.04665307700634003,
0.07807013392448425,
0.07037586718797684,
-0.02012079954147339,
-0.014347255229949951,
-0.19606387615203857,
-0.05540188401937485,
0.03212699294090271,
0.08901317417621613,
-0.0278922151774168,
0.0897851213812828,
-0.02916880138218403,
0.005914291366934776,
0.07704125344753265,
-0.034972161054611206,
-0.055738870054483414,
-0.09122008830308914,
-0.028000736609101295,
0.03313920646905899,
-0.04282581806182861,
-0.07559510320425034,
-0.10986308753490448,
-0.13403727114200592,
0.13152876496315002,
-0.03536563739180565,
-0.03817814216017723,
-0.10296551138162613,
0.06158920377492905,
0.05918728560209274,
-0.09460275620222092,
0.04894309490919113,
0.0006492067477665842,
0.06313132494688034,
0.022758517414331436,
-0.0704878494143486,
0.10454733669757843,
-0.07799293100833893,
-0.17852208018302917,
-0.051394205540418625,
0.11304319649934769,
0.02752714790403843,
0.05468328669667244,
-0.011663042940199375,
0.009413293562829494,
-0.04762396588921547,
-0.09404279291629791,
0.018149981275200844,
-0.013826381415128708,
0.07729103416204453,
0.03631814569234848,
-0.05802445113658905,
-0.02379869483411312,
-0.0695149227976799,
-0.038840290158987045,
0.19601628184318542,
0.24538500607013702,
-0.09557916969060898,
0.019608650356531143,
0.04732109606266022,
-0.05906623229384422,
-0.21676470339298248,
0.03523040562868118,
0.03446665778756142,
-0.007744224742054939,
0.04616035893559456,
-0.15894338488578796,
0.12589818239212036,
0.10191391408443451,
-0.019601689651608467,
0.10843946039676666,
-0.33390378952026367,
-0.12826816737651825,
0.13835692405700684,
0.16858325898647308,
0.1360730528831482,
-0.15568041801452637,
-0.022581474855542183,
-0.017524130642414093,
-0.09763765335083008,
0.10346318036317825,
-0.13609538972377777,
0.11172323673963547,
-0.03511987254023552,
0.06765533983707428,
0.006181198172271252,
-0.06245134770870209,
0.11598845571279526,
-0.001001087250187993,
0.1080324649810791,
-0.06758879870176315,
-0.02078188769519329,
0.04732804000377655,
-0.032627396285533905,
0.016244806349277496,
-0.10980790853500366,
0.04337595775723457,
-0.07509320229291916,
-0.021869409829378128,
-0.07826352119445801,
0.052561771124601364,
-0.03594738617539406,
-0.0620448961853981,
-0.03733251243829727,
0.010602360591292381,
0.038515761494636536,
-0.011934751644730568,
0.14320124685764313,
0.02187803015112877,
0.16958807408809662,
0.10545418411493301,
0.0788947120308876,
-0.0520026832818985,
-0.03881806135177612,
-0.01695188134908676,
-0.023541288450360298,
0.05677254870533943,
-0.1372629553079605,
0.028669802471995354,
0.1289263665676117,
0.025270728394389153,
0.12271767854690552,
0.08995579183101654,
-0.01966063305735588,
0.0176156684756279,
0.06785650551319122,
-0.17414282262325287,
-0.09871351718902588,
-0.012228609062731266,
-0.043898805975914,
-0.10204806178808212,
0.07889348268508911,
0.08326828479766846,
-0.07318359613418579,
-0.01072345394641161,
-0.017123086377978325,
0.006538219749927521,
-0.04209266975522041,
0.19080287218093872,
0.07196115702390671,
0.0512247271835804,
-0.10327938199043274,
0.08091586083173752,
0.053287241607904434,
-0.07194919884204865,
-0.004465531557798386,
0.0837932601571083,
-0.09042713046073914,
-0.05774980038404465,
0.09863796830177307,
0.1868797391653061,
-0.05902300029993057,
-0.05825517326593399,
-0.1472097486257553,
-0.13561132550239563,
0.06757831573486328,
0.1809099018573761,
0.11614380031824112,
0.010768492706120014,
-0.04520242288708687,
0.008805597200989723,
-0.12808778882026672,
0.10527286678552628,
0.04428471624851227,
0.06898422539234161,
-0.14886943995952606,
0.16660021245479584,
0.017394239082932472,
0.041544463485479355,
-0.01893666572868824,
0.03007473610341549,
-0.1015017107129097,
0.02001441828906536,
-0.12430033832788467,
-0.010658063925802708,
-0.026032481342554092,
0.009691061452031136,
-0.011318751610815525,
-0.05362458899617195,
-0.04906545206904411,
0.017853984609246254,
-0.10789597779512405,
-0.012489800341427326,
0.03163612633943558,
0.05234377086162567,
-0.1323106437921524,
-0.04761434346437454,
0.020490368828177452,
-0.061707425862550735,
0.0726238340139389,
0.05517062544822693,
0.00925789587199688,
0.06875739991664886,
-0.17202632129192352,
0.012471156194806099,
0.07675330340862274,
0.010081884451210499,
0.05237387493252754,
-0.06980883330106735,
-0.002891842508688569,
0.0031620392110198736,
0.04672122001647949,
0.02082950808107853,
0.07980459928512573,
-0.14159312844276428,
0.0169137604534626,
-0.018929950892925262,
-0.0795733854174614,
-0.06388798356056213,
0.02691684104502201,
0.08047924190759659,
0.00254271412268281,
0.20612122118473053,
-0.09389620274305344,
0.04148333892226219,
-0.20644935965538025,
0.0003274964401498437,
-0.016805510967969894,
-0.12653964757919312,
-0.159394770860672,
-0.0541054904460907,
0.062400344759225845,
-0.0540381595492363,
0.12820017337799072,
0.02618040330708027,
0.0413457490503788,
0.02349057048559189,
-0.013668377883732319,
0.043248508125543594,
0.02048570290207863,
0.2230089008808136,
0.027485456317663193,
-0.04559566453099251,
0.05168885737657547,
0.03932793810963631,
0.1084197536110878,
0.08917680382728577,
0.19638951122760773,
0.16012045741081238,
-0.015308343805372715,
0.08333510160446167,
0.03177314251661301,
-0.046312786638736725,
-0.14378595352172852,
0.0048121679574251175,
-0.034506309777498245,
0.07947631925344467,
-0.0213368758559227,
0.21481944620609283,
0.0964197963476181,
-0.15192556381225586,
0.037547383457422256,
-0.051664430648088455,
-0.08063143491744995,
-0.11680951714515686,
-0.03745828941464424,
-0.08557622879743576,
-0.13167911767959595,
-0.003000301541760564,
-0.1098080649971962,
0.0028312653303146362,
0.10732996463775635,
0.004532779101282358,
-0.02694651111960411,
0.17294558882713318,
0.044560953974723816,
0.02889532595872879,
0.05338742956519127,
0.004719386342912912,
-0.02223214879631996,
-0.08123203366994858,
-0.07407687604427338,
-0.010893771424889565,
-0.033571500331163406,
0.02512465976178646,
-0.05848131701350212,
-0.0655646100640297,
0.046414297074079514,
-0.036436304450035095,
-0.09839265793561935,
0.025582581758499146,
0.024511301890015602,
0.06827916204929352,
0.05630694329738617,
0.01840808056294918,
0.004827854223549366,
-0.002993399975821376,
0.2440364956855774,
-0.07251182943582535,
-0.09476464241743088,
-0.07355700433254242,
0.271127849817276,
0.04948852211236954,
-0.009404686279594898,
0.033654194325208664,
-0.0753873735666275,
0.0199267640709877,
0.2506001591682434,
0.21509134769439697,
-0.07953011244535446,
0.007687465753406286,
-0.013309096917510033,
-0.009785415604710579,
-0.016633978113532066,
0.10670080035924911,
0.14547549188137054,
0.06373309344053268,
-0.0997789055109024,
-0.03714247792959213,
-0.05145186930894852,
0.00650735292583704,
-0.06205756217241287,
0.07299499213695526,
0.03506534546613693,
-0.0012368079042062163,
-0.042830001562833786,
0.06120860576629639,
-0.06509768217802048,
-0.08413920551538467,
0.054606843739748,
-0.1994263082742691,
-0.1503227949142456,
-0.022455835714936256,
0.123480424284935,
0.005063273943960667,
0.05779574066400528,
-0.025117231532931328,
0.0033221933990716934,
0.03893216699361801,
-0.016068676486611366,
-0.09002970904111862,
-0.07176896929740906,
0.08015717566013336,
-0.09344739466905594,
0.21030950546264648,
-0.042884711176157,
0.05749507248401642,
0.12693487107753754,
0.059242505580186844,
-0.0729035809636116,
0.08843113481998444,
0.043708764016628265,
-0.06798197329044342,
0.037373580038547516,
0.07301253080368042,
-0.03285784274339676,
0.04812255874276161,
0.044521864503622055,
-0.1176486685872078,
0.031214192509651184,
-0.06137993559241295,
-0.06657203286886215,
-0.03726048767566681,
-0.035336438566446304,
-0.05018606036901474,
0.11185211688280106,
0.1966210901737213,
-0.03055708296597004,
0.02066531404852867,
-0.06988228857517242,
0.006668565794825554,
0.061411235481500626,
0.01632673852145672,
-0.05117734149098396,
-0.22065426409244537,
0.012751085683703423,
0.07426931709051132,
-0.012357423081994057,
-0.27309033274650574,
-0.08364927768707275,
-0.01044438872486353,
-0.07037068158388138,
-0.11149583756923676,
0.06480105966329575,
0.09428953379392624,
0.05097419396042824,
-0.049630310386419296,
-0.04960394278168678,
-0.08420312404632568,
0.1641966849565506,
-0.14076688885688782,
-0.0928206592798233
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-sqac
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the sqac dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2066
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9924 | 1.0 | 1196 | 0.8670 |
| 0.474 | 2.0 | 2392 | 0.8923 |
| 0.1637 | 3.0 | 3588 | 1.2066 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["sqac"], "model-index": [{"name": "roberta-base-bne-finetuned-sqac", "results": []}]} | question-answering | JonatanGk/roberta-base-bne-finetuned-sqac | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:sqac",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-sqac #license-apache-2.0 #endpoints_compatible #region-us
| roberta-base-bne-finetuned-sqac
===============================
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on the sqac dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2066
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-sqac #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
56,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-sqac #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
-0.10657516121864319,
0.0887775793671608,
-0.0019834309350699186,
0.1162324920296669,
0.16516461968421936,
0.01882416568696499,
0.09998779743909836,
0.12206819653511047,
-0.10868392139673233,
0.030092677101492882,
0.13551250100135803,
0.1721624732017517,
-0.0008790037245489657,
0.07462932914495468,
-0.04735118895769119,
-0.2175610363483429,
-0.014318532310426235,
0.053936492651700974,
-0.10874465852975845,
0.14752750098705292,
0.08726923167705536,
-0.146104633808136,
0.07717139273881912,
0.007155044935643673,
-0.2206173539161682,
0.017580319195985794,
0.004283055197447538,
-0.04444378614425659,
0.14263619482517242,
0.01026161015033722,
0.12376853823661804,
0.00041747084469534457,
0.06888364255428314,
-0.1807432472705841,
0.01722979173064232,
0.046406589448451996,
0.004614328499883413,
0.08966635912656784,
0.04756038263440132,
0.0012907101772725582,
0.10199470072984695,
-0.08585883677005768,
0.03431541472673416,
0.026635177433490753,
-0.12642407417297363,
-0.24674682319164276,
-0.10114968568086624,
0.02192528545856476,
0.06033637747168541,
0.12034302949905396,
-0.002218672540038824,
0.15621022880077362,
-0.10900311917066574,
0.08873598277568817,
0.26110517978668213,
-0.29057785868644714,
-0.07188951224088669,
0.03461324796080589,
0.02301805280148983,
0.07197514921426773,
-0.10249903798103333,
-0.024757040664553642,
0.055565737187862396,
0.04630458354949951,
0.10967195779085159,
-0.047035250812768936,
-0.12325635552406311,
0.044033899903297424,
-0.15012657642364502,
-0.04524019733071327,
0.1378476470708847,
0.04759925603866577,
-0.028809672221541405,
-0.013336008414626122,
-0.0625702291727066,
-0.1386156678199768,
-0.025660738348960876,
-0.014668277464807034,
0.04984774440526962,
-0.04619448632001877,
-0.09815240651369095,
-0.008953669108450413,
-0.10516531765460968,
-0.08589857816696167,
-0.07930736243724823,
0.14191564917564392,
0.04295522719621658,
0.03220004215836525,
-0.04855496436357498,
0.10147987306118011,
0.004404966253787279,
-0.12688614428043365,
0.012200444005429745,
0.035041507333517075,
-0.01292585302144289,
-0.03133036941289902,
-0.06765555590391159,
-0.05373455956578255,
0.029073946177959442,
0.12486610561609268,
-0.0757521539926529,
0.030457567423582077,
0.0567660927772522,
0.044848229736089706,
-0.09683917462825775,
0.1863803267478943,
-0.07832776755094528,
-0.0030694622546434402,
-0.000739251438062638,
0.037168752402067184,
-0.0016112318262457848,
0.006519370246678591,
-0.09766190499067307,
-0.014723296277225018,
0.08982931822538376,
0.02535940147936344,
-0.039020836353302,
0.054502904415130615,
-0.04275452345609665,
-0.021131962537765503,
-0.01123723667114973,
-0.08383087068796158,
0.018059389665722847,
-0.006426942069083452,
-0.08992499113082886,
-0.015865905210375786,
0.015488485805690289,
0.014269719831645489,
-0.013089518994092941,
0.08509384095668793,
-0.09562625735998154,
0.039846647530794144,
-0.09688019752502441,
-0.09420645236968994,
0.020228542387485504,
-0.07687988132238388,
0.03154405951499939,
-0.08965142071247101,
-0.15588076412677765,
-0.010486338287591934,
0.05010423809289932,
-0.024490579962730408,
-0.04898729920387268,
-0.026324551552534103,
-0.09226301312446594,
-0.014629491604864597,
-0.020562434569001198,
0.16694948077201843,
-0.055593688040971756,
0.11892648786306381,
0.04863930121064186,
0.06410703808069229,
-0.03833136335015297,
0.05396973341703415,
-0.09928673505783081,
0.015472985804080963,
-0.1665075421333313,
0.035617586225271225,
-0.054234977811574936,
0.06552217155694962,
-0.10832630097866058,
-0.11876143515110016,
0.022205892950296402,
-0.014428977854549885,
0.08753801882266998,
0.09550827741622925,
-0.15454472601413727,
-0.05789726972579956,
0.1539008766412735,
-0.04798143357038498,
-0.1433412730693817,
0.12048383057117462,
-0.05577799305319786,
0.04051663354039192,
0.05886885151267052,
0.16345718502998352,
0.047203145921230316,
-0.08444669842720032,
0.01438579149544239,
0.0008474331698380411,
0.034789327532052994,
-0.08556012809276581,
0.07754106819629669,
-0.008344193920493126,
0.02175828628242016,
0.022926855832338333,
-0.06706228107213974,
0.05728532746434212,
-0.1125800758600235,
-0.10076633095741272,
-0.05153033137321472,
-0.11156405508518219,
0.03491705656051636,
0.08029532432556152,
0.07645493000745773,
-0.09326591342687607,
-0.06912251561880112,
0.0666864886879921,
0.07613811641931534,
-0.06020500138401985,
0.034457262605428696,
-0.06705158203840256,
0.06606645882129669,
-0.08222904056310654,
-0.030627168715000153,
-0.19464468955993652,
-0.01893441379070282,
-0.0056062606163322926,
-0.0024279551580548286,
0.015519045293331146,
0.03888917714357376,
0.07519160211086273,
0.03438609465956688,
-0.0534098818898201,
-0.016838541254401207,
-0.0483592227101326,
-0.010437519289553165,
-0.13032664358615875,
-0.18241141736507416,
-0.033065710216760635,
-0.013679967261850834,
0.09594909101724625,
-0.171958789229393,
0.02563565969467163,
-0.018569670617580414,
0.06390327960252762,
-0.007404427509754896,
-0.00804582703858614,
-0.031386151909828186,
0.08389827609062195,
-0.016105307266116142,
-0.0467602014541626,
0.07169803231954575,
-0.005879409611225128,
-0.09212436527013779,
-0.051947735249996185,
-0.06413470953702927,
0.17189621925354004,
0.13048295676708221,
-0.11747002601623535,
-0.06476559489965439,
0.007750009186565876,
-0.06763114780187607,
-0.03601543605327606,
-0.03883904591202736,
0.045575883239507675,
0.1828140765428543,
-0.008432711474597454,
0.12527583539485931,
-0.08412465453147888,
-0.04639574512839317,
0.009319523349404335,
-0.04038394242525101,
0.04629973694682121,
0.13221010565757751,
0.11985480785369873,
-0.0716744139790535,
0.14175763726234436,
0.15544049441814423,
-0.10273566842079163,
0.09602878242731094,
-0.06382042169570923,
-0.09386871755123138,
-0.034099675714969635,
0.0011246001813560724,
-0.0035882825031876564,
0.12072474509477615,
-0.13133908808231354,
0.013208759017288685,
0.03136546164751053,
0.017433254048228264,
0.028278082609176636,
-0.2295500934123993,
-0.06341227144002914,
0.01784750632941723,
-0.051908090710639954,
-0.03485195338726044,
-0.0045377095229923725,
0.015633143484592438,
0.09834830462932587,
0.0005917849484831095,
-0.05898468196392059,
0.04434780776500702,
0.001524782390333712,
-0.0664830133318901,
0.22493739426136017,
-0.06812145560979843,
-0.11333972215652466,
-0.09968864172697067,
-0.04900883138179779,
-0.04047997295856476,
-0.009754879400134087,
0.06295978277921677,
-0.09781637787818909,
-0.018979763612151146,
-0.04346012324094772,
0.0218648761510849,
-0.015004361979663372,
0.02536117471754551,
0.009270130656659603,
-0.000978361815214157,
0.08049202710390091,
-0.11582207679748535,
0.01077366340905428,
-0.05695357173681259,
-0.07828748971223831,
0.05296050012111664,
0.051966503262519836,
0.13915519416332245,
0.13502685725688934,
-0.014532596804201603,
0.007470038253813982,
-0.0189533494412899,
0.25444895029067993,
-0.07312439382076263,
-0.04907756671309471,
0.14600908756256104,
0.014739974401891232,
0.05753321573138237,
0.10087524354457855,
0.07485779374837875,
-0.0892234817147255,
0.003652233397588134,
0.033793579787015915,
-0.041793886572122574,
-0.2454049289226532,
-0.025202905759215355,
-0.05622172728180885,
-0.030827276408672333,
0.06475543230772018,
0.026972519233822823,
0.03343575820326805,
0.07879158109426498,
0.04447318613529205,
0.04266469553112984,
-0.07568243891000748,
0.0438418835401535,
0.10262732207775116,
0.04902264475822449,
0.11724819988012314,
-0.0525004044175148,
-0.060767486691474915,
0.027206668630242348,
0.009860245510935783,
0.2463388293981552,
-0.012126513756811619,
0.15095657110214233,
0.08249419182538986,
0.22309894859790802,
-0.009193110279738903,
0.0759182795882225,
-0.00777412997558713,
-0.0503825806081295,
-0.006369717884808779,
-0.03179782256484032,
-0.02919708751142025,
0.006897128187119961,
-0.04651760309934616,
0.06729485094547272,
-0.0901096761226654,
-0.014227621257305145,
0.05821317061781883,
0.27090147137641907,
0.018864206969738007,
-0.3016529083251953,
-0.08773691952228546,
-0.009307127445936203,
-0.0296360831707716,
-0.0005348194972611964,
0.018637025728821754,
0.1137625202536583,
-0.09720921516418457,
-0.005340010859072208,
-0.07172299921512604,
0.09907306730747223,
-0.011673702858388424,
0.03754526376724243,
0.0685422271490097,
0.09093794226646423,
0.013153167441487312,
0.08978582918643951,
-0.322409451007843,
0.28255581855773926,
0.0031167063862085342,
0.07541761547327042,
-0.06746338307857513,
-0.016593484207987785,
0.01839452236890793,
0.03269767761230469,
0.08622416108846664,
-0.013097419403493404,
0.002811703598126769,
-0.1734752506017685,
-0.045359108597040176,
0.04509737715125084,
0.08330107480287552,
-0.017103439196944237,
0.09515880048274994,
-0.012386706657707691,
0.014767604880034924,
0.07000210136175156,
0.008437154814600945,
-0.04292663186788559,
-0.07576686888933182,
-0.015595413744449615,
0.009485945105552673,
-0.04719255864620209,
-0.07028252631425858,
-0.10218545794487,
-0.12049880623817444,
0.12110936641693115,
-0.00698296120390296,
-0.03798345848917961,
-0.1072995662689209,
0.0852256789803505,
0.10712355375289917,
-0.09291866421699524,
0.03656968101859093,
0.013666621409356594,
0.03150065615773201,
0.04818038269877434,
-0.06288543343544006,
0.0981627032160759,
-0.06032480299472809,
-0.1512250155210495,
-0.03832532837986946,
0.09987228363752365,
0.04481936991214752,
0.06584946066141129,
-0.014603675343096256,
0.011474422179162502,
-0.06291037052869797,
-0.1006559506058693,
0.018218133598566055,
-0.04037605598568916,
0.08889152854681015,
0.02655349299311638,
-0.028374694287776947,
0.05421501025557518,
-0.06332089006900787,
-0.026018619537353516,
0.19164499640464783,
0.22384323179721832,
-0.09828238189220428,
0.006392831448465586,
0.038210541009902954,
-0.048575498163700104,
-0.18573592603206635,
0.05262615159153938,
0.06283586472272873,
-0.005410889163613319,
0.050279539078474045,
-0.1601046472787857,
0.14441236853599548,
0.11488354951143265,
-0.009323608130216599,
0.09822477400302887,
-0.36196669936180115,
-0.11111490428447723,
0.10017415881156921,
0.1649532914161682,
0.1263226568698883,
-0.16583849489688873,
-0.021232187747955322,
0.0006204223609529436,
-0.16384446620941162,
0.09830164164304733,
-0.10476993024349213,
0.11807043850421906,
-0.03964199870824814,
0.11159506440162659,
-0.002850126475095749,
-0.07319804280996323,
0.13073815405368805,
0.02717486582696438,
0.10054170340299606,
-0.045760687440633774,
-0.026691781356930733,
0.07918298244476318,
-0.020646193996071815,
0.016776176169514656,
-0.05924974009394646,
0.04376201704144478,
-0.09340740740299225,
-0.014119363389909267,
-0.10679060220718384,
0.03509536758065224,
-0.038453567773103714,
-0.05503179132938385,
-0.043229639530181885,
0.024078821763396263,
0.04561447352170944,
-0.012168865650892258,
0.12456627190113068,
0.026513492688536644,
0.13827957212924957,
0.0885215476155281,
0.06618568301200867,
-0.052802782505750656,
-0.11466798931360245,
-0.012723959982395172,
-0.00928367767482996,
0.05289442464709282,
-0.15060724318027496,
0.022983264178037643,
0.1472546011209488,
0.04267016053199768,
0.11404645442962646,
0.07549945265054703,
-0.03000766411423683,
0.018816841766238213,
0.042427826672792435,
-0.15195246040821075,
-0.12804880738258362,
0.01433271449059248,
-0.07483652979135513,
-0.11912714689970016,
0.06347239017486572,
0.06840222328901291,
-0.05362144112586975,
-0.016658563166856766,
-0.007551260758191347,
-0.005981120280921459,
-0.07034403830766678,
0.20757655799388885,
0.08924835175275803,
0.05106372758746147,
-0.11188134551048279,
0.07782784104347229,
0.03846326842904091,
-0.07782673835754395,
-0.009357232600450516,
0.056626129895448685,
-0.07182083278894424,
-0.0437212772667408,
0.09195677936077118,
0.15248416364192963,
-0.07979957014322281,
-0.038903724402189255,
-0.14039871096611023,
-0.1045726090669632,
0.0730820819735527,
0.15521155297756195,
0.1155167743563652,
0.0011653440305963159,
-0.03841761127114296,
0.008866445161402225,
-0.12207896262407303,
0.07816825807094574,
0.0319657102227211,
0.061674728989601135,
-0.1258244663476944,
0.141502246260643,
0.0016507703112438321,
0.06945475935935974,
-0.018610285595059395,
0.03685497120022774,
-0.09706620126962662,
0.0343259796500206,
-0.1461782306432724,
-0.032918211072683334,
-0.029959363862872124,
-0.006325146649032831,
-0.011821477673947811,
-0.0832291767001152,
-0.07033000886440277,
0.027572106570005417,
-0.12674075365066528,
-0.018057001754641533,
0.05053773522377014,
0.04094734787940979,
-0.13356398046016693,
-0.04125332459807396,
0.03649478778243065,
-0.04506262391805649,
0.0639604702591896,
0.06682662665843964,
0.01084107719361782,
0.05911674350500107,
-0.139530748128891,
-0.01393650472164154,
0.05051397159695625,
0.009331561625003815,
0.07633465528488159,
-0.08872254192829132,
-0.015196808613836765,
0.0036061673890799284,
0.07345428317785263,
0.01694582588970661,
0.0479239858686924,
-0.13808588683605194,
-0.014977920800447464,
-0.03325587138533592,
-0.0669703409075737,
-0.0746392160654068,
0.013747437857091427,
0.09543042629957199,
0.03307664766907692,
0.18763390183448792,
-0.056677475571632385,
0.05162762105464935,
-0.21071918308734894,
-0.005234916228801012,
-0.0157792866230011,
-0.09786846488714218,
-0.11809201538562775,
-0.047532737255096436,
0.06641580909490585,
-0.06128477305173874,
0.1345687061548233,
-0.015366390347480774,
0.05369609221816063,
0.024863237515091896,
-0.019757207483053207,
0.03590003401041031,
0.013445700518786907,
0.237492635846138,
0.022938081994652748,
-0.026159493252635002,
0.08427068591117859,
0.06220068410038948,
0.07023101300001144,
0.1149422749876976,
0.19488650560379028,
0.18126167356967926,
0.015385463833808899,
0.07844220846891403,
0.026690304279327393,
-0.04383181035518646,
-0.12351725250482559,
0.03701323643326759,
-0.0295416247099638,
0.07202465832233429,
-0.014523640275001526,
0.22255977988243103,
0.07789541780948639,
-0.16899648308753967,
0.05260862782597542,
-0.056719835847616196,
-0.08951131999492645,
-0.0875837653875351,
-0.017557930201292038,
-0.07169449329376221,
-0.14527814090251923,
0.014176566153764725,
-0.12285303324460983,
0.013846220448613167,
0.1518549770116806,
0.007434610277414322,
-0.026858462020754814,
0.1817096620798111,
0.05704989284276962,
0.024375321343541145,
0.03430105373263359,
-0.0027692292351275682,
-0.01817999966442585,
-0.07910031080245972,
-0.044333431869745255,
0.0013502134243026376,
-0.029992863535881042,
0.044712625443935394,
-0.053073517978191376,
-0.07860956341028214,
0.03599618747830391,
-0.043516822159290314,
-0.09268651902675629,
0.00487148342654109,
0.038874030113220215,
0.07357439398765564,
0.05381200835108757,
0.014139331877231598,
0.0259067565202713,
-0.021307790651917458,
0.23106949031352997,
-0.0756738930940628,
-0.07619935274124146,
-0.09990255534648895,
0.23685339093208313,
0.03411946818232536,
-0.02090901881456375,
0.03669462725520134,
-0.06456026434898376,
0.009303046390414238,
0.2569543719291687,
0.17738598585128784,
-0.1070018783211708,
-0.013396394439041615,
0.009517042897641659,
-0.009555257856845856,
-0.0351860448718071,
0.08706416189670563,
0.1457763910293579,
0.044170066714286804,
-0.11631006747484207,
-0.049463748931884766,
-0.06615571677684784,
-0.011183207854628563,
-0.045970357954502106,
0.04942626133561134,
0.0435870885848999,
-0.005148572847247124,
-0.04205143451690674,
0.06392192095518112,
-0.07264495640993118,
-0.12309781461954117,
0.07330232858657837,
-0.18973813951015472,
-0.16067072749137878,
-0.01866581290960312,
0.10663866996765137,
0.007197046186774969,
0.0613633394241333,
-0.035761963576078415,
0.013311762362718582,
0.06598463654518127,
-0.011429106816649437,
-0.09463717043399811,
-0.07990135997533798,
0.11809851229190826,
-0.11266175657510757,
0.18472807109355927,
-0.03839855268597603,
0.07903945446014404,
0.1317582130432129,
0.0531838983297348,
-0.08775109052658081,
0.06841950863599777,
0.05946705490350723,
-0.10197999328374863,
0.01763487234711647,
0.08201444149017334,
-0.013348668813705444,
0.03906754404306412,
0.03768150508403778,
-0.10980917513370514,
0.01406070590019226,
-0.046027522534132004,
-0.0141360554844141,
-0.06336966902017593,
-0.04249569773674011,
-0.06215604394674301,
0.12458490580320358,
0.21156297624111176,
-0.040275298058986664,
0.019736342132091522,
-0.07913396507501602,
0.016249531880021095,
0.05750507116317749,
0.019380202516913414,
-0.07586997002363205,
-0.2029476761817932,
0.022718921303749084,
0.05101175978779793,
-0.03406865894794464,
-0.2079140841960907,
-0.08740932494401932,
0.02000531181693077,
-0.08768414705991745,
-0.06700986623764038,
0.06396177411079407,
0.08197740465402603,
0.05941241234540939,
-0.04199092090129852,
-0.06194363906979561,
-0.08878371864557266,
0.15285256505012512,
-0.15456628799438477,
-0.08817340433597565
] |
null | null | transformers |
# roberta-base-ca-finetuned-catalonia-independence-detector
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the catalonia_independence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6065
- Accuracy: 0.7612
<details>
## Training and evaluation data
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 377 | 0.6311 | 0.7453 |
| 0.7393 | 2.0 | 754 | 0.6065 | 0.7612 |
| 0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 |
| 0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 |
| 0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 |
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector"
independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
independence_analysis(
"Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol."
)
# Output:
[{'label': 'AGAINST', 'score': 0.7457581758499146}]
independence_analysis(
"Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont"
)
# Output:
[{'label': 'NEUTRAL', 'score': 0.7436802983283997}]
independence_analysis(
"Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou"
)
# Output:
[{'label': 'FAVOR', 'score': 0.9040119647979736}]
```
[](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(CATALAN).ipynb#scrollTo=j29NHJtOyAVU)
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
## Citation
Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;)
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/) | {"language": "ca", "license": "apache-2.0", "tags": ["catalan"], "datasets": ["catalonia_independence"], "metrics": ["accuracy"], "widget": [{"text": "Puigdemont, a l'estat espanyol: Quatre anys despr\u00e9s, ens hem guanyat el dret a dir prou"}, {"text": "Llarena demana la detenci\u00f3 de Com\u00edn i Ponsat\u00ed aprofitant que s\u00f3n a It\u00e0lia amb Puigdemont"}, {"text": "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. \u00c9s a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, t\u00e9 un sentiment excloent, nom\u00e9s se senten catalans, i un 4% sol espanyol."}], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "args": "catalan"}, "metrics": [{"type": "accuracy", "value": 0.7611940298507462, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "config": "catalan", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.7208955223880597, "name": "Accuracy", "verified": true}, {"type": "precision", "value": 0.7532458247651523, "name": "Precision Macro", "verified": true}, {"type": "precision", "value": 0.7208955223880597, "name": "Precision Micro", "verified": true}, {"type": "precision", "value": 0.7367396361532118, "name": "Precision Weighted", "verified": true}, {"type": "recall", "value": 0.6880645531209203, "name": "Recall Macro", "verified": true}, {"type": "recall", "value": 0.7208955223880597, "name": "Recall Micro", "verified": true}, {"type": "recall", "value": 0.7208955223880597, "name": "Recall Weighted", "verified": true}, {"type": "f1", "value": 0.7013044744309381, "name": "F1 Macro", "verified": true}, {"type": "f1", "value": 0.7208955223880597, "name": "F1 Micro", "verified": true}, {"type": "f1", "value": 0.713640086434487, "name": "F1 Weighted", "verified": true}, {"type": "loss", "value": 0.6895929574966431, "name": "loss", "verified": true}]}]}]} | text-classification | JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"catalan",
"ca",
"dataset:catalonia_independence",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ca"
] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #catalan #ca #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
| roberta-base-ca-finetuned-catalonia-independence-detector
=========================================================
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the catalonia\_independence dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6065
* Accuracy: 0.7612
Training and evaluation data
----------------------------
The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.
Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Model in action
Fast usage with pipelines:

>
> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.
>
>
>
>
> Created by Jonatan Luna | LinkedIn
>
>
>
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #catalan #ca #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
72,
98,
4,
20,
85
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #catalan #ca #dataset-catalonia_independence #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Model in action\n\n\nFast usage with pipelines:\n\n\n\n\n\n\n> \n> Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.\n> \n> \n> \n\n\n\n> \n> Created by Jonatan Luna | LinkedIn\n> \n> \n>"
] | [
-0.11076348274946213,
0.19654496014118195,
-0.004450623411685228,
0.12215476483106613,
0.110422782599926,
0.002447576494887471,
0.12402600049972534,
0.16109755635261536,
-0.020933663472533226,
0.08619876205921173,
0.06934461742639542,
0.19726993143558502,
0.06237197667360306,
0.10642494261264801,
-0.06263129413127899,
-0.1951175481081009,
0.016092907637357712,
-0.03811882063746452,
-0.09855479001998901,
0.08614463359117508,
0.07472915947437286,
-0.0711701288819313,
0.11729995161294937,
0.007959747686982155,
-0.05047864466905594,
0.017102902755141258,
-0.011271391995251179,
-0.07433751970529556,
0.11872929334640503,
0.05961815267801285,
0.07596465945243835,
0.053783394396305084,
0.07217688113451004,
-0.2270766943693161,
0.006097931880503893,
0.051474783569574356,
0.014041513204574585,
0.09957870841026306,
0.11037354171276093,
-0.03519342094659805,
0.06625397503376007,
-0.11582677066326141,
0.07313203066587448,
0.032057855278253555,
-0.14667382836341858,
-0.18457624316215515,
-0.1498519629240036,
0.03984071686863899,
0.07567265629768372,
0.0604812428355217,
0.024508841335773468,
0.09001950919628143,
-0.03581633046269417,
0.04856773093342781,
0.20763805508613586,
-0.23744648694992065,
-0.048985570669174194,
0.037196360528469086,
0.03608402609825134,
0.0479835644364357,
-0.05870772898197174,
-0.010292230173945427,
0.03183906152844429,
0.026575500145554543,
0.10494133085012436,
-0.04670773074030876,
-0.0709690973162651,
-0.02175280451774597,
-0.08278443664312363,
-0.08454892784357071,
0.1502382457256317,
0.03269471600651741,
-0.026753125712275505,
-0.07656990736722946,
-0.07843960076570511,
-0.041782960295677185,
-0.0360754132270813,
-0.0068969386629760265,
0.06884199380874634,
-0.011809947900474072,
0.03190196305513382,
-0.030503038316965103,
-0.07796785980463028,
-0.01418889407068491,
0.0024102134630084038,
0.040376897901296616,
0.046915411949157715,
0.02688216231763363,
0.043047137558460236,
0.09461978077888489,
0.09845446795225143,
-0.12444593012332916,
0.02555488981306553,
0.004957155324518681,
0.005965645425021648,
-0.031211167573928833,
0.021527962759137154,
-0.016050204634666443,
0.06835488229990005,
0.14129756391048431,
-0.16566972434520721,
0.04152810201048851,
0.032645631581544876,
0.05463341996073723,
-0.05937724933028221,
0.14344525337219238,
-0.09688971936702728,
-0.07916951924562454,
0.05025535821914673,
0.03956693410873413,
0.02134411595761776,
-0.00878263171762228,
-0.11978159099817276,
-0.01784888282418251,
0.04187079146504402,
0.07837148755788803,
0.045554373413324356,
0.044733043760061264,
-0.07445374876260757,
-0.05592363327741623,
0.15842954814434052,
-0.09141864627599716,
0.0607733391225338,
0.03196167200803757,
-0.09054992347955704,
-0.024981064721941948,
0.01826237328350544,
0.005550711415708065,
-0.0627506896853447,
0.04013364017009735,
-0.028310755267739296,
-0.018157385289669037,
-0.08858391642570496,
-0.13086241483688354,
0.06285302340984344,
-0.03200268745422363,
-0.010303107090294361,
-0.09143900871276855,
-0.13970720767974854,
-0.0769927129149437,
0.10821828991174698,
-0.08039594441652298,
-0.06553945690393448,
-0.08258980512619019,
-0.05211586877703667,
0.03321123123168945,
-0.028909526765346527,
0.03860364109277725,
-0.09479495882987976,
0.05462238937616348,
-0.033886101096868515,
0.06107870489358902,
-0.02185220830142498,
0.023830758407711983,
-0.08146721124649048,
0.05918774753808975,
-0.16146475076675415,
0.09267273545265198,
-0.0610421858727932,
0.07882210612297058,
-0.1485281139612198,
-0.06812971085309982,
0.04338008910417557,
0.013635159470140934,
0.06973592936992645,
0.12400790303945541,
-0.1564834713935852,
-0.027263924479484558,
0.15613044798374176,
-0.03729116916656494,
-0.12529605627059937,
0.10766122490167618,
-0.036187656223773956,
0.04050927609205246,
0.05647912994027138,
0.15845558047294617,
0.07119662314653397,
-0.11539866775274277,
0.0066098058596253395,
-0.02665526606142521,
-0.0024991414975374937,
-0.10156513005495071,
0.07623878866434097,
-0.018840325996279716,
0.0683216080069542,
0.014948921278119087,
-0.03520597144961357,
0.02088889852166176,
-0.035702407360076904,
-0.0758143737912178,
0.017213916406035423,
-0.0563494898378849,
-0.029796423390507698,
0.03179542347788811,
0.026600103825330734,
-0.05589970201253891,
-0.06345640122890472,
0.00262598623521626,
0.0540560707449913,
-0.049463532865047455,
0.027174653485417366,
-0.07440106570720673,
0.11102111637592316,
-0.06358755379915237,
0.0008024192065931857,
-0.1378350406885147,
-0.038114793598651886,
0.022710224613547325,
-0.015564020723104477,
0.027763882651925087,
0.05624816566705704,
0.058363497257232666,
0.037515074014663696,
-0.050907887518405914,
-0.023961639031767845,
0.020703904330730438,
-0.013421510346233845,
-0.04637467861175537,
-0.20500235259532928,
-0.015479225665330887,
-0.02267947606742382,
0.0712689459323883,
-0.20072247087955475,
0.025618266314268112,
0.00792144238948822,
0.07724496722221375,
0.041883088648319244,
0.01009487546980381,
0.01256013847887516,
0.05538180097937584,
-0.041010234504938126,
-0.09033604711294174,
0.08162398636341095,
0.021294688805937767,
-0.03233396261930466,
0.061780378222465515,
-0.10292460024356842,
0.08876213431358337,
0.0860854834318161,
-0.028518404811620712,
-0.062076009809970856,
0.008544559590518475,
-0.055769264698028564,
-0.005044826306402683,
-0.021934976801276207,
0.05439220741391182,
0.13201864063739777,
0.028703249990940094,
0.15645234286785126,
-0.11801272630691528,
-0.046046897768974304,
0.02047184854745865,
-0.06788229942321777,
-0.006366679910570383,
0.160458043217659,
0.08442818373441696,
-0.05743243172764778,
0.11912732571363449,
0.03891386091709137,
-0.0030203349888324738,
0.11827575415372849,
-0.009366398677229881,
-0.04021517187356949,
-0.030253788456320763,
0.048192039132118225,
0.0540129654109478,
0.11029207706451416,
-0.003313870867714286,
0.022569872438907623,
0.04049922898411751,
0.022045888006687164,
0.021006805822253227,
-0.1902213990688324,
0.0025093157310038805,
0.02116304822266102,
-0.08724616467952728,
-0.0017682702746242285,
0.018331238999962807,
0.027547504752874374,
0.08935850858688354,
0.05296023562550545,
-0.06344212591648102,
-0.008606448769569397,
-0.020045630633831024,
-0.07774816453456879,
0.16581326723098755,
-0.0861176997423172,
-0.19455793499946594,
-0.13250182569026947,
-0.0617518424987793,
-0.03088744357228279,
0.014789116568863392,
0.04249148070812225,
-0.057692017406225204,
-0.04826211929321289,
-0.08980199694633484,
-0.0044032493606209755,
0.044195711612701416,
-0.07187777757644653,
-0.0035135813523083925,
0.0714866891503334,
0.04794490709900856,
-0.10353109985589981,
-0.009018071927130222,
0.005889421794563532,
-0.022039372473955154,
-0.02058418281376362,
0.005077476147562265,
0.1226625144481659,
0.09513547271490097,
0.0005575733375735581,
0.01372567843645811,
-0.012866801582276821,
0.23648932576179504,
-0.07839180529117584,
0.028931042179465294,
0.13863787055015564,
0.028021711856126785,
0.0731097161769867,
0.19591552019119263,
0.057907670736312866,
-0.08856286853551865,
-0.03720381483435631,
0.025612009689211845,
-0.02134261094033718,
-0.2621394395828247,
-0.0870920866727829,
-0.05127186328172684,
0.04186670854687691,
0.10864540189504623,
0.05962944030761719,
-0.002605029847472906,
0.052963968366384506,
-0.004338239785283804,
0.08312603831291199,
-0.0053956229239702225,
0.08175574988126755,
0.1271572858095169,
0.05763688683509827,
0.0344662107527256,
-0.07164713740348816,
-0.02725226618349552,
0.0902133658528328,
0.12548740208148956,
0.13875693082809448,
-0.01706766150891781,
0.17023436725139618,
0.058774009346961975,
0.1393260806798935,
-0.033274780958890915,
0.038533102720975876,
-0.01595795527100563,
0.027175771072506905,
-0.034036897122859955,
-0.0467425100505352,
-0.03507193177938461,
0.0051015825010836124,
-0.020067250356078148,
-0.012733717449009418,
-0.07555930316448212,
-0.01457567885518074,
0.06834399700164795,
0.3057369887828827,
0.013389300554990768,
-0.3120388984680176,
-0.06632118672132492,
0.019948910921812057,
-0.023677662014961243,
-0.04482497647404671,
-0.007270791567862034,
0.09399151057004929,
-0.11473647505044937,
0.05777205154299736,
-0.043684810400009155,
0.11511041224002838,
-0.16932587325572968,
0.015146931633353233,
0.10604660958051682,
0.10845761001110077,
0.021214928478002548,
0.06998781859874725,
-0.17771677672863007,
0.26097074151039124,
0.022604001685976982,
0.05466705560684204,
-0.04873555153608322,
0.02063877321779728,
0.004675585776567459,
0.03812630474567413,
0.11359671503305435,
0.012578442692756653,
-0.12313023954629898,
-0.1856330931186676,
-0.11255091428756714,
-0.001060083624906838,
0.006799130700528622,
-0.07063913345336914,
0.09927225857973099,
-0.024326207116246223,
-0.03703515604138374,
-0.0023979961406439543,
-0.07480238378047943,
-0.06428500264883041,
-0.16228650510311127,
0.015793047845363617,
-0.007104645948857069,
-0.06981885433197021,
-0.04945886880159378,
-0.05347312614321709,
-0.06994905322790146,
0.15909281373023987,
-0.045514244586229324,
-0.06407783925533295,
-0.12389221042394638,
-0.00422406941652298,
0.08643244206905365,
-0.08989398926496506,
0.013740033842623234,
-0.015087573789060116,
0.05514604225754738,
-0.008146165870130062,
-0.056975919753313065,
0.11127135902643204,
-0.0954064130783081,
-0.15220658481121063,
-0.06539055705070496,
0.09925152361392975,
-0.004346119239926338,
0.042584244161844254,
0.02174215205013752,
-0.0020344846416264772,
-0.007599638309329748,
-0.08395575731992722,
-0.015370185486972332,
0.02915215492248535,
0.06061301752924919,
-0.017310436815023422,
-0.08697324991226196,
-0.029340526089072227,
-0.046937741339206696,
-0.04793616011738777,
0.14087878167629242,
0.2718324661254883,
-0.08800957351922989,
0.07578179240226746,
0.07949917018413544,
-0.10441770404577255,
-0.1897592842578888,
-0.022082209587097168,
0.009045648388564587,
-0.018022220581769943,
0.0050953226163983345,
-0.1713448464870453,
-0.007496935315430164,
0.08837170898914337,
-0.03028043359518051,
0.09302639961242676,
-0.3509885370731354,
-0.11596909910440445,
0.0008437239448539913,
0.10348954796791077,
0.06489475071430206,
-0.11560246348381042,
-0.0754501074552536,
-0.07386653125286102,
-0.10898511111736298,
0.1099725142121315,
-0.006061529275029898,
0.09537915140390396,
-0.02109876461327076,
0.06285981088876724,
0.008520479314029217,
-0.03297712281346321,
0.11803985387086868,
-0.03535116836428642,
0.06977347284555435,
-0.046571869403123856,
0.018784722313284874,
0.0822400376200676,
-0.08031292259693146,
0.05230163037776947,
-0.051330290734767914,
0.0075264060869812965,
-0.0896238461136818,
-0.020849034190177917,
-0.06680524349212646,
0.036614835262298584,
-0.04911429435014725,
-0.02818293310701847,
-0.07509437203407288,
0.06253557652235031,
0.1463422030210495,
-0.0013826037757098675,
0.07728256285190582,
0.013109036721289158,
0.08771389722824097,
0.14076118171215057,
0.08082876354455948,
-0.024343758821487427,
-0.010849627666175365,
0.008120276033878326,
-0.0015977369621396065,
0.01839546300470829,
-0.14649225771427155,
0.042005185037851334,
0.13060042262077332,
-0.03430410847067833,
0.08400797098875046,
0.020726969465613365,
-0.07373666018247604,
0.016179287806153297,
0.08470834791660309,
-0.11767323315143585,
-0.154435932636261,
0.01950984261929989,
-0.027165718376636505,
-0.07450033724308014,
-0.036715902388095856,
0.11978205293416977,
-0.05848214402794838,
-0.04013137146830559,
0.016403760761022568,
0.029742738232016563,
-0.005986029747873545,
0.1364459991455078,
0.043354932218790054,
0.02971782349050045,
-0.08314033597707748,
0.108110211789608,
0.0770278126001358,
-0.10248322784900665,
0.0056900689378380775,
0.13050061464309692,
-0.08090556412935257,
-0.043776340782642365,
0.11320433020591736,
0.16822925209999084,
-0.09620873630046844,
-0.07437384128570557,
-0.15554533898830414,
-0.08004201948642731,
0.05898347496986389,
0.07204333692789078,
0.04336201027035713,
0.017500612884759903,
0.021094471216201782,
-0.01026052888482809,
-0.08748029917478561,
0.09698880463838577,
0.0716356486082077,
0.024515314027667046,
-0.13080467283725739,
0.0180455781519413,
-0.008941227570176125,
0.012293615378439426,
0.005018649622797966,
0.0405595488846302,
-0.13380853831768036,
0.005726564209908247,
-0.10894260555505753,
0.043029122054576874,
-0.06738913804292679,
0.02053879387676716,
-0.03756948933005333,
-0.016796402633190155,
-0.046373095363378525,
0.005574394483119249,
-0.10486587136983871,
-0.03455720096826553,
-0.029828671365976334,
0.09712215512990952,
-0.12111552059650421,
-0.026269210502505302,
0.025276651605963707,
-0.06831125169992447,
0.06450115144252777,
-0.045593082904815674,
-0.03222315385937691,
0.00186777429189533,
-0.16018344461917877,
-0.004087524022907019,
0.02315320074558258,
0.02905380353331566,
0.11623400449752808,
-0.10492883622646332,
0.014573434367775917,
0.019748831167817116,
0.0007704045274294913,
0.0017439663643017411,
0.0907914787530899,
-0.10595619678497314,
0.03190862014889717,
-0.006789533421397209,
-0.09940502792596817,
-0.04334425926208496,
0.09813882410526276,
0.12640443444252014,
-0.002316580154001713,
0.15065188705921173,
-0.09301997721195221,
0.03801516816020012,
-0.18741214275360107,
-0.016262466087937355,
0.04326464608311653,
-0.06484553962945938,
-0.09043369442224503,
-0.02413395419716835,
0.0706951692700386,
-0.028397344052791595,
0.1509106606245041,
0.06070544943213463,
0.0754869133234024,
0.01077613141387701,
-0.049585577100515366,
-0.07917966693639755,
0.026213236153125763,
0.06314975768327713,
-0.02518063224852085,
-0.006406357511878014,
0.05352555960416794,
0.022306237369775772,
0.07529499381780624,
0.0645463839173317,
0.14645981788635254,
0.1790117472410202,
0.18579424917697906,
0.07164216786623001,
0.07686690986156464,
-0.049584098160266876,
-0.1681133508682251,
0.06072690710425377,
-0.008048663847148418,
0.11897055804729462,
-0.05464634671807289,
0.1304657757282257,
0.08880866318941116,
-0.19613584876060486,
0.09146584570407867,
-0.036359645426273346,
-0.05453702062368393,
-0.11097092181444168,
-0.16868603229522705,
-0.0749020203948021,
-0.12915992736816406,
-0.008126500062644482,
-0.1001567542552948,
0.027847975492477417,
0.05129150301218033,
0.006376031320542097,
-0.007918059825897217,
0.05563586950302124,
0.01940799690783024,
-0.011301038786768913,
0.05121515318751335,
0.0295085608959198,
0.020538605749607086,
-0.05406271293759346,
-0.038044847548007965,
-0.025746308267116547,
0.01888338290154934,
0.04435484856367111,
0.038945361971855164,
-0.009679500944912434,
0.05203436687588692,
-0.04474925249814987,
-0.08588852733373642,
0.009698406793177128,
0.027526071295142174,
0.053284015506505966,
0.11091525852680206,
0.041611336171627045,
-0.013883676379919052,
0.019157318398356438,
0.24633753299713135,
-0.05140332132577896,
-0.04636992886662483,
-0.14205417037010193,
0.1528247892856598,
0.00991416908800602,
-0.017746560275554657,
0.04222749173641205,
-0.07923003286123276,
-0.019754299893975258,
0.21604987978935242,
0.23036397993564606,
-0.0940367728471756,
-0.03149796277284622,
-0.016428902745246887,
0.0027497101109474897,
-0.03750228136777878,
0.09716633707284927,
0.08475276827812195,
0.08507073670625687,
-0.07537910342216492,
-0.06685420870780945,
-0.03061634488403797,
0.00458898302167654,
-0.07006509602069855,
0.13198760151863098,
-0.02793402038514614,
0.00532355485484004,
-0.044389575719833374,
0.10591944307088852,
-0.09721178561449051,
-0.18591129779815674,
0.06984202563762665,
-0.19715146720409393,
-0.1682782620191574,
-0.028146542608737946,
0.07100880146026611,
0.009274211712181568,
0.07520157098770142,
0.012065901421010494,
-0.0408184640109539,
0.10265802592039108,
-0.01702043227851391,
-0.06721945106983185,
-0.07635486125946045,
0.05782017111778259,
-0.05058149993419647,
0.27095547318458557,
-0.02340029366314411,
-0.0023419088684022427,
0.14753687381744385,
0.014154200442135334,
-0.15126661956310272,
0.008409304544329643,
0.05916311964392662,
-0.036739252507686615,
0.03680583834648132,
0.04068264365196228,
-0.031610194593667984,
0.07800117135047913,
0.049684468656778336,
-0.0821024626493454,
0.028158795088529587,
0.015596110373735428,
-0.020155899226665497,
-0.07276859134435654,
-0.005975713487714529,
-0.05944528058171272,
0.10073882341384888,
0.1692897081375122,
-0.0066146245226264,
0.03659761697053909,
-0.06490432471036911,
0.03693642467260361,
0.013103778474032879,
0.02046770416200161,
-0.06750641763210297,
-0.18670685589313507,
0.01870386116206646,
0.026110922917723656,
0.04598863050341606,
-0.1496945172548294,
-0.06807345896959305,
-0.015958555042743683,
-0.04770010709762573,
-0.08577384054660797,
0.11764819175004959,
0.04976760968565941,
0.055397093296051025,
-0.030547911301255226,
-0.0690535455942154,
-0.04229909926652908,
0.145321324467659,
-0.1104409322142601,
-0.06228555366396904
] |
null | null | transformers | # roberta-base-ca-finetuned-cyberbullying-catalan
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan.
It achieves the following results on the evaluation set:
- Loss: 0.1508
- Accuracy: 0.9665
## Training and evaluation data
I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at [roberta-base-bne-finetuned-cyberbullying-spanish](https://huggingface.co/JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish)
## Training procedure
<details>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan"
bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
bullying_analysis(
"Des que et vaig veure m'en vaig enamorar de tu."
)
# Output:
[{'label': 'Not_bullying', 'score': 0.9996786117553711}]
bullying_analysis(
"Ets tan lletja que et donaven de menjar per sota la porta."
)
# Output:
[{'label': 'Bullying', 'score': 0.9927878975868225}]
```
[](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(CATALAN).ipynb)
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
## Citation
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
| {"language": "ca", "tags": ["catalan"], "metrics": ["accuracy"], "widget": [{"text": "Ets m\u00e9s petita que un barrufet!!"}, {"text": "Ets tan lletja que et donaven de menjar per sota la porta."}]} | text-classification | JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"catalan",
"ca",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ca"
] | TAGS
#transformers #pytorch #roberta #text-classification #catalan #ca #autotrain_compatible #endpoints_compatible #has_space #region-us
| # roberta-base-ca-finetuned-cyberbullying-catalan
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan.
It achieves the following results on the evaluation set:
- Loss: 0.1508
- Accuracy: 0.9665
## Training and evaluation data
I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at roberta-base-bne-finetuned-cyberbullying-spanish
## Training procedure
<details>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
</details>
### Model in action
Fast usage with pipelines:
 to detect cyberbullying on Catalan.\n\nIt achieves the following results on the evaluation set:\n- Loss: 0.1508\n- Accuracy: 0.9665",
"## Training and evaluation data\n\nI use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at roberta-base-bne-finetuned-cyberbullying-spanish",
"## Training procedure\n\n<details>",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4\n\n</details>",
"### Model in action \n\nFast usage with pipelines:\n\n\n\n to detect cyberbullying on Catalan.\n\nIt achieves the following results on the evaluation set:\n- Loss: 0.1508\n- Accuracy: 0.9665",
"## Training and evaluation data\n\nI use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at roberta-base-bne-finetuned-cyberbullying-spanish",
"## Training procedure\n\n<details>",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4\n\n</details>",
"### Model in action \n\nFast usage with pipelines:\n\n\n\n to detect cyberbullying on Catalan.\n\nIt achieves the following results on the evaluation set:\n- Loss: 0.1508\n- Accuracy: 0.9665## Training and evaluation data\n\nI use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at roberta-base-bne-finetuned-cyberbullying-spanish## Training procedure\n\n<details>### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4\n\n</details>### Model in action \n\nFast usage with pipelines:\n\n\n\n on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4137
- Accuracy: 0.8778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3699 | 1.0 | 1255 | 0.3712 | 0.8669 |
| 0.3082 | 2.0 | 2510 | 0.3401 | 0.8766 |
| 0.2375 | 3.0 | 3765 | 0.4137 | 0.8778 |
| 0.1889 | 4.0 | 5020 | 0.4671 | 0.8733 |
| 0.1486 | 5.0 | 6275 | 0.5205 | 0.8749 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": []}]} | text-classification | JonatanGk/roberta-base-ca-finetuned-hate-speech-offensive-catalan | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| roberta-base-ca-finetuned-mnli
==============================
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4137
* Accuracy: 0.8778
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
56,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.09555444866418839,
0.07757540047168732,
-0.002211768878623843,
0.1206863522529602,
0.18381692469120026,
0.021076912060379982,
0.11314330250024796,
0.12124539166688919,
-0.1171039566397667,
0.012935014441609383,
0.12069427222013474,
0.1866644024848938,
0.008081743493676186,
0.10258499532938004,
-0.05388794094324112,
-0.25326770544052124,
-0.01414108369499445,
0.04388480260968208,
-0.09001748263835907,
0.1423964500427246,
0.09499792754650116,
-0.13279475271701813,
0.07894458621740341,
0.004759551491588354,
-0.22639553248882294,
0.012874433770775795,
0.01735021360218525,
-0.06623637676239014,
0.15319089591503143,
0.020910276100039482,
0.12847888469696045,
0.003771512070670724,
0.07501192390918732,
-0.17855213582515717,
0.01241279672831297,
0.05133144184947014,
0.0033894784282892942,
0.08963935077190399,
0.05802992358803749,
-0.012783420272171497,
0.12004271894693375,
-0.0856298878788948,
0.05058455839753151,
0.023258326575160027,
-0.12256407737731934,
-0.2175212800502777,
-0.08083219826221466,
0.021228665485978127,
0.06250067800283432,
0.10803154110908508,
0.00031628276337869465,
0.13177213072776794,
-0.09660619497299194,
0.09651924669742584,
0.22719405591487885,
-0.27790021896362305,
-0.06543421745300293,
0.031998373568058014,
0.005786021240055561,
0.07586568593978882,
-0.10668370127677917,
-0.021086271852254868,
0.05158853530883789,
0.046257633715867996,
0.13093183934688568,
-0.037640530616045,
-0.13396376371383667,
0.02185833640396595,
-0.14328649640083313,
-0.03247157111763954,
0.12902189791202545,
0.021962052211165428,
-0.025438696146011353,
-0.03204161673784256,
-0.06228865310549736,
-0.16470006108283997,
-0.03779839351773262,
-0.006042345426976681,
0.04903796315193176,
-0.03299126401543617,
-0.06465836614370346,
-0.002863329602405429,
-0.10718844085931778,
-0.06437601894140244,
-0.07956268638372421,
0.14515738189220428,
0.03828761354088783,
0.01681802235543728,
-0.03778574988245964,
0.10551615804433823,
0.011656902730464935,
-0.12782248854637146,
0.030901547521352768,
0.03209637850522995,
0.00038508459692820907,
-0.04205404222011566,
-0.0677235871553421,
-0.06804846972227097,
0.015043244697153568,
0.10608246177434921,
-0.05338133126497269,
0.04482885077595711,
0.030360328033566475,
0.04900868237018585,
-0.10116077959537506,
0.19855371117591858,
-0.03791722282767296,
-0.0094557860866189,
0.016597842797636986,
0.03744502738118172,
0.0116729736328125,
-0.008008457720279694,
-0.12191927433013916,
-0.003424767404794693,
0.1082369014620781,
0.02627941034734249,
-0.06346479803323746,
0.0696001723408699,
-0.05132225900888443,
-0.025115227326750755,
0.006487092934548855,
-0.09908983111381531,
0.027871662750840187,
-0.003408452495932579,
-0.08528328686952591,
-0.016036609187722206,
0.029324468225240707,
0.012435052543878555,
-0.029522864148020744,
0.11759530752897263,
-0.08158281445503235,
0.043799128383398056,
-0.10000181943178177,
-0.10923843085765839,
0.014369714073836803,
-0.08394020795822144,
0.025796975940465927,
-0.10546361654996872,
-0.16094645857810974,
-0.013050536625087261,
0.052469652146101,
-0.021445972844958305,
-0.06456978619098663,
-0.047017499804496765,
-0.07610254734754562,
0.005351488012820482,
-0.01923505961894989,
0.15857478976249695,
-0.05767348036170006,
0.10898199677467346,
0.03656709939241409,
0.06364788115024567,
-0.05108731612563133,
0.06316310167312622,
-0.10033448040485382,
-0.002608952345326543,
-0.18584375083446503,
0.04760538041591644,
-0.047098465263843536,
0.08001097291707993,
-0.09075979143381119,
-0.10989263653755188,
0.0185864120721817,
-0.006600065156817436,
0.06823147088289261,
0.089005246758461,
-0.15905863046646118,
-0.07676678895950317,
0.1512511670589447,
-0.06338214129209518,
-0.10910698771476746,
0.11176694929599762,
-0.06103413924574852,
0.05088461935520172,
0.07555485516786575,
0.16486473381519318,
0.07744528353214264,
-0.05842117592692375,
0.034233856946229935,
0.0004619232495315373,
0.04107005149126053,
-0.0857294350862503,
0.06261781603097916,
0.001599412295036018,
-0.006984121631830931,
0.035993386059999466,
-0.0316883809864521,
0.06977009028196335,
-0.09308969229459763,
-0.09711084514856339,
-0.04307364299893379,
-0.10244040191173553,
0.052266594022512436,
0.07747858762741089,
0.09159279614686966,
-0.09396304935216904,
-0.06715785712003708,
0.07118608802556992,
0.07452873885631561,
-0.0552113875746727,
0.03449763357639313,
-0.05015942081809044,
0.059975698590278625,
-0.038711052387952805,
-0.018158607184886932,
-0.2021949589252472,
-0.0018054351676255465,
0.004694809205830097,
0.0036089755594730377,
0.02628747746348381,
0.021732283756136894,
0.06601622700691223,
0.04897312819957733,
-0.05381648242473602,
-0.011226127855479717,
-0.015953345224261284,
-0.008837299421429634,
-0.13534234464168549,
-0.19039498269557953,
-0.017541129142045975,
-0.015949048101902008,
0.12551429867744446,
-0.19441603124141693,
0.038632843643426895,
-0.018976910039782524,
0.05542181432247162,
0.00005997759581077844,
0.001036266447044909,
-0.04152178019285202,
0.09222940355539322,
-0.03560944274067879,
-0.04567170515656471,
0.08148739486932755,
0.0018890815554186702,
-0.08342807739973068,
-0.03614179044961929,
-0.09009019285440445,
0.1791542023420334,
0.1438959538936615,
-0.13240483403205872,
-0.07725603133440018,
0.009180750697851181,
-0.05472266301512718,
-0.028589807450771332,
-0.04249851033091545,
0.04805478826165199,
0.19390885531902313,
-0.012910755351185799,
0.15938590466976166,
-0.07024764269590378,
-0.04813576117157936,
0.01871352829039097,
-0.03257058933377266,
0.04078565165400505,
0.12799637019634247,
0.11742196977138519,
-0.07275788486003876,
0.14401459693908691,
0.14776939153671265,
-0.10532286763191223,
0.1219128966331482,
-0.04088449850678444,
-0.06426622718572617,
-0.007832422852516174,
-0.022044429555535316,
0.0023316729348152876,
0.08014003187417984,
-0.14063961803913116,
-0.006793708074837923,
0.020805833861231804,
0.01751963421702385,
0.027992626652121544,
-0.23020032048225403,
-0.04046284779906273,
0.026242878288030624,
-0.04111254960298538,
-0.00334173790179193,
-0.018006712198257446,
0.012605858035385609,
0.10990535467863083,
0.0017361255595460534,
-0.08069214224815369,
0.04299156367778778,
0.0057751997373998165,
-0.07928706705570221,
0.222996324300766,
-0.08620434254407883,
-0.1655341535806656,
-0.1262883096933365,
-0.0787869244813919,
-0.045301325619220734,
0.008543790318071842,
0.06417256593704224,
-0.1021258756518364,
-0.02648342028260231,
-0.05246647447347641,
0.02463204599916935,
-0.012355458922684193,
0.03682969883084297,
-0.003816324984654784,
0.011582935228943825,
0.06805344671010971,
-0.11102373898029327,
-0.0051100971177220345,
-0.05561908707022667,
-0.07196979969739914,
0.055442407727241516,
0.04134412482380867,
0.11245738714933395,
0.1681738644838333,
-0.02799457125365734,
0.004506221041083336,
-0.03022652491927147,
0.21420422196388245,
-0.06565483659505844,
-0.03291159123182297,
0.13773417472839355,
-0.0020170328207314014,
0.05505264550447464,
0.10407977551221848,
0.07115966826677322,
-0.08501742780208588,
0.011707612313330173,
0.022410618141293526,
-0.0425950363278389,
-0.23966747522354126,
-0.049645014107227325,
-0.05987138673663139,
-0.023534169420599937,
0.09047901630401611,
0.0335882268846035,
0.050896935164928436,
0.07186632603406906,
0.0509001687169075,
0.08443762362003326,
-0.04234582185745239,
0.05164990574121475,
0.12868249416351318,
0.04844251647591591,
0.12904059886932373,
-0.05377334728837013,
-0.06814699620008469,
0.03521484509110451,
-0.015492530539631844,
0.2197549045085907,
0.0011297499295324087,
0.1346002221107483,
0.05677958205342293,
0.18358869850635529,
0.008620433509349823,
0.08461654931306839,
0.0008841663366183639,
-0.040774814784526825,
-0.010820039547979832,
-0.03703855350613594,
-0.04761960357427597,
0.009722334332764149,
-0.06509202718734741,
0.05553890019655228,
-0.1126236543059349,
-0.019884061068296432,
0.05547282099723816,
0.2555620074272156,
0.016839146614074707,
-0.31627988815307617,
-0.08271017670631409,
0.0010084486566483974,
-0.034307125955820084,
-0.012556836009025574,
0.021104179322719574,
0.08127054572105408,
-0.10133874416351318,
0.025403646752238274,
-0.07076700776815414,
0.09983686357736588,
-0.04441453516483307,
0.04553036764264107,
0.06298254430294037,
0.08751476556062698,
0.011475802399218082,
0.08759979158639908,
-0.3208959102630615,
0.2680385708808899,
0.0018260328797623515,
0.06499142199754715,
-0.07866345345973969,
-0.0034460597671568394,
0.03867198899388313,
0.06458605080842972,
0.055084872990846634,
-0.014362538233399391,
-0.02332170680165291,
-0.190322607755661,
-0.05336302891373634,
0.029533719643950462,
0.08383329957723618,
-0.02354741096496582,
0.08272664248943329,
-0.02886376902461052,
0.005372095387428999,
0.07190762460231781,
-0.02861018106341362,
-0.040217626839876175,
-0.09501533955335617,
-0.01384847890585661,
0.017590466886758804,
-0.04456646367907524,
-0.05934485048055649,
-0.11252281069755554,
-0.12810355424880981,
0.15633012354373932,
-0.01959800347685814,
-0.03705041483044624,
-0.11185967922210693,
0.08626158535480499,
0.07390204817056656,
-0.09098446369171143,
0.04922206699848175,
0.0005163420573808253,
0.05594579875469208,
0.027289221063256264,
-0.08234630525112152,
0.10618690401315689,
-0.059292931109666824,
-0.15539152920246124,
-0.050486061722040176,
0.10141459852457047,
0.027702471241354942,
0.06361322104930878,
-0.016139047220349312,
0.01398658286780119,
-0.04567229375243187,
-0.09282875806093216,
0.012907324358820915,
-0.017871428281068802,
0.07327788323163986,
0.030214549973607063,
-0.05844380706548691,
-0.004430348053574562,
-0.06756684929132462,
-0.037170350551605225,
0.20484943687915802,
0.21668924391269684,
-0.0986177995800972,
0.02730005979537964,
0.034217946231365204,
-0.07068726420402527,
-0.2070785015821457,
0.04879086837172508,
0.05661129578948021,
0.0013184841955080628,
0.03631395101547241,
-0.1781870424747467,
0.13568496704101562,
0.10518491268157959,
-0.012420454993844032,
0.11227083951234818,
-0.33956316113471985,
-0.12878449261188507,
0.1208433136343956,
0.15233787894248962,
0.13818974792957306,
-0.15204930305480957,
-0.021348832175135612,
-0.029435470700263977,
-0.11329890042543411,
0.10368657112121582,
-0.09209873527288437,
0.12312404066324234,
-0.035613011568784714,
0.088323675096035,
0.0016189656453207135,
-0.058774638921022415,
0.11583291739225388,
0.020092736929655075,
0.09746946394443512,
-0.06370338052511215,
-0.03403814136981964,
0.050830718129873276,
-0.03135065361857414,
0.010691237635910511,
-0.07807238399982452,
0.02890915982425213,
-0.09268403053283691,
-0.019016828387975693,
-0.08408902585506439,
0.0429997444152832,
-0.03201264888048172,
-0.05481285974383354,
-0.03899187967181206,
0.01816975325345993,
0.04388350248336792,
-0.012886169366538525,
0.13516421616077423,
0.01792982965707779,
0.14759859442710876,
0.11824733763933182,
0.07001074403524399,
-0.0545458123087883,
-0.06479810178279877,
-0.01575474813580513,
-0.014898769557476044,
0.0551229752600193,
-0.1547900289297104,
0.026512790471315384,
0.14001385867595673,
0.021851303055882454,
0.12660285830497742,
0.08538328856229782,
-0.014662807807326317,
0.010599453002214432,
0.06540214270353317,
-0.15902067720890045,
-0.07729140669107437,
-0.002701603574678302,
-0.06257475912570953,
-0.09802322089672089,
0.05183883383870125,
0.08314159512519836,
-0.0680561363697052,
-0.016682647168636322,
-0.008201627992093563,
0.002773987827822566,
-0.06311679631471634,
0.2007739096879959,
0.069723941385746,
0.047776177525520325,
-0.11100788414478302,
0.0771944671869278,
0.06566441804170609,
-0.07540570944547653,
-0.0057413275353610516,
0.086398646235466,
-0.08421100676059723,
-0.05003298446536064,
0.10980316996574402,
0.17337967455387115,
-0.0685233473777771,
-0.04209326580166817,
-0.13948918879032135,
-0.12499640882015228,
0.07948116213083267,
0.16570797562599182,
0.1207452192902565,
0.00838435161858797,
-0.05951282009482384,
0.0037348719779402018,
-0.12281506508588791,
0.07663939893245697,
0.03395931050181389,
0.06630618870258331,
-0.1298757642507553,
0.16530288755893707,
0.014942157082259655,
0.05378040671348572,
-0.022798286750912666,
0.023645276203751564,
-0.0999980941414833,
0.023049548268318176,
-0.11707653105258942,
-0.01954861357808113,
-0.015979623422026634,
0.006531178951263428,
-0.010058021172881126,
-0.055002350360155106,
-0.058051884174346924,
0.015889249742031097,
-0.12164905667304993,
-0.021050669252872467,
0.022319093346595764,
0.05062311887741089,
-0.11454766988754272,
-0.04247292876243591,
0.023941442370414734,
-0.054503440856933594,
0.06496850401163101,
0.05023488774895668,
0.008986963890492916,
0.06952240318059921,
-0.14635241031646729,
-0.0041701914742589,
0.07627274096012115,
0.011124485172331333,
0.0673123300075531,
-0.08133205771446228,
-0.004275969695299864,
0.0061780852265655994,
0.07200302183628082,
0.023865900933742523,
0.07842085510492325,
-0.14676716923713684,
0.002811174374073744,
-0.03216943144798279,
-0.08496109396219254,
-0.0678241103887558,
0.030323965474963188,
0.08374831825494766,
0.01333909947425127,
0.19679418206214905,
-0.0771244466304779,
0.04495349898934364,
-0.20456333458423615,
0.0002670989779289812,
-0.02308248169720173,
-0.11977268755435944,
-0.12845662236213684,
-0.06548529863357544,
0.062372978776693344,
-0.05033741891384125,
0.14203934371471405,
0.036670099943876266,
0.046410173177719116,
0.029537323862314224,
-0.006278865039348602,
0.009463176131248474,
0.02679322473704815,
0.2128932625055313,
0.03804369643330574,
-0.03311767801642418,
0.07330380380153656,
0.06066649779677391,
0.09701623767614365,
0.11500862240791321,
0.19938881695270538,
0.15478384494781494,
-0.008779935538768768,
0.09202880412340164,
0.016763823106884956,
-0.043837856501340866,
-0.13787174224853516,
0.04293523728847504,
-0.051415931433439255,
0.09554014354944229,
-0.02136659435927868,
0.21076883375644684,
0.06487976014614105,
-0.16416101157665253,
0.054159920662641525,
-0.05538041889667511,
-0.08771711587905884,
-0.10669689625501633,
-0.03155596926808357,
-0.0831168070435524,
-0.13791325688362122,
-0.002591088181361556,
-0.10553639382123947,
0.014038028195500374,
0.12278707325458527,
0.003780685132369399,
-0.02982582338154316,
0.1500006765127182,
0.034243762493133545,
0.016206711530685425,
0.059421882033348083,
-0.0000014289848877524491,
-0.025666283443570137,
-0.10333907604217529,
-0.05858819559216499,
-0.02229740470647812,
-0.012464539147913456,
0.037515003234148026,
-0.0520973801612854,
-0.0695444643497467,
0.04069186747074127,
-0.03827020898461342,
-0.09741649776697159,
0.01902511529624462,
0.02557569369673729,
0.06768433004617691,
0.05441521480679512,
0.010249967686831951,
0.010935571976006031,
-0.010198296047747135,
0.22526109218597412,
-0.07395008206367493,
-0.08766211569309235,
-0.0862509161233902,
0.2640678286552429,
0.04867056384682655,
-0.012299683876335621,
0.028210680931806564,
-0.06029044836759567,
0.000002149338797607925,
0.26352423429489136,
0.21402956545352936,
-0.09198549389839172,
-0.00825931504368782,
0.0023680769372731447,
-0.009826505556702614,
-0.005908229388296604,
0.12187714129686356,
0.1443420648574829,
0.04469746723771095,
-0.10864635556936264,
-0.03953026607632637,
-0.05477805435657501,
-0.010904674418270588,
-0.05284394323825836,
0.06669836491346359,
0.03726975619792938,
-0.002319865860044956,
-0.037966594099998474,
0.06259659677743912,
-0.07349863648414612,
-0.09407087415456772,
0.062458012253046036,
-0.20834596455097198,
-0.1658649444580078,
-0.01603991910815239,
0.10892825573682785,
0.0015389997279271483,
0.059734757989645004,
-0.023212946951389313,
0.0020247320644557476,
0.05492241308093071,
-0.02044324390590191,
-0.0991097167134285,
-0.07779474556446075,
0.09594162553548813,
-0.11782689392566681,
0.18086761236190796,
-0.04413231089711189,
0.0633261576294899,
0.12351611256599426,
0.07099521905183792,
-0.0680224597454071,
0.06517953425645828,
0.03253672271966934,
-0.07320231199264526,
0.041116777807474136,
0.08131467550992966,
-0.0295722559094429,
0.032950110733509064,
0.036914702504873276,
-0.11044333130121231,
0.02775496058166027,
-0.0782633051276207,
-0.042860426008701324,
-0.04018496349453926,
-0.04745495319366455,
-0.058662958443164825,
0.11914444714784622,
0.21733592450618744,
-0.024335674941539764,
0.013422828167676926,
-0.08124303072690964,
-0.000843997928313911,
0.04602731019258499,
0.019083280116319656,
-0.08434074372053146,
-0.21881365776062012,
0.005365294404327869,
0.06123867258429527,
-0.01970084197819233,
-0.2411695122718811,
-0.08369512856006622,
-0.005208246409893036,
-0.07599721848964691,
-0.10007451474666595,
0.08354732394218445,
0.07267531007528305,
0.05027058348059654,
-0.05043932795524597,
-0.07853659242391586,
-0.07908258587121964,
0.1560034155845642,
-0.1538654863834381,
-0.0920509546995163
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-ca-finetuned-mnli
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the tecla dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9354
- Accuracy: 0.7362
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8465 | 1.0 | 6888 | 0.8222 | 0.6990 |
| 0.6966 | 2.0 | 13776 | 0.7872 | 0.7157 |
| 0.5643 | 3.0 | 20664 | 0.8060 | 0.7268 |
| 0.4435 | 4.0 | 27552 | 0.8470 | 0.7333 |
| 0.3206 | 5.0 | 34440 | 0.9354 | 0.7362 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tecla"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tecla", "type": "tecla", "args": "tecla"}, "metrics": [{"type": "accuracy", "value": 0.7361816335412737, "name": "Accuracy"}]}]}]} | text-classification | JonatanGk/roberta-base-ca-finetuned-tecla | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:tecla",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-tecla #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| roberta-base-ca-finetuned-mnli
==============================
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the tecla dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9354
* Accuracy: 0.7362
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-tecla #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
66,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-tecla #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.10256248712539673,
0.0896785706281662,
-0.001981825102120638,
0.12242338806390762,
0.17192740738391876,
0.037828512489795685,
0.12737968564033508,
0.12399908900260925,
-0.09741339087486267,
0.017859959974884987,
0.12262516468763351,
0.16340720653533936,
0.015713943168520927,
0.1080234944820404,
-0.05186837166547775,
-0.26120150089263916,
-0.012007925659418106,
0.03479301556944847,
-0.0717984065413475,
0.13510720431804657,
0.09644689410924911,
-0.12455128878355026,
0.09415394812822342,
0.008877639658749104,
-0.18621350824832916,
0.008910090662539005,
0.009803536348044872,
-0.05954115837812424,
0.14816902577877045,
0.028359543532133102,
0.12509827315807343,
-0.010949116200208664,
0.08699431270360947,
-0.19025041162967682,
0.013572991825640202,
0.055039238184690475,
-0.000001412834649272554,
0.0896642655134201,
0.04317673668265343,
-0.004148194566369057,
0.15208286046981812,
-0.08074388653039932,
0.05821254849433899,
0.021285319700837135,
-0.12192285060882568,
-0.20086319744586945,
-0.08527949452400208,
0.031749170273542404,
0.08342893421649933,
0.11761642247438431,
-0.0011390162399038672,
0.1282854676246643,
-0.09399627894163132,
0.08962824940681458,
0.20744438469409943,
-0.2729472219944,
-0.07155650854110718,
0.025306744500994682,
0.008870953693985939,
0.06000219285488129,
-0.10194345563650131,
-0.030909636989235878,
0.05283089727163315,
0.04470980539917946,
0.10885989665985107,
-0.03206607699394226,
-0.1254054456949234,
0.019017420709133148,
-0.13507646322250366,
-0.04272226244211197,
0.17802459001541138,
0.04301408305764198,
-0.02941165491938591,
-0.03954626992344856,
-0.061726346611976624,
-0.1469002217054367,
-0.02745412103831768,
-0.010017636232078075,
0.044136893004179,
-0.02531222440302372,
-0.05535929277539253,
-0.0042955600656569,
-0.11086945235729218,
-0.06598106026649475,
-0.08238837867975235,
0.11807283014059067,
0.03479287028312683,
0.013507935218513012,
-0.04156684875488281,
0.10616989433765411,
0.022123100236058235,
-0.12241066992282867,
0.018470875918865204,
0.026166174560785294,
0.003396424697712064,
-0.04599231854081154,
-0.054781474173069,
-0.0698455199599266,
0.012562147341668606,
0.13068853318691254,
-0.038047876209020615,
0.0374709777534008,
0.04583320766687393,
0.03916383162140846,
-0.08705747127532959,
0.18321768939495087,
-0.0441058911383152,
-0.0314502939581871,
0.009689422324299812,
0.037888847291469574,
0.02451794221997261,
-0.011252440512180328,
-0.12077336013317108,
0.0025225102435797453,
0.0833926871418953,
0.01220911368727684,
-0.058905746787786484,
0.06968032568693161,
-0.0500137135386467,
-0.029100630432367325,
-0.002658932004123926,
-0.0866200253367424,
0.026061000302433968,
0.0008114494266919792,
-0.07728159427642822,
-0.011858787387609482,
0.026302581652998924,
0.022286230698227882,
-0.014024125412106514,
0.10034862905740738,
-0.08854515105485916,
0.023597469553351402,
-0.09842973947525024,
-0.10509146004915237,
0.02310040034353733,
-0.1005515605211258,
0.03473798185586929,
-0.09522891789674759,
-0.19505424797534943,
-0.015069291926920414,
0.06592872738838196,
-0.021815234795212746,
-0.06675010919570923,
-0.05655747652053833,
-0.0701109915971756,
0.01640792191028595,
-0.007844951003789902,
0.13730347156524658,
-0.06509725004434586,
0.08993148803710938,
0.019091425463557243,
0.06062544137239456,
-0.04516497626900673,
0.05440725013613701,
-0.1005709320306778,
0.008871551603078842,
-0.1450320929288864,
0.0348423570394516,
-0.04033433273434639,
0.07284354418516159,
-0.08655030280351639,
-0.09344839304685593,
0.013375241309404373,
0.00010109166760230437,
0.05845338851213455,
0.09186341613531113,
-0.17674560844898224,
-0.07394043356180191,
0.1468583643436432,
-0.06669527292251587,
-0.12583152949810028,
0.11762764304876328,
-0.06790703535079956,
0.06286367028951645,
0.06402720510959625,
0.1541043221950531,
0.09030411392450333,
-0.07140880823135376,
0.010850704275071621,
0.010546413250267506,
0.04715016484260559,
-0.07046199589967728,
0.07553219050168991,
0.0031095913145691156,
0.012269599363207817,
0.027056073769927025,
-0.026041653007268906,
0.05951080471277237,
-0.08718637377023697,
-0.10580188781023026,
-0.04139618203043938,
-0.0919482633471489,
0.030481882393360138,
0.07575206458568573,
0.07178127765655518,
-0.09297271072864532,
-0.07488244771957397,
0.05140911415219307,
0.09310942888259888,
-0.054132863879203796,
0.023749636486172676,
-0.056499481201171875,
0.06399043649435043,
-0.03662942722439766,
-0.02533739246428013,
-0.17647327482700348,
-0.02409723959863186,
-0.005210706498473883,
0.014536455273628235,
0.013051771558821201,
0.032424911856651306,
0.06539876759052277,
0.0529298298060894,
-0.04753153398633003,
-0.010167860426008701,
-0.033390700817108154,
-0.0023114574141800404,
-0.12375124543905258,
-0.21104870736598969,
-0.02503691241145134,
-0.02327858656644821,
0.16828852891921997,
-0.21665021777153015,
0.03675306215882301,
-0.026373818516731262,
0.06436354666948318,
0.01395045779645443,
-0.0021178731694817543,
-0.0424368754029274,
0.07259928435087204,
-0.05482945218682289,
-0.05131255090236664,
0.06798528879880905,
0.007320167031139135,
-0.08424266427755356,
-0.05556412413716316,
-0.08454252034425735,
0.1568630039691925,
0.13004954159259796,
-0.11440635472536087,
-0.07290138304233551,
0.001051895204000175,
-0.05922825261950493,
-0.03468559682369232,
-0.05449641868472099,
0.03612551838159561,
0.1858719438314438,
-0.013598336838185787,
0.14266695082187653,
-0.06744123250246048,
-0.03736075758934021,
0.022978724911808968,
-0.03669005632400513,
0.02475844696164131,
0.12859827280044556,
0.14323022961616516,
-0.079522505402565,
0.1476457118988037,
0.139130637049675,
-0.10120350867509842,
0.140511155128479,
-0.03976099193096161,
-0.0741710364818573,
-0.01465450506657362,
-0.034194402396678925,
-0.004092622082680464,
0.10740680992603302,
-0.16142478585243225,
-0.00041854236042127013,
0.02881852723658085,
0.01583339273929596,
0.022324124351143837,
-0.22052502632141113,
-0.04607321694493294,
0.03679793328046799,
-0.03887064754962921,
-0.021935442462563515,
-0.01430840976536274,
0.0033973606768995523,
0.1046527847647667,
0.0028009056113660336,
-0.0905737578868866,
0.038775257766246796,
0.0031674373894929886,
-0.08632637560367584,
0.2187081128358841,
-0.07724838703870773,
-0.15474049746990204,
-0.12641745805740356,
-0.07201404869556427,
-0.046112723648548126,
0.0052410620264709,
0.06083104759454727,
-0.09059073776006699,
-0.03072565607726574,
-0.07231035083532333,
0.011754323728382587,
0.0034082885831594467,
0.02840958908200264,
0.0004933528834953904,
0.011076233349740505,
0.05970754846930504,
-0.10604614019393921,
-0.006749289110302925,
-0.05658222734928131,
-0.06541290134191513,
0.040659353137016296,
0.02846652828156948,
0.12352326512336731,
0.15570388734340668,
-0.014736625365912914,
0.00837330799549818,
-0.02724914439022541,
0.21920807659626007,
-0.07320377975702286,
-0.0231594480574131,
0.14335685968399048,
-0.0020711084362119436,
0.040238238871097565,
0.11957255750894547,
0.06664904206991196,
-0.07544571161270142,
0.005022688303142786,
0.03819255530834198,
-0.03883107006549835,
-0.23983143270015717,
-0.04877599701285362,
-0.061526961624622345,
-0.0042283618822693825,
0.09156356006860733,
0.026562903076410294,
0.04781419038772583,
0.0769185945391655,
0.034150466322898865,
0.08302698284387589,
-0.04736011102795601,
0.05506902560591698,
0.11206916719675064,
0.0434897355735302,
0.12024851143360138,
-0.05416985973715782,
-0.060903023928403854,
0.048284199088811874,
-0.0057998644188046455,
0.23503340780735016,
0.010093610733747482,
0.13567450642585754,
0.06240328028798103,
0.16609817743301392,
-0.012515903450548649,
0.07444994896650314,
-0.0045206909999251366,
-0.03927714750170708,
-0.019968200474977493,
-0.03631417080760002,
-0.0392644889652729,
0.03097384050488472,
-0.07417955994606018,
0.07347552478313446,
-0.12073232978582382,
0.023541146889328957,
0.055949121713638306,
0.24789653718471527,
0.04005667567253113,
-0.3221200704574585,
-0.09589935839176178,
0.010040706023573875,
-0.03237238526344299,
-0.019728636369109154,
0.0296343807131052,
0.0840776115655899,
-0.09943974018096924,
0.02702915668487549,
-0.06808100640773773,
0.09681345522403717,
-0.048845075070858,
0.04046673700213432,
0.07742229849100113,
0.08722265064716339,
0.004906525835394859,
0.09768497198820114,
-0.29810622334480286,
0.2786407768726349,
-0.0020608298946172,
0.07103060930967331,
-0.08603242039680481,
0.00214808015152812,
0.04168464615941048,
0.06848914176225662,
0.07119506597518921,
-0.01311542745679617,
-0.029414260759949684,
-0.1700325757265091,
-0.059063997119665146,
0.0371902734041214,
0.05654852092266083,
-0.03127720206975937,
0.09223127365112305,
-0.03556816652417183,
0.010626383125782013,
0.0762162134051323,
0.005728898104280233,
-0.04551410675048828,
-0.11142194271087646,
-0.015219982713460922,
0.021426206454634666,
-0.06109163910150528,
-0.05858546122908592,
-0.11260020732879639,
-0.11534618586301804,
0.1479455679655075,
-0.029132302850484848,
-0.027670903131365776,
-0.10785417258739471,
0.07963163405656815,
0.06554636359214783,
-0.09255161136388779,
0.04310257360339165,
0.007565894164144993,
0.06877071410417557,
0.03615010529756546,
-0.07223811745643616,
0.10073485225439072,
-0.07614905387163162,
-0.1572531908750534,
-0.06832364201545715,
0.08828503638505936,
0.033361274749040604,
0.06361287832260132,
-0.008268410339951515,
0.009991850703954697,
-0.05555330961942673,
-0.08640140295028687,
0.012685340829193592,
0.012745826505124569,
0.07696249336004257,
0.019929811358451843,
-0.05589541420340538,
0.00693377573043108,
-0.05928755924105644,
-0.04154445230960846,
0.19924676418304443,
0.21103699505329132,
-0.09633518010377884,
0.02626907080411911,
0.010889148339629173,
-0.07568759471178055,
-0.1937892884016037,
0.04294968768954277,
0.04944190755486488,
0.01072082482278347,
0.03371693193912506,
-0.1871146708726883,
0.14184144139289856,
0.10954988747835159,
-0.012713093310594559,
0.10503041744232178,
-0.3320505917072296,
-0.12204169481992722,
0.13455620408058167,
0.13429436087608337,
0.11907598376274109,
-0.13767637312412262,
-0.013665951788425446,
-0.03298367187380791,
-0.11979664117097855,
0.10981772094964981,
-0.12161793559789658,
0.11691728234291077,
-0.032096605747938156,
0.09070456027984619,
0.001179561368189752,
-0.05725901201367378,
0.12012416124343872,
0.01979023963212967,
0.0979054644703865,
-0.06007670238614082,
-0.036141276359558105,
0.04761483520269394,
-0.03917364776134491,
0.021744364872574806,
-0.09153103083372116,
0.031234798952937126,
-0.11661616712808609,
-0.024523019790649414,
-0.06799536943435669,
0.044092707335948944,
-0.038553640246391296,
-0.06666866689920425,
-0.03950704261660576,
0.02115398831665516,
0.055608492344617844,
-0.009832418523728848,
0.1465284377336502,
0.029321204870939255,
0.13775819540023804,
0.0826827883720398,
0.08474889397621155,
-0.06009265035390854,
-0.05723747983574867,
-0.02458268217742443,
-0.013151192106306553,
0.05408142879605293,
-0.1561872959136963,
0.01981663890182972,
0.13527201116085052,
0.02646646276116371,
0.14050059020519257,
0.08127368986606598,
-0.01597536914050579,
0.014494514092803001,
0.06360241770744324,
-0.15536078810691833,
-0.08568030595779419,
-0.01169865857809782,
-0.0620013028383255,
-0.1233767718076706,
0.052013564854860306,
0.09330063313245773,
-0.07075915485620499,
-0.008289436809718609,
-0.010142958723008633,
0.01045974437147379,
-0.05612536892294884,
0.18193510174751282,
0.06440865248441696,
0.040735434740781784,
-0.10036293417215347,
0.07395147532224655,
0.05309053882956505,
-0.0695515125989914,
0.01071845181286335,
0.06598462164402008,
-0.07958807051181793,
-0.053977299481630325,
0.07804785668849945,
0.19126886129379272,
-0.0662873163819313,
-0.05322424694895744,
-0.1410655528306961,
-0.11827854067087173,
0.08081234246492386,
0.15348060429096222,
0.11617252975702286,
0.009975213557481766,
-0.06507488340139389,
0.001502331579104066,
-0.12288087606430054,
0.09357691556215286,
0.04107087105512619,
0.061456866562366486,
-0.14781895279884338,
0.1451210081577301,
0.009669668972492218,
0.03874292969703674,
-0.018008345738053322,
0.02199014462530613,
-0.09938455373048782,
0.01320275105535984,
-0.11679722368717194,
-0.01613372005522251,
-0.03438613563776016,
0.011619913391768932,
-0.001142225693911314,
-0.050982315093278885,
-0.06574676930904388,
0.013519635424017906,
-0.1053629145026207,
-0.017716780304908752,
0.030736135318875313,
0.06985846906900406,
-0.11370691657066345,
-0.032329969108104706,
0.025453656911849976,
-0.05972786992788315,
0.06737403571605682,
0.05304853245615959,
0.026141036301851273,
0.05605354160070419,
-0.14935334026813507,
0.02389758639037609,
0.06738409399986267,
0.02555152215063572,
0.0680711567401886,
-0.09561416506767273,
-0.006118664983659983,
0.0003600602503865957,
0.04797191545367241,
0.018474163487553596,
0.06257117539644241,
-0.1329864114522934,
0.007257981225848198,
-0.014347155578434467,
-0.09019547700881958,
-0.0634518638253212,
0.034451764076948166,
0.090555340051651,
0.00473822234198451,
0.21069517731666565,
-0.07281369715929031,
0.04411449655890465,
-0.21425139904022217,
0.007382502779364586,
-0.014400376938283443,
-0.09735007584095001,
-0.133742094039917,
-0.06654976308345795,
0.05562866851687431,
-0.060452885925769806,
0.1456736922264099,
0.04289471358060837,
0.03584660217165947,
0.022491049021482468,
-0.009359573014080524,
0.027349090203642845,
0.018190115690231323,
0.2141750603914261,
0.0422387458384037,
-0.03370477631688118,
0.05921279639005661,
0.043785907328128815,
0.10491131991147995,
0.12785549461841583,
0.19038839638233185,
0.1489565223455429,
-0.009429517202079296,
0.09606892615556717,
0.03170442953705788,
-0.060902323573827744,
-0.13565826416015625,
0.03698554262518883,
-0.04098537564277649,
0.09976663440465927,
-0.012413249351084232,
0.20131073892116547,
0.08213648945093155,
-0.17117945849895477,
0.034756578505039215,
-0.059389907866716385,
-0.08406826853752136,
-0.1154554933309555,
-0.052536118775606155,
-0.0872972160577774,
-0.13141462206840515,
0.0011101779527962208,
-0.12064763903617859,
0.0075400290079414845,
0.1241869106888771,
0.00275011220946908,
-0.031240997835993767,
0.1463334709405899,
0.019281720742583275,
0.026105832308530807,
0.05076868087053299,
0.012652304954826832,
-0.02846912108361721,
-0.11720283329486847,
-0.058672379702329636,
-0.021882425993680954,
-0.029403414577245712,
0.02939014323055744,
-0.06623365730047226,
-0.04257163032889366,
0.041881266981363297,
-0.02288283407688141,
-0.09496849030256271,
0.013302905485033989,
0.011416963301599026,
0.05844660475850105,
0.04465219005942345,
0.015510078519582748,
0.02169019542634487,
-0.0004507573612499982,
0.21833251416683197,
-0.07483357936143875,
-0.07248809933662415,
-0.11122695356607437,
0.24502411484718323,
0.04086336866021156,
-0.019980089738965034,
0.03281083330512047,
-0.06863169372081757,
0.008992716670036316,
0.248418927192688,
0.22023016214370728,
-0.0868557021021843,
-0.012478985823690891,
0.005990763660520315,
-0.00879348162561655,
-0.023745223879814148,
0.1057550460100174,
0.13192768394947052,
0.05030571669340134,
-0.09392557293176651,
-0.04852673411369324,
-0.05310763046145439,
-0.011298581957817078,
-0.03635229542851448,
0.07633544504642487,
0.0463712178170681,
-0.00307031930424273,
-0.028376659378409386,
0.06068737804889679,
-0.07119454443454742,
-0.07977338880300522,
0.06211905553936958,
-0.2074221819639206,
-0.1689942628145218,
-0.015826260671019554,
0.10585462301969528,
0.011372791603207588,
0.06314331293106079,
-0.02772127464413643,
-0.007009383291006088,
0.0822538509964943,
-0.013561655767261982,
-0.1096402183175087,
-0.07571452856063843,
0.10017906129360199,
-0.10291698575019836,
0.21680335700511932,
-0.04974173381924629,
0.05372801423072815,
0.12956702709197998,
0.06678790599107742,
-0.07558780908584595,
0.05733184143900871,
0.046870432794094086,
-0.051806289702653885,
0.03832313418388367,
0.06477146595716476,
-0.03567836806178093,
0.05911639332771301,
0.05216364935040474,
-0.12142175436019897,
0.02514876425266266,
-0.05957743152976036,
-0.053880687803030014,
-0.04531035199761391,
-0.02333075925707817,
-0.06198716536164284,
0.13665790855884552,
0.21739694476127625,
-0.03249908611178398,
-0.000613186159171164,
-0.07442992180585861,
0.013085932470858097,
0.05655955150723457,
0.024151600897312164,
-0.06494838744401932,
-0.20780088007450104,
0.0076169418171048164,
0.038655947893857956,
-0.01673186384141445,
-0.2526194155216217,
-0.08785390853881836,
-0.0007799725281074643,
-0.08282870054244995,
-0.0884804055094719,
0.07034590095281601,
0.09259065985679626,
0.0512562170624733,
-0.056978389620780945,
-0.026230186223983765,
-0.07332358509302139,
0.14997468888759613,
-0.1384967416524887,
-0.09746463596820831
] |
null | null | null | This is a dummy model. | {} | null | JonathanSum/new-dummy-model | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| This is a dummy model. | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers | # Barney Calhoun DialoGPT Model | {"tags": ["conversational"]} | text-generation | Jonesy/DialoGPT-medium_Barney | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Barney Calhoun DialoGPT Model | [
"# Barney Calhoun DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Barney Calhoun DialoGPT Model"
] | [
51,
11
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Barney Calhoun DialoGPT Model"
] | [
-0.019377097487449646,
0.15837694704532623,
-0.005573911592364311,
0.02308313548564911,
0.11965938657522202,
-0.005535391625016928,
0.1541580855846405,
0.1159779503941536,
-0.048513952642679214,
-0.05369272455573082,
0.14346224069595337,
0.2147202491760254,
-0.0037974603474140167,
0.06489349901676178,
-0.08549581468105316,
-0.3119067847728729,
0.03523049131035805,
0.07867065817117691,
0.026112239807844162,
0.11144047230482101,
0.07258602976799011,
-0.04598666727542877,
0.07133892923593521,
-0.0013765598414465785,
-0.15539366006851196,
-0.0030440581031143665,
0.01304607093334198,
-0.1030915230512619,
0.10720723122358322,
0.08006781339645386,
0.01986529491841793,
0.03501889482140541,
-0.045555971562862396,
-0.1410522758960724,
0.03922087699174881,
-0.014761867001652718,
-0.05013198032975197,
0.04483187571167946,
-0.004942511208355427,
-0.08825282007455826,
0.14844869077205658,
0.11160409450531006,
0.016459517180919647,
0.04369742423295975,
-0.1670786291360855,
0.021938346326351166,
0.010407896712422371,
0.061391331255435944,
0.07590539008378983,
0.10430177301168442,
-0.03368419036269188,
0.14630258083343506,
-0.03552966192364693,
0.12390785664319992,
0.09206234663724899,
-0.34027084708213806,
-0.030078141018748283,
0.1471305638551712,
0.0608024075627327,
0.027938619256019592,
-0.07004182785749435,
0.08262789249420166,
0.02588910609483719,
0.009136098437011242,
-0.02504080906510353,
-0.09163489192724228,
-0.08898081630468369,
0.017151497304439545,
-0.10248057544231415,
0.0011011972092092037,
0.26853224635124207,
-0.01737336814403534,
0.058827608823776245,
-0.06104153394699097,
-0.0861041396856308,
-0.00961410440504551,
-0.018607888370752335,
-0.030485795810818672,
-0.08763876557350159,
0.05994432419538498,
-0.02636706456542015,
-0.09343363344669342,
-0.11850949376821518,
0.000599163060542196,
-0.19075465202331543,
0.1573323905467987,
0.01907559670507908,
0.043480608612298965,
-0.20690599083900452,
0.08897115290164948,
0.029226724058389664,
-0.08408810198307037,
0.042810000479221344,
-0.0862225592136383,
-0.0009035366238094866,
-0.0011722994968295097,
-0.03300194442272186,
-0.011734682135283947,
0.02749231457710266,
0.12922300398349762,
0.01013148669153452,
0.01185601670295,
-0.01943013444542885,
0.03492463007569313,
0.046305444091558456,
0.09763539582490921,
-0.013530553318560123,
-0.057060327380895615,
0.031105676665902138,
-0.08757989853620529,
-0.007636543363332748,
-0.06165704503655434,
-0.19230583310127258,
-0.011505994945764542,
0.0315469354391098,
0.033292531967163086,
0.03262732923030853,
0.1220274269580841,
-0.02785831317305565,
-0.0701543390750885,
-0.02014429308474064,
-0.00805453397333622,
-0.014328324235975742,
0.012854035012423992,
0.021084148436784744,
0.10715023428201675,
0.03333123028278351,
0.03966929763555527,
-0.10351976752281189,
0.005714901257306337,
-0.06826971471309662,
-0.01992233470082283,
-0.007305620238184929,
-0.03716703876852989,
0.0010651119519025087,
-0.03313640505075455,
0.02780369110405445,
-0.13522203266620636,
-0.14199629426002502,
0.00231648120097816,
-0.00768936425447464,
-0.035919804126024246,
-0.13908760249614716,
-0.1170480027794838,
-0.04088830202817917,
0.02732485719025135,
-0.047253139317035675,
-0.01142800785601139,
-0.05735331401228905,
0.08648458868265152,
-0.04283636435866356,
0.08881767094135284,
-0.09600690007209778,
0.06670401245355606,
-0.06952556222677231,
-0.04351705312728882,
-0.016884293407201767,
0.13003592193126678,
0.03522602096199989,
0.0531972199678421,
0.013226089999079704,
-0.00485181761905551,
-0.10312490165233612,
0.06250344216823578,
-0.06489508599042892,
0.25926995277404785,
-0.09751645475625992,
-0.1183684691786766,
0.2933364808559418,
-0.02788032591342926,
-0.11734874546527863,
0.12299150228500366,
-0.022416535764932632,
0.08414502441883087,
0.14461460709571838,
0.17803366482257843,
0.004567074589431286,
-0.019904987886548042,
0.09534760564565659,
0.12407054007053375,
-0.05925945192575455,
0.013472266495227814,
0.01588628813624382,
-0.013545084744691849,
-0.11530324816703796,
0.02468315325677395,
0.11346695572137833,
0.04654637351632118,
-0.07161016762256622,
-0.01110643707215786,
0.016861846670508385,
-0.00624315207824111,
0.08666183054447174,
-0.0223228856921196,
0.11182882636785507,
-0.034073829650878906,
-0.07193735241889954,
0.01412467285990715,
0.00033612988772802055,
-0.032327085733413696,
0.02073189802467823,
-0.0799163207411766,
0.03388242423534393,
-0.015439172275364399,
0.05397416651248932,
-0.13339029252529144,
-0.044144805520772934,
-0.04692641645669937,
0.18848007917404175,
0.08329017460346222,
0.12657888233661652,
0.056042104959487915,
-0.03806735575199127,
-0.014394739642739296,
0.03609699010848999,
0.1689252108335495,
-0.011070014908909798,
-0.11079881340265274,
-0.10057839751243591,
0.11136257648468018,
-0.06539874523878098,
0.09039770066738129,
-0.07284305989742279,
0.02865317463874817,
0.0006509333034045994,
0.11909938603639603,
-0.01014816202223301,
0.01147411298006773,
0.030730189755558968,
-0.02569430321455002,
-0.04886208474636078,
0.0019895099103450775,
0.09340627491474152,
0.02479107864201069,
-0.11585812270641327,
0.23227855563163757,
-0.23142577707767487,
0.15437857806682587,
0.19088663160800934,
-0.21708127856254578,
0.0016053089639171958,
-0.09849119931459427,
-0.033656857907772064,
0.009423773735761642,
0.051688678562641144,
-0.04902399331331253,
0.26185372471809387,
-0.033992864191532135,
0.16440731287002563,
-0.037159211933612823,
-0.07296448945999146,
-0.04239572957158089,
-0.03528366610407829,
-0.005956834182143211,
0.1234581395983696,
0.07218928635120392,
-0.1361044943332672,
0.17620226740837097,
0.08214747905731201,
0.06242125853896141,
0.1827181577682495,
0.031207460910081863,
-0.003906629979610443,
0.04676787927746773,
-0.03423628956079483,
-0.041281137615442276,
-0.03896857053041458,
-0.27639853954315186,
-0.031111428514122963,
0.05620412901043892,
0.018712392076849937,
0.09053705632686615,
-0.1043228879570961,
-0.046272408217191696,
0.0036454948130995035,
0.006959114223718643,
0.06055318936705589,
0.11365634202957153,
0.03240831196308136,
0.1275547593832016,
-0.03100295551121235,
-0.07248332351446152,
0.06652490794658661,
0.011103499680757523,
-0.08967415988445282,
0.19911013543605804,
-0.11272624135017395,
-0.3539860248565674,
-0.11395160108804703,
-0.1833869069814682,
-0.04311424866318703,
0.054826024919748306,
0.0994168370962143,
-0.10160672664642334,
-0.008491933345794678,
-0.012729048728942871,
0.1118762418627739,
-0.11138526350259781,
0.02496621385216713,
-0.018658814951777458,
-0.020203081890940666,
-0.12543614208698273,
-0.09181344509124756,
-0.04387146607041359,
-0.056455325335264206,
-0.07123228162527084,
0.1167077049612999,
-0.13596533238887787,
-0.009820505976676941,
0.23252558708190918,
0.05248131975531578,
0.05750073492527008,
-0.043839506804943085,
0.22870080173015594,
-0.08537620306015015,
-0.0040370263159275055,
0.12078838795423508,
-0.07166489958763123,
0.05735698342323303,
0.1113036498427391,
-0.011158028617501259,
-0.08455202728509903,
0.04098602011799812,
-0.004776512272655964,
-0.06292834877967834,
-0.20379312336444855,
-0.11538239568471909,
-0.11224502325057983,
0.12135521322488785,
0.03914906457066536,
0.02954885922372341,
0.1418694108724594,
0.051511477679014206,
-0.03708639368414879,
0.04875675588846207,
0.07360213994979858,
0.0829196497797966,
0.26091405749320984,
-0.07757420837879181,
0.1336899846792221,
-0.003056601621210575,
-0.18428848683834076,
0.05552348122000694,
0.023017285391688347,
0.02776612527668476,
0.08863116800785065,
0.06421077251434326,
-0.0014761601341888309,
-0.0016444483771920204,
0.11896467208862305,
0.06991972029209137,
0.025756897404789925,
-0.042764727026224136,
-0.040383413434028625,
-0.04198325052857399,
-0.02914174646139145,
0.04579964652657509,
0.1009826809167862,
-0.1103157326579094,
-0.02613241784274578,
-0.03700186312198639,
0.03428494185209274,
0.07779169082641602,
0.1265135258436203,
-0.1970931887626648,
-0.023079905658960342,
0.08130333572626114,
-0.04297646880149841,
-0.1106499582529068,
0.09623490273952484,
0.03315019980072975,
-0.12737388908863068,
0.03206261247396469,
-0.018547875806689262,
0.11103522032499313,
-0.07808620482683182,
0.07457071542739868,
-0.1570882499217987,
-0.0914974957704544,
-0.010254967957735062,
0.07778195291757584,
-0.28568077087402344,
0.18779882788658142,
-0.0016520903445780277,
-0.06770262122154236,
-0.08703918755054474,
-0.027745528146624565,
0.028926299884915352,
0.06241914629936218,
0.11502879112958908,
-0.01502213254570961,
0.05900653824210167,
0.004206522833555937,
-0.1083797886967659,
0.029381679370999336,
0.09326561540365219,
-0.07889781147241592,
-0.001776321092620492,
-0.03583687171339989,
-0.005006460472941399,
-0.006794332526624203,
-0.024472413584589958,
0.03552614152431488,
-0.18682371079921722,
0.06965408474206924,
0.04756517708301544,
0.07987554371356964,
0.040277425199747086,
-0.04778050258755684,
-0.07381897419691086,
0.23420721292495728,
-0.017366068437695503,
-0.08288387209177017,
-0.07326578348875046,
-0.018720902502536774,
0.04307100176811218,
-0.05055452883243561,
0.004493789281696081,
-0.05910265073180199,
0.035424333065748215,
-0.06366347521543503,
-0.18947845697402954,
0.10997069627046585,
-0.07541041076183319,
-0.03569057956337929,
-0.053073763847351074,
0.236532062292099,
-0.009879951365292072,
0.05380287393927574,
0.04688669741153717,
0.00958915613591671,
-0.10241944342851639,
-0.08665243536233902,
0.005985265132039785,
0.009854743257164955,
0.016466664150357246,
0.037176959216594696,
-0.04694462940096855,
-0.04501555114984512,
-0.06331789493560791,
0.0035490470472723246,
0.3206617534160614,
0.1535622626543045,
-0.04295822232961655,
0.15867175161838531,
0.09097073972225189,
-0.07327722758054733,
-0.2663365602493286,
-0.08623705804347992,
-0.09479077905416489,
-0.02360273152589798,
-0.053370099514722824,
-0.14785033464431763,
0.10967762023210526,
-0.04302389174699783,
-0.0030497198458760977,
0.12957242131233215,
-0.2609380781650543,
-0.09456169605255127,
0.21399129927158356,
-0.027658827602863312,
0.4244394898414612,
-0.12472308427095413,
-0.08303612470626831,
-0.023596137762069702,
-0.1374852955341339,
0.22276706993579865,
-0.010392039082944393,
0.12520764768123627,
-0.005023511592298746,
0.13571031391620636,
0.058444805443286896,
0.010339035652577877,
0.06920842826366425,
0.025218334048986435,
-0.0685243308544159,
-0.09202242642641068,
-0.09164153784513474,
-0.030879894271492958,
0.014890900813043118,
0.006660225335508585,
-0.03787956014275551,
0.025498608127236366,
-0.15357576310634613,
-0.050382960587739944,
-0.07891809940338135,
0.04483329877257347,
0.008753342553973198,
-0.06647169589996338,
0.024260947480797768,
-0.05120033770799637,
0.0055502173490822315,
0.00622261269018054,
0.13900497555732727,
-0.10482597351074219,
0.1926976442337036,
0.06405586749315262,
0.16417816281318665,
-0.11559360474348068,
-0.026503173634409904,
-0.06459762156009674,
-0.06336374580860138,
0.057048048824071884,
-0.05815168842673302,
0.019362960010766983,
0.11706793308258057,
-0.005924735683947802,
0.0933854803442955,
0.09912295639514923,
-0.003394271479919553,
0.00634099543094635,
0.0712086483836174,
-0.2680171728134155,
-0.052746646106243134,
-0.0809616670012474,
-0.0031104395166039467,
0.06325673311948776,
0.09523221105337143,
0.1955174207687378,
0.0071009979583323,
-0.036819711327552795,
0.018449174240231514,
0.0032122947741299868,
-0.02443152852356434,
0.04532879590988159,
-0.0031645658891648054,
0.028901906684041023,
-0.13974091410636902,
0.048301830887794495,
-0.016279462724924088,
-0.10548505187034607,
0.01982145570218563,
0.15630194544792175,
-0.09308177977800369,
-0.10178963094949722,
-0.0752389058470726,
0.09055173397064209,
-0.08875712007284164,
0.05299157276749611,
-0.027888962998986244,
-0.13396315276622772,
0.07422810792922974,
0.16535153985023499,
0.05422554165124893,
0.08928232640028,
-0.09604117274284363,
-0.018198003992438316,
-0.026701344177126884,
0.0048780059441924095,
0.04279273375868797,
-0.035942886024713516,
-0.030697742477059364,
0.0804300382733345,
-0.02455305866897106,
0.1279841959476471,
-0.09404020756483078,
-0.11104002594947815,
-0.178793266415596,
0.04464583098888397,
-0.07001126557588577,
-0.07758244127035141,
-0.10246433317661285,
-0.0344730019569397,
-0.014927157200872898,
-0.03991471230983734,
-0.039670027792453766,
-0.048731911927461624,
-0.10808798670768738,
0.03544338792562485,
-0.03563936427235603,
0.009038183838129044,
-0.04619970917701721,
0.015494261868298054,
0.06755895167589188,
-0.045251768082380295,
0.14218781888484955,
0.13786186277866364,
-0.11158954352140427,
0.07474187016487122,
-0.16085024178028107,
-0.06100868433713913,
0.09293181449174881,
0.005065232515335083,
0.050105586647987366,
0.06224663183093071,
0.012589709833264351,
0.045832306146621704,
0.07817169278860092,
0.05401400849223137,
0.02292262762784958,
-0.07683789730072021,
0.022160084918141365,
-0.04567962512373924,
-0.1332569718360901,
-0.03960731625556946,
-0.06334356218576431,
0.012539512477815151,
0.023262642323970795,
0.09573785960674286,
-0.06356635689735413,
0.08951109647750854,
-0.0640183612704277,
0.03665538877248764,
0.014025245793163776,
-0.16283904016017914,
-0.0059337494894862175,
-0.09025117009878159,
0.06304457783699036,
0.019576627761125565,
0.2017166018486023,
-0.007717141415923834,
-0.01040527131408453,
0.04084699600934982,
0.045212872326374054,
0.06711161881685257,
-0.0020693079568445683,
0.18113179504871368,
0.0966828316450119,
-0.06278153508901596,
-0.0788799598813057,
0.09593178331851959,
0.04508725181221962,
0.05367887765169144,
0.11701996624469757,
-0.05015810206532478,
-0.03565044701099396,
0.09244879335165024,
-0.00006446649058489129,
0.05015332251787186,
-0.10362608730792999,
-0.1536514163017273,
-0.02494296245276928,
0.053470220416784286,
-0.03580404818058014,
0.1269696205854416,
0.1373376101255417,
-0.027508927509188652,
0.018510278314352036,
-0.0016009170794859529,
-0.06425212323665619,
-0.2002255767583847,
-0.16317668557167053,
-0.07997383177280426,
-0.08694809675216675,
0.010137513279914856,
-0.1319991946220398,
0.014740093611180782,
0.048391640186309814,
0.09788279980421066,
-0.043846916407346725,
0.05352348834276199,
0.06514560431241989,
-0.11713908612728119,
0.07852362841367722,
-0.020799025893211365,
0.0793006643652916,
-0.07847705483436584,
0.00545722059905529,
-0.07381565123796463,
0.0404231995344162,
0.0016178000951185822,
0.026415687054395676,
-0.04526546597480774,
-0.00398924620822072,
-0.1269291341304779,
-0.0865243598818779,
-0.04691869765520096,
0.05550349876284599,
0.009467663243412971,
0.14160531759262085,
0.02773234248161316,
-0.03231692686676979,
0.024026721715927124,
0.20946747064590454,
-0.07676806300878525,
-0.08032894134521484,
-0.08066752552986145,
0.20901019871234894,
-0.020793236792087555,
0.10564682632684708,
-0.02950046956539154,
0.017236394807696342,
-0.07265707105398178,
0.33959001302719116,
0.2845841944217682,
-0.11260974407196045,
0.017874926328659058,
0.021706456318497658,
0.03810832276940346,
0.11349039524793625,
0.06764544546604156,
0.11288703233003616,
0.300844669342041,
-0.08297716826200485,
-0.05521339923143387,
-0.0067833405919373035,
-0.028999658301472664,
-0.027866367250680923,
0.022051101550459862,
0.0475626215338707,
-0.04942767322063446,
-0.0035181560087949038,
0.10042957961559296,
-0.299699604511261,
0.055076878517866135,
-0.14719004929065704,
-0.20573271811008453,
-0.0683770403265953,
-0.0013110579457134008,
0.02824060432612896,
0.015151114203035831,
0.09205475449562073,
0.002525567077100277,
-0.06997278332710266,
0.026616021990776062,
0.003189892042428255,
-0.21681751310825348,
-0.00997128151357174,
0.06421693414449692,
-0.08242989331483841,
-0.0024319440126419067,
-0.02708769030869007,
0.06285122036933899,
0.07067844271659851,
0.058853115886449814,
0.011845304630696774,
0.028496447950601578,
-0.00964662991464138,
-0.06883631646633148,
0.008711553178727627,
0.03588928282260895,
0.013125765137374401,
-0.012082434259355068,
0.07525776326656342,
-0.12122315913438797,
0.04935725778341293,
-0.01605433039367199,
-0.05188751593232155,
-0.00847652368247509,
0.026363683864474297,
-0.05955789238214493,
0.07933264970779419,
0.1093880832195282,
-0.015589287504553795,
-0.02583511546254158,
-0.014334255829453468,
-0.043447889387607574,
-0.02066214568912983,
-0.0953197330236435,
-0.09145581722259521,
-0.1634257584810257,
-0.10686726868152618,
0.05220514535903931,
-0.003749039489775896,
-0.23077712953090668,
-0.005049471277743578,
-0.11976659297943115,
0.04366801306605339,
-0.13309656083583832,
0.09795231372117996,
0.06712936609983444,
0.028882119804620743,
-0.007701533380895853,
-0.02000029943883419,
0.03950316458940506,
0.09055949747562408,
-0.1524670273065567,
-0.09749270975589752
] |
null | null | transformers | # Family Guy DialoGPT Model | {"tags": ["conversational"]} | text-generation | Jonesy/FG_OLD | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Family Guy DialoGPT Model | [
"# Family Guy DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Family Guy DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Family Guy DialoGPT Model"
] | [
-0.04193364083766937,
0.07650753855705261,
-0.006342040374875069,
0.019175667315721512,
0.14958564937114716,
0.013119420036673546,
0.1679048389196396,
0.14226345717906952,
-0.01754092611372471,
-0.055600907653570175,
0.10963943600654602,
0.10414975881576538,
0.02654951438307762,
0.07934322953224182,
-0.07482320070266724,
-0.2893392741680145,
0.021282844245433807,
0.04740157723426819,
0.09864217042922974,
0.12353337556123734,
0.10704676061868668,
-0.013328819535672665,
0.08229348808526993,
0.021260015666484833,
-0.1339053213596344,
0.009969456121325493,
0.03949280455708504,
-0.042199429124593735,
0.1341920644044876,
0.06175191327929497,
0.046972502022981644,
0.07038114964962006,
-0.07506819814443588,
-0.1110515370965004,
0.034635432064533234,
-0.010413971729576588,
-0.02873602882027626,
0.02637483738362789,
0.04864839091897011,
-0.05482156574726105,
0.18170657753944397,
0.12235933542251587,
-0.005389561410993338,
0.06570375710725784,
-0.128549262881279,
0.024420853704214096,
-0.011142699979245663,
0.04131558537483215,
0.060202933847904205,
0.10173741728067398,
-0.03407184034585953,
0.08962612599134445,
-0.06342270225286484,
0.10930303484201431,
0.12047584354877472,
-0.2440844476222992,
-0.03846403956413269,
0.14401930570602417,
0.09470611065626144,
0.04984906315803528,
-0.05403774976730347,
0.042447660118341446,
-0.019839173182845116,
0.015767686069011688,
-0.01833939552307129,
-0.09978248924016953,
-0.0007842570776119828,
0.009258807636797428,
-0.06851144880056381,
-0.0016360512236133218,
0.26909783482551575,
-0.013666503131389618,
0.07704486697912216,
-0.1295769363641739,
-0.09070804715156555,
0.006823032628744841,
-0.056349337100982666,
-0.01353074237704277,
-0.09842132776975632,
0.053466759622097015,
-0.03203538805246353,
-0.14806874096393585,
-0.13015688955783844,
-0.022685782983899117,
-0.11319524794816971,
0.12445200234651566,
0.008650075644254684,
-0.00013201861293055117,
-0.21096158027648926,
0.06650374829769135,
0.0255894772708416,
-0.09493175894021988,
0.033932726830244064,
-0.12466592341661453,
0.06183840334415436,
0.01037848461419344,
-0.01995854824781418,
0.000752072490286082,
0.12305809557437897,
0.08337680995464325,
-0.041427724063396454,
0.040053386241197586,
-0.049983203411102295,
0.04329302906990051,
0.08525506407022476,
0.07617820054292679,
0.034376922994852066,
-0.11008291691541672,
0.025704944506287575,
-0.05042271316051483,
-0.0471586138010025,
-0.021863196045160294,
-0.1978410929441452,
-0.008408521302044392,
0.03707055374979973,
0.06672417372465134,
0.052166081964969635,
0.1577935367822647,
0.01081906445324421,
-0.04830852523446083,
0.04597191885113716,
-0.0057786875404417515,
-0.02628982439637184,
0.022524477913975716,
-0.02858625538647175,
0.13002365827560425,
-0.07605850696563721,
0.03462829440832138,
-0.10996180027723312,
0.014352750033140182,
-0.00011268991511315107,
-0.043051596730947495,
-0.012331381440162659,
-0.029926829040050507,
-0.0030984818004071712,
-0.08131806552410126,
0.001519741490483284,
-0.1287848800420761,
-0.13783496618270874,
-0.04332153499126434,
-0.05148359015583992,
-0.0273166224360466,
-0.10874591022729874,
-0.11961128562688828,
-0.011752047576010227,
0.027480361983180046,
-0.06038782373070717,
-0.059889595955610275,
-0.020929615944623947,
0.04717249795794487,
-0.0031430739909410477,
0.06038248911499977,
-0.07362240552902222,
0.07887246459722519,
-0.07281888276338577,
-0.018477430567145348,
-0.10441932827234268,
0.1299751102924347,
0.0473567359149456,
-0.0010785810882225633,
0.023444922640919685,
0.030598001554608345,
-0.10616517812013626,
0.08459217101335526,
-0.07880961894989014,
0.22764229774475098,
-0.056282006204128265,
-0.11359088867902756,
0.2474607676267624,
-0.024945713579654694,
-0.11924775689840317,
0.08590498566627502,
0.021770572289824486,
0.1329953819513321,
0.1425648033618927,
0.16886411607265472,
0.006580503191798925,
0.041605882346630096,
0.06687188893556595,
0.1304687112569809,
-0.14596915245056152,
0.05089482665061951,
0.028312133625149727,
-0.022973941639065742,
-0.04118717089295387,
0.018084118142724037,
0.053775522857904434,
0.04340517893433571,
-0.047534700483083725,
-0.013414395973086357,
0.011891476809978485,
0.0125779639929533,
0.060687094926834106,
-0.04604984447360039,
0.08543166518211365,
-0.010710332542657852,
-0.0234854593873024,
-0.013509110547602177,
0.01344432681798935,
-0.03701086714863777,
0.016787612810730934,
-0.10404963791370392,
0.07905049622058868,
0.04990829899907112,
0.06584073603153229,
-0.13003422319889069,
-0.0846673920750618,
-0.05221442133188248,
0.19842515885829926,
-0.010239488445222378,
0.06717199087142944,
0.07292062044143677,
-0.050492171198129654,
-0.046471234411001205,
-0.013179744593799114,
0.18408755958080292,
0.011109037324786186,
-0.045340921729803085,
-0.10078635066747665,
0.07216031104326248,
-0.03708401322364807,
0.13835588097572327,
0.016333308070898056,
0.023055654019117355,
0.02318584732711315,
0.1272510290145874,
-0.00584613298997283,
0.051265496760606766,
0.00882605742663145,
-0.03738968446850777,
-0.04274310544133186,
-0.031624142080545425,
0.12876419723033905,
0.009075649082660675,
-0.03814064711332321,
0.2279168963432312,
-0.17199721932411194,
0.07757826894521713,
0.16378870606422424,
-0.21467407047748566,
-0.013601873070001602,
-0.1424332559108734,
-0.011671190150082111,
0.014259731397032738,
0.012096318416297436,
-0.08974725753068924,
0.208878755569458,
0.016051175072789192,
0.1581145077943802,
-0.0200358759611845,
-0.06248442456126213,
-0.0018502929015085101,
0.001200871542096138,
0.008856415748596191,
0.0670386478304863,
0.0750158280134201,
-0.19554896652698517,
0.18548129498958588,
0.05212206020951271,
0.15066196024417877,
0.143316850066185,
0.026051044464111328,
0.02897336147725582,
0.042048379778862,
0.060624878853559494,
-0.08420474827289581,
-0.0663839802145958,
-0.318390429019928,
-0.024109631776809692,
0.0397835299372673,
0.027132738381624222,
0.10888830572366714,
-0.07628478854894638,
-0.04068158566951752,
-0.005775702651590109,
-0.014128501527011395,
0.048456013202667236,
0.08912579715251923,
0.047137971967458725,
0.14359062910079956,
0.010330242104828358,
-0.06468293070793152,
0.10280495882034302,
-0.021930187940597534,
-0.0910431444644928,
0.15366072952747345,
-0.13832150399684906,
-0.3799887001514435,
-0.045586053282022476,
-0.22941909730434418,
-0.1038871482014656,
0.03673931956291199,
0.09214483201503754,
-0.09274064749479294,
0.032454006373882294,
-0.004514981061220169,
0.15851792693138123,
-0.06988993287086487,
-0.032526060938835144,
-0.09813206642866135,
-0.0009524975903332233,
-0.14148646593093872,
-0.07855717092752457,
-0.04977261275053024,
-0.004934114869683981,
-0.06353748589754105,
0.1667354851961136,
-0.14199912548065186,
-0.04287344962358475,
0.1627403348684311,
0.06202834099531174,
0.03155383840203285,
-0.053634822368621826,
0.1952621191740036,
-0.08653765171766281,
0.030478404834866524,
0.19736583530902863,
-0.06420758366584778,
0.026728296652436256,
0.1539919674396515,
-0.010227103717625141,
-0.04217971861362457,
0.004418333061039448,
-0.009183765389025211,
-0.06448131799697876,
-0.16367900371551514,
-0.12282799184322357,
-0.11697949469089508,
0.12365648150444031,
0.003686488140374422,
0.0738399401307106,
0.14223520457744598,
0.03597938269376755,
-0.09745863080024719,
-0.030334817245602608,
0.062421079725027084,
0.075483538210392,
0.3085074722766876,
-0.14168357849121094,
0.09507422149181366,
0.011400996707379818,
-0.1699058562517166,
0.06519224494695663,
0.10374996811151505,
0.005078024230897427,
0.08341716229915619,
0.06934447586536407,
-0.011867622844874859,
0.015680203214287758,
0.08525842428207397,
0.06712201982736588,
-0.011117134243249893,
-0.046944037079811096,
-0.0369114987552166,
-0.05726682394742966,
-0.009656674228608608,
0.053096044808626175,
0.034879300743341446,
-0.19412603974342346,
-0.02029908075928688,
-0.07045076787471771,
0.06367405503988266,
0.10286104679107666,
0.07009037584066391,
-0.13667376339435577,
0.0036736319307237864,
0.0452168732881546,
-0.0006828923360444605,
-0.14102068543434143,
0.06025838106870651,
0.07487554103136063,
-0.12624306976795197,
0.05749029666185379,
0.004838739056140184,
0.10562117397785187,
-0.054425302892923355,
0.08106116205453873,
-0.10556293278932571,
-0.041217461228370667,
-0.019327495247125626,
0.06792207807302475,
-0.3051280379295349,
0.09425298124551773,
0.0181732214987278,
-0.06804066151380539,
-0.09147165715694427,
-0.022995274513959885,
0.015836242586374283,
0.10663315653800964,
0.07341913878917694,
-0.004142880439758301,
-0.03558799996972084,
-0.047103144228458405,
0.005620955489575863,
0.03603929281234741,
0.08910519629716873,
-0.05859234929084778,
-0.010759647004306316,
-0.036826666444540024,
-0.005230673588812351,
-0.0024059799034148455,
-0.09461259841918945,
-0.0080419247969985,
-0.14887861907482147,
0.06523361802101135,
0.0548592284321785,
0.0576753243803978,
0.013905026949942112,
0.009162412956357002,
-0.09123215079307556,
0.2560424506664276,
-0.05005520582199097,
-0.12720254063606262,
-0.10602287948131561,
-0.015555290505290031,
-0.022171299904584885,
-0.02388744056224823,
-0.026909690350294113,
-0.03472312539815903,
0.0958857610821724,
-0.059609901160001755,
-0.16553254425525665,
0.1122465431690216,
-0.05945628881454468,
-0.07350096106529236,
-0.05078641325235367,
0.28980860114097595,
-0.011726642027497292,
0.029527995735406876,
0.02481190301477909,
-0.053681354969739914,
-0.06495282799005508,
-0.04987156018614769,
0.008179910480976105,
0.08979350328445435,
-0.03573038429021835,
0.002523438772186637,
-0.020809968933463097,
-0.002014118479564786,
-0.07816744595766068,
-0.010500989854335785,
0.37116730213165283,
0.1275787055492401,
-0.026628300547599792,
0.11421390622854233,
0.103456512093544,
-0.036741871386766434,
-0.23813872039318085,
-0.09137316793203354,
-0.09175537526607513,
-0.05997161194682121,
-0.04257507622241974,
-0.19528938829898834,
0.05996225029230118,
-0.025702623650431633,
0.015827732160687447,
0.12770791351795197,
-0.28703397512435913,
-0.05168895050883293,
0.11982166022062302,
-0.04774148017168045,
0.3473961353302002,
-0.056900013238191605,
-0.07388647645711899,
-0.0420282818377018,
-0.12580034136772156,
0.17316597700119019,
-0.043013475835323334,
0.09341420233249664,
-0.012401211075484753,
0.1861627697944641,
0.052853599190711975,
0.032136037945747375,
0.021901810541749,
0.019087065011262894,
-0.11141285300254822,
-0.07145483791828156,
-0.1222086027264595,
0.025371888652443886,
0.009196029976010323,
-0.014723810367286205,
-0.10908953100442886,
0.00525834271684289,
-0.16589400172233582,
-0.06352850049734116,
-0.081635020673275,
0.05660064518451691,
0.009533136151731014,
-0.08469601720571518,
0.005027727223932743,
-0.04581797868013382,
-0.022708313539624214,
0.0006529286620207131,
0.040862757712602615,
-0.15315021574497223,
0.1435173749923706,
0.1098971888422966,
0.13817523419857025,
-0.1248384639620781,
-0.030301759019494057,
-0.08058241009712219,
-0.044925615191459656,
0.0427878238260746,
-0.070797860622406,
0.02786252088844776,
0.10001815855503082,
-0.039466239511966705,
0.12055210769176483,
0.0789467841386795,
-0.011185931041836739,
0.011685538105666637,
0.06296342611312866,
-0.17142753303050995,
-0.02355058863759041,
-0.10958639532327652,
0.004633669275790453,
0.02457246370613575,
0.059140101075172424,
0.19872260093688965,
0.021672731265425682,
-0.03261001780629158,
0.0008486651349812746,
0.01576240360736847,
-0.03247198089957237,
0.07426820695400238,
-0.042381104081869125,
0.01544188056141138,
-0.1466825306415558,
0.039969708770513535,
-0.05335141718387604,
-0.10760830342769623,
-0.0036789055448025465,
0.18374326825141907,
-0.09204947203397751,
-0.1192038282752037,
-0.03383690491318703,
0.11458077281713486,
-0.07508641481399536,
-0.005016515031456947,
-0.008903625421226025,
-0.18465104699134827,
0.07346398383378983,
0.04360359162092209,
-0.003271469147875905,
0.10164651274681091,
-0.054480697959661484,
0.002304196124896407,
-0.02736572176218033,
-0.004482053220272064,
-0.05687955766916275,
-0.004233872517943382,
-0.05205269530415535,
0.004232851322740316,
-0.0191261675208807,
0.10517481714487076,
-0.08610138297080994,
-0.12971732020378113,
-0.15296149253845215,
0.016711946576833725,
-0.08957421779632568,
-0.05852362513542175,
-0.10048847645521164,
-0.030750039964914322,
0.005027709994465113,
0.003951833117753267,
-0.032622307538986206,
-0.05805690586566925,
-0.10691974312067032,
0.020689867436885834,
-0.021196991205215454,
0.027407778427004814,
-0.04448496922850609,
0.051973506808280945,
-0.012752830982208252,
-0.026895396411418915,
0.18865461647510529,
0.12747465074062347,
-0.10815224051475525,
0.08864627033472061,
-0.16567060351371765,
-0.10854779928922653,
0.07765468955039978,
0.010501617565751076,
0.06024520471692085,
0.07869401574134827,
0.03907912224531174,
0.056044235825538635,
0.011975141242146492,
0.06024342402815819,
0.0931711420416832,
-0.08275188505649567,
0.040589310228824615,
-0.09725577384233475,
-0.09512332826852798,
-0.04788682609796524,
-0.07574426382780075,
0.032583266496658325,
0.03098168782889843,
0.1369398832321167,
-0.03720761835575104,
0.10621979832649231,
-0.11295507848262787,
0.05043543502688408,
0.029552802443504333,
-0.1767476499080658,
0.03886709734797478,
-0.0561140738427639,
0.05944587290287018,
0.0038309984374791384,
0.22160033881664276,
0.03792319446802139,
0.029305443167686462,
0.030337421223521233,
0.0661223903298378,
0.041807446628808975,
-0.01866181753575802,
0.16911958158016205,
0.13033288717269897,
-0.07216495275497437,
-0.1483459174633026,
0.0787482038140297,
0.002884210553020239,
-0.046012792736291885,
0.14979344606399536,
-0.046150196343660355,
-0.013938392512500286,
0.05242862179875374,
0.10421774536371231,
0.029435839504003525,
-0.10868196934461594,
-0.1147460862994194,
-0.016379235312342644,
0.037762414664030075,
-0.099976547062397,
0.15692561864852905,
0.14167417585849762,
0.0027156949508935213,
0.03913845494389534,
-0.04155055433511734,
-0.016338059678673744,
-0.14095774292945862,
-0.1661767214536667,
-0.06145735830068588,
-0.1658003032207489,
-0.02413848787546158,
-0.12039845436811447,
0.019596531987190247,
-0.006801648996770382,
0.06921572238206863,
-0.07880180329084396,
0.04875120893120766,
0.05343077704310417,
-0.1426001638174057,
0.08292409032583237,
0.0012371123302727938,
0.08018556982278824,
-0.04051826894283295,
-0.028481299057602882,
-0.009288503788411617,
0.07007277756929398,
0.04218805581331253,
0.011426202952861786,
-0.010615157894790173,
-0.02844173274934292,
-0.1804422289133072,
-0.08090268075466156,
-0.047328218817710876,
0.06287413090467453,
-0.03143121302127838,
0.12257269769906998,
0.008362574502825737,
-0.026240017265081406,
0.029867535457015038,
0.19691546261310577,
-0.03287821635603905,
-0.07321660220623016,
-0.04977571219205856,
0.20351924002170563,
-0.01746225543320179,
0.05924331396818161,
-0.02876591682434082,
0.015915727242827415,
-0.09396164864301682,
0.2961072325706482,
0.36528483033180237,
-0.04745132103562355,
0.005375090520828962,
-0.030319342389702797,
0.04502864181995392,
0.08715979754924774,
0.16679666936397552,
0.08320898562669754,
0.25378987193107605,
0.0013962548691779375,
0.024732930585741997,
0.012188436463475227,
-0.019390469416975975,
0.018145177513360977,
0.015076258219778538,
0.13273605704307556,
-0.06016306206583977,
-0.025485584512352943,
0.1041368618607521,
-0.2378655970096588,
0.07919679582118988,
-0.1600685715675354,
-0.1418742686510086,
-0.057045724242925644,
0.004993458744138479,
0.1368812769651413,
0.061211343854665756,
0.07657965272665024,
0.018117599189281464,
-0.04750916361808777,
0.034162815660238266,
-0.006294625345617533,
-0.20044904947280884,
0.0010658963583409786,
0.07681616395711899,
-0.15775778889656067,
-0.05753771960735321,
-0.046989552676677704,
0.06363927572965622,
0.0758085623383522,
0.06367450207471848,
-0.01531367376446724,
0.06652115285396576,
-0.013520891778171062,
-0.08456026762723923,
0.05914081260561943,
0.07342980057001114,
0.012246966361999512,
-0.05266815423965454,
0.07708442956209183,
-0.10079685598611832,
0.07496785372495651,
0.03274877741932869,
-0.014880712144076824,
-0.04691848158836365,
0.0955868512392044,
-0.046419400721788406,
0.0563717857003212,
0.09416203200817108,
-0.030550040304660797,
-0.023335905745625496,
-0.061901841312646866,
-0.03154706209897995,
-0.02086447738111019,
-0.002950025023892522,
-0.08339391648769379,
-0.18932859599590302,
-0.10498737543821335,
0.08949718624353409,
-0.03064724989235401,
-0.15837423503398895,
0.004373391158878803,
-0.13224007189273834,
0.05364712327718735,
-0.11017803102731705,
0.07862329483032227,
0.03730195015668869,
0.06572184711694717,
0.00928350631147623,
-0.03280580788850784,
0.02763623185455799,
0.11086311936378479,
-0.11469695717096329,
-0.06032756716012955
] |
null | null | transformers | # Johnny Test DialoGPT Model | {"tags": ["conversational"]} | text-generation | Jonesy/DialoGPT-small_JT | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Johnny Test DialoGPT Model | [
"# Johnny Test DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Johnny Test DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Johnny Test DialoGPT Model"
] | [
-0.04316896200180054,
0.08064355701208115,
-0.005141886882483959,
0.033796507865190506,
0.08459370583295822,
-0.009861838072538376,
0.11669458448886871,
0.1796341836452484,
0.0013392114778980613,
-0.026816632598638535,
0.1657250076532364,
0.16504251956939697,
0.009791772812604904,
0.06302282214164734,
-0.09372006356716156,
-0.22461561858654022,
0.0438263937830925,
0.10206428170204163,
0.10023213922977448,
0.14847807586193085,
0.0873708426952362,
-0.04170000180602074,
0.08164917677640915,
0.014580495655536652,
-0.1553467959165573,
0.031126106157898903,
0.032131128013134,
-0.12122581154108047,
0.11959943175315857,
0.03548631817102432,
0.006188160739839077,
0.07816764712333679,
-0.051709070801734924,
-0.15011316537857056,
0.03059518337249756,
-0.026414193212985992,
0.020530153065919876,
0.026622045785188675,
0.04301086813211441,
-0.07028105854988098,
0.061043817549943924,
0.11753354966640472,
0.031241178512573242,
0.06167466193437576,
-0.1482858508825302,
-0.08199367672204971,
-0.01279424224048853,
0.01821771264076233,
0.07855624705553055,
0.11198152601718903,
-0.06684286147356033,
0.20236848294734955,
-0.08227667212486267,
0.08968977630138397,
0.15175572037696838,
-0.2854437530040741,
-0.02858463115990162,
0.11228090524673462,
0.10035126656293869,
-0.0007388913654722273,
-0.02078963629901409,
0.07061030715703964,
0.08537911623716354,
0.030628535896539688,
-0.04297420009970665,
-0.11537818610668182,
-0.08011121302843094,
0.03204824775457382,
-0.09464696049690247,
-0.029183262959122658,
0.214713916182518,
-0.04599560424685478,
0.0371624194085598,
-0.08654695004224777,
-0.04483353719115257,
-0.030303023755550385,
-0.001428407384082675,
-0.0662827342748642,
-0.08995349705219269,
0.05119159072637558,
0.014243402518332005,
-0.06487655639648438,
-0.11803314089775085,
-0.08950556814670563,
-0.15734323859214783,
0.11350861191749573,
0.03763623535633087,
0.010547234676778316,
-0.19222579896450043,
0.12302165478467941,
-0.028977137058973312,
-0.10399925708770752,
-0.0210692398250103,
-0.08021891117095947,
0.015867259353399277,
-0.02683645859360695,
-0.029075253754854202,
-0.05057903751730919,
0.1153125911951065,
0.08518464863300323,
-0.011963490396738052,
0.04886491224169731,
-0.09324660152196884,
0.02343718521296978,
0.0693783089518547,
0.16630145907402039,
0.0528579019010067,
-0.04887416213750839,
0.032835982739925385,
-0.0014382472727447748,
-0.06026292219758034,
-0.020714059472084045,
-0.09987912327051163,
-0.03937096521258354,
0.09064695984125137,
0.06179917976260185,
0.040571991354227066,
0.08534437417984009,
-0.04268047586083412,
-0.03278638795018196,
0.013717752881348133,
-0.049145594239234924,
-0.015572228468954563,
0.04783835634589195,
-0.009280975908041,
0.17494291067123413,
0.0028765068855136633,
0.02562425099313259,
-0.11423743516206741,
-0.055317897349596024,
-0.019225891679525375,
-0.015075450763106346,
-0.035678453743457794,
-0.050750598311424255,
0.01853671669960022,
0.02026095613837242,
-0.0008965597953647375,
-0.14949241280555725,
-0.19502030313014984,
-0.030088555067777634,
-0.024387935176491737,
-0.04883839190006256,
-0.08870504796504974,
-0.12370924651622772,
0.021350478753447533,
0.005671206396073103,
-0.05047933757305145,
-0.060141488909721375,
-0.04064354673027992,
0.09759470820426941,
0.05027732998132706,
0.09740586578845978,
0.005506542976945639,
0.0876673236489296,
-0.12638795375823975,
-0.014716539531946182,
-0.05274970084428787,
0.14208222925662994,
-0.02445019967854023,
0.049106158316135406,
-0.0612054318189621,
-0.05230791121721268,
-0.048645563423633575,
0.07086040079593658,
-0.0426599495112896,
0.2693580687046051,
-0.11847866326570511,
-0.10754271596670151,
0.2525756061077118,
-0.05717161297798157,
-0.14670901000499725,
0.16457587480545044,
-0.008080990053713322,
0.09768779575824738,
0.17336145043373108,
0.20185182988643646,
0.06564314663410187,
-0.029298333451151848,
0.10758257657289505,
0.08811689168214798,
-0.030125338584184647,
0.04495389759540558,
0.05086982995271683,
-0.058373644948005676,
-0.18673400580883026,
0.04172954708337784,
0.025018522515892982,
0.02909015119075775,
-0.05029649659991264,
-0.013501826673746109,
-0.019623441621661186,
0.00023462658282369375,
0.10381194204092026,
0.006895947270095348,
0.09662046283483505,
-0.07023831456899643,
-0.06770122051239014,
-0.035359080880880356,
0.04317890852689743,
-0.05022234469652176,
0.012837285175919533,
-0.11465369164943695,
0.0769980326294899,
0.006118620280176401,
0.05492030829191208,
-0.1164892315864563,
0.06688286364078522,
-0.00781007157638669,
0.04657914489507675,
0.055830780416727066,
0.12384934723377228,
0.06608856469392776,
-0.05669044703245163,
0.02263387106359005,
0.000927845889236778,
0.16257812082767487,
-0.012744171544909477,
-0.06503883004188538,
-0.09671539813280106,
0.1154087707400322,
-0.06581777334213257,
0.06770480424165726,
-0.0647544339299202,
0.010867759585380554,
0.007746553514152765,
0.052420519292354584,
-0.028614437207579613,
0.036617256700992584,
0.03800097852945328,
-0.011728160083293915,
-0.04408629611134529,
-0.011209450662136078,
0.07311654835939407,
-0.01414470560848713,
-0.04562991484999657,
0.19580084085464478,
-0.15628424286842346,
0.09220287203788757,
0.1712353378534317,
-0.16358886659145355,
-0.017448147758841515,
-0.06038234755396843,
-0.013346605934202671,
0.013426161371171474,
0.005679468158632517,
-0.03201467916369438,
0.28401580452919006,
-0.018419530242681503,
0.17575106024742126,
-0.05086927488446236,
-0.04112130030989647,
-0.03971065953373909,
-0.05261317640542984,
0.023730603978037834,
0.1299367994070053,
0.052497364580631256,
-0.1504444032907486,
0.1361268311738968,
0.05746684595942497,
-0.003398650325834751,
0.19306008517742157,
0.018576107919216156,
-0.02230447344481945,
0.051754798740148544,
0.03268430382013321,
-0.05046503245830536,
-0.05929224193096161,
-0.29789966344833374,
-0.01014025043696165,
0.06771527975797653,
0.03909734636545181,
0.09599814563989639,
-0.1091843992471695,
-0.024986358359456062,
0.014763026498258114,
-0.025671260431408882,
-0.025642307475209236,
0.133121058344841,
0.042390208691358566,
0.09241510182619095,
-0.011507334187626839,
-0.04428773373365402,
0.04495712369680405,
0.010705581866204739,
-0.11937303841114044,
0.20589305460453033,
-0.10138484090566635,
-0.3453524708747864,
-0.09422700107097626,
-0.1274532675743103,
-0.032183337956666946,
0.034322433173656464,
0.140733540058136,
-0.14467833936214447,
-0.001767419627867639,
-0.015461070463061333,
0.14471206068992615,
-0.05155278369784355,
0.006467319559305906,
-0.017085513100028038,
-0.021354064345359802,
-0.1006992906332016,
-0.09298437088727951,
-0.061340317130088806,
0.005072296597063541,
-0.05611305311322212,
0.11895867437124252,
-0.18149366974830627,
-0.01676894538104534,
0.22647029161453247,
0.03524549677968025,
0.06510227173566818,
-0.06436797976493835,
0.20456287264823914,
-0.09529139846563339,
-0.007001441903412342,
0.18722587823867798,
-0.039823267608881,
0.01200144737958908,
0.07781139016151428,
-0.03082299418747425,
-0.06294349581003189,
0.03828287497162819,
-0.046571534126996994,
-0.03758128359913826,
-0.28012555837631226,
-0.07835327833890915,
-0.06319620460271835,
0.16034702956676483,
0.06223975121974945,
0.02483702264726162,
0.12187565118074417,
0.05899546295404434,
0.003313475288450718,
0.020720280706882477,
0.051288168877363205,
0.058953285217285156,
0.2964175343513489,
-0.0835631787776947,
0.10953110456466675,
-0.01922888681292534,
-0.14048554003238678,
0.05126802623271942,
0.04093300178647041,
0.029639489948749542,
0.08101347833871841,
0.02476654015481472,
0.013325653970241547,
0.015872132033109665,
0.1053762435913086,
0.05931006371974945,
0.023940829560160637,
-0.04577255621552467,
-0.018901387229561806,
-0.03969896584749222,
-0.04069928452372551,
0.032503239810466766,
0.08763451129198074,
-0.09817367047071457,
-0.03379646688699722,
-0.0595819391310215,
0.05332426726818085,
0.06184815987944603,
0.1112365797162056,
-0.21703562140464783,
-0.019084425643086433,
0.053482674062252045,
-0.05038944631814957,
-0.10530506819486618,
0.11419294774532318,
-0.039900071918964386,
-0.13687250018119812,
0.052790917456150055,
-0.017751263454556465,
0.11950726807117462,
-0.056753914803266525,
0.07088667899370193,
-0.1015508770942688,
-0.09064273536205292,
-0.008308072574436665,
0.1066335141658783,
-0.3430311381816864,
0.18120236694812775,
-0.006550799123942852,
-0.020538080483675003,
-0.08777401596307755,
-0.012868731282651424,
0.02257993072271347,
0.08914419263601303,
0.11347874999046326,
-0.0389719158411026,
-0.002235650084912777,
-0.017710702493786812,
-0.07126148045063019,
0.061008986085653305,
0.03628859296441078,
-0.011543028056621552,
0.013368621468544006,
-0.060398317873477936,
0.009861786849796772,
-0.04024839028716087,
-0.10029880702495575,
-0.0585923045873642,
-0.07276861369609833,
0.0669010728597641,
0.04361958056688309,
0.08575790375471115,
0.0035771741531789303,
-0.05291968584060669,
-0.0752156525850296,
0.20187152922153473,
-0.014469370245933533,
-0.07267915457487106,
-0.07550174742937088,
0.0004479109193198383,
0.07756098359823227,
-0.06445562839508057,
-0.018219826743006706,
-0.05782119557261467,
0.0415768027305603,
-0.0430748350918293,
-0.1606963872909546,
0.0902586579322815,
-0.08290747553110123,
-0.06320913136005402,
-0.015673765912652016,
0.22107066214084625,
-0.01033068262040615,
0.0690239742398262,
0.08830924332141876,
-0.0034763349685817957,
-0.11130383610725403,
-0.07824704796075821,
0.008811590261757374,
0.00448769424110651,
-0.11901198327541351,
-0.007508493959903717,
0.021047644317150116,
-0.1439848691225052,
-0.09594974666833878,
-0.009388921782374382,
0.32793840765953064,
0.1474032700061798,
-0.024040618911385536,
0.14511698484420776,
0.08223233371973038,
-0.07784576714038849,
-0.26450803875923157,
-0.01884588599205017,
-0.05807190760970116,
-0.006931974086910486,
-0.07522863894701004,
-0.1495334655046463,
0.06614445894956589,
-0.0421142503619194,
-0.018411478027701378,
0.09676236659288406,
-0.29038649797439575,
-0.08602742105722427,
0.24063697457313538,
-0.05025495961308479,
0.3784087002277374,
-0.11734020709991455,
-0.08255666494369507,
-0.02993573434650898,
-0.17158405482769012,
0.09799371659755707,
-0.03930028900504112,
0.1035616546869278,
-0.035628143697977066,
0.14804615080356598,
0.05519294738769531,
-0.01785842701792717,
0.09486952424049377,
-0.011900478042662144,
-0.07645034790039062,
-0.035460058599710464,
-0.051112812012434006,
-0.07651088386774063,
0.015658821910619736,
0.07845565676689148,
-0.07042162120342255,
0.06327101588249207,
-0.19189614057540894,
-0.06509658694267273,
-0.09705598652362823,
0.07762317359447479,
0.023760901764035225,
-0.034840356558561325,
0.0008257575682364404,
-0.06097061187028885,
-0.015935473144054413,
-0.003487667301669717,
0.06415562331676483,
-0.14311063289642334,
0.15881019830703735,
0.09867188334465027,
0.17436186969280243,
-0.05464589223265648,
-0.028086386620998383,
-0.008503776043653488,
-0.06321156769990921,
0.08569823205471039,
-0.15378190577030182,
0.030422579497098923,
0.13896562159061432,
0.018850727006793022,
0.0983540415763855,
0.07344409823417664,
-0.042400285601615906,
0.03959950804710388,
0.06403094530105591,
-0.22410383820533752,
-0.022336473688483238,
-0.08512849360704422,
0.025144580751657486,
0.045590393245220184,
0.06552733480930328,
0.1889703869819641,
-0.02821851149201393,
-0.05047285929322243,
0.013802736066281796,
-0.006473033223301172,
-0.058306653052568436,
0.13719820976257324,
-0.002627389971166849,
0.04325350373983383,
-0.1276295781135559,
0.02890268713235855,
-0.037801675498485565,
-0.12228608876466751,
0.024244479835033417,
0.1490090936422348,
-0.07401708513498306,
-0.13003315031528473,
-0.019474174827337265,
0.14223986864089966,
-0.07331582903862,
-0.0037829310167580843,
-0.08381018787622452,
-0.15315786004066467,
0.0630517452955246,
0.11881548166275024,
0.07891855388879776,
0.07111607491970062,
-0.06877495348453522,
-0.03826700896024704,
-0.038883134722709656,
0.030949736014008522,
0.0794018805027008,
-0.020878927782177925,
-0.028135333210229874,
0.05912411957979202,
-0.011880496516823769,
0.11029326915740967,
-0.09062919020652771,
-0.09368044137954712,
-0.15476839244365692,
0.06998513638973236,
-0.15886569023132324,
-0.06921448558568954,
-0.07844817638397217,
-0.03551750257611275,
0.030455144122242928,
-0.04443060979247093,
-0.033396508544683456,
-0.02941460721194744,
-0.1146245151758194,
0.03183039277791977,
-0.04634019359946251,
0.03552216663956642,
-0.06933716684579849,
0.0373358353972435,
0.09218436479568481,
-0.05591978132724762,
0.12002594023942947,
0.1090235561132431,
-0.1438935250043869,
0.08563989400863647,
-0.14007093012332916,
-0.07625117897987366,
0.08166462182998657,
0.013836189173161983,
0.0570564903318882,
-0.024641497060656548,
0.04694228619337082,
0.06882844865322113,
0.0799756720662117,
0.08040227741003036,
0.05349089205265045,
-0.05948640778660774,
0.021737875416874886,
-0.0397907979786396,
-0.12551173567771912,
-0.01484175119549036,
-0.03532574698328972,
0.04553743824362755,
0.05146889388561249,
0.0906500369310379,
-0.09141041338443756,
0.12763193249702454,
-0.07708155363798141,
0.016929978504776955,
-0.004481553100049496,
-0.13143011927604675,
-0.053071051836013794,
-0.04899725690484047,
0.06833624094724655,
0.012398800812661648,
0.19342879951000214,
0.019853536039590836,
0.02433430776000023,
0.04341934993863106,
-0.001074981177225709,
0.06321083009243011,
0.003974603023380041,
0.19639308750629425,
0.07026126235723495,
-0.043323688209056854,
-0.0939808338880539,
0.060050979256629944,
0.013965226709842682,
-0.025286532938480377,
0.07663681358098984,
0.041909877210855484,
-0.06610888987779617,
0.08527589589357376,
0.0021128172520548105,
0.07309547811746597,
-0.11661449074745178,
-0.08982176333665848,
-0.0397917814552784,
0.08725295215845108,
-0.020288575440645218,
0.19616423547267914,
0.125972181558609,
-0.04137420281767845,
0.0033223156351596117,
-0.07458867877721786,
-0.05939025804400444,
-0.19465531408786774,
-0.09477974474430084,
-0.11773835867643356,
-0.19197537004947662,
0.04058893769979477,
-0.1120109111070633,
0.0355321504175663,
-0.003211002564057708,
0.10031785815954208,
-0.0817563459277153,
0.1156727597117424,
0.11581186205148697,
-0.1330988109111786,
0.13075470924377441,
-0.05231775715947151,
0.039296362549066544,
-0.05529189482331276,
0.0287343617528677,
-0.012001304887235165,
0.03406716510653496,
0.019115425646305084,
0.02427031844854355,
-0.09397879987955093,
0.0019463495118543506,
-0.1665806919336319,
-0.09258226305246353,
-0.03893470764160156,
0.05732821673154831,
-0.004260072950273752,
0.10976272076368332,
0.02939417213201523,
-0.029924888163805008,
0.04036809504032135,
0.18816563487052917,
-0.048415251076221466,
-0.11401701718568802,
-0.11318626999855042,
0.2810443639755249,
-0.010171952657401562,
0.09292850643396378,
-0.003409365424886346,
0.028504973277449608,
-0.06830871850252151,
0.3510655462741852,
0.23265747725963593,
-0.03272256255149841,
-0.013861287385225296,
-0.008210060186684132,
0.0356256440281868,
0.069306880235672,
0.07907216250896454,
0.0860111266374588,
0.20078836381435394,
-0.08360230922698975,
-0.056256987154483795,
-0.02755841426551342,
-0.06506916880607605,
-0.009804352186620235,
0.019099507480859756,
0.0730930045247078,
-0.04979918524622917,
-0.02684134803712368,
0.13557283580303192,
-0.21376368403434753,
0.09281768649816513,
-0.14745253324508667,
-0.16804152727127075,
-0.08237135410308838,
-0.007578402291983366,
0.09789568185806274,
0.008094815537333488,
0.07482534646987915,
-0.01265715342015028,
-0.038790781050920486,
0.03641330823302269,
-0.029306553304195404,
-0.17079047858715057,
-0.02367127127945423,
0.08764173090457916,
-0.06997981667518616,
0.0028156761545687914,
-0.0023124937433749437,
0.12769898772239685,
0.06648467481136322,
0.03227342292666435,
-0.032597869634628296,
0.055718906223773956,
0.01040572952479124,
-0.05933680757880211,
0.021266616880893707,
0.04748788848519325,
0.03193249925971031,
0.008554551750421524,
0.08451486378908157,
-0.1072322279214859,
0.046412620693445206,
-0.04907206818461418,
-0.03915271535515785,
-0.10734918713569641,
0.05240718647837639,
-0.05173826217651367,
0.061851613223552704,
0.10381504148244858,
-0.031176293268799782,
-0.00575170898810029,
-0.03317895159125328,
0.049774471670389175,
-0.03692997992038727,
-0.027934497222304344,
-0.08408543467521667,
-0.17651620507240295,
-0.08222053945064545,
0.030352894216775894,
-0.020992491394281387,
-0.2543991208076477,
0.0013077992480248213,
-0.12202884256839752,
0.025557903572916985,
-0.08718080073595047,
0.11865563690662384,
0.04446161538362503,
0.04448646679520607,
0.003784940345212817,
-0.11208255589008331,
0.0343787856400013,
0.1132524311542511,
-0.13394537568092346,
-0.08834335207939148
] |
null | null | transformers | This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish MLSum for summarization.
You can use it with the command "summarize:"
| {"language": "es"} | text2text-generation | JorgeSarry/est5-summarize | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"es",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish MLSum for summarization.
You can use it with the command "summarize:"
| [] | [
"TAGS\n#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.023405348882079124,
-0.006307253614068031,
-0.006489460356533527,
0.013956565409898758,
0.1767830103635788,
0.021313346922397614,
0.12365099042654037,
0.1285444051027298,
0.010711546055972576,
-0.023639339953660965,
0.15911805629730225,
0.22160457074642181,
-0.021735087037086487,
0.10348974913358688,
-0.10501150786876678,
-0.24790823459625244,
0.041891831904649734,
0.05058150738477707,
0.023130998015403748,
0.1249905526638031,
0.07638464868068695,
-0.07081033289432526,
0.09526527673006058,
-0.04172457382082939,
-0.1415322721004486,
0.047042857855558395,
0.056105490773916245,
-0.12589113414287567,
0.10662735998630524,
0.043878789991140366,
0.10021927207708359,
0.03154359385371208,
-0.054913319647312164,
-0.14818930625915527,
0.023838872089982033,
0.015365447849035263,
-0.0550244078040123,
0.06170910969376564,
0.11095242947340012,
-0.10946539044380188,
0.05988006666302681,
0.0676913857460022,
-0.010783245787024498,
0.053258657455444336,
-0.1452578902244568,
0.033316317945718765,
-0.02374195121228695,
-0.006574322935193777,
0.0814470499753952,
0.0990884080529213,
-0.004268764518201351,
0.1277816742658615,
-0.11350701749324799,
0.11720865964889526,
0.15442414581775665,
-0.2903161346912384,
0.009174128994345665,
0.07072164863348007,
0.04272058978676796,
0.09227371215820312,
-0.013416149653494358,
0.050422511994838715,
0.04187290742993355,
0.029668956995010376,
0.020096326246857643,
-0.06711850315332413,
-0.10391706973314285,
0.03825511783361435,
-0.09264907985925674,
-0.061471279710531235,
0.2519805133342743,
-0.0675705149769783,
0.06877205520868301,
-0.013198032975196838,
-0.11365517973899841,
-0.05771266669034958,
0.007062971591949463,
0.0033231719862669706,
-0.057775869965553284,
0.0718555897474289,
0.017089905217289925,
-0.04690461605787277,
-0.12537111341953278,
-0.006122714839875698,
-0.18375207483768463,
0.11302357912063599,
-0.011284350417554379,
0.057227786630392075,
-0.21693940460681915,
0.09390349686145782,
0.016127295792102814,
-0.10161059349775314,
0.06009870022535324,
-0.09760946780443192,
0.05380711704492569,
-0.013798259198665619,
-0.061287879943847656,
-0.11306501924991608,
0.04762775078415871,
0.0893436074256897,
0.036780841648578644,
0.0347311869263649,
-0.059594493359327316,
0.09939952194690704,
0.02985755354166031,
0.06924024969339371,
0.02387223206460476,
-0.08394178003072739,
0.037186719477176666,
-0.10753607004880905,
0.0046989149414002895,
-0.07122215628623962,
-0.16309283673763275,
-0.0540933683514595,
0.05934667959809303,
0.09185206890106201,
0.028253788128495216,
0.07592422515153885,
-0.03876999765634537,
-0.033449213951826096,
0.032148756086826324,
-0.07706010341644287,
-0.0014267259975895286,
-0.0007837514858692884,
-0.0035768202506005764,
0.1711825579404831,
0.015018326230347157,
0.01470181718468666,
-0.1334361732006073,
0.09694521129131317,
-0.07611359655857086,
0.00561067508533597,
-0.05041027069091797,
-0.0685982033610344,
0.028410768136382103,
-0.09505798667669296,
0.012888173572719097,
-0.1590069830417633,
-0.17695288360118866,
0.0065157185308635235,
0.0021532305981963873,
-0.012800781056284904,
-0.03930933400988579,
-0.05317482352256775,
-0.030178457498550415,
0.061288028955459595,
-0.07748191058635712,
0.029724234715104103,
-0.04764179885387421,
0.08815033733844757,
-0.037095893174409866,
0.06631910800933838,
-0.11396218836307526,
0.08111348003149033,
-0.11449380218982697,
-0.006496525835245848,
-0.09825190901756287,
0.06343421339988708,
0.012575521133840084,
0.12136015295982361,
-0.016442660242319107,
-0.02255602367222309,
-0.0778326541185379,
0.04493769258260727,
-0.018330905586481094,
0.21257413923740387,
-0.07963072508573532,
-0.11050146818161011,
0.18595515191555023,
-0.07966331392526627,
-0.14331001043319702,
0.08819804340600967,
0.006770124658942223,
0.0466127023100853,
0.08805827051401138,
0.16465328633785248,
0.021684853360056877,
-0.00006476342969108373,
0.08529839664697647,
0.10148662328720093,
-0.08814011514186859,
-0.11353904008865356,
0.00948346871882677,
-0.019711846485733986,
-0.12916706502437592,
0.046530403196811676,
0.09417639672756195,
0.06028018146753311,
-0.06874270737171173,
-0.029440203681588173,
-0.04123176634311676,
-0.012251538224518299,
0.08198611438274384,
-0.01642644964158535,
0.12504443526268005,
-0.06513082981109619,
0.005213283933699131,
0.01950020343065262,
-0.017793606966733932,
-0.016046036034822464,
0.03889843821525574,
-0.02687467262148857,
0.10886799544095993,
-0.06811205297708511,
0.03693995997309685,
-0.19604432582855225,
-0.04199555888772011,
-0.011294563300907612,
0.12352947890758514,
0.00021947188361082226,
0.07688494026660919,
0.0551237016916275,
-0.020480535924434662,
-0.010102040134370327,
-0.017021803185343742,
0.14815972745418549,
-0.01121420506387949,
-0.10165989398956299,
-0.08158661425113678,
0.043104931712150574,
-0.0682193785905838,
-0.025219198316335678,
-0.0729774683713913,
0.021165700629353523,
0.0004643646243494004,
0.11538930982351303,
0.0025483316276222467,
0.060873791575431824,
-0.03351917490363121,
0.03415532037615776,
-0.08609574288129807,
0.025220779702067375,
0.10206286609172821,
-0.00934540294110775,
-0.05710136145353317,
0.19981665909290314,
-0.1921062171459198,
0.231184184551239,
0.20216946303844452,
-0.2970455288887024,
0.030712010338902473,
-0.08176341652870178,
-0.01754149980843067,
-0.0016629770398139954,
0.041730720549821854,
-0.03232712671160698,
0.0882260724902153,
0.0016771921655163169,
0.19377528131008148,
-0.056654192507267,
-0.05054333433508873,
-0.003098605666309595,
-0.06187862902879715,
-0.03245582431554794,
0.06564902514219284,
0.12337413430213928,
-0.16757574677467346,
0.17941488325595856,
0.2565922737121582,
0.015354050323367119,
0.17034108936786652,
0.018376102671027184,
-0.038993045687675476,
0.06980528682470322,
-0.030604591593146324,
-0.0457286611199379,
-0.09659246355295181,
-0.193589985370636,
-0.029306385666131973,
0.07485504448413849,
0.06425895541906357,
0.12140867859125137,
-0.10114680975675583,
-0.026044128462672234,
-0.004819866269826889,
0.018939044326543808,
-0.00990588590502739,
0.0719388872385025,
0.07177721709012985,
0.13365891575813293,
-0.019845901057124138,
-0.0036334064789116383,
0.11108218133449554,
0.005342310294508934,
-0.12067164480686188,
0.18759790062904358,
-0.1505533754825592,
-0.3309108316898346,
-0.17874576151371002,
-0.18837767839431763,
-0.05428200587630272,
0.05446828529238701,
0.10159963369369507,
-0.10069257766008377,
-0.02560201846063137,
-0.0015429413178935647,
0.109944649040699,
-0.09196438640356064,
0.026192057877779007,
-0.045280713587999344,
0.06127835437655449,
-0.07127512246370316,
-0.07621589303016663,
-0.05311194062232971,
-0.018029948696494102,
-0.05192594975233078,
0.14129595458507538,
-0.12379798293113708,
0.04798963665962219,
0.19870004057884216,
0.011289375834167004,
0.04970202594995499,
-0.020711734890937805,
0.17621807754039764,
-0.06250164657831192,
-0.008646548725664616,
0.22563746571540833,
-0.05478613078594208,
0.08036036789417267,
0.11984948813915253,
-0.01103967148810625,
-0.07858927547931671,
0.039119161665439606,
-0.043763674795627594,
-0.0923738032579422,
-0.2758941948413849,
-0.13032683730125427,
-0.11740394681692123,
0.08183617889881134,
0.05930277705192566,
0.04069027304649353,
0.15971942245960236,
0.07291096448898315,
-0.01196890976279974,
0.029145149514079094,
0.0027683123480528593,
0.07453377544879913,
0.1744089424610138,
-0.025128502398729324,
0.14499762654304504,
-0.05063817650079727,
-0.11220279335975647,
0.08571168035268784,
0.0649065375328064,
0.11411642283201218,
0.0727534145116806,
0.017128949984908104,
0.01542222686111927,
0.06284062564373016,
0.15229979157447815,
0.15997877717018127,
0.042622003704309464,
-0.01081407256424427,
-0.02767949551343918,
-0.023731654509902,
-0.0616876520216465,
0.04702607914805412,
0.044346895068883896,
-0.11419656872749329,
-0.08847490698099136,
-0.060664888471364975,
0.08029478043317795,
0.09530152380466461,
0.06636086851358414,
-0.23391130566596985,
0.012500200420618057,
0.09464157372713089,
-0.0381733775138855,
-0.09950854629278183,
0.08954689651727676,
0.016305582597851753,
-0.1336844116449356,
0.060512036085128784,
-0.03477915748953819,
0.13743673264980316,
-0.049023453146219254,
0.1004866287112236,
-0.06448083370923996,
-0.06717971712350845,
0.023626115173101425,
0.10673370957374573,
-0.3522002696990967,
0.20404760539531708,
0.009140380658209324,
-0.05812293663620949,
-0.11449737846851349,
-0.012596642598509789,
0.014034068211913109,
0.12060430645942688,
0.07960914820432663,
0.003699091263115406,
-0.05985566973686218,
-0.08650904893875122,
-0.024260101839900017,
0.008676835335791111,
0.14177313446998596,
-0.02017866261303425,
0.008398139849305153,
-0.044127751141786575,
-0.008085744455456734,
-0.018862197175621986,
0.0038873401936143637,
-0.007255303207784891,
-0.17035643756389618,
0.06405345350503922,
0.02884904481470585,
0.07188612967729568,
0.017923885956406593,
-0.02637561969459057,
-0.07030762732028961,
0.1974339634180069,
-0.06115836277604103,
-0.07720877230167389,
-0.1238357201218605,
-0.06288015097379684,
0.05255011469125748,
-0.06646168977022171,
0.033231284469366074,
-0.06034928187727928,
0.04909287765622139,
-0.06883519142866135,
-0.22038108110427856,
0.1252998560667038,
-0.11054239422082901,
-0.05156998336315155,
-0.05079306289553642,
0.18394112586975098,
-0.06967221945524216,
0.020224761217832565,
0.019980469718575478,
0.0030940864235162735,
-0.09404362738132477,
-0.07895543426275253,
0.016280870884656906,
0.02658548392355442,
0.041567783802747726,
0.06230160966515541,
-0.08305598795413971,
-0.02286393567919731,
-0.038255322724580765,
-0.018283521756529808,
0.3140171468257904,
0.13497605919837952,
-0.042314138263463974,
0.16569453477859497,
0.1494555026292801,
-0.10730866342782974,
-0.3249272406101227,
-0.06561818718910217,
-0.09775663912296295,
-0.025589562952518463,
-0.036472249776124954,
-0.16230295598506927,
0.08155403286218643,
0.0166950486600399,
-0.007617838680744171,
0.11206773668527603,
-0.26588496565818787,
-0.0841098502278328,
0.13756902515888214,
-0.0005202835309319198,
0.3645749092102051,
-0.10879717767238617,
-0.10936834663152695,
-0.07749640941619873,
-0.1265658438205719,
0.1509251445531845,
-0.04628385230898857,
0.0954023078083992,
-0.02712436020374298,
0.11640176922082901,
0.040947187691926956,
-0.0473293773829937,
0.08597977459430695,
0.027222173288464546,
0.011145115830004215,
-0.09865284711122513,
-0.0292590893805027,
0.04146488383412361,
-0.013637457974255085,
0.020888889208436012,
-0.026569008827209473,
0.022838622331619263,
-0.1358393430709839,
-0.03413087874650955,
-0.08228223025798798,
0.05818265676498413,
0.022348223254084587,
-0.0651693046092987,
0.03445550426840782,
-0.08387193083763123,
0.01780620776116848,
0.005096352193504572,
0.2067175805568695,
-0.051610611379146576,
0.1682225614786148,
0.17931897938251495,
0.14196893572807312,
-0.14903314411640167,
0.03695940971374512,
-0.06389028578996658,
-0.06669911742210388,
0.0712963342666626,
-0.09425678849220276,
0.06820494681596756,
0.12032920867204666,
-0.045712318271398544,
0.06785059720277786,
0.11426375806331635,
0.020472833886742592,
-0.0130937984213233,
0.13237255811691284,
-0.2505798041820526,
0.06055373698472977,
-0.07387376576662064,
0.013887407258152962,
0.07311253994703293,
0.06327132135629654,
0.1849268674850464,
0.01639377512037754,
-0.030368635430932045,
-0.025039205327630043,
0.01911737024784088,
-0.05451569706201553,
0.0988558679819107,
0.017481988295912743,
0.029965829104185104,
-0.14121472835540771,
0.10829516500234604,
0.015339955687522888,
-0.1635650098323822,
0.00146659801248461,
0.18286952376365662,
-0.12629102170467377,
-0.11602604389190674,
-0.01608988828957081,
0.12117660045623779,
-0.14186063408851624,
-0.03407665342092514,
-0.0629759207367897,
-0.13396503031253815,
0.10359762609004974,
0.17591463029384613,
0.06460950523614883,
0.0786185935139656,
-0.058580197393894196,
-0.050493694841861725,
-0.044935084879398346,
-0.017258141189813614,
-0.00146363431122154,
0.021036850288510323,
-0.09100382030010223,
0.07733257114887238,
-0.030098356306552887,
0.14117540419101715,
-0.08996587246656418,
-0.0688318982720375,
-0.143082395195961,
0.03965885937213898,
-0.13076451420783997,
-0.056546345353126526,
-0.07208375632762909,
-0.06869494169950485,
-0.00983461644500494,
-0.018561454489827156,
-0.06704523414373398,
-0.04726089909672737,
-0.12657111883163452,
0.022414647042751312,
-0.048582494258880615,
0.03781188279390335,
-0.05123817175626755,
-0.006981776561588049,
0.07633817195892334,
-0.050746362656354904,
0.10479695349931717,
0.13879215717315674,
-0.09860966354608536,
0.11046252399682999,
-0.12960807979106903,
-0.11349870264530182,
0.11787030845880508,
0.03148498013615608,
0.05233228579163551,
0.07885102927684784,
0.0173299852758646,
0.08309564739465714,
0.02301635593175888,
0.0435362346470356,
0.019892722368240356,
-0.1195281520485878,
0.05007665976881981,
-0.039084143936634064,
-0.1511043757200241,
-0.06070279702544212,
-0.052324630320072174,
0.0526733472943306,
0.007850809022784233,
0.12467972189188004,
-0.052923981100320816,
0.1198926717042923,
-0.06349389255046844,
0.021694937720894814,
0.008496345020830631,
-0.16946853697299957,
-0.05971163883805275,
-0.07412265986204147,
0.038989268243312836,
-0.001052354578860104,
0.2522556781768799,
0.01835041120648384,
0.02563772164285183,
0.036291129887104034,
0.07881636172533035,
-0.01236636657267809,
0.02397233620285988,
0.18215477466583252,
0.09656354784965515,
-0.04849576950073242,
-0.09484677016735077,
0.0765017569065094,
0.031754739582538605,
0.04989137500524521,
0.156072199344635,
0.03737843409180641,
0.026844775304198265,
0.11658646911382675,
-0.01168229803442955,
0.03174815699458122,
-0.11668837815523148,
-0.1610693484544754,
0.004089293070137501,
0.06675800681114197,
-0.01051678229123354,
0.06004660204052925,
0.15231670439243317,
-0.019989071413874626,
0.030794862657785416,
-0.03274935856461525,
-0.04614122211933136,
-0.18776065111160278,
-0.13593913614749908,
-0.0858573317527771,
-0.11748107522726059,
-0.007300856988877058,
-0.10948542505502701,
0.057214606553316116,
0.09135420620441437,
0.06923320889472961,
-0.06294219940900803,
0.06282538175582886,
0.03453311696648598,
-0.101143978536129,
0.06174815818667412,
-0.04283783584833145,
0.07991630584001541,
-0.033796459436416626,
-0.01834116503596306,
-0.09446550905704498,
-0.0065459911711514,
-0.020914869382977486,
0.05383497476577759,
-0.06201713904738426,
0.006019761320203543,
-0.13066808879375458,
-0.11652915179729462,
-0.03750787302851677,
0.04548539221286774,
-0.04952479153871536,
0.15538166463375092,
-0.005314349662512541,
-0.032561853528022766,
0.02934361808001995,
0.21924884617328644,
-0.09316462278366089,
-0.06287464499473572,
-0.03770865499973297,
0.2273341417312622,
0.061334818601608276,
0.11572667956352234,
-0.02187558263540268,
0.008813249878585339,
-0.10179848223924637,
0.3425702154636383,
0.3009348213672638,
-0.08170133829116821,
0.016692766919732094,
0.01673230342566967,
0.036583319306373596,
0.12197494506835938,
0.13406173884868622,
0.09399992227554321,
0.2436945140361786,
-0.07470346987247467,
0.003173281904309988,
-0.03435994312167168,
-0.008759832009673119,
-0.07776547223329544,
0.12823206186294556,
0.024151945486664772,
-0.07184530794620514,
-0.032156914472579956,
0.08890103548765182,
-0.22929894924163818,
0.14753322303295135,
-0.10484953969717026,
-0.18783989548683167,
-0.06164955720305443,
0.00008412057650275528,
0.13880345225334167,
0.002382132224738598,
0.09316833317279816,
-0.007379383314400911,
-0.1011435016989708,
0.029295174404978752,
0.015482488088309765,
-0.2229352593421936,
-0.010810591280460358,
0.0404212586581707,
-0.09085750579833984,
-0.01742275431752205,
-0.0016180978855118155,
0.0287303663790226,
0.06424181163311005,
0.06339018791913986,
-0.03694164380431175,
0.04225391894578934,
0.003686911426484585,
-0.024414513260126114,
0.025773344561457634,
0.06120169535279274,
0.012536129914224148,
-0.054895106703042984,
0.05427484214305878,
-0.1721356064081192,
0.040095213800668716,
-0.029365895316004753,
-0.04817602410912514,
0.020577482879161835,
-0.016243834048509598,
-0.034298621118068695,
0.06078929454088211,
0.07933857291936874,
-0.004954868927598,
-0.00796609465032816,
-0.06335803121328354,
-0.02335859276354313,
-0.016681989654898643,
-0.09571922570466995,
-0.0947895422577858,
-0.14670000970363617,
-0.10303434729576111,
0.10084357112646103,
-0.0015570868272334337,
-0.2170579582452774,
0.008746448904275894,
-0.09995011985301971,
0.02912731096148491,
-0.20229791104793549,
0.08559132367372513,
0.06990905106067657,
0.012313848361372948,
-0.008628117851912975,
-0.05956573784351349,
0.05163382738828659,
0.10528946667909622,
-0.11302821338176727,
-0.1000528410077095
] |
null | null | transformers | This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish WikiEdits for sentence simplification.
You can use it with the command "simplify:"
| {"language": "es"} | text2text-generation | JorgeSarry/est5base-simplify | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"es",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish WikiEdits for sentence simplification.
You can use it with the command "simplify:"
| [] | [
"TAGS\n#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.023405348882079124,
-0.006307253614068031,
-0.006489460356533527,
0.013956565409898758,
0.1767830103635788,
0.021313346922397614,
0.12365099042654037,
0.1285444051027298,
0.010711546055972576,
-0.023639339953660965,
0.15911805629730225,
0.22160457074642181,
-0.021735087037086487,
0.10348974913358688,
-0.10501150786876678,
-0.24790823459625244,
0.041891831904649734,
0.05058150738477707,
0.023130998015403748,
0.1249905526638031,
0.07638464868068695,
-0.07081033289432526,
0.09526527673006058,
-0.04172457382082939,
-0.1415322721004486,
0.047042857855558395,
0.056105490773916245,
-0.12589113414287567,
0.10662735998630524,
0.043878789991140366,
0.10021927207708359,
0.03154359385371208,
-0.054913319647312164,
-0.14818930625915527,
0.023838872089982033,
0.015365447849035263,
-0.0550244078040123,
0.06170910969376564,
0.11095242947340012,
-0.10946539044380188,
0.05988006666302681,
0.0676913857460022,
-0.010783245787024498,
0.053258657455444336,
-0.1452578902244568,
0.033316317945718765,
-0.02374195121228695,
-0.006574322935193777,
0.0814470499753952,
0.0990884080529213,
-0.004268764518201351,
0.1277816742658615,
-0.11350701749324799,
0.11720865964889526,
0.15442414581775665,
-0.2903161346912384,
0.009174128994345665,
0.07072164863348007,
0.04272058978676796,
0.09227371215820312,
-0.013416149653494358,
0.050422511994838715,
0.04187290742993355,
0.029668956995010376,
0.020096326246857643,
-0.06711850315332413,
-0.10391706973314285,
0.03825511783361435,
-0.09264907985925674,
-0.061471279710531235,
0.2519805133342743,
-0.0675705149769783,
0.06877205520868301,
-0.013198032975196838,
-0.11365517973899841,
-0.05771266669034958,
0.007062971591949463,
0.0033231719862669706,
-0.057775869965553284,
0.0718555897474289,
0.017089905217289925,
-0.04690461605787277,
-0.12537111341953278,
-0.006122714839875698,
-0.18375207483768463,
0.11302357912063599,
-0.011284350417554379,
0.057227786630392075,
-0.21693940460681915,
0.09390349686145782,
0.016127295792102814,
-0.10161059349775314,
0.06009870022535324,
-0.09760946780443192,
0.05380711704492569,
-0.013798259198665619,
-0.061287879943847656,
-0.11306501924991608,
0.04762775078415871,
0.0893436074256897,
0.036780841648578644,
0.0347311869263649,
-0.059594493359327316,
0.09939952194690704,
0.02985755354166031,
0.06924024969339371,
0.02387223206460476,
-0.08394178003072739,
0.037186719477176666,
-0.10753607004880905,
0.0046989149414002895,
-0.07122215628623962,
-0.16309283673763275,
-0.0540933683514595,
0.05934667959809303,
0.09185206890106201,
0.028253788128495216,
0.07592422515153885,
-0.03876999765634537,
-0.033449213951826096,
0.032148756086826324,
-0.07706010341644287,
-0.0014267259975895286,
-0.0007837514858692884,
-0.0035768202506005764,
0.1711825579404831,
0.015018326230347157,
0.01470181718468666,
-0.1334361732006073,
0.09694521129131317,
-0.07611359655857086,
0.00561067508533597,
-0.05041027069091797,
-0.0685982033610344,
0.028410768136382103,
-0.09505798667669296,
0.012888173572719097,
-0.1590069830417633,
-0.17695288360118866,
0.0065157185308635235,
0.0021532305981963873,
-0.012800781056284904,
-0.03930933400988579,
-0.05317482352256775,
-0.030178457498550415,
0.061288028955459595,
-0.07748191058635712,
0.029724234715104103,
-0.04764179885387421,
0.08815033733844757,
-0.037095893174409866,
0.06631910800933838,
-0.11396218836307526,
0.08111348003149033,
-0.11449380218982697,
-0.006496525835245848,
-0.09825190901756287,
0.06343421339988708,
0.012575521133840084,
0.12136015295982361,
-0.016442660242319107,
-0.02255602367222309,
-0.0778326541185379,
0.04493769258260727,
-0.018330905586481094,
0.21257413923740387,
-0.07963072508573532,
-0.11050146818161011,
0.18595515191555023,
-0.07966331392526627,
-0.14331001043319702,
0.08819804340600967,
0.006770124658942223,
0.0466127023100853,
0.08805827051401138,
0.16465328633785248,
0.021684853360056877,
-0.00006476342969108373,
0.08529839664697647,
0.10148662328720093,
-0.08814011514186859,
-0.11353904008865356,
0.00948346871882677,
-0.019711846485733986,
-0.12916706502437592,
0.046530403196811676,
0.09417639672756195,
0.06028018146753311,
-0.06874270737171173,
-0.029440203681588173,
-0.04123176634311676,
-0.012251538224518299,
0.08198611438274384,
-0.01642644964158535,
0.12504443526268005,
-0.06513082981109619,
0.005213283933699131,
0.01950020343065262,
-0.017793606966733932,
-0.016046036034822464,
0.03889843821525574,
-0.02687467262148857,
0.10886799544095993,
-0.06811205297708511,
0.03693995997309685,
-0.19604432582855225,
-0.04199555888772011,
-0.011294563300907612,
0.12352947890758514,
0.00021947188361082226,
0.07688494026660919,
0.0551237016916275,
-0.020480535924434662,
-0.010102040134370327,
-0.017021803185343742,
0.14815972745418549,
-0.01121420506387949,
-0.10165989398956299,
-0.08158661425113678,
0.043104931712150574,
-0.0682193785905838,
-0.025219198316335678,
-0.0729774683713913,
0.021165700629353523,
0.0004643646243494004,
0.11538930982351303,
0.0025483316276222467,
0.060873791575431824,
-0.03351917490363121,
0.03415532037615776,
-0.08609574288129807,
0.025220779702067375,
0.10206286609172821,
-0.00934540294110775,
-0.05710136145353317,
0.19981665909290314,
-0.1921062171459198,
0.231184184551239,
0.20216946303844452,
-0.2970455288887024,
0.030712010338902473,
-0.08176341652870178,
-0.01754149980843067,
-0.0016629770398139954,
0.041730720549821854,
-0.03232712671160698,
0.0882260724902153,
0.0016771921655163169,
0.19377528131008148,
-0.056654192507267,
-0.05054333433508873,
-0.003098605666309595,
-0.06187862902879715,
-0.03245582431554794,
0.06564902514219284,
0.12337413430213928,
-0.16757574677467346,
0.17941488325595856,
0.2565922737121582,
0.015354050323367119,
0.17034108936786652,
0.018376102671027184,
-0.038993045687675476,
0.06980528682470322,
-0.030604591593146324,
-0.0457286611199379,
-0.09659246355295181,
-0.193589985370636,
-0.029306385666131973,
0.07485504448413849,
0.06425895541906357,
0.12140867859125137,
-0.10114680975675583,
-0.026044128462672234,
-0.004819866269826889,
0.018939044326543808,
-0.00990588590502739,
0.0719388872385025,
0.07177721709012985,
0.13365891575813293,
-0.019845901057124138,
-0.0036334064789116383,
0.11108218133449554,
0.005342310294508934,
-0.12067164480686188,
0.18759790062904358,
-0.1505533754825592,
-0.3309108316898346,
-0.17874576151371002,
-0.18837767839431763,
-0.05428200587630272,
0.05446828529238701,
0.10159963369369507,
-0.10069257766008377,
-0.02560201846063137,
-0.0015429413178935647,
0.109944649040699,
-0.09196438640356064,
0.026192057877779007,
-0.045280713587999344,
0.06127835437655449,
-0.07127512246370316,
-0.07621589303016663,
-0.05311194062232971,
-0.018029948696494102,
-0.05192594975233078,
0.14129595458507538,
-0.12379798293113708,
0.04798963665962219,
0.19870004057884216,
0.011289375834167004,
0.04970202594995499,
-0.020711734890937805,
0.17621807754039764,
-0.06250164657831192,
-0.008646548725664616,
0.22563746571540833,
-0.05478613078594208,
0.08036036789417267,
0.11984948813915253,
-0.01103967148810625,
-0.07858927547931671,
0.039119161665439606,
-0.043763674795627594,
-0.0923738032579422,
-0.2758941948413849,
-0.13032683730125427,
-0.11740394681692123,
0.08183617889881134,
0.05930277705192566,
0.04069027304649353,
0.15971942245960236,
0.07291096448898315,
-0.01196890976279974,
0.029145149514079094,
0.0027683123480528593,
0.07453377544879913,
0.1744089424610138,
-0.025128502398729324,
0.14499762654304504,
-0.05063817650079727,
-0.11220279335975647,
0.08571168035268784,
0.0649065375328064,
0.11411642283201218,
0.0727534145116806,
0.017128949984908104,
0.01542222686111927,
0.06284062564373016,
0.15229979157447815,
0.15997877717018127,
0.042622003704309464,
-0.01081407256424427,
-0.02767949551343918,
-0.023731654509902,
-0.0616876520216465,
0.04702607914805412,
0.044346895068883896,
-0.11419656872749329,
-0.08847490698099136,
-0.060664888471364975,
0.08029478043317795,
0.09530152380466461,
0.06636086851358414,
-0.23391130566596985,
0.012500200420618057,
0.09464157372713089,
-0.0381733775138855,
-0.09950854629278183,
0.08954689651727676,
0.016305582597851753,
-0.1336844116449356,
0.060512036085128784,
-0.03477915748953819,
0.13743673264980316,
-0.049023453146219254,
0.1004866287112236,
-0.06448083370923996,
-0.06717971712350845,
0.023626115173101425,
0.10673370957374573,
-0.3522002696990967,
0.20404760539531708,
0.009140380658209324,
-0.05812293663620949,
-0.11449737846851349,
-0.012596642598509789,
0.014034068211913109,
0.12060430645942688,
0.07960914820432663,
0.003699091263115406,
-0.05985566973686218,
-0.08650904893875122,
-0.024260101839900017,
0.008676835335791111,
0.14177313446998596,
-0.02017866261303425,
0.008398139849305153,
-0.044127751141786575,
-0.008085744455456734,
-0.018862197175621986,
0.0038873401936143637,
-0.007255303207784891,
-0.17035643756389618,
0.06405345350503922,
0.02884904481470585,
0.07188612967729568,
0.017923885956406593,
-0.02637561969459057,
-0.07030762732028961,
0.1974339634180069,
-0.06115836277604103,
-0.07720877230167389,
-0.1238357201218605,
-0.06288015097379684,
0.05255011469125748,
-0.06646168977022171,
0.033231284469366074,
-0.06034928187727928,
0.04909287765622139,
-0.06883519142866135,
-0.22038108110427856,
0.1252998560667038,
-0.11054239422082901,
-0.05156998336315155,
-0.05079306289553642,
0.18394112586975098,
-0.06967221945524216,
0.020224761217832565,
0.019980469718575478,
0.0030940864235162735,
-0.09404362738132477,
-0.07895543426275253,
0.016280870884656906,
0.02658548392355442,
0.041567783802747726,
0.06230160966515541,
-0.08305598795413971,
-0.02286393567919731,
-0.038255322724580765,
-0.018283521756529808,
0.3140171468257904,
0.13497605919837952,
-0.042314138263463974,
0.16569453477859497,
0.1494555026292801,
-0.10730866342782974,
-0.3249272406101227,
-0.06561818718910217,
-0.09775663912296295,
-0.025589562952518463,
-0.036472249776124954,
-0.16230295598506927,
0.08155403286218643,
0.0166950486600399,
-0.007617838680744171,
0.11206773668527603,
-0.26588496565818787,
-0.0841098502278328,
0.13756902515888214,
-0.0005202835309319198,
0.3645749092102051,
-0.10879717767238617,
-0.10936834663152695,
-0.07749640941619873,
-0.1265658438205719,
0.1509251445531845,
-0.04628385230898857,
0.0954023078083992,
-0.02712436020374298,
0.11640176922082901,
0.040947187691926956,
-0.0473293773829937,
0.08597977459430695,
0.027222173288464546,
0.011145115830004215,
-0.09865284711122513,
-0.0292590893805027,
0.04146488383412361,
-0.013637457974255085,
0.020888889208436012,
-0.026569008827209473,
0.022838622331619263,
-0.1358393430709839,
-0.03413087874650955,
-0.08228223025798798,
0.05818265676498413,
0.022348223254084587,
-0.0651693046092987,
0.03445550426840782,
-0.08387193083763123,
0.01780620776116848,
0.005096352193504572,
0.2067175805568695,
-0.051610611379146576,
0.1682225614786148,
0.17931897938251495,
0.14196893572807312,
-0.14903314411640167,
0.03695940971374512,
-0.06389028578996658,
-0.06669911742210388,
0.0712963342666626,
-0.09425678849220276,
0.06820494681596756,
0.12032920867204666,
-0.045712318271398544,
0.06785059720277786,
0.11426375806331635,
0.020472833886742592,
-0.0130937984213233,
0.13237255811691284,
-0.2505798041820526,
0.06055373698472977,
-0.07387376576662064,
0.013887407258152962,
0.07311253994703293,
0.06327132135629654,
0.1849268674850464,
0.01639377512037754,
-0.030368635430932045,
-0.025039205327630043,
0.01911737024784088,
-0.05451569706201553,
0.0988558679819107,
0.017481988295912743,
0.029965829104185104,
-0.14121472835540771,
0.10829516500234604,
0.015339955687522888,
-0.1635650098323822,
0.00146659801248461,
0.18286952376365662,
-0.12629102170467377,
-0.11602604389190674,
-0.01608988828957081,
0.12117660045623779,
-0.14186063408851624,
-0.03407665342092514,
-0.0629759207367897,
-0.13396503031253815,
0.10359762609004974,
0.17591463029384613,
0.06460950523614883,
0.0786185935139656,
-0.058580197393894196,
-0.050493694841861725,
-0.044935084879398346,
-0.017258141189813614,
-0.00146363431122154,
0.021036850288510323,
-0.09100382030010223,
0.07733257114887238,
-0.030098356306552887,
0.14117540419101715,
-0.08996587246656418,
-0.0688318982720375,
-0.143082395195961,
0.03965885937213898,
-0.13076451420783997,
-0.056546345353126526,
-0.07208375632762909,
-0.06869494169950485,
-0.00983461644500494,
-0.018561454489827156,
-0.06704523414373398,
-0.04726089909672737,
-0.12657111883163452,
0.022414647042751312,
-0.048582494258880615,
0.03781188279390335,
-0.05123817175626755,
-0.006981776561588049,
0.07633817195892334,
-0.050746362656354904,
0.10479695349931717,
0.13879215717315674,
-0.09860966354608536,
0.11046252399682999,
-0.12960807979106903,
-0.11349870264530182,
0.11787030845880508,
0.03148498013615608,
0.05233228579163551,
0.07885102927684784,
0.0173299852758646,
0.08309564739465714,
0.02301635593175888,
0.0435362346470356,
0.019892722368240356,
-0.1195281520485878,
0.05007665976881981,
-0.039084143936634064,
-0.1511043757200241,
-0.06070279702544212,
-0.052324630320072174,
0.0526733472943306,
0.007850809022784233,
0.12467972189188004,
-0.052923981100320816,
0.1198926717042923,
-0.06349389255046844,
0.021694937720894814,
0.008496345020830631,
-0.16946853697299957,
-0.05971163883805275,
-0.07412265986204147,
0.038989268243312836,
-0.001052354578860104,
0.2522556781768799,
0.01835041120648384,
0.02563772164285183,
0.036291129887104034,
0.07881636172533035,
-0.01236636657267809,
0.02397233620285988,
0.18215477466583252,
0.09656354784965515,
-0.04849576950073242,
-0.09484677016735077,
0.0765017569065094,
0.031754739582538605,
0.04989137500524521,
0.156072199344635,
0.03737843409180641,
0.026844775304198265,
0.11658646911382675,
-0.01168229803442955,
0.03174815699458122,
-0.11668837815523148,
-0.1610693484544754,
0.004089293070137501,
0.06675800681114197,
-0.01051678229123354,
0.06004660204052925,
0.15231670439243317,
-0.019989071413874626,
0.030794862657785416,
-0.03274935856461525,
-0.04614122211933136,
-0.18776065111160278,
-0.13593913614749908,
-0.0858573317527771,
-0.11748107522726059,
-0.007300856988877058,
-0.10948542505502701,
0.057214606553316116,
0.09135420620441437,
0.06923320889472961,
-0.06294219940900803,
0.06282538175582886,
0.03453311696648598,
-0.101143978536129,
0.06174815818667412,
-0.04283783584833145,
0.07991630584001541,
-0.033796459436416626,
-0.01834116503596306,
-0.09446550905704498,
-0.0065459911711514,
-0.020914869382977486,
0.05383497476577759,
-0.06201713904738426,
0.006019761320203543,
-0.13066808879375458,
-0.11652915179729462,
-0.03750787302851677,
0.04548539221286774,
-0.04952479153871536,
0.15538166463375092,
-0.005314349662512541,
-0.032561853528022766,
0.02934361808001995,
0.21924884617328644,
-0.09316462278366089,
-0.06287464499473572,
-0.03770865499973297,
0.2273341417312622,
0.061334818601608276,
0.11572667956352234,
-0.02187558263540268,
0.008813249878585339,
-0.10179848223924637,
0.3425702154636383,
0.3009348213672638,
-0.08170133829116821,
0.016692766919732094,
0.01673230342566967,
0.036583319306373596,
0.12197494506835938,
0.13406173884868622,
0.09399992227554321,
0.2436945140361786,
-0.07470346987247467,
0.003173281904309988,
-0.03435994312167168,
-0.008759832009673119,
-0.07776547223329544,
0.12823206186294556,
0.024151945486664772,
-0.07184530794620514,
-0.032156914472579956,
0.08890103548765182,
-0.22929894924163818,
0.14753322303295135,
-0.10484953969717026,
-0.18783989548683167,
-0.06164955720305443,
0.00008412057650275528,
0.13880345225334167,
0.002382132224738598,
0.09316833317279816,
-0.007379383314400911,
-0.1011435016989708,
0.029295174404978752,
0.015482488088309765,
-0.2229352593421936,
-0.010810591280460358,
0.0404212586581707,
-0.09085750579833984,
-0.01742275431752205,
-0.0016180978855118155,
0.0287303663790226,
0.06424181163311005,
0.06339018791913986,
-0.03694164380431175,
0.04225391894578934,
0.003686911426484585,
-0.024414513260126114,
0.025773344561457634,
0.06120169535279274,
0.012536129914224148,
-0.054895106703042984,
0.05427484214305878,
-0.1721356064081192,
0.040095213800668716,
-0.029365895316004753,
-0.04817602410912514,
0.020577482879161835,
-0.016243834048509598,
-0.034298621118068695,
0.06078929454088211,
0.07933857291936874,
-0.004954868927598,
-0.00796609465032816,
-0.06335803121328354,
-0.02335859276354313,
-0.016681989654898643,
-0.09571922570466995,
-0.0947895422577858,
-0.14670000970363617,
-0.10303434729576111,
0.10084357112646103,
-0.0015570868272334337,
-0.2170579582452774,
0.008746448904275894,
-0.09995011985301971,
0.02912731096148491,
-0.20229791104793549,
0.08559132367372513,
0.06990905106067657,
0.012313848361372948,
-0.008628117851912975,
-0.05956573784351349,
0.05163382738828659,
0.10528946667909622,
-0.11302821338176727,
-0.1000528410077095
] |
null | null | transformers | This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings left following the procedure outlined here https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90
The original model has 582M parameters, with 384M of them being input and output embeddings.
After shrinking the sentencepiece vocabulary from 250K to 30K (top 10K English and top 20K Spanish tokens) the number of model parameters reduced to 244M parameters, resulting on a model size reduced from 2.2GB to 0.9GB - 42% of the original one.
| {"language": "es"} | text2text-generation | JorgeSarry/est5base | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"es",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #t5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings left following the procedure outlined here URL
The original model has 582M parameters, with 384M of them being input and output embeddings.
After shrinking the sentencepiece vocabulary from 250K to 30K (top 10K English and top 20K Spanish tokens) the number of model parameters reduced to 244M parameters, resulting on a model size reduced from 2.2GB to 0.9GB - 42% of the original one.
| [] | [
"TAGS\n#transformers #pytorch #t5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
50
] | [
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #es #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.00954030267894268,
-0.017448391765356064,
-0.007085495162755251,
0.023179786279797554,
0.16766874492168427,
0.031247297301888466,
0.11247552186250687,
0.13168948888778687,
-0.01189019251614809,
-0.03425798565149307,
0.1328878104686737,
0.21487855911254883,
-0.00814149621874094,
0.08802022784948349,
-0.09962673485279083,
-0.26173168420791626,
0.03714072331786156,
0.06345166265964508,
0.011544836685061455,
0.13204079866409302,
0.0837414562702179,
-0.05874257534742355,
0.09652061760425568,
-0.03464207798242569,
-0.15965822339057922,
0.060767944902181625,
0.07358603924512863,
-0.13773034512996674,
0.129613995552063,
0.05183917656540871,
0.11868323385715485,
0.03523131087422371,
-0.048465561121702194,
-0.12370438128709793,
0.024940676987171173,
0.029480235651135445,
-0.0689871534705162,
0.05442962795495987,
0.10812893509864807,
-0.09907182306051254,
0.09490197151899338,
0.06232483312487602,
-0.0037525829393416643,
0.0614839643239975,
-0.14871138334274292,
-0.0005683943163603544,
-0.007390895858407021,
0.01838161051273346,
0.06989768147468567,
0.08850446343421936,
-0.009453783743083477,
0.1350809931755066,
-0.10369456559419632,
0.13536806404590607,
0.1577572226524353,
-0.3169160783290863,
0.0043528820388019085,
0.04268402233719826,
0.043556902557611465,
0.07711173593997955,
-0.007679721340537071,
0.04854638874530792,
0.041179921478033066,
0.037880364805459976,
0.035353098064661026,
-0.07591045647859573,
-0.15065832436084747,
0.04390024393796921,
-0.08349675685167313,
-0.06299718469381332,
0.2527063190937042,
-0.063395194709301,
0.06579772382974625,
0.001160888816229999,
-0.13594628870487213,
-0.0603979155421257,
0.011323481798171997,
-0.024668920785188675,
-0.04877493530511856,
0.06387031078338623,
0.03220059722661972,
-0.055491749197244644,
-0.14500023424625397,
-0.008002309128642082,
-0.20697219669818878,
0.14610929787158966,
0.00870582927018404,
0.05579116567969322,
-0.23134571313858032,
0.09881763905286789,
0.05725463852286339,
-0.1007051020860672,
0.060004401952028275,
-0.0884876549243927,
0.027227060869336128,
-0.017385832965373993,
-0.062078528106212616,
-0.13757294416427612,
0.053890958428382874,
0.09695831686258316,
0.0081522511318326,
0.017933372408151627,
-0.06573806703090668,
0.07910912483930588,
0.022021519020199776,
0.07995988428592682,
0.007458081468939781,
-0.04136839509010315,
0.0467461533844471,
-0.13490696251392365,
-0.0016979023348540068,
-0.06550627946853638,
-0.15780775249004364,
-0.07632806897163391,
0.08746795356273651,
0.08491695672273636,
0.019719323143363,
0.08674134314060211,
-0.043276552110910416,
-0.036249905824661255,
0.004763210192322731,
-0.08903923630714417,
-0.020932257175445557,
-0.008291985839605331,
0.006599127780646086,
0.16799619793891907,
0.02059224806725979,
0.006610605400055647,
-0.15861035883426666,
0.07113081216812134,
-0.073762908577919,
-0.01806020922958851,
-0.024454258382320404,
-0.0754232332110405,
0.020919429138302803,
-0.1144496276974678,
0.014333982951939106,
-0.17344067990779877,
-0.1617044359445572,
0.024246884509921074,
0.005489822942763567,
-0.014009028673171997,
-0.047113850712776184,
-0.046407103538513184,
-0.03301932290196419,
0.04928038641810417,
-0.06806546449661255,
0.007677499670535326,
-0.044301554560661316,
0.10375717282295227,
-0.03858935832977295,
0.06598097085952759,
-0.12357918173074722,
0.07684001326560974,
-0.12763619422912598,
-0.024633562192320824,
-0.07480636984109879,
0.060670193284749985,
0.040383823215961456,
0.10598505288362503,
-0.02364344522356987,
-0.034646086394786835,
-0.07991520315408707,
0.04974646866321564,
-0.028491564095020294,
0.19901616871356964,
-0.09421931207180023,
-0.10958629846572876,
0.2351316213607788,
-0.08270113915205002,
-0.1623171865940094,
0.09312328696250916,
0.012741458602249622,
0.05547210946679115,
0.09588567167520523,
0.1690361201763153,
0.018095681443810463,
-0.011404812335968018,
0.09936011582612991,
0.102293960750103,
-0.11120958626270294,
-0.08405525237321854,
0.0036939377896487713,
-0.021219072863459587,
-0.11617274582386017,
0.04282696172595024,
0.08514782786369324,
0.0688953697681427,
-0.05709981918334961,
-0.023965725675225258,
-0.05099174380302429,
-0.005540285259485245,
0.1003379300236702,
-0.010138274170458317,
0.12225658446550369,
-0.07090972363948822,
-0.022774918004870415,
0.007721972651779652,
-0.03148363158106804,
-0.015786679461598396,
0.04734630882740021,
-0.029318368062376976,
0.124513640999794,
-0.027520790696144104,
0.03992582857608795,
-0.19437533617019653,
-0.07731154561042786,
-0.010783322155475616,
0.1606663465499878,
-0.001308178179897368,
0.09608112275600433,
0.05003338307142258,
-0.02925185300409794,
-0.013923310674726963,
-0.02268373779952526,
0.13381445407867432,
-0.003959299065172672,
-0.07107429951429367,
-0.07288137078285217,
0.057108208537101746,
-0.056632962077856064,
-0.02814880572259426,
-0.06551705300807953,
0.01590459607541561,
0.024785172194242477,
0.13452018797397614,
0.014595539309084415,
0.06794385612010956,
-0.03406589478254318,
0.018689051270484924,
-0.09728836268186569,
0.016064617782831192,
0.09445419162511826,
-0.009869642555713654,
-0.06514804810285568,
0.19756200909614563,
-0.18212343752384186,
0.23530356585979462,
0.19372956454753876,
-0.30235666036605835,
-0.004148303531110287,
-0.04447460174560547,
-0.0289707500487566,
0.0011949868639931083,
0.06193995475769043,
-0.04395610839128494,
0.09790541231632233,
-0.0011711029801517725,
0.19923323392868042,
-0.06644993275403976,
-0.05684487894177437,
0.009967386722564697,
-0.05705706775188446,
-0.012166392058134079,
0.053148165345191956,
0.09100553393363953,
-0.1834941953420639,
0.17110483348369598,
0.24113450944423676,
0.030910488218069077,
0.17362482845783234,
-0.0011245878413319588,
-0.04677676409482956,
0.0765640139579773,
-0.009447881020605564,
-0.042310819029808044,
-0.08679533004760742,
-0.18605147302150726,
-0.019990405067801476,
0.07824326306581497,
0.04426247254014015,
0.09362092614173889,
-0.11601575464010239,
-0.025713013485074043,
0.000517681532073766,
0.003546731313690543,
-0.007434027269482613,
0.0917539894580841,
0.07725111395120621,
0.1483311802148819,
-0.016803940758109093,
-0.017694396898150444,
0.11525505781173706,
0.018775420263409615,
-0.12333359569311142,
0.19371430575847626,
-0.13669353723526,
-0.3403816223144531,
-0.15347030758857727,
-0.1571759134531021,
-0.03816714137792587,
0.048516325652599335,
0.11324051022529602,
-0.10316113382577896,
-0.024586912244558334,
0.005873913411051035,
0.10194074362516403,
-0.08486037701368332,
0.036813464015722275,
-0.0782976746559143,
0.05526375398039818,
-0.07140309363603592,
-0.07939247786998749,
-0.056074973195791245,
-0.016904344782233238,
-0.05427788943052292,
0.14643561840057373,
-0.1394641250371933,
0.048335544764995575,
0.1985187530517578,
-0.009357581846415997,
0.05343760550022125,
-0.04504302516579628,
0.16850660741329193,
-0.06667531281709671,
0.02186601050198078,
0.21300242841243744,
-0.0644678920507431,
0.07631491124629974,
0.12202703207731247,
-0.018197814002633095,
-0.0711340606212616,
0.03726973012089729,
-0.031124697998166084,
-0.08525089174509048,
-0.2721361517906189,
-0.11099815368652344,
-0.1185622289776802,
0.07905492186546326,
0.04766004905104637,
0.045873887836933136,
0.17725008726119995,
0.06901858747005463,
-0.012987599708139896,
0.04408102110028267,
0.006284534465521574,
0.07689593732357025,
0.20106364786624908,
-0.014799447730183601,
0.12989047169685364,
-0.057451386004686356,
-0.1185438483953476,
0.09583492577075958,
0.060964491218328476,
0.10476753115653992,
0.056658267974853516,
0.039514828473329544,
0.009655292145907879,
0.07163318246603012,
0.13074545562267303,
0.163140207529068,
0.03703843057155609,
-0.005537673365324736,
-0.02108537033200264,
-0.026098404079675674,
-0.03499671444296837,
0.04498589038848877,
0.01000874862074852,
-0.11523021012544632,
-0.09431872516870499,
-0.0632670596241951,
0.07702749222517014,
0.12425874173641205,
0.07391709089279175,
-0.2369793802499771,
0.005983683280646801,
0.070933498442173,
-0.04257833957672119,
-0.11094076186418533,
0.08907599747180939,
0.00101174577139318,
-0.13039614260196686,
0.07450100034475327,
-0.043234340846538544,
0.11558876186609268,
-0.024331817403435707,
0.098765067756176,
-0.03709137812256813,
-0.07547862082719803,
0.02187209576368332,
0.10312633216381073,
-0.33627453446388245,
0.21445204317569733,
-0.0005305632948875427,
-0.0695381909608841,
-0.11051201820373535,
-0.012415032833814621,
-0.002320133615285158,
0.12457063794136047,
0.1043960377573967,
0.0017548342002555728,
-0.02928902953863144,
-0.07905597984790802,
0.002274374710395932,
0.021673820912837982,
0.14746305346488953,
-0.03438270837068558,
0.017960907891392708,
-0.06218774989247322,
-0.010534675791859627,
-0.005297537427395582,
-0.002695208415389061,
-0.005129157565534115,
-0.1512266844511032,
0.06555823981761932,
0.017425309866666794,
0.05856187641620636,
0.017681675031781197,
-0.02986406907439232,
-0.06802047044038773,
0.2063070684671402,
-0.07910874485969543,
-0.10401832312345505,
-0.12317396700382233,
-0.05012735724449158,
0.04912292957305908,
-0.07527991384267807,
0.04876331612467766,
-0.07367599010467529,
0.028276098892092705,
-0.04852556809782982,
-0.2383781224489212,
0.1357061266899109,
-0.08728247880935669,
-0.05294777825474739,
-0.04139631241559982,
0.18911953270435333,
-0.09033284336328506,
0.009637431241571903,
0.02427905984222889,
-0.002291045617312193,
-0.08325847238302231,
-0.05684424191713333,
0.0057426863349974155,
-0.008927904069423676,
0.04564214497804642,
0.039083171635866165,
-0.09352730214595795,
-0.05698420852422714,
-0.04086368903517723,
-0.007205831352621317,
0.3171325922012329,
0.10648313909769058,
-0.047941260039806366,
0.16876615583896637,
0.1107509434223175,
-0.09768117219209671,
-0.2919163107872009,
-0.08314258605241776,
-0.09383445233106613,
-0.01944229193031788,
-0.020565984770655632,
-0.16236308217048645,
0.0786164402961731,
-0.000023830267309676856,
0.009144500829279423,
0.10325636714696884,
-0.2564590871334076,
-0.0869375690817833,
0.1454763114452362,
0.011773079633712769,
0.35281500220298767,
-0.10871516168117523,
-0.09676751494407654,
-0.044395774602890015,
-0.13976998627185822,
0.16729344427585602,
-0.04938329756259918,
0.08556979149580002,
-0.0321626178920269,
0.11770021170377731,
0.052655838429927826,
-0.027059154585003853,
0.04717252403497696,
0.006155300885438919,
0.004963064566254616,
-0.11391295492649078,
-0.05388246476650238,
0.061902351677417755,
-0.009214870631694794,
0.030879521742463112,
-0.028657373040914536,
0.04836149141192436,
-0.11052132397890091,
-0.036482200026512146,
-0.09247267991304398,
0.06157723441720009,
0.021201791241765022,
-0.07826461642980576,
0.02757314406335354,
-0.08632782846689224,
0.024313518777489662,
-0.014061248861253262,
0.19897879660129547,
-0.040331680327653885,
0.16924510896205902,
0.14149697124958038,
0.13821087777614594,
-0.12006441503763199,
0.035410262644290924,
-0.07888163626194,
-0.06825083494186401,
0.06778272241353989,
-0.10012868046760559,
0.06328719109296799,
0.12423352152109146,
-0.03650021180510521,
0.05900893360376358,
0.11460193246603012,
0.01501934602856636,
-0.0168365016579628,
0.13487571477890015,
-0.26340553164482117,
0.018993517383933067,
-0.08935495465993881,
-0.053920116275548935,
0.06681771576404572,
0.07242279499769211,
0.1816958338022232,
0.01613953337073326,
-0.03287201002240181,
-0.017073193565011024,
0.0001996697683352977,
-0.054168231785297394,
0.06383217871189117,
0.015453612431883812,
0.019156942144036293,
-0.12406786531209946,
0.09394878894090652,
0.026022151112556458,
-0.1547301858663559,
0.02102387137711048,
0.18012216687202454,
-0.1382378339767456,
-0.10732327401638031,
-0.0009682024247013032,
0.11373228579759598,
-0.16965532302856445,
-0.02843376062810421,
-0.07390981167554855,
-0.13298861682415009,
0.09401465952396393,
0.2192745804786682,
0.05890435352921486,
0.10192808508872986,
-0.053443972021341324,
-0.040846314281225204,
-0.03345334902405739,
0.001501788734458387,
0.008571132086217403,
0.025075415149331093,
-0.10540904849767685,
0.09408842027187347,
-0.027561744675040245,
0.153187558054924,
-0.09273681789636612,
-0.06467849016189575,
-0.13976341485977173,
0.03425446152687073,
-0.1541127860546112,
-0.056184086948633194,
-0.05387740954756737,
-0.057919640094041824,
-0.006941918283700943,
-0.01971520110964775,
-0.050324447453022,
-0.040638517588377,
-0.11600860953330994,
0.028575481846928596,
-0.030596008524298668,
0.043051961809396744,
-0.06999848037958145,
-0.010672055184841156,
0.06472407281398773,
-0.04442054405808449,
0.12490303069353104,
0.12632106244564056,
-0.11407536268234253,
0.13185587525367737,
-0.13834701478481293,
-0.10044709593057632,
0.1104845404624939,
0.02627524919807911,
0.059231728315353394,
0.09088931977748871,
0.021238163113594055,
0.07173055410385132,
0.015219367109239101,
0.03983959183096886,
0.017197059467434883,
-0.11263786256313324,
0.03810809180140495,
-0.029964853078126907,
-0.1547374576330185,
-0.06693089753389359,
-0.04267296940088272,
0.034914180636405945,
-0.00006499058508779854,
0.11696390807628632,
-0.05162544175982475,
0.11369980871677399,
-0.07170630246400833,
0.015510763972997665,
0.010537546128034592,
-0.15701846778392792,
-0.08105397969484329,
-0.07900644093751907,
0.028549157083034515,
-0.011863229796290398,
0.20186756551265717,
0.026809396222233772,
0.06610747426748276,
0.03549589589238167,
0.07439017295837402,
-0.000807587755843997,
0.020754363387823105,
0.20481917262077332,
0.07155273109674454,
-0.067172110080719,
-0.12037891894578934,
0.057467132806777954,
0.012349561788141727,
0.034486107528209686,
0.16656921803951263,
0.027073265984654427,
-0.025346169248223305,
0.10712187737226486,
-0.017642049118876457,
0.03190112113952637,
-0.12660029530525208,
-0.1791992038488388,
0.005083051975816488,
0.07090096175670624,
-0.0029928695876151323,
0.08373281359672546,
0.16576604545116425,
-0.018213815987110138,
0.028018459677696228,
-0.018558930605649948,
-0.043428562581539154,
-0.18248088657855988,
-0.15449394285678864,
-0.08155699819326401,
-0.1073385551571846,
-0.007180341053754091,
-0.11001474410295486,
0.06046205013990402,
0.05987197905778885,
0.07285236567258835,
-0.06692986190319061,
0.0901661068201065,
0.06175125390291214,
-0.11746454238891602,
0.07647637277841568,
-0.02268487960100174,
0.07728225737810135,
-0.018432985991239548,
-0.01180571410804987,
-0.09594716876745224,
0.006233556196093559,
-0.04160008952021599,
0.04294683039188385,
-0.05270976200699806,
0.009364284574985504,
-0.1494816094636917,
-0.107164666056633,
-0.0259604062885046,
0.05208901688456535,
-0.056984420865774155,
0.11614622920751572,
0.013266735710203648,
-0.027922024950385094,
0.026880338788032532,
0.2189231514930725,
-0.08327165246009827,
-0.07593230903148651,
-0.04350927472114563,
0.23709851503372192,
0.05787784606218338,
0.09817072749137878,
0.007364223245531321,
-0.007929177954792976,
-0.1032491996884346,
0.3474191129207611,
0.27274781465530396,
-0.05767832696437836,
0.01877070590853691,
0.016217948868870735,
0.03765232488512993,
0.1196543350815773,
0.15050560235977173,
0.08705452084541321,
0.2654052674770355,
-0.06536009907722473,
-0.017422489821910858,
-0.027691878378391266,
0.00817982479929924,
-0.07784170657396317,
0.1366117298603058,
0.04232023283839226,
-0.07347474992275238,
-0.027401769533753395,
0.0948931872844696,
-0.22760531306266785,
0.14002381265163422,
-0.09176503866910934,
-0.17351804673671722,
-0.060301490128040314,
-0.012855381704866886,
0.12400861829519272,
0.0003117284213658422,
0.08977337181568146,
-0.013375372625887394,
-0.10453686863183975,
0.05668170377612114,
0.030551275238394737,
-0.23062752187252045,
0.01575716771185398,
0.05323800444602966,
-0.12447244673967361,
-0.013931023888289928,
-0.008652891032397747,
0.05129911005496979,
0.06245475262403488,
0.0759635791182518,
-0.03500669449567795,
0.03947702422738075,
0.005698549561202526,
0.0012907423079013824,
0.03276558592915535,
0.04783790931105614,
0.019724056124687195,
-0.09199003875255585,
0.05669786408543587,
-0.15609866380691528,
0.040364041924476624,
-0.0034480243921279907,
-0.04205774888396263,
0.0060589732602238655,
-0.0004929202259518206,
-0.04205676540732384,
0.05070549622178078,
0.0975712463259697,
-0.004889658652245998,
0.0013634717324748635,
-0.08856063336133957,
-0.033621639013290405,
0.012798931449651718,
-0.10905583947896957,
-0.08372515439987183,
-0.11467541754245758,
-0.0990227535367012,
0.11802441626787186,
-0.01104274857789278,
-0.2072054147720337,
0.012868420220911503,
-0.0960131585597992,
0.04032726585865021,
-0.21280650794506073,
0.09663981944322586,
0.09015452116727829,
0.022522088140249252,
0.003956733271479607,
-0.003403165377676487,
0.04805542528629303,
0.10672396421432495,
-0.12076010555028915,
-0.09588176012039185
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-ner
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0626
- Precision: 0.9252
- Recall: 0.9330
- F1: 0.9291
- Accuracy: 0.9848
## Model description
More information needed
## limitations
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Scott and I live in Ohio"
ner_results = nlp(example)
print(ner_results)
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
| No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
| 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
| 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
| 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "widget": [{"text": "My name is Scott and I live in Columbus."}, {"text": "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."}], "base_model": "albert-base-v2", "model-index": [{"name": "albert-base-v2-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9252213840603477, "name": "Precision"}, {"type": "recall", "value": 0.9329732113328189, "name": "Recall"}, {"type": "f1", "value": 0.9290811285541773, "name": "F1"}, {"type": "accuracy", "value": 0.9848205157332728, "name": "Accuracy"}]}]}]} | token-classification | Jorgeutd/albert-base-v2-finetuned-ner | [
"transformers",
"pytorch",
"albert",
"token-classification",
"generated_from_trainer",
"en",
"dataset:conll2003",
"base_model:albert-base-v2",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #albert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-albert-base-v2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| albert-base-v2-finetuned-ner
============================
This model is a fine-tuned version of albert-base-v2 on the conll2003 dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0626
* Precision: 0.9252
* Recall: 0.9330
* F1: 0.9291
* Accuracy: 0.9848
Model description
-----------------
More information needed
limitations
-----------
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
#### How to use
You can use this model with Transformers *pipeline* for NER.
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.8.1+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining and evaluation data\n----------------------------\n\n\nMore information needed\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #albert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-albert-base-v2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining and evaluation data\n----------------------------\n\n\nMore information needed\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
78,
80,
37,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #albert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-albert-base-v2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining and evaluation data\n----------------------------\n\n\nMore information needed\n\n\nTraining procedure\n------------------### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.04835114628076553,
0.21187974512577057,
-0.001921409391798079,
0.08816911280155182,
0.1231001541018486,
0.02365107648074627,
0.11389848589897156,
0.12226693332195282,
-0.07315872609615326,
0.043653011322021484,
0.0822632908821106,
0.01967201568186283,
0.0548177994787693,
0.09388662874698639,
-0.037905432283878326,
-0.2917722463607788,
0.008344460278749466,
-0.01656009815633297,
-0.0005130911013111472,
0.1048567146062851,
0.09382117539644241,
-0.092748261988163,
0.057193823158741,
0.022582203149795532,
-0.15035012364387512,
0.02895011566579342,
-0.019475309178233147,
-0.027056530117988586,
0.05885878577828407,
0.05502999946475029,
0.09258095175027847,
0.004732356406748295,
0.128494992852211,
-0.2603248357772827,
-0.003176954807713628,
0.09223565459251404,
-0.0018697197083383799,
0.052520785480737686,
0.106092169880867,
-0.017796754837036133,
0.09571585059165955,
-0.13670842349529266,
0.07536688446998596,
0.03182576596736908,
-0.11893942952156067,
-0.1540004462003708,
-0.08411971479654312,
0.10098793357610703,
0.155060276389122,
0.10428806394338608,
-0.038388896733522415,
0.1481563299894333,
-0.10351420193910599,
0.08232224732637405,
0.19417482614517212,
-0.2640167772769928,
-0.04552450776100159,
0.03967444226145744,
0.051487866789102554,
0.03436954692006111,
-0.1140180379152298,
-0.035365521907806396,
0.05528276413679123,
0.019417449831962585,
0.08729109913110733,
-0.04462890326976776,
-0.040577515959739685,
0.001724038738757372,
-0.15034574270248413,
-0.08620749413967133,
0.154671773314476,
0.06514012813568115,
-0.030373647809028625,
-0.09085049480199814,
-0.037356071174144745,
-0.10579853504896164,
0.0010483855148777366,
-0.024073271080851555,
0.04820333793759346,
-0.0324094332754612,
0.009994741529226303,
-0.031040020287036896,
-0.06422225385904312,
-0.039589546620845795,
0.005010192282497883,
0.10364004224538803,
0.054997075349092484,
-0.01536588091403246,
0.007580652832984924,
0.1453515738248825,
-0.020783867686986923,
-0.1445494145154953,
0.006569867953658104,
-0.005950349848717451,
-0.13560247421264648,
-0.06604553014039993,
-0.04219606891274452,
0.036084551364183426,
-0.035993076860904694,
0.13910037279129028,
-0.0723339319229126,
0.06446895748376846,
0.03512096405029297,
-0.002666865009814501,
0.03270415589213371,
0.14110229909420013,
-0.12633857131004333,
-0.03797203674912453,
0.011076461523771286,
0.0469205342233181,
-0.05473664402961731,
0.018391264602541924,
-0.08490830659866333,
0.009247997775673866,
0.0798536092042923,
0.07098877429962158,
-0.02146749757230282,
0.05831309035420418,
-0.05953862518072128,
-0.04117933660745621,
0.0019218900706619024,
-0.12518300116062164,
0.0459330752491951,
-0.025410113856196404,
-0.09244337677955627,
-0.04086564481258392,
0.022091718390583992,
0.02940348908305168,
-0.07109301537275314,
0.09976251423358917,
-0.08625388145446777,
0.0077208844013512135,
-0.09813327342271805,
-0.09561368077993393,
0.014903047122061253,
-0.03814766928553581,
0.009377378970384598,
-0.06571923941373825,
-0.18177112936973572,
-0.06771679222583771,
0.04247388616204262,
-0.06537587940692902,
-0.07313134521245956,
-0.03479733318090439,
-0.06595867872238159,
0.0027746339328587055,
-0.012384857051074505,
0.11118116974830627,
-0.04556294530630112,
0.03027133271098137,
0.0029080642852932215,
0.010688240639865398,
0.08864342421293259,
0.04069601371884346,
-0.09051302820444107,
0.08949248492717743,
-0.10781681537628174,
0.08163714408874512,
-0.06840915232896805,
0.028185322880744934,
-0.12953367829322815,
-0.08788935095071793,
0.0038229734636843204,
0.007170369382947683,
0.022160593420267105,
0.0934479609131813,
-0.1720241904258728,
-0.0015374253271147609,
0.14638131856918335,
-0.037281353026628494,
-0.04791255295276642,
0.12912173569202423,
-0.08995550125837326,
-0.0057961163111031055,
0.036639392375946045,
0.15117458999156952,
0.09335043281316757,
-0.08041360974311829,
-0.03797813504934311,
-0.03526197746396065,
0.03575091063976288,
0.12087829411029816,
0.06464818865060806,
0.02433682046830654,
0.05431652441620827,
-0.012916560284793377,
-0.07110331952571869,
-0.020785991102457047,
-0.054224494844675064,
-0.07858461886644363,
-0.022397678345441818,
-0.05582743138074875,
0.017720574513077736,
0.03191378712654114,
0.025106968358159065,
-0.0528114028275013,
-0.14609837532043457,
0.07978849112987518,
0.09899084270000458,
-0.04925442114472389,
0.01965627446770668,
-0.08202539384365082,
0.006212158594280481,
-0.03596444055438042,
-0.002309525851160288,
-0.17835015058517456,
-0.0617091991007328,
0.044487930834293365,
-0.05605541914701462,
0.0708923414349556,
0.08674909174442291,
0.02807731181383133,
0.046335749328136444,
-0.0604584738612175,
-0.029383303597569466,
-0.02419333904981613,
0.00929860770702362,
-0.0919887125492096,
-0.1777949333190918,
-0.04982927069067955,
-0.031035589054226875,
0.16383948922157288,
-0.2567758560180664,
0.023649046197533607,
0.03468222916126251,
0.12200173735618591,
-0.0043607852421700954,
-0.023679861798882484,
0.019335461780428886,
0.031235678121447563,
-0.035509783774614334,
-0.09973690658807755,
0.000023060196326696314,
-0.015125889331102371,
-0.049551140516996384,
-0.038520656526088715,
-0.1552324742078781,
0.019261932000517845,
0.07153137773275375,
0.021546263247728348,
-0.10914187878370285,
-0.04971044883131981,
-0.042521875351667404,
-0.05345148220658302,
-0.06715559959411621,
-0.0160007756203413,
0.28316569328308105,
0.02491188421845436,
0.09131377190351486,
-0.07373300194740295,
-0.07963664829730988,
-0.01802746392786503,
-0.03725939989089966,
-0.005203500390052795,
0.08869516849517822,
0.022524572908878326,
-0.17224644124507904,
0.08474235236644745,
0.03122492879629135,
-0.07907354086637497,
0.08061406016349792,
-0.01930084079504013,
-0.06099703907966614,
-0.02353786490857601,
0.010814939625561237,
0.007116873282939196,
0.07983986288309097,
-0.07687430828809738,
0.025449007749557495,
0.031056813895702362,
0.03333129361271858,
0.014736303128302097,
-0.14103254675865173,
0.006995302625000477,
0.05033738166093826,
-0.033181529492139816,
-0.0379507876932621,
-0.0604044608771801,
0.019135884940624237,
0.0641612857580185,
0.023698220029473305,
0.016500111669301987,
0.011879730969667435,
-0.04376443475484848,
-0.09945119917392731,
0.20787997543811798,
-0.0731639713048935,
-0.16260118782520294,
-0.11470409482717514,
0.011342235840857029,
-0.04808250814676285,
-0.006348765455186367,
0.029755758121609688,
-0.04942034184932709,
-0.06545230001211166,
-0.09981364011764526,
-0.01706256903707981,
-0.01616893894970417,
-0.0567464753985405,
-0.06854791194200516,
0.02667463943362236,
0.05602995306253433,
-0.1154252216219902,
0.017328966408967972,
0.028671327978372574,
-0.07405915856361389,
-0.007975115440785885,
0.036198940128088,
0.11812969297170639,
0.15154623985290527,
-0.007194203790277243,
0.017470208927989006,
-0.01104892510920763,
0.21382178366184235,
-0.10892345756292343,
0.0014790965942665935,
0.07220791280269623,
-0.03147454559803009,
0.07343726605176926,
0.17410756647586823,
-0.00770470779389143,
-0.08805374056100845,
0.029481343924999237,
0.10167413204908371,
-0.0008974572992883623,
-0.24864590167999268,
-0.02261984348297119,
-0.0353248156607151,
-0.06978319585323334,
0.1301807314157486,
0.027149412781000137,
0.024020321667194366,
0.048301972448825836,
-0.05299278348684311,
0.06798795610666275,
-0.02609766647219658,
0.10298468172550201,
0.05654843524098396,
0.04864507541060448,
0.09266986697912216,
-0.015960443764925003,
-0.04601253569126129,
0.04603288695216179,
0.049762021750211716,
0.27170875668525696,
-0.02459019236266613,
0.15628987550735474,
0.06678040325641632,
0.1002219021320343,
-0.0076654586009681225,
0.028313178569078445,
0.012505806051194668,
0.00210058456286788,
-0.0093325674533844,
-0.03171446919441223,
0.014273305423557758,
0.07258063554763794,
0.03189031034708023,
0.00974233727902174,
-0.07439510524272919,
-0.007802121806889772,
0.02714419923722744,
0.28752580285072327,
0.009867340326309204,
-0.27281472086906433,
-0.009619217365980148,
0.05690154805779457,
-0.09537327289581299,
-0.06345868110656738,
0.004793030209839344,
0.11222592741250992,
-0.16222511231899261,
0.025865688920021057,
-0.0526343509554863,
0.1212211325764656,
-0.08473925292491913,
0.0007777534192427993,
0.032325394451618195,
0.07423610240221024,
-0.01567557267844677,
0.14096495509147644,
-0.21733422577381134,
0.24264033138751984,
0.0063272882252931595,
0.06281888484954834,
-0.08257919549942017,
0.03425774723291397,
0.022682372480630875,
0.0637451559305191,
0.12706466019153595,
-0.00925456639379263,
-0.08724620193243027,
-0.15813225507736206,
-0.04789000749588013,
0.006134492810815573,
0.08054649084806442,
-0.056944169104099274,
0.12800884246826172,
-0.024202244356274605,
-0.0004047513357363641,
0.045895352959632874,
-0.02445586398243904,
-0.1596895456314087,
-0.13465824723243713,
0.01566723734140396,
-0.059363991022109985,
0.015237518586218357,
-0.0535198375582695,
-0.04840216785669327,
-0.03657039627432823,
0.15375414490699768,
-0.0289259422570467,
-0.04662316292524338,
-0.13610711693763733,
0.05406574904918671,
0.1257987767457962,
-0.07590889185667038,
-0.00586075009778142,
0.026324598118662834,
0.15536834299564362,
0.011924304068088531,
-0.010815381072461605,
0.08096980303525925,
-0.06059545651078224,
-0.1752604842185974,
-0.05287465453147888,
0.07747682929039001,
0.05296950414776802,
0.08127917349338531,
0.015333798713982105,
0.015008559450507164,
0.0024366050492972136,
-0.10533341765403748,
-0.004546826705336571,
0.024771222844719887,
0.13018888235092163,
0.04652583971619606,
-0.06814464926719666,
0.05213841795921326,
-0.0913177877664566,
0.009026339277625084,
0.11282339692115784,
0.26165446639060974,
-0.09923525899648666,
0.03111470676958561,
0.044163577258586884,
-0.09884942322969437,
-0.1614077389240265,
0.058713871985673904,
0.0723111629486084,
0.015148312784731388,
0.05787521228194237,
-0.14045466482639313,
0.09684817492961884,
0.09488634765148163,
-0.004815086722373962,
0.023940330371260643,
-0.27229735255241394,
-0.1298818290233612,
0.09619483351707458,
0.07954440265893936,
-0.11382286995649338,
-0.146369069814682,
-0.02092255838215351,
-0.05824669450521469,
-0.11951740086078644,
0.06649459153413773,
-0.10620790719985962,
0.09795961529016495,
0.02870490588247776,
0.047253578901290894,
0.02050669491291046,
-0.04657057300209999,
0.141822949051857,
0.07498914748430252,
0.10778222233057022,
-0.06054582819342613,
-0.04734848067164421,
0.056844115257263184,
-0.06992699205875397,
0.06292581558227539,
-0.04413720592856407,
0.04100453108549118,
-0.15084528923034668,
-0.057324714958667755,
-0.04845558479428291,
0.05375469848513603,
-0.059153202921152115,
-0.07206477224826813,
-0.05016709119081497,
0.073031947016716,
0.12225855886936188,
-0.015533959493041039,
0.0031578282359987497,
-0.03624696284532547,
0.00004165022255619988,
0.14826993644237518,
0.15249225497245789,
0.03783337026834488,
-0.0995008572936058,
0.00021666493557859212,
0.019285019487142563,
0.040497906506061554,
-0.13348494470119476,
0.04329768940806389,
0.10499357432126999,
0.024221591651439667,
0.1610758751630783,
0.02685236930847168,
-0.06018909066915512,
-0.0029167623724788427,
-0.004017572849988937,
-0.09666689485311508,
-0.11222894489765167,
-0.016494451090693474,
0.02602553181350231,
-0.1476203203201294,
-0.06972871720790863,
0.05357130616903305,
-0.06589270383119583,
-0.010901047848165035,
0.011451906524598598,
0.026694586500525475,
-0.018404919654130936,
0.1847507804632187,
0.04004385322332382,
0.09546397626399994,
-0.0722632110118866,
0.10688596218824387,
0.11153409630060196,
-0.059851258993148804,
0.04795315861701965,
0.0757172703742981,
-0.05648059770464897,
-0.037766579538583755,
0.049582771956920624,
0.16453485190868378,
0.017547735944390297,
-0.04682532697916031,
-0.09713934361934662,
-0.08661019057035446,
0.03031592257320881,
0.06274265795946121,
0.063755564391613,
-0.001783439191058278,
-0.0316842757165432,
-0.010046388953924179,
-0.1607256531715393,
0.09846993535757065,
0.13110730051994324,
0.0687326118350029,
-0.1441292017698288,
0.13483841717243195,
0.012506777420639992,
0.04103996604681015,
-0.015481377951800823,
0.027148054912686348,
-0.11982151865959167,
-0.0005855493946000934,
-0.13954387605190277,
0.016546720638871193,
-0.04978339746594429,
0.029821088537573814,
-0.010295200161635876,
-0.03932785242795944,
-0.042758598923683167,
0.02699160948395729,
-0.07838625460863113,
-0.06556371599435806,
0.016370322555303574,
0.07176131755113602,
-0.09205497801303864,
-0.0424613393843174,
0.06496822834014893,
-0.08483519405126572,
0.06052178889513016,
0.0016824862686917186,
-0.002726048231124878,
-0.014362664893269539,
-0.08004535734653473,
0.007055393420159817,
0.011986050754785538,
0.026421349495649338,
0.036548733711242676,
-0.14489707350730896,
0.024085402488708496,
-0.04168105125427246,
0.0382339283823967,
0.007465002592653036,
-0.016441794112324715,
-0.1322224885225296,
0.007112130057066679,
-0.05031568929553032,
-0.08195557445287704,
-0.06731323152780533,
0.04738921672105789,
0.11053696274757385,
-0.003483858658000827,
0.19070422649383545,
-0.04599159210920334,
0.07946652173995972,
-0.17013132572174072,
-0.04361898452043533,
0.011290732771158218,
-0.017474478110671043,
-0.007130169775336981,
-0.06702503561973572,
0.06165346875786781,
-0.03915175795555115,
0.18721505999565125,
0.01203168835490942,
0.03350590541958809,
0.042674388736486435,
-0.032879117876291275,
0.06670377403497696,
0.03617299720644951,
0.09963136166334152,
0.01595357246696949,
-0.042132508009672165,
0.04891663044691086,
-0.004913941491395235,
0.04616556316614151,
0.011584213003516197,
0.17826053500175476,
0.16202621161937714,
0.006356452126055956,
0.062030449509620667,
0.05326477438211441,
-0.12239997833967209,
-0.12330439686775208,
0.1145683154463768,
0.015674395486712456,
0.043803442269563675,
-0.07387221604585648,
0.09833388030529022,
0.10834484547376633,
-0.19714565575122833,
0.06903135776519775,
-0.013244453817605972,
-0.10882240533828735,
-0.07682856172323227,
-0.08306129276752472,
-0.07659471780061722,
-0.09917186200618744,
0.017944123595952988,
-0.14237508177757263,
0.04315244406461716,
0.09509340673685074,
-0.002432615961879492,
-0.0221863966435194,
0.1604168713092804,
-0.057447582483291626,
-0.020412245765328407,
0.03611193597316742,
-0.0012098614824935794,
0.019591165706515312,
-0.05520353093743324,
-0.031169667840003967,
0.02433730475604534,
-0.04257713630795479,
0.05524298548698425,
-0.019085299223661423,
0.010672279633581638,
0.0010642701527103782,
-0.02843189239501953,
-0.07967618107795715,
0.0006518860463984311,
0.030831865966320038,
0.06845064461231232,
0.11696403473615646,
0.056584905833005905,
-0.021956242620944977,
-0.04713369905948639,
0.22150404751300812,
-0.07384485751390457,
-0.07479650527238846,
-0.13457952439785004,
0.1672183871269226,
0.04031752049922943,
-0.025101913139224052,
0.031224654987454414,
-0.12043614685535431,
0.05460638180375099,
0.1842009574174881,
0.10789638757705688,
-0.05623440071940422,
-0.024750033393502235,
-0.0016751305665820837,
-0.003246663138270378,
-0.03647666797041893,
0.10027346760034561,
0.06941830366849899,
0.061981432139873505,
-0.1003805622458458,
-0.021089036017656326,
0.015038173645734787,
-0.046212732791900635,
-0.09024197608232498,
0.09207435697317123,
0.044568873941898346,
0.025319108739495277,
-0.02972022071480751,
0.07924904674291611,
-0.061524197459220886,
-0.155457004904747,
0.01689363270998001,
-0.09189866483211517,
-0.14007863402366638,
-0.013924107886850834,
0.01865030825138092,
0.003366079879924655,
0.07604382932186127,
-0.011304791085422039,
-0.0271625779569149,
0.13590647280216217,
0.019787335768342018,
-0.04873203486204147,
-0.08066374063491821,
0.08694000542163849,
-0.059163715690374374,
0.26062020659446716,
-0.020637452602386475,
0.0818171426653862,
0.14044561982154846,
0.0005862402613274753,
-0.11505334079265594,
0.03195879980921745,
0.0620448999106884,
-0.06940915435552597,
0.054712146520614624,
0.1679045408964157,
-0.04049931466579437,
0.08148001879453659,
0.03920517489314079,
-0.12247611582279205,
0.02184530906379223,
-0.12033554166555405,
0.02683837153017521,
-0.11042026430368423,
0.010895575396716595,
-0.06219352409243584,
0.15486590564250946,
0.2098032385110855,
-0.050561316311359406,
0.0050530326552689075,
-0.05961400270462036,
0.03802501782774925,
0.023354502394795418,
0.11432202905416489,
-0.0031806249171495438,
-0.1748274713754654,
0.03736354038119316,
0.04553116112947464,
0.03933572769165039,
-0.21724534034729004,
-0.09997911751270294,
0.08273695409297943,
-0.07686493545770645,
-0.03403230756521225,
0.09097485989332199,
0.09014638513326645,
0.05676235631108284,
-0.04570464789867401,
-0.2214595526456833,
-0.05464325472712517,
0.14786946773529053,
-0.14543691277503967,
-0.051549337804317474
] |
null | null | transformers |
## bert-base-uncased
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
- Problem type: Text Classification(adverse drug effects detection).
## Hyperparameters
```json
{
"do_eval": true,
"do_train": true,
"fp16": true,
"load_best_model_at_end": true,
"model_name": "bert-base-uncased",
"num_train_epochs": 10,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"learning_rate":5e-5
}
```
## Validation Metrics
| key | value |
| --- | ----- |
| eval_accuracy | 0.9298021697511167 |
| eval_auc | 0.8902672664394546 |
| eval_f1 | 0.827315541601256 |
| eval_loss | 0.17835010588169098 |
| eval_recall | 0.8234375 |
| eval_precision | 0.831230283911672 |
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I got a rash from taking acetaminophen"}' https://api-inference.huggingface.co/models/Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2
```
""" | {"language": "en", "license": "apache-2.0", "tags": ["sagemaker", "bert-base-uncased", "text classification"], "datasets": ["adecorpusv2"], "widget": [{"text": "I got a rash from taking acetaminophen"}], "model-index": [{"name": "BERT-ade_corpus", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "ade_corpus_v2Ade_corpus_v2_classification", "type": "ade_corpus"}, "metrics": [{"type": "accuracy", "value": 92.98, "name": "Validation Accuracy"}, {"type": "f1", "value": 82.73, "name": "Validation F1"}]}]}]} | text-classification | Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2 | [
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"sagemaker",
"bert-base-uncased",
"text classification",
"en",
"dataset:adecorpusv2",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #safetensors #bert #text-classification #sagemaker #bert-base-uncased #text classification #en #dataset-adecorpusv2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| bert-base-uncased
-----------------
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
* Problem type: Text Classification(adverse drug effects detection).
Hyperparameters
---------------
Validation Metrics
------------------
Usage
-----
You can use cURL to access this model:
"""
| [] | [
"TAGS\n#transformers #pytorch #safetensors #bert #text-classification #sagemaker #bert-base-uncased #text classification #en #dataset-adecorpusv2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
80
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #sagemaker #bert-base-uncased #text classification #en #dataset-adecorpusv2 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.08025843650102615,
0.17114393413066864,
-0.006293116603046656,
0.047230642288923264,
0.12001591920852661,
0.002330584218725562,
0.14224299788475037,
0.11446131765842438,
0.056673917919397354,
-0.04916781559586525,
0.11761581152677536,
0.14411507546901703,
-0.0005996674299240112,
0.13791722059249878,
-0.09859062731266022,
-0.16133709251880646,
0.0903162956237793,
0.007826350629329681,
0.013478381559252739,
0.11088455468416214,
0.11038786917924881,
-0.06965761631727219,
0.06594675779342651,
-0.022533025592565536,
-0.011850095354020596,
-0.0010199177777394652,
0.025634702295064926,
-0.13491007685661316,
0.09444256871938705,
0.005926595069468021,
0.09490197896957397,
0.0614347867667675,
0.016006585210561752,
-0.17914779484272003,
0.02369006909430027,
0.033475346863269806,
-0.06263597309589386,
0.06572562456130981,
0.06575049459934235,
-0.047995761036872864,
-0.0327359139919281,
0.012716039083898067,
0.017642272636294365,
0.048179831355810165,
-0.07305959612131119,
-0.1272616982460022,
-0.05012604594230652,
0.10069962590932846,
0.08285970240831375,
0.07947434484958649,
0.00954467337578535,
0.1364506036043167,
-0.07219266146421432,
0.07995595037937164,
0.08741006255149841,
-0.3204604685306549,
0.004436671268194914,
0.04197463393211365,
-0.013184698298573494,
0.027419209480285645,
-0.03919796645641327,
0.02883768454194069,
0.039461832493543625,
0.0021930790971964598,
0.05933210998773575,
-0.02712971344590187,
-0.10324948281049728,
0.02581283263862133,
-0.07083573937416077,
-0.054470453411340714,
0.2267388105392456,
0.006045909132808447,
0.012668113224208355,
-0.04986195266246796,
-0.08101929724216461,
0.040310148149728775,
-0.031454239040613174,
0.04350249096751213,
0.013417764566838741,
0.07841113954782486,
0.04564862325787544,
0.001607383950613439,
-0.11056678742170334,
-0.024615103378891945,
-0.16433735191822052,
0.0771436020731926,
0.014889906160533428,
0.04706781730055809,
-0.11875694990158081,
0.0769328698515892,
0.039182186126708984,
-0.14981290698051453,
0.022117679938673973,
-0.09084492921829224,
0.07100097835063934,
0.007822385057806969,
-0.012619880959391594,
0.003235716838389635,
0.15722058713436127,
0.189470112323761,
0.03210122883319855,
0.01742464303970337,
-0.08763393014669418,
0.06980997323989868,
-0.016231760382652283,
0.08773867040872574,
-0.015127683989703655,
-0.04204609990119934,
0.09755399078130722,
-0.0073669664561748505,
0.06491117924451828,
-0.028606316074728966,
-0.10579410195350647,
0.00623255455866456,
0.08743200451135635,
0.11189328879117966,
0.06147652491927147,
0.08523635566234589,
-0.059837471693754196,
-0.004266287665814161,
0.14583542943000793,
-0.08930540829896927,
0.006718223448842764,
0.040668241679668427,
0.022196749225258827,
-0.001290182233788073,
0.04465080425143242,
0.03344473987817764,
-0.06414654850959778,
0.0781855657696724,
-0.04752263426780701,
-0.03446023166179657,
-0.0016557814087718725,
-0.058210089802742004,
0.07004250586032867,
-0.11122120171785355,
0.019017301499843597,
-0.15278743207454681,
-0.19542524218559265,
0.026566414162516594,
0.033771812915802,
-0.005209236405789852,
-0.06567476689815521,
-0.003458862192928791,
-0.015216529369354248,
0.03520509973168373,
-0.07292598485946655,
-0.045339036732912064,
-0.10156052559614182,
0.051532380282878876,
-0.07608973979949951,
0.025957660749554634,
-0.0939340740442276,
0.04890747740864754,
-0.1469145566225052,
-0.004110710229724646,
-0.048504024744033813,
0.001974936341866851,
-0.10921341180801392,
0.18614351749420166,
-0.06384127587080002,
-0.005470217205584049,
0.016464663669466972,
0.004134665708988905,
-0.026286104694008827,
0.17426326870918274,
-0.14538681507110596,
-0.04785395413637161,
0.19653983414173126,
-0.13833364844322205,
-0.19786657392978668,
0.07450733333826065,
0.000457175774499774,
0.00833151675760746,
0.1033710315823555,
0.15619443356990814,
0.042513709515333176,
-0.02549775503575802,
0.030241163447499275,
0.10755747556686401,
-0.027802731841802597,
-0.10683362931013107,
0.05491408705711365,
-0.0409591980278492,
-0.11519777029752731,
0.052560437470674515,
-0.034395210444927216,
0.05518164485692978,
-0.015859022736549377,
-0.0849263072013855,
-0.05955250561237335,
-0.049369875341653824,
0.07870236784219742,
0.004781552590429783,
0.03769576549530029,
-0.07427382469177246,
-0.034594323486089706,
-0.03886962682008743,
0.040830641984939575,
0.008387231267988682,
0.019355371594429016,
-0.0752059817314148,
0.09583071619272232,
0.012071577832102776,
0.03807670623064041,
-0.14766764640808105,
-0.02631579339504242,
0.0030402487609535456,
0.06532050669193268,
-0.03880491107702255,
-0.0033592868130654097,
0.04473741352558136,
-0.03507763519883156,
-0.010583777911961079,
-0.058144956827163696,
0.1336376816034317,
0.05643662437796593,
-0.04090210795402527,
-0.1780909150838852,
0.05079721286892891,
-0.057013802230358124,
0.088847316801548,
-0.0771479457616806,
0.03825950250029564,
0.0513017512857914,
0.12303668260574341,
0.007358537055552006,
0.07350689172744751,
0.019971076399087906,
-0.0016610377933830023,
-0.03779792785644531,
-0.019842473790049553,
0.10165227949619293,
0.02597460336983204,
-0.08655014634132385,
0.13584491610527039,
-0.06994964927434921,
0.266733318567276,
0.1869475096464157,
-0.11845218390226364,
0.05834927037358284,
-0.025643344968557358,
0.0021943801548331976,
0.007611456327140331,
-0.003316028043627739,
0.007257694844156504,
0.05228491127490997,
0.036406129598617554,
0.16426187753677368,
-0.07219232618808746,
-0.03373447060585022,
-0.002193356631323695,
-0.04588078334927559,
-0.017579633742570877,
0.07703296095132828,
0.06820393353700638,
-0.20249813795089722,
0.16496971249580383,
0.29021990299224854,
0.02267983928322792,
0.09120496362447739,
-0.08180684596300125,
0.020872147753834724,
0.06823138892650604,
-0.036644600331783295,
-0.023228755220770836,
-0.0017382291844114661,
-0.1265779435634613,
0.01113256998360157,
0.0938367024064064,
0.016186723485589027,
0.025357266888022423,
-0.10746908187866211,
-0.03201242536306381,
0.0049527594819664955,
-0.03208702802658081,
-0.0659639835357666,
0.030488448217511177,
0.008857117034494877,
0.11970590054988861,
-0.03947150334715843,
-0.09645861387252808,
0.10385540872812271,
-0.012523962184786797,
-0.09237228333950043,
0.1817852109670639,
-0.15420536696910858,
-0.26392513513565063,
-0.10006795823574066,
-0.08863808214664459,
-0.05999906361103058,
0.011489570140838623,
0.10325503349304199,
-0.08515150845050812,
-0.05311938747763634,
-0.06239408627152443,
-0.0787050873041153,
0.05235462635755539,
0.03269030526280403,
0.012977971695363522,
0.04939790442585945,
0.04325145110487938,
-0.11864614486694336,
-0.04591582715511322,
-0.005118042230606079,
-0.03105420246720314,
0.10180989652872086,
-0.05031373351812363,
0.08474002778530121,
0.1358795166015625,
0.020002176985144615,
0.014394707977771759,
-0.02876981347799301,
0.15154951810836792,
-0.0161258764564991,
0.01470571756362915,
0.1819472312927246,
-0.03997543454170227,
0.0661727711558342,
0.17285491526126862,
0.021737627685070038,
-0.03624292463064194,
0.01836356520652771,
-0.026082666590809822,
-0.04258335009217262,
-0.2711805999279022,
-0.13662566244602203,
-0.044946666806936264,
0.05681489035487175,
0.07624932378530502,
0.08263613283634186,
0.06683176755905151,
0.06495285779237747,
-0.031522639095783234,
-0.02472536638379097,
0.04021633416414261,
0.06653021275997162,
0.19425475597381592,
0.007884854450821877,
0.12987306714057922,
-0.0763566642999649,
-0.04545481875538826,
0.10383257269859314,
0.016556616872549057,
0.10220323503017426,
0.06207328662276268,
0.04306648299098015,
0.060304250568151474,
0.09177638590335846,
0.08716169744729996,
0.11834452301263809,
0.0023685444612056017,
-0.006502201315015554,
-0.027682725340127945,
-0.041870735585689545,
-0.05471793934702873,
0.01090899296104908,
-0.11061935126781464,
-0.06337213516235352,
-0.0705324038863182,
-0.06027110293507576,
0.11471574753522873,
0.1390741914510727,
0.05109110474586487,
-0.19188782572746277,
0.00004323217217461206,
0.09042467176914215,
-0.0036457134410738945,
-0.061434462666511536,
0.0815662294626236,
-0.05156208947300911,
-0.07310550659894943,
0.11891236901283264,
-0.029730066657066345,
0.1461295783519745,
-0.02827620878815651,
0.05194336548447609,
-0.04029781371355057,
-0.07217546552419662,
0.015103530138731003,
0.11977061629295349,
-0.23959645628929138,
0.22802934050559998,
0.006095802411437035,
-0.005580234341323376,
-0.06517182290554047,
-0.002735517220571637,
0.06799644976854324,
0.23814596235752106,
0.11652830988168716,
0.008616847917437553,
-0.020428325980901718,
-0.059693608433008194,
-0.12327636778354645,
0.04738485440611839,
-0.02131524495780468,
-0.017623644322156906,
-0.021248605102300644,
-0.03657380864024162,
-0.020001351833343506,
0.013051669113337994,
0.007332464214414358,
-0.09623536467552185,
-0.12118801474571228,
0.022780530154705048,
0.100361168384552,
0.05820034071803093,
-0.06463014334440231,
-0.06792251020669937,
-0.11353160440921783,
0.13258075714111328,
-0.09973610192537308,
-0.09291313588619232,
-0.09994777292013168,
-0.08088113367557526,
0.03551019728183746,
-0.058181412518024445,
0.04623148590326309,
-0.06850530207157135,
0.05246957764029503,
-0.035585444420576096,
-0.1733766794204712,
0.09852097928524017,
-0.13840515911579132,
-0.09524846076965332,
-0.05515870451927185,
0.1238972544670105,
-0.0669703558087349,
0.004261779133230448,
0.05208294838666916,
0.008064018562436104,
-0.06625094264745712,
-0.0876084417104721,
-0.002798836212605238,
0.0629441887140274,
0.049486204981803894,
0.01795504055917263,
-0.09399057924747467,
-0.13744013011455536,
-0.007338966708630323,
-0.018944919109344482,
0.20976516604423523,
0.19514520466327667,
-0.07075173407793045,
0.16541200876235962,
0.17746566236019135,
-0.07861855626106262,
-0.3149527907371521,
-0.1323428601026535,
-0.11929396539926529,
-0.0644722580909729,
-0.013841772451996803,
-0.1348903924226761,
0.12823186814785004,
0.008868632838129997,
-0.08529918640851974,
0.0016569583676755428,
-0.14351226389408112,
-0.09146685153245926,
0.24622592329978943,
-0.011252484284341335,
0.2579714357852936,
-0.14362642168998718,
-0.09819461405277252,
-0.0970492735505104,
-0.1502981036901474,
0.13425815105438232,
-0.1704772263765335,
0.020387105643749237,
-0.008829912170767784,
-0.02239495888352394,
0.00035956999636255205,
-0.04217148199677467,
0.1074165627360344,
0.000045457767555490136,
0.03883591294288635,
-0.10125105828046799,
0.014906108379364014,
0.07655028998851776,
-0.028410417959094048,
0.05783190578222275,
-0.14768719673156738,
0.06006762012839317,
-0.1192941889166832,
-0.025031575933098793,
-0.04220428690314293,
0.06878998130559921,
0.0031485671643167734,
-0.05137358233332634,
0.020937904715538025,
-0.01213821955025196,
0.03431006893515587,
-0.006157686933875084,
0.2100837379693985,
-0.0006440829019993544,
0.08991333097219467,
0.16223770380020142,
0.1284516453742981,
-0.17071926593780518,
0.046840470284223557,
-0.07338207960128784,
-0.07897688448429108,
0.07415127009153366,
-0.15345394611358643,
0.07968620210886002,
0.09284736216068268,
-0.047558244317770004,
0.0702061727643013,
0.06503130495548248,
0.016893086954951286,
-0.0542500801384449,
0.1285986751317978,
-0.17711295187473297,
0.008041337132453918,
-0.018691807985305786,
0.09189708530902863,
-0.005045774392783642,
0.09809821099042892,
0.1463385969400406,
0.019734980538487434,
-0.03073730133473873,
0.01128845103085041,
0.03947897627949715,
-0.007061118260025978,
0.08301063627004623,
0.05482117831707001,
0.02740834653377533,
-0.13729983568191528,
0.1196274608373642,
0.04812595248222351,
-0.06289664655923843,
0.0034005832858383656,
0.056559596210718155,
-0.1701059341430664,
-0.1303548514842987,
0.012943473644554615,
0.17654606699943542,
-0.053360600024461746,
-0.10794254392385483,
-0.07855068147182465,
-0.13307984173297882,
0.06494174152612686,
0.10945719480514526,
0.10642439872026443,
0.057006508111953735,
-0.007173873018473387,
-0.10219738632440567,
0.02936875820159912,
0.06497829407453537,
0.005831587128341198,
-0.0006060522282496095,
-0.14475581049919128,
-0.049128539860248566,
-0.006886072922497988,
0.05653829872608185,
-0.054172128438949585,
-0.010275227949023247,
-0.11103658378124237,
0.017003048211336136,
-0.19009439647197723,
0.03502243012189865,
-0.06534649431705475,
0.005845435429364443,
-0.013035792857408524,
-0.058025892823934555,
-0.02884555794298649,
-0.011349914595484734,
-0.08202224224805832,
-0.013423459604382515,
-0.013969083316624165,
0.09494467079639435,
-0.15021753311157227,
-0.051322318613529205,
0.06655969470739365,
-0.02553141489624977,
0.13031020760536194,
0.052968043833971024,
-0.07750915735960007,
0.06469645351171494,
-0.23372021317481995,
-0.08239401876926422,
0.08099547773599625,
0.03538018837571144,
0.016421129927039146,
-0.003732249839231372,
0.011503033339977264,
0.09960011392831802,
-0.05727379024028778,
0.057004865258932114,
0.09744893014431,
-0.11098700761795044,
-0.01740558072924614,
0.0028998737689107656,
-0.07653673738241196,
-0.0073278495110571384,
-0.05306721478700638,
0.14214268326759338,
0.010432354174554348,
0.1869479864835739,
-0.06663239002227783,
0.023989683017134666,
-0.11745192110538483,
0.02454313263297081,
-0.03652204945683479,
-0.1556175947189331,
-0.15195518732070923,
-0.033532820641994476,
-0.008480703458189964,
-0.026916947215795517,
0.23859021067619324,
0.04214722663164139,
-0.030238639563322067,
0.07476551085710526,
0.0765685886144638,
0.039562541991472244,
0.03408323600888252,
0.24629931151866913,
0.051717571914196014,
-0.018542256206274033,
-0.05569539591670036,
-0.026077687740325928,
0.03709802031517029,
0.00014839769573882222,
0.061776649206876755,
0.1361134946346283,
0.03580617532134056,
0.03270704671740532,
0.04783424735069275,
0.0015285065164789557,
-0.05562583729624748,
-0.07002398371696472,
-0.02746175043284893,
0.11020153760910034,
0.0259102676063776,
0.10781659185886383,
0.10178657621145248,
-0.03878272697329521,
-0.007456457242369652,
-0.06495709717273712,
-0.030215740203857422,
-0.146052747964859,
-0.1342562437057495,
-0.09657879918813705,
-0.12851503491401672,
-0.0035367230884730816,
-0.07564510405063629,
-0.03789582848548889,
0.05495529621839523,
0.03000815398991108,
-0.052588820457458496,
0.020011695101857185,
-0.014650534838438034,
-0.024400142952799797,
0.07128483057022095,
-0.01588318683207035,
-0.03150809928774834,
-0.010994448326528072,
-0.038392454385757446,
-0.03948729485273361,
0.025500740855932236,
-0.06205510348081589,
0.025576958432793617,
0.005453647114336491,
0.07015260308980942,
-0.08607438951730728,
-0.09012030065059662,
-0.024785753339529037,
0.01044331956654787,
-0.026877328753471375,
0.16145017743110657,
0.03328096494078636,
0.022824684157967567,
0.10130269080400467,
0.22400254011154175,
-0.04079078510403633,
-0.15296457707881927,
-0.08598045259714127,
0.13630150258541107,
0.026175569742918015,
0.05428767204284668,
0.018975403159856796,
-0.03097541630268097,
-0.01465599611401558,
0.23096080124378204,
0.29269853234291077,
-0.0708085149526596,
0.04626921936869621,
-0.05504003167152405,
0.006521995645016432,
0.055133383721113205,
0.08922628313302994,
0.09370172768831253,
0.11479306221008301,
-0.06288338452577591,
-0.0028016134165227413,
-0.028336932882666588,
-0.018313834443688393,
-0.1350204199552536,
0.08496858179569244,
0.0045674582943320274,
-0.06983104348182678,
-0.0453835055232048,
0.110969178378582,
-0.08395761251449585,
0.06527422368526459,
-0.0670432448387146,
-0.1407621204853058,
-0.0799228698015213,
-0.04007916897535324,
0.144271120429039,
0.031842976808547974,
-0.0006389447371475399,
-0.017832348123192787,
-0.015793049708008766,
0.08752274513244629,
-0.027174660935997963,
-0.1407713145017624,
-0.04772422835230827,
0.04810919612646103,
-0.03514456748962402,
0.16799427568912506,
0.020351309329271317,
0.06213786080479622,
0.08902604877948761,
0.0367695614695549,
-0.09856895357370377,
0.08002173900604248,
0.019362786784768105,
-0.011789324693381786,
0.03446293622255325,
-0.09546691179275513,
-0.014372913166880608,
-0.034349456429481506,
0.06625746190547943,
-0.07705961167812347,
0.028426505625247955,
0.0031128423288464546,
-0.11326991766691208,
-0.05351365730166435,
0.056009627878665924,
-0.058036740869283676,
0.0700824111700058,
0.027449890971183777,
-0.044830769300460815,
-0.03870881348848343,
-0.037135377526283264,
0.020115962252020836,
-0.015531457960605621,
-0.16560304164886475,
-0.031177004799246788,
-0.05701744556427002,
-0.006394431926310062,
0.09660462290048599,
0.047332875430583954,
-0.200402170419693,
-0.019925914704799652,
-0.12425890564918518,
0.0118639525026083,
-0.15094631910324097,
0.058355990797281265,
0.0813198834657669,
0.005002087913453579,
-0.015763452276587486,
-0.010955448262393475,
0.027588307857513428,
0.05500398203730583,
-0.06442829221487045,
-0.0813819095492363
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-surveyclassification
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on a custom survey dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2818
- Accuracy: 0.9097
- F1: 0.9097
## Model description
More information needed
#### Limitations and bias
This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains.
#### How to use
You can use this model with Transformers *pipeline* for Text Classification.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification")
model = AutoModelForSequenceClassification.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification")
text_classifier = pipeline("text-classification", model=model,tokenizer=tokenizer, device=0)
example = "The agent on the phone was very helpful and nice to me."
results = text_classifier(example)
print(results)
```
## Training and evaluation data
Custom survey dataset.
## Training procedure
SageMaker notebook instance.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4136 | 1.0 | 902 | 0.2818 | 0.9097 | 0.9097 |
| 0.2213 | 2.0 | 1804 | 0.2990 | 0.9077 | 0.9077 |
| 0.1548 | 3.0 | 2706 | 0.3507 | 0.9026 | 0.9026 |
| 0.1034 | 4.0 | 3608 | 0.4692 | 0.9011 | 0.9011 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "widget": [{"text": "The agent on the phone was very helpful and nice to me."}], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-base-uncased-finetuned-surveyclassification", "results": []}]} | text-classification | Jorgeutd/bert-base-uncased-finetuned-surveyclassification | [
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"en",
"base_model:bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #safetensors #bert #text-classification #generated_from_trainer #en #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-base-uncased-finetuned-surveyclassification
================================================
This model is a fine-tuned version of bert-base-uncased on a custom survey dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2818
* Accuracy: 0.9097
* F1: 0.9097
Model description
-----------------
More information needed
#### Limitations and bias
This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains.
#### How to use
You can use this model with Transformers *pipeline* for Text Classification.
Training and evaluation data
----------------------------
Custom survey dataset.
Training procedure
------------------
SageMaker notebook instance.
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 100
* num\_epochs: 10
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.8.1+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for Text Classification.\n\n\nTraining and evaluation data\n----------------------------\n\n\nCustom survey dataset.\n\n\nTraining procedure\n------------------\n\n\nSageMaker notebook instance.",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #text-classification #generated_from_trainer #en #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for Text Classification.\n\n\nTraining and evaluation data\n----------------------------\n\n\nCustom survey dataset.\n\n\nTraining procedure\n------------------\n\n\nSageMaker notebook instance.",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
70,
41,
47,
131,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #generated_from_trainer #en #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n#### Limitations and bias\n\n\nThis model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains.#### How to use\n\n\nYou can use this model with Transformers *pipeline* for Text Classification.\n\n\nTraining and evaluation data\n----------------------------\n\n\nCustom survey dataset.\n\n\nTraining procedure\n------------------\n\n\nSageMaker notebook instance.### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.07253210991621017,
0.20958176255226135,
-0.0018558638403192163,
0.06028897687792778,
0.12353738397359848,
0.030020838603377342,
0.11508475244045258,
0.10817534476518631,
-0.03616193309426308,
0.07885309308767319,
0.07373883575201035,
0.04674135521054268,
0.06927087903022766,
0.10886608064174652,
-0.049468379467725754,
-0.28539878129959106,
0.03219405189156532,
-0.024797288700938225,
-0.059846702963113785,
0.1156473159790039,
0.09223544597625732,
-0.09058015793561935,
0.05219308286905289,
0.027587011456489563,
-0.07731562107801437,
0.00253850594162941,
-0.02609425038099289,
-0.03631889447569847,
0.04664790257811546,
0.05581921711564064,
0.10815923660993576,
0.01665395498275757,
0.08697101473808289,
-0.2967979311943054,
0.012416579760611057,
0.06400476396083832,
-0.0031302738934755325,
0.05520770326256752,
0.12105510383844376,
-0.023714499548077583,
0.18551334738731384,
-0.08471336960792542,
0.10727831721305847,
0.04494437202811241,
-0.10290499776601791,
-0.20265069603919983,
-0.0922452062368393,
0.05838576704263687,
0.16973116993904114,
0.1072641983628273,
-0.04327743500471115,
0.10756772756576538,
-0.10520276427268982,
0.054526187479496,
0.11160345375537872,
-0.21795062720775604,
-0.06469608098268509,
-0.006471705157309771,
0.030948888510465622,
0.06399194896221161,
-0.11967542767524719,
-0.04882289469242096,
0.016470719128847122,
0.03297312930226326,
0.09681069850921631,
0.0071207392029464245,
0.020643198862671852,
-0.012925463728606701,
-0.1436861753463745,
-0.09405632317066193,
0.14813722670078278,
0.09010245651006699,
-0.03305289149284363,
-0.11835333704948425,
-0.001298639690503478,
-0.0831013023853302,
-0.010851724073290825,
0.0006418747361749411,
0.008201618678867817,
-0.01784466952085495,
-0.05101758614182472,
0.015151371248066425,
-0.08384663611650467,
-0.04763784259557724,
0.01962152123451233,
0.10339449346065521,
0.06263149529695511,
-0.024480324238538742,
0.01584167778491974,
0.1059064045548439,
0.062413524836301804,
-0.14462333917617798,
-0.003922683652490377,
-0.013636916875839233,
-0.1054668053984642,
-0.07125193625688553,
-0.03098156303167343,
-0.0025571330916136503,
0.01521711703389883,
0.16873577237129211,
-0.015251386910676956,
0.08458574116230011,
0.03297867253422737,
-0.02136809006333351,
-0.013098351657390594,
0.13619178533554077,
-0.05241260305047035,
-0.030794212594628334,
-0.022234098985791206,
0.11366121470928192,
-0.01129174418747425,
0.0011092027416452765,
-0.05769149959087372,
0.023970164358615875,
0.10463333129882812,
0.07227578014135361,
0.000914047472178936,
0.03280095383524895,
-0.06601419299840927,
-0.04918357729911804,
0.06526012718677521,
-0.10911227017641068,
0.04423122480511665,
0.0419987216591835,
-0.06273075193166733,
-0.09602895379066467,
-0.016438376158475876,
0.03916371241211891,
-0.04049304127693176,
0.1111135482788086,
-0.07391662150621414,
-0.005022678058594465,
-0.08814948797225952,
-0.08678117394447327,
0.0289438646286726,
0.007895567454397678,
-0.004273536615073681,
-0.060645535588264465,
-0.11712963879108429,
-0.07080495357513428,
0.042195528745651245,
-0.04369970038533211,
-0.07810568064451218,
-0.05173278972506523,
-0.04138042405247688,
0.02727292664349079,
0.007623015902936459,
0.13000234961509705,
-0.06407250463962555,
0.06374672055244446,
-0.024744315072894096,
0.0022365597542375326,
0.06667666882276535,
0.048114437609910965,
-0.07074709236621857,
0.07675813138484955,
-0.059257496148347855,
0.0896834135055542,
-0.100800521671772,
0.04740794748067856,
-0.13802729547023773,
-0.1061171442270279,
-0.009272506460547447,
-0.028433863073587418,
0.04110294580459595,
0.09159694612026215,
-0.1609801948070526,
-0.04173123836517334,
0.096783846616745,
-0.08307889848947525,
-0.10563768446445465,
0.13727039098739624,
-0.06945913285017014,
-0.03526230528950691,
0.04690202698111534,
0.14630761742591858,
0.15968096256256104,
-0.029264282435178757,
-0.05114971473813057,
-0.08022552728652954,
0.0766817107796669,
0.08446604758501053,
0.10486173629760742,
-0.03505122289061546,
0.0018127841176465154,
-0.02124088443815708,
-0.03960548713803291,
0.01307927630841732,
-0.052593376487493515,
-0.0905439555644989,
0.0003974615246988833,
-0.06911478191614151,
0.013656658120453358,
0.04667508602142334,
0.015852971002459526,
-0.06467240303754807,
-0.11390157043933868,
0.06110535189509392,
0.09008491039276123,
-0.07150857150554657,
-0.006176167167723179,
-0.08712553232908249,
0.048523910343647,
-0.02993428334593773,
-0.011822422035038471,
-0.1609804332256317,
-0.08979509025812149,
0.04472268745303154,
-0.09985949844121933,
0.0375778004527092,
-0.056736573576927185,
0.06069600209593773,
0.04954990744590759,
-0.06458770483732224,
-0.04524409398436546,
-0.06923091411590576,
0.027737881988286972,
-0.08582047373056412,
-0.16733087599277496,
-0.05788801982998848,
-0.022038767114281654,
0.1874580979347229,
-0.2478114515542984,
0.014128495007753372,
0.05256568640470505,
0.12454332411289215,
0.02390379086136818,
-0.07002466171979904,
0.02372477389872074,
0.043717801570892334,
-0.028971875086426735,
-0.08278464525938034,
0.007686328142881393,
-0.012775345705449581,
-0.13081014156341553,
-0.0441962406039238,
-0.16692882776260376,
0.02691984362900257,
0.07321040332317352,
0.03658231720328331,
-0.08012103289365768,
-0.06376346200704575,
-0.0543970949947834,
-0.03945186361670494,
-0.078166164457798,
0.00956700462847948,
0.212313711643219,
0.02673232927918434,
0.094266377389431,
-0.0735912099480629,
-0.05254252254962921,
-0.010103710927069187,
0.005952316801995039,
-0.03221896290779114,
0.13503427803516388,
0.04583313688635826,
-0.16752256453037262,
0.091696597635746,
0.08367931842803955,
-0.04377758130431175,
0.07832972705364227,
-0.052110202610492706,
-0.07929901778697968,
-0.02813073620200157,
0.02208898402750492,
0.0384688675403595,
0.07933850586414337,
-0.06663740426301956,
0.04726108908653259,
0.03773293271660805,
0.028399987146258354,
0.013220056891441345,
-0.17047959566116333,
-0.006348223891109228,
0.04877139627933502,
-0.043926969170570374,
-0.09005896002054214,
-0.04119770601391792,
0.006716832052916288,
0.05873410031199455,
0.03663652762770653,
0.01786256581544876,
0.003337934846058488,
-0.050413478165864944,
-0.1059134230017662,
0.18377453088760376,
-0.1024865061044693,
-0.1335669606924057,
-0.137311190366745,
0.05150070786476135,
-0.03468179702758789,
0.0034783727023750544,
0.03124566376209259,
-0.06256922334432602,
-0.06837299466133118,
-0.12134364247322083,
-0.04775071516633034,
-0.03533409163355827,
-0.016718558967113495,
-0.04890367016196251,
0.005547833163291216,
0.06416156142950058,
-0.08775173872709274,
0.01887262426316738,
0.01769961789250374,
-0.04786248877644539,
0.000042760264477692544,
0.012504076585173607,
0.10054238885641098,
0.12697647511959076,
0.03262312710285187,
0.020984234288334846,
-0.019822152331471443,
0.2410796880722046,
-0.10725628584623337,
-0.024818267673254013,
0.09321729093790054,
-0.033494800329208374,
0.058917269110679626,
0.1714661419391632,
0.025466153398156166,
-0.07566490024328232,
0.0319334976375103,
0.06973197311162949,
-0.011027139611542225,
-0.23999819159507751,
-0.021222081035375595,
-0.05725662782788277,
-0.09767694771289825,
0.1448887288570404,
0.04577622935175896,
0.009747741743922234,
0.053413692861795425,
-0.062565378844738,
-0.009790967218577862,
0.03214777633547783,
0.09739040583372116,
0.0859617069363594,
0.08855755627155304,
0.08015358448028564,
-0.044746264815330505,
-0.019032742828130722,
0.052809834480285645,
-0.02048310451209545,
0.28678929805755615,
-0.0005375186447054148,
0.19129401445388794,
0.07219160348176956,
0.11284466832876205,
0.00030915861134417355,
-0.009498611092567444,
0.02464638464152813,
0.0011649717343971133,
0.015833361074328423,
-0.04653644934296608,
-0.014291265979409218,
0.05598815530538559,
0.07186206430196762,
0.012433961033821106,
-0.08832530677318573,
-0.05917913839221001,
0.02945665828883648,
0.23791804909706116,
0.03885028138756752,
-0.2728565037250519,
-0.06288337707519531,
0.049312759190797806,
-0.09128381311893463,
-0.04790323227643967,
0.0009927261853590608,
0.10512164980173111,
-0.11986430734395981,
0.07442567497491837,
-0.06193333864212036,
0.11858957260847092,
-0.08273699134588242,
-0.019233454018831253,
0.06758593767881393,
0.06668636947870255,
-0.028904946520924568,
0.11186837404966354,
-0.2032240629196167,
0.22637289762496948,
-0.010038269683718681,
0.08914823830127716,
-0.06525543332099915,
0.019182031974196434,
0.047678809612989426,
0.01186386402696371,
0.04958972707390785,
0.004352977033704519,
-0.09290863573551178,
-0.15189653635025024,
-0.06765834242105484,
0.031008167192339897,
0.0626499131321907,
-0.0706290677189827,
0.11214394867420197,
-0.0396650992333889,
0.005214228294789791,
0.03693077340722084,
-0.028657907620072365,
-0.13382065296173096,
-0.16076542437076569,
0.017684035003185272,
-0.018720466643571854,
0.0629657655954361,
-0.07960104197263718,
-0.07635325193405151,
-0.02267526276409626,
0.12975525856018066,
-0.04599016532301903,
-0.04403453692793846,
-0.1273324191570282,
0.026816869154572487,
0.14271600544452667,
-0.07073985785245895,
0.029205117374658585,
0.020647961646318436,
0.1471957415342331,
0.04506305232644081,
-0.002155860885977745,
0.058053158223629,
-0.05547015741467476,
-0.19656337797641754,
-0.04062774404883385,
0.12426523864269257,
0.04571151360869408,
0.06970079243183136,
0.008486502803862095,
0.037993259727954865,
-0.03361761197447777,
-0.10462258011102676,
0.013368435204029083,
0.041219744831323624,
0.09490033239126205,
0.0765753835439682,
0.000203329385840334,
-0.007739213295280933,
-0.10592600703239441,
-0.03372494876384735,
0.082977794110775,
0.27994289994239807,
-0.07123585045337677,
0.03633046895265579,
0.017108310014009476,
-0.05243276432156563,
-0.10134734958410263,
-0.00255300453864038,
0.09400099515914917,
0.0021460617426782846,
0.06184329092502594,
-0.148555725812912,
0.025274906307458878,
0.08934639394283295,
-0.013174382038414478,
0.02362114191055298,
-0.3064107596874237,
-0.13310647010803223,
0.08472506701946259,
0.14227807521820068,
-0.12740662693977356,
-0.15384745597839355,
-0.06313684582710266,
-0.051827967166900635,
-0.10999688506126404,
0.13429231941699982,
-0.03486534208059311,
0.08703183382749557,
0.011188054457306862,
0.03848091512918472,
0.02455928735435009,
-0.046030495315790176,
0.20499292016029358,
0.007813243195414543,
0.07717476785182953,
-0.049879398196935654,
0.005197920836508274,
0.011686999350786209,
-0.06287273019552231,
0.002621123567223549,
-0.09326210618019104,
0.027219975367188454,
-0.14238731563091278,
-0.05447119101881981,
-0.05324791371822357,
0.01490386575460434,
-0.0519242025911808,
-0.03362640365958214,
-0.05255796015262604,
0.06148816645145416,
0.13030637800693512,
-0.009877716191112995,
0.05518359690904617,
-0.044921476393938065,
0.10393055528402328,
0.06738204509019852,
0.15555402636528015,
0.07979107648134232,
-0.08996973186731339,
-0.02536453865468502,
-0.0011108895996585488,
0.03556082770228386,
-0.10848832875490189,
0.04455270618200302,
0.12444605678319931,
0.020977141335606575,
0.18483848869800568,
0.027871480211615562,
-0.05306179076433182,
0.006045399233698845,
0.04737066850066185,
-0.06304667145013809,
-0.19384419918060303,
-0.010874055325984955,
0.04486912488937378,
-0.19988545775413513,
-0.09008892625570297,
0.02910502627491951,
-0.042276784777641296,
-0.019266320392489433,
0.011897524818778038,
0.04435404762625694,
0.011641323566436768,
0.17752279341220856,
0.033325254917144775,
0.07243575900793076,
-0.07296040654182434,
0.08341046422719955,
0.1148819848895073,
-0.09890591353178024,
0.02671751007437706,
0.06377927213907242,
-0.06604748964309692,
-0.03580146282911301,
0.044741202145814896,
0.13024906814098358,
0.03020629473030567,
-0.04936238005757332,
-0.09527506679296494,
-0.11469754576683044,
0.061470769345760345,
0.06117919832468033,
0.04779450222849846,
0.02410256676375866,
-0.016819991171360016,
0.011434916406869888,
-0.11890392005443573,
0.11414777487516403,
0.09317871928215027,
0.05943191051483154,
-0.13744476437568665,
0.09432327002286911,
0.016561565920710564,
-0.029386375099420547,
0.0025520389899611473,
-0.001345916767604649,
-0.09435967355966568,
-0.010178590193390846,
-0.15492936968803406,
0.03439043462276459,
-0.08003173768520355,
0.02754177711904049,
0.006284763105213642,
-0.06142489239573479,
-0.06151963025331497,
0.009649194777011871,
-0.09266773611307144,
-0.07222504168748856,
0.008900877088308334,
0.0907219648361206,
-0.11361244320869446,
-0.024458810687065125,
0.07518158107995987,
-0.09955868124961853,
0.07473719865083694,
0.0178843941539526,
0.014732837677001953,
-0.006593654397875071,
-0.10195278376340866,
0.021891038864850998,
-0.006053382530808449,
0.01755256950855255,
0.0013038769830018282,
-0.19542311131954193,
0.008339377120137215,
-0.016138780862092972,
-0.017613522708415985,
0.020788438618183136,
0.040241532027721405,
-0.12808582186698914,
-0.012016238644719124,
-0.015840807929635048,
-0.07745684683322906,
-0.05810849368572235,
0.04541634023189545,
0.09085214883089066,
0.019443370401859283,
0.22275519371032715,
-0.06737334281206131,
0.05580374598503113,
-0.1859341263771057,
-0.031383901834487915,
-0.01942279562354088,
-0.03289651870727539,
-0.06768769770860672,
-0.04327203333377838,
0.06362437456846237,
-0.031959209591150284,
0.12082388997077942,
-0.04386313632130623,
0.04788847640156746,
0.037083350121974945,
0.022097598761320114,
0.07792370021343231,
0.037509042769670486,
0.18250465393066406,
0.021525394171476364,
-0.04697394371032715,
0.08032132685184479,
-0.04153504595160484,
0.011432874947786331,
0.03228675574064255,
0.15001598000526428,
0.1684838980436325,
-0.006861657835543156,
0.011898702010512352,
0.03384930640459061,
-0.10193789750337601,
-0.10142689943313599,
0.07207147777080536,
-0.005352609790861607,
0.08552054315805435,
-0.021519115194678307,
0.17523624002933502,
0.08438493311405182,
-0.2139815092086792,
0.06035758554935455,
-0.03437131270766258,
-0.0965704470872879,
-0.08035118877887726,
-0.11915697157382965,
-0.08030080795288086,
-0.10347212105989456,
0.004517204128205776,
-0.11441663652658463,
0.03330078348517418,
0.08667223900556564,
0.011378450319170952,
-0.015709012746810913,
0.12592585384845734,
-0.038698092103004456,
-0.017029913142323494,
0.026903755962848663,
-0.0003406550385989249,
-0.01609613373875618,
-0.03195289894938469,
-0.06657162308692932,
0.03577469661831856,
-0.057339753955602646,
0.07047074288129807,
-0.027078362181782722,
-0.02528344839811325,
0.017769616097211838,
-0.010922160930931568,
-0.09654080867767334,
0.032001812011003494,
-0.003454115241765976,
0.06619145721197128,
0.14157849550247192,
0.05386388301849365,
-0.0016503867227584124,
-0.01271724235266447,
0.26287806034088135,
-0.05368547514081001,
-0.05510786548256874,
-0.14186422526836395,
0.19631093740463257,
0.010739922523498535,
-0.04460003599524498,
0.060664307326078415,
-0.11377015709877014,
0.05635753273963928,
0.11047207564115524,
0.07839927822351456,
-0.04186422377824783,
-0.011588414199650288,
-0.01633298769593239,
-0.01319231279194355,
0.002228026045486331,
0.0890841856598854,
0.04976692423224449,
0.042394667863845825,
-0.060515835881233215,
0.005067664664238691,
-0.023369569331407547,
-0.026874452829360962,
-0.06396694481372833,
0.09080430120229721,
0.042720500379800797,
-0.017933549359440804,
-0.04410050809383392,
0.12888619303703308,
-0.04505011811852455,
-0.10994549840688705,
0.033924076706171036,
-0.10784763842821121,
-0.17779819667339325,
-0.030875900760293007,
0.056343067437410355,
0.008738424628973007,
0.04020459204912186,
0.010806954465806484,
-0.002002487890422344,
0.06959977746009827,
0.026358947157859802,
-0.041793759912252426,
-0.0872727632522583,
0.111658476293087,
-0.04860897734761238,
0.2563076317310333,
-0.008262942545115948,
0.0732872486114502,
0.13748618960380554,
0.030375642701983452,
-0.1102474257349968,
0.06643015891313553,
0.08899902552366257,
-0.08189333975315094,
0.07828328013420105,
0.15974485874176025,
-0.03804950788617134,
0.08712752908468246,
0.05914991348981857,
-0.06850836426019669,
0.01739227958023548,
-0.13782022893428802,
-0.016533508896827698,
-0.06374023109674454,
0.019922997802495956,
-0.06341840326786041,
0.1553017646074295,
0.19946260750293732,
-0.07290362566709518,
-0.0006908583454787731,
-0.035625334829092026,
0.03166339173913002,
0.03281456232070923,
0.13612975180149078,
-0.023921485990285873,
-0.2069612592458725,
0.01422204077243805,
0.014857600443065166,
0.03821095451712608,
-0.22718919813632965,
-0.08800165355205536,
0.016892824321985245,
-0.0649910643696785,
-0.024150973185896873,
0.1304851919412613,
0.06808088719844818,
0.02870786003768444,
-0.06391966342926025,
-0.10408661514520645,
-0.047002602368593216,
0.14768743515014648,
-0.1313956081867218,
-0.04239429906010628
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-finetuned-ner
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0778
- Precision: 0.9505
- Recall: 0.9575
- F1: 0.9540
- Accuracy: 0.9886
## Model description
More information needed
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Scott and I live in Ohio"
ner_results = nlp(example)
print(ner_results)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1997 | 1.0 | 878 | 0.0576 | 0.9316 | 0.9257 | 0.9286 | 0.9837 |
| 0.04 | 2.0 | 1756 | 0.0490 | 0.9400 | 0.9513 | 0.9456 | 0.9870 |
| 0.0199 | 3.0 | 2634 | 0.0557 | 0.9436 | 0.9540 | 0.9488 | 0.9879 |
| 0.0112 | 4.0 | 3512 | 0.0602 | 0.9443 | 0.9569 | 0.9506 | 0.9881 |
| 0.0068 | 5.0 | 4390 | 0.0631 | 0.9451 | 0.9589 | 0.9520 | 0.9882 |
| 0.0044 | 6.0 | 5268 | 0.0638 | 0.9510 | 0.9567 | 0.9538 | 0.9885 |
| 0.003 | 7.0 | 6146 | 0.0722 | 0.9495 | 0.9560 | 0.9527 | 0.9885 |
| 0.0016 | 8.0 | 7024 | 0.0762 | 0.9491 | 0.9595 | 0.9543 | 0.9887 |
| 0.0018 | 9.0 | 7902 | 0.0769 | 0.9496 | 0.9542 | 0.9519 | 0.9883 |
| 0.0009 | 10.0 | 8780 | 0.0778 | 0.9505 | 0.9575 | 0.9540 | 0.9886 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "widget": [{"text": "My name is Scott and I live in Columbus."}, {"text": "My name is Scott and I am calling from Buffalo, NY. I would like to file a complain with United Airlines."}, {"text": "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."}], "base_model": "bert-large-uncased", "model-index": [{"name": "bert-large-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9504719600222099, "name": "Precision"}, {"type": "recall", "value": 0.9574896520863632, "name": "Recall"}, {"type": "f1", "value": 0.9539679001337494, "name": "F1"}, {"type": "accuracy", "value": 0.9885618059637473, "name": "Accuracy"}]}]}]} | token-classification | Jorgeutd/bert-large-uncased-finetuned-ner | [
"transformers",
"pytorch",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"en",
"dataset:conll2003",
"base_model:bert-large-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #safetensors #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-bert-large-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| bert-large-uncased-finetuned-ner
================================
This model is a fine-tuned version of bert-large-uncased on the conll2003 dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0778
* Precision: 0.9505
* Recall: 0.9575
* F1: 0.9540
* Accuracy: 0.9886
Model description
-----------------
More information needed
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
#### How to use
You can use this model with Transformers *pipeline* for NER.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.8.1+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-bert-large-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.",
"#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
83,
80,
27,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #base_model-bert-large-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n#### Limitations and bias\n\n\nThis model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.#### How to use\n\n\nYou can use this model with Transformers *pipeline* for NER.\n\n\nTraining procedure\n------------------### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.07518870383501053,
0.20002467930316925,
-0.0023928263690322638,
0.07218518853187561,
0.1265592873096466,
0.022171778604388237,
0.1296967715024948,
0.10791753232479095,
-0.07997187972068787,
0.0656726136803627,
0.07609390467405319,
0.0259088184684515,
0.0542699359357357,
0.12373463809490204,
-0.038327448070049286,
-0.28188031911849976,
0.031079234555363655,
-0.02331964485347271,
-0.047242045402526855,
0.10749934613704681,
0.09385109692811966,
-0.10647107660770416,
0.05854088068008423,
0.036600783467292786,
-0.1558934450149536,
0.019383803009986877,
-0.020083928480744362,
-0.03244468569755554,
0.050178539007902145,
0.04494915530085564,
0.09047212451696396,
-0.010813266038894653,
0.10636942833662033,
-0.22204315662384033,
-0.00041487059206701815,
0.09670598059892654,
-0.001452778815291822,
0.05654322728514671,
0.11653099954128265,
-0.009182780981063843,
0.10539776086807251,
-0.1280263066291809,
0.0547708235681057,
0.04176558554172516,
-0.11399722844362259,
-0.18020376563072205,
-0.09206132590770721,
0.10737346112728119,
0.1395653486251831,
0.10670601576566696,
-0.03568216785788536,
0.14605949819087982,
-0.08657082170248032,
0.07320091873407364,
0.1633312702178955,
-0.26630058884620667,
-0.05811947211623192,
0.04094694182276726,
0.03237443417310715,
0.04214618355035782,
-0.1014360785484314,
-0.027792027220129967,
0.046441446989774704,
0.017652727663517,
0.0950721874833107,
-0.04317857697606087,
-0.0517171286046505,
-0.006425963714718819,
-0.14393894374370575,
-0.06990081816911697,
0.1556372493505478,
0.05923587456345558,
-0.03579926863312721,
-0.10651567578315735,
-0.04721435159444809,
-0.08293885737657547,
-0.0020302538760006428,
-0.029101064428687096,
0.04875419661402702,
-0.020435716956853867,
-0.008145765401422977,
-0.03719109296798706,
-0.06998661160469055,
-0.04496161639690399,
0.00035860575735569,
0.12495144456624985,
0.05104178935289383,
-0.0006311273318715394,
-0.006314053665846586,
0.12424390017986298,
-0.01799355447292328,
-0.1443982571363449,
-0.0070424675941467285,
-0.016400747001171112,
-0.1146177425980568,
-0.06623705476522446,
-0.043538764119148254,
-0.0043997997418046,
-0.01984475366771221,
0.11623693257570267,
-0.08997571468353271,
0.055964332073926926,
0.0523514524102211,
-0.009946887381374836,
0.015921728685498238,
0.1458086222410202,
-0.11976346373558044,
-0.028011618182063103,
0.009080590680241585,
0.04732957109808922,
-0.02735787257552147,
0.01653529517352581,
-0.07272292673587799,
0.0037356135435402393,
0.08189057558774948,
0.06531441956758499,
-0.021015463396906853,
0.061358317732810974,
-0.04463338106870651,
-0.05163220688700676,
0.019262215122580528,
-0.12035323679447174,
0.04711738973855972,
-0.009916779585182667,
-0.07833842188119888,
-0.024207016453146935,
0.005235407501459122,
0.020096223801374435,
-0.06805326789617538,
0.09799198806285858,
-0.10527119040489197,
0.007941761054098606,
-0.10489410161972046,
-0.09505495429039001,
0.008870113641023636,
-0.017885738983750343,
-0.016288576647639275,
-0.06520529836416245,
-0.1968952715396881,
-0.06368321925401688,
0.036507174372673035,
-0.0449528843164444,
-0.06487618386745453,
-0.0237063467502594,
-0.06089140102267265,
0.0001597248192410916,
-0.005970312282443047,
0.09068205207586288,
-0.041417259722948074,
0.025392858311533928,
0.011126604862511158,
0.011331193149089813,
0.06579038500785828,
0.036308206617832184,
-0.10423266142606735,
0.08421553671360016,
-0.1173740029335022,
0.08280623704195023,
-0.05395741015672684,
0.06004928797483444,
-0.11639145016670227,
-0.09026700258255005,
-0.021470729261636734,
-0.00030550433439202607,
0.024194929748773575,
0.09514868259429932,
-0.15825380384922028,
-0.023289015516638756,
0.18743844330310822,
-0.06390107423067093,
-0.08079647272825241,
0.11030571907758713,
-0.06351704150438309,
-0.010629606433212757,
0.05570944398641586,
0.1316688358783722,
0.12043285369873047,
-0.054906681180000305,
-0.046393122524023056,
-0.04170616716146469,
0.042858827859163284,
0.08739170432090759,
0.06932142376899719,
0.00031684720306657255,
0.048071958124637604,
0.000025370361981913447,
-0.05603500083088875,
-0.030550561845302582,
-0.04486275464296341,
-0.07922017574310303,
-0.03718604892492294,
-0.07073689252138138,
0.012682129628956318,
0.03237641602754593,
0.03166935220360756,
-0.05351617932319641,
-0.13460369408130646,
0.08609648793935776,
0.1028824895620346,
-0.06055194512009621,
0.016421496868133545,
-0.07114441692829132,
0.016527339816093445,
-0.031495485454797745,
0.0008986841421574354,
-0.1805223673582077,
-0.08924239128828049,
0.04439755901694298,
-0.07377853989601135,
0.06054616719484329,
0.032543331384658813,
0.03399437665939331,
0.05772729218006134,
-0.05519812926650047,
-0.028459450230002403,
-0.015263519249856472,
-0.008481164462864399,
-0.07723642140626907,
-0.15592297911643982,
-0.05641072615981102,
-0.02231345884501934,
0.1617569625377655,
-0.23842591047286987,
0.03104552999138832,
0.04658845439553261,
0.12474387139081955,
0.008503936231136322,
-0.040345534682273865,
0.024621957913041115,
0.03875906020402908,
-0.03309774771332741,
-0.09837032854557037,
0.0008266284712590277,
-0.010216115042567253,
-0.05617751553654671,
-0.03972930461168289,
-0.15706300735473633,
0.03157557547092438,
0.07331840693950653,
0.03359479457139969,
-0.08885249495506287,
-0.051036473363637924,
-0.03752094507217407,
-0.040885355323553085,
-0.06343109160661697,
-0.020718462765216827,
0.2224789410829544,
0.023670397698879242,
0.09154099225997925,
-0.08087587356567383,
-0.07045844942331314,
-0.021325265988707542,
-0.030067013576626778,
-0.0029667594935745,
0.0648249089717865,
0.013745277188718319,
-0.17026832699775696,
0.1089622899889946,
0.03340233117341995,
-0.08313614875078201,
0.10101287066936493,
-0.032953180372714996,
-0.059920404106378555,
-0.022396663203835487,
0.018491368740797043,
0.019291404634714127,
0.06444831937551498,
-0.06376297771930695,
0.018537601456046104,
0.03065081313252449,
0.03506302833557129,
0.019562751054763794,
-0.13868989050388336,
0.017600955441594124,
0.0375390499830246,
-0.04188808426260948,
-0.020671728998422623,
-0.046379536390304565,
0.022050589323043823,
0.050940077751874924,
0.025203024968504906,
0.04827292263507843,
0.01848103292286396,
-0.036284998059272766,
-0.10282348096370697,
0.20938687026500702,
-0.0865800604224205,
-0.16291262209415436,
-0.14689473807811737,
0.026810579001903534,
-0.07250025868415833,
0.0016811437672004104,
0.026529520750045776,
-0.040554989129304886,
-0.06652064621448517,
-0.09425365179777145,
-0.01836727373301983,
0.00795439351350069,
-0.03955591097474098,
-0.060526248067617416,
0.02412591502070427,
0.07401574403047562,
-0.11356102675199509,
0.020347991958260536,
0.028545821085572243,
-0.08396080136299133,
-0.009622029028832912,
0.04339231550693512,
0.10891464352607727,
0.14761322736740112,
-0.00010790112719405442,
0.0195474810898304,
-0.005116976797580719,
0.22570963203907013,
-0.10230601578950882,
-0.00024505285546183586,
0.10967457294464111,
-0.00034954308648593724,
0.08221712708473206,
0.16902631521224976,
0.014548276551067829,
-0.07425864040851593,
0.0269065722823143,
0.08276461064815521,
-0.005237501580268145,
-0.23683838546276093,
-0.03589963912963867,
-0.053054723888635635,
-0.07756459712982178,
0.11290722340345383,
0.03342525660991669,
0.042566657066345215,
0.07920221239328384,
-0.06560395658016205,
0.049433331936597824,
-0.023095887154340744,
0.10781334340572357,
0.07449427247047424,
0.07610637694597244,
0.09849857538938522,
-0.028099101036787033,
-0.03258232772350311,
0.058145198971033096,
0.025076912716031075,
0.263152152299881,
-0.026372889056801796,
0.16120122373104095,
0.06349299848079681,
0.09727224707603455,
-0.0017939050449058414,
0.04438743367791176,
0.007238037884235382,
-0.005146468058228493,
0.009580790996551514,
-0.05616220459342003,
0.011244541965425014,
0.07404263317584991,
0.010785872116684914,
0.03745126351714134,
-0.057762570679187775,
-0.004267031326889992,
0.050377257168293,
0.2965603172779083,
0.02967226132750511,
-0.301876038312912,
-0.033169787377119064,
0.045526742935180664,
-0.08303824067115784,
-0.06184246391057968,
-0.005524981766939163,
0.12346886098384857,
-0.16114185750484467,
0.05733977258205414,
-0.06385983526706696,
0.11753416061401367,
-0.05474591255187988,
0.0005474344361573458,
0.06091480702161789,
0.10764709115028381,
-0.01417515054345131,
0.12671944499015808,
-0.18864263594150543,
0.20969648659229279,
0.00930576678365469,
0.07804392278194427,
-0.06963414698839188,
0.04635092243552208,
0.03634229674935341,
0.07681001722812653,
0.0941544696688652,
-0.003089306643232703,
-0.08558443933725357,
-0.11927039176225662,
-0.05060477554798126,
0.008555860258638859,
0.08352294564247131,
-0.05315738916397095,
0.13096842169761658,
-0.03104010969400406,
-0.0013712304644286633,
0.022005170583724976,
-0.009436926804482937,
-0.14164137840270996,
-0.1311761736869812,
0.012270002625882626,
-0.023817213252186775,
0.034002386033535004,
-0.06866970658302307,
-0.04461033269762993,
-0.04185650870203972,
0.16605244576931,
-0.03837406262755394,
-0.06328389793634415,
-0.1414516568183899,
0.022722188383340836,
0.12064908444881439,
-0.0779469683766365,
0.016657765954732895,
0.008300128392875195,
0.16991423070430756,
0.014438527636229992,
-0.03259863331913948,
0.06719569861888885,
-0.06442189961671829,
-0.17861251533031464,
-0.04430796578526497,
0.08965310454368591,
0.04221681132912636,
0.05132906511425972,
0.011653744615614414,
0.024090755730867386,
-0.016247335821390152,
-0.11039792001247406,
-0.018840868026018143,
0.040695104748010635,
0.12557165324687958,
0.054355375468730927,
-0.05255879461765289,
0.015273571014404297,
-0.07382644712924957,
0.020491808652877808,
0.09225314110517502,
0.23088769614696503,
-0.0906405821442604,
0.01352297980338335,
0.051214080303907394,
-0.0681966245174408,
-0.17298533022403717,
0.05976790189743042,
0.07842200249433517,
0.016193825751543045,
0.04573425278067589,
-0.15236280858516693,
0.1150265783071518,
0.10974445939064026,
-0.014030600897967815,
0.050615355372428894,
-0.26861995458602905,
-0.1325109601020813,
0.0758272111415863,
0.07924272119998932,
-0.10893896222114563,
-0.1527291089296341,
-0.03995553031563759,
-0.06414791941642761,
-0.10482578724622726,
0.07541763782501221,
-0.11772850155830383,
0.0889844074845314,
0.019557422026991844,
0.06441041082143784,
0.020299937576055527,
-0.046489790081977844,
0.15105243027210236,
0.04772749915719032,
0.09973885118961334,
-0.053276434540748596,
-0.015628812834620476,
0.09300055354833603,
-0.07560878992080688,
0.05864435434341431,
-0.07627005875110626,
0.054058413952589035,
-0.11102987825870514,
-0.04888433218002319,
-0.04965120553970337,
0.05654642730951309,
-0.04527275264263153,
-0.06474518775939941,
-0.05622386187314987,
0.07012983411550522,
0.10078969597816467,
-0.016675349324941635,
0.03369347006082535,
-0.03294838219881058,
0.04536154866218567,
0.16602204740047455,
0.13706131279468536,
0.023131486028432846,
-0.10498474538326263,
-0.007150303106755018,
0.011138600297272205,
0.05588589608669281,
-0.11684510856866837,
0.045604560524225235,
0.09688389301300049,
0.03128933161497116,
0.14249421656131744,
0.03205123543739319,
-0.06049869582056999,
-0.00526522658765316,
0.025525115430355072,
-0.10434941202402115,
-0.1326080709695816,
-0.022194888442754745,
0.02428216114640236,
-0.17346139252185822,
-0.02375025488436222,
0.055626269429922104,
-0.05031321197748184,
-0.014720385894179344,
0.01099458709359169,
0.021132459864020348,
-0.02335037663578987,
0.17417560517787933,
0.03247453272342682,
0.0869196355342865,
-0.08421138674020767,
0.10204851627349854,
0.10072252154350281,
-0.041212499141693115,
0.016985207796096802,
0.0987812802195549,
-0.07103532552719116,
-0.031108664348721504,
0.033703822642564774,
0.12676483392715454,
0.020333347842097282,
-0.06362542510032654,
-0.07961085438728333,
-0.1029859185218811,
0.02967308834195137,
0.07641402631998062,
0.0648256242275238,
0.01403498649597168,
-0.025184502825140953,
-0.0021659848280251026,
-0.13753366470336914,
0.09884960204362869,
0.11017236113548279,
0.08153538405895233,
-0.17147280275821686,
0.13620448112487793,
-0.0012567988596856594,
0.020007461309432983,
-0.015321887098252773,
0.02274448424577713,
-0.1052950993180275,
-0.020144712179899216,
-0.1484065055847168,
0.010998343117535114,
-0.07347722351551056,
0.014885674230754375,
-0.0015394344227388501,
-0.03426913917064667,
-0.05687291920185089,
0.029004909098148346,
-0.06922946870326996,
-0.07006242126226425,
0.007001971360296011,
0.06235421076416969,
-0.11500746756792068,
-0.021251576021313667,
0.05685031786561012,
-0.09013787657022476,
0.06426964700222015,
0.018089257180690765,
-0.003661404363811016,
-0.0034402660094201565,
-0.07369343936443329,
0.007560845464468002,
0.0227656289935112,
0.025204073637723923,
0.0382063053548336,
-0.1247371956706047,
0.016228018328547478,
-0.024862073361873627,
0.031093208119273186,
0.008090205490589142,
0.0005437626386992633,
-0.12677089869976044,
0.0180011298507452,
-0.026639269664883614,
-0.06423065066337585,
-0.06389080733060837,
0.050077974796295166,
0.1115080937743187,
-0.007405094336718321,
0.20057623088359833,
-0.05303376913070679,
0.057158634066581726,
-0.17871440947055817,
-0.028968555852770805,
0.0017938523087650537,
-0.031288083642721176,
-0.03139033541083336,
-0.0463264100253582,
0.05692758783698082,
-0.036413226276636124,
0.16811373829841614,
0.0004336237907409668,
0.019894931465387344,
0.04297926649451256,
-0.022430764511227608,
0.06845322251319885,
0.04100901260972023,
0.13671734929084778,
0.02674940414726734,
-0.04251278191804886,
0.053700096905231476,
-0.006641908548772335,
0.03664074093103409,
0.0218327846378088,
0.1949271410703659,
0.15681028366088867,
-0.027224013581871986,
0.06824876368045807,
0.04756365343928337,
-0.08407299220561981,
-0.12748506665229797,
0.0747256949543953,
-0.002525149844586849,
0.050023868680000305,
-0.0662660002708435,
0.1001141145825386,
0.1230030506849289,
-0.20283964276313782,
0.06685609370470047,
-0.006360339000821114,
-0.1013043075799942,
-0.08334319293498993,
-0.1085670068860054,
-0.07466579228639603,
-0.11540537327528,
0.008603017777204514,
-0.1372119039297104,
0.03754101321101189,
0.09538845717906952,
-0.0052381292916834354,
-0.02313948981463909,
0.1884150207042694,
-0.058806728571653366,
-0.017362937331199646,
0.029103772714734077,
0.004252659622579813,
0.017133614048361778,
-0.02045108750462532,
-0.04559168592095375,
0.020601462572813034,
-0.03596864268183708,
0.06780943274497986,
-0.019048640504479408,
-0.0021719452925026417,
0.01409547496587038,
-0.02927469089627266,
-0.07768888026475906,
0.00873109046369791,
0.028929587453603745,
0.03403869643807411,
0.08795633167028427,
0.05351311340928078,
-0.02758924849331379,
-0.0469195693731308,
0.21554143726825714,
-0.08949344605207443,
-0.07900694757699966,
-0.14197193086147308,
0.18744111061096191,
0.023201700299978256,
-0.01695455238223076,
0.037965476512908936,
-0.12369120866060257,
0.03881498798727989,
0.1693735122680664,
0.12569573521614075,
-0.053331222385168076,
-0.018197447061538696,
-0.013823337852954865,
-0.012051006779074669,
-0.04460112750530243,
0.10267248749732971,
0.05322662368416786,
0.0954553410410881,
-0.06808841228485107,
0.015528981573879719,
0.017466912046074867,
-0.03903505206108093,
-0.11062023043632507,
0.07431890815496445,
0.01844717003405094,
0.011850708164274693,
-0.028220627456903458,
0.08262187987565994,
-0.06416307389736176,
-0.10751417279243469,
0.037013351917266846,
-0.07978514581918716,
-0.1467454582452774,
-0.022021310403943062,
0.009492471814155579,
-0.0006871387013234198,
0.07794921100139618,
-0.008910263888537884,
-0.023531245067715645,
0.11416031420230865,
0.015329097397625446,
-0.040942516177892685,
-0.10118811577558517,
0.10253843665122986,
-0.09053507447242737,
0.2611098289489746,
-0.02491525374352932,
0.05851221829652786,
0.1386682689189911,
-0.0051154159009456635,
-0.11907976120710373,
0.030587445944547653,
0.05786469951272011,
-0.09383083879947662,
0.04608449712395668,
0.1383974552154541,
-0.042484015226364136,
0.07398928701877594,
0.039181262254714966,
-0.11951996386051178,
0.0016212912742048502,
-0.1001887172460556,
0.026009710505604744,
-0.11338797956705093,
0.010735055431723595,
-0.06590791791677475,
0.15701940655708313,
0.21638144552707672,
-0.05481592193245888,
0.010867874138057232,
-0.04438663274049759,
0.05029929056763649,
0.03426029533147812,
0.11297603696584702,
-0.0027584454510360956,
-0.19494657218456268,
0.029897872358560562,
0.052784595638513565,
0.03520596772432327,
-0.22333161532878876,
-0.08858226239681244,
0.058642804622650146,
-0.06129734218120575,
-0.03119944967329502,
0.0983583852648735,
0.09856511652469635,
0.04165152832865715,
-0.04805543273687363,
-0.17302091419696808,
-0.06321822851896286,
0.14660309255123138,
-0.13384856283664703,
-0.057657916098833084
] |
null | null | transformers | ## roberta-base
This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
- Problem type: Multi Class Text Classification (emotion detection).
It achieves the following results on the evaluation set:
- Loss: 0.1613253802061081
- f1: 0.9413321705151999
## Hyperparameters
```json
{
"epochs": 10,
"train_batch_size": 16,
"learning_rate": 3e-5,
"weight_decay":0.01,
"load_best_model_at_end": true,
"model_name":"roberta-base",
"do_eval": True,
"load_best_model_at_end":True
}
```
## Validation Metrics
| key | value |
| --- | ----- |
| eval_accuracy | 0.941 |
| eval_f1 | 0.9413321705151999 |
| eval_loss | 0.1613253802061081|
| eval_recall | 0.941 |
| eval_precision | 0.9419519436781406 |
| {"language": "en", "license": "apache-2.0", "tags": ["sagemaker", "roberta-base", "text classification"], "datasets": ["emotion"], "widget": [{"text": "I am really upset that I have to call up to three times to the number on the back of my insurance card for my call to be answer"}], "model-index": [{"name": "sagemaker-roberta-base-emotion", "results": [{"task": {"type": "text-classification", "name": "Multi Class Text Classification"}, "dataset": {"name": "emotion", "type": "emotion"}, "metrics": [{"type": "accuracy", "value": 94.1, "name": "Validation Accuracy"}, {"type": "f1", "value": 94.13, "name": "Validation F1"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "default", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.931, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmM1ZmI0NjZhYjdlMWU4NWUwZmFjODFmMmM5MTlhMmEyMmQwOTk2NjQ5ZDNlYmFlMGEyMTY4Y2JiMTcwM2MwNiIsInZlcnNpb24iOjF9.haDbUk1y7nW1e_ext0s1xKefyOzep-XFa1HEkNQEcNV0cHCSRb-0YFakMf5Iee6q_EWFUS-QYxNkgEBlbw3fCQ"}, {"type": "precision", "value": 0.8833042147663716, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjZkOTQyMzkwYjE1ZWQ5YjJkMTEzNmIyZmFlMjkwY2YxNzA3OWE0ZDk5YjJlOWVhOTU5Nzc4ZTk5Mzg5NDcxOCIsInZlcnNpb24iOjF9._XhknNSsiailHiMr1SH9ki7SRswR_b-embALunoCjhBssh9WERkv0z1xpsbw7ORo0wx7WCslZRdJWaQoXOmgDQ"}, {"type": "precision", "value": 0.931, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGY0MTc0ZDBiYmZlYmFmMTcyYjk5MWM0MTRmYTlhY2U1ODY5NTQzNTQ5YjAzN2U0YjljNDAzZDQ5NDBkZDUwYyIsInZlcnNpb24iOjF9.313HYKetR4S4kjcMvEk9Yj2J-Ox8ZqvVk4FLrF6UmxlXYZ4F3put-89BEOxGl_ScugjjAWhKY1pHLPYpKz9PAA"}, {"type": "precision", "value": 0.9337002742192515, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjQ1ZDIzNmE3MjljMTk2NTBmNzcyMTEyOTUwZTljYTA2MjIwY2E4ZThkNGVjYjQwNzU3MTcxMzBiYzJkNWIzOSIsInZlcnNpb24iOjF9.6yXKQ9WS9AWdt1jxixtA5O2S1bcPTKQqIOw291Ytam8OI-zdTI2jwltT6JdU4lHdhTi5797zeNldJMCxGPR2DQ"}, {"type": "recall", "value": 0.9087144572668905, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzJhNTFmNGJkYTAxNzRiOWQ4YzQyMGY5NGQxMjBiMmRjZTA5OTM2ZjM0NWY0ZDJiOTIyODQzZTZkMzEzZmY4YSIsInZlcnNpb24iOjF9.Fy1gkGvRiyANGU6nYgc5QbhccqAfb4PjxEk1EkJAIAZJjs-f0hffwUDlJt_6gRY3KKnoU2kKg1XxpWjybRY7BQ"}, {"type": "recall", "value": 0.931, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWJmZDAzM2VkOGNjNjY3NjViOTFiMTYyZDc4ZDIzY2VhNTcwMDg3MjdiOTI4Nzc5ODI4N2ExYzY5ODAzMyIsInZlcnNpb24iOjF9.bEW-tZ-5JqkPDDfqkrdvzlzTGEJtYqRACZI1Jv7C8fWkJ8uJj0eQ8TDhcdGGDnFML-q1z3tnkO6PJuK9V2IxAg"}, {"type": "recall", "value": 0.931, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTM2ZDk4NDQ2YWIwM2VjNzUxZjQ0YzU4MzViZGMzYzA3YjlhMTI1NjQwOTM3M2U4NGJhNTMxYzllMjRkMzU2NSIsInZlcnNpb24iOjF9.k9yprOWEoB0-k306GyDGF-g4uw3kABLc8iE_3E5ZYfVbo9VHPo61GuSsWJyYJ7_aq6zWbzgfOFEwUeVjcmnaDA"}, {"type": "f1", "value": 0.8949974527433656, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODg0ZDllYWJkYWZkMWY2NjEzYWIxMWIwMWUyZDhmNWEzM2FmN2E0MWEwOTIyMTM2YTI1MDdmYmRmZWQ5ZmVmNCIsInZlcnNpb24iOjF9.DUD3dfb4vRu-Z9YxvDErJaPLuZIEDBNsdqzkf4ee6dkOCOnYtUhGAybnxtGN1xSYsynXYhU-ymCajWcrVKUCAA"}, {"type": "f1", "value": 0.931, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGU0MTYyOTNjOTBmNzAxNjVlZmQxYmRkMmE5MWY2NzhlNjg0ZGZkMmNmZmI3Zjk1NjJlYTdjMGRhMDMwYzAzNCIsInZlcnNpb24iOjF9.h0wCmhwRT4qRZJcc2zGP3T7dF0_wKdKzTtSVoVWFOUzQZ3RoeY2Hfjl3XA7yyw9KnoDWnLiW8DU_5kOBX-peCQ"}, {"type": "f1", "value": 0.9318434300647934, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmU4OGY4M2NkYWExNjI3Yjk0YmYzNWJjZGQ5ZGNmYzc4ZDk4YzRmZDRiNmRkN2VlNDZhOGIwZDc3MzcxYjVlYiIsInZlcnNpb24iOjF9.qhwi7AV-7NSm1yVd8v1Ea3nTRAFXfqLMwUJ5PUbPSa11jJ0tZNOQVDXHMAD8fVmoueLgZNRUpPVIB881Sq3EBg"}, {"type": "loss", "value": 0.17379647493362427, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDdjODE2MjA5ODg2MmM2OWJmMjMzMzUzNGU1ZDc5NjRkNGU4N2VmNmM2NWE0YTEyYWMxNGUzN2M3YTkxNzUyMCIsInZlcnNpb24iOjF9.qcQWfHuRnfiluicR7gke3vm9u701hB4Bp0YaX2opaxL6d5DRCzuqAg-2kdmhhOL-8DW5JhY6gTrF14AEuEE9Cw"}]}]}]} | text-classification | Jorgeutd/sagemaker-roberta-base-emotion | [
"transformers",
"pytorch",
"safetensors",
"roberta",
"text-classification",
"sagemaker",
"roberta-base",
"text classification",
"en",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #safetensors #roberta #text-classification #sagemaker #roberta-base #text classification #en #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| roberta-base
------------
This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
* Problem type: Multi Class Text Classification (emotion detection).
It achieves the following results on the evaluation set:
* Loss: 0.1613253802061081
* f1: 0.9413321705151999
Hyperparameters
---------------
Validation Metrics
------------------
| [] | [
"TAGS\n#transformers #pytorch #safetensors #roberta #text-classification #sagemaker #roberta-base #text classification #en #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
75
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #roberta #text-classification #sagemaker #roberta-base #text classification #en #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.07076744735240936,
0.1588864028453827,
-0.006472267676144838,
0.06372162699699402,
0.13488279283046722,
0.014715487137436867,
0.10336215794086456,
0.11974611133337021,
-0.006760486867278814,
-0.03848356381058693,
0.10091126710176468,
0.18689922988414764,
0.0043716635555028915,
0.0977371335029602,
-0.11015212535858154,
-0.23061494529247284,
0.0755288377404213,
0.02005670964717865,
0.05405274033546448,
0.12725703418254852,
0.13765005767345428,
-0.043586283922195435,
0.08064347505569458,
-0.011849019676446915,
-0.04050469398498535,
0.01063888892531395,
0.05453924462199211,
-0.10234904289245605,
0.10805808752775192,
0.013280702754855156,
0.040280018001794815,
0.06330971419811249,
0.001556942705065012,
-0.22641883790493011,
0.049596644937992096,
0.02328571304678917,
-0.056639742106199265,
0.061773039400577545,
0.05714207515120506,
-0.11218073219060898,
0.09395761042833328,
0.01717265322804451,
0.002066182903945446,
0.06860535591840744,
-0.07425075024366379,
-0.15835566818714142,
-0.0638618916273117,
0.10613836348056793,
0.06023076921701431,
0.105293408036232,
-0.025154341012239456,
0.1776188164949417,
-0.09153338521718979,
0.09747419506311417,
0.14571677148342133,
-0.23520247638225555,
-0.029804877936840057,
0.03599994257092476,
0.03478437289595604,
-0.008381362073123455,
-0.06891671568155289,
0.03406031057238579,
0.04671356454491615,
0.005134598817676306,
0.03263426572084427,
-0.055765651166439056,
-0.12464875727891922,
0.010121888481080532,
-0.048896610736846924,
-0.06351367384195328,
0.23934660851955414,
0.029158396646380424,
0.022753756493330002,
-0.06690660119056702,
-0.06077757850289345,
0.04170040041208267,
-0.030203692615032196,
0.036832939833402634,
0.019838832318782806,
0.0933610200881958,
0.011743414215743542,
0.03030606172978878,
-0.13065172731876373,
0.014766809530556202,
-0.15309257805347443,
0.06668678671121597,
-0.016783475875854492,
0.043646153062582016,
-0.1139087826013565,
0.04487691447138786,
0.04721428081393242,
-0.130903422832489,
0.014087703078985214,
-0.10042724013328552,
0.09717331826686859,
0.027378033846616745,
-0.049210142344236374,
0.0040098754689097404,
0.15660643577575684,
0.1869710385799408,
0.00802407506853342,
0.01245731208473444,
-0.04474405571818352,
0.0592418871819973,
0.05105096474289894,
0.11063110083341599,
-0.01983582228422165,
-0.06616172939538956,
0.07912584394216537,
-0.050978418439626694,
0.07184199243783951,
-0.012933431193232536,
-0.09087243676185608,
0.01148074772208929,
0.06541406363248825,
0.09515632688999176,
0.046878524124622345,
0.1059093028306961,
-0.07756832242012024,
0.01715126447379589,
0.05054083839058876,
-0.04000024497509003,
-0.016604779288172722,
0.04233108460903168,
0.010489676147699356,
0.05817423760890961,
0.003108252538368106,
0.024847570806741714,
-0.045392971485853195,
0.029230590909719467,
-0.02930864505469799,
-0.03797255828976631,
-0.0180582944303751,
-0.03230097144842148,
0.09258870035409927,
-0.09937553107738495,
0.06366927921772003,
-0.15436576306819916,
-0.21507403254508972,
-0.021322477608919144,
0.04611567407846451,
-0.012354724109172821,
-0.08053342998027802,
-0.014382367953658104,
-0.011504014953970909,
0.04503301903605461,
-0.054626259952783585,
-0.06140180677175522,
-0.08856203407049179,
0.052837807685136795,
-0.07123962044715881,
0.06238918751478195,
-0.07558472454547882,
0.03161967173218727,
-0.16726629436016083,
-0.013993173837661743,
-0.043291233479976654,
0.01563185453414917,
-0.09380786865949631,
0.24685290455818176,
-0.0304596945643425,
-0.00710852537304163,
0.026327410712838173,
0.0072138081304728985,
-0.059416089206933975,
0.19383610785007477,
-0.14429809153079987,
-0.06803392618894577,
0.20733405649662018,
-0.12960632145404816,
-0.16162607073783875,
0.10065415501594543,
-0.019371775910258293,
0.054940126836299896,
0.1205979585647583,
0.18914729356765747,
0.03959446772933006,
0.030437177047133446,
-0.00802865531295538,
0.10189560055732727,
-0.06873693317174911,
-0.09571131318807602,
0.034688595682382584,
0.01661280356347561,
-0.07086493074893951,
0.06198687478899956,
0.024087289348244667,
0.08241627365350723,
-0.03050427883863449,
-0.08725333958864212,
-0.05359117314219475,
-0.07156983017921448,
0.034513454884290695,
0.05158732086420059,
0.02854207158088684,
-0.10676957666873932,
-0.022720560431480408,
-0.11891143769025803,
0.06940052658319473,
0.01861669309437275,
0.01817229948937893,
-0.06676263362169266,
0.08044518530368805,
0.0675521045923233,
0.04532789811491966,
-0.16798803210258484,
0.030721882358193398,
-0.04366471618413925,
0.09852582216262817,
-0.02082592062652111,
0.0012740545207634568,
0.0525730699300766,
-0.0886930599808693,
-0.021953152492642403,
-0.043216776102781296,
0.1482565850019455,
0.037083134055137634,
-0.002241803565993905,
-0.22588983178138733,
0.08416794240474701,
-0.058364879339933395,
0.12239434570074081,
-0.05954728648066521,
0.051320210099220276,
0.0614512600004673,
0.09174446016550064,
-0.020572243258357048,
0.07142571359872818,
0.02051520347595215,
-0.014307280071079731,
-0.04965000972151756,
-0.017608067020773888,
0.10385432094335556,
0.0241188183426857,
-0.07417852431535721,
0.175785094499588,
-0.07785701006650925,
0.237152099609375,
0.1796232908964157,
-0.12165338546037674,
0.042429257184267044,
0.0036023592110723257,
-0.010563049465417862,
0.04270423203706741,
0.02239745669066906,
0.04915676265954971,
0.03489590436220169,
0.0019196701468899846,
0.12745212018489838,
-0.05262839049100876,
-0.026371464133262634,
0.0035341072361916304,
-0.07200350612401962,
-0.026989879086613655,
0.09121771901845932,
0.030767688527703285,
-0.167477548122406,
0.16901259124279022,
0.23097474873065948,
-0.0035693736281245947,
0.12615518271923065,
-0.07964848726987839,
0.040266938507556915,
0.04661159589886665,
-0.06751352548599243,
-0.030762551352381706,
-0.0014045751886442304,
-0.12554486095905304,
-0.009988531470298767,
0.07376658916473389,
-0.021765172481536865,
0.00486741354689002,
-0.10678071528673172,
-0.06579618901014328,
0.0030951988883316517,
-0.021199701353907585,
-0.03414275869727135,
0.05577817186713219,
0.0026795631274580956,
0.1154366284608841,
-0.04366825893521309,
-0.07985083758831024,
0.08278679102659225,
-0.009949550963938236,
-0.09106287360191345,
0.18808647990226746,
-0.14389270544052124,
-0.2851734757423401,
-0.10356869548559189,
-0.08881933242082596,
-0.05835489556193352,
-0.003535824827849865,
0.12049838900566101,
-0.13399092853069305,
-0.040733229368925095,
-0.05112164095044136,
-0.0271647609770298,
0.04288933426141739,
-0.0015507589560002089,
0.018623938784003258,
0.05339009314775467,
0.003099172841757536,
-0.10968181490898132,
-0.03908586874604225,
-0.023900125175714493,
-0.018326429650187492,
0.12510932981967926,
-0.0665956661105156,
0.11284740269184113,
0.15268263220787048,
0.041296061128377914,
0.008264955133199692,
-0.05365016683936119,
0.15004190802574158,
-0.056127142161130905,
0.012358225882053375,
0.21796445548534393,
-0.036202240735292435,
0.06871305406093597,
0.19342009723186493,
0.025382373481988907,
-0.061941731721162796,
0.03379177674651146,
-0.002075362717732787,
-0.047663234174251556,
-0.2676320970058441,
-0.11374425143003464,
-0.0466698557138443,
0.1139025166630745,
0.00154501770157367,
0.078458771109581,
0.11496618390083313,
0.09538610279560089,
-0.01999260112643242,
-0.08194147050380707,
0.0031217283103615046,
0.06942542642354965,
0.18954229354858398,
-0.0241200253367424,
0.10269447416067123,
-0.07725324481725693,
-0.05923132225871086,
0.13921518623828888,
-0.009464758448302746,
0.08265738934278488,
0.041282281279563904,
0.06542054563760757,
0.053748492151498795,
0.1306379735469818,
0.05020228400826454,
0.10687877237796783,
0.006215590052306652,
-0.013415426947176456,
-0.058142468333244324,
-0.013336045667529106,
-0.08792880922555923,
0.020373376086354256,
-0.10674342513084412,
-0.031318821012973785,
-0.08060967177152634,
-0.06722643226385117,
0.12648124992847443,
0.22605963051319122,
0.015583846718072891,
-0.18441185355186462,
-0.026048563420772552,
0.09274659305810928,
-0.017858747392892838,
-0.03984379395842552,
0.07816985249519348,
-0.08635799586772919,
-0.11471951007843018,
0.11236774176359177,
-0.024895038455724716,
0.13030052185058594,
-0.06006075441837311,
0.0634182021021843,
-0.10529278218746185,
-0.07003144919872284,
0.021944420412182808,
0.12207411229610443,
-0.2311374396085739,
0.20429140329360962,
-0.02330012619495392,
-0.007794594392180443,
-0.08479057997465134,
-0.005508228205144405,
0.11986254155635834,
0.20907720923423767,
0.10675105452537537,
0.0006776798982173204,
-0.05986926704645157,
-0.041126471012830734,
-0.06810130178928375,
0.054169636219739914,
-0.01682937890291214,
-0.018871886655688286,
-0.01891923137009144,
-0.05868653580546379,
-0.011950519867241383,
0.013508719392120838,
0.01996479742228985,
-0.057877007871866226,
-0.11006108671426773,
0.004647443536669016,
0.09487845748662949,
0.05678175762295723,
-0.044018663465976715,
-0.06535817682743073,
-0.06968953460454941,
0.14320042729377747,
-0.012502321042120457,
-0.05331096798181534,
-0.10932852327823639,
-0.07249432802200317,
0.009056417271494865,
-0.06706707924604416,
0.029359636828303337,
-0.07237246632575989,
0.06606091558933258,
-0.04291319102048874,
-0.20012521743774414,
0.09285907447338104,
-0.14783644676208496,
-0.09488971531391144,
-0.043952252715826035,
0.09637966006994247,
-0.05164123326539993,
0.015480506233870983,
0.06017167493700981,
-0.0032748677767813206,
-0.10428222268819809,
-0.10567668825387955,
0.018783319741487503,
0.06750409305095673,
-0.0007263165316544473,
0.018216287717223167,
-0.04046812281012535,
-0.17410065233707428,
-0.04467824101448059,
-0.043345220386981964,
0.19938133656978607,
0.19170118868350983,
-0.05634715408086777,
0.1558515578508377,
0.18306849896907806,
-0.06925289332866669,
-0.32382655143737793,
-0.09858114272356033,
-0.13260520994663239,
-0.07011841237545013,
0.009061434306204319,
-0.1088222786784172,
0.14248475432395935,
-0.012998104095458984,
-0.07181299477815628,
-0.008233912289142609,
-0.11828064918518066,
-0.06686536222696304,
0.2553035318851471,
0.006568327080458403,
0.31929606199264526,
-0.17151392996311188,
-0.06793981045484543,
-0.12180767953395844,
-0.13438640534877777,
0.11923664063215256,
-0.19144150614738464,
0.03023754246532917,
-0.00325799360871315,
0.03796319663524628,
0.012675732374191284,
-0.018975984305143356,
0.09971711039543152,
-0.02888602204620838,
0.053963787853717804,
-0.1360475867986679,
0.020690012723207474,
0.09006910026073456,
-0.020498240366578102,
0.0558064840734005,
-0.16430534422397614,
0.04958326369524002,
-0.10713321715593338,
-0.03859010711312294,
-0.09302198141813278,
0.05684130638837814,
0.004151088651269674,
-0.05323607847094536,
-0.03461746498942375,
0.011847342364490032,
0.04773145914077759,
-0.019239675253629684,
0.1219775527715683,
-0.007435471750795841,
0.06371373683214188,
0.11934389173984528,
0.15529440343379974,
-0.10118973255157471,
0.02704887092113495,
-0.07887199521064758,
-0.07821694761514664,
0.048131220042705536,
-0.17917026579380035,
0.043082449585199356,
0.0845973938703537,
-0.04871920868754387,
0.08795348554849625,
0.060774918645620346,
-0.025346819311380386,
-0.0158306322991848,
0.14274942874908447,
-0.14367185533046722,
-0.027409620583057404,
-0.033701732754707336,
0.012369150295853615,
-0.018658842891454697,
0.053717732429504395,
0.12629961967468262,
0.006901654880493879,
-0.035552605986595154,
-0.004770875442773104,
0.046408168971538544,
-0.00020481928368099034,
0.05244959890842438,
0.03223526477813721,
-0.008148658089339733,
-0.15928621590137482,
0.10460871458053589,
-0.015376652590930462,
-0.12051582336425781,
0.026554415002465248,
0.08601348102092743,
-0.13927659392356873,
-0.13643719255924225,
0.06266725808382034,
0.18303652107715607,
-0.1326354742050171,
-0.09767179191112518,
-0.11001995950937271,
-0.18133427202701569,
0.062013059854507446,
0.14814887940883636,
0.10532663017511368,
0.056627772748470306,
-0.024834590032696724,
-0.06609423458576202,
-0.00014361673675011843,
0.05050791800022125,
0.06552471220493317,
-0.0276652779430151,
-0.13368813693523407,
-0.08250471949577332,
-0.009054899215698242,
0.07268573343753815,
-0.06092876195907593,
-0.02532791718840599,
-0.10544343292713165,
0.00012529725790955126,
-0.1865406632423401,
0.008234917186200619,
-0.09210894256830215,
0.01343626156449318,
0.005647370126098394,
-0.038051918148994446,
-0.020816225558519363,
-0.03190410137176514,
-0.09036297351121902,
0.007139020133763552,
-0.007823718711733818,
0.097984679043293,
-0.14695116877555847,
-0.042251553386449814,
0.07687505334615707,
-0.022201137617230415,
0.1607978194952011,
0.07803558558225632,
-0.06968196481466293,
0.09088817238807678,
-0.26848331093788147,
-0.059647656977176666,
0.12039312720298767,
-0.006375142373144627,
0.009904756210744381,
0.011600363068282604,
0.0114448806270957,
0.08153288811445236,
-0.030682334676384926,
0.06035898998379707,
0.042676202952861786,
-0.10422161221504211,
0.03502994403243065,
0.03514457494020462,
-0.1002030223608017,
-0.02370578981935978,
-0.06395983695983887,
0.11533340066671371,
-0.013166687451303005,
0.1977635622024536,
-0.06821134686470032,
0.04035593569278717,
-0.11263783276081085,
0.028347384184598923,
-0.021565493196249008,
-0.17092032730579376,
-0.20866826176643372,
-0.05418922379612923,
0.00046577860484831035,
-0.015532306395471096,
0.2109268754720688,
0.07238248735666275,
-0.05426156893372536,
0.0448484942317009,
0.12401142716407776,
0.06902908533811569,
0.011441260576248169,
0.2071017473936081,
0.05413272604346275,
-0.04111874848604202,
-0.05775845795869827,
0.01017709355801344,
0.05440634861588478,
-0.034333936870098114,
0.07629653066396713,
0.12499135732650757,
0.12674112617969513,
0.07742244750261307,
0.03553016111254692,
0.07573646306991577,
0.003053989727050066,
-0.10126236826181412,
-0.043371815234422684,
0.08098851889371872,
0.033670321106910706,
0.11077552288770676,
0.1578061729669571,
-0.015060503035783768,
0.03888879716396332,
-0.07535992562770844,
-0.016393166035413742,
-0.1526625007390976,
-0.14015759527683258,
-0.10007789731025696,
-0.11898169666528702,
0.009478682652115822,
-0.12257365882396698,
-0.03938491269946098,
0.034497737884521484,
0.037193361669778824,
-0.08163639903068542,
0.003143942914903164,
0.0013374671107158065,
-0.037443991750478745,
0.12121987342834473,
-0.024417007341980934,
-0.0776858776807785,
-0.001586241414770484,
-0.012787828221917152,
-0.06219033524394035,
0.012953734025359154,
-0.024853171780705452,
0.03630810230970383,
-0.03864021599292755,
0.05296679213643074,
-0.13563624024391174,
-0.09646754711866379,
-0.02114877663552761,
0.02352837845683098,
-0.010266605764627457,
0.13417020440101624,
0.023847978562116623,
0.023495951667428017,
0.10426465421915054,
0.21239502727985382,
-0.03220805153250694,
-0.09474857151508331,
-0.09164884686470032,
0.12258786708116531,
-0.023065095767378807,
0.028497086837887764,
-0.006943453103303909,
-0.03781477361917496,
-0.012773044407367706,
0.27763631939888,
0.299560010433197,
-0.04672584310173988,
0.03569797798991203,
-0.07705610990524292,
0.022062178701162338,
0.011351224035024643,
0.10062457621097565,
0.1238151490688324,
0.11332694441080093,
-0.09230078011751175,
0.04337485879659653,
-0.03131120279431343,
-0.02557024545967579,
-0.10498909652233124,
0.057471491396427155,
0.05441455543041229,
-0.0568154975771904,
-0.03209826350212097,
0.13222938776016235,
-0.15611016750335693,
0.08148282766342163,
-0.01315604243427515,
-0.12895549833774567,
-0.06803393363952637,
-0.042267438024282455,
0.12858952581882477,
0.09111598879098892,
0.0416809543967247,
0.003917488269507885,
-0.030234653502702713,
0.10444720834493637,
-0.015625011175870895,
-0.21492472290992737,
-0.04302643612027168,
0.08160586655139923,
-0.08067263662815094,
0.13726262748241425,
-0.04218455031514168,
-0.0056863450445234776,
0.111565001308918,
0.015173842199146748,
-0.0872395783662796,
0.08909919857978821,
0.013543904758989811,
-0.04215750843286514,
0.04404980316758156,
-0.02218169905245304,
0.00868573971092701,
-0.047647036612033844,
0.05893883481621742,
-0.10330336540937424,
0.040324289351701736,
0.017933931201696396,
-0.06873316317796707,
-0.06837479025125504,
0.11503767967224121,
-0.08473626524209976,
0.05226707458496094,
0.05724061280488968,
-0.04051026329398155,
-0.015530997887253761,
-0.0547066293656826,
-0.0036235805600881577,
-0.024000557139515877,
-0.1672467291355133,
-0.022867444902658463,
-0.026057414710521698,
-0.03014243394136429,
0.13883081078529358,
0.03167574480175972,
-0.2386319637298584,
-0.02741141803562641,
-0.11844144761562347,
-0.0013831707183271646,
-0.14062432944774628,
0.048709362745285034,
0.0810951367020607,
0.025022897869348526,
0.021299531683325768,
-0.03812563419342041,
0.042079124599695206,
0.09011732041835785,
-0.06373783200979233,
-0.07217220216989517
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 3
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 1
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 6
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 14.743051006476085
si_sdr_imp: 11.293269700616385
sdr: 15.300522933671061
sdr_imp: 11.797860134458015
sir: Infinity
sir_imp: NaN
sar: 15.300522933671061
sar_imp: 11.797860134458015
stoi: 0.9310514162434267
stoi_imp: 0.13513159270288563
```
License notice:
This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]} | audio-to-audio | JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri1Mix",
"dataset:enh_single",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On Libri1Mix min test set :
License notice:
This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
63,
205
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.04260510206222534,
0.15349186956882477,
-0.001984434202313423,
0.12464028596878052,
-0.003123946487903595,
0.036348070949316025,
0.18761470913887024,
0.017284585162997246,
-0.07860973477363586,
0.01025821641087532,
0.024640314280986786,
0.09741442650556564,
-0.010124163702130318,
0.018503306433558464,
-0.06688649207353592,
-0.025456765666604042,
-0.015609947964549065,
-0.03649607300758362,
-0.031037909910082817,
0.0325431153178215,
0.03514398634433746,
-0.08537536859512329,
0.06563664972782135,
-0.020028093829751015,
-0.16113916039466858,
0.057502396404743195,
0.012001194059848785,
-0.060652635991573334,
0.06843018531799316,
0.046361397951841354,
0.14174047112464905,
0.09777995944023132,
0.10616185516119003,
-0.09584110230207443,
0.01656203903257847,
-0.03398875892162323,
-0.07192158699035645,
0.11459165811538696,
0.10234367847442627,
-0.06220102310180664,
0.10803213715553284,
0.056177522987127304,
-0.005830972455441952,
0.02011067420244217,
-0.10480974614620209,
-0.015776727348566055,
-0.17945778369903564,
0.0019747877959161997,
0.00041748484363779426,
0.05477261170744896,
0.02105521224439144,
0.055224109441041946,
-0.09737087786197662,
0.023788413032889366,
0.13648907840251923,
-0.21547167003154755,
-0.0299894567579031,
0.12278778105974197,
0.007962758652865887,
0.09058547765016556,
-0.04721015691757202,
0.0259218979626894,
0.11741037666797638,
0.01735176146030426,
0.0860247015953064,
-0.10512106865644455,
-0.21613621711730957,
0.025923490524291992,
-0.02536657266318798,
-0.012370637618005276,
0.3162263333797455,
-0.007749150972813368,
-0.07567980885505676,
0.021439118310809135,
-0.018511541187763214,
-0.009155728854238987,
0.04041031002998352,
0.03229733183979988,
0.050957970321178436,
-0.010310133919119835,
-0.07147183269262314,
-0.058271169662475586,
-0.10792136192321777,
-0.07965869456529617,
-0.0263286754488945,
-0.031735483556985855,
-0.016675321385264397,
0.021131396293640137,
0.02538793534040451,
0.07076311111450195,
0.09750054776668549,
-0.08923938870429993,
0.04037976637482643,
-0.06718061119318008,
0.042603932321071625,
-0.013161283917725086,
-0.05723346397280693,
-0.0833229199051857,
0.058865632861852646,
0.06221975386142731,
-0.0868384912610054,
-0.035775355994701385,
-0.0432053841650486,
0.0843406394124031,
0.06719698011875153,
-0.10888052731752396,
0.02061929926276207,
-0.06102655827999115,
0.0929192379117012,
-0.0048155528493225574,
0.046177949756383896,
-0.0077023557387292385,
-0.10849228501319885,
-0.036581434309482574,
-0.10100866109132767,
0.004843690432608128,
0.03101719543337822,
-0.07810265570878983,
-0.1032516285777092,
0.019421830773353577,
0.16548964381217957,
-0.021742815151810646,
0.05094107612967491,
0.0007021739147603512,
-0.03643190488219261,
-0.10780801624059677,
0.1168762817978859,
0.06485297530889511,
0.10142873972654343,
0.024192625656723976,
-0.085231252014637,
0.023777944967150688,
-0.07081329077482224,
-0.0771903246641159,
0.08015146851539612,
0.09286349266767502,
0.020620843395590782,
-0.15947306156158447,
-0.07099631428718567,
-0.08565457910299301,
0.0768369659781456,
0.005671348422765732,
-0.031043589115142822,
-0.02916782535612583,
0.05805713310837746,
0.06297262012958527,
-0.025589879602193832,
-0.011853503994643688,
-0.04986581206321716,
0.07462268322706223,
-0.052854523062705994,
0.08813053369522095,
-0.09769777208566666,
0.05739244446158409,
-0.11603938043117523,
0.004367548041045666,
-0.08969222754240036,
0.006604490801692009,
-0.05206149443984032,
-0.030294382944703102,
-0.10308858752250671,
-0.04519704729318619,
-0.03504576534032822,
-0.020156366750597954,
0.06468427181243896,
0.1263660490512848,
-0.1323913335800171,
-0.014636918902397156,
0.034542933106422424,
-0.06358163058757782,
-0.015912020578980446,
0.03749346360564232,
-0.04463178291916847,
0.03615066409111023,
0.02860720083117485,
0.09768553823232651,
-0.003972044214606285,
-0.061626728624105453,
-0.1215117946267128,
-0.08464550226926804,
0.07132059335708618,
-0.059617605060338974,
0.06011234223842621,
0.01073071826249361,
-0.05556776374578476,
-0.05062231421470642,
0.009500086307525635,
0.05129392445087433,
0.022833652794361115,
-0.06904375553131104,
-0.032450057566165924,
-0.08031843602657318,
0.05495292320847511,
-0.000708580540958792,
0.007433533668518066,
-0.02424376644194126,
-0.01967356540262699,
0.02127799019217491,
0.077130526304245,
-0.07152555882930756,
0.05941271036863327,
0.02417672425508499,
0.08244598656892776,
-0.1411912888288498,
-0.09333062171936035,
-0.12242119759321213,
0.008675911463797092,
-0.006912476848810911,
0.06669508665800095,
0.13230031728744507,
0.034482188522815704,
-0.029746251180768013,
0.06861826032400131,
-0.05310472846031189,
-0.05618713051080704,
-0.08435636758804321,
-0.007442208006978035,
0.022358408197760582,
-0.1970369666814804,
-0.04088151827454567,
-0.030121490359306335,
0.14153216779232025,
-0.20411574840545654,
-0.04008954390883446,
0.0004592605691868812,
-0.03347024321556091,
0.03899551182985306,
-0.03494766727089882,
0.06423699855804443,
0.08467850834131241,
-0.11239276081323624,
0.027258459478616714,
0.0012603293871507049,
0.05466771125793457,
-0.04894619807600975,
0.041660357266664505,
-0.018401186913251877,
-0.041663963347673416,
0.10630828142166138,
-0.05190599337220192,
-0.08897143602371216,
-0.06412893533706665,
0.02345903404057026,
-0.059908341616392136,
-0.06670129299163818,
0.0522783100605011,
0.1508980691432953,
-0.05507497861981392,
0.09737207740545273,
-0.09361467510461807,
0.013922639191150665,
-0.005913430359214544,
-0.0886070728302002,
-0.04876755550503731,
0.050919972360134125,
0.08646300435066223,
0.01223626360297203,
0.11202207207679749,
0.14983391761779785,
-0.15143096446990967,
0.14728085696697235,
0.06491176784038544,
-0.06503856182098389,
-0.060985270887613297,
-0.017885364592075348,
0.033048078417778015,
0.05960679054260254,
0.03444258123636246,
0.027558747678995132,
0.03931821510195732,
-0.048250313848257065,
0.016346678137779236,
-0.1590670496225357,
-0.06080086901783943,
0.008802791126072407,
0.014988424256443977,
-0.11231181025505066,
-0.01704932376742363,
-0.05655897408723831,
0.035889655351638794,
-0.09415807574987411,
-0.07809648662805557,
0.017079953104257584,
0.003507351502776146,
-0.08372696489095688,
0.0541270412504673,
-0.18165890872478485,
-0.09989628195762634,
-0.17886599898338318,
-0.0764540359377861,
-0.07191792130470276,
0.025716081261634827,
0.07573141902685165,
-0.03957999497652054,
-0.014664844609797001,
-0.047839850187301636,
-0.014178506098687649,
0.022005364298820496,
-0.10422895103693008,
-0.02660628966987133,
0.07991492003202438,
-0.012499094009399414,
-0.12123040854930878,
0.012699512764811516,
0.028237946331501007,
-0.06449432671070099,
0.10910755395889282,
0.009971234947443008,
0.12453945726156235,
0.08301948010921478,
0.020790213719010353,
-0.0604272224009037,
0.004760036710649729,
0.12481266260147095,
-0.054904330521821976,
0.024107379838824272,
0.14619101583957672,
0.05009175091981888,
0.013184063136577606,
0.11033264547586441,
0.11729305982589722,
-0.027378935366868973,
0.02079004980623722,
-0.06649357080459595,
-0.05435941740870476,
-0.3080018162727356,
-0.08410757780075073,
-0.06237492710351944,
-0.12548114359378815,
-0.027129357680678368,
0.0017859439831227064,
0.10092862695455551,
0.11378402262926102,
-0.019310995936393738,
0.07564771175384521,
0.014319798909127712,
0.0285421684384346,
0.06967147439718246,
0.01859484240412712,
0.06198860704898834,
-0.05377425625920296,
0.01685655303299427,
0.10846114158630371,
0.11040910333395004,
0.20007602870464325,
0.07394419610500336,
0.10192301869392395,
0.06874965876340866,
0.14483101665973663,
0.03002670221030712,
0.08160961419343948,
0.033131323754787445,
0.04890470579266548,
0.010602165944874287,
-0.13774168491363525,
-0.029283488169312477,
0.1142212525010109,
0.03280248865485191,
0.015537107363343239,
0.029680736362934113,
-0.07245300710201263,
-0.03970446065068245,
0.1290973573923111,
0.060286011546850204,
-0.28119397163391113,
0.011285189539194107,
0.05441854149103165,
0.10799583792686462,
-0.0282550398260355,
0.008533132262527943,
0.1538340002298355,
-0.03473736345767975,
0.059748291969299316,
0.01837378367781639,
0.04229055345058441,
-0.10248909145593643,
-0.08654442429542542,
-0.025603070855140686,
-0.05793764442205429,
-0.011408730410039425,
0.006195468828082085,
-0.11049169301986694,
0.13090650737285614,
0.05781713128089905,
0.0018303664401173592,
0.06968406587839127,
0.05583345144987106,
0.03182490915060043,
0.09632210433483124,
0.09418806433677673,
-0.0014312562998384237,
-0.0908854678273201,
-0.10611730813980103,
-0.1289018988609314,
-0.01784997433423996,
-0.03320712223649025,
-0.014227282255887985,
0.04983052611351013,
0.032238055020570755,
-0.02119266986846924,
-0.007852223701775074,
0.10027632117271423,
-0.26598113775253296,
-0.13764688372612,
-0.008880559355020523,
0.15617471933364868,
0.07684358954429626,
-0.02528664655983448,
-0.10590706765651703,
-0.006594198755919933,
0.14722414314746857,
-0.09224490821361542,
-0.02869514189660549,
-0.04353711009025574,
-0.0668436586856842,
0.12588806450366974,
0.013227716088294983,
0.07282620668411255,
0.023995302617549896,
-0.030394943431019783,
-0.10328837484121323,
-0.08740738779306412,
0.018917106091976166,
-0.05783144757151604,
-0.09027830511331558,
-0.08365710824728012,
0.0435265451669693,
0.08100802451372147,
0.12201064825057983,
0.029303332790732384,
0.09458260238170624,
-0.035292431712150574,
-0.02521689236164093,
-0.0009361779666505754,
0.08483091741800308,
0.229828342795372,
0.017238156870007515,
-0.09228571504354477,
-0.1632411926984787,
0.03902696073055267,
-0.08846952766180038,
0.11405594646930695,
0.2341061383485794,
-0.04421437531709671,
0.09593433141708374,
0.12488829344511032,
-0.12912487983703613,
-0.12268459051847458,
0.03832198306918144,
0.02172371745109558,
0.011375145055353642,
0.050206273794174194,
-0.2860479950904846,
0.033051952719688416,
0.11909665912389755,
-0.021043628454208374,
0.09922199696302414,
-0.269598126411438,
-0.050894759595394135,
-0.005305033642798662,
-0.0029946425929665565,
0.04181339591741562,
-0.09654923528432846,
-0.03298932686448097,
-0.11834944039583206,
-0.1606960892677307,
0.05548480525612831,
0.03237265348434448,
0.1149403303861618,
-0.021915841847658157,
0.05880920588970184,
0.028245555236935616,
-0.010203385725617409,
0.11625001579523087,
-0.006119005847722292,
0.1079448014497757,
-0.018857605755329132,
-0.03662819415330887,
0.11692066490650177,
-0.031381722539663315,
0.050089336931705475,
-0.03461059182882309,
-0.01285314466804266,
-0.08811710774898529,
0.005159714724868536,
-0.006967897992581129,
0.10534635186195374,
-0.019449543207883835,
-0.047990843653678894,
-0.049941401928663254,
0.027884194627404213,
0.006168879568576813,
0.027318378910422325,
0.22475194931030273,
-0.025668758898973465,
0.012373236007988453,
0.12923893332481384,
0.07780275493860245,
0.038960665464401245,
-0.06553865969181061,
0.04485247656702995,
-0.06692229956388474,
0.06814388185739517,
-0.17920491099357605,
0.009219372645020485,
0.06475428491830826,
0.0544910654425621,
0.033665239810943604,
0.046124838292598724,
-0.04708855226635933,
0.13671770691871643,
0.12362013012170792,
-0.17926208674907684,
0.11400826275348663,
-0.013989655300974846,
0.04801788181066513,
0.0459648072719574,
-0.022898510098457336,
0.18285879492759705,
-0.11632491648197174,
-0.055527009069919586,
0.008536071516573429,
0.01956348866224289,
-0.06733757257461548,
0.08717918395996094,
0.059680722653865814,
-0.07100097835063934,
-0.08230821043252945,
0.1324032098054886,
0.17318087816238403,
-0.012098108418285847,
-0.013360409997403622,
-0.03284778445959091,
0.03395814821124077,
-0.07539477199316025,
0.01546438504010439,
0.021915776655077934,
-0.07034778594970703,
-0.08679056912660599,
-0.03610037639737129,
-0.004070348106324673,
-0.03581537678837776,
0.05676617845892906,
0.03252103179693222,
0.011038625612854958,
0.01101825200021267,
-0.032985977828502655,
-0.04231235012412071,
0.054691340774297714,
-0.02837340533733368,
0.12877428531646729,
-0.11107270419597626,
-0.00954721961170435,
-0.02994331531226635,
-0.04011533781886101,
-0.01343727856874466,
0.0025573649909347296,
-0.04218035563826561,
0.010469730012118816,
-0.07452220469713211,
0.03556891530752182,
-0.07303446531295776,
-0.000344080530339852,
-0.040105145424604416,
0.06117456778883934,
-0.033165253698825836,
0.06141761317849159,
-0.045336078852415085,
0.01623363047838211,
-0.029088294133543968,
0.13703976571559906,
-0.15126681327819824,
-0.049985457211732864,
-0.02442556992173195,
-0.05574963986873627,
0.029466772451996803,
0.022118188440799713,
0.002817884786054492,
-0.05624762922525406,
-0.19810698926448822,
-0.006498196627944708,
0.09674721956253052,
0.05858951061964035,
0.017782432958483696,
-0.15921729803085327,
-0.013388953171670437,
-0.00996552687138319,
-0.03478461876511574,
-0.02062038891017437,
0.17560067772865295,
-0.07723797112703323,
-0.0631168782711029,
-0.04846057668328285,
-0.09451720118522644,
-0.03889891877770424,
0.057941798120737076,
0.2151757925748825,
0.04306688532233238,
0.1429423838853836,
-0.011846128851175308,
-0.004115184769034386,
-0.11439552158117294,
-0.025826187804341316,
0.00005544240048038773,
-0.07682444900274277,
-0.18397484719753265,
-0.013997680507600307,
0.040723320096731186,
-0.01774785853922367,
0.05558803305029869,
0.07404286414384842,
-0.11814770847558975,
-0.07199102640151978,
0.07915378361940384,
0.03975098207592964,
0.018074199557304382,
0.10098263621330261,
-0.007099618203938007,
-0.012302207760512829,
-0.01602940261363983,
0.08777312189340591,
0.08403114974498749,
0.14182975888252258,
0.03001260757446289,
0.07217536121606827,
0.032411158084869385,
-0.001221909187734127,
0.06124624237418175,
-0.08008160442113876,
0.00397001625970006,
0.05648908019065857,
0.03205009177327156,
0.07507333904504776,
-0.08354520797729492,
0.10943716019392014,
0.01632002741098404,
-0.1188187450170517,
0.05134233087301254,
-0.01850883662700653,
-0.022193407639861107,
-0.07719679176807404,
-0.10634319484233856,
-0.06912437081336975,
-0.09898755699396133,
0.033066436648368835,
-0.13198402523994446,
0.041258182376623154,
0.09902344644069672,
-0.07536476105451584,
0.0016731382347643375,
0.004052773118019104,
-0.0035068318247795105,
-0.05241509899497032,
0.023360637947916985,
0.019144579768180847,
-0.016830097883939743,
-0.08847127109766006,
-0.047843266278505325,
0.08465969562530518,
-0.045726291835308075,
0.006644349545240402,
0.07896683365106583,
0.08545033633708954,
0.031213879585266113,
0.006823759526014328,
-0.08744069188833237,
-0.05268338322639465,
0.02179025113582611,
0.06469148397445679,
0.11009600013494492,
0.08402188867330551,
0.002269565360620618,
0.03967753425240517,
0.1364707350730896,
-0.03491387516260147,
0.09833009541034698,
-0.07376378029584885,
-0.004940710496157408,
-0.061117902398109436,
0.03956720232963562,
0.07155521214008331,
-0.09675303846597672,
0.012809541076421738,
0.03695586323738098,
0.1889733076095581,
0.007012324407696724,
0.014297576621174812,
0.014515615068376064,
-0.003239498706534505,
-0.06267166137695312,
0.08340498805046082,
0.037130940705537796,
0.13305190205574036,
-0.07156184315681458,
-0.07343871146440506,
-0.1282404065132141,
0.038397908210754395,
-0.053026232868433,
0.05057837441563606,
-0.10754862427711487,
-0.11768336594104767,
0.008414138108491898,
0.07332820445299149,
-0.002418563235551119,
-0.05415787547826767,
0.10704182833433151,
-0.10303669422864914,
-0.06333623081445694,
-0.011983482167124748,
0.07145337015390396,
-0.027155078947544098,
0.019020119681954384,
-0.09100127965211868,
-0.03890682011842728,
0.12384312599897385,
-0.022833621129393578,
-0.11934622377157211,
-0.03571639955043793,
0.04417003318667412,
-0.14403465390205383,
0.1851828694343567,
0.00898151844739914,
0.1755961775779724,
0.0051103937439620495,
0.09318631142377853,
-0.07858205586671829,
0.08473613858222961,
0.024763833731412888,
-0.10595645755529404,
0.037270065397024155,
0.029207497835159302,
-0.04078357294201851,
0.2527272403240204,
0.05220509693026543,
0.09339866042137146,
0.11396806687116623,
0.07138276100158691,
0.01449495181441307,
-0.06423098593950272,
-0.006251945160329342,
-0.10475407540798187,
0.10643108189105988,
0.03226877376437187,
-0.046309858560562134,
-0.04262397810816765,
-0.028625333681702614,
0.013377311639487743,
0.11356180906295776,
0.09593386203050613,
-0.008865231648087502,
-0.14770254492759705,
0.016368016600608826,
-0.010641374625265598,
0.09907490015029907,
-0.1220988780260086,
-0.05324739217758179,
-0.0750383734703064,
-0.06030603125691414,
-0.05859622359275818,
0.011854530312120914,
0.081057108938694,
-0.03984857723116875,
-0.009687711484730244,
0.016810718923807144,
0.011431224644184113,
0.032639771699905396,
-0.07286816835403442,
-0.08810052275657654
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the Libri2Mix dataset.
Training config:
```yaml
data:
n_src: 2
sample_rate: 16000
segment: 3
task: sep_clean
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 6
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results :
On Libri2Mix min test set :
```yaml
si_sdr: 15.243671356901526
si_sdr_imp: 15.243034178473609
sdr: 15.668108919568112
sdr_imp: 15.578229918028036
sir: 25.295100756629957
sir_imp: 25.205219921301754
sar: 16.307682590197313
sar_imp: -51.64989963759405
stoi: 0.9394951175291422
stoi_imp: 0.22640192740016568
```
License notice:
This work "ConvTasNet_Libri2Mix_sepclean_16k"
is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k"
is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris. | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_clean"]} | audio-to-audio | JorisCos/ConvTasNet_Libri2Mix_sepclean_16k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri2Mix",
"dataset:sep_clean",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_clean' task of the Libri2Mix dataset.
Training config:
Results :
On Libri2Mix min test set :
License notice:
This work "ConvTasNet_Libri2Mix_sepclean_16k"
is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0. "ConvTasNet_Libri2Mix_sepclean_16k"
is licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris. | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
62,
174
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
0.0066573480144143105,
0.10248734056949615,
-0.002602510852739215,
0.10970060527324677,
-0.004555837716907263,
0.0025944386143237352,
0.23192770779132843,
0.039660606533288956,
-0.014396904967725277,
0.02286461926996708,
0.02205265685915947,
0.07704778015613556,
-0.0158601813018322,
0.0566251315176487,
-0.015832306817173958,
-0.07922691851854324,
-0.030343996360898018,
-0.04242723062634468,
0.09197442978620529,
0.00669860141351819,
0.04053670912981033,
-0.08487354964017868,
0.06218406930565834,
-0.018213989213109016,
-0.08640716969966888,
0.02094937488436699,
0.09106632322072983,
-0.07669874280691147,
0.0888640508055687,
0.01531493291258812,
0.11364611983299255,
0.07012775540351868,
0.05954616889357567,
-0.10538572818040848,
0.005850926041603088,
-0.030244024470448494,
-0.0433478020131588,
0.08652982860803604,
0.042229294776916504,
-0.015988819301128387,
0.16785754263401031,
0.03752264007925987,
0.027850564569234848,
0.012523220852017403,
-0.12023365497589111,
0.013845199719071388,
-0.1907510757446289,
0.04998582601547241,
0.017599644139409065,
0.04178811237215996,
0.05066423490643501,
0.06466610729694366,
-0.13075588643550873,
0.028848981484770775,
0.10156555473804474,
-0.2797897458076477,
-0.01799941249191761,
0.09955525398254395,
0.007385863456875086,
0.09405254572629929,
-0.000436806061770767,
0.009941337630152702,
0.08593285083770752,
0.00015237480693031102,
0.057985760271549225,
-0.14893533289432526,
-0.17538407444953918,
0.0032383485231548548,
-0.05624200776219368,
-0.04255517199635506,
0.30440187454223633,
-0.035597775131464005,
-0.10365694016218185,
-0.0025108421687036753,
0.008199957199394703,
0.013925237581133842,
0.04096712917089462,
0.057336922734975815,
0.06136813014745712,
-0.02857690118253231,
-0.04810134321451187,
-0.10733374208211899,
-0.10240931063890457,
-0.12391816824674606,
0.0034448003862053156,
-0.008844743482768536,
-0.008867192082107067,
0.006531571503728628,
-0.011007661931216717,
0.06527887284755707,
-0.05083630979061127,
-0.05586310476064682,
0.005975664127618074,
-0.05999666824936867,
0.11332984268665314,
-0.011150616221129894,
-0.07626403868198395,
-0.12742240726947784,
0.036798715591430664,
0.15393033623695374,
-0.07856505364179611,
-0.04929300397634506,
-0.05428474396467209,
0.10928862541913986,
0.00622025178745389,
-0.050021883100271225,
0.08380864560604095,
0.06487006694078445,
0.08591768145561218,
-0.005889073945581913,
0.08831095695495605,
0.00022184911358635873,
-0.11931491643190384,
-0.00954294204711914,
-0.07224401086568832,
0.018900377675890923,
0.01577463187277317,
-0.07487539947032928,
-0.05051924288272858,
0.03837426379323006,
0.13910074532032013,
-0.040642429143190384,
0.015666956081986427,
-0.023146454244852066,
-0.06836690753698349,
-0.1285756677389145,
0.10792414098978043,
0.027403851971030235,
0.06755667179822922,
0.06756290793418884,
-0.09791716188192368,
0.037831369787454605,
-0.07442363351583481,
-0.0685715600848198,
0.09048204123973846,
-0.005413442850112915,
0.0070269303396344185,
-0.16099096834659576,
-0.09879399836063385,
-0.07111689448356628,
0.03603585809469223,
0.02750442363321781,
-0.04033077508211136,
0.027151959016919136,
0.05080877244472504,
0.020420651882886887,
-0.07002311199903488,
-0.06912517547607422,
-0.047785453498363495,
0.085112564265728,
-0.05088420584797859,
0.05883948504924774,
-0.12044277042150497,
0.043365735560655594,
-0.1326088309288025,
0.048187315464019775,
-0.1613275706768036,
-0.055173907428979874,
-0.06233684718608856,
0.00630601542070508,
-0.06716081500053406,
-0.041646115481853485,
-0.058347687125205994,
-0.000981218065135181,
0.0594002790749073,
0.09692491590976715,
-0.11509343981742859,
-0.04243447259068489,
0.10128067433834076,
-0.10498262941837311,
-0.04048767313361168,
0.012961598113179207,
-0.021829700097441673,
0.03807145357131958,
0.07662468403577805,
0.22377553582191467,
0.04456013813614845,
-0.06155999377369881,
-0.13009636104106903,
-0.03372674807906151,
0.048320967704057693,
-0.11900082975625992,
0.06659683585166931,
-0.027568422257900238,
0.05007832497358322,
-0.032644640654325485,
-0.06815899163484573,
0.053435780107975006,
0.07320236414670944,
-0.06198744848370552,
-0.05012669041752815,
-0.07325981557369232,
0.03774518519639969,
-0.01787913218140602,
0.018549975007772446,
-0.02943500131368637,
0.020239032804965973,
0.1497167944908142,
0.07337158173322678,
-0.02905011735856533,
0.06552736461162567,
-0.003571610664948821,
0.11840841174125671,
-0.044995054602622986,
-0.09492263197898865,
-0.0965617373585701,
0.026653500273823738,
0.009970131330192089,
0.030306927859783173,
0.13987725973129272,
0.029661107808351517,
-0.014618271961808205,
0.05188237503170967,
-0.048005059361457825,
-0.05673017352819443,
-0.1098615750670433,
-0.0060447514988482,
-0.0066098798997700214,
-0.15885280072689056,
-0.023265978321433067,
-0.028800683096051216,
0.11647988855838776,
-0.15112370252609253,
-0.005686633288860321,
0.06234104186296463,
-0.06959639489650726,
0.04714340344071388,
-0.007237417623400688,
0.067091204226017,
0.08392305672168732,
-0.06007183715701103,
0.021943869069218636,
0.0362345352768898,
0.043625082820653915,
-0.0408993698656559,
0.10143356025218964,
-0.06297048181295395,
-0.05352452024817467,
0.10896866768598557,
-0.03893161565065384,
-0.07027678191661835,
-0.03314879909157753,
0.0014691699761897326,
-0.021785806864500046,
-0.03790592402219772,
0.052166808396577835,
0.08499478548765182,
-0.029276302084326744,
0.09702982753515244,
-0.10445980727672577,
0.0024219504557549953,
-0.03802461922168732,
-0.1258648782968521,
-0.03059946373105049,
0.0829276293516159,
0.09368475526571274,
0.011500457301735878,
0.10427408665418625,
0.1572824865579605,
-0.17284879088401794,
0.15477795898914337,
0.026285775005817413,
-0.06614351272583008,
-0.06745636463165283,
0.028389768674969673,
0.05372751131653786,
0.07647646218538284,
0.0198193471878767,
-0.03185408189892769,
0.02833203412592411,
-0.02136097475886345,
-0.018204757943749428,
-0.1665845513343811,
-0.08649137616157532,
-0.014212054200470448,
-0.012990673072636127,
-0.055716291069984436,
-0.02447407878935337,
-0.08730288594961166,
0.045547496527433395,
-0.037089768797159195,
-0.05712495371699333,
0.018603818491101265,
0.008372136391699314,
-0.06679727137088776,
0.05949414148926735,
-0.12637236714363098,
0.0029115930665284395,
-0.1853938102722168,
-0.053295351564884186,
-0.05225824937224388,
0.030216973274946213,
0.05153559520840645,
-0.014751007780432701,
0.010471004992723465,
-0.08074500411748886,
-0.1146375760436058,
-0.011618798598647118,
-0.09046752005815506,
-0.10289230197668076,
0.08174183964729309,
-0.004627422895282507,
-0.0960603579878807,
-0.04544282704591751,
-0.007425345946103334,
-0.08355642110109329,
0.08414655178785324,
0.02200848050415516,
0.10165496915578842,
0.1133425384759903,
0.02361135557293892,
-0.05758536234498024,
-0.034828804433345795,
0.09265610575675964,
-0.048109520226716995,
0.016292717307806015,
0.24532702565193176,
0.040930893272161484,
0.004898927174508572,
0.07930877059698105,
0.08323217183351517,
-0.00869144406169653,
0.03847525268793106,
-0.05417296662926674,
-0.09409049153327942,
-0.28960782289505005,
-0.061194442212581635,
-0.06824222952127457,
0.01166523341089487,
-0.016172919422388077,
0.01918327994644642,
0.140909805893898,
0.09524445235729218,
-0.02229967527091503,
0.11242837458848953,
0.05870497599244118,
0.044934697449207306,
0.12801185250282288,
-0.030381591990590096,
0.07272529602050781,
-0.06816492974758148,
0.025202272459864616,
0.11212585866451263,
0.09993014484643936,
0.18504244089126587,
0.0847364142537117,
0.12635141611099243,
0.09653197228908539,
0.11168689280748367,
-0.01744920015335083,
0.049989137798547745,
0.003821820951998234,
0.06494215875864029,
-0.005011219996958971,
-0.14627312123775482,
-0.047598760575056076,
0.11751913279294968,
-0.011848856694996357,
-0.029598958790302277,
0.03551923856139183,
-0.09441076219081879,
-0.032051343470811844,
0.06293590366840363,
0.10223959386348724,
-0.19024218618869781,
-0.015299593098461628,
0.07565850764513016,
0.09205513447523117,
0.013932352885603905,
0.00804672297090292,
0.1585473269224167,
-0.040117304772138596,
0.052379310131073,
0.038733091205358505,
0.02198823168873787,
-0.08217436820268631,
-0.06930582225322723,
-0.07621977478265762,
-0.09374619275331497,
-0.00043448543874546885,
0.012928573414683342,
-0.24280200898647308,
0.12362965941429138,
0.05841059982776642,
0.002979617565870285,
0.08427945524454117,
0.047203660011291504,
0.03435635566711426,
0.12099292129278183,
0.10678920149803162,
0.008633499965071678,
-0.08875878155231476,
-0.10284195095300674,
-0.0910397619009018,
-0.034037429839372635,
-0.02350485697388649,
-0.013951564207673073,
0.033011242747306824,
0.006264290306717157,
0.012427101843059063,
0.0015787814045324922,
0.0948043167591095,
-0.23048517107963562,
-0.07907696068286896,
0.00336981238797307,
0.12100974470376968,
0.0048425812274217606,
-0.05863898620009422,
-0.06142473220825195,
0.06588214635848999,
0.09797564893960953,
-0.12670712172985077,
-0.0435817651450634,
-0.024734925478696823,
-0.10331287235021591,
0.06494296342134476,
-0.01826317235827446,
0.060881808400154114,
0.027439555153250694,
-0.044573623687028885,
-0.11825878173112869,
-0.08299367874860764,
0.0031683919951319695,
-0.03132558986544609,
-0.11728118360042572,
-0.03930550441145897,
0.06096921116113663,
0.03149757534265518,
0.1433386653661728,
0.018430301919579506,
0.0903744027018547,
-0.01780051365494728,
-0.054319724440574646,
0.003537180135026574,
0.10800022631883621,
0.161021426320076,
-0.040465522557497025,
-0.13874299824237823,
-0.035699374973773956,
0.00666761863976717,
-0.05030912905931473,
0.10687385499477386,
0.18262726068496704,
-0.03067244030535221,
0.08277053385972977,
0.14083024859428406,
-0.15311381220817566,
-0.1578143686056137,
0.01672259531915188,
-0.04538021981716156,
-0.020471615716814995,
0.05290689691901207,
-0.2615397870540619,
0.01686529442667961,
0.13205698132514954,
-0.05120696499943733,
0.1187647357583046,
-0.30236148834228516,
-0.07554326951503754,
-0.004139365628361702,
0.03364944830536842,
0.09984532743692398,
-0.11631614714860916,
-0.08714283257722855,
-0.11038892716169357,
-0.08970371633768082,
0.06687106192111969,
-0.0704374611377716,
0.11469127982854843,
-0.03813724219799042,
0.034814655780792236,
0.010316931642591953,
-0.028348978608846664,
0.06910800188779831,
-0.0050023579970002174,
0.1008719950914383,
-0.0675944834947586,
-0.07587477564811707,
0.1216859519481659,
-0.0691375583410263,
0.10949962586164474,
-0.07247883826494217,
-0.02589387632906437,
-0.16477623581886292,
-0.0016705045709386468,
-0.04212885722517967,
0.14101535081863403,
-0.0238637812435627,
-0.05543562397360802,
-0.05998969450592995,
0.045753978192806244,
-0.044826194643974304,
0.05927104502916336,
0.19947466254234314,
-0.01613440364599228,
0.014235624112188816,
0.1629546582698822,
0.06672485172748566,
0.0438913032412529,
-0.04856753349304199,
0.05993390828371048,
-0.04829815402626991,
0.03765697032213211,
-0.17132282257080078,
-0.04118755832314491,
0.03947112709283829,
0.07276959717273712,
0.04050029441714287,
0.0485847070813179,
-0.07717808336019516,
0.10459934175014496,
0.09885311871767044,
-0.18764713406562805,
0.06875454634428024,
0.0023630738724023104,
0.10067152231931686,
0.02902839705348015,
-0.009923452511429787,
0.17956313490867615,
-0.1426839679479599,
-0.023767761886119843,
-0.0009904328035190701,
0.0035179825499653816,
-0.09306799620389938,
0.08138777315616608,
0.13091255724430084,
-0.06480208039283752,
-0.06518237292766571,
0.10915153473615646,
0.16434496641159058,
0.04954399913549423,
0.01339760422706604,
-0.025176947936415672,
0.01817682944238186,
-0.09162351489067078,
-0.08776126801967621,
-0.02311903052031994,
-0.0760737732052803,
-0.10214027762413025,
-0.04525451362133026,
-0.025720389559864998,
-0.037790630012750626,
0.14804910123348236,
0.028678318485617638,
0.04378945380449295,
-0.007725842297077179,
-0.0074532111175358295,
-0.008777807466685772,
0.06218007579445839,
-0.14461545646190643,
0.1343102753162384,
-0.0683923289179802,
0.11287322640419006,
-0.0036262369249016047,
-0.026163144037127495,
-0.0013067378895357251,
0.013944276608526707,
-0.07214055210351944,
0.020726729184389114,
0.04284496232867241,
0.019791625440120697,
-0.05477207899093628,
-0.023944245651364326,
-0.03892330825328827,
0.06186160072684288,
-0.02059914357960224,
0.05794403329491615,
-0.05906064435839653,
0.01811174675822258,
-0.04184211418032646,
0.14917370676994324,
-0.18743553757667542,
-0.05268995091319084,
-0.009800917468965054,
-0.03677394241094589,
0.004768341779708862,
0.0012403343571349978,
0.030239542946219444,
-0.011529640294611454,
-0.11155417561531067,
0.05027616396546364,
0.05608804151415825,
0.05567944049835205,
-0.000513071077875793,
-0.11227905005216599,
-0.006768652703613043,
-0.0180977750569582,
-0.019270459190011024,
0.02466657944023609,
0.08168688416481018,
-0.1069241464138031,
-0.025820409879088402,
0.016991334035992622,
-0.13368767499923706,
-0.03562745079398155,
0.04855549708008766,
0.17362594604492188,
0.04323514923453331,
0.1475352793931961,
-0.021171163767576218,
-0.02920740284025669,
-0.13741888105869293,
-0.01679811254143715,
0.021895689889788628,
-0.07618561387062073,
-0.19872935116291046,
-0.018614014610648155,
0.0028499066829681396,
0.008757970295846462,
0.06193613260984421,
0.10632558166980743,
-0.11789347976446152,
-0.029688268899917603,
0.06562325358390808,
0.03960510343313217,
0.03685102239251137,
0.10232086479663849,
0.015055700205266476,
-0.01400485448539257,
-0.0507262721657753,
0.0643182322382927,
0.04093576967716217,
0.030893178656697273,
0.09055253863334656,
0.08833367377519608,
0.0031118905171751976,
0.0030254845041781664,
0.08641093224287033,
-0.01207783818244934,
-0.022018833085894585,
-0.01401687040925026,
0.032508522272109985,
0.06954460591077805,
-0.09239635616540909,
0.18872588872909546,
0.05503026023507118,
-0.12857405841350555,
0.07222246378660202,
0.010832009837031364,
-0.03703251853585243,
-0.10410985350608826,
-0.1612880676984787,
-0.04906070604920387,
-0.06763830780982971,
0.02042689360678196,
-0.09769486635923386,
0.04045482352375984,
0.16694113612174988,
-0.07904175668954849,
-0.034176092594861984,
0.023881319910287857,
-0.06281593441963196,
-0.017032526433467865,
0.02383863367140293,
0.002890773583203554,
-0.017679370939731598,
-0.12418701499700546,
-0.049355801194906235,
0.0449586845934391,
-0.06557399779558182,
0.008179441094398499,
0.06123090907931328,
0.10610390454530716,
-0.023620223626494408,
0.04326286166906357,
-0.0463058203458786,
-0.02677725814282894,
0.03528697043657303,
0.07465431094169617,
0.10355046391487122,
0.06317995488643646,
-0.017022686079144478,
0.051076170057058334,
0.15091316401958466,
-0.024014605209231377,
0.06736738234758377,
-0.01882689818739891,
0.0829465463757515,
-0.0057371617294847965,
0.033636387437582016,
0.007552954368293285,
-0.07386647164821625,
0.022501373663544655,
0.08057286590337753,
0.12679444253444672,
0.024032942950725555,
0.014304697513580322,
-0.022096721455454826,
0.0035734393168240786,
-0.005406492855399847,
0.09932047873735428,
0.025884317234158516,
0.12770679593086243,
-0.026831815019249916,
-0.01645302027463913,
-0.07553689926862717,
0.05741020664572716,
-0.09367890655994415,
0.04075228050351143,
-0.08330103754997253,
-0.10108906775712967,
-0.03298377990722656,
0.0560896061360836,
-0.013921343721449375,
-0.009477316401898861,
0.10010024160146713,
-0.14294002950191498,
-0.029558897018432617,
-0.002448829123750329,
0.10990799963474274,
-0.03924308717250824,
0.04430929943919182,
-0.08245754987001419,
-0.03640493005514145,
0.041449472308158875,
-0.005118434317409992,
-0.13721925020217896,
-0.08438840508460999,
0.0757664367556572,
0.0015916458796709776,
0.2070210725069046,
0.010950285010039806,
0.1643570363521576,
0.009242541156709194,
0.038640134036540985,
-0.03648814931511879,
0.1363947093486786,
0.03621548041701317,
-0.08997070789337158,
-0.01929781399667263,
-0.01707635447382927,
-0.029973842203617096,
0.22090210020542145,
0.04619746282696724,
0.05881897732615471,
0.10383303463459015,
0.11536755412817001,
0.03458709642291069,
-0.12331745028495789,
0.012864424847066402,
-0.14873753488063812,
0.10330329835414886,
0.07263779640197754,
-0.05952348932623863,
-0.052230242639780045,
-0.06479566544294357,
-0.04264546558260918,
0.08935677260160446,
-0.0024884084705263376,
-0.020263604819774628,
-0.047776468098163605,
0.026355711743235588,
-0.013953828252851963,
0.06155788153409958,
-0.20569387078285217,
-0.041074540466070175,
-0.0751640647649765,
-0.03902634233236313,
-0.06750966608524323,
-0.02291778288781643,
0.07419328391551971,
-0.02779519557952881,
-0.015433717519044876,
-0.016219886019825935,
0.017665667459368706,
0.031701914966106415,
-0.08620300889015198,
-0.058927278965711594
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k`
Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4)
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the Libri2Mix dataset.
Training config:
```yaml
data:
n_src: 2
sample_rate: 8000
segment: 3
task: sep_clean
train_dir: data/wav8k/min/train-360
valid_dir: data/wav8k/min/dev
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 24
early_stop: True
epochs: 200
half_lr: True
num_workers: 2
```
Results :
On Libri2Mix min test set :
```yaml
si_sdr: 14.764543634468069
si_sdr_imp: 14.764029375607246
sdr: 15.29337970745095
sdr_imp: 15.114146605113111
sir: 24.092904661115366
sir_imp: 23.913669683141528
sar: 16.06055906916849
sar_imp: -51.980784441287454
stoi: 0.9311142440593033
stoi_imp: 0.21817376142710482
```
License notice:
This work "ConvTasNet_Libri2Mix_sepclean_8k"
is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k"
is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris. | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_clean"]} | audio-to-audio | JorisCos/ConvTasNet_Libri2Mix_sepclean_8k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri2Mix",
"dataset:sep_clean",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_8k'
Imported from Zenodo
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_clean' task of the Libri2Mix dataset.
Training config:
Results :
On Libri2Mix min test set :
License notice:
This work "ConvTasNet_Libri2Mix_sepclean_8k"
is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0. "ConvTasNet_Libri2Mix_sepclean_8k"
is licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris. | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
58,
179
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepclean_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri2Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri2Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
0.015189459547400475,
0.12459536641836166,
-0.0022043376229703426,
0.11340943723917007,
0.0072811441496014595,
-0.0006453383830375969,
0.25642403960227966,
0.054523807018995285,
0.03158799558877945,
0.016465699300169945,
0.000205427102628164,
0.072943314909935,
-0.014572307467460632,
0.036319103091955185,
0.00029916330822743475,
-0.12059275805950165,
-0.016517329961061478,
-0.0327606238424778,
0.1661502569913864,
0.0007641724077984691,
0.03743739426136017,
-0.08139979094266891,
0.056573495268821716,
-0.01831715553998947,
-0.10339003056287766,
0.015946026891469955,
0.08028987795114517,
-0.08142387121915817,
0.08630718290805817,
0.00850308034569025,
0.10815634578466415,
0.06274218112230301,
0.05856133624911308,
-0.12288648635149002,
0.0015447346959263086,
-0.04021460935473442,
-0.043929245322942734,
0.08056774735450745,
0.054213978350162506,
0.005511823575943708,
0.17614485323429108,
0.042256634682416916,
0.03457298129796982,
0.0003167860850226134,
-0.10797248035669327,
0.01608308032155037,
-0.19631509482860565,
0.07768253982067108,
0.054308950901031494,
0.048168547451496124,
0.05124199017882347,
0.0616292878985405,
-0.11784183979034424,
0.03936390206217766,
0.10436277836561203,
-0.29095301032066345,
-0.010914814658463001,
0.08623430132865906,
0.009069208055734634,
0.11883676052093506,
-0.013773377053439617,
-0.003441696986556053,
0.06970136612653732,
0.00035953387850895524,
0.034820131957530975,
-0.15428373217582703,
-0.1732446253299713,
-0.012065793387591839,
-0.05498998239636421,
-0.027287602424621582,
0.27973294258117676,
-0.01971454732120037,
-0.10206002742052078,
-0.01574324443936348,
0.006428406108170748,
-0.01676543429493904,
0.04021601751446724,
0.0456857830286026,
0.056583940982818604,
-0.03562391176819801,
-0.008583033457398415,
-0.09036141633987427,
-0.09422116726636887,
-0.10672703385353088,
0.010562831535935402,
-0.0004685704770963639,
-0.00040022743633016944,
0.005025035701692104,
-0.018026411533355713,
0.06717918068170547,
-0.06613421440124512,
-0.07327641546726227,
0.014001605100929737,
-0.04509597271680832,
0.1369585394859314,
-0.012193593196570873,
-0.06746459007263184,
-0.14272719621658325,
0.03043532744050026,
0.1763818860054016,
-0.05460713058710098,
-0.018592962995171547,
-0.052329935133457184,
0.11159592866897583,
0.006047897972166538,
-0.02724229358136654,
0.09727276116609573,
0.046004217118024826,
0.08002258837223053,
0.007206393871456385,
0.08214128762483597,
-0.004483959637582302,
-0.13432161509990692,
-0.008462904021143913,
-0.04411281645298004,
0.0018494492396712303,
0.002186498371884227,
-0.09060268849134445,
-0.03868390619754791,
0.023343658074736595,
0.16012535989284515,
-0.039871275424957275,
0.01766754500567913,
-0.02139490284025669,
-0.065597765147686,
-0.08991030603647232,
0.09361094981431961,
0.04553499445319176,
0.04931687191128731,
0.07597373425960541,
-0.09136195480823517,
0.05295557528734207,
-0.06938493251800537,
-0.05445421114563942,
0.09302845597267151,
-0.02852395549416542,
0.023608066141605377,
-0.1632329374551773,
-0.07620548456907272,
-0.07714322954416275,
0.03448106721043587,
0.020942142233252525,
-0.03648125007748604,
0.019356248900294304,
0.06325402855873108,
0.01748603768646717,
-0.06652025878429413,
-0.09918242692947388,
-0.04886522516608238,
0.06863247603178024,
-0.05649111419916153,
0.05152205005288124,
-0.16559353470802307,
0.04392383620142937,
-0.12810342013835907,
0.042519066482782364,
-0.1352640837430954,
-0.06215287744998932,
-0.057013995945453644,
-0.011778396554291248,
-0.06635542958974838,
-0.03703661262989044,
-0.03163669630885124,
-0.008264856413006783,
0.05569456145167351,
0.08799009025096893,
-0.09471217542886734,
-0.037858206778764725,
0.10100680589675903,
-0.10266502946615219,
-0.04815664887428284,
0.027100281789898872,
-0.016548771411180496,
0.023611100390553474,
0.0806337222456932,
0.2520628273487091,
0.05714510753750801,
-0.052481744438409805,
-0.12699460983276367,
-0.03455950319766998,
0.06967560946941376,
-0.12177352607250214,
0.06623601168394089,
-0.035631876438856125,
0.06808200478553772,
-0.017319343984127045,
-0.06106274947524071,
0.05049643665552139,
0.08277637511491776,
-0.06126812845468521,
-0.04486585780978203,
-0.04799012467265129,
0.014450249262154102,
-0.021921426057815552,
0.038164637982845306,
-0.021449634805321693,
0.0287679024040699,
0.15636931359767914,
0.0710030198097229,
-0.03762161731719971,
0.05942402780056,
-0.0032549172174185514,
0.12802058458328247,
-0.04605748876929283,
-0.0977659597992897,
-0.08519978821277618,
0.029540931805968285,
0.02580219693481922,
0.02628948912024498,
0.11224391311407089,
0.00048315839376300573,
-0.024520201608538628,
0.05897362902760506,
-0.050751764327287674,
-0.07079526036977768,
-0.1115250363945961,
0.004151035565882921,
-0.03721803426742554,
-0.13434220850467682,
-0.024064630270004272,
-0.02795225940644741,
0.09142240136861801,
-0.15698355436325073,
-0.001490569906309247,
0.06811338663101196,
-0.06866885721683502,
0.04543829336762428,
-0.012639407999813557,
0.05409623682498932,
0.09307871758937836,
-0.060615174472332,
0.019184188917279243,
0.04451005160808563,
0.03648208826780319,
-0.057937007397413254,
0.07584837079048157,
-0.08978071063756943,
-0.05961994826793671,
0.10302159190177917,
-0.019267145544290543,
-0.045639242976903915,
-0.061294566839933395,
0.001664958312176168,
-0.043718352913856506,
-0.035776082426309586,
0.07563786208629608,
0.09581221640110016,
-0.016610393300652504,
0.09889290481805801,
-0.09009994566440582,
0.017702654004096985,
-0.0330410860478878,
-0.12121924757957458,
-0.031270675361156464,
0.07711237668991089,
0.10452405363321304,
0.030873358249664307,
0.08985412120819092,
0.16782991588115692,
-0.1666496843099594,
0.16723792254924774,
0.028187140822410583,
-0.07088448107242584,
-0.06399986892938614,
0.01988445594906807,
0.036551352590322495,
0.07455893605947495,
-0.004840562120079994,
-0.029525283724069595,
0.03068566508591175,
-0.016241272911429405,
-0.009950309991836548,
-0.17849138379096985,
-0.08269330859184265,
-0.025550909340381622,
-0.0028776689432561398,
-0.041808925569057465,
-0.021840248256921768,
-0.10380431264638901,
0.030067987740039825,
-0.04022502154111862,
-0.06890908628702164,
0.03116018697619438,
0.010424980893731117,
-0.07541826367378235,
0.06304729729890823,
-0.11127124726772308,
0.012393378652632236,
-0.1991773098707199,
-0.06867426633834839,
-0.06249208003282547,
0.020934367552399635,
0.05720797926187515,
-0.0023071998730301857,
0.022345665842294693,
-0.09326936304569244,
-0.15559855103492737,
-0.00984624307602644,
-0.09095217287540436,
-0.09760790318250656,
0.06536509841680527,
-0.01622498221695423,
-0.07923446595668793,
-0.05586348474025726,
-0.002144702011719346,
-0.06467869877815247,
0.08844413608312607,
0.01018121000379324,
0.09520746022462845,
0.12987281382083893,
0.02394883707165718,
-0.05537883937358856,
-0.020788071677088737,
0.08817961066961288,
-0.05816533416509628,
0.02054739184677601,
0.2398604154586792,
0.014237983152270317,
0.01166582852602005,
0.09148190915584564,
0.08717400580644608,
-0.0060390569269657135,
0.028755992650985718,
-0.05537855625152588,
-0.08766215294599533,
-0.28871315717697144,
-0.04523288831114769,
-0.052657999098300934,
0.01607108861207962,
-0.006533478386700153,
0.023807886987924576,
0.1684292107820511,
0.10990791022777557,
-0.011367150582373142,
0.1175888180732727,
0.05054762214422226,
0.05693582445383072,
0.10502129793167114,
-0.01320581417530775,
0.062014151364564896,
-0.0532885380089283,
0.03524992987513542,
0.09672152251005173,
0.10565038025379181,
0.1708488166332245,
0.10437703132629395,
0.13347330689430237,
0.08795895427465439,
0.13001389801502228,
-0.012400832958519459,
0.03803139925003052,
0.01955818198621273,
0.05014197528362274,
-0.01530095562338829,
-0.14393866062164307,
-0.03567734733223915,
0.11862202733755112,
-0.021482596173882484,
-0.02368002012372017,
0.01507466658949852,
-0.06420332193374634,
-0.03779365494847298,
0.08262687176465988,
0.09461548179388046,
-0.18490320444107056,
-0.011492293328046799,
0.0765443742275238,
0.08840441703796387,
0.011006295680999756,
0.019044945016503334,
0.1528056263923645,
-0.06328689306974411,
0.04774242639541626,
0.029494885355234146,
0.023748690262436867,
-0.09168098866939545,
-0.0700334832072258,
-0.07048171013593674,
-0.10617420077323914,
0.005036995280534029,
0.020661476999521255,
-0.2515776753425598,
0.10451595485210419,
0.04938611388206482,
0.009351192973554134,
0.0761089026927948,
0.03893919661641121,
0.02128867618739605,
0.13198360800743103,
0.10001073777675629,
0.015598959289491177,
-0.10595827549695969,
-0.0874573290348053,
-0.09846323728561401,
-0.019973168149590492,
-0.020618127658963203,
-0.016299456357955933,
0.04489957541227341,
0.015506008639931679,
0.015605144202709198,
-0.004102484323084354,
0.05956321209669113,
-0.2177046239376068,
-0.08352124691009521,
0.013155229389667511,
0.12319321930408478,
0.029709404334425926,
-0.058105893433094025,
-0.0625062882900238,
0.08178088814020157,
0.07635857164859772,
-0.12548929452896118,
-0.05240993574261665,
-0.026280315592885017,
-0.09343253076076508,
0.05503245070576668,
-0.03114616870880127,
0.05311913415789604,
0.03400741517543793,
-0.049850862473249435,
-0.10643693804740906,
-0.07008242607116699,
0.017195414751768112,
-0.033053528517484665,
-0.12817229330539703,
-0.03823993727564812,
0.06600461900234222,
0.04350554570555687,
0.12933045625686646,
0.012751955538988113,
0.07167546451091766,
-0.0012509481748566031,
-0.05518180876970291,
0.007616427261382341,
0.12137053906917572,
0.1368487924337387,
-0.04866698384284973,
-0.13986490666866302,
-0.03276289626955986,
-0.02693367935717106,
-0.07227633893489838,
0.09985727071762085,
0.19673407077789307,
-0.012591141276061535,
0.08169697970151901,
0.14491604268550873,
-0.16169822216033936,
-0.11321018636226654,
-0.00613781064748764,
-0.03490564227104187,
-0.024089563637971878,
0.06310757994651794,
-0.2536941468715668,
0.028408724814653397,
0.14860893785953522,
-0.04059569165110588,
0.13633090257644653,
-0.3240729570388794,
-0.07639473676681519,
0.0007356838323175907,
0.054194558411836624,
0.09791386127471924,
-0.12085635960102081,
-0.08901417255401611,
-0.09293872863054276,
-0.11104024201631546,
0.04762186110019684,
-0.05597608909010887,
0.11167527735233307,
-0.04904805123806,
0.025992784649133682,
0.014152122661471367,
-0.02887771464884281,
0.07744747400283813,
0.021673647686839104,
0.10005497187376022,
-0.064109206199646,
-0.10636098682880402,
0.07645350694656372,
-0.06408827751874924,
0.10509681701660156,
-0.0523979477584362,
-0.0417531356215477,
-0.18079431354999542,
0.003699058899655938,
-0.05300220474600792,
0.12289805710315704,
-0.027369722723960876,
-0.05724531039595604,
-0.035192809998989105,
0.034159865230321884,
-0.029523614794015884,
0.06727923452854156,
0.23783794045448303,
0.0015124063938856125,
0.005046981852501631,
0.16236749291419983,
0.0326140858232975,
0.0323396660387516,
-0.056005388498306274,
0.017815887928009033,
-0.04724597930908203,
0.039982493966817856,
-0.1382763832807541,
-0.04675940051674843,
0.055290911346673965,
0.06735024601221085,
0.06439916044473648,
0.04710105061531067,
-0.06888400763273239,
0.11244098842144012,
0.09019853919744492,
-0.18607197701931,
0.0700514167547226,
-0.013849339447915554,
0.09472966194152832,
0.039350975304841995,
-0.015231835655868053,
0.1895604282617569,
-0.14986945688724518,
-0.033998049795627594,
-0.0076713962480425835,
0.004044746048748493,
-0.09689246863126755,
0.08231010288000107,
0.1328100562095642,
-0.06575020402669907,
-0.05957786366343498,
0.12390335649251938,
0.165359228849411,
0.025179950520396233,
0.017972733825445175,
-0.006932769902050495,
0.00022706018353346735,
-0.08508772403001785,
-0.08434019982814789,
-0.03265177458524704,
-0.08527395129203796,
-0.11068694293498993,
-0.06841260939836502,
-0.006142163183540106,
-0.04447796940803528,
0.11607711017131805,
0.03201065585017204,
0.028328852728009224,
-0.01650356687605381,
-0.010833829641342163,
-0.021429387852549553,
0.05873684957623482,
-0.15173637866973877,
0.13561633229255676,
-0.08905225247144699,
0.10674536973237991,
0.00012485675688367337,
-0.020753949880599976,
0.0013626122381538153,
0.002920253435149789,
-0.07886186987161636,
0.011563596315681934,
0.0285257026553154,
0.014094925485551357,
-0.06456845253705978,
-0.022859089076519012,
-0.036354776471853256,
0.0697426125407219,
-0.011906825937330723,
0.061889030039310455,
-0.061242055147886276,
0.01593380607664585,
-0.03898799419403076,
0.14859212934970856,
-0.1532769352197647,
-0.04975380003452301,
-0.015560926869511604,
-0.04056137427687645,
0.006058624014258385,
0.018409743905067444,
0.03705205023288727,
-0.00409267982468009,
-0.11835101246833801,
0.06360994279384613,
0.05849485099315643,
0.05056019499897957,
-0.0157308392226696,
-0.09245243668556213,
-0.027230072766542435,
-0.025190459564328194,
-0.01534760557115078,
0.013321013189852238,
0.07065854221582413,
-0.12196312844753265,
-0.06281885504722595,
0.018304811790585518,
-0.13888609409332275,
-0.046150583773851395,
0.06030317023396492,
0.15200252830982208,
0.033909156918525696,
0.150677889585495,
-0.02704579383134842,
-0.01809167116880417,
-0.12329968810081482,
-0.019166268408298492,
0.026664838194847107,
-0.05332592874765396,
-0.18440836668014526,
-0.029726935550570488,
-0.007388567551970482,
0.014419330283999443,
0.04912153631448746,
0.08446263521909714,
-0.0956500768661499,
-0.03458496928215027,
0.031765177845954895,
0.030329957604408264,
0.035904645919799805,
0.13774320483207703,
0.009543175809085369,
-0.01679164357483387,
-0.03865525498986244,
0.061588287353515625,
0.03839043900370598,
0.05510209873318672,
0.0638842061161995,
0.08590453863143921,
-0.021673867478966713,
0.0158852431923151,
0.07681050896644592,
0.01302145142108202,
-0.04580261558294296,
-0.02843085676431656,
0.0441194549202919,
0.08132854104042053,
-0.08260644972324371,
0.1989237666130066,
0.04267626628279686,
-0.12537860870361328,
0.054285891354084015,
0.022300295531749725,
-0.04973950982093811,
-0.09256082028150558,
-0.15266910195350647,
-0.05344944819808006,
-0.07452110946178436,
0.022141065448522568,
-0.09568954259157181,
0.0548245869576931,
0.1745428889989853,
-0.06829389929771423,
-0.050518400967121124,
0.032452862709760666,
-0.059096548706293106,
-0.027423925697803497,
0.04054560139775276,
-0.0013372695539146662,
-0.024385567754507065,
-0.12413784116506577,
-0.033862896263599396,
0.03497083857655525,
-0.0784752294421196,
0.008338367566466331,
0.04789780452847481,
0.11290469020605087,
-0.02942858450114727,
0.05003933236002922,
-0.06132103130221367,
-0.015036802738904953,
0.02689954824745655,
0.07672994583845139,
0.0882759615778923,
0.07088065892457962,
-0.022986900061368942,
0.047990091145038605,
0.15324683487415314,
-0.014308090321719646,
0.0758466050028801,
-0.01601395756006241,
0.07572050392627716,
0.014294651336967945,
0.02641819790005684,
-0.002334780292585492,
-0.08061914145946503,
0.035516224801540375,
0.058694079518318176,
0.08256801217794418,
0.023648539558053017,
0.001632946077734232,
-0.00828629545867443,
0.005184163339436054,
-0.005413197912275791,
0.10309652239084244,
0.00983722135424614,
0.10130052268505096,
-0.02598174475133419,
0.004177122376859188,
-0.08419173210859299,
0.04385611414909363,
-0.10354146361351013,
0.031709425151348114,
-0.07208361476659775,
-0.09365466982126236,
-0.04600834473967552,
0.05600619316101074,
-0.01877395063638687,
0.0035323549527674913,
0.09170884639024734,
-0.12960436940193176,
-0.04690655693411827,
0.0018968863878399134,
0.11489219218492508,
-0.020168248564004898,
0.040883228182792664,
-0.08099561929702759,
-0.03430908918380737,
0.07023822516202927,
0.0021547141950577497,
-0.14141727983951569,
-0.07158965617418289,
0.06317681074142456,
-0.003606951329857111,
0.2117355763912201,
0.016212094575166702,
0.17674309015274048,
0.0033223286736756563,
0.04868118092417717,
-0.022305473685264587,
0.1346185803413391,
0.02927013300359249,
-0.06764087080955505,
-0.018991462886333466,
-0.000905287335626781,
-0.013900077901780605,
0.19657683372497559,
0.053575970232486725,
0.05427136644721031,
0.09234628081321716,
0.11494100838899612,
0.022770116105675697,
-0.12217706441879272,
0.01609044522047043,
-0.14081978797912598,
0.10981716215610504,
0.08146868646144867,
-0.0645776316523552,
-0.053792133927345276,
-0.051650241017341614,
-0.040538813918828964,
0.09793607145547867,
0.005736174061894417,
-0.01879800297319889,
-0.04393096640706062,
0.03694823384284973,
-0.021788373589515686,
0.04335221275687218,
-0.18949860334396362,
-0.04190560802817345,
-0.08794983476400375,
-0.05428025498986244,
-0.08292605727910995,
-0.02200908213853836,
0.064962238073349,
-0.031410008668899536,
-0.023035090416669846,
-0.05194671452045441,
0.01103481836616993,
0.031923118978738785,
-0.10728365927934647,
-0.06630545854568481
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_noisy` task of the Libri2Mix dataset.
Training config:
```yml
data:
n_src: 2
sample_rate: 16000
segment: 3
task: sep_noisy
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 2
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 6
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On Libri2Mix min test set :
```yml
si_sdr: 10.617130949793383
si_sdr_imp: 12.551811412989263
sdr: 11.231867464482065
sdr_imp: 13.059765009747343
sir: 24.461138352988346
sir_imp: 24.371856452307703
sar: 11.5649982725426
sar_imp: 4.662525705768228
stoi: 0.8701085138712695
stoi_imp: 0.2245418019822898
```
License notice:
This work "ConvTasNet_Libri2Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"ConvTasNet_Libri2Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_noisy"]} | audio-to-audio | JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri2Mix",
"dataset:sep_noisy",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_noisy' task of the Libri2Mix dataset.
Training config:
Results:
On Libri2Mix min test set :
License notice:
This work "ConvTasNet_Libri2Mix_sepnoisy_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used underCC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"ConvTasNet_Libri2Mix_sepnoisy_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused underCC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused underCC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
63,
205
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused underCC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.036505259573459625,
0.1802026480436325,
-0.0024572627153247595,
0.11497419327497482,
-0.001939673675224185,
0.01754998415708542,
0.17258566617965698,
0.012543669901788235,
-0.09340345859527588,
0.01734529621899128,
0.016622163355350494,
0.10228592157363892,
-0.004251236096024513,
0.012608496472239494,
-0.056716207414865494,
-0.0408497117459774,
-0.013649292290210724,
-0.03935224190354347,
-0.03584672510623932,
0.04226358234882355,
0.038579851388931274,
-0.08513684570789337,
0.0589447095990181,
-0.014659428037703037,
-0.16195552051067352,
0.05567976087331772,
0.02471838891506195,
-0.056331850588321686,
0.06742837280035019,
0.051213376224040985,
0.13247837126255035,
0.09128855913877487,
0.10515662282705307,
-0.08781808614730835,
0.01846214383840561,
-0.036171428859233856,
-0.06678923964500427,
0.11523022502660751,
0.11337850242853165,
-0.05378773808479309,
0.12314612418413162,
0.06098039075732231,
-0.008346928283572197,
0.02237485907971859,
-0.09517689049243927,
-0.01917206309735775,
-0.1817670464515686,
0.009786748327314854,
0.02302435226738453,
0.057223714888095856,
0.01449121069163084,
0.0614023357629776,
-0.09862619638442993,
0.021565010771155357,
0.12924586236476898,
-0.2058882862329483,
-0.030998166650533676,
0.10438556969165802,
0.008816288784146309,
0.07551725953817368,
-0.03668997809290886,
0.020666252821683884,
0.10198608785867691,
0.005886324215680361,
0.06946808099746704,
-0.10357703268527985,
-0.20434580743312836,
0.02338956855237484,
-0.031491126865148544,
-0.019505415111780167,
0.3083294928073883,
-0.0030451063066720963,
-0.07970156520605087,
0.023832082748413086,
-0.02749902755022049,
-0.002716307993978262,
0.032930146902799606,
0.02198164165019989,
0.05669601634144783,
-0.0035692828241735697,
-0.06186254695057869,
-0.05046315863728523,
-0.10774236917495728,
-0.09713976830244064,
-0.021331625059247017,
-0.029576579108834267,
-0.021482130512595177,
0.024432817474007607,
0.02639137953519821,
0.06510045379400253,
0.09822458773851395,
-0.08099741488695145,
0.047359321266412735,
-0.06278996914625168,
0.030146142467856407,
-0.006071732845157385,
-0.0581277459859848,
-0.08906922489404678,
0.05119740590453148,
0.0892798900604248,
-0.07433146238327026,
-0.035480108112096786,
-0.037982821464538574,
0.07925213128328323,
0.053321681916713715,
-0.11170822381973267,
0.014396581798791885,
-0.06396002322435379,
0.09072139859199524,
-0.012529918923974037,
0.053575776517391205,
-0.013730712234973907,
-0.10294260829687119,
-0.052190639078617096,
-0.1021168902516365,
-0.0009907673811540008,
0.03800523281097412,
-0.08050747960805893,
-0.10864999890327454,
0.010833319276571274,
0.16725380718708038,
-0.026593318209052086,
0.04542317986488342,
0.0007805204950273037,
-0.03616255894303322,
-0.11093142628669739,
0.11815793067216873,
0.07973641157150269,
0.1018650010228157,
0.029112568125128746,
-0.08141514658927917,
0.027497008442878723,
-0.07012307643890381,
-0.06588754802942276,
0.07548859715461731,
0.09965457022190094,
0.013512185774743557,
-0.15759700536727905,
-0.07893174141645432,
-0.08735556155443192,
0.06519113481044769,
0.01171196810901165,
-0.051445331424474716,
-0.019648104906082153,
0.057422935962677,
0.06273961067199707,
-0.030629297718405724,
0.009273686446249485,
-0.04921345040202141,
0.08376292139291763,
-0.05656183883547783,
0.08011101186275482,
-0.1067454144358635,
0.052722446620464325,
-0.11989841610193253,
0.005602757912129164,
-0.08661308139562607,
0.009372012689709663,
-0.054550763219594955,
-0.03833067789673805,
-0.11082477122545242,
-0.03337549418210983,
-0.043442726135253906,
-0.020034238696098328,
0.06366106867790222,
0.13935630023479462,
-0.17005720734596252,
-0.01947828009724617,
0.037787824869155884,
-0.07415798306465149,
-0.002021757187321782,
0.04863359406590462,
-0.04348626732826233,
0.02059505693614483,
0.038165561854839325,
0.11508741974830627,
0.006042116787284613,
-0.03975176438689232,
-0.12004723399877548,
-0.0944666713476181,
0.0696510374546051,
-0.061235275119543076,
0.07698173075914383,
-0.005185124464333057,
-0.06392501294612885,
-0.053506702184677124,
0.003902169642969966,
0.05417529493570328,
0.02838599868118763,
-0.07019535452127457,
-0.03618929535150528,
-0.08388377726078033,
0.07597479969263077,
0.005550526548177004,
0.004087047651410103,
-0.02607421949505806,
-0.01656167581677437,
0.0489647276699543,
0.07195062935352325,
-0.06047504022717476,
0.05839350074529648,
0.016318723559379578,
0.09833277761936188,
-0.11495574563741684,
-0.09886752814054489,
-0.12248137593269348,
0.02498350478708744,
-0.01540000457316637,
0.08958902209997177,
0.13818269968032837,
0.015087771229445934,
-0.023423217236995697,
0.06618428230285645,
-0.046889618039131165,
-0.051096830517053604,
-0.09100747108459473,
-0.003794404910877347,
0.018345769494771957,
-0.1798609495162964,
-0.03853863477706909,
-0.022005701437592506,
0.1388641744852066,
-0.19901669025421143,
-0.03578288480639458,
0.018266061320900917,
-0.009078421629965305,
0.03706680238246918,
-0.053354185074567795,
0.06813275814056396,
0.07374129444360733,
-0.09949928522109985,
0.03606092557311058,
0.006043533328920603,
0.05415695533156395,
-0.04807174205780029,
0.03783953934907913,
-0.02863810397684574,
-0.030742891132831573,
0.11331573873758316,
-0.03408597782254219,
-0.08101431280374527,
-0.07143457978963852,
0.01605212688446045,
-0.05579116940498352,
-0.06311994791030884,
0.037961579859256744,
0.16262677311897278,
-0.05322470888495445,
0.08839703351259232,
-0.08774964511394501,
0.014918331056833267,
-0.012648073956370354,
-0.08567769080400467,
-0.0410393625497818,
0.05312260985374451,
0.093195341527462,
0.02613910660147667,
0.11838778108358383,
0.15458160638809204,
-0.14429636299610138,
0.14702805876731873,
0.05351207032799721,
-0.0657917857170105,
-0.05551877245306969,
-0.021570848301053047,
0.028887853026390076,
0.051185790449380875,
0.014378435909748077,
0.03721559792757034,
0.046114251017570496,
-0.0625026524066925,
0.008328055031597614,
-0.15833519399166107,
-0.06503667682409286,
0.009098515845835209,
0.015158274210989475,
-0.0974995419383049,
-0.014946863986551762,
-0.056773267686367035,
0.039561234414577484,
-0.09397144615650177,
-0.07653333991765976,
0.019745448604226112,
0.004778947681188583,
-0.08769243955612183,
0.04531623423099518,
-0.18304674327373505,
-0.09900736808776855,
-0.17809711396694183,
-0.04680414870381355,
-0.06417399644851685,
0.03618314489722252,
0.06629206985235214,
-0.036444198340177536,
-0.013035831041634083,
-0.049280259758234024,
-0.003196904668584466,
0.0182382483035326,
-0.08794832974672318,
-0.036309223622083664,
0.07678493112325668,
-0.007859662175178528,
-0.11434998363256454,
0.015397332608699799,
0.030997538939118385,
-0.059197988361120224,
0.09014514833688736,
0.01607641763985157,
0.12831895053386688,
0.09379973262548447,
0.01665693335235119,
-0.06470837444067001,
0.007292594760656357,
0.14304469525814056,
-0.059317898005247116,
0.023464426398277283,
0.17697261273860931,
0.03476649150252342,
0.0101925078779459,
0.1182744950056076,
0.11116477847099304,
-0.02681283839046955,
0.02029384672641754,
-0.057546403259038925,
-0.058589331805706024,
-0.2955681383609772,
-0.09185991436243057,
-0.0527593195438385,
-0.11567652970552444,
-0.03889913856983185,
0.002104648854583502,
0.08966589719057083,
0.11710508167743683,
-0.02713228575885296,
0.06515717506408691,
0.025833608582615852,
0.022603901103138924,
0.06392453610897064,
0.011514010839164257,
0.07185138016939163,
-0.04806428402662277,
0.016255464404821396,
0.11183653026819229,
0.10341104120016098,
0.16206972301006317,
0.0884944349527359,
0.08154571056365967,
0.057484980672597885,
0.14999890327453613,
0.03408844769001007,
0.06571246683597565,
0.04304606094956398,
0.05108361691236496,
0.0056707533076405525,
-0.13833308219909668,
-0.05448198691010475,
0.12280834466218948,
0.05500224605202675,
0.015858152881264687,
0.02534557320177555,
-0.08334668725728989,
-0.03388518467545509,
0.12164714932441711,
0.050592321902513504,
-0.27893057465553284,
-0.0010957205668091774,
0.06421364098787308,
0.10352598875761032,
-0.02612597681581974,
0.016677776351571083,
0.15769422054290771,
-0.03483201563358307,
0.05831243097782135,
0.015355273149907589,
0.03949502110481262,
-0.0925983414053917,
-0.08442067354917526,
-0.03913857415318489,
-0.06791263818740845,
-0.0014440929517149925,
0.00007532274321420118,
-0.08724508434534073,
0.1214216873049736,
0.05792166292667389,
-0.011076688766479492,
0.07484395056962967,
0.05520067363977432,
0.0277701523154974,
0.09032846987247467,
0.10397478938102722,
-0.0012758357916027308,
-0.10685074329376221,
-0.09458553791046143,
-0.13628923892974854,
-0.018655911087989807,
-0.029056008905172348,
-0.03065638244152069,
0.04170173406600952,
0.025196045637130737,
-0.020729023963212967,
-0.005095615983009338,
0.0952698215842247,
-0.26862362027168274,
-0.13112670183181763,
-0.009804695844650269,
0.14867043495178223,
0.08427488058805466,
-0.03499560058116913,
-0.10760968923568726,
-0.004105531610548496,
0.17273321747779846,
-0.09625004976987839,
-0.0350353978574276,
-0.04378749057650566,
-0.08088895678520203,
0.13291196525096893,
0.022221295163035393,
0.07810506969690323,
0.031533654779195786,
-0.01849275268614292,
-0.09913299977779388,
-0.0897364616394043,
0.028311582282185555,
-0.0463477224111557,
-0.0977095514535904,
-0.08266037702560425,
0.0777316465973854,
0.0765630230307579,
0.12892957031726837,
0.029268447309732437,
0.10329434275627136,
-0.021284177899360657,
-0.03143803030252457,
0.0017985000740736723,
0.10275387018918991,
0.22613680362701416,
0.009678784757852554,
-0.0723021849989891,
-0.182062029838562,
0.03937667980790138,
-0.08585599064826965,
0.11513026058673859,
0.229019895195961,
-0.05035873502492905,
0.1139812171459198,
0.10128167271614075,
-0.12080593407154083,
-0.13270658254623413,
0.04119497537612915,
0.030309148132801056,
0.010219378396868706,
0.06317504495382309,
-0.26979508996009827,
0.018108170479536057,
0.1235252097249031,
-0.026121417060494423,
0.08143951743841171,
-0.2867806851863861,
-0.06076182425022125,
-0.000049996462621493265,
0.008425396867096424,
0.02852145954966545,
-0.10090373456478119,
-0.043800003826618195,
-0.12502673268318176,
-0.13359272480010986,
0.08224822580814362,
0.004654492251574993,
0.10039719194173813,
-0.011427943594753742,
0.05495446175336838,
0.03673582896590233,
-0.013147681951522827,
0.12367067486047745,
-0.01411487627774477,
0.09727730602025986,
-0.02198725938796997,
-0.03138081729412079,
0.10635796934366226,
-0.020717773586511612,
0.032921407371759415,
-0.02091069705784321,
-0.006041504442691803,
-0.10991251468658447,
0.0037577052135020494,
-0.006892440840601921,
0.10707525908946991,
-0.019477510824799538,
-0.05035098269581795,
-0.051827866584062576,
0.026058200746774673,
0.011489924043416977,
0.029916254803538322,
0.20662449300289154,
-0.03328481316566467,
0.010500580072402954,
0.15207117795944214,
0.0843520388007164,
0.056571271270513535,
-0.06931480020284653,
0.05109100416302681,
-0.06639289110898972,
0.05991893634200096,
-0.16506007313728333,
0.007528659887611866,
0.06800395995378494,
0.0609549842774868,
0.018017498776316643,
0.04030796140432358,
-0.05013441666960716,
0.1370251327753067,
0.11637318879365921,
-0.18993288278579712,
0.08665560185909271,
-0.023856589570641518,
0.04751028120517731,
0.03839638829231262,
-0.03462981805205345,
0.17522728443145752,
-0.12225597351789474,
-0.055273354053497314,
0.016332045197486877,
0.017888709902763367,
-0.07111691683530807,
0.09854656457901001,
0.05691106244921684,
-0.07286978513002396,
-0.0806162878870964,
0.12693482637405396,
0.15806934237480164,
-0.004379208665341139,
-0.011106601916253567,
-0.037652887403964996,
0.03490808606147766,
-0.06948898732662201,
0.010089937597513199,
-0.014549100771546364,
-0.0595095232129097,
-0.08362537622451782,
-0.03145027160644531,
0.0008985257591120899,
-0.03827652335166931,
0.06256937980651855,
0.036007191985845566,
0.014014802873134613,
0.009372338652610779,
-0.03549240529537201,
-0.027787385508418083,
0.05133876949548721,
-0.017662586644291878,
0.11930670589208603,
-0.10955822467803955,
0.02329551987349987,
-0.03609754517674446,
-0.05498107150197029,
-0.017238285392522812,
0.00988172646611929,
-0.04179436340928078,
0.015024851076304913,
-0.06750732660293579,
0.025056950747966766,
-0.0693153589963913,
0.0022438440937548876,
-0.04249073937535286,
0.060349542647600174,
-0.024609243497252464,
0.053084347397089005,
-0.0446331612765789,
0.016313044354319572,
-0.034878209233284,
0.12339165806770325,
-0.156230628490448,
-0.049010246992111206,
-0.006846928037703037,
-0.051813311874866486,
0.02145874686539173,
0.03130703419446945,
0.011970693245530128,
-0.05195779353380203,
-0.21115750074386597,
-0.008276820182800293,
0.10580485314130783,
0.05707485228776932,
0.010019209235906601,
-0.1600428819656372,
-0.014803686179220676,
-0.00788038969039917,
-0.03355453535914421,
-0.021209029480814934,
0.19531981647014618,
-0.07705178111791611,
-0.07190252095460892,
-0.04251212999224663,
-0.0906975269317627,
-0.03907480835914612,
0.047052524983882904,
0.21250495314598083,
0.05873027443885803,
0.14555779099464417,
-0.010205205529928207,
-0.003605967853218317,
-0.11833122372627258,
-0.02021484076976776,
-0.008818457834422588,
-0.07154174894094467,
-0.1950530707836151,
-0.007752012461423874,
0.04095983877778053,
-0.01243396382778883,
0.04440909996628761,
0.0753125473856926,
-0.09723468124866486,
-0.06038343161344528,
0.07813632488250732,
0.07378414273262024,
0.024887364357709885,
0.12084180116653442,
0.005561117082834244,
-0.009604235179722309,
-0.0002680404868442565,
0.08212389796972275,
0.08061825484037399,
0.1290825754404068,
0.028170539066195488,
0.0750185027718544,
-0.007955801673233509,
-0.0026238069403916597,
0.05889684334397316,
-0.06819827854633331,
-0.015422487631440163,
0.047150444239377975,
0.031096836552023888,
0.05642998218536377,
-0.0951719805598259,
0.13816383481025696,
0.01940951496362686,
-0.1283460259437561,
0.05096964165568352,
-0.01309164334088564,
-0.026706190779805183,
-0.08211072534322739,
-0.11608225107192993,
-0.0717974603176117,
-0.08944950997829437,
0.029762474820017815,
-0.12581799924373627,
0.0446108803153038,
0.0862550213932991,
-0.08769837766885757,
0.003383742179721594,
0.00046025458141230047,
-0.028376037254929543,
-0.051268309354782104,
0.015689725056290627,
0.020247234031558037,
-0.027728185057640076,
-0.08489089459180832,
-0.06318137794733047,
0.09450384974479675,
-0.04091383516788483,
0.005893154069781303,
0.07423312962055206,
0.07255034148693085,
0.026640597730875015,
0.011677952483296394,
-0.0858820229768753,
-0.05209595337510109,
0.023539796471595764,
0.0777914747595787,
0.10538262128829956,
0.09179284423589706,
-0.0018928182544186711,
0.03550642356276512,
0.14576490223407745,
-0.04476552829146385,
0.10533642023801804,
-0.06849904358386993,
-0.011837943457067013,
-0.06638050824403763,
0.04585522785782814,
0.08069535344839096,
-0.09920436888933182,
0.011764280498027802,
0.030540890991687775,
0.16998903453350067,
0.0031856936402618885,
0.015875034034252167,
0.009498585015535355,
0.002545904600992799,
-0.06678265333175659,
0.08271799981594086,
0.038173772394657135,
0.1289929449558258,
-0.0678941160440445,
-0.08166549354791641,
-0.12073574215173721,
0.0263624656945467,
-0.05583326891064644,
0.0648328885436058,
-0.1197754517197609,
-0.113612100481987,
0.011625250801444054,
0.0852467268705368,
-0.020037492737174034,
-0.0651412159204483,
0.08629842102527618,
-0.10864749550819397,
-0.06154127046465874,
-0.006994800642132759,
0.053788378834724426,
-0.025678077712655067,
0.014426753856241703,
-0.08891401439905167,
-0.033833473920822144,
0.11346107721328735,
-0.008762490935623646,
-0.13821479678153992,
-0.033996183425188065,
0.045128826051950455,
-0.11564043164253235,
0.1853853315114975,
0.013312432914972305,
0.18019692599773407,
-0.004262997768819332,
0.10278072953224182,
-0.07733745127916336,
0.08271082490682602,
0.032537661492824554,
-0.11679002642631531,
0.034125350415706635,
0.039192505180835724,
-0.037498921155929565,
0.2580016255378723,
0.04917922616004944,
0.08698968589305878,
0.11329776048660278,
0.044385962188243866,
0.015245141461491585,
-0.06862519681453705,
0.009144183248281479,
-0.11900895833969116,
0.10400741547346115,
0.02636963687837124,
-0.04765122011303902,
-0.04075668379664421,
-0.032931454479694366,
0.011960242874920368,
0.09917636215686798,
0.08571474999189377,
-0.0034940799232572317,
-0.143966406583786,
0.007701738737523556,
-0.001112036406993866,
0.0822754055261612,
-0.0980735570192337,
-0.055188823491334915,
-0.08388885110616684,
-0.052264727652072906,
-0.05017586052417755,
0.012175715528428555,
0.06267745792865753,
-0.05474963039159775,
-0.011492999270558357,
0.0002222080947831273,
0.02078774757683277,
0.03636877238750458,
-0.07144220173358917,
-0.08371275663375854
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k`
Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4)
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_noisy` task of the Libri2Mix dataset.
Training config:
```yml
data:
n_src: 2
sample_rate: 8000
segment: 3
task: sep_noisy
train_dir: data/wav8k/min/train-360
valid_dir: data/wav8k/min/dev
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 24
early_stop: True
epochs: 200
half_lr: True
num_workers: 4
```
Results:
On Libri2Mix min test set :
```yml
si_sdr: 9.944424856077259
si_sdr_imp: 11.939395359731192
sdr: 10.701526190782072
sdr_imp: 12.481757547845662
sir: 22.633644975545575
sir_imp: 22.45666740833025
sar: 11.131644100944868
sar_imp: 4.248489589311784
stoi: 0.852048619949357
stoi_imp: 0.2071994899565506
```
License notice:
This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_noisy"]} | audio-to-audio | JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri2Mix",
"dataset:sep_noisy",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k'
Imported from Zenodo
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_noisy' task of the Libri2Mix dataset.
Training config:
Results:
On Libri2Mix min test set :
License notice:
This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under AAttribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_8k\" is licensed under AAttribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_8k\" is licensed under AAttribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
59,
212
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri2Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k'\nImported from Zenodo\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri2Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri2Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri2Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri2Mix_sepnoisy_8k\" is licensed under AAttribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.034538667649030685,
0.1697617918252945,
-0.0031701913103461266,
0.11437498778104782,
-0.0009437719127163291,
0.009188741445541382,
0.19227449595928192,
0.00012378909741528332,
-0.07833705097436905,
0.0135502265766263,
-0.003947914578020573,
0.1075548455119133,
-0.0008726672967895865,
0.014388330280780792,
-0.06079637631773949,
-0.05358131229877472,
0.00046523407218046486,
-0.03226419538259506,
-0.015894971787929535,
0.03358890488743782,
0.047658685594797134,
-0.0726785734295845,
0.059747517108917236,
-0.0043903798796236515,
-0.14996083080768585,
0.05587855726480484,
0.009267712943255901,
-0.0555393286049366,
0.05532076954841614,
0.06612922996282578,
0.12722517549991608,
0.09129443019628525,
0.09706118702888489,
-0.09388824552297592,
0.0221844669431448,
-0.04542434215545654,
-0.06676051020622253,
0.10737872123718262,
0.13347607851028442,
-0.05885522440075874,
0.1242157369852066,
0.07716874033212662,
-0.014809475280344486,
0.014344652183353901,
-0.08382847905158997,
-0.01074963342398405,
-0.17399445176124573,
0.006572446785867214,
0.042013004422187805,
0.06651806086301804,
0.016414593905210495,
0.06242113187909126,
-0.08007857203483582,
0.027356872335076332,
0.1584094911813736,
-0.1961308717727661,
-0.029977919533848763,
0.07674344629049301,
0.01119543332606554,
0.09648196399211884,
-0.03652119264006615,
0.010484130121767521,
0.09434828162193298,
0.013823287561535835,
0.05709793418645859,
-0.10387356579303741,
-0.19848886132240295,
0.012030674144625664,
-0.03172355890274048,
-0.0021038509439677,
0.30156514048576355,
-0.009064340963959694,
-0.07333897054195404,
0.01644083485007286,
-0.03022129088640213,
-0.010343551635742188,
0.030577344819903374,
0.014687697403132915,
0.045694347470998764,
0.005842101294547319,
-0.028914721682667732,
-0.04446468874812126,
-0.10364936292171478,
-0.08290861546993256,
-0.02516803704202175,
-0.04414802044630051,
-0.01889556087553501,
0.026071565225720406,
0.022183222696185112,
0.04849299415946007,
0.09980523586273193,
-0.08650212734937668,
0.05943538248538971,
-0.05818270519375801,
0.04325373098254204,
-0.009700316935777664,
-0.048744380474090576,
-0.11092473566532135,
0.04770399257540703,
0.08496297150850296,
-0.0589308999478817,
-0.024133747443556786,
-0.04523421451449394,
0.07881929725408554,
0.0669364407658577,
-0.11076581478118896,
0.01949489302933216,
-0.09329335391521454,
0.08712988346815109,
-0.009651792235672474,
0.053253963589668274,
-0.018215065822005272,
-0.10861551761627197,
-0.0487026683986187,
-0.09172901511192322,
-0.004994418937712908,
0.028106244280934334,
-0.09601931273937225,
-0.12039043009281158,
-0.001011997344903648,
0.18153250217437744,
-0.026496203616261482,
0.04575052112340927,
-0.001538352924399078,
-0.014388445764780045,
-0.08859848976135254,
0.11179327964782715,
0.09209500253200531,
0.08776730298995972,
0.03804435208439827,
-0.07378413528203964,
0.023610811680555344,
-0.056526098400354385,
-0.057791903614997864,
0.07361643761396408,
0.08182414621114731,
0.02033962681889534,
-0.15818417072296143,
-0.062385182827711105,
-0.08283618837594986,
0.06542687863111496,
0.010840041562914848,
-0.04432830214500427,
-0.02250155247747898,
0.07680647075176239,
0.048477936536073685,
-0.031397946178913116,
0.003584174206480384,
-0.04854586720466614,
0.06984559446573257,
-0.06636402755975723,
0.07484883815050125,
-0.13474830985069275,
0.05632578581571579,
-0.12053129822015762,
0.0023903255350887775,
-0.08452031016349792,
0.01454908587038517,
-0.04844030365347862,
-0.06491806358098984,
-0.12153350561857224,
-0.03040982037782669,
-0.030091451480984688,
-0.027866777032613754,
0.06466509401798248,
0.12168620526790619,
-0.1566021591424942,
-0.025590449571609497,
0.028221439570188522,
-0.09096693247556686,
0.005272681824862957,
0.06701572984457016,
-0.03491603955626488,
0.012813023291528225,
0.050265874713659286,
0.1197136640548706,
-0.004542728886008263,
-0.059608981013298035,
-0.11402257531881332,
-0.10256380587816238,
0.08025038242340088,
-0.04001038894057274,
0.07371720671653748,
-0.015925703570246696,
-0.05123356729745865,
-0.049874939024448395,
0.03107023797929287,
0.06190535053610802,
0.03393185883760452,
-0.06521724164485931,
-0.024838954210281372,
-0.07697293907403946,
0.050105851143598557,
-0.0035567807499319315,
-0.0012162503553554416,
-0.015260092914104462,
-0.002339201746508479,
0.06742437928915024,
0.0692388117313385,
-0.07052039355039597,
0.061033982783555984,
0.020203549414873123,
0.11756085604429245,
-0.11359187960624695,
-0.09960680454969406,
-0.11962539702653885,
0.030423961579799652,
-0.0070539540611207485,
0.07600459456443787,
0.12768658995628357,
-0.005848454777151346,
-0.027939410880208015,
0.07822877913713455,
-0.051768749952316284,
-0.050306420773267746,
-0.07983803004026413,
0.0006635082536377013,
0.0070129274390637875,
-0.17564697563648224,
-0.028357943519949913,
-0.014137763530015945,
0.12433558702468872,
-0.1814843863248825,
-0.04264188930392265,
0.022097941488027573,
0.003785743610933423,
0.048931386321783066,
-0.05757191404700279,
0.06467197835445404,
0.0828300416469574,
-0.10637728124856949,
0.04377426207065582,
-0.002329935785382986,
0.05164271965622902,
-0.05998022481799126,
0.05163981765508652,
-0.040234632790088654,
-0.018830502405762672,
0.10727535933256149,
-0.011531725525856018,
-0.05491757392883301,
-0.0999370664358139,
0.019154228270053864,
-0.06995662301778793,
-0.06341515481472015,
0.042059142142534256,
0.17207348346710205,
-0.04130389168858528,
0.08964439481496811,
-0.08419894427061081,
0.03842008113861084,
0.003995873034000397,
-0.08345217257738113,
-0.04606752470135689,
0.051266785711050034,
0.08597297221422195,
0.02923540025949478,
0.11298221349716187,
0.16353753209114075,
-0.13984094560146332,
0.1718003749847412,
0.04961920902132988,
-0.07134173065423965,
-0.05555088073015213,
-0.022966697812080383,
0.024967556819319725,
0.04207996279001236,
0.002094149123877287,
0.05169377475976944,
0.048270005732774734,
-0.06367652118206024,
0.014029325917363167,
-0.15260306000709534,
-0.05094216763973236,
0.004782129544764757,
0.02560299262404442,
-0.07300509512424469,
-0.01041744090616703,
-0.05278665944933891,
0.028981873765587807,
-0.1079932227730751,
-0.08790010958909988,
0.023047329857945442,
0.009026736952364445,
-0.0900937169790268,
0.03452574461698532,
-0.19648297131061554,
-0.10422834753990173,
-0.19194643199443817,
-0.06472624838352203,
-0.0806746780872345,
0.03860433027148247,
0.07441139221191406,
-0.015047566033899784,
-0.019163858145475388,
-0.05829924717545509,
0.006702402140945196,
0.04230348765850067,
-0.088644839823246,
-0.041339196264743805,
0.07090850919485092,
-0.022894075140357018,
-0.10930075496435165,
0.012789946980774403,
0.03845307603478432,
-0.03418344259262085,
0.08819849789142609,
-0.008534575812518597,
0.13237912952899933,
0.08948211371898651,
0.025853116065263748,
-0.0670991986989975,
0.0070679341442883015,
0.14176298677921295,
-0.063131183385849,
0.02975725382566452,
0.17398826777935028,
0.013234371319413185,
0.02240762487053871,
0.12682367861270905,
0.1057092696428299,
-0.024271683767437935,
0.01599235273897648,
-0.05391686037182808,
-0.049496691673994064,
-0.2932335138320923,
-0.09000226110219955,
-0.055054742842912674,
-0.11021938920021057,
-0.032033056020736694,
0.0002583577297627926,
0.08686795830726624,
0.11556309461593628,
-0.028459079563617706,
0.05922696739435196,
0.03994710370898247,
0.025034788995981216,
0.04851718619465828,
0.02062603272497654,
0.07169470936059952,
-0.042696185410022736,
0.00957642775028944,
0.11825865507125854,
0.10117457062005997,
0.16106444597244263,
0.09578032791614532,
0.10133514553308487,
0.0547199547290802,
0.1488882452249527,
0.056727368384599686,
0.06942981481552124,
0.05143583565950394,
0.05457669496536255,
0.00016057230823207647,
-0.14450033009052277,
-0.04784669354557991,
0.12904828786849976,
0.05829108506441116,
0.015249228104948997,
0.02981095388531685,
-0.05392546206712723,
-0.032367248088121414,
0.1528029441833496,
0.03490735590457916,
-0.2682505249977112,
0.007714243605732918,
0.058981552720069885,
0.1004829928278923,
-0.039823465049266815,
0.021749939769506454,
0.14163319766521454,
-0.035364482551813126,
0.062477145344018936,
0.010184173472225666,
0.04788356274366379,
-0.10095591098070145,
-0.08669883757829666,
-0.050939999520778656,
-0.06527414172887802,
0.0015160870971158147,
-0.002703744685277343,
-0.07243027538061142,
0.10852247476577759,
0.0573698915541172,
-0.009251310490071774,
0.06399180740118027,
0.055247288197278976,
0.01698046363890171,
0.08577997237443924,
0.09389176964759827,
0.002629574853926897,
-0.1140441969037056,
-0.08968409895896912,
-0.15013262629508972,
-0.016935110092163086,
-0.030375320464372635,
-0.024455731734633446,
0.03624663129448891,
0.023981740698218346,
-0.019800778478384018,
-0.012387984432280064,
0.06939063221216202,
-0.2617233991622925,
-0.1566035896539688,
0.0035069796722382307,
0.16575227677822113,
0.10410238802433014,
-0.03176736831665039,
-0.11236909031867981,
0.002202006056904793,
0.16677145659923553,
-0.08972389250993729,
-0.041818585246801376,
-0.041217103600502014,
-0.08481862396001816,
0.13492904603481293,
0.020785648375749588,
0.07582559436559677,
0.021522436290979385,
-0.011479518376290798,
-0.1155087798833847,
-0.078777976334095,
0.035070620477199554,
-0.04083387553691864,
-0.09759008884429932,
-0.08208253234624863,
0.09123402088880539,
0.09244596213102341,
0.10403528064489365,
0.03165528550744057,
0.09153180569410324,
-0.006783431861549616,
-0.02560500055551529,
-0.010120020247995853,
0.11018068343400955,
0.2184523493051529,
0.01029222458600998,
-0.07614076137542725,
-0.20474453270435333,
0.019695160910487175,
-0.11187830567359924,
0.09890919178724289,
0.23825156688690186,
-0.03152351453900337,
0.12797296047210693,
0.1157669797539711,
-0.12025389075279236,
-0.10753647983074188,
0.012435066513717175,
0.048096075654029846,
0.0046331449411809444,
0.07950844615697861,
-0.2620335817337036,
0.027284258976578712,
0.13288739323616028,
-0.016267674043774605,
0.07509949803352356,
-0.2876673936843872,
-0.0638822391629219,
0.007368357386440039,
0.009060747921466827,
0.015448112040758133,
-0.10401158779859543,
-0.04000895470380783,
-0.1260140985250473,
-0.13609954714775085,
0.06576051563024521,
0.032586559653282166,
0.09624842554330826,
-0.00820639356970787,
0.04899212718009949,
0.0419485867023468,
-0.008347970433533192,
0.12076842039823532,
-0.009751701727509499,
0.0912805050611496,
-0.014096730388700962,
-0.0285792239010334,
0.09722599387168884,
-0.011358951218426228,
0.017845604568719864,
-0.02863493002951145,
-0.013488776050508022,
-0.09200942516326904,
-0.008464877493679523,
-0.00012549552775453776,
0.10770601779222488,
-0.014389838092029095,
-0.05819113925099373,
-0.042317211627960205,
0.011616695672273636,
0.01882927492260933,
0.03624742478132248,
0.23420679569244385,
-0.035305798053741455,
-0.006022913381457329,
0.15703102946281433,
0.05765250325202942,
0.03800901770591736,
-0.07915612310171127,
0.025615736842155457,
-0.07178763300180435,
0.05761043727397919,
-0.11369069665670395,
0.023378944024443626,
0.08056465536355972,
0.04526903107762337,
0.03176793083548546,
0.02964363805949688,
-0.04864507168531418,
0.14084067940711975,
0.11732497811317444,
-0.1926131695508957,
0.09175531566143036,
-0.03481993079185486,
0.06196526810526848,
0.05704892799258232,
-0.04067809879779816,
0.19740641117095947,
-0.10563411563634872,
-0.06471468508243561,
0.018327264115214348,
0.019042357802391052,
-0.06690380722284317,
0.09972396492958069,
0.022409867495298386,
-0.07762312144041061,
-0.08349191397428513,
0.13208051025867462,
0.15662354230880737,
-0.02847801148891449,
-0.009431162849068642,
-0.02810467965900898,
0.023536672815680504,
-0.056167926639318466,
0.019755208864808083,
-0.0037945297081023455,
-0.06428561359643936,
-0.08872903138399124,
-0.0371025949716568,
0.0030128888320177794,
-0.04211660102009773,
0.06385025382041931,
0.038674917072057724,
0.010404665023088455,
0.007059294730424881,
-0.04558642581105232,
-0.026494359597563744,
0.05373293161392212,
0.0018440744606778026,
0.11450070142745972,
-0.10272669792175293,
-0.014133158139884472,
-0.03439265862107277,
-0.06618323922157288,
-0.01464373990893364,
-0.0015097011346369982,
-0.0338817797601223,
0.00713902385905385,
-0.09550250321626663,
0.03144066035747528,
-0.07212095707654953,
0.0010960609652101994,
-0.04191500321030617,
0.0709584653377533,
-0.01613389514386654,
0.05665629357099533,
-0.03646311163902283,
0.020594503730535507,
-0.03891276195645332,
0.1277502030134201,
-0.14529180526733398,
-0.059563543647527695,
-0.0056000640615820885,
-0.05352218076586723,
0.030959319323301315,
0.046034932136535645,
0.008898572996258736,
-0.06300075352191925,
-0.20870721340179443,
-0.01078708190470934,
0.11608731746673584,
0.062247030436992645,
-0.004283747635781765,
-0.16459988057613373,
-0.026512937620282173,
0.0002372718881815672,
-0.038681380450725555,
-0.033572662621736526,
0.20732589066028595,
-0.08108249306678772,
-0.08405281603336334,
-0.037358082830905914,
-0.0922447070479393,
-0.03894485533237457,
0.046190932393074036,
0.21011242270469666,
0.06234581768512726,
0.13890008628368378,
-0.012926471419632435,
-0.00040952529525384307,
-0.09660676121711731,
-0.0130036985501647,
-0.011383697390556335,
-0.06409630179405212,
-0.1877741515636444,
-0.023773279041051865,
0.025980593636631966,
-0.015986278653144836,
0.04157909378409386,
0.06339573860168457,
-0.0826767086982727,
-0.06352279335260391,
0.06633836030960083,
0.0688195750117302,
0.022654520347714424,
0.12350749969482422,
0.001272432622499764,
-0.004879250191152096,
0.00084290886297822,
0.07489897310733795,
0.07859224826097488,
0.17522713541984558,
-0.00165302655659616,
0.0652020275592804,
-0.008787681348621845,
-0.0020712350960820913,
0.050944309681653976,
-0.060034025460481644,
-0.028612207621335983,
0.03490489348769188,
0.046194903552532196,
0.06634718179702759,
-0.07927578687667847,
0.14669190347194672,
0.011095757596194744,
-0.11942429840564728,
0.03274093568325043,
0.0004982837708666921,
-0.029200993478298187,
-0.079033263027668,
-0.12299958616495132,
-0.0796448141336441,
-0.07768569886684418,
0.022520888596773148,
-0.12838073074817657,
0.04603396728634834,
0.05708356946706772,
-0.07947833091020584,
0.007158969528973103,
-0.0062447418458759785,
-0.04128041863441467,
-0.06734327971935272,
0.014625100418925285,
0.016650039702653885,
-0.03230197727680206,
-0.08000855892896652,
-0.06498225778341293,
0.09130792319774628,
-0.055035822093486786,
-0.004616676829755306,
0.07160322368144989,
0.0838330015540123,
0.02563546784222126,
0.013636146672070026,
-0.09225894510746002,
-0.0498608835041523,
0.014474357478320599,
0.06514187157154083,
0.1209312453866005,
0.0969226062297821,
-0.006313587538897991,
0.041689783334732056,
0.12041999399662018,
-0.026442917063832283,
0.0979241281747818,
-0.06866899877786636,
-0.008420635014772415,
-0.06777540594339371,
0.052258461713790894,
0.07853259891271591,
-0.08672203123569489,
0.013498947024345398,
0.03265758976340294,
0.14727072417736053,
0.010104323737323284,
0.007234459742903709,
0.014944799244403839,
0.004684528335928917,
-0.0793544203042984,
0.06571843475103378,
0.031416550278663635,
0.1329258531332016,
-0.06284920871257782,
-0.061778709292411804,
-0.1354706734418869,
0.027802668511867523,
-0.058850616216659546,
0.06139135733246803,
-0.11529373377561569,
-0.10950785130262375,
0.02428152598440647,
0.0870024710893631,
-0.0260227732360363,
-0.06895215064287186,
0.06837736815214157,
-0.0988917276263237,
-0.06510841846466064,
-0.004004777409136295,
0.046525370329618454,
-0.01990760862827301,
0.014311927370727062,
-0.08955701440572739,
-0.0366002693772316,
0.13226838409900665,
-0.004169355612248182,
-0.14562936127185822,
-0.02403774857521057,
0.02913683094084263,
-0.14881902933120728,
0.1564631164073944,
0.015878042206168175,
0.1760203093290329,
-0.007410699035972357,
0.11598879098892212,
-0.06607140600681305,
0.08043992519378662,
0.029808547347784042,
-0.11418206989765167,
0.02536691166460514,
0.0400550477206707,
-0.04103325679898262,
0.25967732071876526,
0.04802214354276657,
0.0979120135307312,
0.10713286697864532,
0.03664408624172211,
-0.001218486693687737,
-0.05247415974736214,
0.011154844425618649,
-0.11715929955244064,
0.09742142260074615,
0.00915980339050293,
-0.03873121738433838,
-0.04761526361107826,
-0.020889287814497948,
0.02519959956407547,
0.11075470596551895,
0.07565927505493164,
0.005943738855421543,
-0.15782421827316284,
0.007580071222037077,
0.007137196604162455,
0.0785977691411972,
-0.06629256159067154,
-0.05119935795664787,
-0.10181769728660583,
-0.057455942034721375,
-0.060865409672260284,
0.012970051728188992,
0.04862138628959656,
-0.0651501789689064,
-0.003228013403713703,
-0.0236359816044569,
0.02084316313266754,
0.024926235899329185,
-0.06711135804653168,
-0.08756174892187119
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the Libri3Mix dataset.
Training config:
```yaml
data:
n_src: 3
sample_rate: 16000
segment: 3
task: sep_clean
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results :
On Libri3Mix min test set :
```yaml
si_sdr: 8.932601610824145
si_sdr_imp: 12.299341066588594
sdr: 9.557260814240447
sdr_imp: 12.76957128385349
sir: 17.387646884037455
sir_imp: 20.599955591768484
sar: 10.686885056960504
sar_imp: -55.8894643263213
stoi: 0.8481258332025354
stoi_imp: 0.25528367853750356
```
License notice:
This work "ConvTasNet_Libri3Mix_sepclean_16k"
is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k"
is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris. | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_clean"]} | audio-to-audio | JorisCos/ConvTasNet_Libri3Mix_sepclean_16k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri3Mix",
"dataset:sep_clean",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_clean' task of the Libri3Mix dataset.
Training config:
Results :
On Libri3Mix min test set :
License notice:
This work "ConvTasNet_Libri3Mix_sepclean_16k"
is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0. "ConvTasNet_Libri3Mix_sepclean_16k"
is licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris. | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
58,
174
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_16k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
0.00542526226490736,
0.06015772745013237,
-0.0029514075722545385,
0.11231078207492828,
0.00032742597977630794,
0.003968037199229002,
0.25794216990470886,
0.009678161703050137,
-0.06191973015666008,
0.008034654892981052,
0.023930668830871582,
0.08294841647148132,
-0.024462061002850533,
0.03063737414777279,
-0.03629042208194733,
-0.04758656397461891,
-0.02662784606218338,
-0.04870399460196495,
0.11315099895000458,
0.008943584747612476,
0.03235524892807007,
-0.08545253425836563,
0.06208033487200737,
-0.01957204006612301,
-0.07535708695650101,
0.022713206708431244,
0.09191728383302689,
-0.06990676373243332,
0.0718814954161644,
0.009586135856807232,
0.10087277740240097,
0.10114285349845886,
0.06303048878908157,
-0.08727563172578812,
0.010033517144620419,
-0.04345525801181793,
-0.04820304736495018,
0.0850721225142479,
0.07955481857061386,
-0.03531009331345558,
0.15009675920009613,
0.08906842023134232,
0.021937770769000053,
0.022678036242723465,
-0.11960499733686447,
0.05369434505701065,
-0.2006363570690155,
0.02618543617427349,
0.006741000805050135,
0.05364976078271866,
0.0506921224296093,
0.09261812269687653,
-0.14285847544670105,
0.024586373940110207,
0.12199964374303818,
-0.2562573254108429,
-0.03426375985145569,
0.11581295728683472,
0.021264415234327316,
0.11496613174676895,
0.020548971369862556,
0.031005028635263443,
0.09993709623813629,
0.021369321271777153,
0.0713389590382576,
-0.15755383670330048,
-0.14051935076713562,
-0.007410749327391386,
-0.058618348091840744,
-0.035206157714128494,
0.33271729946136475,
-0.03435369208455086,
-0.12422872334718704,
-0.0003980100154876709,
0.031019993126392365,
0.01075106393545866,
0.03653845191001892,
0.04649839550256729,
0.06335780769586563,
-0.032576318830251694,
-0.06498352438211441,
-0.1073945090174675,
-0.11493296176195145,
-0.11878567188978195,
0.011996769346296787,
-0.03684579208493233,
-0.012827071361243725,
0.0034128359984606504,
-0.0005068609025329351,
0.05322897806763649,
-0.002329401206225157,
-0.03598849102854729,
0.02164934016764164,
-0.08783557265996933,
0.13390164077281952,
-0.023229414597153664,
-0.09756238013505936,
-0.15027712285518646,
0.056640222668647766,
0.13834898173809052,
-0.07928603887557983,
-0.06216045469045639,
-0.06697385013103485,
0.11495798081159592,
0.03627346083521843,
-0.09200626611709595,
0.0721508264541626,
0.06732729077339172,
0.09246539324522018,
-0.0017328669782727957,
0.07956627756357193,
0.008721417747437954,
-0.1152866929769516,
0.018596801906824112,
-0.06981411576271057,
0.03976467624306679,
0.015136388130486012,
-0.09520126134157181,
-0.06077251210808754,
0.020763078704476357,
0.15048132836818695,
-0.016549237072467804,
-0.0019780530128628016,
-0.026520151644945145,
-0.049451794475317,
-0.09870624542236328,
0.10496341437101364,
0.02854848839342594,
0.058613602072000504,
0.03968057408928871,
-0.09090602397918701,
0.04789932444691658,
-0.06945684552192688,
-0.05531185120344162,
0.09413164854049683,
0.011787410825490952,
0.009217091836035252,
-0.18139296770095825,
-0.07002417743206024,
-0.08595653623342514,
0.04155455902218819,
0.025401918217539787,
-0.04081869125366211,
0.027675839141011238,
0.08118594437837601,
0.009217609651386738,
-0.08256660401821136,
-0.07899926602840424,
-0.04572772979736328,
0.08792851120233536,
-0.048532769083976746,
0.03311331570148468,
-0.11271436512470245,
0.05383778363466263,
-0.14321017265319824,
0.047025956213474274,
-0.14321719110012054,
-0.07276052236557007,
-0.05065960809588432,
0.007824338972568512,
-0.05406976491212845,
-0.06537947058677673,
-0.039419617503881454,
-0.005753790959715843,
0.059945859014987946,
0.10426051169633865,
-0.0747876837849617,
-0.029770206660032272,
0.04474959895014763,
-0.1001264676451683,
-0.04861541464924812,
0.02577180229127407,
-0.015611126087605953,
0.008471760898828506,
0.07473267614841461,
0.17011871933937073,
0.021100839599967003,
-0.06425514817237854,
-0.10623878240585327,
-0.057043060660362244,
0.05388006195425987,
-0.14113225042819977,
0.07434436678886414,
-0.022031839936971664,
0.025308052077889442,
-0.04457305744290352,
-0.07263091206550598,
0.05535515770316124,
0.06592553853988647,
-0.06408588588237762,
-0.03346512094140053,
-0.0795675665140152,
0.026654155924916267,
-0.017574625089764595,
0.010944010689854622,
-0.043097104877233505,
0.036827173084020615,
0.12159865349531174,
0.06626740843057632,
-0.03438194468617439,
0.06645967066287994,
-0.0009156214073300362,
0.1349480152130127,
-0.0735214352607727,
-0.10659078508615494,
-0.0970568135380745,
0.0437358096241951,
0.006847860291600227,
0.05065007507801056,
0.15863864123821259,
0.04501583054661751,
-0.02035343088209629,
0.05059814453125,
-0.042996346950531006,
-0.05729473754763603,
-0.11079121381044388,
-0.024749260395765305,
0.018809901550412178,
-0.15696468949317932,
-0.009598536416888237,
-0.030239960178732872,
0.10611601918935776,
-0.129091277718544,
-0.02279103733599186,
0.0371193066239357,
-0.09826355427503586,
0.03759680315852165,
-0.0027259846683591604,
0.09463311731815338,
0.09775141626596451,
-0.07088792324066162,
0.03372044861316681,
0.03890671581029892,
0.05116857960820198,
-0.024684052914381027,
0.12013620138168335,
-0.06671902537345886,
-0.02131936512887478,
0.10993694514036179,
-0.07254622876644135,
-0.08438088744878769,
-0.05667524039745331,
0.006852392107248306,
-0.01484823040664196,
-0.05013462156057358,
0.07562696933746338,
0.08397743850946426,
-0.033712953329086304,
0.09385664761066437,
-0.11766490340232849,
0.017337772995233536,
-0.02782774157822132,
-0.14391809701919556,
-0.05096917971968651,
0.07495350390672684,
0.10861095786094666,
-0.012860500253736973,
0.09768379479646683,
0.1679132729768753,
-0.17725637555122375,
0.13398276269435883,
0.03489774465560913,
-0.06335136294364929,
-0.05664203688502312,
0.026192544028162956,
0.06412165611982346,
0.06847141683101654,
0.04528326541185379,
-0.02367648109793663,
0.02377612516283989,
-0.010648186318576336,
-0.01746230386197567,
-0.14065034687519073,
-0.1037367433309555,
-0.01653173379600048,
0.00044656533282250166,
-0.05104289576411247,
-0.04766220226883888,
-0.08919563889503479,
0.03215600177645683,
-0.051006026566028595,
-0.07608142495155334,
0.021045103669166565,
0.012445985339581966,
-0.07633420079946518,
0.039948489516973495,
-0.11643491685390472,
-0.004527444485574961,
-0.18511642515659332,
-0.08698654174804688,
-0.07327248156070709,
0.0338737778365612,
0.06317770481109619,
0.002217392437160015,
0.005025036633014679,
-0.06915494054555893,
-0.12107211351394653,
-0.00700245751067996,
-0.10167492181062698,
-0.08060599118471146,
0.07797156274318695,
-0.0024152444675564766,
-0.0819312110543251,
-0.04040437564253807,
-0.01721195876598358,
-0.09289845824241638,
0.08733464777469635,
-0.00013068102998659015,
0.1182970181107521,
0.105464868247509,
0.04954195395112038,
-0.059434495866298676,
-0.041164331138134,
0.07153261452913284,
-0.0426633395254612,
-0.01593468338251114,
0.27514082193374634,
0.059728603810071945,
-0.005236639175564051,
0.04271126911044121,
0.08839194476604462,
-0.01399014052003622,
0.04844323918223381,
-0.0701310783624649,
-0.10115053504705429,
-0.289471834897995,
-0.055909350514411926,
-0.05920664966106415,
0.0039503686130046844,
-0.026325037702918053,
0.009909559972584248,
0.16739614307880402,
0.11960999667644501,
-0.02938953973352909,
0.0690726563334465,
0.07666272670030594,
0.035393666476011276,
0.1211671456694603,
-0.028846798464655876,
0.07884469628334045,
-0.061542026698589325,
0.02059679478406906,
0.12250421196222305,
0.09036039561033249,
0.17049050331115723,
0.10980179905891418,
0.1022825539112091,
0.09881643205881119,
0.09005995839834213,
-0.01903369650244713,
0.07642877101898193,
0.013641278259456158,
0.07217871397733688,
-0.005949982441961765,
-0.15199878811836243,
-0.03661751002073288,
0.09125583618879318,
0.009116770699620247,
-0.037568915635347366,
0.037608079612255096,
-0.10094703733921051,
-0.0433584526181221,
0.07936951518058777,
0.08692708611488342,
-0.20095732808113098,
0.020049309358000755,
0.057484351098537445,
0.10444404184818268,
0.021621743217110634,
0.01455017365515232,
0.1275494396686554,
-0.0469726100564003,
0.055318206548690796,
0.049587637186050415,
0.01697428524494171,
-0.07368078082799911,
-0.07040321826934814,
-0.07221707701683044,
-0.08460012823343277,
-0.001809125766158104,
-0.004436265677213669,
-0.249098002910614,
0.09091976284980774,
0.046440575271844864,
0.001860099844634533,
0.10513532906770706,
0.045219581574201584,
0.04914204031229019,
0.13206878304481506,
0.11902275681495667,
-0.011946391314268112,
-0.009859551675617695,
-0.08280854672193527,
-0.11088261008262634,
-0.04371050000190735,
-0.034368131309747696,
-0.005534231662750244,
0.015116211026906967,
-0.0026685185730457306,
0.01728205382823944,
-0.006505228579044342,
0.11474024504423141,
-0.24127016961574554,
-0.05845354497432709,
-0.0046670930460095406,
0.1104193702340126,
0.011658890172839165,
-0.04617442190647125,
-0.07643311470746994,
0.019870571792125702,
0.08245868980884552,
-0.0919395238161087,
-0.03978076949715614,
-0.019957488402724266,
-0.1326972395181656,
0.05255468562245369,
0.01026906631886959,
0.051196858286857605,
0.022246772423386574,
-0.06730220466852188,
-0.1295350193977356,
-0.1012180969119072,
-0.009393512271344662,
-0.04266510158777237,
-0.11849585920572281,
-0.02696038968861103,
0.05549868196249008,
0.04799465090036392,
0.15514396131038666,
0.025097975507378578,
0.08832620829343796,
-0.016316434368491173,
-0.048781201243400574,
-0.010464648716151714,
0.0954953134059906,
0.18399880826473236,
-0.028757985681295395,
-0.11747492104768753,
-0.05268879607319832,
-0.000729720457457006,
-0.058235060423612595,
0.09096892178058624,
0.1618049591779709,
-0.006881503853946924,
0.07770410180091858,
0.17039236426353455,
-0.144944429397583,
-0.1587289720773697,
0.010354741476476192,
-0.047574322670698166,
-0.021941283717751503,
0.060371220111846924,
-0.2632114887237549,
0.020214896649122238,
0.14795729517936707,
-0.048989344388246536,
0.09516861289739609,
-0.2842086851596832,
-0.05288372188806534,
0.006367953028529882,
0.04188725724816322,
0.0918109267950058,
-0.12148881703615189,
-0.06920991837978363,
-0.10591114312410355,
-0.07588690519332886,
0.059697918593883514,
-0.050401218235492706,
0.12153349071741104,
-0.035640157759189606,
0.004344973247498274,
0.002653226489201188,
-0.021922005340456963,
0.05815625935792923,
-0.03618023172020912,
0.10963211208581924,
-0.06731054931879044,
-0.04160861298441887,
0.1160225197672844,
-0.052009668201208115,
0.10910183191299438,
-0.08276204019784927,
-0.04340102896094322,
-0.1161268875002861,
-0.020305469632148743,
-0.03375760838389397,
0.1395820677280426,
-0.01755034364759922,
-0.06439539790153503,
-0.048635926097631454,
0.04214947670698166,
-0.06590762734413147,
0.061643749475479126,
0.22039386630058289,
-0.04629167541861534,
-0.011533157899975777,
0.15820929408073425,
0.13056300580501556,
0.02326812408864498,
-0.058680348098278046,
0.03584013506770134,
-0.07085398584604263,
0.024327540770173073,
-0.12334472686052322,
-0.05415615066885948,
0.03242265433073044,
0.06237151101231575,
0.02874244563281536,
0.04794963449239731,
-0.0684463158249855,
0.13710787892341614,
0.101890929043293,
-0.17828890681266785,
0.08669710904359818,
-0.008651303127408028,
0.10705164819955826,
0.037644222378730774,
0.00013223441783338785,
0.18218518793582916,
-0.1385854035615921,
-0.029918251559138298,
0.00015094295667950064,
0.001941006281413138,
-0.09999048709869385,
0.0846179872751236,
0.11289656907320023,
-0.08474151045084,
-0.07417964190244675,
0.11995094269514084,
0.1702837347984314,
0.07564231753349304,
0.006988828536123037,
-0.010364843532443047,
0.03376098722219467,
-0.09341247379779816,
-0.08200683444738388,
-0.01809852384030819,
-0.11368739604949951,
-0.1042538732290268,
-0.05326428264379501,
-0.034960608929395676,
-0.043632879853248596,
0.14360001683235168,
0.03327533230185509,
0.03486812859773636,
-0.004985887091606855,
-0.009957116097211838,
-0.01583835855126381,
0.03312798589468002,
-0.14702609181404114,
0.13087689876556396,
-0.07491490989923477,
0.06537383794784546,
0.0007866212399676442,
-0.025977930054068565,
-0.013776412233710289,
0.006678220350295305,
-0.046343374997377396,
0.03684690594673157,
0.007939279079437256,
0.0186466034501791,
-0.07294625788927078,
-0.02223360538482666,
-0.040175944566726685,
0.07291603088378906,
-0.023358026519417763,
0.06481190770864487,
-0.046624522656202316,
0.028924468904733658,
-0.03155747428536415,
0.1373758465051651,
-0.1843593418598175,
-0.04353705421090126,
-0.03449731320142746,
-0.027252035215497017,
0.009322536177933216,
-0.001471522031351924,
0.015091736800968647,
-0.01614418625831604,
-0.1210082620382309,
0.039222247898578644,
0.05395231395959854,
0.05144583806395531,
-0.004937237128615379,
-0.13072064518928528,
-0.0019820230081677437,
0.004692397080361843,
-0.04028334468603134,
0.0332115963101387,
0.08022298663854599,
-0.09859878569841385,
-0.025656824931502342,
0.01754262112081051,
-0.11872489750385284,
-0.03850702568888664,
0.04374183341860771,
0.18126100301742554,
0.06961746513843536,
0.14543171226978302,
-0.01981954649090767,
-0.00877667311578989,
-0.12704889476299286,
-0.014250426553189754,
0.01785392500460148,
-0.077211394906044,
-0.23004736006259918,
-0.010686026886105537,
0.006761823780834675,
0.007779507897794247,
0.05408552661538124,
0.11535865813493729,
-0.13387273252010345,
-0.042020805180072784,
0.09700607508420944,
0.08490725606679916,
0.03687011078000069,
0.07765795290470123,
0.0008272328996099532,
-0.016616471111774445,
-0.046971023082733154,
0.07559143006801605,
0.05179176479578018,
0.008669433183968067,
0.09878157824277878,
0.08092376589775085,
-0.005670014303177595,
-0.013741605915129185,
0.09623108059167862,
-0.007432838901877403,
0.023902831599116325,
-0.037037935107946396,
0.06685437262058258,
0.06108878552913666,
-0.09156488627195358,
0.1621900051832199,
0.057686105370521545,
-0.09963689744472504,
0.0586874820291996,
-0.00012048421922372654,
-0.015740148723125458,
-0.10273422300815582,
-0.15948960185050964,
-0.0566483773291111,
-0.0692722499370575,
0.016860563308000565,
-0.10803015530109406,
0.0049347542226314545,
0.16881217062473297,
-0.063571035861969,
-0.047731488943099976,
0.010566454380750656,
-0.05225381255149841,
-0.016716256737709045,
0.029948949813842773,
-0.015768440440297127,
-0.009272458963096142,
-0.11374491453170776,
-0.06918167322874069,
0.052306607365608215,
-0.07436101138591766,
0.028426194563508034,
0.05631265044212341,
0.1136908233165741,
-0.021100517362356186,
0.030902143567800522,
-0.05609019100666046,
-0.02492394857108593,
0.032586533576250076,
0.06628922373056412,
0.138101264834404,
0.06628463417291641,
-0.00996769592165947,
0.0598955899477005,
0.11507956683635712,
-0.006720768287777901,
0.07628430426120758,
-0.030287649482488632,
0.09142103046178818,
-0.03144112229347229,
0.041693639010190964,
0.02757067233324051,
-0.050348442047834396,
0.026553446426987648,
0.07541120052337646,
0.1417488157749176,
0.015186450444161892,
0.016763798892498016,
-0.017852075397968292,
0.005713651888072491,
-0.022374002262949944,
0.10020658373832703,
0.03211429715156555,
0.12063383311033249,
-0.03648409992456436,
-0.0004154857888352126,
-0.07784681767225266,
0.07035457342863083,
-0.08490017056465149,
-0.0001655815722187981,
-0.057344477623701096,
-0.08751387149095535,
-0.00880094338208437,
0.06471480429172516,
-0.015300984494388103,
0.07572954893112183,
0.08092453330755234,
-0.10476194322109222,
-0.02463354915380478,
-0.01917591691017151,
0.07880331575870514,
-0.041068270802497864,
0.0411774218082428,
-0.08269967138767242,
-0.04135313257575035,
0.010293432511389256,
-0.013556042686104774,
-0.1278102993965149,
-0.0795670598745346,
0.0909259170293808,
0.012332943268120289,
0.20000633597373962,
0.017642971128225327,
0.16142861545085907,
-0.005088455975055695,
0.04234994947910309,
-0.030733268707990646,
0.15165495872497559,
0.027928264811635017,
-0.0915398970246315,
-0.002430132357403636,
-0.04511237144470215,
-0.030976150184869766,
0.23785747587680817,
0.02027328498661518,
0.10330535471439362,
0.1059466153383255,
0.10354755818843842,
0.05238119140267372,
-0.09971212595701218,
0.01708989404141903,
-0.1592760533094406,
0.10418128222227097,
0.03700405731797218,
-0.05748974531888962,
-0.062224168330430984,
-0.0747804045677185,
-0.02301906980574131,
0.10497705638408661,
-0.017889847978949547,
-0.0067163994535803795,
-0.05490774288773537,
0.012666390277445316,
-0.01714341528713703,
0.06057196855545044,
-0.21786293387413025,
-0.02679397538304329,
-0.07568319141864777,
-0.036460213363170624,
-0.08005309849977493,
-0.05708741024136543,
0.06339531391859055,
-0.026325123384594917,
-0.008008147589862347,
0.05064736306667328,
0.015362977981567383,
0.022974934428930283,
-0.07924209535121918,
-0.052468616515398026
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the Libri3Mix dataset.
Training config:
```yml
data:
n_src: 3
sample_rate: 8000
segment: 3
task: sep_clean
train_dir: data/wav8k/min/train-360
valid_dir: data/wav8k/min/dev
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 24
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results :
On Libri3Mix min test set :
```yaml
si_sdr: 8.581797049575108
si_sdr_imp: 11.977037288467368
sdr' 9.305885208641385
sdr_imp: 12.3943409734845
sir: 16.42030534048559
sir_imp: 19.508759460400984
sar: 10.641943911079238
sar_imp: -56.4345187842095
stoi: 0.8365148408724333
stoi_imp: 0.24401766199806396
```
License notice:
This work "ConvTasNet_Libri3Mix_sepclean_8k"
is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k"
is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris. | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_clean"]} | audio-to-audio | JorisCos/ConvTasNet_Libri3Mix_sepclean_8k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri3Mix",
"dataset:sep_clean",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_8k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_clean' task of the Libri3Mix dataset.
Training config:
Results :
On Libri3Mix min test set :
License notice:
This work "ConvTasNet_Libri3Mix_sepclean_8k"
is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0. "ConvTasNet_Libri3Mix_sepclean_8k"
is licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris. | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
58,
174
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepclean_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid. \nIt was trained on the 'sep_clean' task of the Libri3Mix dataset.\n\nTraining config:\n\n\nResults :\n\nOn Libri3Mix min test set :\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0. \"ConvTasNet_Libri3Mix_sepclean_8k\" \nis licensed under Attribution-ShareAlike 3.0 Unported by Cosentino Joris."
] | [
0.008011383935809135,
0.07501146197319031,
-0.0027324934490025043,
0.10980674624443054,
-0.005518995225429535,
0.004792625550180674,
0.2660927176475525,
0.015028293244540691,
-0.049662601202726364,
0.005639006849378347,
0.019612817093729973,
0.07857944816350937,
-0.023954611271619797,
0.023148303851485252,
-0.03406758978962898,
-0.058163098990917206,
-0.022481769323349,
-0.043256714940071106,
0.14222250878810883,
0.007399295456707478,
0.033524151891469955,
-0.08517711609601974,
0.05578387901186943,
-0.02164471335709095,
-0.07698946446180344,
0.021198542788624763,
0.08818849176168442,
-0.07079457491636276,
0.06893555819988251,
0.006962910760194063,
0.09865552186965942,
0.10519899427890778,
0.06314598768949509,
-0.09439440071582794,
0.008996800519526005,
-0.044207360595464706,
-0.04892978444695473,
0.08363856375217438,
0.08218913525342941,
-0.027544518932700157,
0.15478374063968658,
0.08956989645957947,
0.024815645068883896,
0.01807301864027977,
-0.11424858868122101,
0.052061814814805984,
-0.20051321387290955,
0.03712918981909752,
0.01716153509914875,
0.05609765276312828,
0.04997110366821289,
0.09947272390127182,
-0.14214134216308594,
0.028656555339694023,
0.12435887008905411,
-0.2668493092060089,
-0.03104330599308014,
0.1142234206199646,
0.02429812401533127,
0.12517836689949036,
0.01748121716082096,
0.026199325919151306,
0.09665294736623764,
0.021515564993023872,
0.06220144405961037,
-0.15677006542682648,
-0.13681849837303162,
-0.011038703843951225,
-0.06225701794028282,
-0.03476044535636902,
0.3355119526386261,
-0.029701560735702515,
-0.12382424622774124,
-0.00550927734002471,
0.03096953220665455,
0.0008052054326981306,
0.04194363206624985,
0.04584328085184097,
0.05960286408662796,
-0.033613480627536774,
-0.061974767595529556,
-0.09991855919361115,
-0.11467795819044113,
-0.11230695992708206,
0.015315462835133076,
-0.040214624255895615,
-0.008505545556545258,
0.0014207494677975774,
-0.002839940134435892,
0.0598728284239769,
-0.0054297368042171,
-0.04197913035750389,
0.020533815026283264,
-0.0860598161816597,
0.13576363027095795,
-0.027281681075692177,
-0.09969920665025711,
-0.15531787276268005,
0.055121585726737976,
0.14526350796222687,
-0.06782060116529465,
-0.05466397851705551,
-0.06463731080293655,
0.11715291440486908,
0.04172106087207794,
-0.08346842974424362,
0.07414594292640686,
0.0602056123316288,
0.0867079570889473,
0.004469436127692461,
0.07657795399427414,
0.006371831521391869,
-0.11684983223676682,
0.015957899391651154,
-0.05584137141704559,
0.032374970614910126,
0.015963586047291756,
-0.10004695504903793,
-0.05597561225295067,
0.01641017571091652,
0.15336397290229797,
-0.014894162304699421,
0.000053301453590393066,
-0.02371901087462902,
-0.04772647097706795,
-0.08676587790250778,
0.10230633616447449,
0.035914789885282516,
0.055257100611925125,
0.041741710156202316,
-0.08580633252859116,
0.04907318204641342,
-0.06911061704158783,
-0.051120955497026443,
0.09623412042856216,
0.008848204277455807,
0.0123170530423522,
-0.18067525327205658,
-0.05406089872121811,
-0.08856775611639023,
0.044543683528900146,
0.02634112909436226,
-0.043598972260951996,
0.028110895305871964,
0.08840367197990417,
0.008590761572122574,
-0.08507385104894638,
-0.0869201123714447,
-0.04670759290456772,
0.08402696251869202,
-0.053593166172504425,
0.030494175851345062,
-0.1301906853914261,
0.053709205240011215,
-0.13904796540737152,
0.04635469615459442,
-0.132054403424263,
-0.07865843176841736,
-0.04844390228390694,
-0.00018468026246409863,
-0.05338605120778084,
-0.06349128484725952,
-0.03089241124689579,
-0.0093406205996871,
0.05830338969826698,
0.09852443635463715,
-0.07153129577636719,
-0.025402076542377472,
0.0416841097176075,
-0.09825120866298676,
-0.051479849964380264,
0.030896950513124466,
-0.011858472600579262,
0.00300939055159688,
0.07615146785974503,
0.17404918372631073,
0.032678402960300446,
-0.05989569425582886,
-0.11070898920297623,
-0.05473732203245163,
0.06351739168167114,
-0.1439071148633957,
0.0735115334391594,
-0.02730725146830082,
0.035234276205301285,
-0.041269369423389435,
-0.06955032050609589,
0.05109265446662903,
0.07148527354001999,
-0.06363880634307861,
-0.03301650285720825,
-0.07244422286748886,
0.0205366313457489,
-0.0190496314316988,
0.014240245334804058,
-0.039657432585954666,
0.03918811306357384,
0.12170840799808502,
0.06618902087211609,
-0.03516450151801109,
0.06845977157354355,
-0.0010959538631141186,
0.13343605399131775,
-0.07310012727975845,
-0.10849196463823318,
-0.09439325332641602,
0.046141065657138824,
0.011208049021661282,
0.04412082955241203,
0.14916874468326569,
0.04455801844596863,
-0.022782817482948303,
0.049353864043951035,
-0.04413900896906853,
-0.06251917779445648,
-0.10807386785745621,
-0.02059624157845974,
0.006452323868870735,
-0.15222343802452087,
-0.011114603839814663,
-0.03204056993126869,
0.10106271505355835,
-0.12327739596366882,
-0.02216445840895176,
0.04026220738887787,
-0.0957513228058815,
0.03704875707626343,
-0.004703788086771965,
0.0916304737329483,
0.10120786726474762,
-0.07196119427680969,
0.033685024827718735,
0.039972659200429916,
0.04961935058236122,
-0.033561788499355316,
0.1101020947098732,
-0.0736854150891304,
-0.02416861616075039,
0.1064131036400795,
-0.060960542410612106,
-0.07322226464748383,
-0.06434004753828049,
0.0065897679887712,
-0.021157607436180115,
-0.04847456514835358,
0.08157342672348022,
0.08580121397972107,
-0.029271790757775307,
0.08853733539581299,
-0.11230868101119995,
0.020000537857413292,
-0.03110647015273571,
-0.1428104043006897,
-0.05397111922502518,
0.06780222803354263,
0.10935010015964508,
-0.011237336322665215,
0.089581198990345,
0.17761482298374176,
-0.17815299332141876,
0.1376095414161682,
0.033664949238300323,
-0.06417454779148102,
-0.055128876119852066,
0.025237098336219788,
0.05877165123820305,
0.07109924405813217,
0.03394726663827896,
-0.024633288383483887,
0.024570388719439507,
-0.006523505784571171,
-0.01424874272197485,
-0.14404450356960297,
-0.1007688120007515,
-0.021232416853308678,
0.003666886128485203,
-0.05097280070185661,
-0.046580348163843155,
-0.09372402727603912,
0.027863096445798874,
-0.049116238951683044,
-0.0831441879272461,
0.02540125697851181,
0.009306254796683788,
-0.07970933616161346,
0.038120005279779434,
-0.11208086460828781,
0.007119899149984121,
-0.1839929223060608,
-0.09300538152456284,
-0.07948198169469833,
0.027980726212263107,
0.06682636588811874,
0.009218689054250717,
0.010052520781755447,
-0.07472345232963562,
-0.14243732392787933,
-0.004656560253351927,
-0.09815727919340134,
-0.0822589322924614,
0.07362230867147446,
-0.0019125776598230004,
-0.07906147092580795,
-0.04131205752491951,
-0.015815850347280502,
-0.09088192880153656,
0.08923134207725525,
-0.004614143166691065,
0.11390112340450287,
0.11482768505811691,
0.05525354668498039,
-0.05646224692463875,
-0.037583015859127045,
0.06520015746355057,
-0.0458136685192585,
-0.015607450157403946,
0.2668706774711609,
0.0492858923971653,
-0.0027952047530561686,
0.05208353325724602,
0.08633893728256226,
-0.009864043444395065,
0.04880097880959511,
-0.07201181352138519,
-0.09737800061702728,
-0.28587618470191956,
-0.05151752755045891,
-0.05660580098628998,
0.007987250573933125,
-0.020399117842316628,
0.013791777193546295,
0.16773095726966858,
0.12268037348985672,
-0.027944864705204964,
0.062056414783000946,
0.07824613898992538,
0.037535861134529114,
0.10383283346891403,
-0.02586207166314125,
0.07719791680574417,
-0.058958347886800766,
0.024633118882775307,
0.11747045814990997,
0.09306381642818451,
0.16888485848903656,
0.11444713920354843,
0.09639953821897507,
0.10059424489736557,
0.1016850471496582,
-0.017585163936018944,
0.07412336766719818,
0.017476782202720642,
0.06930407136678696,
-0.007622787728905678,
-0.15145820379257202,
-0.027580341324210167,
0.09372389316558838,
0.014840458519756794,
-0.03841114416718483,
0.03422650322318077,
-0.10139003396034241,
-0.04755612462759018,
0.08952677249908447,
0.09510554373264313,
-0.1969219446182251,
0.02649896964430809,
0.06045641750097275,
0.10230515897274017,
0.02203822135925293,
0.017766403034329414,
0.12360519170761108,
-0.05178825557231903,
0.05594272539019585,
0.04809953272342682,
0.015747064724564552,
-0.07936721295118332,
-0.06946536898612976,
-0.06871455162763596,
-0.09246104955673218,
-0.0009270531591027975,
-0.0005706748343072832,
-0.260588675737381,
0.08399896323680878,
0.04207552596926689,
0.003169579431414604,
0.10230434685945511,
0.04252070188522339,
0.0454280823469162,
0.13987134397029877,
0.11101056635379791,
-0.01060429122298956,
-0.015541095286607742,
-0.0721646249294281,
-0.11160318553447723,
-0.037970609962940216,
-0.03756893798708916,
-0.0014043119736015797,
0.01990370824933052,
0.0010660055559128523,
0.020290210843086243,
-0.006703255232423544,
0.11963241547346115,
-0.2432194948196411,
-0.061669450253248215,
0.00048762824735604227,
0.11547524482011795,
0.021231278777122498,
-0.05022516846656799,
-0.07701088488101959,
0.02384996972978115,
0.07521957159042358,
-0.08823499828577042,
-0.03940930962562561,
-0.015773693099617958,
-0.1346861571073532,
0.04987004026770592,
0.007006038911640644,
0.04410477355122566,
0.023773860186338425,
-0.06870564073324203,
-0.12725673615932465,
-0.09628522396087646,
-0.006730178836733103,
-0.04002757743000984,
-0.12074746936559677,
-0.027925798669457436,
0.052418459206819534,
0.05184704437851906,
0.15242286026477814,
0.02507951855659485,
0.08436533808708191,
-0.016099290922284126,
-0.04811651259660721,
-0.008241764269769192,
0.10393615812063217,
0.17282375693321228,
-0.03152702748775482,
-0.11784457415342331,
-0.05756931006908417,
-0.008662940002977848,
-0.0620078481733799,
0.09017565101385117,
0.1643761843442917,
-0.003461532760411501,
0.07803338766098022,
0.17404434084892273,
-0.1460336148738861,
-0.14904803037643433,
0.002956799929961562,
-0.046905435621738434,
-0.02351495623588562,
0.06571538746356964,
-0.2594148814678192,
0.01851056143641472,
0.14817023277282715,
-0.0490717850625515,
0.09524496644735336,
-0.29333722591400146,
-0.053480423986911774,
0.014404261484742165,
0.043796785175800323,
0.09220153838396072,
-0.12225036323070526,
-0.06844372302293777,
-0.10323228687047958,
-0.08170489966869354,
0.05038377270102501,
-0.056546539068222046,
0.12177436798810959,
-0.03798181191086769,
-0.003000701777637005,
0.001871221698820591,
-0.024966610595583916,
0.058679018169641495,
-0.02601192519068718,
0.1069924458861351,
-0.06763431429862976,
-0.046587519347667694,
0.09981057792901993,
-0.055778514593839645,
0.10594754666090012,
-0.08177346736192703,
-0.047980982810258865,
-0.12310820817947388,
-0.01728043705224991,
-0.03754463419318199,
0.13545872271060944,
-0.019845636561512947,
-0.06423257291316986,
-0.04246368631720543,
0.03841826319694519,
-0.06047540903091431,
0.06303178519010544,
0.23262660205364227,
-0.043611425906419754,
-0.010696996003389359,
0.16451437771320343,
0.12277228385210037,
0.017489323392510414,
-0.05911746993660927,
0.024634648114442825,
-0.0711495652794838,
0.023944955319166183,
-0.1127040833234787,
-0.05551498755812645,
0.03333181515336037,
0.05978911742568016,
0.03521248698234558,
0.04880586639046669,
-0.0699918121099472,
0.13954007625579834,
0.1014447808265686,
-0.1755972057580948,
0.09214097261428833,
-0.009704326279461384,
0.10989636927843094,
0.03292883560061455,
0.0002641938626766205,
0.1828407347202301,
-0.1392044872045517,
-0.029818354174494743,
-0.0014415497425943613,
0.000987765146419406,
-0.10494592785835266,
0.08415699750185013,
0.11221889406442642,
-0.08191389590501785,
-0.0714050903916359,
0.12400942295789719,
0.17022129893302917,
0.0708499550819397,
0.006527496501803398,
-0.010205147787928581,
0.028184661641716957,
-0.09354293346405029,
-0.08296765387058258,
-0.023604711517691612,
-0.11359022557735443,
-0.10505656152963638,
-0.05814823508262634,
-0.03165016695857048,
-0.04724199324846268,
0.12836140394210815,
0.033777397125959396,
0.034436434507369995,
-0.006699930876493454,
-0.013997004367411137,
-0.017678143456578255,
0.03356137499213219,
-0.14659112691879272,
0.13492704927921295,
-0.08053633570671082,
0.0613536573946476,
0.0003061343159060925,
-0.026015156880021095,
-0.011915448121726513,
0.0036612628027796745,
-0.04805893078446388,
0.03478262946009636,
-0.0037267773877829313,
0.010768912732601166,
-0.07603399455547333,
-0.02351781725883484,
-0.03875616192817688,
0.07559807598590851,
-0.019543927162885666,
0.06382971256971359,
-0.0475766584277153,
0.027880296111106873,
-0.03080286644399166,
0.13843971490859985,
-0.17497338354587555,
-0.041630588471889496,
-0.037563275545835495,
-0.030751381069421768,
0.011429205536842346,
-0.0019497072789818048,
0.013694526627659798,
-0.01586565002799034,
-0.11584338545799255,
0.03688802570104599,
0.0513005405664444,
0.049884017556905746,
-0.009578953497111797,
-0.1262589395046234,
-0.00872746016830206,
0.004877806641161442,
-0.038423653692007065,
0.03315446153283119,
0.07740265130996704,
-0.10047057271003723,
-0.0354563444852829,
0.015512633137404919,
-0.11829373240470886,
-0.04042518883943558,
0.045485224574804306,
0.17483122646808624,
0.0703824982047081,
0.15155474841594696,
-0.0247961338609457,
-0.007832150906324387,
-0.11957324296236038,
-0.013207661919295788,
0.020745305344462395,
-0.06946524977684021,
-0.2230931967496872,
-0.014047529548406601,
0.0042914170771837234,
0.008893989026546478,
0.05292228236794472,
0.10242728888988495,
-0.13714711368083954,
-0.041305314749479294,
0.08472704142332077,
0.0831524133682251,
0.03663332015275955,
0.08983968943357468,
-0.0017705101054161787,
-0.01632109098136425,
-0.04285507649183273,
0.07629815489053726,
0.04776070639491081,
0.014260519295930862,
0.0934552401304245,
0.08144037425518036,
-0.006624865345656872,
-0.010982283391058445,
0.09294296056032181,
-0.0015884460881352425,
0.02214774675667286,
-0.03699803724884987,
0.07387994229793549,
0.06916233897209167,
-0.09094689041376114,
0.15844370424747467,
0.05501912534236908,
-0.09690742939710617,
0.04946345090866089,
0.001328859245404601,
-0.018234487622976303,
-0.10038676857948303,
-0.15434905886650085,
-0.05947563052177429,
-0.0724528506398201,
0.015930967405438423,
-0.10474658757448196,
0.007463808171451092,
0.17107032239437103,
-0.05954951047897339,
-0.05075782164931297,
0.009711671620607376,
-0.0477602519094944,
-0.018416251987218857,
0.035899337381124496,
-0.017793986946344376,
-0.011149004101753235,
-0.1117207333445549,
-0.06101638451218605,
0.04919067770242691,
-0.07804878056049347,
0.028188815340399742,
0.053158946335315704,
0.11207167059183121,
-0.02315489761531353,
0.0349811390042305,
-0.061308447271585464,
-0.02246159501373768,
0.029183335602283478,
0.06978772580623627,
0.1362803876399994,
0.06978298723697662,
-0.011863133870065212,
0.058584317564964294,
0.11319631338119507,
-0.008689600974321365,
0.07225543260574341,
-0.029857512563467026,
0.09440594166517258,
-0.02838931605219841,
0.03747924789786339,
0.025648752227425575,
-0.05343307927250862,
0.02976820059120655,
0.06344158202409744,
0.12871068716049194,
0.01395483873784542,
0.016284437850117683,
-0.013515585102140903,
0.006125632207840681,
-0.025463322177529335,
0.10216674208641052,
0.029373379424214363,
0.1155734658241272,
-0.034749701619148254,
0.008870427496731281,
-0.07683499157428741,
0.06968152523040771,
-0.0882851704955101,
-0.0038118907250463963,
-0.05179038643836975,
-0.08659645169973373,
-0.013847120106220245,
0.0656433179974556,
-0.013215051032602787,
0.08617540448904037,
0.07464666664600372,
-0.09771411120891571,
-0.03083173744380474,
-0.015573488548398018,
0.09004425257444382,
-0.03736848756670952,
0.04356696084141731,
-0.08443786948919296,
-0.040217023342847824,
0.01969153620302677,
-0.013879701495170593,
-0.12382399290800095,
-0.07329098135232925,
0.08917008340358734,
0.010503951460123062,
0.1980796456336975,
0.020300453528761864,
0.1651504784822464,
-0.0059165991842746735,
0.04256730526685715,
-0.029468387365341187,
0.1532498002052307,
0.023942364379763603,
-0.08983568102121353,
-0.0045644198544323444,
-0.04363827779889107,
-0.027175497263669968,
0.2359190136194229,
0.024261746555566788,
0.1028260663151741,
0.10393930971622467,
0.09941723942756653,
0.051083195954561234,
-0.10391288995742798,
0.01898765191435814,
-0.15405471622943878,
0.10877671837806702,
0.03567411005496979,
-0.061634939163923264,
-0.06337514519691467,
-0.07001161575317383,
-0.023724732920527458,
0.10430263727903366,
-0.015313010662794113,
-0.00779058737680316,
-0.05174914747476578,
0.0179597157984972,
-0.024024469777941704,
0.05760395899415016,
-0.21659715473651886,
-0.0238044410943985,
-0.07486645132303238,
-0.04196745157241821,
-0.08352946490049362,
-0.057167503982782364,
0.063148632645607,
-0.028588876128196716,
-0.011008763685822487,
0.042667608708143234,
0.011311009526252747,
0.022377967834472656,
-0.08995434641838074,
-0.05700355023145676
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_noisy` task of the Libri3Mix dataset.
Training config:
```yml
data:
n_src: 3
sample_rate: 16000
segment: 3
task: sep_noisy
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On Libri3Mix min test set :
```yml
si_sdr: 5.926151147554517
si_sdr_imp: 10.282912158535625
sdr: 6.700975236867358
sdr_imp: 10.882972447337504
sir: 15.364110064569388
sir_imp: 18.574476587171688
sar: 7.918866830474568
sar_imp: -0.9638973409971135
stoi: 0.7713777027310713
stoi_imp: 0.2078696167973911
```
License notice:
This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/).
"ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_noisy"]} | audio-to-audio | JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri3Mix",
"dataset:sep_noisy",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_noisy' task of the Libri3Mix dataset.
Training config:
Results:
On Libri3Mix min test set :
License notice:
This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0.
"ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0. \n\"ConvTasNet_Libri3Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0. \n\"ConvTasNet_Libri3Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
59,
201
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0. \n\"ConvTasNet_Libri3Mix_sepnoisy_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.026665382087230682,
0.1712208390235901,
-0.004182061180472374,
0.11517339199781418,
0.000575861893594265,
0.004951883107423782,
0.18665838241577148,
0.02443971298635006,
-0.06459333002567291,
0.011948943138122559,
0.049941230565309525,
0.11955967545509338,
-0.010809194296598434,
-0.010445842519402504,
-0.03583474084734917,
-0.019306760281324387,
-0.021294016391038895,
-0.02808360755443573,
0.018522070720791817,
0.05449727550148964,
0.04979116842150688,
-0.07073541730642319,
0.0661538615822792,
-0.007170700468122959,
-0.13105589151382446,
0.051362715661525726,
0.04701688513159752,
-0.05717536434531212,
0.0632179006934166,
0.01817045733332634,
0.09824160486459732,
0.08381208032369614,
0.09894239157438278,
-0.11405092477798462,
-0.0018010743660852313,
-0.05059484392404556,
-0.06055394932627678,
0.09491650015115738,
0.10619744658470154,
-0.04801526293158531,
0.14172442257404327,
0.04281279444694519,
0.008567756973206997,
0.030486080795526505,
-0.09822952747344971,
-0.006722994148731232,
-0.1892048418521881,
0.03782307356595993,
0.021746784448623657,
0.07675527781248093,
0.01519131287932396,
0.06470444053411484,
-0.13003802299499512,
0.033663347363471985,
0.12169115245342255,
-0.2127739042043686,
-0.037671446800231934,
0.0896521583199501,
0.011744058690965176,
0.07707466185092926,
-0.018374042585492134,
0.007284006103873253,
0.1030987948179245,
0.01699792593717575,
0.0537819042801857,
-0.11698059737682343,
-0.14575333893299103,
0.029939962550997734,
-0.06128671020269394,
-0.030228983610868454,
0.3434050977230072,
-0.008612672798335552,
-0.10146012902259827,
0.01763284206390381,
0.013478342443704605,
-0.007857690565288067,
0.03498535230755806,
0.021273987367749214,
0.06721410155296326,
-0.020742351189255714,
-0.05427686125040054,
-0.06533754616975784,
-0.10165674239397049,
-0.11954391002655029,
0.0095632653683424,
-0.061486467719078064,
-0.018375510349869728,
0.013520525768399239,
0.020381037145853043,
0.05392315611243248,
0.04051310569047928,
-0.05654352903366089,
0.03254384547472,
-0.06766735762357712,
0.06385067850351334,
-0.01293021161109209,
-0.05910903215408325,
-0.06222774088382721,
0.04807405546307564,
0.11933650821447372,
-0.0709814727306366,
-0.03601636737585068,
-0.02893197536468506,
0.07442976534366608,
0.022804176434874535,
-0.06844176352024078,
0.05406372249126434,
-0.019730867817997932,
0.07300923019647598,
0.012052041478455067,
0.04798851162195206,
0.003591392654925585,
-0.09148591756820679,
-0.03885433450341225,
-0.0636662021279335,
0.009120820090174675,
0.02987358346581459,
-0.08557884395122528,
-0.09613358974456787,
0.025162529200315475,
0.15720786154270172,
-0.035820312798023224,
0.031624890863895416,
-0.005392922554165125,
-0.04802452400326729,
-0.09743773937225342,
0.11235977709293365,
0.04313945025205612,
0.07287761569023132,
0.046290166676044464,
-0.08908507227897644,
0.03511172905564308,
-0.06256476789712906,
-0.04051104560494423,
0.08025118708610535,
0.05497462674975395,
0.01164761558175087,
-0.1461939960718155,
-0.09897752106189728,
-0.09380212426185608,
0.046033769845962524,
0.010246499441564083,
-0.054178979247808456,
-0.017568761482834816,
0.035038646310567856,
0.04740750417113304,
-0.04033753648400307,
-0.007502705790102482,
-0.0408925786614418,
0.09291569143533707,
-0.009109633974730968,
0.044072285294532776,
-0.07558200508356094,
0.04116729274392128,
-0.13617025315761566,
0.011674086563289165,
-0.09086313098669052,
0.004505994264036417,
-0.0692802220582962,
-0.0031544421799480915,
-0.09862834215164185,
-0.06256134063005447,
-0.05757811665534973,
-0.004420602694153786,
0.06162317469716072,
0.16929233074188232,
-0.1590796560049057,
-0.030585812404751778,
0.05774480104446411,
-0.08080264180898666,
-0.034498199820518494,
0.04573459178209305,
-0.03276202082633972,
-0.0003633788146544248,
0.06143582984805107,
0.14384984970092773,
-0.011281389743089676,
-0.05483892560005188,
-0.13331565260887146,
-0.07978362590074539,
0.07752981036901474,
-0.07689931243658066,
0.08498160541057587,
-0.03993780165910721,
-0.03907688334584236,
-0.04921121150255203,
-0.07542106509208679,
0.021819857880473137,
0.034463994204998016,
-0.07235851883888245,
-0.0468502901494503,
-0.08703383803367615,
0.06471049785614014,
0.014467560686171055,
-0.011888920329511166,
-0.04111732915043831,
-0.020704010501503944,
0.08729754388332367,
0.06903456896543503,
-0.04452059790492058,
0.058155253529548645,
-0.008923158049583435,
0.11045241355895996,
-0.09894044697284698,
-0.10351528972387314,
-0.11012664437294006,
0.03748087212443352,
-0.015679247677326202,
0.07471718639135361,
0.16255727410316467,
-0.0029221908189356327,
-0.01667886972427368,
0.05316225811839104,
-0.035351578146219254,
-0.06475626677274704,
-0.1019141748547554,
-0.005937133450061083,
0.019410308450460434,
-0.18526548147201538,
-0.02505674958229065,
0.008143988437950611,
0.13462720811367035,
-0.20619037747383118,
-0.020199820399284363,
0.05991015210747719,
-0.04271616414189339,
0.021089565008878708,
-0.044083546847105026,
0.05309179425239563,
0.08387576043605804,
-0.07984209060668945,
0.04730122163891792,
0.023430658504366875,
0.04038900136947632,
-0.06113060191273689,
0.04454672709107399,
-0.02044779807329178,
-0.04970225691795349,
0.11473971605300903,
-0.05933050811290741,
-0.08197284489870071,
-0.01971004530787468,
0.008278531022369862,
-0.03844516724348068,
-0.03479854390025139,
0.013206016272306442,
0.13889993727207184,
-0.05201764777302742,
0.08336365222930908,
-0.09724247455596924,
-0.009072136133909225,
-0.01836899109184742,
-0.1185842975974083,
-0.038657862693071365,
0.09142272174358368,
0.1041598916053772,
0.0561930276453495,
0.12297991663217545,
0.1555556207895279,
-0.16110827028751373,
0.13441739976406097,
0.029294481500983238,
-0.07867716997861862,
-0.06174192950129509,
0.007553798146545887,
0.04364297538995743,
0.06727661192417145,
-0.037646181881427765,
0.0030107118654996157,
0.03975817561149597,
-0.05428893864154816,
-0.00653965026140213,
-0.1604316085577011,
-0.07113710045814514,
0.008826049976050854,
-0.0027598219458013773,
-0.08647466450929642,
-0.018917033448815346,
-0.07053378224372864,
0.03417079523205757,
-0.07805405557155609,
-0.09059690684080124,
0.0334337092936039,
0.001195918070152402,
-0.10847591608762741,
0.05480021983385086,
-0.15040692687034607,
-0.05781717598438263,
-0.1953078806400299,
-0.07139193266630173,
-0.07711321860551834,
0.037939563393592834,
0.05727781355381012,
-0.05442534759640694,
0.0033343282993882895,
-0.05183368921279907,
-0.039355918765068054,
-0.00045108512858860195,
-0.09045495837926865,
-0.030264372006058693,
0.08344000577926636,
0.029074417427182198,
-0.09849761426448822,
-0.012786717154085636,
0.008397633209824562,
-0.07130127400159836,
0.07156013697385788,
0.00921670999377966,
0.14010773599147797,
0.09129627794027328,
0.027945270761847496,
-0.04363472759723663,
0.005176933482289314,
0.16558191180229187,
-0.057640329003334045,
0.00428706593811512,
0.22576506435871124,
0.03651272878050804,
0.004966055043041706,
0.0879029855132103,
0.11659705638885498,
-0.03707272186875343,
0.02497531846165657,
-0.04173422232270241,
-0.07051906734704971,
-0.3189135193824768,
-0.07862343639135361,
-0.05178239569067955,
-0.05100557953119278,
-0.03641798719763756,
0.011498351581394672,
0.11297010630369186,
0.111139215528965,
-0.006050693336874247,
0.07763165980577469,
0.04201144725084305,
0.04039840027689934,
0.1013716459274292,
0.00454019196331501,
0.08002724498510361,
-0.04716065526008606,
0.008663737215101719,
0.11084810644388199,
0.0815194696187973,
0.14768335223197937,
0.09546555578708649,
0.1018514335155487,
0.09553048759698868,
0.1375678926706314,
0.01605282723903656,
0.0336851142346859,
0.025481030344963074,
0.04554987698793411,
0.02465951256453991,
-0.1536753922700882,
-0.06577355414628983,
0.1134951114654541,
0.007462203036993742,
0.021245524287223816,
0.022403400391340256,
-0.07633999735116959,
-0.0058780238032341,
0.08856292068958282,
0.05473575368523598,
-0.2672533690929413,
-0.0016965785762295127,
0.05486955866217613,
0.08056636154651642,
0.0042984155006706715,
0.014554403722286224,
0.10036824643611908,
-0.050123341381549835,
0.058039095252752304,
0.029268208891153336,
0.034335918724536896,
-0.08348482847213745,
-0.06237383186817169,
-0.018635936081409454,
-0.0684727281332016,
0.01469508558511734,
0.009275374934077263,
-0.15769614279270172,
0.10573477298021317,
0.052026499062776566,
0.005981020163744688,
0.06893788278102875,
0.05780358985066414,
0.02304372750222683,
0.09316098690032959,
0.1565057337284088,
-0.003529657842591405,
-0.05313284322619438,
-0.0987711027264595,
-0.14086994528770447,
-0.036019787192344666,
-0.0036841172259300947,
-0.04171168431639671,
0.05275997146964073,
0.010759475640952587,
-0.00937280710786581,
-0.012356099672615528,
0.08079975843429565,
-0.24953816831111908,
-0.11393024772405624,
-0.006989302113652229,
0.0899650976061821,
0.05552779883146286,
-0.04656026139855385,
-0.0852942243218422,
-0.03154726326465607,
0.16143225133419037,
-0.13524839282035828,
-0.03961584344506264,
-0.036130767315626144,
-0.10683650523424149,
0.11359450966119766,
0.015215739607810974,
0.06323563307523727,
0.04037689045071602,
-0.03648754581809044,
-0.08704794198274612,
-0.07699237763881683,
0.00660076504573226,
-0.05350887030363083,
-0.11307064443826675,
-0.06604675203561783,
0.11493749171495438,
0.0711376816034317,
0.14005640149116516,
0.023618025705218315,
0.10357803106307983,
-0.01851447857916355,
-0.046873725950717926,
0.004792160354554653,
0.08380527049303055,
0.18864397704601288,
-0.002569447970017791,
-0.08426401764154434,
-0.13112537562847137,
0.008943134918808937,
-0.0924987867474556,
0.09115125238895416,
0.22718869149684906,
-0.02633639983832836,
0.0936952531337738,
0.1070559173822403,
-0.1333661526441574,
-0.13785643875598907,
0.04062190279364586,
0.013986347243189812,
-0.004851332399994135,
0.06951236724853516,
-0.25751379132270813,
0.046787720173597336,
0.14325332641601562,
-0.0357070192694664,
0.08031122386455536,
-0.3068581819534302,
-0.06504225730895996,
-0.012823665514588356,
0.03000701032578945,
0.002635512501001358,
-0.13367745280265808,
-0.07554127275943756,
-0.10569009929895401,
-0.11634773015975952,
0.07733745127916336,
0.02633577212691307,
0.0946245864033699,
-0.021572554484009743,
0.03989517688751221,
0.029717063531279564,
-0.018691817298531532,
0.11556506901979446,
-0.010308521799743176,
0.08272451162338257,
-0.02900380827486515,
-0.04689610004425049,
0.1163564994931221,
-0.01619243435561657,
0.07478651404380798,
-0.02324119582772255,
-0.009601200930774212,
-0.12787610292434692,
-0.009340252727270126,
-0.026439521461725235,
0.10443548858165741,
-0.04503916949033737,
-0.047165416181087494,
-0.03435486555099487,
0.03450104221701622,
-0.01421661488711834,
0.03559058904647827,
0.16904926300048828,
-0.05803298577666283,
-0.010488607920706272,
0.13204099237918854,
0.13621048629283905,
0.06313836574554443,
-0.09294790774583817,
0.04917483776807785,
-0.06998015940189362,
0.03324626758694649,
-0.14702484011650085,
-0.0021124889608472586,
0.07215982675552368,
0.07094329595565796,
0.027782617136836052,
0.04051140323281288,
-0.05693233385682106,
0.10210788995027542,
0.10827022790908813,
-0.20114678144454956,
0.08033105731010437,
-0.03289320319890976,
0.023708904162049294,
0.012197380885481834,
-0.025452053174376488,
0.16760918498039246,
-0.1229487881064415,
-0.04500364512205124,
0.01906743086874485,
0.015365837141871452,
-0.09008080512285233,
0.10582932829856873,
0.09655964374542236,
-0.06547919660806656,
-0.07590904831886292,
0.1236344426870346,
0.14628536999225616,
0.03663782775402069,
0.0012667016126215458,
-0.012519126757979393,
0.027796804904937744,
-0.05960176885128021,
-0.05613099783658981,
-0.01502645667642355,
-0.09155385196208954,
-0.10184262692928314,
-0.058114320039749146,
-0.02717071957886219,
-0.03532830998301506,
0.0675547644495964,
0.04622838646173477,
0.03246237710118294,
0.010269087739288807,
-0.02850799448788166,
-0.04747671261429787,
0.07048312574625015,
-0.05060403048992157,
0.11045582592487335,
-0.11108621954917908,
0.022918622940778732,
-0.028662020340561867,
-0.04636632651090622,
-0.0042452095076441765,
0.033647794276475906,
-0.045345909893512726,
0.03612774610519409,
-0.02155069261789322,
0.017814110964536667,
-0.05971449613571167,
-0.0006764029967598617,
-0.02981439046561718,
0.07667611539363861,
-0.031127015128731728,
0.060740839689970016,
-0.040317170321941376,
0.01738261803984642,
-0.015823282301425934,
0.1247786432504654,
-0.17018017172813416,
-0.03692308068275452,
0.004637755453586578,
-0.06634089350700378,
0.005340494681149721,
0.023267360404133797,
0.021483369171619415,
-0.028324058279395103,
-0.1667858511209488,
0.02755133807659149,
0.08161167800426483,
0.055557746440172195,
0.0025268844328820705,
-0.16798065602779388,
-0.012403839267790318,
0.023031238466501236,
-0.04392796382308006,
-0.0015583059284836054,
0.13954751193523407,
-0.08560466766357422,
-0.06466507166624069,
0.011722533963620663,
-0.091912180185318,
-0.032140083611011505,
0.06458256393671036,
0.2098175585269928,
0.06161126121878624,
0.1496754288673401,
-0.017743688076734543,
-0.005163031630218029,
-0.1279297024011612,
-0.0054039605893194675,
0.00013639606186188757,
-0.06787633895874023,
-0.22177939116954803,
-0.0033238728065043688,
0.037824004888534546,
-0.01048049796372652,
0.05644762143492699,
0.04965193569660187,
-0.06497729569673538,
-0.03740381449460983,
0.09934775531291962,
0.09820471704006195,
0.020279373973608017,
0.12391974776983261,
-0.006911036092787981,
-0.005964816547930241,
-0.0019449185347184539,
0.05665970221161842,
0.056521061807870865,
0.09186452627182007,
0.054653264582157135,
0.08033464103937149,
-0.012454192154109478,
0.0006761557888239622,
0.07244285941123962,
-0.02440364845097065,
-0.032454267144203186,
0.05321904644370079,
0.02766820788383484,
0.04557516425848007,
-0.09664321690797806,
0.19113868474960327,
0.04839082434773445,
-0.13624481856822968,
0.055245108902454376,
-0.0008059914107434452,
-0.04340721294283867,
-0.1051165908575058,
-0.1555548906326294,
-0.06560691446065903,
-0.07489164173603058,
0.04144354537129402,
-0.12889836728572845,
0.03637819364666939,
0.11218833923339844,
-0.07666652649641037,
-0.023813139647245407,
0.018470825627446175,
-0.04695506766438484,
-0.025432271882891655,
0.029177071526646614,
-0.0054248725064098835,
-0.03566505014896393,
-0.08866477757692337,
-0.055650848895311356,
0.08490617573261261,
-0.05100957676768303,
0.018922224640846252,
0.05175139009952545,
0.057032112032175064,
-0.0012716687051579356,
0.022278526797890663,
-0.06926478445529938,
-0.04424336925148964,
0.02393055148422718,
0.07853671163320541,
0.1333579272031784,
0.08014973253011703,
-0.006360783241689205,
0.03491411730647087,
0.12753845751285553,
-0.04196640104055405,
0.07730317860841751,
-0.05820006504654884,
0.024349885061383247,
-0.03253757581114769,
0.04340984299778938,
0.06602384150028229,
-0.09661196917295456,
0.05409575626254082,
0.08086767047643661,
0.14117273688316345,
-0.000675559276714921,
0.009476423263549805,
0.00782906822860241,
0.0055615343153476715,
-0.06962502002716064,
0.05056661367416382,
0.02276860736310482,
0.13555458188056946,
-0.06269970536231995,
-0.04657887667417526,
-0.11264650523662567,
0.04226383566856384,
-0.04208080843091011,
0.060941535979509354,
-0.08585331588983536,
-0.10375157743692398,
-0.00042826615390367806,
0.07782623916864395,
-0.05136777460575104,
-0.04711371287703514,
0.09554491937160492,
-0.10914693027734756,
-0.05166137218475342,
0.0008319365442730486,
0.06221362203359604,
-0.02922125719487667,
0.017868170514702797,
-0.08487046509981155,
-0.04160239174962044,
0.07288722693920135,
-0.0027713573072105646,
-0.1348080188035965,
-0.04920051991939545,
0.05406291037797928,
-0.050408169627189636,
0.21242043375968933,
0.014686467126011848,
0.20060649514198303,
0.006176302675157785,
0.0738435760140419,
-0.0751873254776001,
0.11109175533056259,
0.04535125941038132,
-0.11081112921237946,
0.022161049768328667,
0.03366760164499283,
-0.020145287737250328,
0.26375383138656616,
0.04452536627650261,
0.10178149491548538,
0.10544083267450333,
0.08585718274116516,
0.01440919004380703,
-0.09099461138248444,
0.022950559854507446,
-0.15242037177085876,
0.10110141336917877,
0.05741060525178909,
-0.05756416171789169,
-0.04683003947138786,
-0.05582141876220703,
0.0132681205868721,
0.0906764417886734,
0.04408557713031769,
0.017183130607008934,
-0.13156864047050476,
0.021972736343741417,
0.01594981923699379,
0.05948525667190552,
-0.13027514517307281,
-0.06900124251842499,
-0.07184752076864243,
-0.04145067557692528,
-0.07504851371049881,
0.0002142168377758935,
0.07321316748857498,
-0.028931204229593277,
-0.008231926709413528,
0.051980409771203995,
0.006582577247172594,
0.04896271228790283,
-0.06787518411874771,
-0.0647929236292839
] |
null | null | asteroid |
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_noisy` task of the Libri3Mix dataset.
Training config:
```yml
data:
n_src: 3
sample_rate: 8000
segment: 3
task: sep_noisy
train_dir: data/wav8k/min/train-360
valid_dir: data/wav8k/min/dev
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 24
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On Libri3Mix min test set :
```yml
si_sdr: 5.978836560066222
si_sdr_imp: 10.388889689413096
sdr: 6.8651365291740225
sdr_imp: 10.928018056925016
sir: 14.997089638783114
sir_imp: 18.08248357801549
sar: 8.127504792061933
sar_imp: -0.7869320540959925
stoi: 0.7669414686111115
stoi_imp: 0.20416563213078837
```
License notice:
This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_noisy"]} | audio-to-audio | JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k | [
"asteroid",
"pytorch",
"audio",
"ConvTasNet",
"audio-to-audio",
"dataset:Libri3Mix",
"dataset:sep_noisy",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'sep_noisy' task of the Libri3Mix dataset.
Training config:
Results:
On Libri3Mix min test set :
License notice:
This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri3Mix_sepnoisy_8k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri3Mix_sepnoisy_8k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
59,
205
] | [
"passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-Libri3Mix #dataset-sep_noisy #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'sep_noisy' task of the Libri3Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri3Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"ConvTasNet_Libri3Mix_sepnoisy_8k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"ConvTasNet_Libri3Mix_sepnoisy_8k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.021913092583417892,
0.19874775409698486,
-0.0038440008647739887,
0.1164637953042984,
-0.005544119980186224,
0.00902332179248333,
0.20239272713661194,
0.018122797831892967,
-0.07225649803876877,
-0.002805219264701009,
0.034475069493055344,
0.10739260166883469,
-0.027493715286254883,
-0.026906542479991913,
-0.041332703083753586,
-0.020591776818037033,
-0.019943129271268845,
-0.016334960237145424,
0.04740884527564049,
0.05546603351831436,
0.038714129477739334,
-0.07561305165290833,
0.057831764221191406,
-0.007524685002863407,
-0.13344477117061615,
0.05759972706437111,
0.04226978123188019,
-0.06984289735555649,
0.06326735764741898,
0.007107479032129049,
0.1053464412689209,
0.09731399267911911,
0.10045749694108963,
-0.09570669382810593,
0.004383242689073086,
-0.04094526171684265,
-0.06231533735990524,
0.10593245923519135,
0.1246250793337822,
-0.05191902443766594,
0.15864911675453186,
0.07532362639904022,
0.011104056611657143,
0.030260136350989342,
-0.09296314418315887,
0.0025033524725586176,
-0.18483000993728638,
0.035111118108034134,
0.016612974926829338,
0.08054690808057785,
0.025893349200487137,
0.06551694869995117,
-0.13127237558364868,
0.031361114233732224,
0.13926692306995392,
-0.21919704973697662,
-0.0319816879928112,
0.07872814685106277,
-0.007016889285296202,
0.10079094022512436,
-0.013407064601778984,
0.018329545855522156,
0.09292735159397125,
0.0208900049328804,
0.05883122980594635,
-0.12232009321451187,
-0.15475840866565704,
0.002593754092231393,
-0.049216073006391525,
-0.021948039531707764,
0.34114742279052734,
-0.01563374698162079,
-0.10769706219434738,
0.03073589876294136,
0.0021821085829287767,
-0.011008902452886105,
0.03397040441632271,
0.025051293894648552,
0.07000777125358582,
-0.03268417343497276,
-0.045446570962667465,
-0.06758741289377213,
-0.10269187390804291,
-0.12004321068525314,
0.0015603292267769575,
-0.03615956008434296,
-0.01371132954955101,
0.023137114942073822,
0.022665483877062798,
0.06470281630754471,
0.0657324343919754,
-0.050180528312921524,
0.033891137689352036,
-0.07204261422157288,
0.071726493537426,
-0.013958856463432312,
-0.05986890569329262,
-0.06785041093826294,
0.05316790193319321,
0.12162158638238907,
-0.07947573065757751,
-0.036012399941682816,
-0.03572062402963638,
0.07413216680288315,
0.037070710211992264,
-0.10542195290327072,
0.047023434191942215,
-0.01325222011655569,
0.09311022609472275,
0.0004995710332877934,
0.043240394443273544,
0.006230833940207958,
-0.09027034044265747,
-0.04018305614590645,
-0.06579337269067764,
0.009326850064098835,
0.027121512219309807,
-0.0864483043551445,
-0.08148758858442307,
0.011050763539969921,
0.1554098278284073,
-0.026652568951249123,
0.012499578297138214,
0.0015537453582510352,
-0.040761034935712814,
-0.08708319067955017,
0.11589515954256058,
0.05327308550477028,
0.07256624102592468,
0.0442466139793396,
-0.09247323870658875,
0.04964173585176468,
-0.06007859855890274,
-0.03724553808569908,
0.08496353030204773,
0.04864327237010002,
0.019983898848295212,
-0.16825278103351593,
-0.09991811960935593,
-0.09570298343896866,
0.05187487602233887,
0.011917964555323124,
-0.060046322643756866,
0.00025038106832653284,
0.05827373266220093,
0.04231475293636322,
-0.051764145493507385,
-0.018772130832076073,
-0.044916100800037384,
0.0897858589887619,
-0.014562193304300308,
0.04729695990681648,
-0.09393943101167679,
0.051130350679159164,
-0.14097082614898682,
0.015133204869925976,
-0.07451675087213516,
-0.006792227737605572,
-0.0734347477555275,
-0.0249642264097929,
-0.09531664848327637,
-0.06775542348623276,
-0.04553859680891037,
-0.014579536393284798,
0.06407323479652405,
0.14928679168224335,
-0.14077506959438324,
-0.01078752614557743,
0.03495681658387184,
-0.08628517389297485,
-0.030493002384901047,
0.04959884658455849,
-0.033297330141067505,
0.007402045652270317,
0.0513635128736496,
0.1408199965953827,
0.0194861963391304,
-0.03378818929195404,
-0.12504860758781433,
-0.07784129679203033,
0.07944057136774063,
-0.1114393025636673,
0.08854237198829651,
-0.025829656049609184,
-0.04696880280971527,
-0.043847400695085526,
-0.0680016279220581,
0.023297632113099098,
0.03902043029665947,
-0.06934217363595963,
-0.033648330718278885,
-0.08611888438463211,
0.07565224170684814,
0.004419238306581974,
0.01592586748301983,
-0.03506728634238243,
-0.007586120627820492,
0.08506833761930466,
0.07548035681247711,
-0.044373564422130585,
0.053792018443346024,
0.0018070442602038383,
0.10557357221841812,
-0.1283694952726364,
-0.10534527897834778,
-0.1162295714020729,
0.04619455337524414,
-0.010722598060965538,
0.07532709836959839,
0.1561027467250824,
0.01214046310633421,
-0.023783182725310326,
0.056722771376371384,
-0.04405032470822334,
-0.06791168451309204,
-0.11331687867641449,
-0.0028542715590447187,
0.013588683679699898,
-0.1601746380329132,
-0.025820622220635414,
-0.007462714333087206,
0.1010216623544693,
-0.18583659827709198,
-0.02559797465801239,
0.033593855798244476,
-0.04605324566364288,
0.01966911181807518,
-0.04309089481830597,
0.06416593492031097,
0.0861341580748558,
-0.08492479473352432,
0.04747866094112396,
0.03008633852005005,
0.044291116297245026,
-0.04144919663667679,
0.04132097586989403,
-0.008528277277946472,
-0.013308046385645866,
0.10109084099531174,
-0.06696254014968872,
-0.0760432705283165,
-0.027463503181934357,
0.007848044857382774,
-0.04490111768245697,
-0.05001150816679001,
0.036442458629608154,
0.15995734930038452,
-0.045911967754364014,
0.07864431291818619,
-0.10820356756448746,
0.005308712366968393,
-0.019358757883310318,
-0.11675504595041275,
-0.03750758618116379,
0.08136291056871414,
0.11729037016630173,
0.04539739713072777,
0.10838375240564346,
0.15846721827983856,
-0.17738547921180725,
0.12254785001277924,
0.03546838089823723,
-0.07729851454496384,
-0.051983583718538284,
-0.018916642293334007,
0.029397156089544296,
0.05468318238854408,
-0.01205662451684475,
0.010531923733651638,
0.039084143936634064,
-0.04393114149570465,
0.008508211001753807,
-0.1500941812992096,
-0.0759817436337471,
-0.00862924661487341,
0.00993465818464756,
-0.09690435975790024,
-0.024705305695533752,
-0.07871703058481216,
0.0381687730550766,
-0.08596569299697876,
-0.08726869523525238,
0.031412914395332336,
0.0021481122821569443,
-0.09992654621601105,
0.040247514843940735,
-0.1455339938402176,
-0.06275632977485657,
-0.19026075303554535,
-0.04959770664572716,
-0.08971453458070755,
0.03297024220228195,
0.06317239254713058,
-0.031596485525369644,
0.009583765640854836,
-0.05682089179754257,
-0.06902190297842026,
-0.013552062213420868,
-0.09543537348508835,
-0.026117097586393356,
0.07988190650939941,
0.02135021612048149,
-0.09227028489112854,
-0.0046524242497980595,
-0.0022456380538642406,
-0.07753510028123856,
0.0801372230052948,
0.01395107340067625,
0.12975628674030304,
0.07791650295257568,
0.019492408260703087,
-0.04966491833329201,
0.0067855482921004295,
0.13040189445018768,
-0.04384767636656761,
-0.005100931506603956,
0.23439475893974304,
0.0487348698079586,
-0.00021034938981756568,
0.0733347237110138,
0.12205330282449722,
-0.0298513974994421,
0.021172981709241867,
-0.044499170035123825,
-0.07481855154037476,
-0.3166273534297943,
-0.06690438091754913,
-0.03662700578570366,
-0.0619267001748085,
-0.03786008432507515,
0.010856871493160725,
0.09871135652065277,
0.11723782867193222,
-0.002043450251221657,
0.05528365075588226,
0.03385744243860245,
0.028329772874712944,
0.1080859899520874,
0.008588030003011227,
0.07917553931474686,
-0.04732393100857735,
0.021056680008769035,
0.10112258791923523,
0.08354286104440689,
0.1484455019235611,
0.08646687120199203,
0.09484664350748062,
0.08828146010637283,
0.13534730672836304,
0.027139442041516304,
0.06523992866277695,
0.03699444979429245,
0.05879569798707962,
0.015715524554252625,
-0.1497189700603485,
-0.06937824189662933,
0.09794213622808456,
0.007448567543178797,
0.012711784802377224,
0.02675016038119793,
-0.07194788008928299,
-0.02948746457695961,
0.10882958769798279,
0.040557581931352615,
-0.24894241988658905,
0.0020817634649574757,
0.04430330917239189,
0.08724808692932129,
-0.0015358064556494355,
0.02871415764093399,
0.09986758232116699,
-0.04723339155316353,
0.04112933948636055,
0.02363327331840992,
0.032140668481588364,
-0.09830630570650101,
-0.06472646445035934,
-0.02293454110622406,
-0.07617327570915222,
0.010771402157843113,
0.007308647036552429,
-0.16065268218517303,
0.09477941691875458,
0.04586493968963623,
0.00679453881457448,
0.08585290610790253,
0.04546315595507622,
0.02620941400527954,
0.10201265662908554,
0.1367999017238617,
-0.008468338288366795,
-0.031047821044921875,
-0.08216803520917892,
-0.15282611548900604,
-0.02658025361597538,
-0.028838379308581352,
-0.04053262993693352,
0.04478275030851364,
0.01583888754248619,
0.0031398627907037735,
-0.015613256953656673,
0.08558092266321182,
-0.2548760175704956,
-0.10649321973323822,
-0.0017605648608878255,
0.09703242033720016,
0.05405554175376892,
-0.04251938313245773,
-0.10024333000183105,
-0.01961432211101055,
0.13972848653793335,
-0.10647972673177719,
-0.04898788034915924,
-0.037880077958106995,
-0.12160210311412811,
0.11509156227111816,
0.01668892614543438,
0.060207437723875046,
0.03973988816142082,
-0.05402376875281334,
-0.07922275364398956,
-0.09066980332136154,
-0.004025844857096672,
-0.060371819883584976,
-0.11219780892133713,
-0.0539996437728405,
0.09509863704442978,
0.06534548103809357,
0.13801993429660797,
0.02344573102891445,
0.09676662087440491,
-0.017118357121944427,
-0.04452161118388176,
0.009652809239923954,
0.08794714510440826,
0.19441333413124084,
-0.0031140416394919157,
-0.08440274745225906,
-0.11294420063495636,
0.01579093374311924,
-0.0905410647392273,
0.09337617456912994,
0.214008167386055,
-0.028530506417155266,
0.10204605758190155,
0.11940620094537735,
-0.1348046511411667,
-0.1328374594449997,
0.024847935885190964,
0.025355510413646698,
-0.018789105117321014,
0.0802902951836586,
-0.26571184396743774,
0.0515378974378109,
0.14991934597492218,
-0.038576047867536545,
0.07916330546140671,
-0.2795340120792389,
-0.04927030950784683,
-0.00081890809815377,
0.02733941562473774,
0.027530087158083916,
-0.1188187450170517,
-0.064541757106781,
-0.09949324280023575,
-0.11718633770942688,
0.0805194228887558,
0.018876729533076286,
0.10306660830974579,
-0.03589871898293495,
0.0360308401286602,
0.03242519497871399,
-0.022361744195222855,
0.09984094649553299,
-0.014573582448065281,
0.08939965069293976,
-0.023336537182331085,
-0.04719585180282593,
0.08662576973438263,
-0.00895650964230299,
0.07371263206005096,
-0.006338461302220821,
0.0002447407750878483,
-0.10606147348880768,
-0.00914807990193367,
-0.030453315004706383,
0.11409611254930496,
-0.03420988470315933,
-0.050244107842445374,
-0.014939854852855206,
0.025973588228225708,
-0.018567722290754318,
0.03953032195568085,
0.19584611058235168,
-0.048478856682777405,
-0.009892221540212631,
0.15342512726783752,
0.13503913581371307,
0.06215139105916023,
-0.10026860237121582,
0.026815148070454597,
-0.07501345127820969,
0.032537512481212616,
-0.1310998648405075,
-0.00905681774020195,
0.07054037600755692,
0.07097969949245453,
0.01695922203361988,
0.040378671139478683,
-0.04624765366315842,
0.11912400275468826,
0.09838644415140152,
-0.1989050954580307,
0.08909062296152115,
-0.03915514051914215,
0.018849056214094162,
0.022229231894016266,
-0.00782354362308979,
0.18036632239818573,
-0.13398994505405426,
-0.05093206465244293,
0.01760675199329853,
0.018704785034060478,
-0.08297229558229446,
0.09884769469499588,
0.08696326613426208,
-0.07394535094499588,
-0.07712333649396896,
0.13666370511054993,
0.1571720391511917,
0.04644488915801048,
-0.0033786967396736145,
-0.020832646638154984,
0.02999824471771717,
-0.07514987885951996,
-0.05378242954611778,
-0.022125141695141792,
-0.0865226686000824,
-0.0960644856095314,
-0.06426769495010376,
-0.0046718530356884,
-0.040179722011089325,
0.055181682109832764,
0.04488076642155647,
0.01694442331790924,
-0.006875530816614628,
-0.02937246486544609,
-0.041405387222766876,
0.058319929987192154,
-0.06174285337328911,
0.12200983613729477,
-0.12139558047056198,
0.02150973677635193,
-0.029631223529577255,
-0.03311431035399437,
-0.011538397520780563,
0.03175678849220276,
-0.03308486193418503,
0.03427613526582718,
-0.06114708632230759,
0.02520185336470604,
-0.06600481271743774,
0.0125862006098032,
-0.03279635310173035,
0.0768127366900444,
-0.03996863216161728,
0.06189274415373802,
-0.04091056063771248,
0.024347301572561264,
-0.00968252681195736,
0.12865370512008667,
-0.1501365453004837,
-0.03467964753508568,
-0.015111037530004978,
-0.051342740654945374,
0.014609145931899548,
0.02968156337738037,
0.016469264402985573,
-0.027486851438879967,
-0.1588587462902069,
0.028634531423449516,
0.07650873810052872,
0.05351242050528526,
-0.009103430435061455,
-0.14924021065235138,
-0.010922682471573353,
0.022738631814718246,
-0.04812687262892723,
-0.005402968730777502,
0.1354687511920929,
-0.09431056678295135,
-0.07916665077209473,
0.005485172383487225,
-0.08480717241764069,
-0.0453142412006855,
0.04801135137677193,
0.20218771696090698,
0.07775469124317169,
0.16074159741401672,
-0.02118605375289917,
0.004357797093689442,
-0.11435872316360474,
-0.011922044679522514,
0.005091785918921232,
-0.057751379907131195,
-0.22464904189109802,
-0.004293609410524368,
0.0330214649438858,
-0.007811412680894136,
0.06477316468954086,
0.07274230569601059,
-0.09141848236322403,
-0.05364295840263367,
0.08651567250490189,
0.09417375177145004,
0.014532697387039661,
0.12011795490980148,
-0.01484071183949709,
-0.012409585528075695,
0.0004636133962776512,
0.06125883013010025,
0.04575271159410477,
0.08387818187475204,
0.04341411218047142,
0.08690344542264938,
-0.027335209771990776,
-0.01673881895840168,
0.06628108024597168,
-0.025463122874498367,
-0.0053765070624649525,
0.025868555530905724,
0.05341493710875511,
0.03513766825199127,
-0.10522028803825378,
0.17360909283161163,
0.033267226070165634,
-0.10373059660196304,
0.052289173007011414,
-0.0005046818405389786,
-0.02942524291574955,
-0.09831095486879349,
-0.1382339596748352,
-0.06727387756109238,
-0.07259532809257507,
0.034979671239852905,
-0.13137154281139374,
0.028233015909790993,
0.1110907718539238,
-0.07639509439468384,
-0.034907806664705276,
0.01631721295416355,
-0.023960744962096214,
-0.04044359177350998,
0.0356241837143898,
-0.005076092667877674,
-0.03572222962975502,
-0.10117875039577484,
-0.04941970109939575,
0.08536702394485474,
-0.04731226712465286,
0.019652782008051872,
0.044996216893196106,
0.04954902455210686,
-0.006709940265864134,
0.016961298882961273,
-0.07777606695890427,
-0.04234577715396881,
0.024180259555578232,
0.07920410484075546,
0.1357651948928833,
0.08537128567695618,
-0.019620275124907494,
0.035409122705459595,
0.13475389778614044,
-0.028842218220233917,
0.10028069466352463,
-0.05110260471701622,
0.03802880272269249,
-0.043551962822675705,
0.04482351616024971,
0.07148410379886627,
-0.08754043281078339,
0.046427883207798004,
0.05536196380853653,
0.14489328861236572,
0.0019842670299112797,
0.013033994473516941,
0.006858751177787781,
0.0038764236960560083,
-0.0590256005525589,
0.06305165588855743,
0.024158235639333725,
0.1321546882390976,
-0.06072000786662102,
-0.03927154093980789,
-0.10385047644376755,
0.057959236204624176,
-0.060184136033058167,
0.05459797382354736,
-0.08527344465255737,
-0.10012952983379364,
-0.009432675316929817,
0.07113894075155258,
-0.040420737117528915,
-0.037588898092508316,
0.0739559754729271,
-0.07896929234266281,
-0.0575917512178421,
-0.0030778131913393736,
0.04798082262277603,
-0.026733752340078354,
0.007361170835793018,
-0.0868542492389679,
-0.03891303390264511,
0.0668162852525711,
-0.009301434271037579,
-0.12601591646671295,
-0.034037619829177856,
0.06817129254341125,
-0.04374467208981514,
0.19937843084335327,
0.016059353947639465,
0.2002236545085907,
-0.001484489650465548,
0.07529475539922714,
-0.07656795531511307,
0.12299469113349915,
0.024712609127163887,
-0.12402437627315521,
0.033190466463565826,
0.023860743269324303,
-0.020438533276319504,
0.24414150416851044,
0.03419337794184685,
0.11319459974765778,
0.096715547144413,
0.09142980724573135,
0.018764596432447433,
-0.08370176702737808,
0.02221369743347168,
-0.13728812336921692,
0.11156248301267624,
0.03607240319252014,
-0.06235414370894432,
-0.04988253116607666,
-0.060358885675668716,
0.012818950228393078,
0.09641970694065094,
0.026146549731492996,
0.013548380695283413,
-0.13184860348701477,
0.017608635127544403,
0.018609480932354927,
0.060854654759168625,
-0.13836994767189026,
-0.04560713469982147,
-0.07278484106063843,
-0.05153688043355942,
-0.07833080738782883,
-0.025396108627319336,
0.06668435037136078,
-0.030748426914215088,
-0.005433583166450262,
0.039825595915317535,
-0.0030268137343227863,
0.04292682185769081,
-0.09132715314626694,
-0.06859633326530457
] |
null | null | asteroid |
## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 3
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
stft_kernel_size: 400
stft_n_filters: 512
stft_stride: 100
masknet:
architecture: DCCRN-CL
n_src: 1
optim:
lr: 0.001
optimizer: adam
weight_decay: 1.0e-05
training:
batch_size: 12
early_stop: true
epochs: 200
gradient_clipping: 5
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 13.329767398333798
si_sdr_imp: 9.879986092474098
sdr: 13.87279932997016
sdr_imp: 10.370136530757103
sir: Infinity
sir_imp: NaN
sar: 13.87279932997016
sar_imp: 10.370136530757103
stoi: 0.9140907015623948
stoi_imp: 0.11817087802185405
```
License notice:
This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DCCRNet", "audio-to-audio", "speech-enhancement"], "datasets": ["Libri1Mix", "enh_single"]} | audio-to-audio | JorisCos/DCCRNet_Libri1Mix_enhsingle_16k | [
"asteroid",
"pytorch",
"audio",
"DCCRNet",
"audio-to-audio",
"speech-enhancement",
"dataset:Libri1Mix",
"dataset:enh_single",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #DCCRNet #audio-to-audio #speech-enhancement #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/DCCRNet_Libri1Mix_enhsignle_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On Libri1Mix min test set :
License notice:
This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"DCCRNet_Libri1Mix_enhsignle_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/DCCRNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCCRNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCCRNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #DCCRNet #audio-to-audio #speech-enhancement #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/DCCRNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCCRNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCCRNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
69,
199
] | [
"passage: TAGS\n#asteroid #pytorch #audio #DCCRNet #audio-to-audio #speech-enhancement #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/DCCRNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCCRNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCCRNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.06406810134649277,
0.1361507624387741,
-0.0029677192214876413,
0.11285494267940521,
0.006176377180963755,
0.03191886097192764,
0.1829460859298706,
0.007558547426015139,
-0.035172708332538605,
0.04118183255195618,
0.013754659332334995,
0.12326472252607346,
-0.0035668855998665094,
-0.008540638722479343,
-0.06585719436407089,
-0.060958560556173325,
-0.004104181658476591,
-0.021811382845044136,
-0.023424014449119568,
0.041769757866859436,
0.06202821806073189,
-0.07848984003067017,
0.07273367047309875,
-0.014843896962702274,
-0.14817333221435547,
0.0510074608027935,
0.009170417673885822,
-0.05213286727666855,
0.06358938664197922,
0.05161992833018303,
0.13838402926921844,
0.09733614325523376,
0.09982144087553024,
-0.0976300910115242,
0.028527645394206047,
-0.009766411036252975,
-0.06880392879247665,
0.11344049870967865,
0.08506681025028229,
-0.09744998812675476,
0.09853623807430267,
0.03489232808351517,
-0.01035279780626297,
0.01008918508887291,
-0.09998642653226852,
-0.044653113931417465,
-0.1793423891067505,
0.015003858134150505,
0.007260942365974188,
0.05326514691114426,
0.023878300562500954,
0.059471312910318375,
-0.09469523280858994,
0.030110642313957214,
0.19426557421684265,
-0.18631303310394287,
-0.02329223044216633,
0.13558560609817505,
0.030255837365984917,
0.11070692539215088,
-0.05711594596505165,
0.023597612977027893,
0.08898729085922241,
0.01859564520418644,
0.07624750584363937,
-0.09686356782913208,
-0.10892711579799652,
0.018737027421593666,
-0.04062732681632042,
0.002275764709338546,
0.299382746219635,
-0.023878896608948708,
-0.07489198446273804,
0.024727968499064445,
-0.028108201920986176,
0.0004245684831403196,
0.019275028258562088,
0.019856957718729973,
0.04721453785896301,
-0.007362385746091604,
-0.04093549773097038,
-0.04099426791071892,
-0.08251556754112244,
-0.07722680270671844,
-0.04555627703666687,
-0.026960643008351326,
-0.027410628274083138,
0.015203826129436493,
0.02039545401930809,
0.05440785735845566,
0.09712785482406616,
-0.09001550823450089,
0.03307001665234566,
-0.05616225302219391,
0.05269797146320343,
-0.017164794728159904,
-0.0645570456981659,
-0.08977735042572021,
0.04116208106279373,
0.08402571827173233,
-0.048238061368465424,
-0.017607010900974274,
-0.03032619133591652,
0.08315089344978333,
0.07062368094921112,
-0.11302302032709122,
-0.013417798094451427,
-0.08392637968063354,
0.09490233659744263,
0.0046030133962631226,
0.06972429901361465,
-0.02840784564614296,
-0.10100381821393967,
-0.021354136988520622,
-0.10952246934175491,
-0.004801707807928324,
0.01839512214064598,
-0.07618983834981918,
-0.12517820298671722,
-0.0018121886532753706,
0.16863256692886353,
-0.042418308556079865,
0.05916661396622658,
0.012566580437123775,
-6.677034889435163e-7,
-0.07602649927139282,
0.103855662047863,
0.07401444762945175,
0.09530693292617798,
0.07764115184545517,
-0.09762316942214966,
0.0258139967918396,
-0.06374267488718033,
-0.07820330560207367,
0.08834224939346313,
0.07545701414346695,
0.008399685844779015,
-0.1308690756559372,
-0.06729667633771896,
-0.07899657636880875,
0.08514422178268433,
0.014072421938180923,
-0.02949538640677929,
-0.019596867263317108,
0.058393485844135284,
0.06950297951698303,
-0.02720421366393566,
-0.03157590329647064,
-0.054082900285720825,
0.0779535323381424,
-0.05800383910536766,
0.10193930566310883,
-0.13144293427467346,
0.06439347565174103,
-0.1043759286403656,
-0.0011389544233679771,
-0.1326560527086258,
0.027018962427973747,
-0.0652654767036438,
-0.07968079298734665,
-0.09728661179542542,
-0.0364089161157608,
-0.04370879381895065,
-0.014767899177968502,
0.0679783970117569,
0.1053868755698204,
-0.1718667447566986,
-0.0349653959274292,
0.057498618960380554,
-0.0750393196940422,
-0.011745516210794449,
0.051847781985998154,
-0.045098789036273956,
0.019959108904004097,
0.055013127624988556,
0.09389369934797287,
0.00360937905497849,
-0.12085440754890442,
-0.12991981208324432,
-0.08435360342264175,
0.07609733939170837,
-0.04102335870265961,
0.047017790377140045,
0.011927692219614983,
-0.0345638133585453,
-0.050290729850530624,
0.006765557918697596,
0.046843912452459335,
0.014088593423366547,
-0.05267605185508728,
-0.023995108902454376,
-0.06001969054341316,
0.04604165256023407,
-0.005555067211389542,
-0.029134677723050117,
-0.017750287428498268,
-0.0187413077801466,
0.07041602581739426,
0.0651441216468811,
-0.056808408349752426,
0.058109696954488754,
0.021707303822040558,
0.08445378392934799,
-0.1331336349248886,
-0.07792199403047562,
-0.14179232716560364,
-0.00584644777700305,
-0.019799184054136276,
0.05137518048286438,
0.13553190231323242,
-0.01601121760904789,
-0.03535861149430275,
0.05640379711985588,
-0.061429303139448166,
-0.0371561199426651,
-0.07106782495975494,
0.0014168662019073963,
0.011751274578273296,
-0.19008177518844604,
-0.02158517763018608,
-0.02482396364212036,
0.11559604853391647,
-0.17562423646450043,
-0.04254565387964249,
0.032618310302495956,
0.0227920301258564,
0.05419255048036575,
-0.04584469273686409,
0.060482025146484375,
0.08554051071405411,
-0.09247907251119614,
0.031090449541807175,
-0.008066671900451183,
0.05089613422751427,
-0.041340600699186325,
0.06980740278959274,
-0.029556768015027046,
-0.002897863509133458,
0.11329193413257599,
-0.021671636030077934,
-0.06339609622955322,
-0.07883745431900024,
0.03712455928325653,
-0.06283123046159744,
-0.07550342381000519,
0.009357652626931667,
0.1643052101135254,
-0.03338048607110977,
0.08448279649019241,
-0.09613405913114548,
0.033402711153030396,
0.004555870778858662,
-0.06709962338209152,
-0.03973885625600815,
0.03576371818780899,
0.08146177977323532,
0.027220452204346657,
0.1133241131901741,
0.17221754789352417,
-0.1408223807811737,
0.16525161266326904,
0.0510019026696682,
-0.06725367903709412,
-0.07321757078170776,
-0.03658832609653473,
0.016027625650167465,
0.06838482618331909,
0.045832544565200806,
0.03714725747704506,
0.03418247029185295,
-0.04125022515654564,
-0.0030397071968764067,
-0.152793288230896,
-0.03792199864983559,
0.00011331713903928176,
0.009156419895589352,
-0.14147265255451202,
0.000648229441139847,
-0.037880975753068924,
0.038546156138181686,
-0.10784810781478882,
-0.07747475802898407,
0.032842595130205154,
0.011935756541788578,
-0.07138212025165558,
0.04253523424267769,
-0.20181022584438324,
-0.13958853483200073,
-0.14917461574077606,
-0.07056514918804169,
-0.08624844253063202,
0.016352195292711258,
0.06916087865829468,
-0.023618878796696663,
-0.018107715994119644,
-0.036658428609371185,
0.0074550616554915905,
0.05965564399957657,
-0.10607346892356873,
-0.035279978066682816,
0.056366171687841415,
-0.022677283734083176,
-0.1367638111114502,
0.009753189980983734,
0.031695056706666946,
0.0001705372123979032,
0.10186625272035599,
0.023479213938117027,
0.11414779722690582,
0.0803140327334404,
0.04050411283969879,
-0.04883529618382454,
0.013606206513941288,
0.1395137459039688,
-0.06750843673944473,
0.042393624782562256,
0.1184827983379364,
0.046295538544654846,
0.03967158496379852,
0.12095095217227936,
0.11871720850467682,
-0.037562839686870575,
0.014877545647323132,
-0.028326664119958878,
-0.045928049832582474,
-0.27469921112060547,
-0.09246975183486938,
-0.07933372259140015,
-0.14187078177928925,
-0.04180888086557388,
-0.005503364372998476,
0.0447322353720665,
0.0853104293346405,
-0.03277463838458061,
0.060917943716049194,
0.01782969757914543,
0.020176421850919724,
0.08964431285858154,
-0.0006337009835988283,
0.07088584452867508,
-0.05108262225985527,
-0.0005935527151450515,
0.11032985895872116,
0.11774186789989471,
0.1871921867132187,
0.07666858285665512,
0.12852656841278076,
0.05734752491116524,
0.12549790740013123,
0.054523807018995285,
0.09447401762008667,
0.033607061952352524,
0.04514316841959953,
0.006459505297243595,
-0.13830183446407318,
-0.039907947182655334,
0.10305287688970566,
0.05842050909996033,
-0.0017972253262996674,
0.04580535367131233,
-0.07104676961898804,
-0.042716026306152344,
0.15630757808685303,
0.03554234653711319,
-0.27283596992492676,
0.008611011318862438,
0.036837536841630936,
0.11392814666032791,
-0.04510841891169548,
0.02164224348962307,
0.10636202991008759,
-0.016312560066580772,
0.07536222040653229,
0.004719358403235674,
0.052099891006946564,
-0.11849746853113174,
-0.09151534736156464,
-0.04179446026682854,
-0.030953586101531982,
-0.016472525894641876,
-0.013991069979965687,
-0.10597611218690872,
0.11734204739332199,
0.0649859681725502,
-0.004108969587832689,
0.05723350867629051,
0.037657734006643295,
0.040998972952365875,
0.08131460845470428,
0.08304175734519958,
0.016483481973409653,
-0.12163987010717392,
-0.09333670139312744,
-0.14346611499786377,
-0.021149473264813423,
0.01072052400559187,
-0.010985803790390491,
0.04421601817011833,
0.03016853705048561,
-0.03275509923696518,
-0.0038483834359794855,
0.0626094788312912,
-0.27908071875572205,
-0.15607671439647675,
0.02004445530474186,
0.18825791776180267,
0.0659528598189354,
-0.020930251106619835,
-0.11686675995588303,
0.03498855233192444,
0.12394749373197556,
-0.08538351207971573,
-0.030534064397215843,
-0.052775789052248,
-0.08445261418819427,
0.13774482905864716,
0.010301323607563972,
0.06599260121583939,
0.011102338321506977,
-0.004449660424143076,
-0.1055811420083046,
-0.07495234161615372,
0.04414397105574608,
-0.0539843887090683,
-0.0718994289636612,
-0.09340976923704147,
0.09085021167993546,
0.09362674504518509,
0.09776721149682999,
0.027694860473275185,
0.10689765214920044,
-0.013255381025373936,
-0.03376132622361183,
-0.0044074770994484425,
0.08925090730190277,
0.20683391392230988,
0.04809698462486267,
-0.0996183380484581,
-0.14847679436206818,
0.05341498926281929,
-0.08636754751205444,
0.0981394574046135,
0.22167058289051056,
-0.030422791838645935,
0.13842475414276123,
0.128633514046669,
-0.11485695838928223,
-0.1470162719488144,
0.024387402459979057,
0.044167064130306244,
0.0008477172232232988,
0.058432720601558685,
-0.28664442896842957,
0.050805460661649704,
0.10390494018793106,
-0.013479292392730713,
0.12745404243469238,
-0.2510106861591339,
-0.052814871072769165,
0.013292034156620502,
-0.020160138607025146,
0.04474978893995285,
-0.09441143274307251,
-0.042148344218730927,
-0.12977594137191772,
-0.16103598475456238,
0.10090361535549164,
0.034845154732465744,
0.11678721755743027,
-0.013089263811707497,
0.06159360334277153,
0.03436224162578583,
-0.007278537843376398,
0.1048789769411087,
0.007057060021907091,
0.09960626065731049,
-0.021529709920287132,
-0.038997843861579895,
0.12233193963766098,
-0.021277664229273796,
0.05158211663365364,
-0.05474625155329704,
-0.0049021607264876366,
-0.06635493040084839,
-0.008416003547608852,
-0.017868509516119957,
0.09615018218755722,
-0.02660439722239971,
-0.04550910368561745,
-0.06376619637012482,
0.023055091500282288,
0.008223749697208405,
0.012847937643527985,
0.23479124903678894,
-0.031056677922606468,
-0.012002326548099518,
0.1335824429988861,
0.06980423629283905,
-0.0211273692548275,
-0.10647793114185333,
0.037233542650938034,
-0.06806483864784241,
0.08017448335886002,
-0.14079773426055908,
0.03935232758522034,
0.08281517028808594,
0.0672268494963646,
0.038071781396865845,
0.04001573473215103,
-0.05672399327158928,
0.10551857948303223,
0.12380246818065643,
-0.17936860024929047,
0.09580472856760025,
-0.01229938119649887,
0.045268479734659195,
0.041963379830121994,
-0.030083978548645973,
0.19794291257858276,
-0.08778921514749527,
-0.06268402934074402,
0.011687453836202621,
0.022844405844807625,
-0.06133292615413666,
0.09232798963785172,
0.03745632618665695,
-0.0649932250380516,
-0.09114451706409454,
0.13590924441814423,
0.15352259576320648,
-0.08085056394338608,
-0.024081895127892494,
-0.021463163197040558,
0.017327681183815002,
-0.06674077361822128,
-0.002757059410214424,
0.041326481848955154,
-0.10033921152353287,
-0.06308432668447495,
-0.041266266256570816,
-0.011882061138749123,
-0.02634202502667904,
0.09819046407938004,
0.03476366773247719,
0.016344234347343445,
0.001349625294096768,
-0.03590305894613266,
-0.03511396422982216,
0.0739751011133194,
-0.006031323224306107,
0.13121244311332703,
-0.11008772999048233,
-0.05432486534118652,
-0.02549208141863346,
-0.04791376367211342,
-0.015905989333987236,
-0.0014226961648091674,
-0.04379965364933014,
0.000993038760498166,
-0.10533291101455688,
0.028314324095845222,
-0.05237817019224167,
-0.0016228159656748176,
-0.039053358137607574,
0.06838148832321167,
-0.024687275290489197,
0.05595772713422775,
-0.0380844809114933,
0.006527946330606937,
-0.029941510409116745,
0.13578425347805023,
-0.16251543164253235,
-0.0625784695148468,
0.0011221222812309861,
-0.05441084876656532,
0.041536323726177216,
0.05810106173157692,
-0.007821278646588326,
-0.07126212865114212,
-0.1929040104150772,
-0.011542841792106628,
0.10533890873193741,
0.06895583868026733,
0.010950818657875061,
-0.1975805163383484,
-0.017451485618948936,
-0.004307086113840342,
-0.02299913577735424,
-0.02692369930446148,
0.1920521855354309,
-0.0837509036064148,
-0.06545413285493851,
-0.0635327622294426,
-0.09658846259117126,
-0.03666903078556061,
0.03968176245689392,
0.2243490219116211,
0.06534155458211899,
0.14600390195846558,
-0.007502783089876175,
-0.012225710786879063,
-0.1102762371301651,
-0.013771099038422108,
-0.012409703806042671,
-0.08505842089653015,
-0.15843293070793152,
-0.01715751551091671,
0.037129513919353485,
-0.022924503311514854,
0.08041699975728989,
0.05369661748409271,
-0.14628395438194275,
-0.06393987685441971,
0.08760786801576614,
0.0035275230184197426,
0.01320358645170927,
0.09963018447160721,
-0.014002353884279728,
-0.02107595093548298,
-0.018757948651909828,
0.0830637589097023,
0.07136063277721405,
0.17220929265022278,
0.02365647256374359,
0.073523610830307,
0.0572693794965744,
-0.009237196296453476,
0.0665779709815979,
-0.06921476125717163,
-0.0057946559973061085,
0.056879673153162,
0.05475911498069763,
0.07293535768985748,
-0.06034970283508301,
0.12705671787261963,
0.016540125012397766,
-0.11518265306949615,
0.05522996559739113,
-0.037492066621780396,
-0.027320174500346184,
-0.0764765813946724,
-0.10067056119441986,
-0.07030998170375824,
-0.09958277642726898,
0.013735565356910229,
-0.14385588467121124,
0.04627146199345589,
0.05915740132331848,
-0.0767102837562561,
0.023900017142295837,
0.036775439977645874,
-0.0553731694817543,
-0.06961474567651749,
0.02991916425526142,
0.01822558417916298,
-0.03937825933098793,
-0.05852381885051727,
-0.049864836037158966,
0.09192708134651184,
-0.06499558687210083,
-0.009636729024350643,
0.07305900007486343,
0.08174779266119003,
0.028374919667840004,
-0.0013764075702056289,
-0.09247875958681107,
-0.04546075686812401,
0.021366732195019722,
0.06292393803596497,
0.12978540360927582,
0.0817243754863739,
-0.006066468078643084,
0.03913455083966255,
0.11589936912059784,
-0.032617729157209396,
0.10792817920446396,
-0.06706223636865616,
0.018807396292686462,
-0.06986626982688904,
0.052759863436222076,
0.05912264809012413,
-0.08106201887130737,
0.00569869764149189,
-0.0028016832657158375,
0.17170803248882294,
-0.016348037868738174,
0.006311141885817051,
0.008907094597816467,
0.00695385504513979,
-0.06587657332420349,
0.06035546585917473,
0.06484123319387436,
0.17684221267700195,
-0.06592600047588348,
-0.07144872844219208,
-0.1416129469871521,
0.03249387815594673,
-0.055349912494421005,
0.06066810339689255,
-0.09344376623630524,
-0.1036790981888771,
0.023401586338877678,
0.09111841768026352,
-0.01047089509665966,
-0.086049385368824,
0.08279918879270554,
-0.11021241545677185,
-0.057917289435863495,
-0.020074516534805298,
0.01889404095709324,
-0.027404332533478737,
0.017948072403669357,
-0.08492814749479294,
-0.05391078069806099,
0.15090809762477875,
-0.021781951189041138,
-0.13630399107933044,
-0.0439501591026783,
0.02248481474816799,
-0.15960797667503357,
0.14788034558296204,
0.00966362003237009,
0.1798892468214035,
0.012924270704388618,
0.11117706447839737,
-0.06461266428232193,
0.07730358093976974,
0.018691493198275566,
-0.12462945282459259,
0.013362018391489983,
0.055291734635829926,
-0.04855570197105408,
0.24453580379486084,
0.05043993890285492,
0.08621286600828171,
0.11011089384555817,
0.08426038920879364,
-0.012173853814601898,
-0.07084100693464279,
0.011699768714606762,
-0.11292323470115662,
0.09736742824316025,
0.012066185474395752,
-0.02249789610505104,
-0.044998303055763245,
-0.018146459013223648,
0.01713806763291359,
0.1326993703842163,
0.0659567192196846,
-0.007585759740322828,
-0.1602974385023117,
0.02704167366027832,
0.025537120178341866,
0.0863817036151886,
-0.10233712941408157,
-0.06658636033535004,
-0.06091685965657234,
-0.04647476226091385,
-0.049824874848127365,
0.01022894587367773,
0.040518928319215775,
-0.035501331090927124,
-0.004981083329766989,
-0.02009849064052105,
0.013267002999782562,
0.03831573575735092,
-0.08452620357275009,
-0.09396454691886902
] |
null | null | asteroid |
## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 3
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
stft_n_filters: 1024
stft_kernel_size: 1024
stft_stride: 256
masknet:
architecture: Large-DCUNet-20
fix_length_mode: pad
n_src: 1
optim:
lr: 0.001
optimizer: adam
weight_decay: 1.0e-05
training:
batch_size: 2
early_stop: true
epochs: 200
gradient_clipping: 5
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 13.154035391645971
si_sdr_imp: 9.704254085786271
sdr: 13.568058873121435
sdr_imp: 10.065396073908367
sar: 13.568058873121435
sar_imp: 10.065396073908367
stoi: 0.9199373340235417
stoi_imp: 0.12401751048300132
```
License notice:
This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DCUNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]} | audio-to-audio | JorisCos/DCUNet_Libri1Mix_enhsingle_16k | [
"asteroid",
"pytorch",
"audio",
"DCUNet",
"audio-to-audio",
"dataset:Libri1Mix",
"dataset:enh_single",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #DCUNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/DCUNet_Libri1Mix_enhsignle_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On Libri1Mix min test set :
License notice:
This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"DCUNet_Libri1Mix_enhsignle_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/DCUNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCUNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCUNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #DCUNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/DCUNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCUNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCUNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
61,
199
] | [
"passage: TAGS\n#asteroid #pytorch #audio #DCUNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/DCUNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DCUNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DCUNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.028802812099456787,
0.1623239517211914,
-0.0035291831009089947,
0.11824814230203629,
0.0004971114103682339,
0.03341802582144737,
0.185354545712471,
0.04431094974279404,
-0.012965656816959381,
0.017726212739944458,
0.049671851098537445,
0.09450403600931168,
-0.03414261341094971,
-0.03847721591591835,
-0.06463534384965897,
-0.0330752395093441,
-0.029688512906432152,
-0.01637701503932476,
0.03405206277966499,
0.03930945321917534,
0.03611389175057411,
-0.09292738139629364,
0.06482341885566711,
-0.019383884966373444,
-0.14972472190856934,
0.05262507125735283,
0.023324497044086456,
-0.0704672709107399,
0.08614230901002884,
-0.025084497407078743,
0.13826513290405273,
0.10842249542474747,
0.10971638560295105,
-0.09127895534038544,
0.0040609766729176044,
-0.03950999304652214,
-0.050410836935043335,
0.11424047499895096,
0.08455941081047058,
-0.08458983898162842,
0.13658098876476288,
0.04737836495041847,
0.023979397490620613,
0.014266951009631157,
-0.1058286726474762,
-0.06936663389205933,
-0.1876377910375595,
0.02112819254398346,
-0.02325768768787384,
0.06389037519693375,
0.02288462594151497,
0.02653706632554531,
-0.12303745746612549,
0.004697433207184076,
0.15759973227977753,
-0.2030867040157318,
-0.014122935943305492,
0.13430573046207428,
-0.0019659928511828184,
0.10808899253606796,
-0.037551913410425186,
0.03072044998407364,
0.101690873503685,
0.029496198520064354,
0.07967684417963028,
-0.11780374497175217,
-0.12446951121091843,
0.01827438361942768,
-0.025413384661078453,
-0.019495315849781036,
0.3503763973712921,
-0.04384882375597954,
-0.0941864475607872,
0.019692856818437576,
0.015595517121255398,
-0.004533796571195126,
0.03400670737028122,
0.01162553858011961,
0.08612159639596939,
-0.054591041058301926,
-0.043028611689805984,
-0.06793379038572311,
-0.0928964912891388,
-0.09983868896961212,
-0.03562706708908081,
-0.006125271320343018,
-0.021136870607733727,
0.006956038996577263,
0.012238879688084126,
0.09026242792606354,
0.05961853638291359,
-0.0719553604722023,
0.007223238702863455,
-0.07053934782743454,
0.09004862606525421,
-0.027999715879559517,
-0.06420856714248657,
-0.024374714121222496,
0.061405181884765625,
0.10485478490591049,
-0.09672170877456665,
-0.03469100594520569,
-0.041868019849061966,
0.07802499085664749,
0.05990724638104439,
-0.09209459275007248,
0.05231911689043045,
-0.024695144966244698,
0.09313427656888962,
0.01500721462070942,
0.04023699834942818,
0.023652540519833565,
-0.09144306182861328,
-0.03289635479450226,
-0.061024997383356094,
0.01337891910225153,
0.03345482796430588,
-0.09296651929616928,
-0.07605832815170288,
0.03160148113965988,
0.13013768196105957,
-0.022027283906936646,
0.01818491704761982,
0.007927445694804192,
-0.04759667441248894,
-0.10700419545173645,
0.10847418755292892,
0.037227481603622437,
0.10275781154632568,
0.0690247043967247,
-0.10234447568655014,
0.06238832697272301,
-0.05588445067405701,
-0.06455032527446747,
0.08006757497787476,
0.03887943923473358,
0.028005896136164665,
-0.1574643850326538,
-0.07828444242477417,
-0.09679239988327026,
0.06529038399457932,
-0.010758168995380402,
-0.043394070118665695,
0.009189333766698837,
0.041955702006816864,
0.059172894805669785,
-0.030116353183984756,
-0.04540202394127846,
-0.04431498795747757,
0.08959811180830002,
-0.0017555420054122806,
0.08859429508447647,
-0.06432498246431351,
0.060066092759370804,
-0.13623951375484467,
0.028903083875775337,
-0.1423501968383789,
0.003325965255498886,
-0.06515548378229141,
-0.03678196668624878,
-0.08656623959541321,
-0.067325159907341,
-0.0562666617333889,
-0.013260467909276485,
0.0675162672996521,
0.1469375342130661,
-0.11561240255832672,
-0.002034765901044011,
0.03400896489620209,
-0.04749486222863197,
-0.04966958984732628,
0.01071043312549591,
-0.05761134251952171,
0.061997681856155396,
0.029113754630088806,
0.12782470881938934,
-0.021656572818756104,
-0.07109662145376205,
-0.15131551027297974,
-0.060393862426280975,
0.08748845010995865,
-0.08073078095912933,
0.09151356667280197,
-0.012842311523854733,
-0.04439545050263405,
-0.049719590693712234,
-0.06287489086389542,
0.002246268792077899,
0.022495418787002563,
-0.05561056360602379,
-0.036121491342782974,
-0.07504668831825256,
0.07744499295949936,
0.0003382372669875622,
0.015160486102104187,
-0.03743224963545799,
-0.030085213482379913,
0.09615602344274521,
0.09370344877243042,
-0.05113577842712402,
0.0347379669547081,
0.03007887490093708,
0.102507583796978,
-0.1866534799337387,
-0.0963529646396637,
-0.1415300965309143,
0.012003556825220585,
-0.007564384024590254,
0.04465378448367119,
0.15271808207035065,
0.035907864570617676,
-0.03416408970952034,
0.048545096069574356,
-0.050191931426525116,
-0.06158636510372162,
-0.12353137135505676,
0.009428419172763824,
0.023768067359924316,
-0.1705259531736374,
-0.032166387885808945,
-0.029746143147349358,
0.13414375483989716,
-0.2245004028081894,
-0.02976144663989544,
0.027563290670514107,
-0.05530880019068718,
0.038289010524749756,
-0.016373252496123314,
0.05492926388978958,
0.08048484474420547,
-0.10345924645662308,
0.028372440487146378,
0.023021366447210312,
0.03327985852956772,
-0.005691325291991234,
0.048858024179935455,
-0.0110902339220047,
-0.05399291217327118,
0.10915345698595047,
-0.08513994514942169,
-0.10373270511627197,
-0.014281892217695713,
0.028408899903297424,
-0.043826617300510406,
-0.08229632675647736,
0.016439728438854218,
0.1486985683441162,
-0.05361204966902733,
0.08557140082120895,
-0.12006199359893799,
-0.002815777203068137,
-0.015910470858216286,
-0.09778892993927002,
-0.04275327920913696,
0.06954174488782883,
0.12333476543426514,
0.06407450139522552,
0.10914745926856995,
0.1471771001815796,
-0.1753113716840744,
0.1076006069779396,
0.055844392627477646,
-0.07889289408922195,
-0.07867459952831268,
-0.041091687977313995,
0.02490887977182865,
0.0921856015920639,
0.04710692912340164,
-0.015234083868563175,
0.03679318353533745,
-0.04009075462818146,
0.021206660196185112,
-0.15235906839370728,
-0.07198524475097656,
0.002713193418458104,
0.021306505426764488,
-0.14258672297000885,
-0.007495088502764702,
-0.06117229908704758,
0.05174556374549866,
-0.08611608296632767,
-0.06415055692195892,
0.019412877038121223,
0.02001740224659443,
-0.06617838144302368,
0.04731201007962227,
-0.11938846111297607,
-0.07039844989776611,
-0.14723730087280273,
-0.04542817920446396,
-0.05586202070116997,
0.03109818883240223,
0.06875980645418167,
-0.02516993321478367,
0.0287849809974432,
-0.033552490174770355,
-0.06289401650428772,
-0.03745241090655327,
-0.12433530390262604,
-0.03293357044458389,
0.07461204379796982,
0.012619937770068645,
-0.09827925264835358,
-0.020298514515161514,
0.014506228268146515,
-0.03400833159685135,
0.10229296237230301,
0.045410264283418655,
0.1293639987707138,
0.05078953504562378,
-0.00043211583397351205,
-0.051451921463012695,
0.0049568829126656055,
0.10316359996795654,
-0.0596022866666317,
0.004285809118300676,
0.20091745257377625,
0.0797077938914299,
-0.005226013250648975,
0.08267588168382645,
0.1321735829114914,
-0.040042515844106674,
0.01520166639238596,
-0.04539187625050545,
-0.0779019147157669,
-0.29828202724456787,
-0.055056098848581314,
-0.04365834593772888,
-0.10495420545339584,
-0.03253132104873657,
0.0013728816993534565,
0.07841339707374573,
0.10220130532979965,
0.014171181246638298,
0.07814494520425797,
-0.01722906157374382,
0.0451873280107975,
0.14787507057189941,
0.014304916374385357,
0.07464599609375,
-0.04959014058113098,
0.006048834882676601,
0.07986694574356079,
0.09208748489618301,
0.1928160935640335,
0.06795956194400787,
0.10483861714601517,
0.06480256468057632,
0.09982132911682129,
0.03383347764611244,
0.060614969581365585,
0.045795738697052,
0.05364629253745079,
0.022052356973290443,
-0.13713274896144867,
-0.0459049753844738,
0.09875834733247757,
0.011936713941395283,
0.0017838756320998073,
0.032626863569021225,
-0.07249137759208679,
-0.04315449297428131,
0.07293400913476944,
0.0697169154882431,
-0.24550342559814453,
-0.0051312693394720554,
0.03707998991012573,
0.08672288060188293,
-0.007168708834797144,
0.01916297897696495,
0.09026753902435303,
-0.03413741663098335,
0.02237360179424286,
0.01524801179766655,
0.01808086596429348,
-0.1200910359621048,
-0.062212105840444565,
-0.0393630750477314,
-0.06345882266759872,
-0.007852994836866856,
0.00645049661397934,
-0.16303974390029907,
0.09943487495183945,
0.03567071259021759,
-0.0052144709043204784,
0.06559818983078003,
0.045800238847732544,
0.046740539371967316,
0.08539444953203201,
0.1186443567276001,
-0.010718234814703465,
-0.03354104235768318,
-0.09683551639318466,
-0.14957298338413239,
-0.022868359461426735,
-0.0245917160063982,
-0.08553813397884369,
0.0786839947104454,
0.026869207620620728,
-0.0015699380310252309,
-0.026613736525177956,
0.07958541810512543,
-0.2437589466571808,
-0.09514504671096802,
0.007150421384721994,
0.056944988667964935,
0.07386767864227295,
-0.023188859224319458,
-0.09345447272062302,
-0.0049269841983914375,
0.06786997616291046,
-0.07715407013893127,
-0.040339577943086624,
-0.04620202258229256,
-0.10089758038520813,
0.11028777062892914,
0.006251785904169083,
0.05076874792575836,
0.04526320844888687,
-0.05128679797053337,
-0.07607624679803848,
-0.06545460969209671,
-0.0030845000874251127,
-0.07294948399066925,
-0.0962868481874466,
-0.06606470048427582,
0.056937702000141144,
0.05822982266545296,
0.1375611275434494,
0.026119425892829895,
0.11526709049940109,
-0.04301897808909416,
-0.032197006046772,
0.03136942908167839,
0.020792515948414803,
0.24294228851795197,
0.007090602070093155,
-0.09282072633504868,
-0.04147742688655853,
0.03457143157720566,
-0.09592068195343018,
0.09580878168344498,
0.22804974019527435,
-0.03979972004890442,
0.08760462701320648,
0.09916795045137405,
-0.1308908760547638,
-0.13384759426116943,
0.03548026829957962,
0.014832309447228909,
-0.011883612722158432,
0.06655377894639969,
-0.3131299614906311,
0.05870041996240616,
0.1315455585718155,
-0.043083302676677704,
0.12408782541751862,
-0.23334376513957977,
-0.04641669988632202,
0.007782973814755678,
-0.0005004541599191725,
0.05424891412258148,
-0.10868876427412033,
-0.05231737717986107,
-0.09097081422805786,
-0.1364307552576065,
0.08364414423704147,
0.04286016896367073,
0.11455440521240234,
-0.054775871336460114,
0.06643819063901901,
0.043026261031627655,
-0.018465345725417137,
0.12755778431892395,
-0.029442599043250084,
0.1051766648888588,
-0.02806686982512474,
-0.11831559240818024,
0.10219027101993561,
-0.03158329427242279,
0.10912632942199707,
-0.028460972011089325,
0.0041027734987437725,
-0.10550589114427567,
-0.009307567961513996,
-0.02208022028207779,
0.10346794128417969,
-0.04028793424367905,
-0.054514650255441666,
-0.03523724526166916,
0.03469689190387726,
-0.03650979697704315,
0.03497570753097534,
0.21904399991035461,
-0.043518226593732834,
-0.019503263756632805,
0.12094110250473022,
0.13024520874023438,
0.09164762496948242,
-0.08203518390655518,
0.04333119839429855,
-0.07528655976057053,
0.05031073838472366,
-0.19495142996311188,
-0.006740744225680828,
0.0743059441447258,
0.07778359204530716,
0.042069531977176666,
0.03689580783247948,
-0.03686991706490517,
0.12180376052856445,
0.09893963485956192,
-0.1739516407251358,
0.0674971491098404,
-0.023901265114545822,
-0.004428047686815262,
0.031412649899721146,
-0.031810518354177475,
0.18495549261569977,
-0.13708707690238953,
-0.06415985524654388,
0.004492709878832102,
0.009473572485148907,
-0.05423671379685402,
0.07131372392177582,
0.08676313608884811,
-0.06274685263633728,
-0.05998176708817482,
0.13155634701251984,
0.18802708387374878,
0.012447587214410305,
-0.004371915478259325,
-0.03453070670366287,
0.05183523893356323,
-0.07913055270910263,
-0.06472018361091614,
0.03844314441084862,
-0.09043730050325394,
-0.08602602779865265,
-0.0702124834060669,
-0.009286593645811081,
-0.029771476984024048,
0.07102023810148239,
0.039373334497213364,
0.0005339860217645764,
-0.01711777038872242,
-0.01915525086224079,
-0.07366826385259628,
0.08153153955936432,
-0.07818516343832016,
0.1356554627418518,
-0.11736810952425003,
0.0021807015873491764,
-0.03716551885008812,
-0.018597790971398354,
-0.014366651885211468,
0.021593421697616577,
-0.039414938539266586,
0.006115105003118515,
-0.134855717420578,
0.03945356234908104,
-0.034531865268945694,
0.0008477461524307728,
-0.026088427752256393,
0.07659214735031128,
-0.04880214482545853,
0.05604708194732666,
-0.057170890271663666,
0.021916799247264862,
-0.0034537618048489094,
0.15229041874408722,
-0.14064311981201172,
-0.036175407469272614,
-0.00887717679142952,
-0.05409881845116615,
0.03265009820461273,
0.041425615549087524,
0.03243255987763405,
-0.05801744759082794,
-0.08721387386322021,
0.04466687887907028,
0.060770902782678604,
0.05472352355718613,
-0.001017751987092197,
-0.20843195915222168,
-0.01457742229104042,
-0.0036626828368753195,
-0.05421653017401695,
-0.006181551143527031,
0.13498462736606598,
-0.08800039440393448,
-0.0709962397813797,
0.01294709462672472,
-0.07917285710573196,
-0.035844553261995316,
0.05355624482035637,
0.196205273270607,
0.0629061833024025,
0.14240330457687378,
-0.0006517270230688155,
-0.005555992946028709,
-0.1473836600780487,
-0.0277338195592165,
-0.0059030852280557156,
-0.0628446713089943,
-0.17393562197685242,
-0.00875069573521614,
0.045743267983198166,
-0.011538797058165073,
0.08149328082799911,
0.08513767272233963,
-0.1278696358203888,
-0.06500989943742752,
0.12471574544906616,
0.01452603843063116,
0.006054302677512169,
0.08661054819822311,
-0.015103742480278015,
-0.01952858828008175,
-0.028422702103853226,
0.07910095900297165,
0.06514514237642288,
0.09712468087673187,
0.06981710344552994,
0.10589393228292465,
0.02979264408349991,
-0.04156651720404625,
0.06057458370923996,
-0.06232708320021629,
0.00889473594725132,
0.06031996011734009,
0.043836336582899094,
0.02608700655400753,
-0.09219835698604584,
0.15525667369365692,
0.03972780331969261,
-0.09942056983709335,
0.07322479784488678,
-0.036173462867736816,
-0.018031934276223183,
-0.0799327865242958,
-0.09134882688522339,
-0.05129145458340645,
-0.07947342097759247,
0.027870038524270058,
-0.13745011389255524,
0.03491569310426712,
0.13720110058784485,
-0.08069133013486862,
-0.025587020441889763,
0.04187579080462456,
-0.04219425842165947,
-0.054973334074020386,
0.04632669687271118,
0.0027621861081570387,
-0.027023106813430786,
-0.11691053956747055,
-0.049816615879535675,
0.06856577843427658,
-0.06150352582335472,
0.01034519262611866,
0.043849170207977295,
0.05379671975970268,
-0.01823119819164276,
0.016438134014606476,
-0.07530969381332397,
-0.031442370265722275,
0.027780858799815178,
0.06389325112104416,
0.13310834765434265,
0.06798937916755676,
0.007436426356434822,
0.0365394651889801,
0.1562044322490692,
-0.024501802399754524,
0.11323513835668564,
-0.040041014552116394,
0.03257839381694794,
-0.04896208271384239,
0.04567240923643112,
0.0761650800704956,
-0.10248374938964844,
0.034224871546030045,
0.00007179819658631459,
0.16951288282871246,
-0.005617165006697178,
0.013181813061237335,
0.011897499673068523,
-0.005984996911138296,
-0.04332325980067253,
0.03970392048358917,
0.02800489030778408,
0.1351761817932129,
-0.07715632766485214,
-0.033889807760715485,
-0.10762479156255722,
0.07310831546783447,
-0.04206029698252678,
0.0842260867357254,
-0.08191095292568207,
-0.1194274052977562,
-0.010924862697720528,
0.04391971230506897,
-0.012018825858831406,
-0.0587296187877655,
0.11194612085819244,
-0.11528991907835007,
-0.07282322645187378,
-0.0030562959145754576,
0.0175487007945776,
-0.05560018867254257,
-0.0035968415904790163,
-0.09094388037919998,
-0.04579265043139458,
0.09682951122522354,
-0.023741045966744423,
-0.10032103955745697,
-0.02760709635913372,
0.07386676967144012,
-0.0629056841135025,
0.18027900159358978,
-0.004529803991317749,
0.1964760571718216,
0.028110384941101074,
0.06895197182893753,
-0.07320716977119446,
0.11457610875368118,
0.035182129591703415,
-0.10338717699050903,
0.04714313521981239,
0.049176011234521866,
-0.02329818345606327,
0.22317996621131897,
0.05948038771748543,
0.11402782797813416,
0.08889396488666534,
0.12699083983898163,
0.0006930449162609875,
-0.07895229756832123,
-0.0007666571182198822,
-0.11583756655454636,
0.11906299740076065,
0.04461267963051796,
-0.05528058856725693,
-0.02727057784795761,
-0.03425847366452217,
0.014607773162424564,
0.13336363434791565,
0.04484640434384346,
-0.0033143600448966026,
-0.11973155289888382,
0.03509655222296715,
0.03141939267516136,
0.06651007384061813,
-0.17090919613838196,
-0.06390451639890671,
-0.037604618817567825,
-0.050064705312252045,
-0.057966962456703186,
-0.033424150198698044,
0.08526671677827835,
-0.015646589919924736,
-0.017355505377054214,
0.060691434890031815,
-0.015821263194084167,
0.06537608057260513,
-0.09798659384250641,
-0.06869775056838989
] |
null | null | asteroid |
## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 1
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 2
n_filters: 64
stride: 1
masknet:
bidirectional: true
bn_chan: 128
chunk_size: 250
dropout: 0
hid_size: 128
hop_size: 125
in_chan: 64
mask_act: sigmoid
n_repeats: 6
n_src: 1
out_chan: 64
optim:
lr: 0.001
optimizer: adam
weight_decay: 1.0e-05
training:
batch_size: 2
early_stop: true
epochs: 200
gradient_clipping: 5
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 14.7228101708889
si_sdr_imp: 11.2730288650292
sdr: 15.35661405197161
sdr_imp: 11.853951252758595
sir: Infinity
sir_imp: NaN
sar: 15.35661405197161
sar_imp: 11.853951252758595
stoi: 0.9300461826351578
stoi_imp: 0.13412635909461715
```
License notice:
This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPRNNTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]} | audio-to-audio | JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k | [
"asteroid",
"pytorch",
"audio",
"DPRNNTasNet",
"audio-to-audio",
"dataset:Libri1Mix",
"dataset:enh_single",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #DPRNNTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On Libri1Mix min test set :
License notice:
This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #DPRNNTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
59,
205
] | [
"passage: TAGS\n#asteroid #pytorch #audio #DPRNNTasNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPRNNTasNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.03520125523209572,
0.18494871258735657,
-0.003728182055056095,
0.12574148178100586,
0.006688805762678385,
0.03210049495100975,
0.2001538723707199,
0.0312489103525877,
-0.030065365135669708,
-0.006717649754136801,
0.052596304565668106,
0.10554174333810806,
-0.034960344433784485,
-0.040791966021060944,
-0.05378849059343338,
-0.021376974880695343,
-0.03599955514073372,
-0.02038344368338585,
0.010963859967887402,
0.03993256762623787,
0.03128436580300331,
-0.0731341689825058,
0.06244702264666557,
-0.026450514793395996,
-0.14442256093025208,
0.056403469294309616,
0.026773246005177498,
-0.07443196326494217,
0.08670967817306519,
-0.014885715208947659,
0.12766332924365997,
0.10632406920194626,
0.106807641685009,
-0.09832516312599182,
0.0016890806145966053,
-0.03150544688105583,
-0.048863425850868225,
0.10953529924154282,
0.09457290917634964,
-0.04466867446899414,
0.14522230625152588,
0.0680835172533989,
0.014046753756701946,
0.008661146275699139,
-0.09517087787389755,
-0.08032901585102081,
-0.17697590589523315,
0.026203826069831848,
-0.029153261333703995,
0.0723404809832573,
0.03359251096844673,
0.044999126344919205,
-0.12149640172719955,
0.015367762185633183,
0.1252676099538803,
-0.21321739256381989,
-0.005723269656300545,
0.10705893486738205,
-0.009627550840377808,
0.11350564658641815,
-0.014314530417323112,
0.018395092338323593,
0.100808285176754,
0.031354352831840515,
0.08411068469285965,
-0.11710315942764282,
-0.13688741624355316,
0.010928740724921227,
-0.029129065573215485,
-0.011152065359055996,
0.33527106046676636,
-0.022238628938794136,
-0.09322571754455566,
0.0245116725564003,
0.004038502927869558,
0.0062454636208713055,
0.0476686917245388,
0.004475505091249943,
0.07441095262765884,
-0.039525099098682404,
-0.050542667508125305,
-0.06140664964914322,
-0.08680663257837296,
-0.10313556343317032,
-0.019587254151701927,
0.002847336232662201,
-0.010741696693003178,
0.014133111573755741,
0.006208409089595079,
0.08451488614082336,
0.08215250819921494,
-0.0789952501654625,
0.022714748978614807,
-0.08815674483776093,
0.11202432960271835,
-0.0050211092457175255,
-0.062382590025663376,
-0.04170604422688484,
0.06871778517961502,
0.08990585803985596,
-0.12096719443798065,
-0.045328933745622635,
-0.03579671308398247,
0.06938309222459793,
0.04206259548664093,
-0.10503705590963364,
0.03814977779984474,
-0.01926553249359131,
0.11228153109550476,
0.0049369847401976585,
0.04816281050443649,
0.018319688737392426,
-0.09056346863508224,
-0.02314194291830063,
-0.0573711134493351,
0.023464376106858253,
0.037031348794698715,
-0.07984836399555206,
-0.0658186748623848,
0.00618615560233593,
0.15629692375659943,
-0.027661757543683052,
0.0008688800153322518,
0.003889768850058317,
-0.062096867710351944,
-0.10672362893819809,
0.10932809114456177,
0.025103263556957245,
0.08242983371019363,
0.06325992196798325,
-0.09311670064926147,
0.03790437430143356,
-0.061342090368270874,
-0.06456683576107025,
0.09161636233329773,
0.06648243218660355,
0.037486881017684937,
-0.1779814213514328,
-0.10089786350727081,
-0.08751639723777771,
0.05444016680121422,
0.010524468496441841,
-0.04744970053434372,
-0.007473499048501253,
0.052095357328653336,
0.04897036403417587,
-0.04833224415779114,
-0.05607045069336891,
-0.03470615670084953,
0.10625330358743668,
-0.0011896031210198998,
0.07137656956911087,
-0.07433180510997772,
0.06858015805482864,
-0.14284883439540863,
0.014329141937196255,
-0.10140383988618851,
-0.0007941349176689982,
-0.060544732958078384,
-0.020171815529465675,
-0.07331753522157669,
-0.0770513117313385,
-0.059772491455078125,
-0.014423049055039883,
0.07346922159194946,
0.1423434466123581,
-0.09571977704763412,
-0.014248285442590714,
0.03811456635594368,
-0.06313849240541458,
-0.037882015109062195,
0.01720399782061577,
-0.04563760757446289,
0.02745150402188301,
0.03841162472963333,
0.13365410268306732,
0.011547034606337547,
-0.04549825191497803,
-0.12440057843923569,
-0.06330832093954086,
0.05397991091012955,
-0.10597646236419678,
0.07389054447412491,
0.0049666170962154865,
-0.047138333320617676,
-0.041408222168684006,
-0.05620250105857849,
0.042135756462812424,
0.02810036949813366,
-0.061600059270858765,
-0.02900635078549385,
-0.08285576105117798,
0.07006153464317322,
0.012805123813450336,
0.017651254311203957,
-0.028737781569361687,
-0.02138877846300602,
0.07070869207382202,
0.0915641114115715,
-0.05642472580075264,
0.03703589364886284,
0.025386368855834007,
0.07785708457231522,
-0.16080869734287262,
-0.084035724401474,
-0.13318514823913574,
0.01875871978700161,
-0.004971594084054232,
0.02592957578599453,
0.14831595122814178,
0.020366370677947998,
-0.03330759331583977,
0.048627402633428574,
-0.05748705193400383,
-0.0633162185549736,
-0.1319640874862671,
-0.007178580388426781,
0.04671686515212059,
-0.1663619726896286,
-0.014902083203196526,
-0.021726587787270546,
0.10310283303260803,
-0.2161601036787033,
-0.03683062270283699,
-0.009216069243848324,
-0.06610249727964401,
0.029589271172881126,
-0.015674950554966927,
0.05129425972700119,
0.0931486263871193,
-0.09104543924331665,
0.030442656949162483,
0.02271057292819023,
0.04247347265481949,
-0.030380867421627045,
0.0465528629720211,
0.012392221949994564,
-0.01990455575287342,
0.10240282118320465,
-0.1053820475935936,
-0.10377095639705658,
0.015593202784657478,
0.026116378605365753,
-0.04991815984249115,
-0.059661153703927994,
0.03531806915998459,
0.1378704011440277,
-0.05420759692788124,
0.08761414140462875,
-0.11452649533748627,
0.003090108511969447,
-0.014184283092617989,
-0.09926662594079971,
-0.035224732011556625,
0.07114531099796295,
0.11000815033912659,
0.037843331694602966,
0.11913362890481949,
0.14008314907550812,
-0.16914160549640656,
0.11804214119911194,
0.0444934107363224,
-0.07905840873718262,
-0.060560986399650574,
-0.022814853116869926,
0.01762324757874012,
0.06480920314788818,
0.047489285469055176,
0.009262310341000557,
0.03990285471081734,
-0.034433066844940186,
0.013711356557905674,
-0.1517399102449417,
-0.08518911898136139,
-0.001561637851409614,
0.008035736158490181,
-0.1655125766992569,
-0.022752143442630768,
-0.06133119389414787,
0.045935045927762985,
-0.07718337327241898,
-0.08120862394571304,
0.0374763160943985,
0.007107112091034651,
-0.0789244994521141,
0.05353372544050217,
-0.1364610493183136,
-0.11150206625461578,
-0.17730878293514252,
-0.037569329142570496,
-0.07700327783823013,
0.02519943192601204,
0.07778899371623993,
-0.042418740689754486,
0.025216728448867798,
-0.025689516216516495,
-0.03879602253437042,
-0.022609779611229897,
-0.12424561381340027,
-0.020136486738920212,
0.08590321242809296,
0.016290701925754547,
-0.10968200862407684,
-0.0010549640282988548,
-0.003532793140038848,
-0.02233663573861122,
0.11284197121858597,
0.0317000150680542,
0.1099943295121193,
0.06518173217773438,
0.009237364865839481,
-0.05966293811798096,
0.012333707883954048,
0.09147806465625763,
-0.051483191549777985,
-0.00900228787213564,
0.20341090857982635,
0.07538314908742905,
0.008663855493068695,
0.06554749608039856,
0.13910113275051117,
-0.037237416952848434,
0.02692406252026558,
-0.05971959978342056,
-0.06650731712579727,
-0.3221733570098877,
-0.06364115327596664,
-0.033614419400691986,
-0.09266479313373566,
-0.04799901694059372,
0.002505761105567217,
0.09646706283092499,
0.10216570645570755,
0.008739468641579151,
0.07395900785923004,
-0.007349699269980192,
0.03470801189541817,
0.15942086279392242,
0.017748065292835236,
0.07034767419099808,
-0.055412109941244125,
-0.00005558288830798119,
0.08582963794469833,
0.07621126621961594,
0.20074984431266785,
0.0637543573975563,
0.07585683465003967,
0.06879384070634842,
0.11766893416643143,
0.027618706226348877,
0.073305644094944,
0.04170798137784004,
0.06143316626548767,
0.020507266744971275,
-0.14357531070709229,
-0.04910862818360329,
0.08764472603797913,
-0.027107520028948784,
-0.003409997560083866,
0.03809582069516182,
-0.07304062694311142,
-0.056752387434244156,
0.10720600187778473,
0.04325681924819946,
-0.25434741377830505,
0.000048353154852520674,
0.015871616080403328,
0.09099338948726654,
-0.007306608371436596,
0.0239406805485487,
0.08801253139972687,
-0.03241977468132973,
0.041492145508527756,
0.015171414241194725,
0.022945499047636986,
-0.11822482943534851,
-0.0567389540374279,
-0.005840050056576729,
-0.0535694882273674,
0.005187003407627344,
0.013738119043409824,
-0.16654126346111298,
0.09666264057159424,
0.040510863065719604,
0.001624759053811431,
0.07918377220630646,
0.04249649494886398,
0.042912840843200684,
0.08879765123128891,
0.11796823143959045,
-0.005910749081522226,
-0.006874801125377417,
-0.09520883858203888,
-0.13836859166622162,
-0.023204538971185684,
-0.014243128709495068,
-0.0386752150952816,
0.04598510265350342,
0.04191858693957329,
0.006580117158591747,
-0.008775743655860424,
0.06830213218927383,
-0.24287796020507812,
-0.07850360125303268,
0.0030551336240023375,
0.09099793434143066,
0.059635598212480545,
-0.024063576012849808,
-0.09477318823337555,
-0.023374103009700775,
0.08897904306650162,
-0.0958961695432663,
-0.05919349938631058,
-0.02585628069937229,
-0.10642961412668228,
0.10268519073724747,
-0.00017789873527362943,
0.0521811842918396,
0.043226566165685654,
-0.07827679067850113,
-0.06879382580518723,
-0.10262709856033325,
0.007088473532348871,
-0.06006810814142227,
-0.09607017785310745,
-0.05847073718905449,
0.05806879326701164,
0.07641001045703888,
0.11865144222974777,
0.006416514050215483,
0.08779555559158325,
-0.03555162623524666,
-0.0372336246073246,
0.009011236019432545,
0.04685980826616287,
0.19997595250606537,
0.007141617592424154,
-0.096712127327919,
-0.051491785794496536,
0.02105238102376461,
-0.09050770848989487,
0.08150491863489151,
0.22414630651474,
-0.0388406477868557,
0.08631385117769241,
0.14410512149333954,
-0.12079056352376938,
-0.1377987414598465,
0.02068387158215046,
0.017375409603118896,
-0.0244857519865036,
0.06875500082969666,
-0.3249775469303131,
0.07274627685546875,
0.14014285802841187,
-0.03704726696014404,
0.1398540735244751,
-0.2384115755558014,
-0.04061990976333618,
0.00794773455709219,
0.0023414900060743093,
0.05560367926955223,
-0.10042805969715118,
-0.05340712144970894,
-0.09017748385667801,
-0.14445611834526062,
0.08907780796289444,
0.06292346864938736,
0.11295070499181747,
-0.06337296217679977,
0.07371645420789719,
0.04015819728374481,
-0.012827545404434204,
0.09447089582681656,
-0.021892646327614784,
0.11132565885782242,
-0.029083864763379097,
-0.05483095347881317,
0.09636750817298889,
-0.01801009476184845,
0.10997053980827332,
-0.019271833822131157,
0.009152203798294067,
-0.09086520224809647,
-0.018063101917505264,
-0.029499774798750877,
0.10303083807229996,
-0.027573851868510246,
-0.06312299519777298,
-0.019136255607008934,
0.032059721648693085,
-0.03689339756965637,
0.030922330915927887,
0.21453435719013214,
-0.027356278151273727,
-0.02941819094121456,
0.11980973184108734,
0.12123876810073853,
0.06178522855043411,
-0.06868758052587509,
0.032440271228551865,
-0.07249193638563156,
0.061646945774555206,
-0.18690268695354462,
-0.007253242656588554,
0.07527041435241699,
0.07997091114521027,
0.013949431478977203,
0.04638371244072914,
-0.05050070583820343,
0.11160572618246078,
0.09923847019672394,
-0.1864415407180786,
0.0775805339217186,
-0.036941125988960266,
-0.023096928372979164,
0.04549498111009598,
0.0008336520404554904,
0.17947597801685333,
-0.1368773728609085,
-0.053091857582330704,
0.012013867497444153,
0.011226597242057323,
-0.06656449288129807,
0.07562506198883057,
0.1057959571480751,
-0.06948002427816391,
-0.07155396789312363,
0.15688149631023407,
0.17805540561676025,
0.022129299119114876,
-0.005941206123679876,
-0.024386413395404816,
0.03982185944914818,
-0.07636364549398422,
-0.08819568902254105,
0.025433409959077835,
-0.10032648593187332,
-0.11177407950162888,
-0.06983808428049088,
-0.005044512916356325,
-0.03182321786880493,
0.02086024545133114,
0.03590070456266403,
0.013441060669720173,
-0.011079369112849236,
-0.016132576391100883,
-0.05990320071578026,
0.07137414067983627,
-0.074872225522995,
0.137583926320076,
-0.12459681183099747,
-0.02088627777993679,
-0.02981964498758316,
-0.00931121688336134,
-0.01908147521317005,
0.024509459733963013,
-0.026143692433834076,
0.022196710109710693,
-0.09478700160980225,
0.023002367466688156,
-0.04990169778466225,
0.013615120202302933,
-0.03907771036028862,
0.07998041808605194,
-0.03781641274690628,
0.06945502758026123,
-0.04053163900971413,
0.015317754819989204,
-0.0008444866398349404,
0.1302441954612732,
-0.14822010695934296,
-0.05253718048334122,
-0.03937917575240135,
-0.046106986701488495,
0.03787282854318619,
0.03711860626935959,
0.015252123586833477,
-0.04349646344780922,
-0.1018097922205925,
0.04269745200872421,
0.07372228801250458,
0.06836732476949692,
-0.009376934729516506,
-0.18097993731498718,
-0.007761403918266296,
0.004193921107798815,
-0.05946912616491318,
-0.008950302377343178,
0.12207657843828201,
-0.10707297921180725,
-0.0687403604388237,
0.002877407241612673,
-0.08488821238279343,
-0.04742303118109703,
0.03979834169149399,
0.198062002658844,
0.06399287283420563,
0.1562226563692093,
-0.006495001260191202,
-0.004111977759748697,
-0.12726926803588867,
-0.03190212324261665,
0.013354837894439697,
-0.05310584977269173,
-0.17119939625263214,
0.00927795097231865,
0.037971436977386475,
-0.016155319288372993,
0.08163869380950928,
0.07234757393598557,
-0.13940158486366272,
-0.06959740072488785,
0.0948951244354248,
0.036723192781209946,
-0.002349961781874299,
0.09988836944103241,
-0.018549656495451927,
-0.028708206489682198,
-0.03471698984503746,
0.07577585428953171,
0.060171518474817276,
0.11567612737417221,
0.057537078857421875,
0.1165434941649437,
0.03706677258014679,
-0.04250117391347885,
0.07337730377912521,
-0.04034782201051712,
-0.0012567759258672595,
0.0382530577480793,
0.06754513829946518,
0.037373073399066925,
-0.07725341618061066,
0.14809410274028778,
0.024509700015187263,
-0.07193881273269653,
0.06857918947935104,
-0.020464416593313217,
-0.013618352822959423,
-0.0878143236041069,
-0.10109272599220276,
-0.04943816363811493,
-0.09611520916223526,
0.041526615619659424,
-0.13275711238384247,
0.0188804529607296,
0.12261487543582916,
-0.08082070201635361,
-0.06060890108346939,
0.01830660179257393,
-0.007426000200212002,
-0.056407760828733444,
0.04439949989318848,
0.0012679451610893011,
-0.03841419517993927,
-0.08198212832212448,
-0.04072277247905731,
0.08126567304134369,
-0.03834807872772217,
0.016467107459902763,
0.04264899715781212,
0.04527154564857483,
-0.004479608498513699,
0.010377821512520313,
-0.06824913620948792,
-0.04118099436163902,
0.04233510047197342,
0.0671037957072258,
0.14402203261852264,
0.06616569310426712,
-0.00701767485588789,
0.037301719188690186,
0.1490892469882965,
-0.02435559779405594,
0.09274923801422119,
-0.0377718061208725,
0.06477378308773041,
-0.03442251309752464,
0.05109383538365364,
0.07487007230520248,
-0.10415123403072357,
0.01888778991997242,
0.020696425810456276,
0.17693068087100983,
0.010074451565742493,
0.01255145762115717,
0.011677971109747887,
-0.003109402721747756,
-0.06047201156616211,
0.07469245791435242,
0.05579462647438049,
0.14527978003025055,
-0.05562514439225197,
-0.04242332652211189,
-0.11894813179969788,
0.08585949242115021,
-0.049896202981472015,
0.06637465208768845,
-0.07276556640863419,
-0.12909278273582458,
-0.02160825952887535,
0.0523916594684124,
-0.03164757043123245,
-0.044559042900800705,
0.10360145568847656,
-0.08186793327331543,
-0.06462235003709793,
-0.011165234260261059,
0.02292538620531559,
-0.05199539288878441,
-0.009935526177287102,
-0.08104453980922699,
-0.037160634994506836,
0.0886467769742012,
-0.026263199746608734,
-0.11015618592500687,
-0.029328307136893272,
0.061394888907670975,
-0.07205107808113098,
0.17324911057949066,
0.007877534255385399,
0.20996885001659393,
0.01063569262623787,
0.0808023139834404,
-0.07518744468688965,
0.13552400469779968,
0.021710794419050217,
-0.1094789132475853,
0.045852240175008774,
0.023368939757347107,
-0.01721331477165222,
0.22313541173934937,
0.04305455461144447,
0.12938369810581207,
0.07435387372970581,
0.14394177496433258,
0.011322750709950924,
-0.09643398970365524,
0.0029802429489791393,
-0.11551173031330109,
0.10875018686056137,
0.03651086613535881,
-0.05309591814875603,
-0.03396601602435112,
-0.05771801248192787,
0.0040519991889595985,
0.1259448379278183,
0.03691701218485832,
0.0032860147766768932,
-0.11646810173988342,
0.019944651052355766,
0.03883439302444458,
0.08054839819669724,
-0.1704823225736618,
-0.044907212257385254,
-0.051886361092329025,
-0.06050558388233185,
-0.05353382229804993,
-0.04146569222211838,
0.0635942593216896,
-0.01021965965628624,
-0.00988538283854723,
0.046371567994356155,
-0.012953901663422585,
0.053574759513139725,
-0.1098029762506485,
-0.08291708678007126
] |
null | null | asteroid |
## Asteroid model `JorisCos/DPTNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 3
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 16
n_filters: 64
stride: 8
masknet:
bidirectional: true
chunk_size: 100
dropout: 0
ff_activation: relu
ff_hid: 256
hop_size: 50
in_chan: 64
mask_act: sigmoid
n_repeats: 2
n_src: 1
norm_type: gLN
out_chan: 64
optim:
lr: 0.001
optimizer: adam
weight_decay: 1.0e-05
scheduler:
d_model: 64
steps_per_epoch: 10000
training:
batch_size: 4
early_stop: true
epochs: 200
gradient_clipping: 5
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 14.829670037349064
si_sdr_imp: 11.379888731489366
sdr: 15.395712644737149
sdr_imp: 11.893049845524112
sir: Infinity
sir_imp: NaN
sar: 15.395712644737149
sar_imp: 11.893049845524112
stoi: 0.9301948391058859
stoi_imp: 0.13427501556534832
```
License notice:
This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"DPTNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPTNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]} | audio-to-audio | JorisCos/DPTNet_Libri1Mix_enhsingle_16k | [
"asteroid",
"pytorch",
"audio",
"DPTNet",
"audio-to-audio",
"dataset:Libri1Mix",
"dataset:enh_single",
"license:cc-by-sa-4.0",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us
|
## Asteroid model 'JorisCos/DPTNet_Libri1Mix_enhsignle_16k'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On Libri1Mix min test set :
License notice:
This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures
dataset by URL, used under CC BY-NC 4.0 (Research only).
"DPTNet_Libri1Mix_enhsignle_16k" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/DPTNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPTNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPTNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n",
"## Asteroid model 'JorisCos/DPTNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPTNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPTNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
61,
199
] | [
"passage: TAGS\n#asteroid #pytorch #audio #DPTNet #audio-to-audio #dataset-Libri1Mix #dataset-enh_single #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'JorisCos/DPTNet_Libri1Mix_enhsignle_16k'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn Libri1Mix min test set :\n\n\n\nLicense notice:\n\nThis work \"DPTNet_Libri1Mix_enhsignle_16k\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The WSJ0 Hipster Ambient Mixtures \ndataset by URL, used under CC BY-NC 4.0 (Research only). \n\"DPTNet_Libri1Mix_enhsignle_16k\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.03226454183459282,
0.17118793725967407,
-0.0036164422053843737,
0.12264910340309143,
0.002526813419535756,
0.03021273761987686,
0.18245162069797516,
0.045613113790750504,
-0.019894888624548912,
0.010391888208687305,
0.060712315142154694,
0.10413747280836105,
-0.04035026580095291,
-0.03268074989318848,
-0.053386472165584564,
-0.04391451179981232,
-0.03520989790558815,
-0.015566416084766388,
0.027256252244114876,
0.04343145713210106,
0.040940605103969574,
-0.0914807915687561,
0.06178848072886467,
-0.02489575743675232,
-0.14440341293811798,
0.048059288412332535,
0.012431252747774124,
-0.06649018079042435,
0.09290091693401337,
-0.02565779536962509,
0.1340915411710739,
0.11247378587722778,
0.11072076857089996,
-0.09257543087005615,
0.001966207753866911,
-0.035193074494600296,
-0.039953116327524185,
0.11085326969623566,
0.09556569904088974,
-0.061167046427726746,
0.1415213942527771,
0.05328239127993584,
0.030594175681471825,
0.007693581283092499,
-0.09579959511756897,
-0.09378650784492493,
-0.1816108077764511,
0.02325451746582985,
-0.03209823742508888,
0.060644540935754776,
0.022305650636553764,
0.03489826247096062,
-0.1266176849603653,
0.017295854166150093,
0.15790987014770508,
-0.202236145734787,
-0.008167365565896034,
0.10741496831178665,
0.0088474927470088,
0.11114997416734695,
-0.025057358667254448,
0.020791959017515182,
0.10145575553178787,
0.03193066269159317,
0.08987413346767426,
-0.11869058758020401,
-0.14057084918022156,
0.014303331263363361,
-0.034812334924936295,
-0.01068082544952631,
0.3527345359325409,
-0.03849911689758301,
-0.08968991786241531,
0.0124471141025424,
0.009504220448434353,
-0.000884604116436094,
0.04121404141187668,
-0.005665038246661425,
0.08865606784820557,
-0.05655953288078308,
-0.03317901864647865,
-0.06036066263914108,
-0.09002409130334854,
-0.1033448651432991,
-0.035579368472099304,
0.004977669566869736,
-0.014794563874602318,
0.005988637451082468,
0.0188565943390131,
0.09522068500518799,
0.0639316588640213,
-0.08032023906707764,
0.006716801319271326,
-0.08693628758192062,
0.10451998561620712,
-0.02129250578582287,
-0.06104686111211777,
-0.03275758773088455,
0.06718341261148453,
0.0962134301662445,
-0.11118561029434204,
-0.033854756504297256,
-0.04292657598853111,
0.07039046287536621,
0.05388684198260307,
-0.07938826829195023,
0.04212573915719986,
-0.02843024581670761,
0.09340102970600128,
0.020748196169734,
0.04224821925163269,
0.0317450612783432,
-0.08143456280231476,
-0.030712401494383812,
-0.046019669622182846,
0.014710276387631893,
0.040287990123033524,
-0.08272189646959305,
-0.07062363624572754,
0.018690120428800583,
0.13606931269168854,
-0.03144482895731926,
0.0011721113696694374,
0.010738528333604336,
-0.05232085660099983,
-0.10861147940158844,
0.1147693395614624,
0.028705189004540443,
0.1008254662156105,
0.06402842700481415,
-0.09370946884155273,
0.05077022686600685,
-0.05859088525176048,
-0.06758077442646027,
0.0812809020280838,
0.04554450884461403,
0.033679865300655365,
-0.1741236299276352,
-0.0912790596485138,
-0.0870845690369606,
0.059000518172979355,
-0.00150427280459553,
-0.03763013333082199,
0.00419063214212656,
0.05020776391029358,
0.05050673335790634,
-0.038934141397476196,
-0.03846628591418266,
-0.039487384259700775,
0.10788936913013458,
0.0009764222777448595,
0.08546558022499084,
-0.06412118673324585,
0.07156360149383545,
-0.1439899057149887,
0.028613418340682983,
-0.13868649303913116,
0.004122489597648382,
-0.06236186996102333,
-0.02921006828546524,
-0.08268596231937408,
-0.08097892999649048,
-0.06871303915977478,
-0.011972053907811642,
0.07041904330253601,
0.1425667405128479,
-0.1161193922162056,
-0.00962952058762312,
0.02785266563296318,
-0.05206257104873657,
-0.05043492466211319,
0.011939709074795246,
-0.05340251326560974,
0.0568113848567009,
0.030861908569931984,
0.144838348031044,
-0.003666927805170417,
-0.05477409437298775,
-0.13916367292404175,
-0.05228200927376747,
0.06858471781015396,
-0.07851071655750275,
0.09223472326993942,
-0.01123649999499321,
-0.04261283949017525,
-0.03984569013118744,
-0.06982553005218506,
0.015239760279655457,
0.027186736464500427,
-0.05441153049468994,
-0.031456686556339264,
-0.07996812462806702,
0.09033557772636414,
0.016202349215745926,
0.014654302038252354,
-0.041337866336107254,
-0.029861807823181152,
0.10410856455564499,
0.10017186403274536,
-0.05598006024956703,
0.02799055352807045,
0.036592308431863785,
0.09860606491565704,
-0.17440129816532135,
-0.09057927876710892,
-0.14395222067832947,
0.014223538339138031,
-0.006915220990777016,
0.027648834511637688,
0.14136295020580292,
0.04889823496341705,
-0.02816855162382126,
0.049815062433481216,
-0.05695100128650665,
-0.057093534618616104,
-0.1332205832004547,
0.009660796262323856,
0.035783104598522186,
-0.16395466029644012,
-0.024814939126372337,
-0.03381254896521568,
0.11035601794719696,
-0.21294337511062622,
-0.03603291139006615,
-0.0002641448809299618,
-0.06310687214136124,
0.03515150025486946,
-0.02364971861243248,
0.05030360072851181,
0.08406639099121094,
-0.09606533497571945,
0.021327359601855278,
0.028261225670576096,
0.035877637565135956,
-0.010018848814070225,
0.04520651325583458,
-0.010170228779315948,
-0.042942240834236145,
0.10674803704023361,
-0.09563633799552917,
-0.11654908210039139,
-0.0026024901308119297,
0.02155669406056404,
-0.047040585428476334,
-0.07063335925340652,
0.01374438963830471,
0.13172215223312378,
-0.059043530374765396,
0.08555827289819717,
-0.12448728084564209,
-0.01132203545421362,
-0.019551778212189674,
-0.09326767176389694,
-0.04192300885915756,
0.0819370374083519,
0.11465364694595337,
0.04685799032449722,
0.11478252708911896,
0.1492537260055542,
-0.16510789096355438,
0.11842311173677444,
0.048943132162094116,
-0.08351025730371475,
-0.06810122728347778,
-0.027157604694366455,
0.012592351995408535,
0.0881972685456276,
0.03617515787482262,
-0.0011420167284086347,
0.04682723060250282,
-0.03775538131594658,
0.01802743971347809,
-0.14780426025390625,
-0.08025891333818436,
0.003219273407012224,
0.016070211306214333,
-0.15660221874713898,
-0.006463449448347092,
-0.057840436697006226,
0.05673110857605934,
-0.07622407376766205,
-0.07317781448364258,
0.025338511914014816,
0.01823018118739128,
-0.07119124382734299,
0.050355520099401474,
-0.126138836145401,
-0.09219986945390701,
-0.14017458260059357,
-0.03267316892743111,
-0.06242606043815613,
0.03189922869205475,
0.07787903398275375,
-0.030255069956183434,
0.03099893406033516,
-0.028301969170570374,
-0.048616282641887665,
-0.04296422377228737,
-0.12497981637716293,
-0.02821340039372444,
0.07442029565572739,
0.02085350640118122,
-0.106939397752285,
-0.014123950153589249,
0.0015294718323275447,
-0.015519424341619015,
0.10540734976530075,
0.04496518149971962,
0.11557147651910782,
0.056784145534038544,
0.0017645765328779817,
-0.05831064656376839,
0.009365256875753403,
0.09730283915996552,
-0.05967571213841438,
-0.0019987246487289667,
0.20841336250305176,
0.07744025439023972,
0.00007158343214541674,
0.08055604249238968,
0.1333872228860855,
-0.044106896966695786,
0.024295346811413765,
-0.05359887704253197,
-0.07525794208049774,
-0.3084588348865509,
-0.06066399812698364,
-0.039408762007951736,
-0.0932890847325325,
-0.0412842258810997,
0.002195724518969655,
0.07410776615142822,
0.09873722493648529,
0.016409868374466896,
0.07083003222942352,
-0.017117325216531754,
0.038582682609558105,
0.16641826927661896,
0.007072865962982178,
0.08297089487314224,
-0.050618793815374374,
-0.005060390569269657,
0.07707009464502335,
0.07028589397668839,
0.2011922150850296,
0.05962531268596649,
0.07517606765031815,
0.06569600105285645,
0.10159997642040253,
0.01993902213871479,
0.06654375791549683,
0.04804163798689842,
0.05567416921257973,
0.017015524208545685,
-0.144463449716568,
-0.04750509187579155,
0.09278428554534912,
-0.0020549462642520666,
-0.0012319667730480433,
0.031709570437669754,
-0.07373306900262833,
-0.046801336109638214,
0.08541185408830643,
0.05476171150803566,
-0.24881374835968018,
-0.0020875809714198112,
0.02538328990340233,
0.08251892030239105,
-0.008107522502541542,
0.01841893047094345,
0.09054077416658401,
-0.03045022115111351,
0.030297862365841866,
0.01956813968718052,
0.014500074088573456,
-0.11257350444793701,
-0.05035794898867607,
-0.012829890474677086,
-0.05613810941576958,
-0.002504851669073105,
0.015678733587265015,
-0.1676236242055893,
0.10182996839284897,
0.037418607622385025,
-0.0056885662488639355,
0.07012763619422913,
0.046092964708805084,
0.04160717502236366,
0.07796698063611984,
0.12267478555440903,
-0.009037910029292107,
-0.004808372817933559,
-0.10005470365285873,
-0.14180047810077667,
-0.024393772706389427,
-0.01620377041399479,
-0.06934484839439392,
0.05809396877884865,
0.03267887607216835,
0.004412619862705469,
-0.016780264675617218,
0.07425890862941742,
-0.23644006252288818,
-0.07580126821994781,
0.014401162043213844,
0.04911784082651138,
0.059369027614593506,
-0.024965781718492508,
-0.09705744683742523,
-0.04204719141125679,
0.06869995594024658,
-0.07619059830904007,
-0.05650114268064499,
-0.03771260008215904,
-0.10727882385253906,
0.10697475075721741,
0.006072503048926592,
0.04810613766312599,
0.04529198259115219,
-0.07126329094171524,
-0.0659896656870842,
-0.077781081199646,
-0.0011255526915192604,
-0.06434492766857147,
-0.10102715343236923,
-0.06621120870113373,
0.06077639386057854,
0.06066151708364487,
0.1256135255098343,
0.013779479078948498,
0.10420633107423782,
-0.044937826693058014,
-0.03487125784158707,
0.02512192912399769,
0.033040113747119904,
0.2263592630624771,
-0.00215086224488914,
-0.10018417984247208,
-0.021323101595044136,
0.03506189584732056,
-0.09406886249780655,
0.08945716917514801,
0.22773981094360352,
-0.04624459147453308,
0.09402447938919067,
0.11516726016998291,
-0.12280680984258652,
-0.14388100802898407,
0.033481042832136154,
0.021409019827842712,
-0.02122131548821926,
0.08434606343507767,
-0.3147738575935364,
0.06216385215520859,
0.13991479575634003,
-0.03987093269824982,
0.1279139667749405,
-0.2358664870262146,
-0.04819156602025032,
0.019830288365483284,
0.0009687342098914087,
0.04780707508325577,
-0.10432642698287964,
-0.0495438389480114,
-0.08419929444789886,
-0.14192327857017517,
0.07514186948537827,
0.05812032148241997,
0.11697875708341599,
-0.06539073586463928,
0.056966498494148254,
0.04799724742770195,
-0.019427398219704628,
0.1196378767490387,
-0.029415950179100037,
0.10255368798971176,
-0.03419029340147972,
-0.08679288625717163,
0.0794472023844719,
-0.024925464764237404,
0.12145742028951645,
-0.02324455790221691,
0.009364351630210876,
-0.09624321758747101,
-0.013481972739100456,
-0.02771107107400894,
0.10596108436584473,
-0.032588306814432144,
-0.06492366641759872,
-0.02946523204445839,
0.03521112725138664,
-0.03991706296801567,
0.03137139976024628,
0.19098986685276031,
-0.04259482026100159,
-0.034819189459085464,
0.11230319738388062,
0.12952448427677155,
0.08629519492387772,
-0.08787939697504044,
0.0369202084839344,
-0.07257738709449768,
0.054159220308065414,
-0.19233420491218567,
-0.0068973456509411335,
0.07974077761173248,
0.0827951580286026,
0.03368232399225235,
0.0410342663526535,
-0.04322167485952377,
0.10748326778411865,
0.09312250465154648,
-0.17952482402324677,
0.05570659413933754,
-0.028759142383933067,
-0.026629632338881493,
0.025806333869695663,
-0.021405860781669617,
0.17765916883945465,
-0.13653796911239624,
-0.05605276674032211,
0.004903688095510006,
0.01294273603707552,
-0.05892808735370636,
0.0770173966884613,
0.0976327434182167,
-0.06371127814054489,
-0.06061246246099472,
0.1361515372991562,
0.17767871916294098,
0.03429839387536049,
-0.004164417274296284,
-0.03923661634325981,
0.051355037838220596,
-0.07788236439228058,
-0.07065627723932266,
0.033114124089479446,
-0.0737806111574173,
-0.09110569208860397,
-0.07033222913742065,
-0.012842852622270584,
-0.029956210404634476,
0.037590160965919495,
0.03928915038704872,
0.013141391798853874,
-0.018726440146565437,
-0.01310761459171772,
-0.06740845739841461,
0.08702550828456879,
-0.07918385416269302,
0.13755333423614502,
-0.11983446776866913,
0.00006439152639359236,
-0.04226948320865631,
-0.011105943471193314,
-0.018826982006430626,
0.025599999353289604,
-0.03830483555793762,
0.008985323831439018,
-0.12280680984258652,
0.02364189177751541,
-0.03316326439380646,
0.006199058145284653,
-0.03431608900427818,
0.07810240983963013,
-0.03651938587427139,
0.05809538811445236,
-0.048973530530929565,
0.017812468111515045,
0.002292485674843192,
0.1478266566991806,
-0.1457178294658661,
-0.04414445161819458,
-0.0214214064180851,
-0.050700657069683075,
0.0397588349878788,
0.03530621528625488,
0.030538948252797127,
-0.05783941596746445,
-0.0800958126783371,
0.043636009097099304,
0.06582646071910858,
0.062197547405958176,
-0.009585937485098839,
-0.20119254291057587,
-0.017648082226514816,
-0.002138774609193206,
-0.05965162068605423,
-0.004315536934882402,
0.12461820989847183,
-0.102120041847229,
-0.062376514077186584,
0.007050156127661467,
-0.08107291162014008,
-0.04137275367975235,
0.04624224454164505,
0.18888843059539795,
0.07325530797243118,
0.14161133766174316,
-0.0026340438053011894,
-0.007849316112697124,
-0.14738625288009644,
-0.03535827621817589,
0.006088658235967159,
-0.056721217930316925,
-0.1638268232345581,
0.005695775616914034,
0.046665679663419724,
-0.011105450801551342,
0.08270953595638275,
0.08748301863670349,
-0.13596035540103912,
-0.06470541656017303,
0.11469830572605133,
0.02485588565468788,
-0.0018221865175291896,
0.09129668772220612,
-0.02865051105618477,
-0.01996634341776371,
-0.04052498936653137,
0.08080089092254639,
0.06937702745199203,
0.09246456623077393,
0.07274612039327621,
0.13428902626037598,
0.029621370136737823,
-0.053519267588853836,
0.06271436810493469,
-0.06047851964831352,
-0.013355533592402935,
0.05693982541561127,
0.06558413058519363,
0.03776155039668083,
-0.08947190642356873,
0.16763687133789062,
0.019815977662801743,
-0.08878680318593979,
0.07789338380098343,
-0.0336117148399353,
-0.016538964584469795,
-0.0848785787820816,
-0.07414325326681137,
-0.04269116744399071,
-0.08795152604579926,
0.03307081758975983,
-0.13288991153240204,
0.031745221465826035,
0.12711648643016815,
-0.08331520855426788,
-0.048407189548015594,
0.03731545805931091,
-0.032485201954841614,
-0.05479789152741432,
0.044503092765808105,
0.004561825189739466,
-0.034197088330984116,
-0.10724899917840958,
-0.048474911600351334,
0.07897136360406876,
-0.04377102851867676,
0.009975170716643333,
0.03423260152339935,
0.039624083787202835,
-0.02328249253332615,
0.013917254284024239,
-0.06791840493679047,
-0.03437547758221626,
0.03700273856520653,
0.06449641287326813,
0.13928502798080444,
0.06820277124643326,
0.004072446376085281,
0.03411766141653061,
0.15270404517650604,
-0.016106784343719482,
0.10618022084236145,
-0.03486189991235733,
0.04588242620229721,
-0.04149359464645386,
0.0514545813202858,
0.08375916630029678,
-0.10740918666124344,
0.026731811463832855,
0.011712712235748768,
0.1702663004398346,
0.0019294037483632565,
0.014871377497911453,
0.010597098618745804,
-0.006625434383749962,
-0.052873481065034866,
0.05253339558839798,
0.045386672019958496,
0.13088707625865936,
-0.060729533433914185,
-0.03189738094806671,
-0.10891739279031754,
0.08322364836931229,
-0.04293680191040039,
0.07482323795557022,
-0.07036124914884567,
-0.12360182404518127,
-0.02244766242802143,
0.04263190180063248,
-0.008003955706954002,
-0.061926379799842834,
0.10553067177534103,
-0.10229984670877457,
-0.07185855507850647,
-0.004670004826039076,
0.02621939778327942,
-0.05962023511528969,
-0.011732377111911774,
-0.08623336255550385,
-0.03606221824884415,
0.09790114313364029,
-0.027912551537156105,
-0.09990691393613815,
-0.029226912185549736,
0.07421336323022842,
-0.05032059922814369,
0.17676861584186554,
-0.0018381810514256358,
0.20285800099372864,
0.020772939547896385,
0.0770912617444992,
-0.07469102740287781,
0.12809395790100098,
0.033080123364925385,
-0.10605223476886749,
0.05391839146614075,
0.03668384999036789,
-0.019456159323453903,
0.2100866138935089,
0.05588749051094055,
0.1220029890537262,
0.07503843307495117,
0.13437014818191528,
-0.006174043752253056,
-0.0928904265165329,
0.012191010639071465,
-0.1150832399725914,
0.11928249895572662,
0.04958079010248184,
-0.05444873869419098,
-0.02600083500146866,
-0.05010414868593216,
0.011775202117860317,
0.1281377375125885,
0.04792313277721405,
0.00023135091760195792,
-0.11163441091775894,
0.027156760916113853,
0.03114025853574276,
0.06429824978113174,
-0.16998380422592163,
-0.06496560573577881,
-0.036902397871017456,
-0.05482785403728485,
-0.047587618231773376,
-0.046020518988370895,
0.06908074766397476,
-0.016248300671577454,
-0.01612049713730812,
0.06389155983924866,
-0.02257339097559452,
0.06259515136480331,
-0.10595203191041946,
-0.06861183792352676
] |
null | null | asteroid |
## Asteroid model `JorisCos/VAD_Net`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
segment: 3
train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json
valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
main_args:
exp_dir: exp/full_not_causal_f1/
help: null
masknet:
bn_chan: 128
causal: false
hid_chan: 512
mask_act: relu
n_blocks: 3
n_repeats: 5
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
positional arguments: {}
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On LibriVAD min test set :
```yml
accuracy: 0.8196149023502931,
precision: 0.8305009048356607,
recall: 0.8869202491310206,
f1_score: 0.8426184545700124
```
License notice:
This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/).
"VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino | {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "VADNet", "VAD", "Voice Activity Detection"], "datasets": ["LibriVAD"]} | null | JorisCos/VAD_Net | [
"asteroid",
"pytorch",
"audio",
"VADNet",
"VAD",
"Voice Activity Detection",
"dataset:LibriVAD",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #VADNet #VAD #Voice Activity Detection #dataset-LibriVAD #license-cc-by-sa-4.0 #region-us
|
## Asteroid model 'JorisCos/VAD_Net'
Description:
This model was trained by Joris Cosentino using the librimix recipe in Asteroid.
It was trained on the 'enh_single' task of the Libri1Mix dataset.
Training config:
Results:
On LibriVAD min test set :
License notice:
This work "VAD_Net" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,
used under CC BY 4.0; of The DNS challenge noises, Attribution-ShareAlike 3.0 Unported.
"VAD_Net" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino | [
"## Asteroid model 'JorisCos/VAD_Net'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn LibriVAD min test set :\n\n\n\nLicense notice:\n\nThis work \"VAD_Net\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The DNS challenge noises, Attribution-ShareAlike 3.0 Unported.\n\"VAD_Net\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
"TAGS\n#asteroid #pytorch #audio #VADNet #VAD #Voice Activity Detection #dataset-LibriVAD #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model 'JorisCos/VAD_Net'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn LibriVAD min test set :\n\n\n\nLicense notice:\n\nThis work \"VAD_Net\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The DNS challenge noises, Attribution-ShareAlike 3.0 Unported.\n\"VAD_Net\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
46,
140
] | [
"passage: TAGS\n#asteroid #pytorch #audio #VADNet #VAD #Voice Activity Detection #dataset-LibriVAD #license-cc-by-sa-4.0 #region-us \n## Asteroid model 'JorisCos/VAD_Net'\n\nDescription:\n\nThis model was trained by Joris Cosentino using the librimix recipe in Asteroid.\nIt was trained on the 'enh_single' task of the Libri1Mix dataset.\n\nTraining config:\n\n\n \n\nResults:\n\nOn LibriVAD min test set :\n\n\n\nLicense notice:\n\nThis work \"VAD_Net\" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov,\nused under CC BY 4.0; of The DNS challenge noises, Attribution-ShareAlike 3.0 Unported.\n\"VAD_Net\" is licensed under Attribution-ShareAlike 3.0 Unported by Joris Cosentino"
] | [
-0.003489120164886117,
0.01543173287063837,
-0.00427667424082756,
0.08180071413516998,
0.12457235902547836,
-0.0108442772179842,
0.18403282761573792,
0.010914552956819534,
-0.04989708960056305,
-0.016562793403863907,
0.06257513165473938,
0.036367498338222504,
-0.04247321933507919,
-0.017986822873353958,
0.013868439942598343,
-0.01143696904182434,
0.010949264280498028,
-0.08486577868461609,
0.08488401770591736,
0.008969959802925587,
0.06594116240739822,
-0.06765259802341461,
0.05243657901883125,
0.011156132444739342,
0.02712186425924301,
0.05907345190644264,
0.030962403863668442,
-0.10230443626642227,
0.09652842581272125,
-0.052371054887771606,
0.09818085283041,
0.0574042834341526,
0.09022761136293411,
-0.06599292904138565,
0.015289139933884144,
-0.06531911343336105,
-0.0538579523563385,
0.07026230543851852,
0.028029803186655045,
-0.07274951785802841,
0.18488050997257233,
-0.006361901294440031,
-0.029499297961592674,
0.003255371702834964,
-0.07833153754472733,
-0.1840467005968094,
-0.13729426264762878,
-0.05666644871234894,
-0.03284871578216553,
0.05135127156972885,
0.016066400334239006,
0.1022084504365921,
-0.13876959681510925,
0.0037509070243686438,
0.11397726088762283,
-0.19731901586055756,
0.009074082598090172,
0.09587550163269043,
0.029203394427895546,
0.1445109248161316,
0.01921612210571766,
-0.004339646548032761,
0.06040298193693161,
-0.00886631477624178,
0.10393264889717102,
-0.06763796508312225,
-0.1713123321533203,
0.03326711803674698,
-0.06943297386169434,
-0.03954397886991501,
0.4221896231174469,
-0.0217213723808527,
-0.07590889930725098,
0.05418923497200012,
0.006601991131901741,
0.05287427455186844,
0.023747799918055534,
0.005104470998048782,
0.007027128711342812,
-0.05569056421518326,
0.052898816764354706,
-0.014502502977848053,
-0.11612681299448013,
-0.1051964983344078,
0.06242651119828224,
-0.10197393596172333,
-0.005313635338097811,
0.01511367503553629,
-0.07691530883312225,
0.030062314122915268,
0.18879814445972443,
-0.05810591205954552,
0.08738286793231964,
-0.04023367539048195,
0.07893532514572144,
-0.00039783763349987566,
-0.02934104949235916,
-0.1842605620622635,
0.14890089631080627,
-0.04102008044719696,
0.061469681560993195,
-0.05175637826323509,
-0.05453434959053993,
0.05745358392596245,
0.04026807099580765,
-0.0695730596780777,
0.020444337278604507,
0.053811877965927124,
0.05648091435432434,
0.019001362845301628,
0.08311253786087036,
-0.019693803042173386,
-0.16103821992874146,
-0.003343316726386547,
0.07349316775798798,
0.021929346024990082,
0.0040064104832708836,
-0.09769121557474136,
-0.04443974420428276,
0.03664245083928108,
0.05401408672332764,
-0.036732856184244156,
0.02356095239520073,
0.017427926883101463,
-0.023537587374448776,
-0.08651285618543625,
0.07213979214429855,
0.0091254822909832,
0.02167457528412342,
0.05499467998743057,
-0.08944924175739288,
0.07460528612136841,
-0.03600134700536728,
-0.13612394034862518,
0.09592148661613464,
0.03879966586828232,
0.017396213486790657,
-0.21199987828731537,
-0.0253988616168499,
-0.10479088127613068,
0.0041672056540846825,
-0.0023006333503872156,
-0.003003779798746109,
-0.035889096558094025,
0.001469715149141848,
0.004063491243869066,
-0.0667010173201561,
0.03885696828365326,
-0.07253330945968628,
0.07636458426713943,
0.022297168150544167,
0.16572068631649017,
-0.06555648893117905,
0.04135183244943619,
-0.1612268090248108,
-0.008505108766257763,
0.07312481850385666,
-0.014446182176470757,
-0.11454358696937561,
0.014600197784602642,
-0.07077819854021072,
-0.040998127311468124,
-0.06347288191318512,
-0.03747368976473808,
0.0666823610663414,
0.1297188401222229,
-0.0927148386836052,
-0.021554479375481606,
0.012288805097341537,
-0.08931031823158264,
-0.042368050664663315,
0.018183941021561623,
-0.03850952535867691,
0.10012534260749817,
0.0980062186717987,
0.15564905107021332,
-0.02198704145848751,
-0.08010688424110413,
-0.07556196302175522,
-0.10380678623914719,
-0.011883669532835484,
-0.09153787791728973,
0.06593183428049088,
0.060486212372779846,
-0.04628397151827812,
-0.030819794163107872,
-0.01352225337177515,
0.08209311962127686,
0.017462166026234627,
-0.08907318860292435,
-0.008281620219349861,
-0.10997164994478226,
0.03802621364593506,
-0.0348450243473053,
0.05693124607205391,
-0.009084728546440601,
0.07124857604503632,
0.059863440692424774,
0.027908816933631897,
-0.027560878545045853,
0.05987713113427162,
-0.03152765333652496,
0.13482323288917542,
-0.15427379310131073,
-0.017951974645256996,
-0.10829479992389679,
0.03774654120206833,
-0.018380247056484222,
0.03336809203028679,
0.10634755343198776,
0.03821256384253502,
-0.01040457934141159,
0.01270496565848589,
-0.019350159913301468,
-0.01122131198644638,
-0.04307045042514801,
0.03489254042506218,
0.04982011020183563,
-0.192570298910141,
-0.05287112668156624,
-0.045263923704624176,
0.11078675091266632,
-0.13259927928447723,
-0.04764609411358833,
0.07032273709774017,
-0.10524933785200119,
0.03620147705078125,
0.05010775476694107,
0.10240204632282257,
0.09929142147302628,
-0.062247175723314285,
0.03097008913755417,
0.04550663381814957,
0.002061250852420926,
-0.02672354131937027,
0.07030341774225235,
0.021538710221648216,
0.03382832556962967,
0.11216597259044647,
-0.08410190790891647,
-0.01755489781498909,
0.039975184947252274,
0.04630064591765404,
-0.04781465604901314,
-0.059425171464681625,
-0.0005520507111214101,
-0.01691645011305809,
-0.059400226920843124,
0.1043049767613411,
-0.05529734864830971,
0.07211538404226303,
0.026752669364213943,
-0.16554224491119385,
-0.040159452706575394,
0.13423055410385132,
0.042594704777002335,
0.06257885694503784,
0.06777780503034592,
0.007039577234536409,
-0.24061664938926697,
0.13627341389656067,
0.06779690831899643,
-0.08320903778076172,
-0.007781021296977997,
0.00926644541323185,
0.08730611950159073,
0.05715738981962204,
-0.144269660115242,
-0.07320043444633484,
0.05297606438398361,
-0.057014577090740204,
0.007594000082463026,
-0.1232525035738945,
-0.10197997093200684,
-0.008820890448987484,
0.032257676124572754,
-0.14908017218112946,
0.023533068597316742,
-0.1107269898056984,
0.0784473866224289,
-0.08933651447296143,
-0.18315716087818146,
0.012053636834025383,
-0.014492001384496689,
-0.05966010317206383,
-0.003499347949400544,
-0.04355793818831444,
-0.15666721761226654,
-0.15787753462791443,
-0.118744395673275,
-0.00237427675165236,
0.07375559210777283,
0.06962655484676361,
-0.12216619402170181,
0.01721815951168537,
-0.028861191123723984,
-0.0930137038230896,
0.05527167022228241,
-0.07100049406290054,
0.016913585364818573,
0.07695475220680237,
0.0691327229142189,
-0.05976022407412529,
0.005014217924326658,
-0.07926454395055771,
0.05140378698706627,
0.12566249072551727,
0.05439409613609314,
0.1912904679775238,
0.06228787451982498,
0.016406184062361717,
-0.04257278889417648,
0.02726179175078869,
0.13865886628627777,
-0.012239945121109486,
-0.07865765690803528,
0.23905064165592194,
0.022713307291269302,
-0.051996149122714996,
0.03776576742529869,
0.08386854082345963,
-0.040360864251852036,
0.0363546758890152,
-0.11134994775056839,
-0.13741108775138855,
-0.23245038092136383,
-0.10945964604616165,
-0.07439491897821426,
-0.09035031497478485,
-0.005489559378474951,
0.03468572720885277,
0.09853678196668625,
0.046187203377485275,
0.05763644352555275,
0.08859704434871674,
0.04558108001947403,
0.033362291753292084,
0.2092171460390091,
-0.04540456086397171,
0.0548880361020565,
-0.028902510181069374,
-0.06040727347135544,
0.04067688435316086,
0.08959294110536575,
0.1619471162557602,
0.1553613394498825,
0.08176375925540924,
0.048988617956638336,
0.1070799008011818,
0.003975206520408392,
0.025170354172587395,
0.041263144463300705,
0.06789442151784897,
0.014179288409650326,
-0.13945184648036957,
-0.0541250966489315,
0.11125174164772034,
-0.018471717834472656,
-0.01156989112496376,
0.06163841485977173,
-0.022365860641002655,
-0.025326166301965714,
-0.03978807479143143,
0.10422859340906143,
-0.23853808641433716,
-0.014348726719617844,
0.04108891636133194,
0.05226536840200424,
0.003451684257015586,
-0.010420059785246849,
0.08893556147813797,
0.012498954311013222,
-0.02715953253209591,
0.0225626602768898,
-0.021791595965623856,
-0.11106958240270615,
0.006498720962554216,
-0.11967898160219193,
-0.12741878628730774,
0.010590648278594017,
0.02503330633044243,
-0.2491159290075302,
0.13805609941482544,
0.013783383183181286,
0.014940358698368073,
0.05057469755411148,
0.005204294342547655,
-0.017760643735527992,
-0.00025626234128139913,
0.09780360758304596,
-0.0039231847040355206,
0.19365675747394562,
-0.05028913542628288,
-0.1322622150182724,
0.03779462352395058,
-0.06834132969379425,
0.008624483831226826,
0.020010577514767647,
0.011275433003902435,
-0.0007247949833981693,
-0.00244163628667593,
0.09564108401536942,
-0.2284609079360962,
-0.04051817208528519,
0.013288400135934353,
0.2356070876121521,
0.1205650344491005,
-0.021662285551428795,
-0.11155630648136139,
-0.022765088826417923,
-0.06652787327766418,
-0.07006926089525223,
-0.020856790244579315,
0.02323176898062229,
-0.010835565626621246,
0.0743413195014,
0.02484619989991188,
0.006307986564934254,
0.09668327122926712,
-0.08575638383626938,
-0.07414701581001282,
-0.047247935086488724,
0.017688244581222534,
-0.04224531725049019,
-0.1020677462220192,
-0.042501647025346756,
0.0952998548746109,
0.1304732859134674,
0.12329220771789551,
0.023772036656737328,
0.07674587517976761,
-0.073485367000103,
0.014746672473847866,
0.07936841249465942,
0.059339482337236404,
0.03874841332435608,
-0.006028725765645504,
0.020751943811774254,
-0.22530141472816467,
-0.027637526392936707,
-0.05003374442458153,
0.12309348583221436,
0.12956127524375916,
-0.008010205812752247,
0.1577882617712021,
0.18091456592082977,
-0.11293704062700272,
-0.10348880290985107,
-0.05730054900050163,
-0.01158157642930746,
0.018169989809393883,
0.025122428312897682,
-0.24325907230377197,
0.05710430070757866,
0.04762512072920799,
-0.08868399262428284,
0.07025814056396484,
-0.28691715002059937,
-0.06254993379116058,
0.08048480749130249,
-0.02939143404364586,
0.23056383430957794,
-0.09091133624315262,
-0.06466246396303177,
-0.146437868475914,
-0.08961041271686554,
0.027788106352090836,
-0.010510278865695,
0.12815214693546295,
-0.05588989704847336,
0.057718612253665924,
0.01659131608903408,
-0.013474554754793644,
0.1379747837781906,
0.039998073130846024,
0.05681945011019707,
-0.04332324117422104,
-0.12683691084384918,
0.12777946889400482,
-0.005400593858212233,
0.11417915672063828,
0.03182051330804825,
-0.04855479300022125,
-0.02423536404967308,
-0.026556894183158875,
-0.09113965183496475,
0.11217726022005081,
0.07743097841739655,
-0.046078961342573166,
-0.01411838736385107,
-0.00936100259423256,
-0.010353158228099346,
0.05977140739560127,
0.30272021889686584,
-0.05146344378590584,
0.0006152756977826357,
0.0896872878074646,
0.10756879299879074,
-0.07121501863002777,
0.06735952943563461,
0.05138739198446274,
-0.05274958908557892,
0.10444452613592148,
-0.12015029788017273,
0.01844595931470394,
0.02821538597345352,
0.07293755561113358,
0.0288168303668499,
0.06128029152750969,
-0.08911535143852234,
0.1594860851764679,
0.10649710893630981,
-0.17760686576366425,
0.02975507080554962,
0.01842738687992096,
0.013857098296284676,
0.06022116541862488,
0.06619715690612793,
0.2047155648469925,
-0.18606790900230408,
-0.03875453770160675,
-0.006056772544980049,
0.03973126783967018,
-0.07821755856275558,
0.1291845142841339,
0.13924923539161682,
-0.03107239119708538,
-0.09563643485307693,
0.06301771104335785,
0.18432985246181488,
0.08146924525499344,
0.024051709100604057,
-0.09537986665964127,
0.019565248861908913,
-0.08880143612623215,
-0.20241400599479675,
-0.028864499181509018,
-0.014867333695292473,
-0.13199113309383392,
-0.05212153494358063,
-0.004154813010245562,
0.0064437915571033955,
0.0504063218832016,
0.05910544469952583,
0.04571373015642166,
-0.07643737643957138,
-0.02477651834487915,
-0.05584825575351715,
0.05457436293363571,
-0.06087766960263252,
0.0913013368844986,
-0.12899333238601685,
-0.04806923121213913,
-0.0387076772749424,
-0.06102777272462845,
-0.04003984481096268,
-0.06432506442070007,
-0.05850060656666756,
0.08261927217245102,
-0.13520799577236176,
-0.002331625437363982,
-0.04443858936429024,
0.0198881346732378,
0.004488593433052301,
0.035009656101465225,
-0.008987942710518837,
0.14338713884353638,
-0.0600489117205143,
0.012029995210468769,
-0.005476053804159164,
0.16163131594657898,
-0.17235679924488068,
-0.022211451083421707,
-0.06021973118185997,
0.0066772885620594025,
0.022886201739311218,
0.05692749843001366,
-0.0549841932952404,
0.014654316008090973,
-0.2791246771812439,
-0.007405443117022514,
0.17717143893241882,
0.045214422047138214,
0.02307458408176899,
-0.20303651690483093,
-0.016594674438238144,
0.0430825799703598,
-0.06640235334634781,
0.017789555713534355,
0.14412008225917816,
-0.04649787023663521,
-0.024128951132297516,
-0.06371065974235535,
-0.05367676541209221,
0.039193179458379745,
0.06706671416759491,
0.1956561654806137,
0.0676647201180458,
0.1565147042274475,
0.015697108581662178,
-0.051858291029930115,
-0.09879091382026672,
0.013501521199941635,
-0.05599285289645195,
-0.09420543164014816,
-0.2767333388328552,
-0.0006821068236604333,
0.034317392855882645,
-0.01658034510910511,
0.024164898321032524,
0.1288362294435501,
-0.03945046663284302,
-0.07929205894470215,
0.21798786520957947,
-0.06897664815187454,
0.03181605413556099,
0.08666373789310455,
0.01672278344631195,
-0.011416645720601082,
0.010577600449323654,
0.044825322926044464,
0.10998129844665527,
0.24475236237049103,
-0.06051531434059143,
-0.049316320568323135,
-0.016383692622184753,
0.0019952806178480387,
0.0835760161280632,
-0.016028359532356262,
0.001788160647265613,
0.07940274477005005,
-0.005337357986718416,
0.08249246329069138,
-0.09866379201412201,
0.020661817863583565,
0.08844545483589172,
0.046845316886901855,
-0.00854246411472559,
-0.061940304934978485,
-0.022595686838030815,
-0.06812483817338943,
-0.20604421198368073,
-0.0629374086856842,
-0.09191558510065079,
0.009200232103466988,
-0.09441376477479935,
-0.054718393832445145,
0.13682837784290314,
-0.09019755572080612,
-0.02411375381052494,
0.020456135272979736,
0.06493324786424637,
-0.03348931297659874,
0.023231035098433495,
-0.06425905972719193,
-0.07332830131053925,
-0.10759583860635757,
-0.037309303879737854,
0.07614599913358688,
-0.010463560000061989,
-0.025123540312051773,
0.048086561262607574,
0.06511259824037552,
-0.009928190149366856,
-0.03468358516693115,
-0.10187918692827225,
-0.03530210629105568,
0.052092548459768295,
0.033895768225193024,
0.1939522624015808,
0.10767178982496262,
-0.04562821984291077,
0.04676037281751633,
0.23003728687763214,
0.027159439399838448,
0.07323367148637772,
-0.018710367381572723,
-0.019885219633579254,
0.016757404431700706,
0.05781044065952301,
-0.030680304393172264,
-0.048293646425008774,
0.012854538857936859,
0.007950973697006702,
0.17899414896965027,
0.05690384283661842,
0.019344588741660118,
-0.07613643258810043,
0.025117969140410423,
-0.0461222380399704,
0.036321938037872314,
0.0948120653629303,
0.09806262701749802,
-0.045180995017290115,
0.03130432963371277,
-0.1368044763803482,
0.02707277610898018,
-0.01656433194875717,
-0.01698889397084713,
-0.05559265613555908,
-0.09779281914234161,
-0.033596862107515335,
0.10057684034109116,
-0.12081819027662277,
-0.036092452704906464,
-0.021445468068122864,
-0.08265919238328934,
-0.01975816674530506,
-0.0017317452002316713,
0.10353904217481613,
0.019878795370459557,
0.01326978113502264,
-0.10794977098703384,
-0.007330570835620165,
-0.006057587452232838,
0.00039056522655300796,
-0.10188775509595871,
-0.03177497908473015,
0.0820072740316391,
-0.07830851525068283,
0.11355836689472198,
-0.024942774325609207,
0.16584210097789764,
-0.022006042301654816,
0.09959755092859268,
-0.08331871777772903,
0.1221584901213646,
-0.007378153502941132,
-0.04695172980427742,
0.03529733791947365,
-0.006993066519498825,
0.02555718831717968,
0.23308657109737396,
0.03902329504489899,
0.09781303256750107,
0.047816112637519836,
0.10532362759113312,
0.08334890007972717,
-0.04701147973537445,
0.03778211772441864,
-0.09759166091680527,
0.07252832502126694,
0.015879282727837563,
-0.07393240928649902,
-0.06632748991250992,
-0.07234466820955276,
-0.02682681381702423,
0.06037895381450653,
-0.06835787743330002,
-0.054905544966459274,
-0.09020935744047165,
-0.006222062278538942,
-0.12202934175729752,
0.023092906922101974,
-0.04813938960433006,
-0.023187408223748207,
-0.10911750793457031,
-0.06964214146137238,
0.008789636194705963,
-0.05901200696825981,
0.05353090912103653,
-0.022081227973103523,
-0.0007934788591228426,
0.10234751552343369,
0.07276038080453873,
0.09130030125379562,
-0.1364387422800064,
-0.09084683656692505
] |
null | null | transformers | # BART_Finetuned_CNN_dailymail
The following repo contains a [bart-base](https://huggingface.co/facebook/bart-base) model that was finetuned using the dataset [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) | {} | text2text-generation | Josmar/BART_Finetuned_CNN_dailymail | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
| # BART_Finetuned_CNN_dailymail
The following repo contains a bart-base model that was finetuned using the dataset cnn_dailymail | [
"# BART_Finetuned_CNN_dailymail\nThe following repo contains a bart-base model that was finetuned using the dataset cnn_dailymail"
] | [
"TAGS\n#transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n",
"# BART_Finetuned_CNN_dailymail\nThe following repo contains a bart-base model that was finetuned using the dataset cnn_dailymail"
] | [
38,
39
] | [
"passage: TAGS\n#transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n# BART_Finetuned_CNN_dailymail\nThe following repo contains a bart-base model that was finetuned using the dataset cnn_dailymail"
] | [
-0.0057662297040224075,
0.03279951587319374,
-0.003430339740589261,
-0.034261271357536316,
0.06580808758735657,
0.04334250092506409,
0.21349668502807617,
0.0794350728392601,
-0.08502542227506638,
-0.06442348659038544,
0.12243396043777466,
0.08097527921199799,
-0.03524148464202881,
0.2271738201379776,
-0.009468059055507183,
-0.1830478012561798,
0.07243095338344574,
0.07816989719867706,
0.010891549289226532,
0.132216677069664,
0.056369002908468246,
-0.018469786271452904,
0.03557585924863815,
-0.08272818475961685,
-0.11984628438949585,
0.062398675829172134,
0.011555526405572891,
-0.09892959147691727,
0.0870107114315033,
0.07672089338302612,
0.07812763005495071,
0.08859775960445404,
-0.02691769227385521,
-0.049799419939517975,
0.05064527317881584,
0.03811175003647804,
-0.0656619518995285,
0.07181629538536072,
-0.04805269092321396,
-0.10551099479198456,
0.12108204513788223,
-0.040942177176475525,
0.016201723366975784,
-0.013853410258889198,
-0.1662977784872055,
-0.03462431579828262,
-0.062040433287620544,
0.07678447663784027,
0.12529931962490082,
0.1360713541507721,
-0.026329051703214645,
0.1952309012413025,
-0.06842735409736633,
0.12719900906085968,
0.08778165280818939,
-0.21508249640464783,
0.0007779005682095885,
0.1674625724554062,
-0.07902863621711731,
0.0732988640666008,
0.08732103556394577,
0.01701010949909687,
0.08094040304422379,
-0.007509246934205294,
-0.07180756330490112,
-0.036424122750759125,
-0.05818070471286774,
0.03876123204827309,
-0.09443417936563492,
-0.1129683181643486,
0.1383792608976364,
0.011467132717370987,
0.01654382236301899,
0.014494715258479118,
-0.030451353639364243,
-0.08109661936759949,
-0.04860858991742134,
0.07453650236129761,
-0.10543613880872726,
0.03293679282069206,
-0.1590491384267807,
-0.05829480290412903,
-0.09986665844917297,
-0.014804299920797348,
-0.2193482220172882,
0.2691299021244049,
-0.004873262718319893,
0.06153403967618942,
-0.2670608460903168,
0.11171238869428635,
0.03503652289509773,
-0.12541818618774414,
0.08129427582025528,
-0.052922990173101425,
0.05737727880477905,
-0.03664691373705864,
-0.0763523206114769,
-0.13758352398872375,
0.06494884938001633,
0.17866061627864838,
0.08828262239694595,
-0.007983505725860596,
-0.1231580302119255,
0.029612481594085693,
0.062346845865249634,
0.014466078020632267,
-0.056395743042230606,
-0.038829922676086426,
0.040855009108781815,
-0.028853299096226692,
-0.0070283678360283375,
-0.025349033996462822,
-0.11160343885421753,
0.042407892644405365,
0.0036809260491281748,
0.022309593856334686,
0.13013815879821777,
0.15026292204856873,
0.002119590062648058,
-0.04692623391747475,
0.08551739901304245,
-0.10070830583572388,
-0.036985717713832855,
-0.021389324218034744,
-0.042802594602108,
0.05529380217194557,
-0.012359055690467358,
0.01149433758109808,
-0.03691152483224869,
0.11810822039842606,
-0.09045557677745819,
-0.03759792447090149,
0.002080881968140602,
-0.0898650512099266,
0.004688055254518986,
0.024314846843481064,
-0.022499624639749527,
-0.1474665254354477,
-0.17664077877998352,
-0.034251317381858826,
-0.049474503844976425,
-0.007678457070142031,
-0.0349811315536499,
-0.0634058490395546,
-0.006498462520539761,
0.04420635849237442,
-0.07978930324316025,
0.12412288784980774,
-0.09654564410448074,
0.08702857792377472,
-0.06006617471575737,
0.012908737175166607,
-0.09297647327184677,
0.02768373116850853,
-0.10536936670541763,
-0.07642540335655212,
-0.06436309963464737,
0.10248344391584396,
-0.0499415285885334,
0.12468765676021576,
-0.07428782433271408,
0.014472763054072857,
-0.1216474249958992,
0.059248100966215134,
-0.0007629440515302122,
0.22836317121982574,
-0.12217183411121368,
-0.10096652060747147,
0.1965852975845337,
-0.049169063568115234,
0.011526310816407204,
0.010660807602107525,
-0.08554083853960037,
0.05601910501718521,
0.1678723394870758,
0.07321047782897949,
0.04201618954539299,
0.03874436020851135,
0.0689222663640976,
0.03269480913877487,
-0.039320897310972214,
-0.010188383981585503,
-0.041006773710250854,
0.05422705039381981,
-0.24322815239429474,
0.014851105399429798,
-0.004014756064862013,
0.1475057303905487,
-0.08341819792985916,
0.03790093585848808,
-0.0015460050199180841,
-0.018311405554413795,
0.06630732119083405,
-0.04899189621210098,
0.10677966475486755,
-0.039168309420347214,
-0.05699734762310982,
0.05181801691651344,
0.06780780106782913,
0.028325244784355164,
0.031577397137880325,
-0.09257441759109497,
-0.004057351965457201,
-0.06527303904294968,
0.049000564962625504,
-0.16667398810386658,
0.010635036043822765,
-0.08136411011219025,
0.2058945596218109,
0.09263169020414352,
0.08404792100191116,
0.07633296400308609,
-0.1483311802148819,
-0.01588999480009079,
-0.002575826831161976,
0.09827090799808502,
0.044318974018096924,
-0.03281113877892494,
-0.13822250068187714,
0.0538875013589859,
-0.09442616254091263,
0.045908767729997635,
-0.023041296750307083,
0.022261759266257286,
0.06611653417348862,
0.1892177015542984,
0.058038752526044846,
0.021548844873905182,
0.0671430230140686,
0.06696639955043793,
0.01386580616235733,
-0.011931641027331352,
-0.014825141057372093,
0.025870880112051964,
-0.11711990833282471,
0.15458419919013977,
-0.1462544947862625,
0.08547921478748322,
0.19488811492919922,
-0.04584294185042381,
-0.03714391589164734,
0.04744023084640503,
-0.04723687097430229,
0.017014048993587494,
0.007641422096639872,
-0.021310005336999893,
0.1121821254491806,
-0.013125644996762276,
0.1558411717414856,
0.006712302565574646,
-0.04450752213597298,
-0.022413646802306175,
-0.009119373746216297,
-0.031207242980599403,
0.03517242521047592,
-0.07083586603403091,
-0.08448490500450134,
0.07255299389362335,
0.05286264419555664,
0.08307113498449326,
0.13967104256153107,
-0.006376036908477545,
-0.037281014025211334,
0.05799794942140579,
-0.09543408453464508,
-0.048960890620946884,
-0.0411071851849556,
-0.022095009684562683,
-0.014218720607459545,
0.07635616511106491,
0.057681601494550705,
0.07208432257175446,
-0.04137091711163521,
-0.04652547091245651,
0.03551169112324715,
-0.01885215938091278,
-0.05191510543227196,
0.04480254650115967,
0.01693134568631649,
0.11587595194578171,
0.006065806373953819,
-0.04543596878647804,
0.09296560287475586,
0.007648374419659376,
-0.059259843081235886,
0.09735596179962158,
-0.11120936274528503,
-0.28452351689338684,
-0.13612861931324005,
-0.20643919706344604,
-0.002357418416067958,
-0.00855577364563942,
0.06678249686956406,
-0.1526249647140503,
-0.022019416093826294,
-0.06163279339671135,
0.12923240661621094,
0.0909608006477356,
0.10537862032651901,
0.037495143711566925,
-0.0165519081056118,
-0.008514034561812878,
-0.10296817868947983,
0.0024002741556614637,
-0.06507696956396103,
-0.060228124260902405,
0.08439814299345016,
-0.11452241241931915,
-0.005620407406240702,
0.07586608827114105,
0.04469076171517372,
0.06407546997070312,
-0.016939155757427216,
0.2724892199039459,
-0.0788218304514885,
-0.022818325087428093,
0.14366431534290314,
0.000017727454178384505,
-0.030764279887080193,
0.12867078185081482,
0.0214376263320446,
-0.040903955698013306,
0.05970896780490875,
0.032178789377212524,
-0.07789047062397003,
-0.19226986169815063,
-0.1212032213807106,
-0.0014839537907391787,
0.06891442835330963,
0.08181246370077133,
0.08457208424806595,
0.14530490338802338,
0.02716185338795185,
-0.0646214708685875,
0.051949549466371536,
0.02309284172952175,
0.08858571201562881,
0.09295439720153809,
-0.0028532997239381075,
0.08880932629108429,
-0.06149310991168022,
-0.11222600191831589,
0.14138217270374298,
0.01291454117745161,
-0.02278727851808071,
0.020140912383794785,
-0.015123109333217144,
-0.004107439890503883,
-0.03193410113453865,
0.12996552884578705,
0.07937049120664597,
0.015167401172220707,
-0.08306698501110077,
0.029397714883089066,
-0.02135687693953514,
-0.05435653403401375,
-0.003419150598347187,
-0.03511691838502884,
-0.15248695015907288,
0.01943773590028286,
-0.1720716655254364,
0.02396783046424389,
0.11091197282075882,
0.09254445880651474,
-0.2334350049495697,
0.009468169882893562,
-0.010189174674451351,
-0.04899536445736885,
-0.041972462087869644,
0.010372618213295937,
-0.05444679781794548,
-0.006223734468221664,
0.0829266756772995,
0.03846753016114235,
0.1271059215068817,
-0.1082744225859642,
0.05828302726149559,
-0.12239151448011398,
-0.13483843207359314,
-0.06897356361150742,
0.07162202894687653,
-0.362842857837677,
0.2183980643749237,
0.002716599963605404,
-0.02528652735054493,
-0.05491328984498978,
-0.09246902912855148,
-0.004823488648980856,
0.07304594665765762,
-0.023443792015314102,
0.008652377873659134,
0.12150729447603226,
-0.04239662364125252,
-0.24627994000911713,
0.020438725128769875,
-0.026101289317011833,
-0.06876231729984283,
0.034779615700244904,
0.04762459546327591,
-0.05377963185310364,
0.002312534023076296,
-0.0651639997959137,
-0.06999365240335464,
-0.10855626314878464,
0.029560230672359467,
0.1325967013835907,
0.12861743569374084,
-0.03450216352939606,
-0.0890023410320282,
0.02855757810175419,
0.1443059891462326,
0.11858459562063217,
-0.07333119213581085,
-0.12876830995082855,
0.16041964292526245,
0.03733840212225914,
-0.007596760056912899,
-0.03668271005153656,
0.059188373386859894,
0.018018819391727448,
0.02204393967986107,
-0.22053904831409454,
0.05777541920542717,
-0.04452289268374443,
-0.041671719402074814,
-0.029653675854206085,
0.11000010371208191,
0.07448374480009079,
0.01217023003846407,
-0.007475750520825386,
-0.03259492293000221,
-0.02535037137567997,
-0.032057784497737885,
-0.0818430483341217,
-0.03724521026015282,
0.05320008099079132,
0.08412990719079971,
0.06341979652643204,
-0.10703789442777634,
-0.0822998508810997,
0.05558612570166588,
0.11356768012046814,
0.12967771291732788,
-0.04173329845070839,
0.1035541221499443,
0.10247907787561417,
0.017785560339689255,
-0.18628725409507751,
-0.08581170439720154,
-0.03065556101500988,
-0.013750092126429081,
-0.06197207793593407,
-0.16883337497711182,
0.04745308309793472,
-0.006582621484994888,
-0.009928274899721146,
-0.029465869069099426,
-0.2869304120540619,
-0.06624776124954224,
0.2289735972881317,
-0.021295802667737007,
0.46530288457870483,
-0.078431636095047,
-0.09805969893932343,
0.02127133123576641,
-0.20885585248470306,
0.19946540892124176,
-0.1737632155418396,
0.04208029434084892,
-0.010816195979714394,
0.12049827724695206,
0.03332680091261864,
-0.03114193119108677,
0.04311291500926018,
0.11633247882127762,
0.017204729840159416,
-0.12490680068731308,
-0.012824710458517075,
0.003236024873331189,
-0.018548505380749702,
0.045775994658470154,
-0.012920516543090343,
0.0655437782406807,
-0.21933706104755402,
-0.05568500980734825,
-0.10251982510089874,
-0.03335603326559067,
0.01836075820028782,
-0.02607394941151142,
0.048574239015579224,
-0.05214143544435501,
-0.032186996191740036,
-0.008590965531766415,
0.20505672693252563,
-0.06854275614023209,
0.13141492009162903,
0.06008082255721092,
0.03628765791654587,
-0.11197548359632492,
0.02716194838285446,
-0.04847973212599754,
-0.08056647330522537,
0.06902948766946793,
-0.13087007403373718,
0.006579098757356405,
0.033936213701963425,
-0.015082052908837795,
0.08293641358613968,
0.05874314159154892,
-0.012365163303911686,
-0.01962566003203392,
0.14446334540843964,
-0.2654649615287781,
0.07261916995048523,
-0.021594738587737083,
0.07341133803129196,
0.033722035586833954,
0.0502115935087204,
0.25446397066116333,
0.028582267463207245,
-0.06440971791744232,
0.046000782400369644,
-0.032972823828458786,
-0.04783945530653,
0.10067874193191528,
0.036499589681625366,
0.03930356353521347,
-0.16914954781532288,
0.042868826538324356,
0.06382671743631363,
-0.10606778413057327,
0.04279155284166336,
0.10920555144548416,
-0.16624915599822998,
-0.09156547486782074,
-0.005226475186645985,
0.13824975490570068,
-0.12588274478912354,
-0.016063276678323746,
-0.09690020978450775,
-0.024752257391810417,
0.10424678772687912,
0.21062736213207245,
0.0488370805978775,
0.13803841173648834,
-0.0448729433119297,
-0.05641426891088486,
0.004134887829422951,
-0.04237804189324379,
0.09592768549919128,
0.05097987502813339,
-0.002788031939417124,
0.06830281019210815,
-0.041083622723817825,
0.09085506945848465,
-0.10531822592020035,
-0.07185067981481552,
-0.09515029191970825,
0.0216679684817791,
-0.14021287858486176,
-0.05079183354973793,
-0.010589450597763062,
-0.030021682381629944,
-0.01739717833697796,
-0.10419561713933945,
-0.031704407185316086,
-0.0455133430659771,
-0.08433788269758224,
0.01643199846148491,
-0.020176295191049576,
-0.006781076081097126,
-0.06537464261054993,
0.037201523780822754,
0.011873560026288033,
-0.04661685228347778,
0.08350726962089539,
0.1227894052863121,
-0.10079912841320038,
0.0652642548084259,
-0.10756926983594894,
-0.06674548983573914,
0.026384854689240456,
-0.03582429513335228,
0.05561113357543945,
0.11606507003307343,
0.035372473299503326,
0.06441260874271393,
0.005799551494419575,
0.031222514808177948,
0.05477311834692955,
-0.09960487484931946,
0.03662267327308655,
0.0058230068534612656,
0.012403789907693863,
-0.05090631544589996,
-0.06196236237883568,
0.0854538083076477,
0.07428643852472305,
0.08747820556163788,
-0.06116607412695885,
-0.022845076397061348,
-0.07536929845809937,
0.0031283493153750896,
-0.041145484894514084,
-0.12402978539466858,
-0.021248014643788338,
-0.042118094861507416,
0.03897646814584732,
0.047083646059036255,
0.1755657196044922,
-0.0071870191022753716,
-0.08433151245117188,
0.03941672667860985,
0.028774820268154144,
0.11398343741893768,
-0.023732978850603104,
0.20731951296329498,
0.06541657447814941,
-0.032493580132722855,
-0.13340482115745544,
0.03511226922273636,
0.03977033123373985,
0.04263602942228317,
0.046844303607940674,
0.04140743613243103,
0.1225462332367897,
0.02844429947435856,
-0.0004690189380198717,
0.023828890174627304,
0.08511602878570557,
-0.22145693004131317,
-0.1373332291841507,
0.05883483961224556,
-0.02484019286930561,
0.1139923706650734,
0.089403435587883,
0.05085989832878113,
-0.008587555028498173,
0.09532102197408676,
0.031153563410043716,
-0.027782395482063293,
-0.13859999179840088,
-0.05642690882086754,
-0.22703437507152557,
0.0058311284519732,
-0.0802893191576004,
0.005142509005963802,
0.07918808609247208,
0.08240954577922821,
0.03246055543422699,
0.05012216791510582,
0.04966464638710022,
-0.09061599522829056,
0.10604996234178543,
-0.06587287783622742,
0.01129441149532795,
-0.08188895136117935,
-0.015615127980709076,
-0.016516810283064842,
0.06727778911590576,
-0.011921195313334465,
0.0747590959072113,
0.10050337761640549,
0.07002273201942444,
-0.083438940346241,
-0.11952342838048935,
0.01763305626809597,
0.025532051920890808,
0.06507272273302078,
0.22894464433193207,
0.0395025797188282,
0.013081802055239677,
0.03151071071624756,
0.2812902331352234,
-0.018409529700875282,
-0.1556900590658188,
-0.14159323275089264,
0.09329336136579514,
0.05442085489630699,
0.08093523234128952,
-0.06798022985458374,
-0.047149740159511566,
-0.0582917183637619,
0.22320547699928284,
0.2365017831325531,
0.027894193306565285,
0.04683622717857361,
-0.013921715319156647,
0.029858121648430824,
0.11041011661291122,
0.09467943012714386,
0.08591178059577942,
0.17695598304271698,
-0.0375523641705513,
-0.11911820620298386,
0.015613791532814503,
-0.011197217740118504,
-0.021496020257472992,
-0.0015903683379292488,
0.002376885386183858,
-0.11555184423923492,
-0.041565053164958954,
0.12251860648393631,
-0.16525903344154358,
-0.012606126256287098,
-0.11544524133205414,
-0.14334028959274292,
-0.09067855775356293,
-0.03558110445737839,
0.1345304250717163,
0.03979801386594772,
0.09320099651813507,
0.0072860135696828365,
0.009868723340332508,
-0.01590179093182087,
-0.06482654064893723,
-0.08662135899066925,
-0.16144858300685883,
0.07561176270246506,
-0.108828604221344,
-0.0070240311324596405,
-0.01907617785036564,
0.05653342977166176,
0.08204644918441772,
-0.026715099811553955,
-0.0696217343211174,
0.08676821738481522,
-0.05891936644911766,
-0.0046828072518110275,
0.01274541113525629,
0.050689443945884705,
0.04693824052810669,
-0.062107302248477936,
0.051303744316101074,
-0.1766783595085144,
0.010441014543175697,
-0.12719911336898804,
-0.0006532270344905555,
-0.05997475981712341,
-0.0018961254972964525,
0.031020939350128174,
0.08087483048439026,
0.10079780966043472,
-0.06726901233196259,
0.05944761633872986,
0.010932759381830692,
-0.014397671446204185,
0.016551457345485687,
-0.07753907889127731,
-0.04779091104865074,
-0.13507574796676636,
-0.11233603209257126,
0.011398889124393463,
0.010329566895961761,
-0.22738727927207947,
0.04239371791481972,
-0.14358411729335785,
-0.014781385660171509,
-0.04011135548353195,
0.11264285445213318,
0.08938783407211304,
0.041508592665195465,
-0.02017400413751602,
0.02826203592121601,
0.07650326937437057,
0.06363950669765472,
-0.1592770218849182,
-0.13557948172092438
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# m2m100_418M-fr
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.0+cpu
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"license": "mit", "tags": ["translation", "generated_from_trainer"], "datasets": ["kde4"], "model-index": [{"name": "m2m100_418M-fr", "results": []}]} | translation | Jour/m2m100_418M-fr | [
"transformers",
"pytorch",
"tensorboard",
"m2m_100",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #m2m_100 #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# m2m100_418M-fr
This model is a fine-tuned version of facebook/m2m100_418M on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.0+cpu
- Datasets 1.16.1
- Tokenizers 0.10.3
| [
"# m2m100_418M-fr\n\nThis model is a fine-tuned version of facebook/m2m100_418M on the kde4 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.9.0+cpu\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #m2m_100 #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# m2m100_418M-fr\n\nThis model is a fine-tuned version of facebook/m2m100_418M on the kde4 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.9.0+cpu\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] | [
68,
38,
6,
12,
8,
3,
90,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #m2m_100 #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# m2m100_418M-fr\n\nThis model is a fine-tuned version of facebook/m2m100_418M on the kde4 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.9.0+cpu\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] | [
-0.09107305109500885,
0.08512522280216217,
-0.0007542730309069157,
0.07947235554456711,
0.1572571098804474,
0.016518378630280495,
0.11241008341312408,
0.09151176363229752,
-0.09176184982061386,
0.04487024247646332,
0.07560577243566513,
0.0633484348654747,
0.045051801949739456,
0.1426543891429901,
-0.036430198699235916,
-0.2564569413661957,
-0.010713556781411171,
0.018786462023854256,
-0.09389398247003555,
0.1013534665107727,
0.08813457936048508,
-0.10499075055122375,
0.08009569346904755,
-0.0036882003769278526,
-0.20919930934906006,
0.040621351450681686,
-0.017062749713659286,
-0.04917578026652336,
0.10341449826955795,
0.03315148502588272,
0.1025213897228241,
0.013201880268752575,
0.1467950940132141,
-0.18362949788570404,
0.004380187019705772,
0.08065442740917206,
0.022597428411245346,
0.061584457755088806,
0.06092290207743645,
0.037875961512327194,
0.16812647879123688,
-0.14203378558158875,
0.08413109928369522,
0.02003350295126438,
-0.05536529794335365,
-0.1389348953962326,
-0.06133253872394562,
0.09540268033742905,
0.11319515854120255,
0.1052493005990982,
0.00023998800315894186,
0.12002300471067429,
-0.07843569666147232,
0.09108780324459076,
0.15463338792324066,
-0.2506350576877594,
-0.08229043334722519,
0.0900178998708725,
0.04813361540436745,
0.08078082650899887,
-0.0858028382062912,
0.00669415108859539,
0.04359666630625725,
0.04315590485930443,
0.1207299530506134,
-0.04556868597865105,
-0.04789247363805771,
-0.011752653867006302,
-0.16275861859321594,
-0.002148263156414032,
0.18083611130714417,
0.05742459371685982,
-0.030028197914361954,
-0.059443648904561996,
-0.06792587786912918,
-0.06141139939427376,
-0.020803723484277725,
-0.06162401661276817,
0.031533896923065186,
-0.048343535512685776,
-0.08449920266866684,
-0.07766760885715485,
-0.0776197761297226,
-0.05958794057369232,
-0.01617412269115448,
0.07951238751411438,
0.03844151273369789,
0.00488022156059742,
-0.03865440562367439,
0.09852233529090881,
-0.007903597317636013,
-0.09919903427362442,
0.02320142462849617,
0.00329550146125257,
-0.07254680246114731,
-0.07059549540281296,
-0.041017767041921616,
-0.07041504979133606,
-0.023719999939203262,
0.08749514818191528,
-0.05193142965435982,
0.0832899734377861,
0.04476962611079216,
0.018563169986009598,
-0.025777069851756096,
0.12789757549762726,
-0.06198091432452202,
-0.06736669689416885,
0.004351953975856304,
0.08651801943778992,
-0.012251517735421658,
-0.014509066008031368,
-0.1061980277299881,
-0.01100882701575756,
0.09859013557434082,
0.03773875907063484,
-0.050660621374845505,
0.044427525252103806,
-0.0036684894002974033,
-0.04928984120488167,
-0.029904382303357124,
-0.11182259768247604,
0.04169633984565735,
-0.012930565513670444,
-0.0945054292678833,
-0.016962017863988876,
0.025774117559194565,
-0.0006667767884209752,
-0.03587022051215172,
0.10152721405029297,
-0.08682416379451752,
0.005581566132605076,
-0.11231700330972672,
-0.09314673393964767,
0.01804398186504841,
-0.0729442611336708,
-0.007931019179522991,
-0.08993072807788849,
-0.19005617499351501,
-0.049063943326473236,
0.0662078782916069,
-0.026541171595454216,
-0.04753630608320236,
-0.0462539866566658,
-0.05744342505931854,
0.001802491256967187,
-0.009696129709482193,
0.13940377533435822,
-0.03743886575102806,
0.06316738575696945,
-0.004060017876327038,
0.036189138889312744,
0.0020277071744203568,
0.044933073222637177,
-0.061713602393865585,
0.027528490871191025,
-0.13974179327487946,
0.06577383726835251,
-0.08208827674388885,
0.012148897163569927,
-0.09633704274892807,
-0.11229047179222107,
-0.005399859510362148,
-0.0012959718005731702,
0.04649565741419792,
0.0958232581615448,
-0.17631278932094574,
-0.061048585921525955,
0.13408224284648895,
-0.055539943277835846,
-0.05825012922286987,
0.11215262860059738,
-0.045417480170726776,
0.03628978878259659,
0.06322507560253143,
0.16674232482910156,
0.11299307644367218,
-0.13129550218582153,
-0.007985485717654228,
0.019941624253988266,
0.047662533819675446,
-0.04239653795957565,
0.04852776974439621,
0.003828983521088958,
0.013888470828533173,
-0.004730932414531708,
-0.07050050795078278,
0.019276347011327744,
-0.08673381805419922,
-0.08750775456428528,
-0.030409295111894608,
-0.09222593903541565,
0.0314139686524868,
0.04648389667272568,
0.05352586880326271,
-0.06035550311207771,
-0.08713239431381226,
0.15350978076457977,
0.11535094678401947,
-0.07681512087583542,
-0.0016918110195547342,
-0.06166102737188339,
0.020672453567385674,
-0.04130590334534645,
-0.01003404799848795,
-0.1842232048511505,
-0.10247904062271118,
0.01575140841305256,
-0.08644577860832214,
0.06952401995658875,
0.06370607763528824,
0.05673212558031082,
0.08778785914182663,
-0.056453634053468704,
-0.018153581768274307,
-0.09226145595312119,
0.007311411201953888,
-0.11454956233501434,
-0.19040104746818542,
-0.06651043146848679,
-0.01749422773718834,
0.14921343326568604,
-0.2364788055419922,
0.036189090460538864,
-0.024257302284240723,
0.11164060980081558,
0.004830611869692802,
-0.03531639650464058,
-0.030589496716856956,
0.08585359156131744,
0.003804056206718087,
-0.08782356977462769,
0.06632107496261597,
-0.005727100186049938,
-0.05439276993274689,
-0.08637940138578415,
-0.1503612995147705,
0.1022643968462944,
0.09443642944097519,
0.008303715847432613,
-0.08581288903951645,
-0.007859828881919384,
-0.05517171695828438,
-0.05208275839686394,
-0.07384441792964935,
0.01272549293935299,
0.21229732036590576,
-0.006602826528251171,
0.13108260929584503,
-0.05720014497637749,
-0.05543714761734009,
0.008120565675199032,
-0.005722939036786556,
-0.02309727855026722,
0.07803431153297424,
0.14345157146453857,
-0.13511094450950623,
0.09375731647014618,
0.09139993786811829,
-0.09274161607027054,
0.18795433640480042,
-0.0273304283618927,
-0.06525616347789764,
-0.03559824451804161,
-0.007964611053466797,
-0.019763685762882233,
0.12852691113948822,
-0.13572978973388672,
-0.017025087028741837,
0.0029436112381517887,
0.011224638670682907,
0.0643019899725914,
-0.16974209249019623,
-0.003670932725071907,
0.03390172868967056,
-0.03437244892120361,
0.0036066086031496525,
-0.02449045702815056,
0.011652201414108276,
0.08388297259807587,
0.01833065040409565,
-0.041740354150533676,
0.0244260523468256,
0.0005749706760980189,
-0.09800773859024048,
0.2048523724079132,
-0.10738419741392136,
-0.16380324959754944,
-0.12471675127744675,
0.045178234577178955,
-0.08324744552373886,
-0.027237407863140106,
0.00810267124325037,
-0.09976046532392502,
-0.037648994475603104,
-0.07988512516021729,
0.02257545292377472,
-0.05414634570479393,
-0.011533074080944061,
0.03593926876783371,
0.008375346660614014,
0.0661735013127327,
-0.11827408522367477,
-0.003005733247846365,
-0.022748228162527084,
-0.09351185709238052,
-0.006700984667986631,
0.04563869908452034,
0.13105285167694092,
0.15181773900985718,
-0.03666463494300842,
0.028741512447595596,
-0.023137066513299942,
0.19954556226730347,
-0.05630521476268768,
0.022319111973047256,
0.13450530171394348,
0.03116566687822342,
0.037950798869132996,
0.09346214681863785,
0.042442161589860916,
-0.08473146706819534,
0.02888326533138752,
0.07403341680765152,
-0.025897806510329247,
-0.19604915380477905,
-0.06553784012794495,
-0.036922115832567215,
-0.038836926221847534,
0.09381575137376785,
0.030779464170336723,
0.023871956393122673,
0.05144767835736275,
0.02295900136232376,
0.09185749292373657,
-0.030084433034062386,
0.06811243295669556,
0.11405475437641144,
0.03330754116177559,
0.10871118307113647,
-0.028878435492515564,
-0.035453714430332184,
0.060992173850536346,
-0.011497590690851212,
0.26652657985687256,
-0.014076080173254013,
0.036616791039705276,
0.05471787229180336,
0.13963286578655243,
-0.01371323224157095,
0.044026847928762436,
0.015377276577055454,
-0.016468573361635208,
0.008864087983965874,
-0.05370519310235977,
-0.025909079238772392,
0.023386811837553978,
0.004305691458284855,
0.01415823120623827,
-0.11915061622858047,
0.0596206858754158,
0.014849386177957058,
0.24026237428188324,
0.01656457781791687,
-0.30394235253334045,
-0.08222001791000366,
-0.0030044217128306627,
-0.014051709324121475,
-0.04578977823257446,
0.011362421326339245,
0.1584485024213791,
-0.13642989099025726,
0.04538409784436226,
-0.07182443141937256,
0.09387858211994171,
-0.05065569654107094,
0.013763228431344032,
0.05905196815729141,
0.1529850959777832,
0.002504823263734579,
0.0829000473022461,
-0.23062479496002197,
0.22639034688472748,
0.02473517693579197,
0.13234902918338776,
-0.061399150639772415,
0.01721384935081005,
0.030785884708166122,
0.09613707661628723,
0.06863068044185638,
0.0027628031093627214,
-0.04049175977706909,
-0.19896063208580017,
-0.05178571119904518,
0.052023835480213165,
0.10692240297794342,
-0.011783309280872345,
0.08622366935014725,
-0.025648845359683037,
0.002418017713353038,
0.06054076552391052,
-0.042846884578466415,
-0.18804319202899933,
-0.1185324639081955,
-0.014354639686644077,
0.01066280622035265,
-0.06363841891288757,
-0.07946714013814926,
-0.09766122698783875,
-0.030738946050405502,
0.19058223068714142,
0.012337842956185341,
-0.031433697789907455,
-0.13890467584133148,
0.08230344206094742,
0.07608045637607574,
-0.07867211103439331,
0.010645037516951561,
0.032448939979076385,
0.10308653861284256,
0.011617397889494896,
-0.1114560216665268,
0.07355323433876038,
-0.09765222668647766,
-0.11967375129461288,
-0.04136894643306732,
0.09644158184528351,
0.0827086791396141,
0.045385729521512985,
0.008381008170545101,
-0.00644271494820714,
0.025791388005018234,
-0.11073654890060425,
0.013985631987452507,
0.057734690606594086,
0.08154080808162689,
0.04644223675131798,
-0.09217622876167297,
-0.010671114549040794,
-0.02803630195558071,
-0.0084589384496212,
0.12526409327983856,
0.18369673192501068,
-0.07414669543504715,
0.021267900243401527,
0.11600060015916824,
-0.09464222192764282,
-0.1984378695487976,
0.09152655303478241,
0.09934370964765549,
0.016208358108997345,
0.03511517494916916,
-0.21226970851421356,
0.12583354115486145,
0.130723774433136,
-0.004343459382653236,
0.04914198815822601,
-0.35728931427001953,
-0.13301503658294678,
0.1006416454911232,
0.14630693197250366,
0.021671952679753304,
-0.11610622704029083,
-0.021935928612947464,
-0.03508869931101799,
-0.12333810329437256,
0.11768627911806107,
-0.14991895854473114,
0.10945668071508408,
-0.0015701170777902007,
0.08355040103197098,
0.009048504754900932,
-0.04958151653409004,
0.12166304886341095,
0.038080595433712006,
0.09702786803245544,
-0.04884016141295433,
0.022273913025856018,
0.0924924835562706,
-0.06036250665783882,
0.060376279056072235,
-0.04710700735449791,
0.055801305919885635,
-0.13174711167812347,
-0.03593282774090767,
-0.07943657040596008,
0.09573674947023392,
-0.05155077949166298,
-0.07770997285842896,
-0.04630127549171448,
0.060393381863832474,
0.043233081698417664,
-0.030261510983109474,
-0.0000021406501673482126,
0.018459774553775787,
0.11015338450670242,
0.14178985357284546,
0.1077437773346901,
-0.04834869131445885,
-0.08971434831619263,
-0.010295148007571697,
-0.015088483691215515,
0.07524596899747849,
-0.07572188973426819,
-0.0027579045854508877,
0.1413763463497162,
0.02781756781041622,
0.14834505319595337,
0.04367677494883537,
-0.04507879167795181,
0.010392138734459877,
0.033583834767341614,
-0.11258411407470703,
-0.15664933621883392,
-0.03460432589054108,
-0.08976191282272339,
-0.09909539669752121,
0.024852395057678223,
0.10105770826339722,
-0.08623891323804855,
0.009388613514602184,
-0.025749607011675835,
-0.001609155791811645,
-0.03773179650306702,
0.21246092021465302,
0.050850238651037216,
0.061793215572834015,
-0.07365301251411438,
0.1064019724726677,
0.0477394200861454,
-0.10280705243349075,
0.05612505227327347,
0.08952673524618149,
-0.09815973788499832,
-0.03184078261256218,
0.090492382645607,
0.2032151222229004,
-0.06961867958307266,
-0.05109033361077309,
-0.09385285526514053,
-0.10504113137722015,
0.051662273705005646,
0.14069394767284393,
0.045576442033052444,
-0.04383908957242966,
-0.07240238785743713,
0.03783753886818886,
-0.1542970836162567,
0.08495841920375824,
0.047052349895238876,
0.06379445642232895,
-0.15859462320804596,
0.18465089797973633,
0.014596693217754364,
0.04844539240002632,
-0.029001222923398018,
0.023160062730312347,
-0.10431776195764542,
-0.020826319232583046,
-0.14017002284526825,
-0.06504169851541519,
-0.02393379807472229,
-0.0034888708032667637,
-0.026826854795217514,
-0.01604319177567959,
-0.055273085832595825,
0.0495256744325161,
-0.07645401358604431,
-0.05657365545630455,
0.020270077511668205,
0.04292023926973343,
-0.1265202909708023,
-0.003062205156311393,
0.0030303995590656996,
-0.07069142162799835,
0.046025753021240234,
0.04520648345351219,
0.031705357134342194,
0.043635424226522446,
-0.07423031330108643,
-0.004310132469981909,
0.04864470660686493,
0.03967864811420441,
0.07848919928073883,
-0.05934194102883339,
0.0042366464622318745,
-0.016590438783168793,
0.07668725401163101,
0.028608987107872963,
0.09080081433057785,
-0.10353601723909378,
0.00435361173003912,
-0.08492250740528107,
-0.05569572374224663,
-0.07364904135465622,
0.07100081443786621,
0.09584511071443558,
0.04354160279035568,
0.17540790140628815,
-0.09939513355493546,
0.02875809744000435,
-0.20500972867012024,
-0.034951914101839066,
0.01723368652164936,
-0.03646675497293472,
-0.017346179112792015,
-0.04391341656446457,
0.08056384325027466,
-0.06773724406957626,
0.1028815358877182,
0.041329510509967804,
0.05804711952805519,
0.03565168380737305,
-0.07004962861537933,
-0.025711828842759132,
-0.002631082898005843,
0.1588115692138672,
0.05248025059700012,
-0.015339131467044353,
0.07709765434265137,
0.03577505052089691,
0.07514122128486633,
0.04448099061846733,
0.22342602908611298,
0.11879514902830124,
-0.06929704546928406,
0.07797640562057495,
0.08897512406110764,
-0.10795360803604126,
-0.18161068856716156,
0.07440502196550369,
-0.050521671772003174,
0.13242514431476593,
-0.052852071821689606,
0.15775129199028015,
0.10709632933139801,
-0.1811593472957611,
0.04810111224651337,
-0.03126193583011627,
-0.1276940554380417,
-0.11266497522592545,
-0.06413916498422623,
-0.07843524217605591,
-0.1069437712430954,
0.013262566179037094,
-0.11744855344295502,
0.006772077642381191,
0.0574437752366066,
0.020723644644021988,
-0.013875538483262062,
0.18644025921821594,
-0.050152186304330826,
0.0031625202391296625,
0.07101799547672272,
0.0023196525871753693,
-0.032035138458013535,
-0.07964421808719635,
-0.04684297740459442,
0.020985515788197517,
-0.013288776390254498,
0.06855440884828568,
-0.06795492023229599,
-0.054996248334646225,
0.04023716598749161,
0.009997577406466007,
-0.05210844799876213,
0.015190234407782555,
0.01287422701716423,
0.0527602955698967,
0.038805123418569565,
0.034477874636650085,
-0.03984099254012108,
-0.038357801735401154,
0.23127293586730957,
-0.07645607739686966,
-0.0814698189496994,
-0.10445219278335571,
0.23193804919719696,
0.028928782790899277,
-0.0017535531660541892,
0.06038638576865196,
-0.08852842450141907,
-0.01262793317437172,
0.18166503310203552,
0.18385066092014313,
-0.07904702425003052,
-0.019030483439564705,
-0.011864935979247093,
-0.021184740588068962,
-0.057401563972234726,
0.1615319699048996,
0.1059950590133667,
0.08628346025943756,
-0.05490614473819733,
-0.0023547476157546043,
-0.021264439448714256,
-0.03815026208758354,
-0.09275273233652115,
0.06046449765563011,
0.06308630108833313,
0.0027951288502663374,
-0.008004735223948956,
0.07821732759475708,
-0.01889665052294731,
-0.1563129872083664,
0.04001101478934288,
-0.13244132697582245,
-0.16775603592395782,
-0.01956803724169731,
0.06622308492660522,
-0.03494144231081009,
0.06067025661468506,
-0.027834435924887657,
0.00551682198420167,
0.10695748776197433,
-0.014349693432450294,
-0.07564729452133179,
-0.10975704342126846,
0.08884847909212112,
-0.07124736905097961,
0.20639222860336304,
-0.02385052666068077,
0.0630570724606514,
0.11684377491474152,
0.009191397577524185,
-0.09015965461730957,
0.07248120754957199,
0.05286731198430061,
-0.057096488773822784,
0.03651222586631775,
0.13532832264900208,
-0.048517003655433655,
0.09897977113723755,
0.02324609085917473,
-0.11925140768289566,
-0.008404538966715336,
-0.07557222247123718,
-0.0049323816783726215,
-0.07199200987815857,
0.005923151969909668,
-0.08108439296483994,
0.1402685046195984,
0.20812146365642548,
-0.011730660684406757,
0.012057280167937279,
-0.09259864687919617,
0.0356256477534771,
0.06291947513818741,
0.10225429385900497,
-0.03744475543498993,
-0.20075704157352448,
0.010851535014808178,
-0.049968212842941284,
0.002471293555572629,
-0.25452449917793274,
-0.09283459186553955,
0.020399365574121475,
-0.05174846202135086,
-0.057802800089120865,
0.10129199922084808,
0.08345688879489899,
0.04413842037320137,
-0.04532477632164955,
-0.11671517789363861,
-0.0710519552230835,
0.145582914352417,
-0.1800130158662796,
-0.053374532610177994
] |
null | null | transformers |
# Morty DialoGPT Model | {"tags": ["conversational"]} | text-generation | Julianqll/DialoGPT-small-finalmorty | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Morty DialoGPT Model | [
"# Morty DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Morty DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Morty DialoGPT Model"
] | [
-0.020987827330827713,
0.06717820465564728,
-0.007005083374679089,
0.00818972010165453,
0.13544204831123352,
0.002234097570180893,
0.130769282579422,
0.12967906892299652,
-0.02245970442891121,
-0.03255629539489746,
0.11861260235309601,
0.19295115768909454,
-0.005520142149180174,
0.07579364627599716,
-0.07586660981178284,
-0.30667009949684143,
0.050045423209667206,
0.04085390642285347,
0.012119654566049576,
0.11225640028715134,
0.08826322108507156,
-0.039164237678050995,
0.07788224518299103,
0.014840865507721901,
-0.12095765769481659,
0.015843287110328674,
0.012861177325248718,
-0.09763561934232712,
0.1117156520485878,
0.06579174101352692,
0.020686263218522072,
0.010694736614823341,
-0.04942205175757408,
-0.14266915619373322,
0.03547647222876549,
-0.01046537421643734,
-0.04138217493891716,
0.04711439460515976,
0.00671395193785429,
-0.08956317603588104,
0.15945328772068024,
0.0950874537229538,
0.004503471311181784,
0.04034788906574249,
-0.14870479702949524,
-0.04440479725599289,
0.008245803415775299,
0.035339660942554474,
0.06626014411449432,
0.11374787986278534,
-0.05339634045958519,
0.11768676340579987,
-0.05985875427722931,
0.1131090521812439,
0.08366340398788452,
-0.3069864809513092,
-0.009919391013681889,
0.12256064265966415,
0.03060004487633705,
0.03835580125451088,
-0.043587371706962585,
0.07900259643793106,
0.006693985313177109,
0.013804917223751545,
-0.034467365592718124,
-0.07154793292284012,
-0.07217881083488464,
0.021799558773636818,
-0.09354711323976517,
-0.01699027791619301,
0.20421770215034485,
-0.035155799239873886,
0.08147071301937103,
-0.0762847512960434,
-0.09252703189849854,
-0.02520112134516239,
-0.06415379047393799,
-0.029116610065102577,
-0.0784808024764061,
0.08580996841192245,
0.0033627499360591173,
-0.07575364410877228,
-0.11836418509483337,
-0.017439883202314377,
-0.17082829773426056,
0.1234646886587143,
0.04318961873650551,
0.0348394401371479,
-0.19694343209266663,
0.07962734997272491,
-0.03237145394086838,
-0.08990463614463806,
0.021364150568842888,
-0.08691208064556122,
-0.0034189678262919188,
0.019141925498843193,
-0.036452990025281906,
-0.029665930196642876,
0.0920489951968193,
0.11807075142860413,
-0.029822656884789467,
0.025788387283682823,
-0.04270093888044357,
0.044552430510520935,
0.05270715802907944,
0.04247590899467468,
-0.026058640331029892,
-0.0553208664059639,
0.02789544127881527,
-0.09146040678024292,
0.00567576615139842,
-0.05268746614456177,
-0.17654083669185638,
-0.011374061927199364,
0.07237937301397324,
0.05758839473128319,
0.03067522868514061,
0.13610929250717163,
-0.010350722819566727,
-0.047327056527137756,
0.04307832568883896,
-0.01983007602393627,
-0.026951421052217484,
0.023596206679940224,
-0.0005782037624157965,
0.1471821814775467,
0.030362291261553764,
0.055169664323329926,
-0.12793052196502686,
0.005672293249517679,
-0.04568714275956154,
0.0034364773891866207,
-0.01974528096616268,
-0.049375344067811966,
0.006264063995331526,
-0.020168395712971687,
0.004209628328680992,
-0.14005358517169952,
-0.14784708619117737,
0.0014695341233164072,
-0.009436662308871746,
-0.05748240277171135,
-0.09402773529291153,
-0.10294882208108902,
-0.022073261439800262,
0.04685813561081886,
-0.06437299400568008,
0.01128645520657301,
-0.05081741511821747,
0.08104860037565231,
-0.016602730378508568,
0.08274906128644943,
-0.09491178393363953,
0.08227600902318954,
-0.08041758835315704,
-0.03647011145949364,
-0.07720264792442322,
0.12318453937768936,
-0.0021092568058520555,
0.06114260479807854,
-0.038884323090314865,
-0.014507650397717953,
-0.10296842455863953,
0.05381568521261215,
-0.0268381480127573,
0.23929031193256378,
-0.08089008182287216,
-0.09900878369808197,
0.24810321629047394,
-0.04563583806157112,
-0.1045578345656395,
0.14359258115291595,
-0.012137074023485184,
0.06355021148920059,
0.12117978185415268,
0.18782007694244385,
-0.031089413911104202,
-0.015448566526174545,
0.10260139405727386,
0.09882833808660507,
-0.09138034284114838,
0.002505553187802434,
0.025074968114495277,
-0.03408720716834068,
-0.07500828802585602,
0.03598363324999809,
0.09751759469509125,
0.06177942454814911,
-0.0585511215031147,
-0.022527920082211494,
0.004438643343746662,
-0.0013803262263536453,
0.09672986716032028,
-0.01245761290192604,
0.1209995299577713,
-0.02910289354622364,
-0.06701980531215668,
0.013066022656857967,
0.017712034285068512,
-0.053102362900972366,
0.027489718049764633,
-0.08289830386638641,
0.06913213431835175,
-0.025985172018408775,
0.0677461177110672,
-0.14905768632888794,
-0.07942911982536316,
-0.03983644023537636,
0.21283484995365143,
0.06207515299320221,
0.10287445783615112,
0.0703662782907486,
-0.039974961429834366,
-0.008945482783019543,
0.04241078346967697,
0.17180106043815613,
-0.005652802996337414,
-0.08782762289047241,
-0.11769074946641922,
0.08734992891550064,
-0.06348375976085663,
0.10875660926103592,
-0.06810659170150757,
0.005792868323624134,
-0.00274765957146883,
0.11481425166130066,
-0.027579789981245995,
0.030562665313482285,
0.02632668986916542,
-0.021075738593935966,
-0.051207222044467926,
0.01648731902241707,
0.10314781218767166,
-0.000526342133525759,
-0.07906894385814667,
0.2348576784133911,
-0.19568432867527008,
0.14644823968410492,
0.18463672697544098,
-0.24617497622966766,
0.007694139610975981,
-0.1241084635257721,
-0.029133331030607224,
0.004133920650929213,
0.0684145987033844,
-0.04417324811220169,
0.22215186059474945,
-0.018466604873538017,
0.18002228438854218,
-0.04890193045139313,
-0.03942029923200607,
-0.03098621778190136,
-0.05797668546438217,
0.00880953948944807,
0.09825953096151352,
0.0830363929271698,
-0.17049944400787354,
0.16303911805152893,
0.07360929250717163,
0.045517273247241974,
0.18174737691879272,
0.03603731840848923,
-0.00010474097507540137,
0.047404758632183075,
0.006592562422156334,
-0.04702204093337059,
-0.08583981543779373,
-0.31099918484687805,
-0.014409988187253475,
0.07451564818620682,
0.04337731748819351,
0.12032698094844818,
-0.08494619280099869,
-0.020358236506581306,
-0.007842415943741798,
-0.033254366368055344,
0.03485779091715813,
0.1246563196182251,
0.03233274444937706,
0.11824361234903336,
-0.015305036678910255,
-0.04903768375515938,
0.06748444586992264,
0.019093703478574753,
-0.0947432592511177,
0.18353022634983063,
-0.13659556210041046,
-0.3458118736743927,
-0.10208055377006531,
-0.19172191619873047,
-0.0442642942070961,
0.04956886172294617,
0.1019463986158371,
-0.1308787316083908,
-0.02823268435895443,
-0.005164423491805792,
0.11361921578645706,
-0.08942680060863495,
0.007422833703458309,
-0.03039299137890339,
0.005280265584588051,
-0.12013756483793259,
-0.09143567830324173,
-0.05498987436294556,
-0.06594683974981308,
-0.0510418675839901,
0.10933282226324081,
-0.1469162553548813,
0.008775890804827213,
0.23163583874702454,
0.058178775012493134,
0.05919769033789635,
-0.03387593477964401,
0.19962826371192932,
-0.08733638375997543,
0.0033774261828511953,
0.22165903449058533,
-0.0380413793027401,
0.06133319437503815,
0.12338744103908539,
-0.004583634901791811,
-0.06942147761583328,
0.033869240432977676,
0.005994785577058792,
-0.0684111937880516,
-0.20914368331432343,
-0.13465602695941925,
-0.1221204400062561,
0.06218067184090614,
0.010673165321350098,
0.04917227104306221,
0.1631910800933838,
0.056633222848176956,
-0.045298025012016296,
-0.002716434421017766,
0.0649554654955864,
0.07594515383243561,
0.2690383791923523,
-0.0762866660952568,
0.15037982165813446,
-0.013792809098958969,
-0.155731663107872,
0.07979282736778259,
0.05766294151544571,
0.07732018083333969,
0.06125792860984802,
0.06724639981985092,
0.026327433064579964,
0.04532190412282944,
0.13327331840991974,
0.042579542845487595,
0.0010243335273116827,
-0.0425347201526165,
-0.038558606058359146,
-0.04807373881340027,
-0.04446060582995415,
0.049415089190006256,
0.08114735782146454,
-0.15328392386436462,
-0.03422607108950615,
-0.008345119655132294,
0.06043785810470581,
0.02849157340824604,
0.08974599093198776,
-0.19701704382896423,
-0.028309842571616173,
0.06190028786659241,
-0.027758611366152763,
-0.10061841458082199,
0.06912058591842651,
-0.0031665039714425802,
-0.125469371676445,
0.0377192422747612,
-0.02553175948560238,
0.10946471244096756,
-0.08242078870534897,
0.08478611707687378,
-0.10086878389120102,
-0.04132506996393204,
0.008447098545730114,
0.10281684249639511,
-0.2777291536331177,
0.19180378317832947,
-0.006929568946361542,
-0.04759357124567032,
-0.11014126241207123,
-0.003725909162312746,
0.025545040145516396,
0.10357613116502762,
0.10982942581176758,
-0.021309897303581238,
0.030500037595629692,
0.008475703187286854,
-0.05370607227087021,
0.0256960466504097,
0.09340108931064606,
-0.01089717447757721,
-0.009252882562577724,
-0.0432470440864563,
-0.004939536098390818,
0.0038915735203772783,
-0.07538515329360962,
-0.011840509250760078,
-0.18598344922065735,
0.07908385246992111,
0.0738769993185997,
0.050829868763685226,
0.03754997253417969,
-0.02733624167740345,
-0.11965222656726837,
0.2838191092014313,
-0.0017998748226091266,
-0.11181024461984634,
-0.10197365283966064,
0.009736459702253342,
0.06180339306592941,
-0.05907944217324257,
0.015661651268601418,
-0.0739583671092987,
0.03399553522467613,
-0.06070977821946144,
-0.19462820887565613,
0.11874901503324509,
-0.10244422405958176,
-0.04513069987297058,
-0.024192044511437416,
0.22393275797367096,
-0.025761622935533524,
0.015301641076803207,
0.0444292351603508,
-0.0007534344331361353,
-0.11201541125774384,
-0.08487474173307419,
0.0028910506516695023,
0.04454604536294937,
0.006977063603699207,
0.037678174674510956,
-0.05679680407047272,
-0.0712987408041954,
-0.04846435412764549,
-0.005201375111937523,
0.31629371643066406,
0.1324438452720642,
-0.04033464938402176,
0.17462237179279327,
0.137013778090477,
-0.07397028058767319,
-0.28047484159469604,
-0.11288034170866013,
-0.06221143156290054,
-0.039743293076753616,
-0.07348804920911789,
-0.1756933629512787,
0.0860125795006752,
-0.02427946962416172,
-0.011251823976635933,
0.05228330194950104,
-0.31228408217430115,
-0.094538614153862,
0.17799516022205353,
-0.021994639188051224,
0.3853980004787445,
-0.10111434757709503,
-0.09417873620986938,
-0.05139610171318054,
-0.15751230716705322,
0.14912401139736176,
-0.03821545094251633,
0.1128292977809906,
-0.004474221263080835,
0.17423290014266968,
0.058040279895067215,
-0.004346816334873438,
0.07976919412612915,
0.02701711840927601,
-0.04287806525826454,
-0.09677042067050934,
-0.06108025461435318,
0.015199758112430573,
0.02521781623363495,
0.047202449291944504,
-0.05587661638855934,
0.031572017818689346,
-0.12965768575668335,
-0.06877578049898148,
-0.07915052771568298,
0.036658477038145065,
0.02473725937306881,
-0.07258881628513336,
0.009813443757593632,
-0.049180008471012115,
-0.001479762839153409,
0.010345088317990303,
0.144523486495018,
-0.1087534949183464,
0.12569384276866913,
0.1156110018491745,
0.13679444789886475,
-0.11726265400648117,
-0.013744468800723553,
-0.052565284073352814,
-0.05486491695046425,
0.05499467998743057,
-0.07826220989227295,
0.023973233997821808,
0.10212308913469315,
-0.034357950091362,
0.07828133553266525,
0.09152518957853317,
-0.01579434610903263,
0.014179251156747341,
0.08253011852502823,
-0.23276981711387634,
-0.09303265810012817,
-0.06387113034725189,
0.0008904116693884134,
0.07555215060710907,
0.10869401693344116,
0.21294011175632477,
0.0025991611182689667,
-0.024053554981946945,
0.01625356636941433,
0.029179586097598076,
-0.041273392736911774,
0.0825096070766449,
-0.019867876544594765,
0.01797812059521675,
-0.15709467232227325,
0.05370410159230232,
-0.0030402939300984144,
-0.07577180117368698,
0.04171725735068321,
0.16834960877895355,
-0.10689075291156769,
-0.1263829469680786,
-0.08467788994312286,
0.13901947438716888,
-0.1189919263124466,
-0.009078403934836388,
-0.03778441250324249,
-0.1323269009590149,
0.07835172116756439,
0.09453775733709335,
0.05498634651303291,
0.06247697398066521,
-0.10002709925174713,
-0.03376076743006706,
-0.034856121987104416,
0.015041989274322987,
0.032934997230768204,
-0.028577931225299835,
-0.03361297771334648,
0.06377306580543518,
-0.040476396679878235,
0.10382510721683502,
-0.09839676320552826,
-0.10634545981884003,
-0.1516302525997162,
0.04029279202222824,
-0.0843605250120163,
-0.08172447234392166,
-0.11124300211668015,
-0.04702255502343178,
0.0000020199352093186462,
-0.02179492637515068,
-0.03028123639523983,
-0.02905050851404667,
-0.09537116438150406,
0.039250653237104416,
-0.04254787042737007,
0.012224155478179455,
-0.08631198108196259,
0.02326982654631138,
0.038345322012901306,
-0.019151953980326653,
0.16631950438022614,
0.13343283534049988,
-0.11553093791007996,
0.09258078038692474,
-0.16591084003448486,
-0.06512967497110367,
0.11612516641616821,
0.019037500023841858,
0.0546170137822628,
0.04915529116988182,
0.008347424678504467,
0.05685262382030487,
0.05652550980448723,
0.04972260445356369,
0.0765639990568161,
-0.09148332476615906,
0.026087114587426186,
-0.052936021238565445,
-0.11694760620594025,
-0.03639141842722893,
-0.02015533670783043,
-0.008774003945291042,
0.0406373031437397,
0.10209516435861588,
-0.059926509857177734,
0.07857246696949005,
-0.057974234223365784,
0.0358477458357811,
0.017024220898747444,
-0.14648689329624176,
-0.01715134084224701,
-0.07665728032588959,
0.056622158735990524,
0.006461779121309519,
0.19912205636501312,
0.027651717886328697,
-0.015118728391826153,
0.02254168502986431,
0.04559164121747017,
0.06523322314023972,
-0.00748963188380003,
0.1836482733488083,
0.11137408018112183,
-0.045718636363744736,
-0.09596188366413116,
0.08089108020067215,
0.03531435504555702,
0.040088389068841934,
0.12950953841209412,
0.012715496122837067,
0.011847256682813168,
0.0957777351140976,
0.018045615404844284,
0.02161727473139763,
-0.11592783778905869,
-0.09782396256923676,
-0.04386061802506447,
0.05652720481157303,
-0.05517900362610817,
0.126170352101326,
0.1557677984237671,
-0.005884489975869656,
0.024302128702402115,
-0.0038898589555174112,
-0.06499737501144409,
-0.17992161214351654,
-0.18296591937541962,
-0.08275040239095688,
-0.13861379027366638,
-0.0010904555674642324,
-0.13507667183876038,
0.03877890855073929,
0.029926395043730736,
0.09878914058208466,
-0.05661552771925926,
0.0677318125963211,
0.03134695440530777,
-0.10613726079463959,
0.06363878399133682,
-0.03999579697847366,
0.08628669381141663,
-0.018050070852041245,
-0.0036607026122510433,
-0.05757344886660576,
0.04267071932554245,
0.01331973634660244,
0.03753070533275604,
-0.041821736842393875,
0.01640903577208519,
-0.1125556081533432,
-0.08298719674348831,
-0.05406671389937401,
0.059192121028900146,
-0.0101938396692276,
0.15997055172920227,
0.027614109218120575,
-0.046414270997047424,
0.020594509318470955,
0.19451631605625153,
-0.06088465824723244,
-0.11273647844791412,
-0.078664630651474,
0.23237083852291107,
0.002087612636387348,
0.10634906589984894,
-0.030099455267190933,
0.004336325917392969,
-0.07605552673339844,
0.3308885991573334,
0.30087751150131226,
-0.10074736177921295,
0.010417141020298004,
0.017681365832686424,
0.039423223584890366,
0.10960589349269867,
0.10424847900867462,
0.10936629772186279,
0.2957836985588074,
-0.058221086859703064,
-0.04346807673573494,
-0.01699492335319519,
-0.03886675834655762,
-0.0781521275639534,
0.04281223565340042,
0.055419921875,
-0.061723530292510986,
-0.010449209250509739,
0.1120135635137558,
-0.2691907286643982,
0.09647316485643387,
-0.15623682737350464,
-0.15289296209812164,
-0.08598364889621735,
-0.006494736298918724,
0.08555353432893753,
0.03471874073147774,
0.08186710625886917,
-0.001460609957575798,
-0.07710959762334824,
0.08368507772684097,
0.018698053434491158,
-0.19880259037017822,
0.005629308521747589,
0.07563740760087967,
-0.025207767263054848,
-0.055890314280986786,
-0.026120498776435852,
0.07623940706253052,
0.08661167323589325,
0.0489928163588047,
-0.008741584606468678,
0.05060898885130882,
-0.00539548322558403,
-0.051061421632766724,
0.04635835438966751,
0.03226586431264877,
0.03329942747950554,
-0.06780435144901276,
0.06700689345598221,
-0.14782753586769104,
0.03939564526081085,
-0.051151540130376816,
-0.04892610386013985,
-0.013833675533533096,
0.032825492322444916,
-0.06737186759710312,
0.0654027983546257,
0.089853934943676,
-0.008801242336630821,
-0.017109651118516922,
-0.029467107728123665,
-0.00990523025393486,
-0.03813204541802406,
-0.07486914098262787,
-0.09557171165943146,
-0.1856304556131363,
-0.10181254148483276,
0.08339983224868774,
0.001006517675705254,
-0.19085811078548431,
0.0009650739375501871,
-0.12528163194656372,
0.06597770005464554,
-0.12322963029146194,
0.09886173903942108,
0.08455471694469452,
0.018522845581173897,
-0.001754330238327384,
-0.0151989059522748,
0.047823645174503326,
0.09293559938669205,
-0.13160964846611023,
-0.08055265992879868
] |
null | null | transformers |
# Rick Sanchez DialoGPT Model | {"tags": ["conversational"]} | text-generation | Julianqll/DialoGPT-small-ricksanchez | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick Sanchez DialoGPT Model | [
"# Rick Sanchez DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick Sanchez DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick Sanchez DialoGPT Model"
] | [
-0.05704520270228386,
0.1080707237124443,
-0.005703833419829607,
0.024355918169021606,
0.1347416192293167,
-0.009864812716841698,
0.13915762305259705,
0.13641619682312012,
-0.014821183867752552,
-0.025234131142497063,
0.13788719475269318,
0.23441068828105927,
-0.0040086545050144196,
0.0579121895134449,
-0.09891517460346222,
-0.29657089710235596,
0.032161157578229904,
0.05994465947151184,
-0.0033263780642300844,
0.11953802406787872,
0.0843273475766182,
-0.043882302939891815,
0.08131924271583557,
0.0018995096907019615,
-0.14373421669006348,
0.011346335522830486,
0.04636937007308006,
-0.13702289760112762,
0.11601521074771881,
0.08168332278728485,
0.03479677438735962,
0.06183161959052086,
-0.03211790323257446,
-0.10245182365179062,
0.03838932886719704,
-0.008999419398605824,
-0.03427799046039581,
0.06022527068853378,
0.031745243817567825,
-0.1152564138174057,
0.09468080848455429,
0.0923495814204216,
-0.005728692281991243,
0.049891795963048935,
-0.17913517355918884,
-0.010704654268920422,
-0.021677182987332344,
0.055929314345121384,
0.08334671705961227,
0.09012723714113235,
-0.03841714933514595,
0.09080751240253448,
-0.04324564337730408,
0.07660475373268127,
0.08530165255069733,
-0.28937292098999023,
-0.030906030908226967,
0.06582700461149216,
0.05632982775568962,
0.06222769245505333,
-0.012348905205726624,
0.10370101034641266,
0.04712950810790062,
-0.014536825940012932,
-0.020318668335676193,
-0.09295357018709183,
-0.08654087781906128,
0.01945175603032112,
-0.06887777894735336,
-0.00602162629365921,
0.2560831606388092,
-0.030627258121967316,
0.0731891319155693,
-0.08859450370073318,
-0.10249431431293488,
0.004030927084386349,
-0.03497277945280075,
-0.05301825329661369,
-0.08995666354894638,
0.0700719803571701,
-0.003147976705804467,
-0.07389466464519501,
-0.1290099322795868,
-0.021585101261734962,
-0.1774103045463562,
0.19141581654548645,
0.030293408781290054,
0.023750921711325645,
-0.2208036631345749,
0.08902101963758469,
0.045917924493551254,
-0.11613845080137253,
0.04777151718735695,
-0.0842585563659668,
0.027763593941926956,
0.03184368088841438,
-0.015087970532476902,
-0.059821996837854385,
0.06819985806941986,
0.09782791137695312,
0.01923726685345173,
0.009750176221132278,
-0.024553336203098297,
0.05652669072151184,
0.04215332120656967,
0.09357214719057083,
-0.002894732868298888,
-0.0361810103058815,
0.015707144513726234,
-0.09473340213298798,
0.013285800814628601,
-0.06974472850561142,
-0.20285023748874664,
-0.01343308761715889,
0.030690573155879974,
0.06404593586921692,
0.0605037696659565,
0.11637318879365921,
-0.016192488372325897,
-0.07014694064855576,
0.04394420608878136,
-0.011219148524105549,
-0.02391223981976509,
0.008600763976573944,
0.005595726426690817,
0.1813707947731018,
0.011592349968850613,
0.04672492668032646,
-0.08541523665189743,
0.0021381767001003027,
-0.04958593100309372,
-0.03829700127243996,
-0.02637419104576111,
-0.043410710990428925,
0.004262345843017101,
-0.01814153417944908,
0.01607448235154152,
-0.16901227831840515,
-0.1370115429162979,
-0.022032571956515312,
-0.023941930383443832,
-0.05494401231408119,
-0.10453005880117416,
-0.1106305792927742,
0.010454395785927773,
0.0411594994366169,
-0.07347700744867325,
-0.006038041319698095,
-0.05349244922399521,
0.10734197497367859,
-0.0012300090165808797,
0.07703675329685211,
-0.07842288166284561,
0.07365122437477112,
-0.06573385000228882,
-0.025447865948081017,
-0.10093135386705399,
0.13386206328868866,
0.00915649812668562,
0.06603219360113144,
-0.046941112726926804,
-0.007621072698384523,
-0.10842157155275345,
0.08102882653474808,
-0.06603449583053589,
0.25178468227386475,
-0.10469595342874527,
-0.11071616411209106,
0.2805403769016266,
-0.03361968696117401,
-0.1264788806438446,
0.10199446976184845,
-0.01158563606441021,
0.11561296135187149,
0.15402540564537048,
0.2052226960659027,
0.02928532473742962,
-0.02268681675195694,
0.10423996299505234,
0.1035756841301918,
-0.057625655084848404,
-0.03801124170422554,
0.041060492396354675,
-0.03943869471549988,
-0.08562899380922318,
0.029806632548570633,
0.017141755670309067,
0.06328166276216507,
-0.04716106131672859,
-0.014570656232535839,
0.02421940304338932,
0.004092389717698097,
0.07496705651283264,
-0.024279450997710228,
0.13514691591262817,
-0.023218633607029915,
-0.0656837597489357,
-0.06177486851811409,
0.01964477449655533,
-0.04003036767244339,
0.020440705120563507,
-0.08908485621213913,
0.06243852525949478,
-0.03572830185294151,
0.057841621339321136,
-0.13513502478599548,
-0.06440334767103195,
-0.052385009825229645,
0.2330688089132309,
0.06854398548603058,
0.08484960347414017,
0.04045721888542175,
-0.06823423504829407,
-0.0003254515759181231,
0.0230836383998394,
0.19774475693702698,
-0.012182417325675488,
-0.07111652195453644,
-0.1060645654797554,
0.09369703382253647,
-0.06330309808254242,
0.08606080710887909,
-0.059275124222040176,
0.007605451624840498,
-0.026874825358390808,
0.06961184740066528,
-0.0269512627273798,
0.040469661355018616,
0.0006163049256429076,
-0.023647982627153397,
-0.07465367019176483,
-0.0149429552257061,
0.10460925847291946,
0.010055731050670147,
-0.10779253393411636,
0.2434917390346527,
-0.19769670069217682,
0.11526761204004288,
0.16096965968608856,
-0.22217433154582977,
-0.008169818669557571,
-0.11098682880401611,
-0.011975600384175777,
0.010464251041412354,
0.03273862600326538,
-0.04017077758908272,
0.22867226600646973,
-0.010608958080410957,
0.1853235810995102,
-0.052233923226594925,
-0.01996525749564171,
-0.027332648634910583,
-0.06422537565231323,
0.019287196919322014,
0.10971896350383759,
0.12856750190258026,
-0.161560520529747,
0.1724557876586914,
0.06672785431146622,
0.08213970810174942,
0.16275310516357422,
0.023765239864587784,
0.018852105364203453,
0.055699001997709274,
0.014213238842785358,
-0.01790653169155121,
-0.06882723420858383,
-0.18352845311164856,
-0.02486453764140606,
0.06696174293756485,
0.03141540661454201,
0.11100433766841888,
-0.11560750752687454,
-0.04409283027052879,
0.01155218854546547,
-0.007257997989654541,
0.04618756100535393,
0.12712539732456207,
-0.003129301592707634,
0.12465701252222061,
-0.008397440426051617,
-0.08989791572093964,
0.06356243789196014,
0.025369787588715553,
-0.09814108163118362,
0.182835653424263,
-0.1034003496170044,
-0.32152217626571655,
-0.1001197025179863,
-0.18328212201595306,
-0.03920574113726616,
0.07533707469701767,
0.11137884855270386,
-0.13466644287109375,
0.003127885051071644,
0.03510995954275131,
0.09001503139734268,
-0.10122435539960861,
-0.0034966380335390568,
-0.012268266640603542,
-0.018193284049630165,
-0.13420377671718597,
-0.08291704952716827,
-0.06102906912565231,
-0.04295424371957779,
-0.03346853703260422,
0.10250663757324219,
-0.17059698700904846,
0.0539877749979496,
0.26917001605033875,
0.09507580101490021,
0.05430034175515175,
-0.04344318434596062,
0.1592034101486206,
-0.10573985427618027,
0.012773060239851475,
0.22541004419326782,
-0.028745699673891068,
0.05365750566124916,
0.0892547219991684,
-0.01033081579953432,
-0.0708671286702156,
0.020250815898180008,
-0.02718094177544117,
-0.0714477151632309,
-0.2280162125825882,
-0.13114430010318756,
-0.10388115793466568,
0.05737285315990448,
0.06432957202196121,
0.0326518714427948,
0.1693384051322937,
0.10345755517482758,
-0.042771194130182266,
0.014231901615858078,
0.04525286331772804,
0.08099555969238281,
0.24561424553394318,
-0.07478486001491547,
0.13777120411396027,
-0.020003067329525948,
-0.17604942619800568,
0.06821287423372269,
0.08701446652412415,
0.07066261768341064,
0.0939561203122139,
0.13011965155601501,
0.02880261279642582,
0.03623313829302788,
0.09038466960191727,
0.045518048107624054,
0.022583454847335815,
-0.03737230971455574,
-0.06662941724061966,
-0.044609375298023224,
-0.041899174451828,
0.021367410197854042,
0.03182210028171539,
-0.14257657527923584,
-0.05327456444501877,
0.004599247593432665,
0.04934147000312805,
0.04460717737674713,
0.04937165975570679,
-0.1958761215209961,
-0.01135042030364275,
0.08069007098674774,
0.0008143498562276363,
-0.08933985978364944,
0.0729956179857254,
-0.010731075890362263,
-0.11471421271562576,
0.046170588582754135,
-0.02729932591319084,
0.12909768521785736,
-0.07558268308639526,
0.08029930293560028,
-0.14030702412128448,
-0.06785701215267181,
0.011536509729921818,
0.11896203458309174,
-0.2636930048465729,
0.20840856432914734,
-0.008380764164030552,
-0.049465201795101166,
-0.1043824851512909,
-0.009141412563621998,
0.0023304640781134367,
0.0944279134273529,
0.1368221640586853,
-0.028159884735941887,
-0.02392721176147461,
0.024199169129133224,
-0.06698837131261826,
0.03141431510448456,
0.08238276839256287,
-0.08262956887483597,
0.0013082197401672602,
-0.04166802391409874,
0.0039241621270775795,
0.009456396102905273,
-0.06101514399051666,
0.01121380366384983,
-0.195927694439888,
0.0798632875084877,
0.05245203897356987,
0.06079527735710144,
0.04320540651679039,
-0.030458878725767136,
-0.12451554834842682,
0.21634705364704132,
-0.01915883459150791,
-0.09401129186153412,
-0.09610380977392197,
-0.02037319913506508,
0.01868581213057041,
-0.08247993141412735,
-0.029365237802267075,
-0.05376124754548073,
0.03249189257621765,
-0.0736650601029396,
-0.1903923898935318,
0.12846902012825012,
-0.11052907258272171,
-0.028645969927310944,
-0.05812210589647293,
0.2216455489397049,
-0.030725445598363876,
0.015262283384799957,
0.059073857963085175,
-0.026270287111401558,
-0.09585471451282501,
-0.09591566771268845,
-0.007837353274226189,
0.022675657644867897,
0.027353649958968163,
-0.013003773055970669,
-0.04600683972239494,
-0.03253196179866791,
-0.07994730770587921,
-0.018432755023241043,
0.3114815652370453,
0.10657966881990433,
-0.053566571325063705,
0.1609998643398285,
0.08925200253725052,
-0.07996044307947159,
-0.24130167067050934,
-0.11830049753189087,
-0.06823843717575073,
-0.04297657683491707,
-0.04875720292329788,
-0.17909106612205505,
0.07042492181062698,
-0.01572689227759838,
-0.0246592964977026,
0.0796264261007309,
-0.34351006150245667,
-0.09367087483406067,
0.17016243934631348,
-0.044724494218826294,
0.4543110132217407,
-0.1197502538561821,
-0.10162397474050522,
-0.06263615190982819,
-0.1313125193119049,
0.18072150647640228,
-0.0014751619892194867,
0.10033301264047623,
0.004829281009733677,
0.16866052150726318,
0.05691388249397278,
0.007217222824692726,
0.091414675116539,
0.01798011176288128,
-0.0663527175784111,
-0.07840543240308762,
-0.10491379350423813,
-0.03505389019846916,
0.005603624042123556,
-0.0021735846530646086,
-0.070311039686203,
0.020419610664248466,
-0.15853211283683777,
-0.06377539038658142,
-0.08453743904829025,
0.02356107160449028,
0.030920391902327538,
-0.05867331475019455,
0.013508422300219536,
-0.06677638739347458,
0.018330350518226624,
-0.001379468129016459,
0.19494818150997162,
-0.11257137358188629,
0.17101415991783142,
0.04597465693950653,
0.1332368403673172,
-0.08957637846469879,
-0.0664193332195282,
-0.09592875093221664,
-0.04850716516375542,
0.07897713780403137,
-0.12196645140647888,
0.028588851913809776,
0.10687820613384247,
-0.026256760582327843,
0.08356694877147675,
0.0898364707827568,
-0.007075367029756308,
0.034319691359996796,
0.09755269438028336,
-0.21034450829029083,
-0.08239499479532242,
-0.0750756561756134,
0.03635190799832344,
0.08414819836616516,
0.09669569879770279,
0.19893206655979156,
0.012653730809688568,
-0.042145922780036926,
0.017787763848900795,
0.012123693712055683,
-0.02111114002764225,
0.07857295125722885,
0.018965713679790497,
0.005439399741590023,
-0.1433452069759369,
0.052979227155447006,
0.010302988812327385,
-0.08479844033718109,
0.010003048926591873,
0.1269667148590088,
-0.0933220237493515,
-0.11143316328525543,
-0.03672108054161072,
0.14701539278030396,
-0.17777521908283234,
-0.0062329513020813465,
-0.0675484910607338,
-0.13784073293209076,
0.0540735125541687,
0.08879818022251129,
0.04015353322029114,
0.03582773730158806,
-0.09314056485891342,
-0.023970693349838257,
-0.027464643120765686,
-0.025517743080854416,
0.06011157110333443,
-0.016900639981031418,
-0.06295756995677948,
0.07077009975910187,
-0.024854036048054695,
0.11451400071382523,
-0.08354704827070236,
-0.08851433545351028,
-0.16065533459186554,
0.05232835188508034,
-0.0971856415271759,
-0.051306720823049545,
-0.09556061774492264,
-0.050184283405542374,
-0.01728140190243721,
-0.018070710822939873,
-0.02822391875088215,
-0.04367216303944588,
-0.10629069805145264,
0.04816720634698868,
-0.03879733756184578,
0.02260771207511425,
-0.06238244101405144,
0.02379411831498146,
0.03523104265332222,
-0.015178869478404522,
0.1198926493525505,
0.12207183241844177,
-0.09698602557182312,
0.09035449475049973,
-0.16394847631454468,
-0.06776027381420135,
0.11319122463464737,
0.01993078552186489,
0.060301147401332855,
0.06648512184619904,
0.011058407835662365,
0.06193515285849571,
0.047181855887174606,
0.04019154608249664,
0.0011482342379167676,
-0.0998595729470253,
0.05959494039416313,
-0.025470629334449768,
-0.11498484015464783,
-0.05095286667346954,
0.004914015997201204,
0.01974906586110592,
0.04762796312570572,
0.09024947136640549,
-0.07045641541481018,
0.10133861005306244,
-0.0719725638628006,
0.042781490832567215,
0.013207492418587208,
-0.1567831039428711,
-0.009022838436067104,
-0.07855422794818878,
0.051177605986595154,
0.018598362803459167,
0.16054493188858032,
0.01182752288877964,
0.026072200387716293,
0.010315481573343277,
0.07682152092456818,
0.04349011927843094,
-0.014741134829819202,
0.21185405552387238,
0.10036209225654602,
-0.025498010218143463,
-0.09448950737714767,
0.10583885759115219,
0.05347297713160515,
0.04882397875189781,
0.13073812425136566,
0.00329616479575634,
-0.014263730496168137,
0.08692904561758041,
0.002064551692456007,
0.02444906160235405,
-0.11166326701641083,
-0.12022344022989273,
-0.034913238137960434,
0.03916458785533905,
-0.018694007769227028,
0.07413183152675629,
0.13662488758563995,
-0.011044695042073727,
0.01868942379951477,
-0.006493001710623503,
-0.044404536485672,
-0.19629815220832825,
-0.21793615818023682,
-0.07676366716623306,
-0.13648608326911926,
-0.0023855564650148153,
-0.11510718613862991,
0.041815925389528275,
0.008664922788739204,
0.07993809133768082,
-0.08146228641271591,
0.05119030550122261,
0.06000566482543945,
-0.1558382213115692,
0.07134677469730377,
-0.023100191727280617,
0.1049720048904419,
-0.07798602432012558,
0.0240509994328022,
-0.06541567295789719,
0.07175038009881973,
0.01739879511296749,
0.029955588281154633,
-0.01989707536995411,
0.008211890235543251,
-0.12742145359516144,
-0.08334774523973465,
-0.06036959961056709,
0.06557390093803406,
0.020560268312692642,
0.1673227995634079,
0.009943484328687191,
-0.023078134283423424,
0.028660951182246208,
0.24841417372226715,
-0.0622759610414505,
-0.06388328224420547,
-0.06632015854120255,
0.20368391275405884,
-0.019206369295716286,
0.09927452355623245,
-0.04167409613728523,
0.010532806627452374,
-0.07129248231649399,
0.3616236448287964,
0.2931338846683502,
-0.10953228175640106,
0.007534074131399393,
-0.023572852835059166,
0.042554765939712524,
0.11510708183050156,
0.1042989119887352,
0.07050987333059311,
0.29585832357406616,
-0.05323539301753044,
-0.035456158220767975,
-0.00002445635254844092,
0.0010794458212330937,
-0.06095365062355995,
0.08202893286943436,
0.03708086162805557,
-0.050908174365758896,
-0.00022808888752479106,
0.14211015403270721,
-0.2293669879436493,
0.05093219503760338,
-0.1549203097820282,
-0.17726412415504456,
-0.08134126663208008,
-0.008463856764137745,
0.11377648264169693,
0.03384561836719513,
0.10970432311296463,
-0.004765030462294817,
-0.0765727236866951,
0.0467694029211998,
0.03101363778114319,
-0.19725514948368073,
0.009119519963860512,
0.06916453689336777,
-0.02850601077079773,
-0.030441200360655785,
-0.02334762178361416,
0.06269988417625427,
0.07391422241926193,
0.05389029160141945,
-0.01931828074157238,
0.03749391436576843,
-0.00035577634116634727,
-0.041961804032325745,
0.07208401709794998,
-0.0301519688218832,
0.008827175945043564,
-0.0679439827799797,
0.08395512402057648,
-0.18772968649864197,
0.04201417416334152,
0.018391063436865807,
-0.04758477583527565,
-0.04135806858539581,
0.04440581426024437,
-0.07019207626581192,
0.08052141219377518,
0.07222563028335571,
-0.01630892977118492,
-0.02569187991321087,
-0.013696021400392056,
-0.005180103238672018,
0.000036183802876621485,
-0.011484390124678612,
-0.10217433422803879,
-0.1737447828054428,
-0.13257969915866852,
0.06753268837928772,
0.018290087580680847,
-0.20535635948181152,
0.03693879395723343,
-0.12776882946491241,
0.02865419164299965,
-0.10825670510530472,
0.07439035177230835,
0.07718028128147125,
0.02790611796081066,
-0.0036239037290215492,
-0.022755812853574753,
0.03530992195010185,
0.0841168612241745,
-0.12845547497272491,
-0.06076517328619957
] |
null | null | transformers | ## Model description
This model was trained on the XED dataset and achieved
validation loss: 0.5995
validation acc: 84.28% (ROC-AUC)
Labels are based on Plutchik's model of emotions and may be combined:

### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.8.0
- Tokenizers 0.10.3
| {} | text-classification | JuliusAlphonso/dear-jarvis-monolith-xed-en | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us
| ## Model description
This model was trained on the XED dataset and achieved
validation loss: 0.5995
validation acc: 84.28% (ROC-AUC)
Labels are based on Plutchik's model of emotions and may be combined:
!image
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.8.0
- Tokenizers 0.10.3
| [
"## Model description\nThis model was trained on the XED dataset and achieved \nvalidation loss: 0.5995 \nvalidation acc: 84.28% (ROC-AUC) \n\nLabels are based on Plutchik's model of emotions and may be combined:\n!image",
"### Framework versions\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.8.0\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"## Model description\nThis model was trained on the XED dataset and achieved \nvalidation loss: 0.5995 \nvalidation acc: 84.28% (ROC-AUC) \n\nLabels are based on Plutchik's model of emotions and may be combined:\n!image",
"### Framework versions\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.8.0\n- Tokenizers 0.10.3"
] | [
38,
58,
34
] | [
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n## Model description\nThis model was trained on the XED dataset and achieved \nvalidation loss: 0.5995 \nvalidation acc: 84.28% (ROC-AUC) \n\nLabels are based on Plutchik's model of emotions and may be combined:\n!image### Framework versions\n- Transformers 4.6.1\n- Pytorch 1.8.1+cu101\n- Datasets 1.8.0\n- Tokenizers 0.10.3"
] | [
-0.17032769322395325,
-0.0008720096666365862,
-0.0006699815858155489,
0.09085370600223541,
0.1812102347612381,
0.044170890003442764,
0.03703469783067703,
0.08744432032108307,
0.07900828868150711,
0.05087422952055931,
0.0499529130756855,
0.1799195110797882,
0.032205305993556976,
0.14128489792346954,
-0.1352246254682541,
-0.24130693078041077,
0.039845556020736694,
0.11982182413339615,
0.20028933882713318,
0.14666707813739777,
0.08676636219024658,
-0.13612420856952667,
0.10884857177734375,
0.019492482766509056,
-0.17263302206993103,
-0.03518379479646683,
0.09024808555841446,
-0.060498934239149094,
0.12209849059581757,
0.0005132674123160541,
0.060506146401166916,
0.09413160383701324,
0.02307712286710739,
-0.1616252362728119,
0.03552035614848137,
-0.02633185312151909,
-0.013634011149406433,
0.06732525676488876,
0.02054203860461712,
-0.08817796409130096,
0.09162355959415436,
0.015325183980166912,
-0.0029747674707323313,
0.02578718215227127,
-0.03984270989894867,
-0.1975937783718109,
-0.07217150181531906,
0.15408553183078766,
0.02169504016637802,
0.09406465291976929,
-0.04781268909573555,
0.2878934442996979,
-0.09547305107116699,
0.11860661953687668,
0.1635836958885193,
-0.24180950224399567,
-0.04806053265929222,
0.015279676765203476,
0.06840632855892181,
-0.008181214332580566,
-0.06784088164567947,
0.05957459658384323,
0.1160646304488182,
0.004755633883178234,
-0.027973901480436325,
-0.057548366487026215,
-0.01456447970122099,
-0.0062590064480900764,
-0.08376286178827286,
-0.04390673711895943,
0.1951664239168167,
0.02245451509952545,
-0.08298978954553604,
-0.05923449620604515,
-0.030277520418167114,
-0.1186574399471283,
0.0031026785727590322,
-0.02077346295118332,
-0.008740561082959175,
-0.04427116736769676,
-0.10246027261018753,
0.06995807588100433,
-0.10173799842596054,
0.011097801849246025,
-0.11021821945905685,
0.21778525412082672,
-0.018909569829702377,
0.08543934673070908,
-0.02201361395418644,
0.08501695096492767,
-0.05107729509472847,
-0.12066145241260529,
-0.04540713503956795,
-0.13557003438472748,
0.050164029002189636,
-0.00042956171091645956,
-0.10174713283777237,
0.02314632199704647,
-0.030207036063075066,
0.08339301496744156,
-0.019718728959560394,
-0.009233660064637661,
-0.010190485045313835,
0.010184655897319317,
0.11502129584550858,
0.23592226207256317,
-0.05547555536031723,
0.005974787287414074,
-0.01935080625116825,
0.04527490213513374,
0.028396958485245705,
-0.022525306791067123,
-0.09306173026561737,
-0.019038889557123184,
0.17127154767513275,
0.0230556633323431,
-0.11272204667329788,
0.10211487114429474,
-0.09824271500110626,
-0.039383284747600555,
-0.04105642810463905,
-0.017123615369200706,
0.01709110103547573,
0.024394230917096138,
-0.08447634428739548,
0.22861984372138977,
0.004593783989548683,
-0.04041210934519768,
-0.03294854238629341,
0.03714827075600624,
-0.06139014661312103,
0.027610836550593376,
-0.04058311879634857,
-0.11606219410896301,
0.007147102616727352,
-0.14961740374565125,
0.04679804667830467,
-0.15373703837394714,
-0.14386001229286194,
-0.041672542691230774,
-0.005228477530181408,
-0.01192582305520773,
0.005245262291282415,
-0.04144163802266121,
0.008988995105028152,
0.02818043902516365,
-0.010546236298978329,
-0.06174643337726593,
-0.02567068301141262,
0.06401293724775314,
0.06492728739976883,
0.13945554196834564,
-0.0806535929441452,
0.039563026279211044,
-0.14073796570301056,
-0.027661902830004692,
-0.09825826436281204,
0.03221673518419266,
-0.03289889171719551,
0.08025743067264557,
0.015367868356406689,
-0.1258733719587326,
0.12065974622964859,
0.0030961371958255768,
0.034697290509939194,
0.15057222545146942,
-0.1388857662677765,
-0.09965945780277252,
0.14555130898952484,
-0.12632879614830017,
-0.11416160315275192,
0.11210113763809204,
-0.04217297583818436,
0.06322483718395233,
0.10828891396522522,
0.08905826508998871,
-0.04396241903305054,
-0.04231815040111542,
-0.12382257729768753,
0.029196875169873238,
0.01576421409845352,
-0.03625291585922241,
-0.0018726742127910256,
0.10976210236549377,
-0.1381646990776062,
0.09503372013568878,
-0.015498677268624306,
0.0014610429061576724,
-0.13005195558071136,
-0.0630127340555191,
-0.06306903809309006,
-0.06527499109506607,
0.1068020686507225,
0.0796668753027916,
0.04892587661743164,
-0.09013750404119492,
-0.06029100343585014,
-0.10429651290178299,
0.10775883495807648,
-0.0691409707069397,
0.006563334260135889,
-0.08635741472244263,
0.16236436367034912,
-0.07667077332735062,
-0.010425458662211895,
-0.18353469669818878,
0.07624319940805435,
-0.00045259727630764246,
0.14787834882736206,
-0.05029348284006119,
0.01671760529279709,
0.020148783922195435,
-0.04464341700077057,
-0.010312103666365147,
-0.026649249717593193,
0.006323684938251972,
-0.009531939402222633,
-0.060681551694869995,
-0.15684917569160461,
-0.03712228685617447,
-0.08170218765735626,
0.1720515638589859,
-0.07376299053430557,
-0.0021758575458079576,
0.03199434280395508,
0.014165098778903484,
-0.031488414853811264,
0.03814362362027168,
-0.016233813017606735,
0.04880969226360321,
-0.0801309123635292,
0.03306953236460686,
0.08794691413640976,
0.002629638183861971,
-0.081941157579422,
0.08850745111703873,
-0.11068417131900787,
0.06786006689071655,
0.18676571547985077,
-0.09853966534137726,
-0.03440765291452408,
-0.003923119977116585,
-0.03606410324573517,
0.04566546902060509,
0.022402409464120865,
0.029265286400914192,
0.0930330827832222,
-0.023606905713677406,
0.11969511955976486,
-0.061159033328294754,
0.054814428091049194,
0.07395591586828232,
-0.05263029783964157,
-0.05347892642021179,
0.09718096256256104,
0.07446993142366409,
-0.056866150349378586,
0.10940100252628326,
0.10322205722332001,
-0.01402298267930746,
0.09380145370960236,
-0.020613275468349457,
-0.008685771375894547,
-0.03670070692896843,
-0.13378436863422394,
-0.0512690469622612,
0.11489308625459671,
-0.13763780891895294,
-0.045454010367393494,
0.07711631804704666,
-0.061201926320791245,
0.006533158477395773,
-0.1452963650226593,
-0.037339381873607635,
0.03633423522114754,
0.010015659034252167,
-0.07339867204427719,
0.07350257784128189,
0.03338218107819557,
0.11986848711967468,
-0.028271391987800598,
-0.11994986236095428,
0.03713278844952583,
0.023040413856506348,
-0.11120864003896713,
0.15090440213680267,
-0.11537574976682663,
-0.29316583275794983,
-0.09349822998046875,
-0.04053856432437897,
-0.12172961235046387,
-0.003173980163410306,
0.03242754936218262,
-0.12256871908903122,
-0.03275781869888306,
-0.008309151977300644,
0.0046663060784339905,
-0.019073786213994026,
0.04581214860081673,
0.04310023784637451,
-0.050637129694223404,
-0.06037510558962822,
-0.0685894787311554,
-0.0878319963812828,
-0.14437632262706757,
-0.054200056940317154,
0.15546073019504547,
-0.09183446317911148,
0.1222512498497963,
0.21174447238445282,
-0.029488345608115196,
0.052994441241025925,
-0.06369243562221527,
0.10936487466096878,
-0.04554072022438049,
-0.06567158550024033,
0.17187437415122986,
-0.02955123782157898,
0.043567534536123276,
0.10263858735561371,
-0.019175371155142784,
-0.09037777036428452,
0.013663743622601032,
-0.04061068594455719,
-0.07471486926078796,
-0.17719623446464539,
-0.08117298781871796,
0.0020331484265625477,
0.09445732831954956,
-0.015348637476563454,
-0.011571556329727173,
0.1403346061706543,
0.1368933618068695,
0.026762504130601883,
-0.12509295344352722,
-0.1559993028640747,
0.05814177170395851,
0.12878839671611786,
-0.04030391573905945,
0.13022653758525848,
-0.002137579023838043,
-0.03208182007074356,
0.11024811118841171,
-0.0979984700679779,
0.20303870737552643,
0.0110474256798625,
-0.0345456600189209,
0.0023844444658607244,
0.11960113793611526,
0.042473070323467255,
0.15821658074855804,
-0.03630620241165161,
-0.03238188475370407,
-0.043240539729595184,
-0.02153056673705578,
-0.10911627113819122,
0.0415656603872776,
-0.035467855632305145,
0.11701693385839462,
-0.24406445026397705,
-0.06547676771879196,
0.0835225060582161,
0.10583333671092987,
0.10750530660152435,
-0.28527504205703735,
-0.11272019892930984,
-0.015002240426838398,
0.027039580047130585,
-0.01068518590182066,
-0.02183614857494831,
-0.04451892152428627,
-0.13404777646064758,
0.0782633051276207,
-0.06482286751270294,
0.06857860833406448,
-0.07570943981409073,
0.061644311994314194,
-0.11448685079813004,
-0.013510424643754959,
0.003572010900825262,
0.05651693791151047,
-0.2480912208557129,
0.21955366432666779,
-0.015360466204583645,
0.012831642292439938,
-0.09966445714235306,
-0.030156759545207024,
0.08526980131864548,
0.1642574965953827,
0.06694722175598145,
-0.013091578148305416,
0.05220232531428337,
-0.11476322263479233,
-0.03350426256656647,
0.07687494903802872,
0.05281593278050423,
0.0188626479357481,
0.07519935816526413,
0.017466286197304726,
0.01875055953860283,
0.02421075850725174,
0.07486771792173386,
-0.11915513873100281,
-0.04672010987997055,
0.03304314240813255,
0.05654826760292053,
-0.03233233094215393,
0.018082089722156525,
-0.1639373004436493,
-0.14874067902565002,
0.13199837505817413,
0.1485646814107895,
-0.05680491775274277,
-0.11776562035083771,
0.06858717650175095,
0.03801552951335907,
-0.07495523989200592,
0.003465428948402405,
-0.05145440623164177,
0.04221956059336662,
-0.011413360014557838,
-0.13926416635513306,
0.06919831037521362,
-0.06897303462028503,
-0.13835547864437103,
-0.0025463521014899015,
0.08527182042598724,
0.02256753481924534,
0.037474069744348526,
0.05291851982474327,
-0.035720083862543106,
-0.09686104953289032,
-0.09154071658849716,
0.04953638091683388,
0.1187894269824028,
-0.01604756899178028,
0.09391871094703674,
-0.00250230822712183,
-0.10784246027469635,
-0.13852012157440186,
0.02585899829864502,
0.15842582285404205,
0.10720054060220718,
-0.08011704683303833,
0.05029768496751785,
0.07234639674425125,
-0.03629492595791817,
-0.23828330636024475,
0.05776435136795044,
-0.022258400917053223,
0.058409642428159714,
-0.031646281480789185,
-0.040007539093494415,
0.04521939903497696,
-0.03387768939137459,
0.004477325361222029,
0.061364877969026566,
-0.12871438264846802,
-0.059187691658735275,
0.1738308072090149,
0.07288890331983566,
0.40498825907707214,
-0.07953188568353653,
0.011870015412569046,
-0.0400422178208828,
-0.1668972223997116,
0.17412976920604706,
0.030260462313890457,
0.09422098845243454,
-0.06747271865606308,
0.177897110581398,
0.04205918684601784,
-0.0027990529779344797,
0.11473829299211502,
0.04022829234600067,
0.048779550939798355,
-0.0696212574839592,
-0.09855817258358002,
0.03948770835995674,
-0.004750075750052929,
0.07852501422166824,
-0.04993683099746704,
0.021900448948144913,
-0.1898602545261383,
-0.06377572566270828,
-0.1166863963007927,
0.04322652518749237,
-0.0020590382628142834,
-0.05733198672533035,
-0.07058855891227722,
0.04394303634762764,
0.00939804408699274,
-0.022454354912042618,
-0.03871718794107437,
-0.025446008890867233,
0.00403606379404664,
0.13785597681999207,
0.12666231393814087,
-0.08262982219457626,
0.01886170729994774,
0.00880544912070036,
-0.052662838250398636,
0.09957107156515121,
-0.11133680492639542,
0.020762862637639046,
0.14945656061172485,
0.009152495302259922,
0.11319830268621445,
0.1124538704752922,
-0.06900203973054886,
0.027772724628448486,
0.07234226912260056,
-0.1558409184217453,
-0.05821846425533295,
-0.06228823587298393,
-0.14422406256198883,
-0.04911045730113983,
0.07030604779720306,
0.10357968509197235,
-0.05903024971485138,
-0.03567788004875183,
-0.07587826997041702,
-0.013280029408633709,
0.023110143840312958,
0.11994729191064835,
0.04377510026097298,
-0.03434143587946892,
-0.12748277187347412,
0.017570089548826218,
-0.0888780727982521,
-0.1348620355129242,
0.021333590149879456,
-0.04557385295629501,
-0.10484643280506134,
-0.10337941348552704,
-0.010876002721488476,
0.17992228269577026,
-0.22383706271648407,
-0.07898705452680588,
-0.1286805272102356,
-0.17541716992855072,
0.05077536031603813,
0.1588427573442459,
0.1401739865541458,
0.03620508685708046,
-0.0755266547203064,
-0.05152559652924538,
-0.10964109003543854,
0.04391055181622505,
0.13111165165901184,
0.030225563794374466,
-0.08918602019548416,
0.10074037313461304,
-0.018686113879084587,
0.16034117341041565,
-0.07436799257993698,
-0.04255186766386032,
-0.09455017745494843,
-0.0003220195940230042,
-0.22493121027946472,
-0.012427913956344128,
-0.02325396239757538,
-0.027896925806999207,
0.027856508269906044,
-0.02232132852077484,
-0.012002898380160332,
0.0095133725553751,
-0.09379614889621735,
0.056132107973098755,
0.06240813061594963,
0.019771454855799675,
-0.052295759320259094,
-0.047935545444488525,
0.003192974254488945,
-0.043531376868486404,
0.14835411310195923,
0.11817096918821335,
-0.010680846869945526,
0.10043633729219437,
-0.18326182663440704,
-0.004029658157378435,
0.08481883257627487,
0.0010840538889169693,
0.06497786194086075,
-0.018836619332432747,
0.05536606162786484,
0.04328722506761551,
-0.018826156854629517,
0.04038297012448311,
0.14397381246089935,
-0.04813637584447861,
0.019420651718974113,
0.05253176763653755,
-0.02792537212371826,
-0.03314121440052986,
0.021266061812639236,
0.017265722155570984,
0.11542031913995743,
0.11838676780462265,
-0.04453728720545769,
0.05986941233277321,
-0.12212444841861725,
0.015453968197107315,
-0.044598743319511414,
-0.10220933705568314,
-0.06834568083286285,
-0.06424345076084137,
0.05049840360879898,
0.016283228993415833,
0.10608859360218048,
0.07818581163883209,
0.06852900236845016,
-0.0607571117579937,
0.09044024348258972,
0.008790023624897003,
-0.029568586498498917,
0.1378413289785385,
0.07967990636825562,
-0.0018065497279167175,
0.0053400760516524315,
0.09293237328529358,
0.09254515916109085,
0.08951437473297119,
0.2088150978088379,
0.010135039687156677,
0.09485506266355515,
0.1545518934726715,
0.026011796668171883,
0.0703255832195282,
-0.03968755155801773,
-0.19880756735801697,
-0.10554802417755127,
0.10364913940429688,
0.019090473651885986,
0.13418646156787872,
0.06420018523931503,
-0.006446116138249636,
0.08052524924278259,
-0.03620653599500656,
-0.05520370230078697,
-0.13503466546535492,
-0.10627815127372742,
-0.11054999381303787,
-0.12149492651224136,
0.03685041517019272,
-0.12701494991779327,
-0.05108335614204407,
0.01957549899816513,
0.03182234615087509,
-0.09283694624900818,
-0.013774246908724308,
-0.055950652807950974,
-0.018643129616975784,
0.2187446504831314,
-0.010798275470733643,
-0.08105837553739548,
0.003376186126843095,
0.035305384546518326,
-0.04693669453263283,
-0.00035781104816123843,
0.053044695407152176,
0.008998566307127476,
-0.04612798988819122,
0.0012522151228040457,
-0.032534584403038025,
-0.09683270007371902,
-0.03196445479989052,
-0.013375133275985718,
0.089633509516716,
0.07740496098995209,
0.004803529474884272,
0.0411042757332325,
-0.021966097876429558,
0.08093566447496414,
-0.02939157374203205,
0.06982041895389557,
-0.10515379160642624,
0.26209259033203125,
-0.043779272586107254,
0.023407982662320137,
0.04932568594813347,
-0.03858494758605957,
-0.026215892285108566,
0.25349846482276917,
0.19712573289871216,
-0.05255873128771782,
0.023962192237377167,
-0.05911856144666672,
0.041710492223501205,
-0.026403512805700302,
0.11596891283988953,
0.0900653824210167,
0.0823042169213295,
-0.07760988175868988,
0.048620596528053284,
-0.08617594093084335,
-0.03707125037908554,
0.03856838494539261,
-0.04194626957178116,
0.08527632057666779,
-0.05899075046181679,
-0.07209368050098419,
0.0476137213408947,
-0.09704028069972992,
0.10980121046304703,
0.17792196571826935,
-0.1657688170671463,
-0.08756111562252045,
-0.009039493277668953,
0.0483870692551136,
0.09300347417593002,
0.09588946402072906,
-0.0603017583489418,
-0.006119926460087299,
0.17291076481342316,
0.00884818471968174,
-0.17035970091819763,
-0.06001848727464676,
0.13253386318683624,
-0.07543402910232544,
0.03481507673859596,
-0.050181228667497635,
0.11351362615823746,
0.09148593991994858,
0.07088804244995117,
-0.015616219490766525,
0.05709994211792946,
-0.0003379917179699987,
-0.026378262788057327,
0.04655987769365311,
0.1091565266251564,
0.02321183681488037,
-0.04375268518924713,
0.00257120537571609,
-0.14121510088443756,
0.005431998521089554,
-0.056115422397851944,
-0.03179704025387764,
-0.0591321736574173,
0.11581554263830185,
-0.08386269211769104,
0.08185914903879166,
0.13966959714889526,
-0.04361908882856369,
-0.012381463311612606,
-0.04874898120760918,
-0.00829338375478983,
-0.0056745014153420925,
-0.02377643994987011,
-0.002383143175393343,
-0.1040801927447319,
-0.012949798256158829,
0.1469227522611618,
-0.011654580011963844,
-0.2331344038248062,
-0.005061449017375708,
-0.08421537280082703,
-0.0695674866437912,
-0.08043331652879715,
0.04173240065574646,
0.028296208009123802,
0.06252621859312057,
-0.010791313834488392,
0.05017220973968506,
0.005903942976146936,
0.12893831729888916,
-0.08891250193119049,
-0.08859563618898392
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dear-jarvis-v5
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 470 | 0.3106 |
| 0.3452 | 2.0 | 940 | 0.3064 |
| 0.2692 | 3.0 | 1410 | 0.3148 |
### Framework versions
- Transformers 4.7.0
- Pytorch 1.9.0+cu102
- Datasets 1.8.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "datasets": [], "model_index": [{"name": "dear-jarvis-v5", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}}]}]} | text-classification | JuliusAlphonso/dear-jarvis-v5 | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #distilbert #text-classification #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| dear-jarvis-v5
==============
This model is a fine-tuned version of distilbert-base-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3148
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.7.0
* Pytorch 1.9.0+cu102
* Datasets 1.8.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.7.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.8.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #distilbert #text-classification #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.7.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.8.0\n* Tokenizers 0.10.3"
] | [
46,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.7.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.8.0\n* Tokenizers 0.10.3"
] | [
-0.08985251188278198,
0.03885297849774361,
-0.0016652819467708468,
0.10613943636417389,
0.20658627152442932,
0.032798513770103455,
0.09402831643819809,
0.10397884249687195,
-0.13384497165679932,
0.017282607033848763,
0.11016415059566498,
0.18460382521152496,
0.005861277226358652,
0.11799877136945724,
-0.08966491371393204,
-0.25369834899902344,
-0.001316493726335466,
0.02175135165452957,
-0.053856417536735535,
0.12906885147094727,
0.0959206223487854,
-0.14112895727157593,
0.07298348098993301,
-0.02307168021798134,
-0.2298557162284851,
0.01194994617253542,
0.013446014374494553,
-0.06645388156175613,
0.14218144118785858,
0.02382817678153515,
0.13540343940258026,
0.0054758768528699875,
0.09867244213819504,
-0.1830352395772934,
0.002120251301676035,
0.057562004774808884,
0.007458453997969627,
0.06528718024492264,
0.03954927250742912,
-0.005238586105406284,
0.1197434589266777,
-0.11676802486181259,
0.059541940689086914,
0.01013871468603611,
-0.1137387752532959,
-0.21268662810325623,
-0.08776772767305374,
0.0056808628141880035,
0.07232370972633362,
0.10860201716423035,
0.00232632365077734,
0.15204763412475586,
-0.1298191249370575,
0.10416442155838013,
0.22353509068489075,
-0.278513103723526,
-0.0700792670249939,
0.040641624480485916,
-0.004174389876425266,
0.07939725369215012,
-0.09862478077411652,
-0.019173171371221542,
0.06447932124137878,
0.0560164675116539,
0.11360979080200195,
-0.030362265184521675,
-0.15901681780815125,
0.015666190534830093,
-0.14762407541275024,
-0.015136882662773132,
0.1147230714559555,
0.022185921669006348,
-0.03423742204904556,
-0.008103336207568645,
-0.0619841143488884,
-0.13519619405269623,
-0.049422167241573334,
-0.007284856401383877,
0.0643925666809082,
-0.04203999787569046,
-0.049640629440546036,
0.030389804393053055,
-0.08748842030763626,
-0.05134142190217972,
-0.09163980185985565,
0.15831315517425537,
0.04254582151770592,
0.020038887858390808,
-0.027827149257063866,
0.09358855336904526,
-0.011688134633004665,
-0.13724064826965332,
0.016589375212788582,
0.02558467537164688,
0.005317396949976683,
-0.05591946095228195,
-0.08740448951721191,
-0.04556601122021675,
0.02117929421365261,
0.12196823209524155,
-0.0553007647395134,
0.05765824764966965,
0.01816830039024353,
0.03186381980776787,
-0.09961702674627304,
0.2085668444633484,
-0.011706069111824036,
-0.03887024521827698,
0.030768904834985733,
0.028784118592739105,
0.020781122148036957,
-0.014161955565214157,
-0.10089590400457382,
-0.0005012975889258087,
0.1063767522573471,
0.024766162037849426,
-0.07416995614767075,
0.06402692198753357,
-0.03666868433356285,
-0.00664416141808033,
-0.0036639694590121508,
-0.1156127005815506,
0.048368189483881,
-0.013431955128908157,
-0.07376094907522202,
0.007079463917762041,
0.01699325069785118,
0.02050679363310337,
-0.030784014612436295,
0.17221178114414215,
-0.06472237408161163,
0.046336736530065536,
-0.11904367059469223,
-0.10687670111656189,
0.012692460790276527,
-0.05304315313696861,
0.020807430148124695,
-0.10523568093776703,
-0.16766372323036194,
-0.017490630969405174,
0.056828126311302185,
-0.025831278413534164,
-0.053750909864902496,
-0.0454435795545578,
-0.08945110440254211,
0.020909221842885017,
-0.03867819160223007,
0.17214281857013702,
-0.07192923873662949,
0.10426715016365051,
0.05814472585916519,
0.0666390061378479,
-0.07006823271512985,
0.050010375678539276,
-0.08917222917079926,
-0.017275260761380196,
-0.21504206955432892,
0.045820292085409164,
-0.061105940490961075,
0.0851089358329773,
-0.059045951813459396,
-0.11590307205915451,
0.03789961710572243,
-0.0048596858978271484,
0.07812705636024475,
0.08431623131036758,
-0.1687466949224472,
-0.06595074385404587,
0.1397988349199295,
-0.0719706267118454,
-0.11192366480827332,
0.10668759047985077,
-0.055927447974681854,
0.012835348956286907,
0.09333650022745132,
0.15147081017494202,
0.04147350788116455,
-0.08151192963123322,
0.010994245298206806,
-0.013119187206029892,
0.05683940276503563,
-0.07921455800533295,
0.047691330313682556,
0.020611876621842384,
-0.008954952470958233,
0.0454767569899559,
-0.040658965706825256,
0.06187921017408371,
-0.10270623862743378,
-0.08632531017065048,
-0.06218665838241577,
-0.08840010315179825,
0.024443726986646652,
0.0757559984922409,
0.0798531025648117,
-0.11913951486349106,
-0.05213279649615288,
0.08305426687002182,
0.06734849512577057,
-0.04150281101465225,
0.03819603472948074,
-0.050429850816726685,
0.05120997130870819,
-0.00445804325863719,
-0.015370533801615238,
-0.2079738974571228,
-0.011954320594668388,
0.002781851217150688,
0.044811464846134186,
0.02481561154127121,
-0.002300282008945942,
0.05497129261493683,
0.05034457892179489,
-0.06140957027673721,
0.0062587750144302845,
-0.014386221766471863,
0.0031769017223268747,
-0.14410094916820526,
-0.19428472220897675,
0.002468462334945798,
-0.009404703974723816,
0.08876923471689224,
-0.18549175560474396,
0.026195747777819633,
-0.039342835545539856,
0.0705580860376358,
-0.014305498450994492,
0.01779489405453205,
-0.07658813893795013,
0.1109970286488533,
-0.026133455336093903,
-0.04271557182073593,
0.07030001282691956,
0.000952785019762814,
-0.05419161543250084,
-0.06718137860298157,
-0.07520390301942825,
0.19577248394489288,
0.15470869839191437,
-0.14434534311294556,
-0.07569655030965805,
0.028807256370782852,
-0.04411131516098976,
-0.01890336163341999,
-0.06068148836493492,
0.05783285200595856,
0.18705320358276367,
-0.016826219856739044,
0.15111044049263,
-0.06650786846876144,
-0.02897416241466999,
0.004110978916287422,
-0.03058355115354061,
0.059401754289865494,
0.10652552545070648,
0.14465868473052979,
-0.06646570563316345,
0.12609754502773285,
0.16610579192638397,
-0.12584644556045532,
0.09087114781141281,
-0.04818149283528328,
-0.05893305689096451,
0.004161221440881491,
-0.04031788930296898,
-0.006464842241257429,
0.07369519025087357,
-0.11672336608171463,
-0.0011862468672916293,
0.013229588977992535,
0.041107188910245895,
0.022447356954216957,
-0.2266482412815094,
-0.032576784491539,
0.019221045076847076,
-0.036790795624256134,
-0.021937161684036255,
-0.02844582311809063,
0.02245599403977394,
0.1129392459988594,
-0.004246687050908804,
-0.09422054886817932,
0.031687237322330475,
-0.000825161871034652,
-0.07908602803945541,
0.21467559039592743,
-0.09959293156862259,
-0.13850921392440796,
-0.08453831076622009,
-0.0978131890296936,
-0.04512322321534157,
0.002982372185215354,
0.07555780559778214,
-0.10698363184928894,
-0.05206579715013504,
-0.04904415085911751,
0.0010310617508366704,
0.0184895358979702,
0.045639537274837494,
0.02839777059853077,
0.005327850580215454,
0.059104565531015396,
-0.11057238280773163,
-0.021971533074975014,
-0.057543013244867325,
-0.0654049813747406,
0.060733187943696976,
0.05686962977051735,
0.10704346001148224,
0.15848961472511292,
-0.0322219654917717,
0.004167481791228056,
-0.03128369152545929,
0.2443075180053711,
-0.05808598920702934,
-0.045371152460575104,
0.1302642971277237,
0.0026878847274929285,
0.0487540028989315,
0.12114236503839493,
0.06669718027114868,
-0.11004656553268433,
0.024204086512327194,
0.018845895305275917,
-0.03364275395870209,
-0.22166286408901215,
-0.06209985911846161,
-0.06217189133167267,
-0.053294986486434937,
0.06541673094034195,
0.023652344942092896,
0.029855908825993538,
0.04756037890911102,
0.050821200013160706,
0.09737007319927216,
-0.0387694351375103,
0.048733148723840714,
0.15981411933898926,
0.0550074465572834,
0.14078453183174133,
-0.05808663368225098,
-0.06656947731971741,
0.04192828759551048,
-0.0635388121008873,
0.2318255603313446,
0.009152128361165524,
0.04219958931207657,
0.045399218797683716,
0.1735231727361679,
0.002478325739502907,
0.08963741362094879,
0.0060646869242191315,
-0.051302265375852585,
-0.012485877610743046,
-0.03608136251568794,
-0.052041709423065186,
0.008325435221195221,
-0.07386376708745956,
0.04563452675938606,
-0.12485063076019287,
-0.024838613346219063,
0.06701662391424179,
0.24891529977321625,
0.018473966047167778,
-0.30838721990585327,
-0.06064089015126228,
0.007493957877159119,
-0.04171381890773773,
-0.004923305008560419,
0.016487538814544678,
0.05528419092297554,
-0.10036468505859375,
0.057901062071323395,
-0.04352448508143425,
0.10826698690652847,
-0.00826464407145977,
0.057674236595630646,
0.055641159415245056,
0.09999409317970276,
0.01563975028693676,
0.07314091175794601,
-0.3494064211845398,
0.25969043374061584,
0.001630877610296011,
0.09502214938402176,
-0.07495352625846863,
-0.0008514173096045852,
0.045662276446819305,
0.09297088533639908,
0.014745395630598068,
-0.02246234565973282,
-0.05517151951789856,
-0.1808558851480484,
-0.0383169986307621,
0.054862938821315765,
0.10316010564565659,
0.018266191706061363,
0.08604492992162704,
-0.03050445020198822,
0.0020240473095327616,
0.0812469869852066,
-0.019408294931054115,
-0.08333726227283478,
-0.0799751952290535,
-0.03152365982532501,
0.03426278010010719,
-0.04146479442715645,
-0.05550374835729599,
-0.12013489007949829,
-0.1339762657880783,
0.1534290611743927,
0.0022917715832591057,
-0.025315867736935616,
-0.11228033900260925,
0.09182935208082199,
0.06437696516513824,
-0.08087532967329025,
0.04473505914211273,
0.014197850599884987,
0.03374750167131424,
0.04556257277727127,
-0.08410275727510452,
0.10653354227542877,
-0.0684308111667633,
-0.15511554479599,
-0.052335064858198166,
0.07598409056663513,
0.010517176240682602,
0.0663762018084526,
-0.012307653203606606,
0.02821282483637333,
-0.02506025694310665,
-0.10864784568548203,
-0.008569718338549137,
0.006586970295757055,
0.09111130982637405,
0.05945267900824547,
-0.06853251904249191,
-0.030153552070260048,
-0.057042889297008514,
-0.04229665547609329,
0.1939343363046646,
0.23254594206809998,
-0.0891055315732956,
0.012211951427161694,
0.01812749356031418,
-0.06791528314352036,
-0.20963777601718903,
0.05811388045549393,
0.07277007400989532,
-0.0013484127121046185,
0.031129730865359306,
-0.14980922639369965,
0.1617026925086975,
0.11295735836029053,
-0.006716883275657892,
0.102629154920578,
-0.31026145815849304,
-0.13517308235168457,
0.10344158858060837,
0.1424497812986374,
0.16841889917850494,
-0.14885969460010529,
-0.009994274005293846,
-0.059681300073862076,
-0.13599009811878204,
0.10137307643890381,
-0.0929994136095047,
0.117359958589077,
-0.025246568024158478,
0.06974496692419052,
-0.008477387949824333,
-0.05300520360469818,
0.11659173667430878,
0.020782185718417168,
0.10664008557796478,
-0.07487168163061142,
-0.008877592161297798,
0.015420944429934025,
-0.03488704934716225,
0.00948872696608305,
-0.07705465704202652,
0.03521314635872841,
-0.07789052277803421,
-0.01754298061132431,
-0.0805007666349411,
0.03393186256289482,
-0.0317070335149765,
-0.0418936051428318,
-0.0420641154050827,
0.006915885489434004,
0.053600724786520004,
-0.026426075026392937,
0.12100241333246231,
0.015362485311925411,
0.1338389813899994,
0.08271106332540512,
0.07099662721157074,
-0.12019722163677216,
-0.02653520181775093,
-0.006241331342607737,
-0.018613560125231743,
0.045885439962148666,
-0.1515936553478241,
0.030242564156651497,
0.14695070683956146,
0.008069828152656555,
0.12526817619800568,
0.09425930678844452,
0.010276123881340027,
0.0003044051118195057,
0.08115902543067932,
-0.1513832062482834,
-0.049307066947221756,
0.02241114340722561,
-0.061889126896858215,
-0.08727062493562698,
0.05021129176020622,
0.07895529270172119,
-0.07276184856891632,
-0.005181107670068741,
-0.018506428226828575,
0.005272492300719023,
-0.06737267971038818,
0.21594518423080444,
0.06181966885924339,
0.0387822762131691,
-0.11877064406871796,
0.07528875023126602,
0.05753833055496216,
-0.07458128780126572,
0.0013662950368598104,
0.10016383975744247,
-0.08992043882608414,
-0.03355559706687927,
0.14319275319576263,
0.18576663732528687,
-0.07066237926483154,
-0.04251394420862198,
-0.13357459008693695,
-0.13461603224277496,
0.08322150260210037,
0.17070721089839935,
0.1274205446243286,
-0.004295835271477699,
-0.051489416509866714,
0.012138139456510544,
-0.12179829180240631,
0.06341222673654556,
0.033053696155548096,
0.07648927718400955,
-0.13098140060901642,
0.16545885801315308,
0.015358625911176205,
0.040985219180583954,
-0.03099760413169861,
0.04262246936559677,
-0.10775085538625717,
0.027656231075525284,
-0.13474787771701813,
-0.029350370168685913,
-0.0007506046677008271,
0.005592792760580778,
0.005983254872262478,
-0.0693817064166069,
-0.06458348035812378,
0.016006849706172943,
-0.11814849078655243,
-0.025724070146679878,
0.01931983232498169,
0.04958720505237579,
-0.12550827860832214,
-0.0439021959900856,
0.026145372539758682,
-0.05792834982275963,
0.04538721591234207,
0.05939487740397453,
0.004735274706035852,
0.09367915242910385,
-0.17310240864753723,
-0.04050907492637634,
0.08850474655628204,
0.0201104748994112,
0.09146735072135925,
-0.07253990322351456,
0.0007282986771315336,
0.03497976437211037,
0.10323381423950195,
0.040765102952718735,
0.08625397086143494,
-0.14200322329998016,
0.004045998677611351,
-0.04914297163486481,
-0.10974998772144318,
-0.042313847690820694,
0.012735189869999886,
0.09961993247270584,
0.011191035620868206,
0.20826426148414612,
-0.09274523705244064,
0.034630369395017624,
-0.20271676778793335,
-0.005400329828262329,
-0.03150162473320961,
-0.11368352174758911,
-0.14011141657829285,
-0.06286996603012085,
0.07871486991643906,
-0.0458371639251709,
0.1442212015390396,
0.04455554485321045,
0.07633046805858612,
0.04065500944852829,
-0.02348308078944683,
0.0015700275544077158,
0.03230327367782593,
0.21726325154304504,
0.059394195675849915,
-0.025864707306027412,
0.06966596841812134,
0.05781262740492821,
0.1089337095618248,
0.0687870979309082,
0.23471599817276,
0.162686288356781,
-0.00417232746258378,
0.10522769391536713,
0.01089694444090128,
-0.06814925372600555,
-0.13376155495643616,
0.011701268143951893,
-0.06146707385778427,
0.1053159236907959,
-0.030296122655272484,
0.18570204079151154,
0.03947648033499718,
-0.1649257391691208,
0.04426523670554161,
-0.08675441145896912,
-0.09016582369804382,
-0.11785715818405151,
0.0372929573059082,
-0.09866755455732346,
-0.16358959674835205,
0.006530469283461571,
-0.11788658797740936,
0.03138970956206322,
0.13402384519577026,
0.009145678952336311,
-0.021412555128335953,
0.13469700515270233,
0.019224047660827637,
0.035736627876758575,
0.0665748119354248,
-0.010400207713246346,
-0.025064105167984962,
-0.08265160024166107,
-0.06340400874614716,
-0.03885066881775856,
-0.00695768604055047,
0.04767598211765289,
-0.041693784296512604,
-0.09702953696250916,
0.042045239359140396,
-0.033427778631448746,
-0.09055837988853455,
0.03292076289653778,
0.03097037971019745,
0.07426360994577408,
0.06905447691679001,
0.01009643916040659,
0.018013471737504005,
-0.0023523163981735706,
0.23082895576953888,
-0.09324751049280167,
-0.13344882428646088,
-0.09522228688001633,
0.2792764902114868,
0.07243137061595917,
0.00039110955549404025,
0.022868987172842026,
-0.06347902119159698,
-0.025191940367221832,
0.2375156283378601,
0.18724775314331055,
-0.12398378551006317,
-0.014605702832341194,
-0.014220183715224266,
-0.009659009985625744,
-0.017155760899186134,
0.15030893683433533,
0.17408569157123566,
0.05932585895061493,
-0.10099808126688004,
-0.03719475120306015,
-0.054007500410079956,
-0.012379052117466927,
-0.06480284780263901,
0.03501374274492264,
0.028512993827462196,
-0.01073545590043068,
-0.030783819034695625,
0.07377935200929642,
-0.049549613147974014,
-0.08417095988988876,
0.05947842821478844,
-0.20906807482242584,
-0.17279300093650818,
0.0036954062525182962,
0.1212523877620697,
-0.005816335789859295,
0.05446198582649231,
-0.021969107910990715,
-0.004359501879662275,
0.0681658536195755,
-0.03916212543845177,
-0.0678359642624855,
-0.09201761335134506,
0.09483278542757034,
-0.11777909845113754,
0.17414776980876923,
-0.029985399916768074,
0.09794358909130096,
0.11973584443330765,
0.08275085687637329,
-0.06563994288444519,
0.07949544489383698,
0.02864137664437294,
-0.10046857595443726,
0.043088022619485855,
0.06864055246114731,
-0.0465884767472744,
0.02309362217783928,
0.050313033163547516,
-0.11822269856929779,
0.02828102558851242,
-0.05159470811486244,
-0.04454010725021362,
-0.04997603967785835,
-0.04934165999293327,
-0.07673726230859756,
0.10909559577703476,
0.223900705575943,
-0.017974361777305603,
0.03178180381655693,
-0.07951804250478745,
0.01019569393247366,
0.019653504714369774,
0.034902263432741165,
-0.09879498183727264,
-0.2425122708082199,
0.025676406919956207,
0.08124899119138718,
-0.02097662165760994,
-0.2018854022026062,
-0.08650141209363937,
-0.004348312970250845,
-0.07264993339776993,
-0.11173595488071442,
0.0977107509970665,
0.06839654594659805,
0.03162287548184395,
-0.053736768662929535,
-0.14891818165779114,
-0.07756452262401581,
0.16751356422901154,
-0.15026427805423737,
-0.09933644533157349
] |
null | null | transformers | Labels are based on Plutchik's model of emotions and may be combined:
 | {} | text-classification | JuliusAlphonso/distilbert-plutchik | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us
| Labels are based on Plutchik's model of emotions and may be combined:
!image | [] | [
"TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
38
] | [
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.03533577919006348,
0.06443645805120468,
-0.007824759930372238,
0.02963758073747158,
0.21134145557880402,
0.0368538573384285,
0.06359195709228516,
0.10786357522010803,
0.047846585512161255,
-0.029699334874749184,
0.09624463319778442,
0.2456933856010437,
-0.04527274891734123,
0.11506538093090057,
-0.1315092295408249,
-0.2995516061782837,
0.0646483302116394,
0.06820031255483627,
0.01968790777027607,
0.11027561128139496,
0.08955937623977661,
-0.08577843010425568,
0.06416945904493332,
-0.03987749293446541,
-0.13028311729431152,
0.036934368312358856,
0.037670549005270004,
-0.12557227909564972,
0.08850666880607605,
0.03936105594038963,
0.16363440454006195,
0.029493317008018494,
-0.0571451373398304,
-0.13760130107402802,
0.03542056307196617,
0.003107793163508177,
-0.08173839002847672,
0.035451244562864304,
0.07971785217523575,
-0.13606007397174835,
0.03269175812602043,
0.01657985709607601,
0.028779901564121246,
0.05034712329506874,
-0.13549968600273132,
-0.06766978651285172,
-0.009825913235545158,
0.02846479043364525,
0.08123840391635895,
0.06563035398721695,
-0.00027321543893776834,
0.11571130156517029,
-0.14468228816986084,
0.13729768991470337,
0.08681581169366837,
-0.26667332649230957,
-0.01513616368174553,
0.09300960600376129,
0.014211298897862434,
0.03189397603273392,
-0.05005642771720886,
0.03387840837240219,
0.021587392315268517,
0.012041964568197727,
-0.005505601409822702,
-0.06911619752645493,
-0.12172640115022659,
0.01909228041768074,
-0.0760328620672226,
-0.039914727210998535,
0.2024218738079071,
-0.06752687692642212,
0.06574457883834839,
-0.03853347897529602,
-0.09920144081115723,
-0.04725521057844162,
-0.028420861810445786,
0.03284634277224541,
-0.05052020400762558,
0.06803859770298004,
0.04873250797390938,
0.02093963511288166,
-0.10541380196809769,
0.027895580977201462,
-0.2198127955198288,
0.21804359555244446,
0.00917235016822815,
0.04113364964723587,
-0.17035873234272003,
0.06059039384126663,
0.043774571269750595,
-0.10760118812322617,
0.049048252403736115,
-0.10497406870126724,
0.019541887566447258,
-0.04680290073156357,
-0.07833123207092285,
-0.044003088027238846,
0.0761561468243599,
0.15131190419197083,
0.024525625631213188,
0.0676354393362999,
-0.023907558992505074,
0.08125972747802734,
0.03615585342049599,
0.12704050540924072,
0.04965166375041008,
-0.030767392367124557,
0.03752761334180832,
-0.13245059549808502,
-0.00002132852932845708,
-0.07070981711149216,
-0.1520344465970993,
-0.028104213997721672,
0.058518148958683014,
0.07771685719490051,
0.007545619271695614,
0.09117837250232697,
-0.07305282354354858,
-0.03670652583241463,
0.09205243736505508,
-0.09038619697093964,
0.022389709949493408,
0.0189626757055521,
0.024910688400268555,
0.11437109857797623,
-0.01640472002327442,
-0.004441923461854458,
-0.08554866164922714,
0.15481221675872803,
-0.05412428826093674,
0.01906411163508892,
-0.027951309457421303,
-0.07562480866909027,
0.023844171315431595,
-0.16517141461372375,
0.024268588051199913,
-0.16968505084514618,
-0.12177367508411407,
0.0011497566010802984,
0.01497613824903965,
0.0003558929602149874,
-0.029599502682685852,
-0.034584347158670425,
0.0028823118191212416,
0.05339471623301506,
-0.05009040981531143,
-0.08925710618495941,
-0.0734119787812233,
0.09545788168907166,
-0.03665677830576897,
0.07958490401506424,
-0.12844105064868927,
0.0784672200679779,
-0.0987219363451004,
-0.0187049712985754,
-0.14024826884269714,
0.05743253231048584,
-0.04765705391764641,
0.18340644240379333,
0.01636499911546707,
-0.05442013591527939,
-0.05629796162247658,
0.05081459879875183,
-0.06792773306369781,
0.17081454396247864,
-0.10482346266508102,
-0.11688733100891113,
0.18975088000297546,
-0.09539731591939926,
-0.11199936270713806,
0.08214274048805237,
-0.012322766706347466,
-0.002544441493228078,
0.10592521727085114,
0.18774141371250153,
0.11772145330905914,
0.015394842252135277,
0.071439228951931,
0.1266816407442093,
-0.09738999605178833,
-0.10514426231384277,
-0.016195401549339294,
-0.010998358018696308,
-0.11682542413473129,
0.06311710923910141,
0.08283041417598724,
0.0693083181977272,
-0.04381299018859863,
-0.038738906383514404,
-0.015374792739748955,
-0.0029897931963205338,
0.14953550696372986,
0.06494788080453873,
0.11409911513328552,
-0.07472079247236252,
0.010434641502797604,
0.010832404717803001,
-0.008651630952954292,
0.016917014494538307,
0.02875317819416523,
-0.061046965420246124,
0.11194391548633575,
0.03876045346260071,
0.02736404910683632,
-0.24566538631916046,
-0.06682449579238892,
-0.011323003098368645,
0.1456235647201538,
-0.02446315996348858,
0.10121438652276993,
0.045561324805021286,
-0.0504569448530674,
-0.010978372767567635,
-0.029581138864159584,
0.17828664183616638,
0.022655870765447617,
-0.06422974169254303,
-0.0612877793610096,
0.0651540756225586,
-0.07150227576494217,
0.012235969305038452,
-0.07036937773227692,
0.020627280697226524,
0.08606486022472382,
0.12204300612211227,
0.010734139941632748,
0.06475073099136353,
-0.02579765021800995,
0.07209211587905884,
-0.07104320824146271,
0.019227510318160057,
0.11117701232433319,
-0.010595849715173244,
-0.07011682540178299,
0.13524381816387177,
-0.1373681277036667,
0.2673107087612152,
0.19483336806297302,
-0.2967563271522522,
0.0005786092369817197,
-0.04439404606819153,
-0.007282515522092581,
0.030610160902142525,
0.030042126774787903,
0.014859852381050587,
0.08437592536211014,
0.0014727829257026315,
0.20341786742210388,
-0.021047484129667282,
-0.03919289633631706,
-0.018922755494713783,
-0.04877391830086708,
-0.03148360177874565,
0.08788784593343735,
0.06451795995235443,
-0.192406564950943,
0.19050060212612152,
0.21731194853782654,
0.010114802047610283,
0.16024211049079895,
-0.010486523620784283,
0.043989237397909164,
0.09252246469259262,
-0.03757351264357567,
-0.024272754788398743,
-0.08932791650295258,
-0.1848243772983551,
-0.03918878361582756,
0.07472185045480728,
0.03010893426835537,
0.06895712018013,
-0.10219920426607132,
-0.027038687840104103,
0.0004840063920710236,
0.021132981404662132,
-0.01947878859937191,
0.08704918622970581,
0.08203180879354477,
0.1052171140909195,
-0.017219819128513336,
-0.07267280668020248,
0.11330383270978928,
-0.0011106154415756464,
-0.07149384170770645,
0.18412140011787415,
-0.15954560041427612,
-0.36233094334602356,
-0.1530739665031433,
-0.20456592738628387,
-0.02883506752550602,
0.06615062057971954,
0.10685895383358002,
-0.12165717035531998,
-0.048558108508586884,
0.0375000461935997,
-0.013693227432668209,
-0.04041895270347595,
0.03981194645166397,
-0.05303730443120003,
0.07329315692186356,
-0.05222955346107483,
-0.06364883482456207,
-0.06660815328359604,
-0.03131863474845886,
-0.004695216193795204,
0.16393853724002838,
-0.12483653426170349,
0.06658802926540375,
0.1819998174905777,
0.0010995424818247557,
0.06644674390554428,
-0.032483141869306564,
0.1697184294462204,
-0.08651559799909592,
-0.02343188226222992,
0.1893177032470703,
-0.07345744967460632,
0.07808925211429596,
0.15666639804840088,
0.020104380324482918,
-0.0712679922580719,
0.0352557972073555,
-0.035343270748853683,
-0.08934015780687332,
-0.2058166265487671,
-0.1703205555677414,
-0.12546730041503906,
0.05237005278468132,
0.0663270428776741,
0.07582127302885056,
0.12632738053798676,
0.06528977304697037,
0.00627241050824523,
0.010700550861656666,
0.006936580874025822,
0.07483439892530441,
0.24698598682880402,
-0.0010819705203175545,
0.14767786860466003,
-0.057353224605321884,
-0.13245494663715363,
0.08233633637428284,
0.000922833161894232,
0.1185675784945488,
0.08539658784866333,
0.017674902454018593,
0.005295653361827135,
0.05462205410003662,
0.164198637008667,
0.1299368292093277,
0.04298880323767662,
-0.013622048310935497,
-0.01172587089240551,
0.0032578855752944946,
-0.0797785148024559,
0.006457295268774033,
0.07906489074230194,
-0.14195358753204346,
-0.08270972222089767,
-0.11039547622203827,
0.10006770491600037,
0.08380265533924103,
0.042938295751810074,
-0.2052999883890152,
0.005745685659348965,
0.09206069260835648,
-0.027502331882715225,
-0.09957162290811539,
0.06463603675365448,
-0.04812092334032059,
-0.13455109298229218,
0.10769277811050415,
-0.029609164223074913,
0.13354617357254028,
-0.0870715081691742,
0.08272852748632431,
-0.0378170944750309,
-0.11202792823314667,
0.03467349335551262,
0.10786684602499008,
-0.27751585841178894,
0.2031957507133484,
0.007435075007379055,
-0.06144534796476364,
-0.07824365049600601,
-0.015199865214526653,
0.039944443851709366,
0.22591036558151245,
0.06934285908937454,
0.004277070518583059,
-0.05739999935030937,
-0.1865520477294922,
-0.009981787763535976,
-0.008337096311151981,
0.12231403589248657,
-0.03427664935588837,
-0.01814279891550541,
-0.036011241376399994,
-0.030255382880568504,
-0.03578435257077217,
-0.06897740066051483,
0.02666986919939518,
-0.17997102439403534,
0.056329283863306046,
0.034454237669706345,
0.05416429787874222,
0.01469043642282486,
-0.04343695193529129,
-0.11887014657258987,
0.19838201999664307,
-0.10767136514186859,
-0.09184177964925766,
-0.11828504502773285,
-0.07852382957935333,
0.02535579912364483,
-0.08476060628890991,
0.06807194650173187,
-0.08172672241926193,
0.018900277093052864,
-0.06600436568260193,
-0.20524995028972626,
0.11596046388149261,
-0.10182060301303864,
-0.03258875012397766,
-0.058350928127765656,
0.1526644378900528,
-0.07479622215032578,
0.010474151000380516,
0.03318091109395027,
0.02239469438791275,
-0.08559903502464294,
-0.08446884155273438,
-0.018381169065833092,
0.03129338473081589,
0.06142119690775871,
0.08739607781171799,
-0.09792511910200119,
-0.07674866914749146,
-0.03134889155626297,
0.02817792072892189,
0.2929084002971649,
0.1401015967130661,
-0.06586769968271255,
0.1629326492547989,
0.10387758165597916,
-0.06942285597324371,
-0.3373493552207947,
-0.09150945395231247,
-0.09645266830921173,
-0.03972399979829788,
-0.042589932680130005,
-0.16358928382396698,
0.13413257896900177,
-0.004249863792210817,
-0.010055972263216972,
0.08473600447177887,
-0.16361457109451294,
-0.08480892330408096,
0.19654500484466553,
-0.0355062410235405,
0.36373743414878845,
-0.09189414978027344,
-0.09806639701128006,
-0.07035496085882187,
-0.1232207641005516,
0.12262474000453949,
0.007738110609352589,
0.08150525391101837,
-0.02050303854048252,
0.04451111704111099,
0.04815887659788132,
-0.03690929710865021,
0.10097026824951172,
0.036669690161943436,
0.025901002809405327,
-0.11938466131687164,
-0.09219347685575485,
0.023168733343482018,
-0.019243339076638222,
-0.007111898623406887,
-0.01547485776245594,
0.01685570739209652,
-0.17164339125156403,
-0.04131095111370087,
-0.07032524049282074,
0.05912882834672928,
0.04161927476525307,
-0.029813537374138832,
0.012351144105196,
-0.020498499274253845,
-0.000361355283530429,
0.006620287895202637,
0.251852810382843,
-0.03737054020166397,
0.1604781597852707,
0.08527542650699615,
0.141584113240242,
-0.15723979473114014,
0.01194052491337061,
-0.07652142643928528,
-0.05061504244804382,
0.06191904842853546,
-0.06635212153196335,
0.07575498521327972,
0.13591395318508148,
-0.05730273202061653,
0.07247055321931839,
0.11612356454133987,
0.07706465572118759,
-0.034392137080430984,
0.16330119967460632,
-0.2292891889810562,
0.04589579999446869,
-0.050483379513025284,
-0.033954232931137085,
0.06465915590524673,
0.0655360221862793,
0.1258573830127716,
0.06694923341274261,
-0.04017629101872444,
0.005630772560834885,
0.00028037314768880606,
0.005372054409235716,
0.07443340867757797,
0.04748379439115524,
0.04316747188568115,
-0.14709694683551788,
0.05031560733914375,
0.05119774490594864,
-0.15819577872753143,
-0.022534551098942757,
0.1376158893108368,
-0.1704932600259781,
-0.1271103173494339,
-0.021827740594744682,
0.12368015199899673,
-0.09311434626579285,
-0.046253565698862076,
-0.07048245519399643,
-0.13402129709720612,
0.07112511247396469,
0.18836617469787598,
0.12805050611495972,
0.09663103520870209,
-0.06118634715676308,
-0.04969988390803337,
0.0036050756461918354,
-0.004089095629751682,
0.017009761184453964,
0.03120747022330761,
-0.12284451723098755,
0.046005018055438995,
-0.02090919390320778,
0.15390309691429138,
-0.09199176728725433,
-0.07624588906764984,
-0.1582917422056198,
0.04238278418779373,
-0.09195777773857117,
-0.023019742220640182,
-0.09330286085605621,
-0.01648246869444847,
0.0030273916199803352,
-0.030272169038653374,
-0.026145517826080322,
-0.06213071197271347,
-0.11623096466064453,
0.04011767357587814,
-0.028817979618906975,
0.04146858677268028,
-0.06920336186885834,
-0.04603973776102066,
0.09102679789066315,
-0.03833403438329697,
0.10358903557062149,
0.10654495656490326,
-0.0914529487490654,
0.0934479758143425,
-0.14121071994304657,
-0.1319282501935959,
0.1433861404657364,
0.030263781547546387,
0.07207431644201279,
0.07694290578365326,
0.03595962002873421,
0.07349478453397751,
0.004535248037427664,
0.06631990522146225,
0.06761990487575531,
-0.12337382882833481,
0.061452679336071014,
-0.046973392367362976,
-0.17189696431159973,
-0.05778007209300995,
-0.04047338292002678,
0.10660306364297867,
0.010234192945063114,
0.1720496565103531,
-0.05692226439714432,
0.1017514169216156,
-0.03180769085884094,
0.0038062711246311665,
-0.01604292169213295,
-0.20698778331279755,
-0.06364472210407257,
-0.08077114075422287,
0.026275143027305603,
0.005083381198346615,
0.23303534090518951,
0.061751753091812134,
0.033835094422101974,
0.04869496077299118,
0.09752455353736877,
-0.0014774927403777838,
0.023545393720269203,
0.17794077098369598,
0.10133370757102966,
-0.05567975342273712,
-0.05575546622276306,
0.05616139620542526,
0.029215605929493904,
0.006353367585688829,
0.14132826030254364,
0.07252193242311478,
-0.041009921580553055,
0.07551323622465134,
-0.03376345708966255,
0.04427867755293846,
-0.1321653574705124,
-0.16054923832416534,
-0.05143791809678078,
0.07023841142654419,
0.01740087941288948,
0.03448288515210152,
0.07088012248277664,
-0.028410857543349266,
0.05220868065953255,
-0.033101536333560944,
-0.05869230628013611,
-0.18244294822216034,
-0.09428907185792923,
-0.09423913061618805,
-0.09753676503896713,
0.0058974651619791985,
-0.07943454384803772,
-0.01026046834886074,
0.06547573953866959,
0.037508975714445114,
-0.05198773369193077,
0.07752657681703568,
0.003285798244178295,
-0.05593571066856384,
0.08687124401330948,
-0.045962750911712646,
0.02649652026593685,
0.00841206219047308,
-0.029707664623856544,
-0.1380927860736847,
-0.013390704058110714,
-0.04401649907231331,
0.040850814431905746,
-0.058590736240148544,
0.007230483461171389,
-0.1483704298734665,
-0.12039808928966522,
-0.019934508949518204,
0.0580129399895668,
-0.06074916571378708,
0.14175079762935638,
0.015395265072584152,
0.00611070916056633,
0.047287240624427795,
0.17810532450675964,
-0.0544942207634449,
-0.06539076566696167,
-0.04489162564277649,
0.24079638719558716,
0.09303659200668335,
0.10803006589412689,
0.0026883413083851337,
-0.013426939956843853,
-0.07931891828775406,
0.28847232460975647,
0.27526742219924927,
-0.04996299743652344,
0.054827310144901276,
0.007495596073567867,
0.03283945098519325,
0.15242771804332733,
0.1401364952325821,
0.09061526507139206,
0.24117816984653473,
-0.0521743968129158,
-0.05017128586769104,
-0.026741530746221542,
-0.03419290855526924,
-0.13402216136455536,
0.0581725612282753,
0.05382576957345009,
-0.0488528348505497,
-0.06285785138607025,
0.10921014845371246,
-0.21934591233730316,
0.16537490487098694,
0.019078493118286133,
-0.20565392076969147,
-0.06819386035203934,
-0.03284084051847458,
0.1365688294172287,
-0.0016830840613692999,
0.07499389350414276,
-0.00323955318890512,
-0.11883772164583206,
0.042848069220781326,
0.01306091621518135,
-0.20812170207500458,
-0.0041817850433290005,
0.06021128222346306,
-0.05781300365924835,
-0.0120098190382123,
-0.02640264853835106,
0.03757385164499283,
0.06560133397579193,
0.07958315312862396,
-0.0117155397310853,
0.04959989711642265,
-0.012948726303875446,
-0.030828366056084633,
0.029231732711195946,
0.02946082502603531,
0.0038178605027496815,
-0.09871038049459457,
0.06783884763717651,
-0.16667571663856506,
0.0549757145345211,
-0.05383889377117157,
-0.05352160334587097,
-0.019258368760347366,
0.04339629411697388,
-0.05456918105483055,
0.04438189044594765,
0.10450860112905502,
0.011940731666982174,
-0.025312455371022224,
-0.04523419588804245,
-0.04262804985046387,
-0.012295196764171124,
-0.1369558572769165,
-0.14967197179794312,
-0.09997987747192383,
-0.08965370059013367,
0.09313849359750748,
0.0034958450123667717,
-0.12975360453128815,
-0.006513827480375767,
-0.11122267693281174,
0.05365913361310959,
-0.16868756711483002,
0.09322161972522736,
0.0323028489947319,
0.015595607459545135,
-0.011563225649297237,
-0.040581803768873215,
0.04532773047685623,
0.07905946671962738,
-0.1267605572938919,
-0.08728102594614029
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7470
- Matthews Correlation: 0.5414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5237 | 1.0 | 535 | 0.5327 | 0.4248 |
| 0.347 | 2.0 | 1070 | 0.5105 | 0.5239 |
| 0.2344 | 3.0 | 1605 | 0.6639 | 0.5224 |
| 0.1672 | 4.0 | 2140 | 0.7470 | 0.5414 |
| 0.1228 | 5.0 | 2675 | 0.8352 | 0.5377 |
### Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.541356878970505, "name": "Matthews Correlation"}]}]}]} | text-classification | Jungwoo/distilbert-base-uncased-finetuned-cola | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7470
* Matthews Correlation: 0.5414
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.12.2
* Pytorch 1.9.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
67,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
-0.10380826890468597,
0.10402706265449524,
-0.0023124630097299814,
0.12261348962783813,
0.16529354453086853,
0.03416755795478821,
0.1264013648033142,
0.1268739402294159,
-0.08444000035524368,
0.02299177646636963,
0.12091027945280075,
0.15785439312458038,
0.022195564582943916,
0.11712152510881424,
-0.050016798079013824,
-0.26402804255485535,
-0.012627562507987022,
0.047961220145225525,
-0.05443171039223671,
0.13426092267036438,
0.09151490032672882,
-0.12193582952022552,
0.0905521884560585,
0.012540905736386776,
-0.1948617398738861,
-0.0034270628821104765,
-0.0009058903087861836,
-0.053450584411621094,
0.1463603377342224,
0.025599833577871323,
0.12256468087434769,
0.0007818298181518912,
0.08628730475902557,
-0.19402587413787842,
0.010297028347849846,
0.046193305402994156,
0.004472876898944378,
0.09434842318296432,
0.046355970203876495,
0.005180442240089178,
0.11550071835517883,
-0.08187071979045868,
0.05412191525101662,
0.021860478445887566,
-0.11432041227817535,
-0.20843516290187836,
-0.08093832433223724,
0.03809473291039467,
0.0793607234954834,
0.10485110431909561,
-0.005598759278655052,
0.11768893897533417,
-0.07896532118320465,
0.09183858335018158,
0.21919992566108704,
-0.28951704502105713,
-0.06661178171634674,
0.044050317257642746,
0.015394581481814384,
0.044861599802970886,
-0.10047254711389542,
-0.03645561635494232,
0.046995483338832855,
0.05184353515505791,
0.1266254335641861,
-0.028091279789805412,
-0.12026456743478775,
0.00384106975980103,
-0.14076469838619232,
-0.03298696503043175,
0.1692170351743698,
0.040291640907526016,
-0.028926465660333633,
-0.056325461715459824,
-0.06028572469949722,
-0.1464039832353592,
-0.036782242357730865,
-0.011151345446705818,
0.04732747748494148,
-0.02260437421500683,
-0.04085560888051987,
-0.011739137582480907,
-0.1086459681391716,
-0.0633137971162796,
-0.07635976374149323,
0.1085425466299057,
0.03657984361052513,
0.00823935680091381,
-0.028239823877811432,
0.11206181347370148,
-0.005705487448722124,
-0.12358612567186356,
0.02344088815152645,
0.020254576578736305,
0.013418599963188171,
-0.03941229730844498,
-0.05336559936404228,
-0.05927538126707077,
0.012147040106356144,
0.13022032380104065,
-0.046988800168037415,
0.04083772376179695,
0.04910938814282417,
0.04883227124810219,
-0.09207728505134583,
0.1917906552553177,
-0.035403940826654434,
-0.030058816075325012,
0.010105459950864315,
0.04779651388525963,
0.019229747354984283,
-0.011515753343701363,
-0.12386542558670044,
0.003764191409572959,
0.08839371800422668,
0.008608321659266949,
-0.06120558828115463,
0.07391662150621414,
-0.05577773228287697,
-0.025217365473508835,
0.004207551945000887,
-0.09206873923540115,
0.022650165483355522,
0.00018568885570857674,
-0.07041230797767639,
-0.020737702026963234,
0.03522621467709541,
0.016195109114050865,
-0.020518265664577484,
0.10795201361179352,
-0.08727371692657471,
0.026591431349515915,
-0.09382357448339462,
-0.1083274781703949,
0.019033335149288177,
-0.10530909150838852,
0.022339746356010437,
-0.09430395066738129,
-0.18633022904396057,
-0.016358667984604836,
0.060360509902238846,
-0.024947257712483406,
-0.06253651529550552,
-0.0540873222053051,
-0.06920704990625381,
0.01224411278963089,
-0.0102836349979043,
0.11855948716402054,
-0.06403856724500656,
0.0910533219575882,
0.020877128466963768,
0.060466665774583817,
-0.043510325253009796,
0.05948610603809357,
-0.10174096375703812,
0.015694482252001762,
-0.15130272507667542,
0.04059380292892456,
-0.050959039479494095,
0.06946589052677155,
-0.08250416815280914,
-0.10405575484037399,
0.009931177832186222,
-0.0053293779492378235,
0.06182160601019859,
0.09317483752965927,
-0.1864798218011856,
-0.07481443136930466,
0.15733499825000763,
-0.07161243259906769,
-0.12244130671024323,
0.12038596719503403,
-0.05963205546140671,
0.05562686175107956,
0.05818692222237587,
0.1774933934211731,
0.0833473727107048,
-0.07716752588748932,
0.002048750873655081,
0.026427850127220154,
0.0525134913623333,
-0.06732673943042755,
0.06967102736234665,
0.005139222834259272,
0.01898704469203949,
0.036250483244657516,
-0.030715296044945717,
0.06355644017457962,
-0.08586521446704865,
-0.09891057759523392,
-0.040249381214380264,
-0.08279992640018463,
0.0426671989262104,
0.07469193637371063,
0.06844472140073776,
-0.09112881124019623,
-0.07698986679315567,
0.04992024600505829,
0.0830935686826706,
-0.05816316232085228,
0.023410197347402573,
-0.05066845193505287,
0.07722983509302139,
-0.026821818202733994,
-0.022965699434280396,
-0.18107916414737701,
-0.03826412931084633,
0.008125092834234238,
0.00026985653676092625,
0.016276514157652855,
0.02921215444803238,
0.06034322455525398,
0.06134699285030365,
-0.04775865003466606,
-0.01771540567278862,
-0.032117053866386414,
0.0006643927190452814,
-0.12783445417881012,
-0.19212549924850464,
-0.030812714248895645,
-0.023689623922109604,
0.15816278755664825,
-0.20661509037017822,
0.0486270897090435,
-0.014988179318606853,
0.07141979783773422,
0.012417158111929893,
-0.005909406114369631,
-0.03705184534192085,
0.07313480228185654,
-0.04440925270318985,
-0.052824266254901886,
0.08118974417448044,
0.019021784886717796,
-0.08835534006357193,
-0.048907049000263214,
-0.09592977166175842,
0.1561172604560852,
0.12818153202533722,
-0.10339000076055527,
-0.07437076419591904,
-0.02080724574625492,
-0.0673704668879509,
-0.033950325101614,
-0.04800054058432579,
0.026166344061493874,
0.18688850104808807,
-0.00505124730989337,
0.1505390852689743,
-0.06821490824222565,
-0.043901972472667694,
0.016870323568582535,
-0.035777442157268524,
0.01746409758925438,
0.12685641646385193,
0.13564829528331757,
-0.05918656289577484,
0.1545497179031372,
0.14703065156936646,
-0.08955462276935577,
0.14525628089904785,
-0.04196694865822792,
-0.06472068279981613,
-0.015358724631369114,
-0.03043130598962307,
-0.011393863707780838,
0.10134730488061905,
-0.15175391733646393,
0.0014018722577020526,
0.03437957167625427,
0.015745684504508972,
0.02569808065891266,
-0.22515176236629486,
-0.03903723135590553,
0.03393131121993065,
-0.04247874394059181,
-0.005409195553511381,
-0.006282607093453407,
0.006437110248953104,
0.10124467313289642,
0.0011302154744043946,
-0.08663813024759293,
0.039076730608940125,
0.0023729761596769094,
-0.08348319679498672,
0.2146734595298767,
-0.08298587054014206,
-0.17374683916568756,
-0.1313268095254898,
-0.07254382967948914,
-0.047477513551712036,
-0.0004415479488670826,
0.06660541892051697,
-0.08752358704805374,
-0.031177792698144913,
-0.07176493108272552,
0.022091025486588478,
0.010781733319163322,
0.02436208538711071,
0.006259373854845762,
0.00501007167622447,
0.06437607854604721,
-0.11027974635362625,
-0.014470108784735203,
-0.05706573277711868,
-0.04370193928480148,
0.04378489404916763,
0.03291802853345871,
0.1126997321844101,
0.15181782841682434,
-0.013267658650875092,
0.010992971248924732,
-0.02967785857617855,
0.2401658594608307,
-0.05998809635639191,
-0.018050657585263252,
0.1458975225687027,
-0.012017708271741867,
0.05130251124501228,
0.11950826644897461,
0.07253826409578323,
-0.07768052071332932,
0.003807398723438382,
0.03463694080710411,
-0.035786908119916916,
-0.23097267746925354,
-0.05844055116176605,
-0.05827061086893082,
0.009173843078315258,
0.0916561707854271,
0.024384664371609688,
0.027626361697912216,
0.0720270425081253,
0.041269414126873016,
0.07898939400911331,
-0.038493648171424866,
0.05512988567352295,
0.13313768804073334,
0.0329565554857254,
0.12572833895683289,
-0.04550293833017349,
-0.0636567696928978,
0.04363700747489929,
-0.008289104327559471,
0.22572296857833862,
0.004515364766120911,
0.1275377869606018,
0.06194336712360382,
0.16449567675590515,
-0.005053262691944838,
0.07790961861610413,
-0.010303863324224949,
-0.034039873629808426,
-0.01802772842347622,
-0.03836969658732414,
-0.03947913646697998,
0.025454558432102203,
-0.06655354052782059,
0.06167641282081604,
-0.11957911401987076,
0.015557168051600456,
0.059261348098516464,
0.2497342973947525,
0.03528827801346779,
-0.3226238787174225,
-0.09890945255756378,
0.0031515597365796566,
-0.0330958254635334,
-0.022212989628314972,
0.02715861238539219,
0.0951356589794159,
-0.10076332092285156,
0.030139919370412827,
-0.07643474638462067,
0.096553273499012,
-0.05272109434008598,
0.048131830990314484,
0.08512412011623383,
0.09081239253282547,
0.013812645338475704,
0.09336964786052704,
-0.28386688232421875,
0.271147221326828,
-0.0003986910742241889,
0.05657237768173218,
-0.0778474509716034,
0.010603492148220539,
0.04355365410447121,
0.0625334233045578,
0.08154531568288803,
-0.012810518965125084,
-0.025035429745912552,
-0.18135470151901245,
-0.07187922298908234,
0.02889535017311573,
0.06204662472009659,
-0.03890698403120041,
0.08392993360757828,
-0.03273400664329529,
0.0063483635894954205,
0.0709909051656723,
-0.0009791499469429255,
-0.05092034861445427,
-0.1091877818107605,
-0.005036517046391964,
0.022501269355416298,
-0.05859359726309776,
-0.06039348617196083,
-0.12075000256299973,
-0.12676222622394562,
0.15838269889354706,
-0.034251898527145386,
-0.041314497590065,
-0.10859894007444382,
0.08507363498210907,
0.06211404129862785,
-0.08905162662267685,
0.04594038426876068,
0.00048034204519353807,
0.08207935094833374,
0.023426605388522148,
-0.07447587698698044,
0.10039506107568741,
-0.07670149207115173,
-0.15823611617088318,
-0.06497087329626083,
0.10672754794359207,
0.0316888652741909,
0.06522854417562485,
-0.011384403333067894,
0.0073177022859454155,
-0.04821108281612396,
-0.09028030186891556,
0.01561189815402031,
0.009689802303910255,
0.08006596565246582,
0.0173176396638155,
-0.07706284523010254,
0.0070024654269218445,
-0.05936283618211746,
-0.03213672339916229,
0.2091924548149109,
0.21417051553726196,
-0.10187571495771408,
0.026808366179466248,
0.02210334874689579,
-0.0735447034239769,
-0.20099595189094543,
0.03179788216948509,
0.057094935327768326,
0.00983337964862585,
0.040270283818244934,
-0.18144355714321136,
0.13814453780651093,
0.10708510130643845,
-0.014168625697493553,
0.10436873137950897,
-0.3190464675426483,
-0.12175189703702927,
0.13522328436374664,
0.13319672644138336,
0.10168513655662537,
-0.12974099814891815,
-0.022336920723319054,
-0.017893841490149498,
-0.13765375316143036,
0.11800413578748703,
-0.09197762608528137,
0.11851313710212708,
-0.03521576523780823,
0.0807400643825531,
0.001847217557951808,
-0.058286577463150024,
0.1200546845793724,
0.028407448902726173,
0.09087002277374268,
-0.05888132378458977,
-0.03332598879933357,
0.03219275176525116,
-0.044308193027973175,
0.03495140001177788,
-0.09410480409860611,
0.03085409104824066,
-0.10555820912122726,
-0.02601628191769123,
-0.06639499217271805,
0.04512445256114006,
-0.04291332885622978,
-0.06760776042938232,
-0.03667399287223816,
0.026389796286821365,
0.04936902970075607,
-0.007719757501035929,
0.12175112217664719,
0.029079506173729897,
0.1411220133304596,
0.09715211391448975,
0.07277873158454895,
-0.06742458790540695,
-0.07923664897680283,
-0.02744709886610508,
-0.01215052604675293,
0.049975644797086716,
-0.1350327581167221,
0.021363569423556328,
0.15306620299816132,
0.018741272389888763,
0.1500016450881958,
0.08207127451896667,
-0.01907193847000599,
0.0009020269499160349,
0.057509537786245346,
-0.1674954742193222,
-0.08902294933795929,
-0.014242425560951233,
-0.06623504310846329,
-0.12142438441514969,
0.042370714247226715,
0.09466206282377243,
-0.0668228343129158,
-0.008433490060269833,
-0.004096533637493849,
0.015065081417560577,
-0.04690350219607353,
0.18482409417629242,
0.06060192734003067,
0.04647893086075783,
-0.09963242709636688,
0.07074768096208572,
0.04611286148428917,
-0.07178536057472229,
0.003520940663293004,
0.07411914318799973,
-0.08940202742815018,
-0.05478520691394806,
0.06592792272567749,
0.1879454404115677,
-0.04698045179247856,
-0.04698773846030235,
-0.1399448812007904,
-0.12358497083187103,
0.07910511642694473,
0.13749633729457855,
0.12023334950208664,
0.010281992144882679,
-0.06788782775402069,
0.0008925984730012715,
-0.10737042129039764,
0.10539691895246506,
0.050250984728336334,
0.06356973201036453,
-0.14440971612930298,
0.13975447416305542,
0.017304077744483948,
0.0497027225792408,
-0.0200677290558815,
0.026061035692691803,
-0.09799257665872574,
0.005276317708194256,
-0.09868577122688293,
-0.01276333723217249,
-0.0338023342192173,
0.012864957563579082,
-0.00665762135758996,
-0.04689054563641548,
-0.055951863527297974,
0.011464299634099007,
-0.10616002976894379,
-0.023436857387423515,
0.02546420507133007,
0.06994208693504333,
-0.10811745375394821,
-0.03678206354379654,
0.02833135798573494,
-0.06256484240293503,
0.07840166985988617,
0.04455677419900894,
0.01653246581554413,
0.05023666098713875,
-0.133783757686615,
0.01520480029284954,
0.0746612548828125,
0.03200559690594673,
0.06423944234848022,
-0.09794332087039948,
-0.006537843961268663,
-0.005329562816768885,
0.038116298615932465,
0.01989004574716091,
0.07731963694095612,
-0.1407276690006256,
0.0017735250294208527,
-0.022901076823472977,
-0.08030244708061218,
-0.06807544827461243,
0.025643451139330864,
0.09058575332164764,
0.02146328054368496,
0.2015966773033142,
-0.07577738165855408,
0.050641655921936035,
-0.21494796872138977,
0.006282474379986525,
-0.009630798362195492,
-0.1089916080236435,
-0.10521496832370758,
-0.07068540900945663,
0.055129457265138626,
-0.058270037174224854,
0.15353278815746307,
0.04651084914803505,
0.022147003561258316,
0.024614177644252777,
-0.0071098594926297665,
0.014856215566396713,
0.012504836544394493,
0.18891414999961853,
0.030577313154935837,
-0.033597614616155624,
0.05863382667303085,
0.04238637164235115,
0.10380019247531891,
0.11111918091773987,
0.2018890231847763,
0.14105747640132904,
-0.003557539312168956,
0.0925644263625145,
0.0428173653781414,
-0.05833308398723602,
-0.16134674847126007,
0.04857593774795532,
-0.0376630537211895,
0.11084809899330139,
-0.02110302448272705,
0.21712106466293335,
0.05986849591135979,
-0.17093446850776672,
0.047198615968227386,
-0.053259994834661484,
-0.08714505285024643,
-0.11342556774616241,
-0.05112600699067116,
-0.07897540926933289,
-0.12825778126716614,
-0.00481676310300827,
-0.11741828918457031,
-0.0035335756838321686,
0.1265217512845993,
0.003037567250430584,
-0.02778155915439129,
0.15511149168014526,
0.00822411011904478,
0.022373806685209274,
0.05770566686987877,
0.011994672007858753,
-0.035750824958086014,
-0.1309213489294052,
-0.05947183817625046,
-0.0177336223423481,
-0.006791010033339262,
0.032350316643714905,
-0.06171136721968651,
-0.039294637739658356,
0.0321858748793602,
-0.022331487387418747,
-0.09266135096549988,
0.004856537561863661,
0.012789128348231316,
0.054259803146123886,
0.04605568200349808,
0.010851223021745682,
0.01856204681098461,
-0.00265802931971848,
0.19964657723903656,
-0.07188355177640915,
-0.06610562652349472,
-0.10801491141319275,
0.2282591462135315,
0.033022888004779816,
-0.02230326272547245,
0.036339834332466125,
-0.064789317548275,
0.0029172170907258987,
0.2485126405954361,
0.2172441929578781,
-0.08351448178291321,
-0.007957728579640388,
0.0169929601252079,
-0.009119998663663864,
-0.02312077395617962,
0.10168072581291199,
0.14497238397598267,
0.055399976670742035,
-0.09248995780944824,
-0.047995228320360184,
-0.05891743302345276,
-0.018044788390398026,
-0.0375804603099823,
0.0708143562078476,
0.04632896929979324,
0.0066720712929964066,
-0.03428030386567116,
0.055595193058252335,
-0.07014988362789154,
-0.09125848114490509,
0.05382917821407318,
-0.21640267968177795,
-0.17099767923355103,
-0.0134348776191473,
0.09944434463977814,
0.002775910310447216,
0.06010797619819641,
-0.03126392513513565,
-0.0038043151143938303,
0.09525179862976074,
-0.02093680016696453,
-0.09698393940925598,
-0.06709001958370209,
0.08798052370548248,
-0.10881357640028,
0.22166433930397034,
-0.04594051092863083,
0.05528104305267334,
0.1251704841852188,
0.0692165270447731,
-0.07089491933584213,
0.062416985630989075,
0.043916407972574234,
-0.04233752563595772,
0.027769669890403748,
0.06998646259307861,
-0.035739317536354065,
0.06187990680336952,
0.04928436875343323,
-0.13807882368564606,
0.018356727436184883,
-0.04933062195777893,
-0.06721144914627075,
-0.0454435795545578,
-0.023063501343131065,
-0.06253061443567276,
0.1317524015903473,
0.21560566127300262,
-0.027465661987662315,
-0.010588771663606167,
-0.06950964778661728,
0.011355772614479065,
0.05305370315909386,
0.02453383430838585,
-0.055867742747068405,
-0.21036073565483093,
0.015931932255625725,
0.03885744512081146,
-0.018433233723044395,
-0.24461029469966888,
-0.1012289822101593,
0.00043285504216328263,
-0.07216906547546387,
-0.09791820496320724,
0.07444808632135391,
0.08608166873455048,
0.048899270594120026,
-0.05623488128185272,
-0.040034372359514236,
-0.07736796140670776,
0.1447734385728836,
-0.14483574032783508,
-0.09213639795780182
] |
null | null | asteroid | ## Asteroid model
## Description:
- Code: The code corresponding to this pretrained model can be found [here](https://github.com/asteroid-team/asteroid/tree/master/egs/wsj0-mix-var/Multi-Decoder-DPRNN).
- Notebook: Colab Notebook with examples can be found [here](https://colab.research.google.com/drive/11MGx3_sgOrQrB6k8edyAvg5mGIxqR5ED?usp=sharing)
- [Paper](http://www.isle.illinois.edu/speech_web_lg/pubs/2021/zhu2021multi.pdf): "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021).
- Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use.
- [Project Page](https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/)
- [Original research repo](https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN)
This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid.
It was trained on the `sep_count` task of the Wsj0MixVar dataset.
## Training config:
```yaml
filterbank:
n_filters: 64
kernel_size: 8
stride: 4
masknet:
n_srcs: [2, 3, 4, 5]
bn_chan: 128
hid_size: 128
chunk_size: 128
hop_size: 64
n_repeats: 8
mask_act: 'sigmoid'
bidirectional: true
dropout: 0
use_mulcat: false
training:
epochs: 200
batch_size: 2
num_workers: 2
half_lr: yes
lr_decay: yes
early_stop: yes
gradient_clipping: 5
optim:
optimizer: adam
lr: 0.001
weight_decay: 0.00000
data:
train_dir: "data/{}speakers/wav8k/min/tr"
valid_dir: "data/{}speakers/wav8k/min/cv"
task: sep_count
sample_rate: 8000
seglen: 4.0
minlen: 2.0
loss:
lambda: 0.05
```
## Results:
```yaml
'Accuracy': 0.9723333333333334, 'P-Si-SNR': 10.36027378628496
```
### License notice:
This work "MultiDecoderDPRNN" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A)
by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for
Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only).
"MultiDecoderDPRNN" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/)
by Joseph Zhu.
| {"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "MultiDecoderDPRNN"], "datasets": ["Wsj0MixVar", "sep_clean"]} | null | JunzheJosephZhu/MultiDecoderDPRNN | [
"asteroid",
"pytorch",
"audio",
"MultiDecoderDPRNN",
"dataset:Wsj0MixVar",
"dataset:sep_clean",
"license:cc-by-sa-4.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#asteroid #pytorch #audio #MultiDecoderDPRNN #dataset-Wsj0MixVar #dataset-sep_clean #license-cc-by-sa-4.0 #region-us
| ## Asteroid model
## Description:
- Code: The code corresponding to this pretrained model can be found here.
- Notebook: Colab Notebook with examples can be found here
- Paper: "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021).
- Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use.
- Project Page
- Original research repo
This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid.
It was trained on the 'sep_count' task of the Wsj0MixVar dataset.
## Training config:
## Results:
### License notice:
This work "MultiDecoderDPRNN" is a derivative of CSR-I (WSJ0) Complete
by LDC, used under LDC User Agreement for
Non-Members (Research only).
"MultiDecoderDPRNN" is licensed under Attribution-ShareAlike 3.0 Unported
by Joseph Zhu.
| [
"## Asteroid model",
"## Description:\n- Code: The code corresponding to this pretrained model can be found here.\n\n- Notebook: Colab Notebook with examples can be found here\n\n- Paper: \"Multi-Decoder DPRNN: High Accuracy Source Counting and Separation\", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021). \n\n- Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use.\n\n- Project Page\n\n- Original research repo\n\nThis model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. \nIt was trained on the 'sep_count' task of the Wsj0MixVar dataset.",
"## Training config:",
"## Results:",
"### License notice:\nThis work \"MultiDecoderDPRNN\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"MultiDecoderDPRNN\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Joseph Zhu."
] | [
"TAGS\n#asteroid #pytorch #audio #MultiDecoderDPRNN #dataset-Wsj0MixVar #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n",
"## Asteroid model",
"## Description:\n- Code: The code corresponding to this pretrained model can be found here.\n\n- Notebook: Colab Notebook with examples can be found here\n\n- Paper: \"Multi-Decoder DPRNN: High Accuracy Source Counting and Separation\", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021). \n\n- Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use.\n\n- Project Page\n\n- Original research repo\n\nThis model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. \nIt was trained on the 'sep_count' task of the Wsj0MixVar dataset.",
"## Training config:",
"## Results:",
"### License notice:\nThis work \"MultiDecoderDPRNN\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"MultiDecoderDPRNN\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Joseph Zhu."
] | [
54,
4,
211,
5,
3,
73
] | [
"passage: TAGS\n#asteroid #pytorch #audio #MultiDecoderDPRNN #dataset-Wsj0MixVar #dataset-sep_clean #license-cc-by-sa-4.0 #region-us \n## Asteroid model## Description:\n- Code: The code corresponding to this pretrained model can be found here.\n\n- Notebook: Colab Notebook with examples can be found here\n\n- Paper: \"Multi-Decoder DPRNN: High Accuracy Source Counting and Separation\", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021). \n\n- Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use.\n\n- Project Page\n\n- Original research repo\n\nThis model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. \nIt was trained on the 'sep_count' task of the Wsj0MixVar dataset.## Training config:## Results:### License notice:\nThis work \"MultiDecoderDPRNN\" is a derivative of CSR-I (WSJ0) Complete\nby LDC, used under LDC User Agreement for \nNon-Members (Research only). \n\"MultiDecoderDPRNN\" is licensed under Attribution-ShareAlike 3.0 Unported\nby Joseph Zhu."
] | [
-0.06980614364147186,
0.1612183153629303,
-0.0033212779089808464,
0.021948998793959618,
0.0903065949678421,
0.00889764167368412,
0.2074589878320694,
0.045522455126047134,
-0.03974452242255211,
0.06054234877228737,
0.025305045768618584,
0.05390474945306778,
0.06932778656482697,
0.03942766785621643,
-0.010790853761136532,
-0.1219811737537384,
0.01865694299340248,
-0.05186356231570244,
-0.041541069746017456,
0.04190843179821968,
0.10699360817670822,
-0.10132117569446564,
0.08280105888843536,
-0.008151883259415627,
-0.17218711972236633,
-0.015035232529044151,
0.010255874134600163,
-0.05734239146113396,
0.07694841921329498,
0.036033447831869125,
0.14316943287849426,
0.05061819404363632,
0.11089901626110077,
-0.09363983571529388,
0.0018647871911525726,
0.020489320158958435,
0.011257719248533249,
0.09649249166250229,
0.05561598762869835,
0.0006247602868825197,
0.13482129573822021,
-0.03184936195611954,
0.05888518691062927,
0.06800390034914017,
-0.10067135095596313,
-0.09377928823232651,
-0.185304656624794,
0.13573303818702698,
0.06576000899076462,
0.01111376378685236,
0.011430569924414158,
0.029807915911078453,
-0.046832069754600525,
0.018228622153401375,
0.008543803356587887,
-0.25088992714881897,
-0.0312524177134037,
0.18350358307361603,
-0.010876135900616646,
0.028943832963705063,
-0.035643380135297775,
0.015099913813173771,
0.06546436995267868,
0.021333254873752594,
0.03772160783410072,
-0.05480640009045601,
0.10543784499168396,
-0.005968949757516384,
-0.09969674795866013,
-0.05074331909418106,
0.3216739594936371,
0.00517447292804718,
-0.05813033506274223,
-0.08692266792058945,
-0.008033225312829018,
0.01711645908653736,
0.038382723927497864,
-0.01842193678021431,
-0.026526859030127525,
0.011470580473542213,
0.04471587762236595,
0.010517174378037453,
-0.09091313928365707,
-0.0658300369977951,
0.01895834691822529,
0.05448123812675476,
0.001296461676247418,
0.035145826637744904,
-0.04457525536417961,
0.0906723141670227,
0.06476156413555145,
-0.10106898844242096,
0.021334819495677948,
-0.09660443663597107,
-0.03037506900727749,
-0.01678765006363392,
-0.025514433160424232,
-0.22190867364406586,
0.03697876259684563,
0.07544217258691788,
-0.014710754156112671,
0.0005109451012685895,
0.04193167760968208,
0.04710891842842102,
0.10254769027233124,
0.08166319131851196,
-0.00014935182116460055,
-0.03549512103199959,
0.03309669345617294,
0.038495972752571106,
-0.003781028324738145,
-0.020943133160471916,
-0.06870684772729874,
-0.025107232853770256,
-0.007156500592827797,
0.0016426305519416928,
0.029999010264873505,
0.031072981655597687,
-0.042042527347803116,
-0.03410893306136131,
0.16120652854442596,
-0.0911085233092308,
0.0053586591966450214,
0.03467525169253349,
-0.0169130340218544,
0.05405770614743233,
0.05568002164363861,
-0.004049783106893301,
0.009097546339035034,
0.08847645670175552,
-0.07419327646493912,
-0.014909395948052406,
-0.09613286703824997,
-0.08036462217569351,
0.02434966340661049,
0.0755862146615982,
-0.04062013328075409,
-0.11401937156915665,
-0.07978779077529907,
-0.0948590487241745,
0.01892288587987423,
0.023415781557559967,
-0.009185339324176311,
-0.017060229554772377,
0.024492105469107628,
0.01557006686925888,
-0.0036296031903475523,
-0.060829807072877884,
0.016100861132144928,
0.045400094240903854,
-0.04604390636086464,
0.014187391847372055,
-0.061541300266981125,
0.05846363306045532,
-0.03423909842967987,
0.07903306931257248,
-0.10998332500457764,
0.08691273629665375,
-0.08759249001741409,
0.09503856301307678,
-0.0944436639547348,
-0.014850775711238384,
-0.006600566208362579,
-0.03237329423427582,
0.009237445890903473,
0.10484186559915543,
-0.17926767468452454,
-0.021105198189616203,
0.1087232306599617,
-0.11370954662561417,
-0.01918131299316883,
0.05379090830683708,
-0.04827342927455902,
0.07691462337970734,
0.06692366302013397,
0.10487058013677597,
0.11094941198825836,
-0.03912297636270523,
-0.12357812374830246,
-0.047148168087005615,
-0.0010802769102156162,
0.0298621766269207,
0.06385084241628647,
-0.022080998867750168,
-0.07426866888999939,
0.008410235866904259,
-0.014412513002753258,
0.011082196608185768,
-0.004547661170363426,
-0.0831073597073555,
-0.023879297077655792,
-0.06729487329721451,
0.05916513130068779,
-0.022742511704564095,
0.032185811549425125,
0.0038694983813911676,
-0.02735195867717266,
0.006224604323506355,
0.11373770982027054,
-0.046179063618183136,
-0.017968550324440002,
-0.0674583688378334,
0.08821480721235275,
-0.06647416204214096,
-0.026410456746816635,
-0.13725705444812775,
-0.007490289397537708,
0.03870188444852829,
0.00882683228701353,
0.04551705718040466,
0.001961584435775876,
-0.014998160302639008,
0.08401399105787277,
-0.010098882019519806,
-0.022834880277514458,
-0.05403037369251251,
0.02281404659152031,
0.01159971859306097,
-0.09188321977853775,
-0.0990019142627716,
-0.05617822706699371,
0.09212862700223923,
-0.23082555830478668,
0.03348516672849655,
0.0339035838842392,
0.027605898678302765,
0.036275714635849,
-0.05004902184009552,
0.04370597377419472,
0.08093269914388657,
-0.05081193894147873,
-0.030405381694436073,
0.023063428699970245,
0.02623016946017742,
-0.06444432586431503,
-0.041936155408620834,
-0.11569084227085114,
-0.16649377346038818,
0.05994785949587822,
-0.028027063235640526,
-0.10689561814069748,
0.000923631654586643,
-0.003153159748762846,
-0.028079437091946602,
-0.0341641902923584,
-0.009636246599256992,
0.08156786859035492,
0.0011434947373345494,
0.0977439135313034,
-0.04166918247938156,
0.03539803996682167,
-0.009550732560455799,
-0.035976819694042206,
-0.021130017936229706,
0.04108976945281029,
0.061825986951589584,
-0.11649756133556366,
0.06446333974599838,
0.09013400971889496,
0.004422707017511129,
0.10221581906080246,
-0.01779019646346569,
-0.03882196918129921,
-0.06668644398450851,
0.029561055824160576,
0.03448693826794624,
0.061297010630369186,
0.01681479625403881,
0.004143319558352232,
0.0450851134955883,
0.006322833243757486,
-0.008091227151453495,
-0.1410357803106308,
0.004368549212813377,
0.02134961076080799,
0.006170411594212055,
-0.10834065824747086,
-0.0012388580944389105,
-0.053240686655044556,
0.021506566554307938,
-0.021150490269064903,
0.015300405211746693,
0.013859633356332779,
-0.030242163687944412,
-0.09418166428804398,
0.11247671395540237,
-0.1243487298488617,
-0.13196304440498352,
-0.20661935210227966,
-0.0019520812202244997,
-0.04828083515167236,
0.03530627861618996,
0.011143472976982594,
-0.028785357251763344,
-0.03519870340824127,
-0.01905524730682373,
0.04759684577584267,
-0.05095962435007095,
-0.11346081644296646,
0.014996868558228016,
0.05503122881054878,
0.0035554231144487858,
-0.11998795717954636,
-0.006503884680569172,
0.03375867009162903,
-0.04480040445923805,
0.06879374384880066,
-0.020502973347902298,
0.03452853858470917,
0.11518128216266632,
0.01489085704088211,
-0.01974615268409252,
0.0041754054836928844,
0.18186570703983307,
-0.058428846299648285,
0.02183055877685547,
0.1524876207113266,
-0.02578839100897312,
0.025816619396209717,
0.08950211107730865,
0.07345767319202423,
-0.03697392717003822,
0.01687019132077694,
-0.08289999514818192,
-0.048793427646160126,
-0.25599804520606995,
-0.08760752528905869,
-0.05809194594621658,
-0.03892523795366287,
0.03666459023952484,
0.019574400037527084,
0.06303601711988449,
0.09869702160358429,
-0.009231476113200188,
0.10675112903118134,
0.005537598859518766,
0.06137889623641968,
0.08135633915662766,
-0.007358890492469072,
0.0445849671959877,
-0.08859452605247498,
0.04559757933020592,
0.062416922301054,
0.032044440507888794,
0.2271539717912674,
0.07498278468847275,
0.13100633025169373,
0.08743155747652054,
0.1460403949022293,
0.05163745582103729,
0.09495644271373749,
0.02343413047492504,
0.030535824596881866,
0.00010416866280138493,
-0.09873424470424652,
-0.0885179415345192,
0.094566710293293,
0.043344322592020035,
0.01569220796227455,
-0.024594800546765327,
0.005169388372451067,
-0.010055380873382092,
0.24399493634700775,
0.04421043395996094,
-0.1997719258069992,
-0.12163800001144409,
0.03280961140990257,
0.042598430067300797,
-0.03527844324707985,
0.01884535700082779,
0.12443001568317413,
-0.10284169018268585,
0.04240351542830467,
0.005595330614596605,
0.06055669113993645,
-0.07888472825288773,
-0.03396293520927429,
-0.041760705411434174,
0.013756859116256237,
0.006386340130120516,
0.05365670099854469,
-0.2109166979789734,
0.11482268571853638,
0.015634246170520782,
0.045475125312805176,
0.007434129249304533,
0.06464224308729172,
0.016225893050432205,
0.1528433859348297,
0.06235477328300476,
0.031786806881427765,
-0.13003399968147278,
-0.08100008219480515,
-0.08266022801399231,
-0.018250519409775734,
0.05113817751407623,
-0.05958043411374092,
0.05579943582415581,
-0.004684843588620424,
0.027973957359790802,
-0.008118243888020515,
0.05855126306414604,
-0.17696130275726318,
-0.1114373579621315,
0.05634487792849541,
0.0036290036514401436,
0.11651767045259476,
-0.06803641468286514,
-0.02763306349515915,
-0.037586793303489685,
0.032952871173620224,
-0.1521913856267929,
-0.04322636500000954,
-0.07062159478664398,
-0.06522923707962036,
0.06760834157466888,
-0.01953211799263954,
0.016700847074389458,
0.031388673931360245,
0.02361653558909893,
-0.038214102387428284,
-0.0957486554980278,
0.001412775949575007,
-0.057297904044389725,
-0.14501789212226868,
-0.04500962793827057,
0.07406967878341675,
0.06865334510803223,
0.07236738502979279,
0.023105438798666,
0.05268044397234917,
-0.01186374295502901,
-0.07183477282524109,
0.03347955271601677,
0.1805500090122223,
0.13436800241470337,
0.057381052523851395,
-0.09164281189441681,
-0.18107351660728455,
-0.04768739268183708,
-0.057782646268606186,
0.1226445734500885,
0.19368889927864075,
-0.07662323862314224,
0.11380445212125778,
0.07919207960367203,
-0.11614168435335159,
-0.1547490954399109,
-0.04276712238788605,
0.03490433841943741,
0.05296911671757698,
0.02416018769145012,
-0.22814388573169708,
0.06848307698965073,
0.0663846805691719,
-0.014813710004091263,
0.037486590445041656,
-0.28022634983062744,
-0.07999569177627563,
0.03335363790392876,
0.003525452222675085,
0.03994609788060188,
-0.10467979311943054,
-0.06113966554403305,
-0.07931563258171082,
-0.22943273186683655,
0.12307797372341156,
0.0346481017768383,
0.08930714428424835,
0.0002527961041778326,
0.09723939001560211,
0.023154497146606445,
-0.039247382432222366,
0.13557173311710358,
0.031241465359926224,
0.07799018919467926,
-0.03797902539372444,
-0.12532687187194824,
0.1232965886592865,
-0.03482234477996826,
0.07751359790563583,
0.015566256828606129,
0.03764624893665314,
-0.1374538540840149,
-0.013358342461287975,
-0.048087216913700104,
0.03701242059469223,
-0.06535682082176208,
-0.050212446600198746,
-0.0709584578871727,
0.06441240012645721,
0.04721370339393616,
0.010140832513570786,
0.1125718429684639,
-0.011221889406442642,
0.05166807025671005,
0.11079869419336319,
0.09365911036729813,
0.028902284801006317,
-0.056926339864730835,
-0.03940271958708763,
-0.02280050702393055,
0.10794133692979813,
-0.17696738243103027,
0.03313621133565903,
0.0780375525355339,
0.04295926168560982,
0.13162390887737274,
0.05050313472747803,
-0.1001652255654335,
0.06275278329849243,
0.0666181668639183,
-0.13320817053318024,
-0.16131605207920074,
0.00613802345469594,
0.06258569657802582,
-0.014645780436694622,
0.034462083131074905,
0.12218625098466873,
-0.09677503257989883,
-0.024996431544423103,
-0.0053625586442649364,
0.034484583884477615,
-0.10097155719995499,
0.088217593729496,
0.056232571601867676,
0.041346460580825806,
-0.04801969975233078,
0.09231644868850708,
0.14884038269519806,
0.03601669892668724,
-0.013978185132145882,
-0.027935760095715523,
-0.05988882854580879,
-0.054904043674468994,
-0.12026777118444443,
0.06893212348222733,
0.013976405374705791,
-0.07383520156145096,
-0.01774553209543228,
-0.08958902209997177,
-0.028242986649274826,
0.028964389115571976,
0.023875713348388672,
0.058495938777923584,
-0.05842038616538048,
-0.03883432596921921,
-0.07518401741981506,
0.01262711826711893,
-0.04939812794327736,
0.06625090539455414,
-0.11210549622774124,
0.1639004796743393,
-0.03670842945575714,
-0.004261856433004141,
-0.014272132888436317,
-0.04535023495554924,
-0.05924251675605774,
0.0015218631597235799,
-0.12273605167865753,
0.01025213859975338,
-0.11306369304656982,
0.00703041348606348,
-0.010770737193524837,
0.04147970676422119,
0.012842080555856228,
0.0451669916510582,
-0.06545697152614594,
0.0028647473081946373,
-0.03241491690278053,
0.1340647041797638,
-0.06263229995965958,
0.014068332500755787,
0.008572092279791832,
-0.05992788076400757,
0.04452675208449364,
0.01970944181084633,
-0.023040806874632835,
-0.01077981200069189,
-0.08675296604633331,
-0.011880080215632915,
-0.008557286113500595,
0.05194650962948799,
0.002819664776325226,
-0.11427445709705353,
-0.03000856190919876,
-0.011775814928114414,
-0.07554051280021667,
0.004458350595086813,
0.0918000116944313,
-0.07093895971775055,
-0.02520865574479103,
-0.006711569614708424,
-0.024351228028535843,
-0.07343306392431259,
0.04619726911187172,
0.07136355340480804,
0.06771409511566162,
0.16354084014892578,
-0.04353310540318489,
0.03293967247009277,
-0.1181124746799469,
-0.0432586744427681,
0.0069063506089150906,
-0.042394012212753296,
-0.09451110661029816,
-0.04556933790445328,
0.03787218779325485,
0.0012891929363831878,
0.08510823547840118,
-0.025636715814471245,
-0.12644514441490173,
-0.018161591142416,
-0.0027282775845378637,
-0.0687432512640953,
0.010507752187550068,
0.18845489621162415,
0.02589317597448826,
0.009521830826997757,
-0.002982039237394929,
0.03072315640747547,
-0.006640605628490448,
0.1273135095834732,
0.08543332666158676,
0.11532904952764511,
-0.024481767788529396,
-0.035540975630283356,
0.042636025696992874,
-0.027238113805651665,
-0.04144474118947983,
0.09454132616519928,
-0.04087909311056137,
0.06310215592384338,
-0.09446368366479874,
0.040598150342702866,
0.06241172179579735,
-0.1173718273639679,
0.09516527503728867,
-0.05370127782225609,
-0.05422299727797508,
-0.06723946332931519,
-0.13904254138469696,
-0.029050307348370552,
-0.08783993870019913,
0.01801372319459915,
-0.08560165762901306,
0.0013270401395857334,
0.12440306693315506,
-0.024391215294599533,
-0.04602967947721481,
0.04687286913394928,
-0.0835828185081482,
-0.004496387671679258,
0.0356234647333622,
-0.03146389499306679,
-0.02901000902056694,
-0.10450255870819092,
0.006343354005366564,
0.052936356514692307,
-0.001035948982462287,
0.051160529255867004,
0.039949290454387665,
0.03902735933661461,
0.020179344341158867,
0.009296071715652943,
-0.06891436129808426,
-0.0017091986956074834,
0.014184056781232357,
0.0013084540842100978,
0.08551322668790817,
0.061943430453538895,
-0.015312307514250278,
0.009918872267007828,
0.09716552495956421,
-0.005438746884465218,
-0.0565367229282856,
-0.16068480908870697,
0.11025798320770264,
-0.017317993566393852,
0.008918805979192257,
0.0481690913438797,
-0.0881224125623703,
0.049458201974630356,
0.05379621684551239,
0.19404347240924835,
0.016304945573210716,
0.00951117929071188,
-0.020097294822335243,
-0.0010238141985610127,
-0.08267872780561447,
0.13383527100086212,
-0.006367056630551815,
0.10463772714138031,
-0.011112180538475513,
0.035142406821250916,
-0.09785277396440506,
-0.010736502707004547,
-0.07091708481311798,
0.03351515159010887,
-0.06692948192358017,
-0.06000678613781929,
-0.02274499647319317,
0.09655527770519257,
-0.02575211599469185,
-0.12691251933574677,
0.08107546716928482,
-0.061617422848939896,
-0.06477756053209305,
-0.016855845227837563,
0.03494810685515404,
-0.007500024512410164,
0.03535570204257965,
-0.06587669253349304,
-0.011525949463248253,
0.1922050267457962,
-0.016096064820885658,
-0.007138741202652454,
0.003037982154637575,
0.11197718232870102,
-0.09017149358987808,
0.13490086793899536,
0.01665954291820526,
0.08416331559419632,
0.04995948448777199,
0.05759178102016449,
-0.09032464027404785,
0.07829583436250687,
0.02224636822938919,
-0.012369329109787941,
-0.0002676169387996197,
0.0706745833158493,
-0.014180051162838936,
0.22283779084682465,
0.019919540733098984,
-0.02232615277171135,
0.07776370644569397,
0.026246482506394386,
-0.003607937367632985,
-0.07056727260351181,
0.019897080957889557,
-0.06024767830967903,
0.16961570084095,
0.1503346562385559,
-0.07468481361865997,
-0.006774816662073135,
-0.03710717707872391,
0.04336147755384445,
0.04291803762316704,
0.04377060383558273,
-0.09422223269939423,
-0.13868871331214905,
0.03148028627038002,
-0.05901055783033371,
0.06482577323913574,
-0.12356932461261749,
-0.054893858730793,
-0.024624541401863098,
-0.042001545429229736,
-0.027541138231754303,
0.053262755274772644,
0.08814819157123566,
0.028133239597082138,
-0.0487077571451664,
-0.09481161832809448,
-0.028548749163746834,
0.09585542231798172,
-0.06614294648170471,
-0.07778678089380264
] |
null | null | transformers |
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 29016523
- CO2 Emissions (in grams): 3.273303707756322
## Validation Metrics
- Loss: 0.6093757748603821
- Accuracy: 0.8333333333333334
- Macro F1: 0.7937936978656889
- Micro F1: 0.8333333333333334
- Weighted F1: 0.8239843785760546
- Macro Precision: 0.8988882462566673
- Micro Precision: 0.8333333333333334
- Weighted Precision: 0.8404982541824647
- Macro Recall: 0.7805142534864643
- Micro Recall: 0.8333333333333334
- Weighted Recall: 0.8333333333333334
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jush/autonlp-bp-29016523
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` | {"language": "en", "tags": "autonlp", "datasets": ["Jush/autonlp-data-bp"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 3.273303707756322} | text-classification | JushBJJ/autonlp-bp-29016523 | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:Jush/autonlp-data-bp",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #bert #text-classification #autonlp #en #dataset-Jush/autonlp-data-bp #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 29016523
- CO2 Emissions (in grams): 3.273303707756322
## Validation Metrics
- Loss: 0.6093757748603821
- Accuracy: 0.8333333333333334
- Macro F1: 0.7937936978656889
- Micro F1: 0.8333333333333334
- Weighted F1: 0.8239843785760546
- Macro Precision: 0.8988882462566673
- Micro Precision: 0.8333333333333334
- Weighted Precision: 0.8404982541824647
- Macro Recall: 0.7805142534864643
- Micro Recall: 0.8333333333333334
- Weighted Recall: 0.8333333333333334
## Usage
You can use cURL to access this model:
Or Python API:
| [
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 29016523\n- CO2 Emissions (in grams): 3.273303707756322",
"## Validation Metrics\n\n- Loss: 0.6093757748603821\n- Accuracy: 0.8333333333333334\n- Macro F1: 0.7937936978656889\n- Micro F1: 0.8333333333333334\n- Weighted F1: 0.8239843785760546\n- Macro Precision: 0.8988882462566673\n- Micro Precision: 0.8333333333333334\n- Weighted Precision: 0.8404982541824647\n- Macro Recall: 0.7805142534864643\n- Micro Recall: 0.8333333333333334\n- Weighted Recall: 0.8333333333333334",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-Jush/autonlp-data-bp #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 29016523\n- CO2 Emissions (in grams): 3.273303707756322",
"## Validation Metrics\n\n- Loss: 0.6093757748603821\n- Accuracy: 0.8333333333333334\n- Macro F1: 0.7937936978656889\n- Micro F1: 0.8333333333333334\n- Weighted F1: 0.8239843785760546\n- Macro Precision: 0.8988882462566673\n- Micro Precision: 0.8333333333333334\n- Weighted Precision: 0.8404982541824647\n- Macro Recall: 0.7805142534864643\n- Micro Recall: 0.8333333333333334\n- Weighted Recall: 0.8333333333333334",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
66,
42,
149,
17
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-Jush/autonlp-data-bp #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 29016523\n- CO2 Emissions (in grams): 3.273303707756322## Validation Metrics\n\n- Loss: 0.6093757748603821\n- Accuracy: 0.8333333333333334\n- Macro F1: 0.7937936978656889\n- Micro F1: 0.8333333333333334\n- Weighted F1: 0.8239843785760546\n- Macro Precision: 0.8988882462566673\n- Micro Precision: 0.8333333333333334\n- Weighted Precision: 0.8404982541824647\n- Macro Recall: 0.7805142534864643\n- Micro Recall: 0.8333333333333334\n- Weighted Recall: 0.8333333333333334## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] | [
-0.08263905346393585,
0.17842033505439758,
-0.003886415623128414,
0.07273685932159424,
0.09052915871143341,
0.04236811399459839,
0.07422395795583725,
0.1305856853723526,
0.022761056199669838,
0.12929540872573853,
0.10971330106258392,
0.17258943617343903,
0.056603822857141495,
0.1596129983663559,
-0.0898950919508934,
-0.1560904085636139,
0.034841977059841156,
-0.002004115842282772,
0.06099784001708031,
0.07483334094285965,
0.08707742393016815,
-0.061646781861782074,
0.12511634826660156,
0.011315818876028061,
-0.08009468764066696,
0.02876688726246357,
0.08647982031106949,
-0.10066968947649002,
0.06251601129770279,
0.11584517359733582,
0.11230131983757019,
-0.011413849890232086,
0.09064185619354248,
-0.15776388347148895,
-0.02484719455242157,
0.04938727617263794,
-0.034401681274175644,
0.07963582128286362,
0.16195707023143768,
-0.00946842972189188,
0.08110496401786804,
-0.06129767373204231,
0.11307863146066666,
0.09801414608955383,
-0.0936267301440239,
-0.11523215472698212,
-0.09817244857549667,
0.06127464398741722,
0.11432228237390518,
0.06402751803398132,
-0.0009415343520231545,
0.1534508466720581,
-0.04616149514913559,
0.09043648093938828,
0.03920304402709007,
-0.2583213150501251,
-0.03977598249912262,
0.15890701115131378,
-0.004067373927682638,
-0.0440811924636364,
-0.005011465400457382,
0.0016688361065462232,
0.04220297187566757,
0.0055702123790979385,
0.028480548411607742,
-0.0645589604973793,
-0.0337073989212513,
-0.013594240881502628,
-0.12590424716472626,
-0.03652341663837433,
0.1625853329896927,
0.02134363353252411,
-0.07790079712867737,
-0.08858438581228256,
-0.05321488529443741,
-0.10440561175346375,
-0.0441674180328846,
-0.03214827552437782,
0.005701176822185516,
-0.024180937558412552,
-0.011156233958899975,
0.0794779509305954,
-0.034034136682748795,
-0.04269389808177948,
-0.1299891322851181,
-0.0003362532297614962,
0.013890947215259075,
0.06652173399925232,
0.014394843950867653,
0.014202343299984932,
-0.0663936510682106,
-0.041403546929359436,
-0.007405556738376617,
-0.009579767473042011,
-0.12715156376361847,
-0.06913889199495316,
0.008096717298030853,
0.08067469298839569,
0.03269212320446968,
0.23176473379135132,
0.01897273398935795,
0.1103660985827446,
0.05527248606085777,
-0.03471880778670311,
-0.03471045941114426,
0.10558903217315674,
-0.08980248868465424,
-0.15678547322750092,
0.02652420848608017,
-0.05009450763463974,
0.012852431274950504,
-0.03236577287316322,
-0.06969328224658966,
-0.0475727878510952,
0.017392007634043694,
0.04542917758226395,
0.028777606785297394,
0.024286644533276558,
-0.06863515079021454,
-0.05506054311990738,
0.052241820842027664,
-0.09830093383789062,
0.05644722655415535,
0.008205236867070198,
-0.10264411568641663,
0.0827445313334465,
0.053178392350673676,
0.020797424018383026,
-0.08667275309562683,
0.04298407956957817,
-0.1075749322772026,
-0.020298825576901436,
-0.08729404956102371,
-0.12537749111652374,
0.054707396775484085,
0.04126376286149025,
-0.015614901669323444,
-0.117414690554142,
-0.1542394906282425,
-0.044849880039691925,
0.034724652767181396,
-0.1002841591835022,
-0.05868234112858772,
0.012478414922952652,
-0.004153891932219267,
0.056653548032045364,
0.001390721881762147,
0.037813443690538406,
-0.0323205329477787,
0.002434707013890147,
0.07613011449575424,
0.07819349318742752,
-0.0332215391099453,
0.02013465017080307,
-0.028084252029657364,
0.03440728038549423,
-0.1189250573515892,
0.05629628896713257,
-0.10061562061309814,
0.01746130920946598,
-0.18204021453857422,
-0.05817576125264168,
0.1044808030128479,
-0.03404081240296364,
0.04634350538253784,
0.07786682993173599,
-0.09903576970100403,
0.020316915586590767,
0.09995264559984207,
-0.05579155310988426,
-0.10736498981714249,
0.08047697693109512,
-0.0011260563042014837,
0.011719134636223316,
0.02867569960653782,
0.05904196947813034,
0.1326282024383545,
-0.1419551521539688,
-0.07392222434282303,
0.023117851465940475,
0.025230979546904564,
-0.04131700471043587,
0.0980638787150383,
-0.03605279326438904,
-0.1438439041376114,
0.003307222854346037,
0.07479383796453476,
-0.018740883097052574,
-0.03142514452338219,
-0.07491502910852432,
-0.024009674787521362,
-0.030726855620741844,
0.01010423805564642,
-0.03662789240479469,
0.0010755725670605898,
-0.038186393678188324,
-0.07642333209514618,
0.04644007608294487,
0.15670999884605408,
-0.020166924223303795,
-0.04265693947672844,
-0.18714039027690887,
0.06260484457015991,
-0.09968945384025574,
-0.051021892577409744,
-0.18509791791439056,
-0.07191339135169983,
0.011559935286641121,
-0.12695714831352234,
0.0023061109241098166,
-0.016238326206803322,
0.07481149584054947,
0.050691526383161545,
0.03731987997889519,
0.03689759224653244,
0.10379134863615036,
-0.0173385888338089,
-0.08553371578454971,
-0.05145622044801712,
-0.054711103439331055,
0.0010110841831192374,
0.22057710587978363,
-0.1887429803609848,
0.008505359292030334,
0.04272748902440071,
0.05051274225115776,
-0.0065909153781831264,
-0.03744262456893921,
-0.05332537740468979,
0.04661749303340912,
-0.004150708671659231,
-0.0435812845826149,
0.04458215832710266,
-0.031691815704107285,
-0.050250306725502014,
-0.03545862063765526,
-0.24837486445903778,
0.17147916555404663,
0.11657433956861496,
0.0032068397849798203,
-0.08216629177331924,
-0.05419846251606941,
0.026509979739785194,
-0.040089450776576996,
-0.014554278925061226,
0.006211902014911175,
0.11423317342996597,
0.03635013476014137,
0.09918535500764847,
-0.0563247986137867,
-0.0390048548579216,
0.028670746833086014,
-0.04249756038188934,
-0.025083085522055626,
0.16250884532928467,
0.11546070873737335,
-0.11679935455322266,
0.05821990966796875,
-0.012375627644360065,
-0.08986642211675644,
0.01504493784159422,
0.03512221574783325,
-0.04069916158914566,
-0.09641692042350769,
-0.013199436478316784,
0.06212685629725456,
0.03642317280173302,
-0.0046615879982709885,
0.08316613733768463,
0.07879217714071274,
-0.026329033076763153,
0.017460618168115616,
-0.09860392659902573,
0.018993929028511047,
0.029857046902179718,
-0.03778822720050812,
-0.030171969905495644,
0.025839904323220253,
0.028313443064689636,
0.09399598091840744,
0.0012826346792280674,
-0.019599424675107002,
0.008149192668497562,
-0.006973999552428722,
-0.11242388188838959,
0.22718405723571777,
-0.11354068666696548,
-0.18192797899246216,
-0.16668137907981873,
-0.2264447808265686,
-0.05898601561784744,
-0.04194847121834755,
0.002282865112647414,
-0.049432821571826935,
-0.1438312828540802,
-0.06632121652364731,
-0.044701479375362396,
-0.04241284728050232,
-0.05201680585741997,
0.003271005814895034,
-0.0107497563585639,
0.08914027363061905,
-0.1269860863685608,
-0.030441707000136375,
0.03950811177492142,
-0.0976204127073288,
0.05376382917165756,
0.011311187408864498,
0.07755617052316666,
0.16520364582538605,
-0.023679258301854134,
0.02361748181283474,
0.010561811737716198,
0.27134808897972107,
0.021133137866854668,
0.005568362306803465,
0.2135271430015564,
0.05783982202410698,
0.06889829784631729,
0.12197054177522659,
0.06061464175581932,
-0.08277781307697296,
-0.005009014159440994,
0.06537532061338425,
-0.019854485988616943,
-0.2151188850402832,
-0.18194252252578735,
0.0002850497839972377,
0.03303245082497597,
0.13746823370456696,
0.01378072053194046,
0.06737174093723297,
0.10002188384532928,
0.027376998215913773,
0.09704989194869995,
-0.04362819716334343,
0.08308479934930801,
0.16748817265033722,
0.032393474131822586,
0.14022572338581085,
-0.06134086847305298,
0.010272854007780552,
0.11745022237300873,
0.00663180323317647,
0.07957891374826431,
0.09167066216468811,
0.09392937272787094,
-0.009257848374545574,
0.10953522473573685,
0.043640002608299255,
0.09213726222515106,
0.04012611135840416,
-0.017885928973555565,
0.03212470933794975,
-0.07326049357652664,
-0.0938844159245491,
0.021863920614123344,
0.029073340818285942,
0.01677885837852955,
-0.08045568317174911,
0.030652059242129326,
-0.014892440289258957,
0.06293494999408722,
0.07809215039014816,
-0.4296674430370331,
-0.02719447948038578,
0.03252170607447624,
-0.04507105425000191,
-0.12322141230106354,
-0.01650308631360531,
-0.03540826216340065,
-0.15014532208442688,
0.05138660594820976,
-0.027161678299307823,
0.11902057379484177,
-0.06109790876507759,
-0.03286999836564064,
-0.018922682851552963,
0.06556118279695511,
-0.007177422754466534,
0.07333549857139587,
-0.14202754199504852,
0.14135417342185974,
0.041624221950769424,
0.03796648979187012,
-0.0780952051281929,
0.0400097481906414,
0.014794421382248402,
0.0049721961840987206,
0.13349811732769012,
0.008923190645873547,
-0.17540530860424042,
-0.29736942052841187,
-0.13876312971115112,
0.004862798377871513,
-0.0004962813691236079,
0.00406242161989212,
0.10108207911252975,
-0.052859917283058167,
-0.010868493467569351,
-0.019711218774318695,
-0.011229367926716805,
-0.10051514208316803,
-0.10120537877082825,
0.040971141308546066,
0.07325579226016998,
-0.018934521824121475,
-0.03818045184016228,
-0.0005942148854956031,
-0.0009243839303962886,
0.13761401176452637,
-0.1186130940914154,
-0.05601627007126808,
-0.15769131481647491,
-0.03551073744893074,
0.14820496737957,
-0.11371537297964096,
0.07828094065189362,
-0.018162300810217857,
0.08527195453643799,
-0.002634019823744893,
-0.11980364471673965,
0.08084461092948914,
-0.0795925036072731,
-0.030947422608733177,
-0.013654176145792007,
0.036790844053030014,
-0.00751043064519763,
0.07060793042182922,
0.06451721489429474,
0.012004486285150051,
-0.05030104145407677,
-0.13399270176887512,
-0.03113098442554474,
0.04206784442067146,
0.12548823654651642,
0.030024051666259766,
-0.02877415157854557,
-0.051400840282440186,
-0.03422466665506363,
0.06473961472511292,
0.13223038613796234,
0.2826903462409973,
-0.07381093502044678,
0.00897360872477293,
0.057520169764757156,
-0.0385105200111866,
-0.18779172003269196,
-0.045618124306201935,
0.03376678004860878,
0.0029046437703073025,
-0.04137217625975609,
-0.10311893373727798,
0.15074372291564941,
0.19036976993083954,
-0.04180247336626053,
-0.02241756208240986,
-0.2436761111021042,
-0.1214769259095192,
0.16074950993061066,
0.07664383202791214,
0.019793251529335976,
-0.16812896728515625,
-0.06286109238862991,
-0.1371883898973465,
-0.1557980328798294,
0.165516197681427,
-0.03741488605737686,
0.05009407550096512,
-0.02710256353020668,
0.09611990302801132,
0.032683465629816055,
-0.054660338908433914,
0.19026851654052734,
-0.006922399625182152,
0.012074774131178856,
-0.0533420667052269,
-0.02530433051288128,
-0.009097050875425339,
-0.07613103091716766,
0.11874251812696457,
0.012080797925591469,
0.04373287409543991,
-0.2552533745765686,
-0.027385221794247627,
0.010243365541100502,
0.05694284662604332,
-0.05545612424612045,
-0.036369699984788895,
-0.014632288366556168,
0.03496108576655388,
0.011341993696987629,
-0.029219146817922592,
-0.025613294914364815,
-0.041935909539461136,
0.05629604682326317,
0.21407149732112885,
0.10957428812980652,
0.02233177237212658,
-0.11440402269363403,
0.05578333139419556,
-0.05065404996275902,
0.04016844555735588,
-0.11906265467405319,
0.06796447932720184,
0.10351435840129852,
-0.0014061027904972434,
0.09882873296737671,
0.026965072378516197,
-0.04580233618617058,
-0.024773284792900085,
0.06285086274147034,
-0.10529040545225143,
0.04535136744379997,
0.015738092362880707,
0.08653032034635544,
-0.11438236385583878,
-0.07331839203834534,
0.12583956122398376,
0.021281752735376358,
-0.03155691921710968,
0.02656656876206398,
0.010711298324167728,
-0.021129649132490158,
0.23580452799797058,
0.007169142831116915,
0.08948656171560287,
-0.10442584753036499,
0.04441244900226593,
0.10163905471563339,
-0.10274936258792877,
0.006887325085699558,
0.0869874432682991,
-0.07485290616750717,
-0.06730885058641434,
-0.01327129639685154,
0.08138851076364517,
-0.15258027613162994,
-0.055837102234363556,
0.018230905756354332,
-0.09584876894950867,
0.07340086251497269,
0.17775049805641174,
0.08190882205963135,
-0.008232709020376205,
0.0017386163817718625,
-0.08479799330234528,
-0.10917945206165314,
0.035933997482061386,
0.07251480966806412,
0.015774762257933617,
-0.09028568118810654,
0.15238039195537567,
-0.019870927557349205,
-0.018108444288372993,
-0.0046965982764959335,
0.011052851565182209,
-0.20679624378681183,
-0.03437264636158943,
-0.1310136765241623,
0.06075834482908249,
-0.05893139913678169,
0.04714598506689072,
0.01474984735250473,
0.022970963269472122,
-0.06954585760831833,
0.0011447938159108162,
-0.06715814769268036,
-0.06743329763412476,
0.009983780793845654,
0.06544250249862671,
-0.08167368918657303,
-0.021673252806067467,
0.08578678965568542,
-0.04432077333331108,
0.03144040331244469,
0.061915043741464615,
0.05889773368835449,
-0.0013800179585814476,
-0.005177107639610767,
-0.0031563930679112673,
0.05081671476364136,
0.050447266548871994,
0.0857522040605545,
-0.20583537220954895,
0.05707613378763199,
-0.0026178499683737755,
0.021293848752975464,
0.04561328515410423,
0.08542032539844513,
-0.11573757231235504,
0.01838364638388157,
-0.1005818247795105,
-0.08799298107624054,
-0.09886552393436432,
0.00942955631762743,
0.12505900859832764,
0.024612978100776672,
0.08260124176740646,
-0.05222479626536369,
0.04161041975021362,
-0.16926278173923492,
-0.009320179000496864,
-0.038752179592847824,
-0.004976506810635328,
0.014235073700547218,
-0.024403300136327744,
0.0803016647696495,
-0.014348854310810566,
0.13217949867248535,
-0.008647877722978592,
0.033170487731695175,
0.023988833650946617,
0.049101583659648895,
0.008379333652555943,
-0.02801164984703064,
0.18604615330696106,
0.1035250574350357,
0.01809019409120083,
0.09891101717948914,
0.07130889594554901,
0.029765401035547256,
-0.013982724398374557,
0.015540258958935738,
0.05136116221547127,
-0.0936887189745903,
0.06857889890670776,
0.02301741950213909,
-0.12528513371944427,
-0.03808655962347984,
0.08073458075523376,
-0.08687298744916916,
0.031663376837968826,
-0.03374778479337692,
0.0618145614862442,
0.11982555687427521,
-0.13006538152694702,
0.022172491997480392,
0.012566511519253254,
-0.06961752474308014,
-0.233018159866333,
-0.12015660107135773,
-0.12712664902210236,
-0.024363379925489426,
-0.01627497375011444,
-0.11857791990041733,
0.02541491389274597,
0.1263641119003296,
0.016015514731407166,
0.03614775836467743,
0.058459773659706116,
-0.22332654893398285,
-0.013970106840133667,
-0.060149889439344406,
0.009174262173473835,
-0.003091808408498764,
-0.0204472579061985,
-0.013165473937988281,
0.000926990294829011,
-0.0038080683443695307,
0.07838161289691925,
0.014694847166538239,
0.007880670949816704,
0.09427633136510849,
-0.0032581461127847433,
-0.06995721161365509,
-0.04533625394105911,
0.013897852972149849,
0.030458183959126472,
0.1572972536087036,
0.01832805760204792,
0.010291365906596184,
-0.029657112434506416,
0.16227442026138306,
-0.10313080251216888,
0.013024677522480488,
-0.13315974175930023,
0.25549033284187317,
-0.0028159054927527905,
0.08112571388483047,
0.010026076808571815,
0.0064029148779809475,
-0.014631807804107666,
0.21038897335529327,
0.10906928032636642,
-0.003371503436937928,
-0.029728515073657036,
0.03359197452664375,
-0.012076439335942268,
-0.028500081971287727,
0.09395099431276321,
0.04539718106389046,
0.1816091537475586,
-0.062322478741407394,
0.039193786680698395,
0.02747328206896782,
-0.016843587160110474,
-0.09374653548002243,
0.07123328000307083,
0.004998188000172377,
-0.011837243102490902,
0.03283342719078064,
0.09152611345052719,
-0.06947756558656693,
0.05572947859764099,
0.0746966004371643,
-0.051213402301073074,
-0.1453506499528885,
0.03281630948185921,
-0.05825027823448181,
-0.04164336249232292,
0.10182742774486542,
-0.04673178493976593,
-0.04763179272413254,
0.08053301274776459,
-0.0012028012424707413,
-0.21097412705421448,
-0.08224610239267349,
0.02060885727405548,
0.13909640908241272,
0.27894625067710876,
0.04594084247946739,
0.12531258165836334,
0.18059444427490234,
-0.026423851028084755,
-0.14422433078289032,
0.08916812390089035,
0.02688552811741829,
-0.15003752708435059,
0.11061746627092361,
0.05374860018491745,
-0.049378328025341034,
0.18047380447387695,
0.04843561351299286,
-0.15317721664905548,
-0.0018303219694644213,
0.027053426951169968,
0.06422989815473557,
-0.05727887898683548,
-0.0017418103525415063,
-0.10627671331167221,
0.11827462166547775,
0.16385871171951294,
-0.04857293516397476,
-0.007377175614237785,
-0.03244224190711975,
0.08913557231426239,
0.001107260468415916,
0.0008863368420861661,
-0.031163301318883896,
-0.10437057912349701,
0.06298723071813583,
-0.18626296520233154,
0.008813525550067425,
-0.26563340425491333,
-0.048350367695093155,
-0.014979640021920204,
-0.03738031163811684,
-0.0664825588464737,
0.10738463699817657,
0.038422804325819016,
-0.0033504951279610395,
-0.053347695618867874,
-0.14483407139778137,
0.0017583915032446384,
0.1294654905796051,
-0.11110524833202362,
-0.12371078133583069
] |
null | null | transformers | FidicBERT is a pre-trained language model to analyze legal text. It is built by further training the Roberta language model in the legal domain, using an extensive legal and contract corpus and thereby fine-tuning for classifying and clustering contractual documents.
| {} | fill-mask | Jzz/FidicBERT | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| FidicBERT is a pre-trained language model to analyze legal text. It is built by further training the Roberta language model in the legal domain, using an extensive legal and contract corpus and thereby fine-tuning for classifying and clustering contractual documents.
| [] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
37
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.05978045240044594,
0.0027343870606273413,
-0.008724397048354149,
0.02515793778002262,
0.13307689130306244,
0.027639828622341156,
0.09509950131177902,
0.08148215711116791,
0.05693569406867027,
-0.005708751268684864,
0.15464650094509125,
0.21959826350212097,
-0.03345884382724762,
0.17867937684059143,
-0.058117255568504333,
-0.2713718116283417,
0.06318216025829315,
0.048634059727191925,
-0.07361909002065659,
0.11866326630115509,
0.0721997618675232,
-0.07688385248184204,
0.06776180863380432,
-0.018220216035842896,
-0.12242016196250916,
0.042348217219114304,
0.05527849495410919,
-0.1122080385684967,
0.12108562141656876,
0.021961210295557976,
0.2060822993516922,
0.013724464923143387,
-0.06524214893579483,
-0.0831608921289444,
0.05297759547829628,
-0.0005626529455184937,
-0.07771056890487671,
0.039234988391399384,
0.006228282582014799,
-0.09797824174165726,
0.0029437756165862083,
0.05069584399461746,
0.031919922679662704,
0.043076999485492706,
-0.14973030984401703,
-0.12170203030109406,
-0.021631255745887756,
0.03224768117070198,
0.04861219599843025,
0.06754541397094727,
0.019578367471694946,
0.20521271228790283,
-0.1258353292942047,
0.10418124496936798,
0.15854887664318085,
-0.29196202754974365,
-0.011583889834582806,
0.07336939871311188,
0.07550900429487228,
-0.05153534933924675,
-0.025016577914357185,
0.061107337474823,
0.0111276526004076,
0.02207767404615879,
0.03159128874540329,
-0.08054082095623016,
-0.06527844071388245,
0.004459382500499487,
-0.07510198652744293,
-0.05628051981329918,
0.14868685603141785,
-0.051077596843242645,
0.04103284329175949,
0.010015198029577732,
-0.12913082540035248,
-0.036706481128931046,
-0.022282211109995842,
0.0016800274606794119,
-0.03736185282468796,
0.03933337330818176,
-0.04058491811156273,
-0.013890751637518406,
-0.10593511909246445,
0.020706869661808014,
-0.23111006617546082,
0.27582958340644836,
0.02612913027405739,
0.07012132555246353,
-0.1858518421649933,
0.043225426226854324,
-0.029383337125182152,
-0.12287542223930359,
0.04163218289613724,
-0.09743601828813553,
0.012437986209988594,
0.0019431845284998417,
-0.06488244980573654,
-0.03970800340175629,
0.08601388335227966,
0.2266247421503067,
0.08983870595693588,
0.03475968539714813,
0.03882957249879837,
0.09770892560482025,
0.014865895733237267,
0.08014364540576935,
0.017019858583807945,
-0.040938593447208405,
0.06849705427885056,
-0.12720969319343567,
0.04322979971766472,
-0.059905603528022766,
-0.12469810247421265,
-0.052705299109220505,
0.004645936656743288,
0.08657316863536835,
0.0478980652987957,
0.04835785925388336,
-0.08745969086885452,
0.0031580787617713213,
0.07787331938743591,
-0.07194057106971741,
-0.002319851191714406,
-0.029221290722489357,
0.05152527242898941,
0.10475372523069382,
0.021636445075273514,
-0.010703074745833874,
-0.016043487936258316,
0.11903663724660873,
-0.07282981276512146,
-0.03583741933107376,
-0.05615774169564247,
-0.055342018604278564,
0.03769473731517792,
-0.14162738621234894,
0.04631955549120903,
-0.1937199980020523,
-0.14164285361766815,
0.05045240744948387,
0.058013904839754105,
-0.004311853088438511,
-0.032746389508247375,
0.032482124865055084,
-0.005240604747086763,
0.01717841997742653,
-0.04425594210624695,
-0.03813016042113304,
-0.03695604205131531,
0.10319358855485916,
0.015862006694078445,
0.1258252114057541,
-0.10736379027366638,
0.04201505705714226,
-0.08612877130508423,
0.012246696278452873,
-0.16673244535923004,
-0.037367139011621475,
-0.02627558261156082,
0.16236986219882965,
0.002689799526706338,
-0.04094931110739708,
-0.11292707920074463,
0.03153347223997116,
-0.005968436133116484,
0.16826218366622925,
-0.050691187381744385,
-0.1258428990840912,
0.23801551759243011,
-0.10858677327632904,
-0.137539803981781,
0.0768466368317604,
-0.0008964669541455805,
0.00503029627725482,
0.04865459352731705,
0.09409047663211823,
0.054460909217596054,
-0.1282840520143509,
0.09256289899349213,
0.09043212980031967,
-0.15783078968524933,
-0.13727834820747375,
0.027883639559149742,
-0.005475207231938839,
-0.10261815786361694,
0.044968098402023315,
0.09180816262960434,
0.11191844940185547,
-0.07093978673219681,
-0.0524664968252182,
-0.019335782155394554,
-0.04510034993290901,
0.12913495302200317,
0.03954192250967026,
0.09601214528083801,
-0.07954450696706772,
-0.026266923174262047,
-0.06726016104221344,
0.00639816839247942,
0.07083439826965332,
0.03640305995941162,
-0.08596820384263992,
0.1376219093799591,
-0.05640283599495888,
0.00475625554099679,
-0.18434511125087738,
-0.10832203924655914,
-0.019048554822802544,
0.06233084574341774,
-0.024080509319901466,
0.11038170754909515,
0.11115530878305435,
-0.04524664208292961,
-0.012584532611072063,
-0.016787465661764145,
0.09273066371679306,
0.02054671198129654,
-0.019367150962352753,
-0.09770754724740982,
0.024277135729789734,
-0.08850374072790146,
0.00890185683965683,
0.020691927522420883,
0.0034111374989151955,
-0.004997740965336561,
0.14283043146133423,
-0.00161478400696069,
0.03947531431913376,
-0.04557863250374794,
0.03357338905334473,
-0.04402673617005348,
0.007829888723790646,
0.08130250126123428,
0.00620792992413044,
-0.052449412643909454,
0.15417484939098358,
-0.1333128660917282,
0.3405405282974243,
0.18508437275886536,
-0.2874508798122406,
-0.03881249949336052,
0.04533010721206665,
-0.018499813973903656,
-0.0015848495531827211,
0.04968307539820671,
0.007090166676789522,
0.027636928483843803,
0.00756347319111228,
0.14252737164497375,
-0.008502244018018246,
-0.015343432314693928,
0.03761560097336769,
-0.0861063003540039,
-0.03436943516135216,
0.034367144107818604,
0.09854230284690857,
-0.11538184434175491,
0.17259535193443298,
0.22679723799228668,
-0.014759926125407219,
0.13486558198928833,
0.019756602123379707,
0.0008263704366981983,
0.004766570404171944,
-0.04244794696569443,
-0.010318059474229813,
0.04416158050298691,
-0.1703941971063614,
-0.037341129034757614,
0.07009443640708923,
-0.04086581617593765,
0.054106131196022034,
-0.1080540344119072,
-0.04539399966597557,
0.023229053243994713,
0.05735735595226288,
-0.057464465498924255,
0.14314846694469452,
0.02993035688996315,
0.07184498757123947,
0.001863340032286942,
-0.0830451101064682,
0.10455971211194992,
0.011808671057224274,
-0.027575377374887466,
0.15615016222000122,
-0.11499504745006561,
-0.3407493829727173,
-0.14060579240322113,
-0.1856870949268341,
0.012841945514082909,
0.04907330498099327,
0.07068860530853271,
-0.0886731967329979,
-0.06028576195240021,
0.1009501963853836,
-0.002118155127391219,
-0.030502429232001305,
0.06733111292123795,
-0.059993140399456024,
0.033099252730607986,
-0.03546803444623947,
-0.05871487408876419,
-0.06814772635698318,
-0.030771153047680855,
-0.026918867602944374,
0.15232053399085999,
-0.08588875830173492,
0.09874926507472992,
0.12222868949174881,
0.012513059191405773,
0.06416334956884384,
0.003602869575843215,
0.16369159519672394,
-0.08151564747095108,
-0.004985830280929804,
0.19588902592658997,
-0.039671871811151505,
0.09784439206123352,
0.16251394152641296,
0.01572851650416851,
-0.04611923173069954,
0.007210151292383671,
-0.054344769567251205,
-0.1310671716928482,
-0.16383560001850128,
-0.10668035596609116,
-0.13408245146274567,
-0.021317366510629654,
0.045856814831495285,
0.050257451832294464,
0.15384143590927124,
0.10692618787288666,
0.039593882858753204,
-0.022173523902893066,
-0.07040359079837799,
0.060743995010852814,
0.16259261965751648,
-0.02038007788360119,
0.13690350949764252,
-0.05275079607963562,
-0.15010952949523926,
0.060834385454654694,
0.017343392595648766,
0.13702066242694855,
0.10000376403331757,
-0.018073182553052902,
0.04605214297771454,
0.15819214284420013,
0.157943993806839,
0.15094222128391266,
0.040314868092536926,
-0.057792484760284424,
-0.00135100819170475,
-0.00355874327942729,
-0.054626744240522385,
0.024207331240177155,
0.13539178669452667,
-0.10293795168399811,
-0.0397566519677639,
-0.122000552713871,
0.05419766530394554,
0.11576513946056366,
0.0632915124297142,
-0.2221747636795044,
0.010753236711025238,
0.06315211206674576,
0.00856467429548502,
-0.06559337675571442,
0.03360356017947197,
-0.0504627525806427,
-0.1452513188123703,
0.0742940679192543,
-0.05110727250576019,
0.09041508287191391,
0.04023086279630661,
0.06344828754663467,
-0.05134069547057152,
-0.05041798576712608,
0.03384535759687424,
0.066301628947258,
-0.24279962480068207,
0.28508660197257996,
-0.015547695569694042,
-0.0414053238928318,
-0.0798855721950531,
-0.0072272163815796375,
0.05470259487628937,
0.10367409884929657,
0.11631010472774506,
0.026701275259256363,
-0.05831453949213028,
-0.12985455989837646,
-0.010049611330032349,
0.025459015741944313,
0.10010068118572235,
-0.023013504222035408,
-0.008190451189875603,
-0.026562752202153206,
-0.05088624730706215,
-0.014673394151031971,
0.07104095071554184,
0.008848524652421474,
-0.12703938782215118,
0.07680127024650574,
0.049460720270872116,
-0.018087532371282578,
-0.008617108687758446,
-0.053773753345012665,
-0.09175468981266022,
0.19304224848747253,
-0.01958429254591465,
-0.05116080120205879,
-0.11072391271591187,
-0.10805923491716385,
0.10193557292222977,
-0.11249701678752899,
0.12616074085235596,
-0.10047021508216858,
0.009487134404480457,
-0.09380611777305603,
-0.1732918620109558,
0.14263565838336945,
-0.12662816047668457,
-0.005548976361751556,
-0.07589493691921234,
0.14169755578041077,
-0.06785442680120468,
0.024742592126131058,
0.0028587186243385077,
0.04321930930018425,
-0.11557991802692413,
-0.053762901574373245,
0.029133325442671776,
-0.0661218911409378,
0.03599350154399872,
0.054347891360521317,
-0.04755578562617302,
-0.035690948367118835,
0.016383660957217216,
0.022910388186573982,
0.2239362597465515,
0.23655645549297333,
-0.060722775757312775,
0.14300964772701263,
0.16329653561115265,
-0.02534516341984272,
-0.334926038980484,
-0.11384004354476929,
-0.13816533982753754,
0.000659266603179276,
0.005350308958441019,
-0.1263294517993927,
0.09073201566934586,
-0.018374400213360786,
-0.05229932442307472,
0.11701809614896774,
-0.15716011822223663,
-0.09006257355213165,
0.23355786502361298,
0.007530366536229849,
0.5038071870803833,
-0.09967079758644104,
-0.05945106968283653,
-0.052533090114593506,
-0.14235186576843262,
0.02291753888130188,
0.0022186338901519775,
0.09462001919746399,
-0.029315819963812828,
0.07914337515830994,
0.03301545977592468,
-0.09031011164188385,
0.09982404112815857,
-0.03833628445863724,
0.016298605129122734,
-0.11617961525917053,
-0.08525510132312775,
0.10806074738502502,
-0.0136068444699049,
-0.016709906980395317,
0.02158220298588276,
0.01456777099519968,
-0.04083799198269844,
-0.022307492792606354,
-0.10379772633314133,
0.10585320740938187,
0.03499794006347656,
-0.05941828712821007,
0.022518588230013847,
-0.009889909066259861,
-0.012628845870494843,
-0.004628289956599474,
0.1912514567375183,
-0.008090890944004059,
0.17767208814620972,
0.06429888308048248,
0.021506020799279213,
-0.12491537630558014,
-0.06406809389591217,
-0.04999396950006485,
-0.08511979877948761,
0.07266417145729065,
-0.009923536330461502,
0.04696602374315262,
0.10173138976097107,
-0.012479927390813828,
0.029755644500255585,
0.1106644868850708,
0.010039771907031536,
-0.014950153417885303,
0.16745342314243317,
-0.2137589156627655,
0.04184075817465782,
-0.015450791455805302,
-0.018000587821006775,
0.06724268943071365,
0.059818465262651443,
0.09292822331190109,
0.042055394500494,
-0.040214166045188904,
-0.010924269445240498,
-0.007243160158395767,
-0.06570540368556976,
0.04728737846016884,
0.07078813016414642,
0.0481405109167099,
-0.1261121779680252,
0.010777958668768406,
-0.019267624244093895,
-0.18276818096637726,
-0.0193245317786932,
0.08627685904502869,
-0.11631006002426147,
-0.10884512960910797,
0.009783122688531876,
0.08114659041166306,
-0.12021104246377945,
-0.030119983479380608,
-0.08283551782369614,
-0.11298330873250961,
0.05262024328112602,
0.22306393086910248,
0.1127481460571289,
0.06906166672706604,
-0.01038964930921793,
-0.013437945395708084,
-0.019051581621170044,
-0.020863153040409088,
0.04014519229531288,
0.036231301724910736,
-0.08725123107433319,
0.00853132363408804,
-0.009417156688869,
0.15634506940841675,
-0.10960228741168976,
-0.05792605131864548,
-0.15895655751228333,
0.04835722595453262,
-0.07342072576284409,
-0.09718167781829834,
-0.09943155944347382,
-0.07611285150051117,
0.009972813539206982,
-0.07039758563041687,
-0.05352642014622688,
-0.033090610057115555,
-0.1172407865524292,
0.028002966195344925,
0.02894745022058487,
-0.025185875594615936,
-0.06389441341161728,
-0.04643470048904419,
0.1366305649280548,
-0.04931804537773132,
0.07242259383201599,
0.1486574411392212,
-0.07077633589506149,
0.07762903720140457,
-0.12045170366764069,
-0.12859106063842773,
0.09266626089811325,
0.011787940748035908,
0.0829651728272438,
0.04641987010836601,
0.028651097789406776,
0.05126902461051941,
0.04517265781760216,
0.04532682150602341,
0.05619427561759949,
-0.11496394872665405,
0.07823242247104645,
0.008991614915430546,
-0.1918167769908905,
-0.027399636805057526,
-0.09008971601724625,
0.08355460315942764,
0.0007113930769264698,
0.12100622057914734,
-0.03608888015151024,
0.11319220811128616,
-0.03684284910559654,
0.015498606488108635,
-0.03130309283733368,
-0.1580456793308258,
-0.0009196364553645253,
-0.04583831876516342,
0.005965739022940397,
-0.008378063328564167,
0.23622959852218628,
-0.019403686746954918,
0.020302124321460724,
0.03706345707178116,
0.08312346041202545,
0.011911443434655666,
0.0034686587750911713,
0.14071707427501678,
0.09389068931341171,
-0.05033082515001297,
-0.07029570639133453,
0.09465329349040985,
0.022331232205033302,
-0.06154777854681015,
0.12758882343769073,
0.07004008442163467,
0.07805091887712479,
0.09229323267936707,
0.00525510823354125,
0.048385001718997955,
-0.10149682313203812,
-0.22425489127635956,
-0.04245093837380409,
0.04338166117668152,
0.030511466786265373,
-0.009528924711048603,
0.16239036619663239,
-0.007807712536305189,
0.05438727140426636,
-0.0286843404173851,
-0.0146601852029562,
-0.1913124918937683,
-0.12455741316080093,
-0.08852022141218185,
-0.06035058572888374,
0.034696102142333984,
-0.019905485212802887,
-0.019849425181746483,
0.10410076379776001,
0.03071051649749279,
-0.029069487005472183,
0.1391187459230423,
0.007366697769612074,
-0.012996077537536621,
0.016209116205573082,
-0.007277622353285551,
0.015048467554152012,
0.04374290257692337,
-0.018845049664378166,
-0.17080430686473846,
-0.003531701397150755,
-0.05279584601521492,
0.0019921238999813795,
-0.08741256594657898,
0.027429690584540367,
-0.09686073660850525,
-0.12442773580551147,
-0.06279069930315018,
0.03428082540631294,
-0.036186520010232925,
0.08635444939136505,
-0.008224183693528175,
0.04980190843343735,
0.003494719509035349,
0.13008199632167816,
-0.06635979562997818,
-0.10865864157676697,
-0.0572807714343071,
0.15417969226837158,
0.044320207089185715,
0.07846927642822266,
-0.024377785623073578,
0.025428062304854393,
-0.09749093651771545,
0.3293962776660919,
0.31430360674858093,
-0.0364663191139698,
0.07512470334768295,
0.049478501081466675,
0.03143766522407532,
0.07872943580150604,
0.10979169607162476,
0.07679310441017151,
0.2867131531238556,
-0.09095823019742966,
-0.0540350005030632,
-0.04679121449589729,
-0.03458467498421669,
-0.12083368748426437,
0.018574830144643784,
0.026663949713110924,
-0.03865300863981247,
-0.05562908574938774,
0.08287046104669571,
-0.17973420023918152,
0.13521145284175873,
0.08000985532999039,
-0.2064894735813141,
-0.05751892551779747,
-0.022878373041749,
0.15401794016361237,
0.030826324597001076,
0.11301977932453156,
-0.03987570479512215,
-0.09233494848012924,
0.0507376492023468,
0.02869175747036934,
-0.20688870549201965,
-0.07890072464942932,
0.10709986090660095,
0.004827416036278009,
0.06665920466184616,
-0.034168489277362823,
0.019203342497348785,
0.09574570506811142,
0.06589552015066147,
-0.023569602519273758,
0.026999808847904205,
0.021599261090159416,
-0.10421290993690491,
-0.05063549056649208,
0.027946757152676582,
-0.005161251872777939,
-0.1348150372505188,
0.025101054459810257,
-0.1394609659910202,
0.04613953083753586,
-0.0913073867559433,
-0.008668651804327965,
-0.005664225202053785,
0.0692635253071785,
-0.0486815981566906,
0.048449039459228516,
0.06823991239070892,
0.01269973162561655,
-0.031037641689181328,
-0.048129696398973465,
-0.011327249929308891,
0.06746246665716171,
-0.10943937301635742,
-0.1738860160112381,
-0.08208338916301727,
-0.07020771503448486,
0.0458214171230793,
-0.008811558596789837,
-0.1559021770954132,
-0.0473502054810524,
-0.11499189585447311,
0.015934964641928673,
-0.14897628128528595,
0.045110028237104416,
0.051641616970300674,
0.04488077014684677,
0.021195126697421074,
-0.024013997986912727,
0.037815019488334656,
0.04779626056551933,
-0.15743644535541534,
-0.09625527262687683
] |
null | null | transformers |
This model is finetuned from [mt5-base](https://huggingface.co/google/mt5-base).
The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found [here](https://gist.github.com/K024/4a100a0f4f4b07208958e0f3244da6ad).
Usage:
```python
from transformers import (
T5Tokenizer,
MT5ForConditionalGeneration,
Text2TextGenerationPipeline,
)
path = "K024/mt5-zh-ja-en-trimmed"
pipe = Text2TextGenerationPipeline(
model=MT5ForConditionalGeneration.from_pretrained(path),
tokenizer=T5Tokenizer.from_pretrained(path),
)
sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。"
res = pipe(sentence, max_length=100, num_beams=4)
res[0]['generated_text']
```
Training data:
```
wikimedia-en-ja
wikimedia-en-zh
wikimedia-ja-zh
wikititles-ja-en
wikititles-zh-en
wikimatrix-ja-zh
news-commentary-en-ja
news-commentary-en-zh
news-commentary-ja-zh
ted2020-en-ja
ted2020-en-zh
ted2020-ja-zh
```
License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
| {"language": ["zh", "ja", "en"], "license": "cc-by-nc-sa-4.0", "tags": ["translation"], "widget": [{"text": "ja2zh: \u543e\u8f29\u306f\u732b\u3067\u3042\u308b\u3002\u540d\u524d\u306f\u307e\u3060\u7121\u3044\u3002"}]} | translation | K024/mt5-zh-ja-en-trimmed | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"translation",
"zh",
"ja",
"en",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"zh",
"ja",
"en"
] | TAGS
#transformers #pytorch #mt5 #text2text-generation #translation #zh #ja #en #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
This model is finetuned from mt5-base.
The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found here.
Usage:
Training data:
License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: URL
[cc-by-nc-sa-image]: URL
| [] | [
"TAGS\n#transformers #pytorch #mt5 #text2text-generation #translation #zh #ja #en #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] | [
75
] | [
"passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #translation #zh #ja #en #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] | [
-0.03266648203134537,
-0.004957749042659998,
-0.003960283938795328,
0.010770278982818127,
0.12058395892381668,
0.013750387355685234,
0.10499010235071182,
0.10664617270231247,
-0.014269092120230198,
-0.011996632441878319,
0.15368770062923431,
0.18111668527126312,
0.011456966400146484,
0.07900571078062057,
-0.06629572063684464,
-0.23164205253124237,
0.04067940637469292,
0.05905696377158165,
-0.028890574350953102,
0.10371185094118118,
0.09440629929304123,
-0.06292938441038132,
0.0937511995434761,
-0.015414188615977764,
-0.13383442163467407,
0.018742438405752182,
0.02731221541762352,
-0.11182193458080292,
0.09903580695390701,
0.05843309685587883,
0.048873431980609894,
0.10128600895404816,
-0.01801716536283493,
-0.14865563809871674,
0.02111639268696308,
-0.015291571617126465,
-0.10556981712579727,
0.052318595349788666,
0.06351424753665924,
-0.04970213398337364,
0.14507295191287994,
-0.002095544710755348,
-0.0740099549293518,
0.07240079343318939,
-0.10961879044771194,
-0.06388434022665024,
-0.06856375932693481,
0.03805358335375786,
0.04139074310660362,
0.0813119113445282,
0.0018755802884697914,
0.11353607475757599,
-0.10849464684724808,
0.06773636490106583,
0.17513024806976318,
-0.37785279750823975,
0.012241543270647526,
0.13814018666744232,
0.09367310255765915,
0.10384699702262878,
-0.03090551495552063,
0.09403535723686218,
0.049082014709711075,
-0.010428518056869507,
0.017813559621572495,
-0.09112299233675003,
-0.019635381177067757,
0.07188286632299423,
-0.10983856767416,
-0.04046652466058731,
0.2705782949924469,
-0.0500175915658474,
0.05503504350781441,
-0.028113244101405144,
-0.07269427925348282,
-0.06447004526853561,
-0.015581061132252216,
0.05176403373479843,
-0.0341733917593956,
0.06881328672170639,
0.04074744135141373,
-0.046201348304748535,
-0.14215290546417236,
-0.02153710462152958,
-0.1784437894821167,
0.09852924942970276,
0.005144210532307625,
0.04282170161604881,
-0.1475822478532791,
0.08068956434726715,
0.0011979120317846537,
-0.1210566982626915,
0.012723922729492188,
-0.09920897334814072,
0.062384460121393204,
0.029063109308481216,
-0.04714319482445717,
-0.04413381591439247,
0.08296672999858856,
0.0771360844373703,
0.006305607967078686,
0.03262065351009369,
-0.0693935826420784,
0.11834914982318878,
-0.009249862283468246,
0.07366721332073212,
-0.0205442626029253,
-0.05435769632458687,
0.05079200491309166,
-0.08667204529047012,
0.028394551947712898,
-0.06202096492052078,
-0.22691886126995087,
-0.09078828245401382,
-0.008043226785957813,
0.1028863787651062,
-0.0003095623687840998,
0.09473757445812225,
-0.0015880945138633251,
0.003417491912841797,
0.07695984095335007,
-0.03728703781962395,
0.0058114854618906975,
0.018638094887137413,
0.016950000077486038,
0.09165267646312714,
0.03714781627058983,
0.01295066624879837,
-0.08721897006034851,
0.06396425515413284,
-0.07545340061187744,
0.01695595122873783,
-0.036088984459638596,
-0.06979591399431229,
0.05282498523592949,
-0.0737481564283371,
0.03191780671477318,
-0.1892271339893341,
-0.10546118021011353,
0.010515511967241764,
-0.018346425145864487,
-0.010747242718935013,
-0.04892493784427643,
-0.010287399403750896,
-0.050447624176740646,
0.07467803359031677,
-0.09501510113477707,
0.05775628983974457,
-0.07340820133686066,
0.09271276742219925,
-0.06825648993253708,
0.06255731731653214,
-0.16226007044315338,
0.06156306341290474,
-0.0801713839173317,
0.003250847803428769,
-0.04146695137023926,
0.03510699048638344,
-0.06071888655424118,
0.09572897106409073,
-0.03796452283859253,
-0.04816567152738571,
-0.041601505130529404,
0.04723580181598663,
-0.034810323268175125,
0.17864085733890533,
-0.135668084025383,
-0.07281972467899323,
0.16970141232013702,
-0.07659658044576645,
-0.1554896980524063,
0.0753386914730072,
0.016044961288571358,
0.034084830433130264,
0.030166583135724068,
0.21532034873962402,
0.05419585108757019,
-0.07313623279333115,
0.06459558755159378,
0.12279288470745087,
-0.05158461630344391,
-0.13283859193325043,
0.04951738566160202,
-0.013177254237234592,
-0.08466950803995132,
0.031340342015028,
0.019697632640600204,
0.09471563994884491,
-0.02902999334037304,
-0.04487079009413719,
-0.031204480677843094,
-0.020336607471108437,
0.06253025680780411,
0.0012152979616075754,
0.1158449575304985,
-0.0523555614054203,
-0.0019452496198937297,
0.006997235119342804,
0.017355797812342644,
0.0017085400177165866,
0.06867650151252747,
-0.04218220338225365,
0.0978904515504837,
-0.01202656514942646,
0.045726072043180466,
-0.12737910449504852,
0.029258456081151962,
-0.020283162593841553,
0.09534063935279846,
0.05406390130519867,
0.12307620048522949,
0.019073544070124626,
-0.025113265961408615,
-0.019735150039196014,
-0.014402875676751137,
0.12508033215999603,
0.0316295251250267,
-0.0699014887213707,
-0.10508434474468231,
0.03791136294603348,
-0.027118755504488945,
0.007278867997229099,
-0.09284847229719162,
0.027566134929656982,
0.07865474373102188,
0.09508302062749863,
-0.04371919855475426,
0.10338703542947769,
-0.019705142825841904,
0.047106754034757614,
-0.07323738187551498,
0.034671712666749954,
0.10000766068696976,
0.008454086259007454,
-0.10226662456989288,
0.2765602767467499,
-0.17752531170845032,
0.2242821753025055,
0.2213379591703415,
-0.23617003858089447,
0.07046765834093094,
-0.06950279325246811,
-0.008323166519403458,
-0.006155122071504593,
0.06079569458961487,
-0.03132150322198868,
0.0416518896818161,
-0.029399286955595016,
0.18857663869857788,
-0.08309197425842285,
-0.02172558754682541,
0.010275794193148613,
-0.06319461017847061,
-0.03962760046124458,
0.10400068014860153,
0.1329507976770401,
-0.20611101388931274,
0.19032606482505798,
0.3005101978778839,
0.007203508168458939,
0.22408217191696167,
-0.022138657048344612,
0.005474570672959089,
0.031389303505420685,
-0.03770533576607704,
-0.0390060730278492,
0.0018222799990326166,
-0.14238882064819336,
-0.05361203849315643,
0.0860162302851677,
0.056591279804706573,
0.09989069402217865,
-0.1117362529039383,
-0.04921792075037956,
-0.011449802666902542,
-0.00877317413687706,
-0.012273337692022324,
0.1180248036980629,
0.024593651294708252,
0.12406598031520844,
-0.023378517478704453,
-0.02554812654852867,
0.08809414505958557,
-0.00008722818893147632,
-0.12360657006502151,
0.16098827123641968,
-0.18708571791648865,
-0.27024221420288086,
-0.17874406278133392,
-0.15537068247795105,
-0.07432878762483597,
0.014444224536418915,
0.12141040712594986,
-0.05326995253562927,
-0.01776186376810074,
-0.02230987139046192,
0.0381169393658638,
-0.12466553598642349,
-0.0016565006226301193,
-0.0960293635725975,
0.04608743265271187,
-0.09204145520925522,
-0.09716664999723434,
-0.0500732883810997,
-0.003319238079711795,
-0.05427319556474686,
0.1270824521780014,
-0.11886968463659286,
0.0917714312672615,
0.16158533096313477,
0.01007388997823,
0.054642558097839355,
-0.05359327420592308,
0.12619079649448395,
-0.06361717730760574,
0.002728290855884552,
0.2437376230955124,
0.014128894545137882,
0.06109517812728882,
0.1412036269903183,
0.007265926338732243,
-0.029803002253174782,
0.0009445212199352682,
-0.07520905882120132,
-0.10344933718442917,
-0.22237512469291687,
-0.15199723839759827,
-0.15419921278953552,
0.06430386006832123,
0.038216110318899155,
0.05552467331290245,
0.1311335563659668,
0.05017878860235214,
-0.025463273748755455,
0.030940242111682892,
0.012832722626626492,
0.07801538705825806,
0.22151301801204681,
-0.02238195389509201,
0.13435310125350952,
-0.07802017778158188,
-0.04700614884495735,
0.09276983141899109,
0.08128847181797028,
0.09009188413619995,
0.059810783714056015,
0.07475737482309341,
0.06596232205629349,
0.1617879718542099,
0.17768119275569916,
0.09602990746498108,
0.05367496982216835,
-0.018079543486237526,
-0.029695909470319748,
-0.055872928351163864,
-0.03379630297422409,
0.06323301792144775,
0.05409713461995125,
-0.14319531619548798,
-0.04984993487596512,
-0.09793835878372192,
0.07310118526220322,
0.021769480779767036,
0.03868817538022995,
-0.1481495499610901,
0.05040857940912247,
0.08112699538469315,
0.01874839887022972,
-0.101791150867939,
0.09879747033119202,
0.035983506590127945,
-0.11868498474359512,
0.09060771763324738,
-0.013243948109447956,
0.1189294159412384,
0.023017847910523415,
0.07900769263505936,
-0.0897933691740036,
-0.10969948768615723,
0.0313502699136734,
0.11932720988988876,
-0.3802682161331177,
0.19543315470218658,
0.016910184174776077,
-0.06359178572893143,
-0.09916075319051743,
-0.03783516213297844,
0.03154384344816208,
0.18384310603141785,
0.09634556621313095,
0.016093365848064423,
-0.10458055138587952,
-0.04970455914735794,
0.00800781324505806,
0.009759334847331047,
0.10398958623409271,
-0.012239938601851463,
-0.028700387105345726,
-0.03588949143886566,
-0.0014787705149501562,
-0.029000161215662956,
0.11476555466651917,
-0.013428181409835815,
-0.17360933125019073,
0.08825047314167023,
0.068659707903862,
0.043130241334438324,
-0.012880930677056313,
-0.02202979288995266,
-0.1562460958957672,
0.1219903975725174,
-0.1309473067522049,
-0.0719539150595665,
-0.12635698914527893,
-0.08790778368711472,
0.06322000175714493,
-0.07626188546419144,
0.049483004957437515,
-0.053135767579078674,
0.004426482133567333,
-0.10905798524618149,
-0.20714211463928223,
0.1055741161108017,
-0.08343149721622467,
-0.05298994854092598,
-0.02188993990421295,
0.15693026781082153,
-0.10805727541446686,
0.05890717729926109,
0.021281173452734947,
0.0013373126275837421,
-0.11373632401227951,
-0.11286906898021698,
-0.00804280024021864,
-0.006879722233861685,
0.08150258660316467,
0.0027242170181125402,
-0.094839908182621,
-0.06711893528699875,
0.006216148845851421,
-0.0724974125623703,
0.25346651673316956,
0.2110828012228012,
-0.09007825702428818,
0.17597243189811707,
0.13521990180015564,
-0.08719450235366821,
-0.3484937250614166,
-0.11805392801761627,
-0.12915654480457306,
0.00387586303986609,
-0.04092428460717201,
-0.11665015667676926,
0.007281449157744646,
0.0035031279549002647,
-0.05081382021307945,
0.1002335473895073,
-0.24266870319843292,
-0.1092805415391922,
0.11979605257511139,
-0.0200900100171566,
0.3304138779640198,
-0.12891750037670135,
-0.1004297062754631,
-0.0617983378469944,
-0.15804672241210938,
0.1563841551542282,
-0.11465796083211899,
0.09520522505044937,
-0.025224030017852783,
0.08489151298999786,
0.010780197568237782,
-0.043427154421806335,
0.12920552492141724,
-0.003383102361112833,
0.005483156535774469,
-0.10782977193593979,
-0.059763353317976,
0.07514209300279617,
-0.012991148978471756,
0.0017089013708755374,
-0.1480899453163147,
0.009567986242473125,
-0.1385895013809204,
-0.0015685679391026497,
-0.09012407064437866,
0.0736355185508728,
-0.013204294256865978,
-0.0652272030711174,
-0.05522404611110687,
-0.03002789430320263,
0.017657466232776642,
-0.007365783676505089,
0.2483837753534317,
-0.0809292197227478,
0.09212745726108551,
0.20209410786628723,
0.12668384611606598,
-0.14488600194454193,
0.08004453778266907,
-0.07299548387527466,
-0.06019715964794159,
0.07961481809616089,
-0.156375452876091,
0.046358801424503326,
0.12034530937671661,
-0.03600206971168518,
0.06246791407465935,
0.08234524726867676,
-0.015863707289099693,
-0.0012158852769061923,
0.13771766424179077,
-0.1826433688402176,
0.016957037150859833,
-0.08913733810186386,
0.07082347571849823,
0.11362925916910172,
0.06222091615200043,
0.17640036344528198,
-0.00872726645320654,
-0.0207496527582407,
0.007691271603107452,
-0.005376141984015703,
-0.07493160665035248,
0.06741037964820862,
0.05350571125745773,
0.043108049780130386,
-0.13109344244003296,
0.05644654110074043,
0.011672602035105228,
-0.08698879927396774,
-0.01524039264768362,
0.17276646196842194,
-0.15528669953346252,
-0.1497238278388977,
-0.0302660521119833,
0.07244378328323364,
-0.17482233047485352,
-0.05365785211324692,
-0.022096598520874977,
-0.15503321588039398,
0.05891173332929611,
0.19396761059761047,
0.06145501509308815,
0.038244131952524185,
-0.02088850922882557,
-0.08099132776260376,
0.006559263449162245,
-0.013261312618851662,
-0.07176486402750015,
0.038135867565870285,
-0.08792640268802643,
0.0842142105102539,
-0.022661061957478523,
0.16622351109981537,
-0.0842057466506958,
-0.008058075793087482,
-0.14171825349330902,
0.03226941078901291,
-0.1373845785856247,
-0.02882239781320095,
-0.08946947753429413,
-0.057819169014692307,
-0.018308985978364944,
-0.04161904752254486,
-0.06648767739534378,
-0.013726657256484032,
-0.12664537131786346,
0.010503786616027355,
-0.0671362429857254,
0.08370789140462875,
-0.027684975415468216,
-0.023948058485984802,
0.05383172258734703,
-0.02966577187180519,
0.10177964717149734,
0.09124362468719482,
-0.07416777312755585,
0.12304796278476715,
-0.08339845389127731,
-0.07712920010089874,
0.07637736201286316,
0.05520550161600113,
0.049508024007081985,
0.0922887995839119,
0.006114197429269552,
0.07728861272335052,
-0.0008972124778665602,
0.04364355653524399,
-0.04314936697483063,
-0.09970627725124359,
0.02532407082617283,
-0.08902758359909058,
-0.08131102472543716,
-0.0428042970597744,
0.0013369695516303182,
0.06682268530130386,
0.04458882287144661,
0.09543391317129135,
-0.04147644713521004,
0.06371711194515228,
-0.04064064100384712,
0.018360016867518425,
-0.017050188034772873,
-0.18366289138793945,
-0.03740571066737175,
-0.11592471599578857,
0.011285541579127312,
0.007677766494452953,
0.2436591237783432,
0.050302114337682724,
-0.06938611716032028,
0.03138896822929382,
0.09528344869613647,
0.01518903486430645,
0.01558070257306099,
0.2622028887271881,
0.06513757258653641,
-0.004360738676041365,
-0.08932085335254669,
0.06678280979394913,
0.005499151069670916,
0.05620747432112694,
0.07980751246213913,
0.07004169374704361,
0.06836646050214767,
0.0968313217163086,
0.02876252681016922,
-0.023750420659780502,
-0.0850948691368103,
-0.08772727847099304,
0.003940314054489136,
0.05591059848666191,
-0.057376693934202194,
0.036066751927137375,
0.20103447139263153,
-0.0630718320608139,
0.00985600333660841,
-0.022933371365070343,
-0.03181106969714165,
-0.15918415784835815,
-0.18303245306015015,
-0.07433422654867172,
-0.1301104873418808,
-0.010774657130241394,
-0.0641431212425232,
0.04661652445793152,
0.07056508213281631,
0.05759580805897713,
-0.044227685779333115,
0.014194848015904427,
0.0013751204824075103,
-0.1289345771074295,
0.0643564760684967,
-0.030467165634036064,
0.05660948529839516,
-0.04715190827846527,
-0.011498302221298218,
-0.0446590818464756,
-0.07962937653064728,
-0.015433525666594505,
0.0451580174267292,
-0.02434392087161541,
0.014103246852755547,
-0.11641930043697357,
-0.07633065432310104,
-0.04376865550875664,
0.04435963183641434,
0.017682334408164024,
0.21325089037418365,
-0.0015438288683071733,
-0.04017849639058113,
0.027839986607432365,
0.16897374391555786,
-0.05184418708086014,
-0.10412974655628204,
-0.002341734478250146,
0.17110991477966309,
0.062059976160526276,
0.09223294258117676,
-0.02798083983361721,
0.013263016007840633,
-0.042280931025743484,
0.33814918994903564,
0.3032444417476654,
-0.09774031490087509,
0.037796106189489365,
0.029207145795226097,
0.030190978199243546,
0.08907722681760788,
0.12242753058671951,
0.08070997148752213,
0.21824058890342712,
-0.06675669550895691,
-0.005797332618385553,
-0.06951893121004105,
-0.0034671758767217398,
-0.10019217431545258,
0.12020008265972137,
-0.0030090606305748224,
-0.1253499537706375,
-0.01387436781078577,
0.06995054334402084,
-0.19409087300300598,
0.1090482547879219,
-0.02742104046046734,
-0.1482115387916565,
-0.027004562318325043,
0.0158158540725708,
0.14724719524383545,
0.008940582163631916,
0.032817769795656204,
-0.04271506890654564,
-0.047467365860939026,
-0.01683078519999981,
0.006479280069470406,
-0.1763598918914795,
0.036703743040561676,
0.060277123004198074,
-0.06089458614587784,
0.019236234948039055,
-0.024224158376455307,
0.0333092026412487,
0.09296253323554993,
0.08682586252689362,
-0.0404910184442997,
0.08899645507335663,
0.02168106660246849,
-0.06761740148067474,
0.009270108304917812,
-0.0035220528952777386,
0.002668198198080063,
-0.03812723979353905,
0.04130696505308151,
-0.1365295797586441,
0.07440061122179031,
0.0062185972929000854,
-0.06040282920002937,
0.004295838996767998,
0.02302953228354454,
-0.05437235161662102,
0.08871019631624222,
0.01911255531013012,
-0.013386991806328297,
-0.04548932984471321,
-0.06164383515715599,
-0.04288721829652786,
-0.012466665357351303,
-0.06552650034427643,
-0.05143088847398758,
-0.07928775250911713,
-0.0880872830748558,
0.06056039035320282,
0.01618463173508644,
-0.1575460284948349,
0.018862804397940636,
-0.07619652897119522,
0.036035943776369095,
-0.1750282198190689,
0.08949518948793411,
0.08968756347894669,
-0.025832369923591614,
-0.002902503125369549,
-0.16341644525527954,
0.04690926522016525,
0.05482103303074837,
-0.1148601844906807,
-0.08224280923604965
] |
null | null | null | yes | {} | null | K3LLiN/Kellin | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| yes | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
#Rick DialoGPT Model | {"tags": ["conversational"]} | text-generation | KAIHATSU/DialoGPT-small-rick | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Rick DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Swedish BERT Models
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
- **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
- **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
- **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
## Files
| **name** | **files** |
|---------------------------------|-----------|
| bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) |
| bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) |
| albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) |
TensorFlow model weights will be released soon.
## Usage requirements / installation instructions
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
```
# git clone https://github.com/Kungbib/swedish-bert-models
# cd swedish-bert-models
# python3 -m venv venv
# source venv/bin/activate
# pip install --upgrade pip
# pip install -r requirements.txt
```
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
```
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
```python
from transformers import pipeline
nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner')
nlp('Idag släpper KB tre språkmodeller.')
```
Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change.
```python
[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' },
{ 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ]
```
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this:
```python
text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\
'som spelar fotboll i VM klockan två på kvällen.'
l = []
for token in nlp(text):
if token['word'].startswith('##'):
l[-1]['word'] += token['word'][2:]
else:
l += [ token ]
print(l)
```
Which should result in the following (though less cleanly formatted):
```python
[ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'},
{ 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'},
{ 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'},
{ 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'två', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'på', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ]
```
### ALBERT base
The easiest way to do this is, again, using Huggingface Transformers:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
```
## Acknowledgements ❤️
- Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
- Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
- Models are hosted on S3 by Huggingface 🤗
| {"language": "sv"} | null | KBLab/albert-base-swedish-cased-alpha | [
"transformers",
"pytorch",
"albert",
"sv",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #albert #sv #endpoints_compatible #region-us
| Swedish BERT Models
===================
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
* bert-base-swedish-cased (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
* bert-base-swedish-cased-ner (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
* albert-base-swedish-cased-alpha (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
Files
-----
TensorFlow model weights will be released soon.
Usage requirements / installation instructions
----------------------------------------------
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the 'do\_lower\_case' flag parameter set to 'False' and 'keep\_accents' to 'True' (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
Running the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:
Which should result in the following (though less cleanly formatted):
### ALBERT base
The easiest way to do this is, again, using Huggingface Transformers:
Acknowledgements ️
------------------
* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
* Models are hosted on S3 by Huggingface
| [
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):",
"### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
"TAGS\n#transformers #pytorch #albert #sv #endpoints_compatible #region-us \n",
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):",
"### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
26,
50,
233,
124
] | [
"passage: TAGS\n#transformers #pytorch #albert #sv #endpoints_compatible #region-us \n### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
-0.006239984184503555,
-0.04012061282992363,
-0.0018136630533263087,
0.10374189168214798,
0.08946814388036728,
-0.038960862904787064,
0.13886727392673492,
0.05793943628668785,
0.08152353763580322,
0.053243186324834824,
0.005946926772594452,
-0.03614881634712219,
0.095228411257267,
0.11057572811841965,
0.022695239633321762,
-0.34267473220825195,
0.06411214172840118,
-0.07464227080345154,
-0.04481719806790352,
0.020827891305088997,
0.08503536880016327,
-0.04816072806715965,
0.09021110832691193,
0.0077284276485443115,
-0.10956419259309769,
0.02749793231487274,
-0.030249683186411858,
-0.015725379809737206,
0.130286306142807,
0.12302079796791077,
0.07668653130531311,
-0.01575465500354767,
0.018334604799747467,
-0.07572008669376373,
0.021035771816968918,
0.0482717901468277,
-0.020811010152101517,
0.022537099197506905,
0.10407569259405136,
0.056872472167015076,
0.18669384717941284,
0.03246127441525459,
0.05783667787909508,
0.003817143850028515,
-0.024040086194872856,
-0.019820166751742363,
-0.11999529600143433,
0.023048652336001396,
0.08283049613237381,
-0.03218862786889076,
-0.0053174919448792934,
0.05834539607167244,
-0.04376770555973053,
0.12372083216905594,
0.2022971361875534,
-0.2901376783847809,
-0.046840500086545944,
0.039181508123874664,
0.05905042588710785,
0.025984428822994232,
-0.09023481607437134,
0.02604053169488907,
-0.028604021295905113,
0.09141848981380463,
0.01248226035386324,
-0.03417374566197395,
-0.13708753883838654,
-0.08496472239494324,
-0.13102607429027557,
0.03474118188023567,
0.05247272178530693,
-0.011727920733392239,
-0.03760066255927086,
-0.12715229392051697,
-0.07379550486803055,
0.1697772890329361,
0.017564361914992332,
-0.017953628674149513,
0.00600389065220952,
-0.018859222531318665,
-0.0024422109127044678,
-0.12497811764478683,
-0.11129900813102722,
0.03645932301878929,
-0.0969044491648674,
0.12067383527755737,
0.017914438620209694,
0.04490872845053673,
0.0754462331533432,
0.07109794020652771,
-0.12781627476215363,
-0.047611597925424576,
-0.043927572667598724,
-0.04475365951657295,
-0.09043707698583603,
-0.034109923988580704,
-0.04607411473989487,
-0.273413747549057,
-0.003064618445932865,
0.17335306107997894,
-0.03562033548951149,
0.029445793479681015,
-0.06105898320674896,
0.004343118518590927,
0.057129956781864166,
0.10612219572067261,
-0.09776602685451508,
-0.032702572643756866,
0.05774141103029251,
-0.11807192862033844,
0.012683594599366188,
-0.046428076922893524,
-0.050018392503261566,
-0.02277703583240509,
0.0044211349450051785,
-0.018557662144303322,
0.01089952141046524,
0.06531362235546112,
0.031960174441337585,
-0.0412517674267292,
0.08630552887916565,
-0.1101442500948906,
0.038584161549806595,
-0.028293844312429428,
0.02714593894779682,
0.08665145188570023,
0.06948378682136536,
-0.020961130037903786,
-0.058777373284101486,
0.1488538682460785,
-0.036796934902668,
-0.022877199575304985,
-0.026750419288873672,
-0.14692305028438568,
0.07260914146900177,
-0.11245805025100708,
-0.03490575775504112,
-0.08745741844177246,
-0.08086977899074554,
-0.04897194728255272,
0.06728281825780869,
0.0052893259562551975,
0.02194839157164097,
-0.02818911336362362,
-0.009580499492585659,
0.008039441891014576,
-0.018605871126055717,
0.043505895882844925,
-0.010264369659125805,
-0.027151018381118774,
-0.173506498336792,
0.02942608669400215,
-0.07221277803182602,
0.005977023392915726,
-0.04814057797193527,
0.030592558905482292,
-0.27025941014289856,
0.026212578639388084,
-0.13429364562034607,
0.060223326086997986,
-0.03367885574698448,
0.03941678628325462,
-0.012170843780040741,
0.026032060384750366,
0.024223586544394493,
0.03789220377802849,
-0.15384037792682648,
-0.07825394719839096,
0.13800962269306183,
-0.17014969885349274,
0.0283859521150589,
0.1662231832742691,
-0.011785702779889107,
0.008014996536076069,
0.09133414924144745,
0.2629357576370239,
0.056702807545661926,
-0.12438314408063889,
-0.06272369623184204,
0.105240099132061,
-0.06645352393388748,
0.005223254673182964,
0.04621310904622078,
-0.01977551355957985,
0.08604132384061813,
0.05832069739699364,
0.04079427570104599,
0.07854501903057098,
0.00018706671835388988,
0.023166393861174583,
0.004736744798719883,
-0.006680361460894346,
-0.04323992505669594,
-0.018243078142404556,
0.020766563713550568,
-0.0318114273250103,
-0.07016600668430328,
0.15670348703861237,
0.030258959159255028,
-0.10635966807603836,
0.10617222636938095,
0.009753940626978874,
0.06316109746694565,
0.030908167362213135,
0.024144714698195457,
-0.13403666019439697,
-0.20018860697746277,
0.0477415956556797,
-0.06651081144809723,
0.04979730397462845,
0.03966282308101654,
0.038729455322027206,
0.11636482179164886,
-0.04342535510659218,
0.07367885112762451,
0.08260653913021088,
-0.015573245473206043,
-0.07416961342096329,
-0.09939301759004593,
-0.06468427181243896,
-0.05090383067727089,
-0.027461567893624306,
-0.014413208700716496,
0.02613111026585102,
0.08278308808803558,
0.18530458211898804,
0.031195590272545815,
-0.03945917636156082,
-0.0013142121024429798,
0.04359135776758194,
-0.04650173336267471,
-0.025568710640072823,
0.02320188470184803,
0.04280466586351395,
-0.012938144616782665,
0.07634056359529495,
-0.03283419832587242,
-0.13069620728492737,
0.05667124316096306,
0.10544144362211227,
-0.06431664526462555,
0.00036626108339987695,
-0.036819443106651306,
-0.030963849276304245,
-0.06004298850893974,
-0.05550958961248398,
0.1002335324883461,
0.1147443950176239,
0.06967082619667053,
-0.06075563281774521,
-0.03413664549589157,
-0.0018256556941196322,
-0.05264497920870781,
-0.06520359963178635,
0.08681870251893997,
-0.06876072287559509,
-0.09833017736673355,
0.07039438188076019,
-0.060461655259132385,
0.0031360648572444916,
0.2100638449192047,
-0.004951316397637129,
-0.07038197666406631,
-0.00787901971489191,
0.014791329391300678,
0.015089407563209534,
0.009931417182087898,
0.03861909732222557,
0.008686136454343796,
0.05297306180000305,
0.022872136905789375,
0.01831606775522232,
-0.05237306281924248,
0.06508900970220566,
-0.02636605314910412,
0.003584240796044469,
0.0302815530449152,
0.06526048481464386,
-0.010067363269627094,
0.029805414378643036,
0.005566219333559275,
0.010722857899963856,
-0.01248412486165762,
-0.01863173395395279,
-0.07251007109880447,
0.16665007174015045,
-0.11190426349639893,
-0.24389947950839996,
-0.22117148339748383,
-0.055687617510557175,
-0.13956375420093536,
-0.0027847515884786844,
0.09480322152376175,
0.004594382829964161,
-0.09814845025539398,
-0.08414236456155777,
0.16089093685150146,
0.13201534748077393,
-0.053176235407590866,
-0.10455985367298126,
-0.0019026825902983546,
-0.04374447464942932,
-0.14849801361560822,
-0.01190156303346157,
-0.027802402153611183,
-0.025178080424666405,
0.026960598304867744,
0.004803747870028019,
0.06532713025808334,
0.0010350847151130438,
-0.0019941069185733795,
-0.003107036929577589,
-0.009029578417539597,
0.13612578809261322,
-0.015621017664670944,
0.08682951331138611,
0.10830362141132355,
-0.09414936602115631,
0.10682236403226852,
0.09821710735559464,
0.03157222643494606,
-0.009256443940103054,
-0.016029756516218185,
0.06779015064239502,
-0.06568614393472672,
-0.16440343856811523,
-0.0330098494887352,
-0.04816516488790512,
0.08920754492282867,
-0.016512656584382057,
0.040259797126054764,
-0.1282978504896164,
0.031220687553286552,
-0.05062341317534447,
0.004388563334941864,
0.009476916864514351,
0.08534885942935944,
0.1142551451921463,
-0.022775869816541672,
0.058337289839982986,
-0.04820026829838753,
0.016962969675660133,
0.11713558435440063,
0.004661664832383394,
0.15746080875396729,
-0.0571565106511116,
0.09520726650953293,
0.04133760184049606,
0.03372160717844963,
0.038639094680547714,
0.13155286014080048,
-0.07988288253545761,
0.0025826548226177692,
-0.01563676819205284,
-0.022753892466425896,
0.026025887578725815,
0.05230018496513367,
-0.04016553610563278,
-0.10113773494958878,
-0.023847533389925957,
0.002274497877806425,
0.05032939836382866,
0.2779301702976227,
-0.022782515734434128,
-0.04179487004876137,
-0.16515427827835083,
0.0066010309383273125,
-0.15659339725971222,
-0.07567228376865387,
-0.03819756954908371,
0.1724133938550949,
-0.1841735690832138,
0.05406685918569565,
-0.03469870612025261,
0.05915278196334839,
-0.03672221302986145,
0.0007687431643716991,
-0.015047967433929443,
0.11889509856700897,
-0.05059821531176567,
0.06895788013935089,
-0.08593195676803589,
0.08359302580356598,
-0.023424213752150536,
0.03272930160164833,
-0.03346802666783333,
0.05298105999827385,
0.010766677558422089,
0.03770946338772774,
0.1140168234705925,
0.020963478833436966,
-0.15152892470359802,
-0.045109935104846954,
-0.09810133278369904,
0.010699369944632053,
0.04153240844607353,
-0.04359868913888931,
0.05307920649647713,
0.006939904298633337,
0.0028374323155730963,
-0.011979497969150543,
-0.004761730320751667,
-0.02855859510600567,
-0.14019855856895447,
0.03324512019753456,
-0.13671573996543884,
-0.04674450308084488,
-0.010237564332783222,
-0.07426503300666809,
-0.1324324905872345,
0.14906974136829376,
-0.03283005207777023,
-0.10571996122598648,
-0.12384326010942459,
0.005313674919307232,
0.10388234257698059,
-0.08764428645372391,
0.053715240210294724,
-0.019854702055454254,
0.13293513655662537,
-0.1107768639922142,
-0.1325264424085617,
0.06604310870170593,
-0.06076435744762421,
-0.09248970448970795,
0.009829746559262276,
0.07004234194755554,
0.032387346029281616,
0.01175436656922102,
-0.008532940410077572,
0.033712148666381836,
-0.02148442715406418,
-0.09214379638433456,
-0.06235359609127045,
0.13032737374305725,
-0.0029302414041012526,
-0.01898655854165554,
-0.1335391104221344,
-0.016320526599884033,
0.012666790746152401,
-0.010649030096828938,
0.1632746160030365,
0.20388534665107727,
-0.051506541669368744,
0.18588882684707642,
0.20920252799987793,
-0.028646184131503105,
-0.27904024720191956,
-0.0634426400065422,
0.09157038480043411,
0.04711515083909035,
0.03213060647249222,
-0.16108359396457672,
0.17808257043361664,
0.09621097892522812,
0.016653768718242645,
-0.04468461126089096,
-0.06409898400306702,
-0.14143076539039612,
0.09808269143104553,
0.008959997445344925,
0.03049222193658352,
-0.015610148198902607,
-0.027408726513385773,
-0.05343761295080185,
-0.027235200628638268,
0.13187755644321442,
-0.09106865525245667,
0.10629057884216309,
0.03585672751069069,
0.09621066600084305,
0.027953052893280983,
-0.010093003511428833,
0.04455624148249626,
0.03369230031967163,
0.029779894277453423,
-0.07554470002651215,
0.026299485936760902,
0.04612213373184204,
-0.04503116384148598,
0.1432236135005951,
-0.03172646462917328,
-0.021988043561577797,
-0.016284389421343803,
-0.05371762439608574,
-0.05942712724208832,
0.1756453663110733,
-0.006618383340537548,
-0.05308816581964493,
-0.03121320717036724,
0.08315015584230423,
0.04480462521314621,
-0.01893845573067665,
0.09278067201375961,
-0.03599797561764717,
-0.008003395050764084,
0.19631165266036987,
0.057602617889642715,
-0.08728726208209991,
0.009880414232611656,
0.013902590610086918,
-0.03755577281117439,
0.033351920545101166,
-0.03777965158224106,
0.019710931926965714,
0.08344847708940506,
-0.007440263405442238,
0.03953837603330612,
0.022301331162452698,
-0.11168307811021805,
-0.0048040105029940605,
0.07003805041313171,
-0.18166318535804749,
-0.13614043593406677,
-0.010289229452610016,
-0.15941688418388367,
-0.0628262385725975,
0.014421330764889717,
0.18237492442131042,
-0.0161727461963892,
-0.030788781121373177,
-0.008707154542207718,
0.02309906668961048,
-0.02947462908923626,
0.06172894313931465,
-0.002599768340587616,
-0.02360999397933483,
-0.09962432086467743,
0.07750895619392395,
0.046130239963531494,
-0.03967290744185448,
0.02124726213514805,
0.18456217646598816,
-0.1197824776172638,
-0.06011451780796051,
-0.049870993942022324,
0.1657307893037796,
-0.10317114740610123,
0.026462655514478683,
-0.042975958436727524,
-0.08590465784072876,
-0.009686501696705818,
0.1514064520597458,
0.03918136656284332,
0.0540979839861393,
-0.06476539373397827,
0.011868736706674099,
0.0010281589347869158,
0.09790327399969101,
0.0823499858379364,
0.05354555323719978,
-0.05092288553714752,
0.13208085298538208,
-0.09740988165140152,
0.037206925451755524,
-0.04193110764026642,
-0.002839060965925455,
-0.10759466141462326,
-0.09622804820537567,
-0.07302522659301758,
-0.052549030631780624,
-0.06952428817749023,
0.00808535236865282,
-0.0013777035055682063,
-0.0301323514431715,
0.049018148332834244,
0.027311984449625015,
-0.05606331676244736,
-0.036304499953985214,
-0.07898733019828796,
0.07135094702243805,
-0.09946679323911667,
-0.010513069108128548,
0.04694826900959015,
-0.04561677947640419,
0.10962136834859848,
0.04070165753364563,
0.011168577708303928,
0.06285590678453445,
-0.05907057970762253,
-0.04171629250049591,
-0.04103294387459755,
0.03131081536412239,
0.07298621535301208,
0.06898677349090576,
-0.014438719488680363,
-0.028043869882822037,
0.013230089098215103,
0.008932020515203476,
0.1431310772895813,
-0.08039389550685883,
0.07024190574884415,
0.008704562671482563,
-0.12440714985132217,
-0.07735611498355865,
0.04190801829099655,
0.08109302818775177,
0.10284234583377838,
0.13689960539340973,
-0.06576443463563919,
0.01268433965742588,
-0.0934215560555458,
-0.010202009230852127,
0.07205240428447723,
-0.11247678101062775,
0.013667485676705837,
-0.08594650030136108,
0.012271675281226635,
0.006831808015704155,
0.05062892660498619,
0.08293328434228897,
-0.013509591110050678,
0.01258018333464861,
-0.007745267823338509,
-0.02803574502468109,
0.03587828576564789,
0.04543944448232651,
-0.022502722218632698,
0.011382726021111012,
-0.07668902724981308,
0.00018178184109274298,
-0.01323324628174305,
-0.05145582556724548,
0.13068602979183197,
0.049294378608465195,
-0.03720712661743164,
0.07995457947254181,
0.1091310903429985,
0.021909646689891815,
-0.17532163858413696,
-0.01521630771458149,
-0.02536492794752121,
0.093306764960289,
-0.09717797487974167,
0.060314249247312546,
0.025163868442177773,
-0.18564237654209137,
0.11445784568786621,
0.05530129745602608,
-0.07650941610336304,
-0.10357239097356796,
-0.18448896706104279,
-0.0389443002641201,
-0.032037295401096344,
0.035145122557878494,
-0.1138664186000824,
0.026515088975429535,
0.06310334801673889,
0.03216426447033882,
0.0029979092068970203,
0.1258814036846161,
-0.15746356546878815,
-0.060813043266534805,
0.04197172075510025,
0.014600740745663643,
0.015049978159368038,
0.012660681270062923,
-0.03419032692909241,
-0.025314049795269966,
0.08940200507640839,
-0.030676059424877167,
0.03170457482337952,
0.09069957584142685,
-0.03076756000518799,
-0.06640017032623291,
-0.06269627064466476,
-0.010605842806398869,
-0.013969042338430882,
-0.022305218502879143,
0.06608917564153671,
0.06403686106204987,
-0.0688309594988823,
-0.022157857194542885,
0.10566650331020355,
-0.045048173516988754,
-0.05591496452689171,
-0.15240821242332458,
0.14815977215766907,
-0.02338702790439129,
0.056159667670726776,
-0.04234398901462555,
-0.08011279255151749,
-0.0479828305542469,
0.17270107567310333,
0.1477086842060089,
0.01576802134513855,
0.0006448616040870547,
0.028615478426218033,
-0.016337525099515915,
0.0019277194514870644,
0.1576487421989441,
0.002108677290380001,
0.18995147943496704,
-0.0235615074634552,
0.0674862414598465,
0.02048180252313614,
-0.04824423789978027,
-0.16192011535167694,
0.10319534689188004,
-0.047071248292922974,
0.0020123443100601435,
-0.05135885253548622,
0.06581921875476837,
-0.057754043489694595,
-0.22590447962284088,
-0.033046118915081024,
-0.04472173750400543,
-0.09508854150772095,
-0.03264005482196808,
-0.013142803683876991,
0.0016553791938349605,
0.1075742095708847,
0.004174437839537859,
0.027089973911643028,
0.18171608448028564,
-0.0062712449580430984,
-0.0326320081949234,
-0.024013444781303406,
0.11424285918474197,
-0.09932629019021988,
0.09867934137582779,
0.014701765030622482,
-0.018115777522325516,
0.08000984787940979,
0.02746272087097168,
-0.034969624131917953,
-0.04516405984759331,
-0.0001427475071977824,
-0.11651398986577988,
0.01552090048789978,
0.0972258448600769,
-0.04799986630678177,
0.07018958777189255,
-0.04718067869544029,
-0.12598229944705963,
0.05033431574702263,
0.027734657749533653,
0.005596226081252098,
0.0030835235957056284,
0.06838230043649673,
-0.10876361280679703,
0.14338453114032745,
0.20955294370651245,
0.0228342916816473,
-0.03575240820646286,
-0.07321174442768097,
0.0019065721426159143,
0.011612163856625557,
0.00541318254545331,
-0.01563054509460926,
-0.19137094914913177,
-0.00309972045943141,
0.030858006328344345,
0.006094318814575672,
-0.11742236465215683,
-0.07566595822572708,
-0.026670506224036217,
0.024656232446432114,
-0.0622832328081131,
0.05493345484137535,
0.08606800436973572,
-0.030511608347296715,
0.007329302839934826,
-0.03292969986796379,
0.02524491585791111,
0.015350742265582085,
-0.025811713188886642,
-0.06771872192621231
] |
null | null | transformers |
# Swedish BERT Models
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
- **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
- **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
- **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
## Files
| **name** | **files** |
|---------------------------------|-----------|
| bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) |
| bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) |
| albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) |
TensorFlow model weights will be released soon.
## Usage requirements / installation instructions
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
```
# git clone https://github.com/Kungbib/swedish-bert-models
# cd swedish-bert-models
# python3 -m venv venv
# source venv/bin/activate
# pip install --upgrade pip
# pip install -r requirements.txt
```
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
```
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
```python
from transformers import pipeline
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
nlp('Idag släpper KB tre språkmodeller.')
```
Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change.
```python
[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' },
{ 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ]
```
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this:
```python
text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\
'som spelar fotboll i VM klockan två på kvällen.'
l = []
for token in nlp(text):
if token['word'].startswith('##'):
l[-1]['word'] += token['word'][2:]
else:
l += [ token ]
print(l)
```
Which should result in the following (though less cleanly formatted):
```python
[ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'},
{ 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'},
{ 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'},
{ 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'två', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'på', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ]
```
### ALBERT base
The easiest way to do this is, again, using Huggingface Transformers:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
```
## Acknowledgements ❤️
- Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
- Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
- Models are hosted on S3 by Huggingface 🤗
| {"language": "sv"} | token-classification | KBLab/bert-base-swedish-cased-ner | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"token-classification",
"sv",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #tf #jax #safetensors #bert #token-classification #sv #autotrain_compatible #endpoints_compatible #has_space #region-us
| Swedish BERT Models
===================
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
* bert-base-swedish-cased (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
* bert-base-swedish-cased-ner (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
* albert-base-swedish-cased-alpha (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
Files
-----
TensorFlow model weights will be released soon.
Usage requirements / installation instructions
----------------------------------------------
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the 'do\_lower\_case' flag parameter set to 'False' and 'keep\_accents' to 'True' (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
Running the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:
Which should result in the following (though less cleanly formatted):
### ALBERT base
The easiest way to do this is, again, using Huggingface Transformers:
Acknowledgements ️
------------------
* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
* Models are hosted on S3 by Huggingface
| [
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):",
"### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #sv #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):",
"### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
54,
50,
233,
124
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #sv #autotrain_compatible #endpoints_compatible #has_space #region-us \n### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formatted):### ALBERT base\n\n\nThe easiest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface"
] | [
-0.017392560839653015,
0.042763933539390564,
-0.0040040635503828526,
0.08272479474544525,
0.08130399137735367,
-0.04685554653406143,
0.09913379698991776,
0.03992042317986488,
0.08574338257312775,
0.0793784037232399,
0.026610149070620537,
-0.04823584109544754,
0.07991691678762436,
0.08325351774692535,
0.019958315417170525,
-0.2974073886871338,
0.07304456830024719,
-0.09949077665805817,
-0.05709289014339447,
-0.002188599668443203,
0.09702154248952866,
-0.05514875054359436,
0.09932070225477219,
-0.01732008159160614,
-0.015108388848602772,
0.03616352006793022,
-0.06598072499036789,
-0.015403004363179207,
0.12073881179094315,
0.10014078766107559,
0.07758019864559174,
-0.021488560363650322,
0.06146436557173729,
-0.17332515120506287,
0.010820524767041206,
0.03832940384745598,
-0.02580045722424984,
0.0005091328057460487,
0.06480062007904053,
0.0878574475646019,
0.16144266724586487,
-0.046815261244773865,
0.03426451236009598,
-0.0275327879935503,
-0.019087307155132294,
-0.03395209461450577,
-0.09195397794246674,
0.028822993859648705,
0.04014286771416664,
0.0064169676043093204,
-0.003186209360137582,
0.04675614461302757,
-0.08153781294822693,
0.10370418429374695,
0.20185893774032593,
-0.2573765516281128,
-0.040453940629959106,
0.044473111629486084,
0.04825552552938461,
0.04296205937862396,
-0.1015055701136589,
0.037055853754282,
-0.009242922067642212,
0.06531570106744766,
0.06375996023416519,
-0.046332187950611115,
-0.14085343480110168,
-0.06181907281279564,
-0.12469825893640518,
0.013452153652906418,
0.08417237550020218,
-0.011225268244743347,
-0.0516512468457222,
-0.10821205377578735,
-0.06266674399375916,
0.12849007546901703,
0.02697152830660343,
-0.06949296593666077,
0.045802630484104156,
-0.01806187815964222,
0.026884915307164192,
-0.11204342544078827,
-0.11669646948575974,
0.062190331518650055,
-0.05533546209335327,
0.14933034777641296,
0.017975561320781708,
0.026785345748066902,
0.006844168994575739,
0.06045886501669884,
-0.1051705926656723,
-0.06699426472187042,
-0.053345534950494766,
-0.03138469159603119,
-0.08164136111736298,
-0.038411229848861694,
-0.027974776923656464,
-0.16714584827423096,
-0.009791851975023746,
0.14905168116092682,
-0.07937470823526382,
0.03218964487314224,
-0.020488565787672997,
0.02087591029703617,
0.03750409558415413,
0.16609854996204376,
-0.06336993724107742,
-0.1281757652759552,
0.054210010915994644,
-0.10501974076032639,
0.051962126046419144,
-0.010892728343605995,
-0.0827610045671463,
-0.026166310533881187,
0.02114555612206459,
0.008474016562104225,
0.002115469891577959,
0.07616986334323883,
0.02086547203361988,
-0.02377001754939556,
0.08595507591962814,
-0.08721102029085159,
0.04254020377993584,
-0.0287616103887558,
-0.007777974475175142,
0.04874850809574127,
0.057869281619787216,
-0.00827215425670147,
-0.058919209986925125,
0.1892758160829544,
-0.032948099076747894,
-0.03402596339583397,
-0.016300510615110397,
-0.126179501414299,
0.07802240550518036,
-0.10088971257209778,
-0.006329077761620283,
-0.14467619359493256,
-0.13752394914627075,
-0.05050802230834961,
0.05599123612046242,
0.01879337802529335,
0.016602857038378716,
-0.048007313162088394,
-0.024887552484869957,
0.005599338095635176,
-0.036374446004629135,
-0.008501281030476093,
-0.02859656699001789,
-0.025159714743494987,
-0.14557521045207977,
0.03703359514474869,
-0.045648686587810516,
-0.009639479219913483,
-0.10335738211870193,
-0.003621228039264679,
-0.2409125566482544,
0.013119884766638279,
-0.12426846474409103,
0.08137007802724838,
-0.04051318019628525,
0.022338395938277245,
-0.028498053550720215,
0.047705333679914474,
0.029025714844465256,
0.08367911726236343,
-0.10264993458986282,
-0.053919337689876556,
0.13643410801887512,
-0.15386493504047394,
-0.017872104421257973,
0.14953909814357758,
0.013626059517264366,
0.04145606979727745,
0.1140749454498291,
0.1929556429386139,
0.04885170981287956,
-0.18594340980052948,
-0.08352504670619965,
0.09578360617160797,
-0.08198491483926773,
0.02095729671418667,
0.014029284939169884,
-0.03564468026161194,
0.027200374752283096,
0.05839594081044197,
-0.0025686121080070734,
0.021040959283709526,
0.027710767462849617,
0.03225637227296829,
0.0194981899112463,
-0.00805608555674553,
-0.015415482223033905,
-0.012240597978234291,
0.001046472229063511,
-0.02399691566824913,
-0.08756802976131439,
0.10687209665775299,
0.04835516959428787,
-0.04829643294215202,
0.12253241240978241,
0.015934430062770844,
0.05546272546052933,
0.04003794118762016,
-0.010056042112410069,
-0.09913606941699982,
-0.17200516164302826,
0.05127831548452377,
-0.08318561315536499,
0.04782425984740257,
0.04217904433608055,
0.041821472346782684,
0.08628317713737488,
-0.04341321811079979,
0.021267971023917198,
0.031498104333877563,
-0.017189467325806618,
-0.08217395097017288,
-0.10256172716617584,
-0.03720443695783615,
-0.052890099585056305,
-0.029469145461916924,
-0.059251345694065094,
0.0014709321549162269,
0.07364999502897263,
0.16098521649837494,
0.06984144449234009,
-0.024593938142061234,
-0.027965528890490532,
0.04347294941544533,
-0.023310119286179543,
-0.03640523552894592,
0.0031465443316847086,
0.034196704626083374,
-0.018291553482413292,
0.0804169550538063,
-0.030861394479870796,
-0.09260401129722595,
0.03837679326534271,
0.09752368927001953,
-0.05621347948908806,
-0.03573737293481827,
-0.02169683203101158,
-0.02004043385386467,
-0.07953978329896927,
-0.07707357406616211,
0.11021975427865982,
0.07197849452495575,
0.06882350146770477,
-0.0790189877152443,
-0.03123650513589382,
-0.021792855113744736,
-0.06564703583717346,
-0.060550883412361145,
0.07780659943819046,
0.0016383019974455237,
-0.1256086230278015,
0.07302430272102356,
-0.03671926259994507,
-0.012516130693256855,
0.2044285237789154,
0.029793765395879745,
-0.06142505630850792,
0.0007932016160339117,
-0.00984403770416975,
0.002001589396968484,
0.073714479804039,
0.020494386553764343,
0.007089649792760611,
0.012194300070405006,
0.021469397470355034,
0.024141890928149223,
-0.024809984490275383,
0.05856718122959137,
-0.009670086205005646,
0.01673406921327114,
0.07254425436258316,
0.03513173758983612,
-0.011071067303419113,
0.0493844710290432,
0.011756130494177341,
-0.026052124798297882,
-0.015344491228461266,
-0.028494520112872124,
-0.08185405284166336,
0.16317160427570343,
-0.10928191989660263,
-0.26232996582984924,
-0.20113374292850494,
-0.020841527730226517,
-0.09519457817077637,
-0.0010193289490416646,
0.10607092827558517,
0.0058875721879303455,
-0.11622827500104904,
-0.0969720259308815,
0.14264535903930664,
0.10944259166717529,
-0.050088997930288315,
-0.13340698182582855,
-0.0012951043900102377,
-0.016147270798683167,
-0.13348174095153809,
-0.015900319442152977,
-0.05312810838222504,
-0.03140449896454811,
0.009757725521922112,
0.021452588960528374,
0.08957762271165848,
-0.01791003905236721,
0.007532376330345869,
-0.03367172181606293,
-0.026673471555113792,
0.13887372612953186,
-0.052406154572963715,
0.11755913496017456,
0.054895561188459396,
-0.0681355819106102,
0.11110623180866241,
0.13859309256076813,
0.025426950305700302,
-0.01871149055659771,
0.011530955322086811,
0.06491118669509888,
-0.03811750188469887,
-0.1647573858499527,
-0.09029289335012436,
-0.030077772215008736,
0.059968870133161545,
0.023725781589746475,
0.05733640119433403,
-0.10255254805088043,
0.02014012262225151,
-0.03788800537586212,
0.010071199387311935,
-0.00276686972938478,
0.09537357836961746,
0.07353618741035461,
0.0010663919383659959,
0.03056294098496437,
-0.014133710414171219,
-0.0063426559790968895,
0.11816585808992386,
-0.022610414773225784,
0.16186311841011047,
-0.0649794414639473,
0.04410649463534355,
0.02652808465063572,
0.04140615463256836,
0.02386154606938362,
0.08344127237796783,
-0.0656837746500969,
0.0168557520955801,
-0.013924219645559788,
-0.039717864245176315,
-0.011516052298247814,
0.09115369617938995,
-0.004834190011024475,
-0.06419031322002411,
-0.022784531116485596,
0.005916256457567215,
0.05944536626338959,
0.23343080282211304,
-0.024244127795100212,
-0.047827571630477905,
-0.11296430975198746,
0.022640487179160118,
-0.1215534508228302,
-0.06837903708219528,
-0.003522413084283471,
0.19333584606647491,
-0.17553779482841492,
0.045530710369348526,
-0.0249308031052351,
0.05565879866480827,
-0.04197009280323982,
0.016985511407256126,
-0.005407235585153103,
0.09462755918502808,
-0.0366615355014801,
0.0643395483493805,
-0.11269114911556244,
0.10780871659517288,
-0.0007746809278614819,
0.07512329518795013,
-0.0183115154504776,
0.04283064976334572,
0.022139152511954308,
0.08230402320623398,
0.1427418291568756,
0.03987853229045868,
-0.17150713503360748,
-0.09115201234817505,
-0.07748449593782425,
0.029247144237160683,
0.07512946426868439,
-0.04270210117101669,
0.08050442487001419,
0.000608048343565315,
0.014311885461211205,
-0.02336125262081623,
-0.04598717391490936,
-0.06717534363269806,
-0.12054012715816498,
0.007944696582853794,
-0.07536708563566208,
-0.0032944828271865845,
-0.03439420461654663,
-0.029495302587747574,
-0.1336866319179535,
0.11292935907840729,
-0.05290687829256058,
-0.06922856718301773,
-0.12489936500787735,
-0.05970195680856705,
0.05515767261385918,
-0.1168232336640358,
0.04742048680782318,
0.004401496145874262,
0.10428185760974884,
-0.10786014795303345,
-0.07951486855745316,
0.06198007985949516,
-0.07182363420724869,
-0.10272692888975143,
-0.01091067772358656,
0.06887536495923996,
0.09613708406686783,
-0.009503182955086231,
0.01683461293578148,
0.02577478624880314,
0.01616746187210083,
-0.10107038170099258,
-0.03864821419119835,
0.15895074605941772,
0.001739401719532907,
0.0026911317836493254,
-0.12512938678264618,
0.0013856146251782775,
0.01906489208340645,
0.009185617789626122,
0.11694876104593277,
0.21282958984375,
-0.04491850361227989,
0.16947191953659058,
0.2608850598335266,
-0.08404837548732758,
-0.2990654706954956,
-0.04942433536052704,
0.054219458252191544,
0.024698756635189056,
0.06343385577201843,
-0.1360645443201065,
0.18927764892578125,
0.047929078340530396,
-0.012319847010076046,
-0.014638674445450306,
-0.06969717144966125,
-0.11745338886976242,
0.11846095323562622,
-0.008317734114825726,
0.010347391478717327,
-0.011106128804385662,
-0.03753058239817619,
-0.051491629332304,
-0.053480394184589386,
0.09007992595434189,
-0.10005335509777069,
0.08282897621393204,
0.031389523297548294,
0.09065031260251999,
0.03841516748070717,
-0.018201276659965515,
0.05784069746732712,
0.02803867869079113,
0.03968813642859459,
-0.07669303566217422,
0.009657667018473148,
0.031020957976579666,
-0.0654807835817337,
0.15360581874847412,
-0.03682441636919975,
-0.02270435355603695,
-0.09677888453006744,
-0.03399006649851799,
-0.0382683090865612,
0.2259763926267624,
-0.024612832814455032,
-0.06630244851112366,
-0.08850003033876419,
0.10528618842363358,
0.09135553240776062,
-0.003996308892965317,
0.0941736176609993,
-0.03866807743906975,
-0.039731208235025406,
0.19579264521598816,
0.06600328534841537,
-0.03896069526672363,
0.0024641831405460835,
0.024099085479974747,
-0.038805391639471054,
0.07651814073324203,
0.026196852326393127,
0.04719674587249756,
0.08684122562408447,
-0.01923193968832493,
0.048441331833601,
-0.01651844196021557,
-0.10382743924856186,
-0.02027716301381588,
0.05547613650560379,
-0.16790619492530823,
-0.06120578944683075,
-0.04645983502268791,
-0.09968389570713043,
-0.02911817654967308,
0.028541890904307365,
0.18876726925373077,
-0.04289785400032997,
-0.008613611571490765,
-0.02381344884634018,
0.05876097083091736,
0.016960512846708298,
0.017246084287762642,
0.018434317782521248,
-0.018779046833515167,
-0.05281296744942665,
0.13785961270332336,
0.027727695181965828,
-0.03734845295548439,
0.052939314395189285,
0.14715862274169922,
-0.09800766408443451,
-0.0462331660091877,
-0.04329642280936241,
0.16082480549812317,
-0.05961620807647705,
-0.03474058955907822,
-0.006275512743741274,
-0.06622891873121262,
-0.02373344451189041,
0.11635489016771317,
0.03295857831835747,
0.00877914484590292,
-0.05466756969690323,
0.050684984773397446,
-0.03234788775444031,
0.0950990840792656,
0.0681275799870491,
0.051169253885746,
-0.04740787297487259,
0.09822621941566467,
-0.06370454281568527,
0.001722260843962431,
-0.036006975919008255,
-0.007012094371020794,
-0.11032295972108841,
-0.08517806977033615,
-0.06210629269480705,
-0.017393751069903374,
-0.04178183898329735,
0.018410680815577507,
-0.0016898122848942876,
-0.0349261499941349,
0.03692307695746422,
0.017856383696198463,
-0.0405067503452301,
-0.018466537818312645,
-0.046562206000089645,
0.06315068900585175,
-0.13410654664039612,
-0.043439920991659164,
0.044374529272317886,
-0.04171902313828468,
0.10080428421497345,
0.009510476142168045,
0.004901325795799494,
0.08604549616575241,
-0.13246303796768188,
0.009222782216966152,
-0.02010289765894413,
0.017435560002923012,
0.05203003063797951,
0.02400888130068779,
-0.038368742913007736,
-0.030650664120912552,
0.002994769951328635,
-0.021958064287900925,
0.07565111666917801,
-0.0875110775232315,
0.07959671318531036,
0.02675008587539196,
-0.11227972060441971,
-0.05223942920565605,
0.040886130183935165,
0.051935017108917236,
0.03499080613255501,
0.12653027474880219,
-0.08796178549528122,
0.002125928644090891,
-0.0607164241373539,
-0.002167677041143179,
0.09044620394706726,
-0.05959801375865936,
-0.028432510793209076,
-0.05875077098608017,
0.011644314043223858,
-0.020259931683540344,
0.07313680648803711,
0.07746867090463638,
-0.011437282897531986,
0.025586243718862534,
-0.07558547705411911,
-0.052575089037418365,
0.010004893876612186,
-0.012944971211254597,
-0.040072642266750336,
0.026363063603639603,
-0.07831387221813202,
-0.02057517133653164,
0.013443028554320335,
-0.04592262580990791,
0.19801375269889832,
0.036248043179512024,
0.01568354107439518,
0.10713021457195282,
0.05242675915360451,
0.020946091040968895,
-0.19344806671142578,
-0.03495195508003235,
-0.017160601913928986,
0.0711350291967392,
-0.05790182203054428,
0.07451646775007248,
0.04595319181680679,
-0.1671261191368103,
0.08424098044633865,
0.050008080899715424,
-0.05689321830868721,
-0.11225946992635727,
-0.2101428508758545,
-0.05525035411119461,
-0.018930459395051003,
0.0273615512996912,
-0.1169607937335968,
0.02404445968568325,
0.04848413169384003,
0.021301109343767166,
-0.01376359909772873,
0.09726273268461227,
-0.15272019803524017,
-0.04822799935936928,
0.06493857502937317,
0.036569591611623764,
0.03204415366053581,
0.0409102700650692,
-0.036195751279592514,
-0.050364747643470764,
0.08819025754928589,
-0.021700020879507065,
0.04231812432408333,
0.058520182967185974,
-0.017778078094124794,
-0.014609938487410545,
-0.03916327282786369,
-0.0022260555997490883,
0.005941311828792095,
-0.033650532364845276,
0.07554075866937637,
0.0734214186668396,
-0.03793581947684288,
-0.023217691108584404,
0.1611679643392563,
-0.0687461644411087,
-0.039397455751895905,
-0.108476921916008,
0.13816985487937927,
0.021967817097902298,
0.0903589129447937,
-0.02441801317036152,
-0.09384094178676605,
-0.027535023167729378,
0.17287799715995789,
0.11168330907821655,
0.00956192146986723,
0.022770985960960388,
-0.016297491267323494,
-0.01070381049066782,
0.00940793752670288,
0.12906034290790558,
-0.0005143429152667522,
0.23529012501239777,
-0.023501884192228317,
0.056069497019052505,
0.012599635869264603,
-0.020847143605351448,
-0.1340700387954712,
0.11276862770318985,
-0.05404471978545189,
0.007083670701831579,
-0.10850977897644043,
0.034936822950839996,
-0.08823753893375397,
-0.30271589756011963,
-0.00028871538233943284,
-0.007070487830787897,
-0.09295418858528137,
-0.00011474885104689747,
0.021299559623003006,
0.03112257830798626,
0.0953095406293869,
0.020948953926563263,
0.012531980872154236,
0.19804610311985016,
0.010333647951483727,
-0.059333570301532745,
-0.044816650450229645,
0.08184991031885147,
-0.07191793620586395,
0.2029794603586197,
0.012266714125871658,
-0.019307361915707588,
0.06943555176258087,
0.01821148581802845,
-0.04985397309064865,
-0.007045190781354904,
0.024068370461463928,
-0.15313589572906494,
-0.010292491875588894,
0.07018962502479553,
-0.04308735206723213,
0.12715992331504822,
0.02135385200381279,
-0.09816857427358627,
0.04669753834605217,
0.09282262623310089,
-0.029173213988542557,
-0.02999693527817726,
0.06925506889820099,
-0.0931207463145256,
0.14087079465389252,
0.16669291257858276,
0.031675856560468674,
-0.019613346084952354,
-0.06816083937883377,
0.021835945546627045,
-0.006875115912407637,
-0.02774733677506447,
0.017250224947929382,
-0.11215532571077347,
0.010452142916619778,
0.044703491032123566,
0.03937163203954697,
-0.08461695909500122,
-0.05852605774998665,
-0.012868037447333336,
0.029944662004709244,
-0.03835820406675339,
0.07067658007144928,
0.0470406711101532,
-0.02468409389257431,
-0.004153013229370117,
-0.014230619184672832,
0.007879582233726978,
0.051761627197265625,
-0.05547496676445007,
-0.07374108582735062
] |
null | null | transformers |
# Swedish BERT Models
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
- **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
- **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
- **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
## Files
| **name** | **files** |
|---------------------------------|-----------|
| bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) |
| bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) |
| albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) |
TensorFlow model weights will be released soon.
## Usage requirements / installation instructions
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
```
# git clone https://github.com/Kungbib/swedish-bert-models
# cd swedish-bert-models
# python3 -m venv venv
# source venv/bin/activate
# pip install --upgrade pip
# pip install -r requirements.txt
```
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
```
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
```python
from transformers import pipeline
nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner')
nlp('Idag släpper KB tre språkmodeller.')
```
Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change.
```python
[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' },
{ 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ]
```
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this:
```python
text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\
'som spelar fotboll i VM klockan två på kvällen.'
l = []
for token in nlp(text):
if token['word'].startswith('##'):
l[-1]['word'] += token['word'][2:]
else:
l += [ token ]
print(l)
```
Which should result in the following (though less cleanly formated):
```python
[ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'},
{ 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'},
{ 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'},
{ 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'två', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'på', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ]
```
### ALBERT base
The easisest way to do this is, again, using Huggingface Transformers:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
```
## Acknowledgements ❤️
- Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
- Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
- Models are hosted on S3 by Huggingface 🤗
## Citation
https://arxiv.org/abs/2007.01658
```
@misc{malmsten2020playing,
title={Playing with Words at the National Library of Sweden -- Making a Swedish BERT},
author={Martin Malmsten and Love Börjeson and Chris Haffenden},
year={2020},
eprint={2007.01658},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| {"language": "sv", "arxiv": "https://arxiv.org/abs/2007.01658"} | fill-mask | KBLab/bert-base-swedish-cased | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"sv",
"arxiv:2007.01658",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2007.01658"
] | [
"sv"
] | TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #sv #arxiv-2007.01658 #autotrain_compatible #endpoints_compatible #region-us
| Swedish BERT Models
===================
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
* bert-base-swedish-cased (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
* bert-base-swedish-cased-ner (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
* albert-base-swedish-cased-alpha (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
Files
-----
TensorFlow model weights will be released soon.
Usage requirements / installation instructions
----------------------------------------------
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the 'do\_lower\_case' flag parameter set to 'False' and 'keep\_accents' to 'True' (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
Running the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:
Which should result in the following (though less cleanly formated):
### ALBERT base
The easisest way to do this is, again, using Huggingface Transformers:
Acknowledgements ️
------------------
* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
* Models are hosted on S3 by Huggingface
URL
| [
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formated):",
"### ALBERT base\n\n\nThe easisest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface\n\n\nURL"
] | [
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #sv #arxiv-2007.01658 #autotrain_compatible #endpoints_compatible #region-us \n",
"### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:",
"### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formated):",
"### ALBERT base\n\n\nThe easisest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface\n\n\nURL"
] | [
57,
50,
233,
125
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #sv #arxiv-2007.01658 #autotrain_compatible #endpoints_compatible #region-us \n### BERT Base Swedish\n\n\nA standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:### BERT base fine-tuned for Swedish NER\n\n\nThis model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:\n\n\nRunning the Python code above should produce in something like the result below. Entity types used are 'TME' for time, 'PRS' for personal names, 'LOC' for locations, 'EVN' for events and 'ORG' for organisations. These labels are subject to change.\n\n\nThe BERT tokenizer often splits words into multiple tokens, with the subparts starting with '##', for example the string 'Engelbert kör Volvo till Herrängens fotbollsklubb' gets tokenized as 'Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb'. To glue parts back together one can use something like this:\n\n\nWhich should result in the following (though less cleanly formated):### ALBERT base\n\n\nThe easisest way to do this is, again, using Huggingface Transformers:\n\n\nAcknowledgements ️\n------------------\n\n\n* Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.\n* Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\n* Models are hosted on S3 by Huggingface\n\n\nURL"
] | [
-0.004120428115129471,
0.03910374268889427,
-0.0035035538021475077,
0.08249018341302872,
0.09592294692993164,
-0.038086481392383575,
0.11269763857126236,
0.048208869993686676,
0.0967915803194046,
0.08751936256885529,
0.02637087181210518,
-0.06979571282863617,
0.08267556875944138,
0.07268478721380234,
0.03457428514957428,
-0.27384108304977417,
0.06391600519418716,
-0.09971331804990768,
-0.045267652720212936,
-0.009593956172466278,
0.09337612986564636,
-0.04370734468102455,
0.10518202185630798,
-0.02778802067041397,
-0.02567877806723118,
0.045236844569444656,
-0.06048477441072464,
-0.010850038379430771,
0.11994204670190811,
0.11354725062847137,
0.07108556479215622,
-0.03313254565000534,
0.07036318629980087,
-0.16235972940921783,
0.010748375207185745,
0.03627801686525345,
-0.03222580626606941,
-0.005636495538055897,
0.05966190993785858,
0.08499713987112045,
0.14840500056743622,
-0.03675546869635582,
0.0350530780851841,
-0.02617442049086094,
-0.023200899362564087,
-0.044591858983039856,
-0.10340934246778488,
0.03149629756808281,
0.03540857136249542,
0.020732561126351357,
-0.0005355207831598818,
0.05497581511735916,
-0.09115671366453171,
0.10693473368883133,
0.2211480736732483,
-0.22251445055007935,
-0.0407751202583313,
0.06034258008003235,
0.05527342110872269,
0.0369347408413887,
-0.0962890014052391,
0.035235632210969925,
-0.0050562419928610325,
0.07387279719114304,
0.0428527370095253,
-0.04002346098423004,
-0.14593219757080078,
-0.06625083088874817,
-0.11030764877796173,
0.017682068049907684,
0.07468649744987488,
-0.002475038170814514,
-0.061063602566719055,
-0.1019132062792778,
-0.048468563705682755,
0.1445416659116745,
0.01700541004538536,
-0.05591180548071861,
0.04700222611427307,
-0.01781398616731167,
0.023837056010961533,
-0.1093791201710701,
-0.11628790944814682,
0.04600440710783005,
-0.038300465792417526,
0.14502482116222382,
0.013609296642243862,
0.034523140639066696,
-0.0006438016425818205,
0.05104590207338333,
-0.11993622034788132,
-0.05990069359540939,
-0.048035573214292526,
-0.020766424015164375,
-0.07234490662813187,
-0.02901531010866165,
-0.04053501412272453,
-0.16177022457122803,
-0.008221559226512909,
0.1429247111082077,
-0.047555454075336456,
0.03591593727469444,
-0.020799187943339348,
0.019746700301766396,
0.02472682297229767,
0.16671377420425415,
-0.06942122429609299,
-0.11693141609430313,
0.060271285474300385,
-0.10783535242080688,
0.06357650458812714,
-0.004086717963218689,
-0.09497211128473282,
-0.02696114033460617,
0.013068701140582561,
0.007478215266019106,
0.011286900378763676,
0.06721921265125275,
0.013649425469338894,
-0.00682081887498498,
0.10712220519781113,
-0.08272262662649155,
0.04926685616374016,
-0.021849920973181725,
-0.010848883539438248,
0.03768879920244217,
0.06656129658222198,
-0.016390226781368256,
-0.059469275176525116,
0.1762492060661316,
-0.030037621036171913,
-0.0274563767015934,
-0.01278664916753769,
-0.1336466670036316,
0.07757743448019028,
-0.10120795667171478,
-0.0031560207717120647,
-0.15636302530765533,
-0.1403188705444336,
-0.06501352787017822,
0.053069449961185455,
0.007246132008731365,
0.012024975381791592,
-0.03675565496087074,
-0.02401086501777172,
0.006804246921092272,
-0.02788432314991951,
-0.0031166719272732735,
-0.025490298867225647,
-0.018866214901208878,
-0.1360463947057724,
0.03123069368302822,
-0.05729522183537483,
-0.008374580182135105,
-0.09005285054445267,
-0.009765664115548134,
-0.23502430319786072,
0.008152004331350327,
-0.11883970350027084,
0.10064270347356796,
-0.04761204496026039,
0.021022235974669456,
-0.03043276071548462,
0.05198799446225166,
0.051104698330163956,
0.08478560298681259,
-0.09892307966947556,
-0.04755701497197151,
0.13584041595458984,
-0.14871785044670105,
-0.029137490317225456,
0.1599239706993103,
0.02314225398004055,
0.04137289524078369,
0.11079872399568558,
0.18151740729808807,
0.037713274359703064,
-0.1784079223871231,
-0.07547934353351593,
0.10265069454908371,
-0.06446181982755661,
0.000812562822829932,
0.023242076858878136,
-0.0474882647395134,
0.02547009289264679,
0.0550413616001606,
0.008774897083640099,
0.028888417407870293,
0.03476070985198021,
0.03211543709039688,
0.017062371596693993,
-0.01615351065993309,
-0.05131623148918152,
-0.0015897705452516675,
0.008134989999234676,
-0.03324614465236664,
-0.0918266549706459,
0.07438212633132935,
0.05761133134365082,
-0.05190524831414223,
0.13638418912887573,
0.027419529855251312,
0.07252180576324463,
0.03770921751856804,
-0.015371820889413357,
-0.09601137042045593,
-0.15609705448150635,
0.05496750771999359,
-0.110834501683712,
0.040553875267505646,
0.024740619584918022,
0.04515118524432182,
0.08253106474876404,
-0.049181025475263596,
0.020102472975850105,
0.02492693066596985,
-0.03132486343383789,
-0.07678857445716858,
-0.09100650250911713,
-0.04200461879372597,
-0.04959893971681595,
-0.01416538655757904,
-0.062490545213222504,
-0.0016398039879277349,
0.041315510869026184,
0.15407073497772217,
0.061897505074739456,
-0.02919412963092327,
-0.027343476191163063,
0.03552527353167534,
-0.008136778138577938,
-0.04020516946911812,
0.010371161624789238,
0.04821644723415375,
-0.021541999652981758,
0.06842707842588425,
-0.021706152707338333,
-0.1138247400522232,
0.033618662506341934,
0.10050700604915619,
-0.06029724329710007,
-0.008764770813286304,
-0.018508050590753555,
-0.016367580741643906,
-0.07816627621650696,
-0.08658980578184128,
0.10327793657779694,
0.07272352278232574,
0.060254793614149094,
-0.08140392601490021,
-0.035366229712963104,
-0.02354826033115387,
-0.06820664554834366,
-0.05902642756700516,
0.07890314608812332,
0.014793419279158115,
-0.11626909673213959,
0.07815783470869064,
-0.0653790608048439,
-0.02750198356807232,
0.1907060444355011,
0.024191373959183693,
-0.06262839585542679,
0.010101188905537128,
-0.013583667576313019,
0.0024998115841299295,
0.07426740229129791,
0.026099106296896935,
0.00006256018241401762,
0.013960953801870346,
0.004183278419077396,
0.02344946749508381,
-0.025549424812197685,
0.050921205431222916,
-0.01018799003213644,
0.01884623058140278,
0.04559415578842163,
0.03666739538311958,
-0.02244214341044426,
0.056076303124427795,
0.02400032989680767,
-0.009682881645858288,
-0.020739467814564705,
-0.037743985652923584,
-0.10030758380889893,
0.16738058626651764,
-0.10188676416873932,
-0.24438636004924774,
-0.20240534842014313,
-0.029957206919789314,
-0.08630501478910446,
-0.003915323875844479,
0.10325747728347778,
0.0021390903275460005,
-0.1190793588757515,
-0.09359747916460037,
0.13944555819034576,
0.11455381661653519,
-0.0612519346177578,
-0.11515526473522186,
-0.006705828942358494,
-0.014586660079658031,
-0.1379394233226776,
-0.011514777317643166,
-0.05305066704750061,
-0.02610992081463337,
0.0005010077729821205,
0.010172627866268158,
0.0841614380478859,
-0.031781796365976334,
0.020375043153762817,
-0.03643118217587471,
-0.029446979984641075,
0.158976748585701,
-0.05219399183988571,
0.11200611293315887,
0.0633774846792221,
-0.05925293266773224,
0.10846007615327835,
0.14587002992630005,
0.02957881987094879,
-0.022097397595643997,
0.013728871010243893,
0.05561171844601631,
-0.02695300616323948,
-0.15959081053733826,
-0.09146948158740997,
-0.03283402696251869,
0.053716838359832764,
0.023102525621652603,
0.06116945669054985,
-0.1124642863869667,
0.022283604368567467,
-0.037670258432626724,
0.018570350483059883,
-0.006322970148175955,
0.09330519288778305,
0.03674875944852829,
0.009834643453359604,
0.030646778643131256,
-0.02115228958427906,
-0.0013441338669508696,
0.11754944920539856,
-0.03694479539990425,
0.15013200044631958,
-0.07710824906826019,
0.06076550483703613,
0.015608063898980618,
0.028651632368564606,
0.01801292411983013,
0.09282153844833374,
-0.06894316524267197,
0.013584828935563564,
-0.016028111800551414,
-0.041508905589580536,
-0.014876384288072586,
0.07830065488815308,
0.0042209317907691,
-0.0648382380604744,
-0.0203308816999197,
-0.028217794373631477,
0.04828251153230667,
0.2380942851305008,
-0.017616860568523407,
-0.05188046023249626,
-0.11964576691389084,
0.028179867193102837,
-0.11968853324651718,
-0.07314132153987885,
-0.016982560977339745,
0.17855557799339294,
-0.18355713784694672,
0.04709386080503464,
-0.006391545757651329,
0.05460743233561516,
-0.004681411664932966,
0.0023785883095115423,
0.007315387483686209,
0.08289270102977753,
-0.033826421946287155,
0.06461453437805176,
-0.12986962497234344,
0.10947426408529282,
-0.00706175621598959,
0.0722748413681984,
-0.019627723842859268,
0.05170610919594765,
0.022839106619358063,
0.06601794809103012,
0.14569856226444244,
0.04478023946285248,
-0.15782736241817474,
-0.07592356204986572,
-0.06766144931316376,
0.03326242417097092,
0.05887545645236969,
-0.05999712646007538,
0.07551618665456772,
-0.006348703987896442,
0.007369297556579113,
-0.02391013503074646,
-0.0300598107278347,
-0.0713036060333252,
-0.13040749728679657,
0.004641757346689701,
-0.08782506734132767,
-0.023593608289957047,
-0.03009021282196045,
-0.03718370571732521,
-0.12493037432432175,
0.09344685822725296,
-0.016768209636211395,
-0.06794282793998718,
-0.12053271383047104,
-0.04424217343330383,
0.0507928766310215,
-0.11849980801343918,
0.04137139767408371,
-0.001691982732154429,
0.10233401507139206,
-0.10703462362289429,
-0.07450208067893982,
0.05289769917726517,
-0.08224239200353622,
-0.10068096965551376,
-0.003929265774786472,
0.07137904316186905,
0.08883879333734512,
0.0008186082704924047,
0.009671849198639393,
0.028682174161076546,
0.01653848960995674,
-0.09281762689352036,
-0.041288044303655624,
0.16404981911182404,
0.019886313006281853,
0.018194999545812607,
-0.13845907151699066,
-0.0030375539790838957,
0.021198632195591927,
-0.0065086293034255505,
0.1254943460226059,
0.23771001398563385,
-0.0415017269551754,
0.1536203920841217,
0.2682085931301117,
-0.08689811825752258,
-0.3092621862888336,
-0.044098298996686935,
0.054524488747119904,
0.028346100822091103,
0.050492919981479645,
-0.1288938969373703,
0.185756117105484,
0.023021597415208817,
-0.012118428945541382,
-0.0325029231607914,
-0.05240059643983841,
-0.11918158084154129,
0.11765111237764359,
0.008979841135442257,
0.023409245535731316,
-0.029925396665930748,
-0.03329470753669739,
-0.06735789775848389,
-0.06528236716985703,
0.08974293619394302,
-0.06260853260755539,
0.06925726681947708,
0.030212627723813057,
0.07685905694961548,
0.04308869689702988,
-0.02286088839173317,
0.07195161283016205,
0.013989425264298916,
0.03181694820523262,
-0.08823414146900177,
0.013577575795352459,
0.012689093127846718,
-0.058697499334812164,
0.15375329554080963,
-0.021784232929348946,
-0.0203597079962492,
-0.08790630847215652,
-0.025915170088410378,
-0.050939373672008514,
0.2182782143354416,
-0.024666011333465576,
-0.04792673885822296,
-0.09904496371746063,
0.107136569917202,
0.09979439526796341,
-0.0030306705739349127,
0.08462264388799667,
-0.04442652314901352,
-0.016632704064249992,
0.15519917011260986,
0.06541536003351212,
-0.030291346833109856,
0.010403676889836788,
0.03479215130209923,
-0.047785498201847076,
0.07208302617073059,
0.04185593128204346,
0.04671834036707878,
0.08185335248708725,
-0.011952959932386875,
0.044957976788282394,
-0.012542902491986752,
-0.10407222807407379,
-0.032369986176490784,
0.058683041483163834,
-0.1597198247909546,
-0.06059832125902176,
-0.04956486076116562,
-0.10241077095270157,
-0.043832097202539444,
0.0009987103985622525,
0.1693560630083084,
-0.03612267225980759,
-0.02048744633793831,
-0.02742660418152809,
0.06522155553102493,
0.001851737266406417,
0.0160052627325058,
0.018542004749178886,
-0.022660665214061737,
-0.05800564959645271,
0.12965796887874603,
0.03377947211265564,
-0.03157263621687889,
0.05625510215759277,
0.15440796315670013,
-0.08504584431648254,
-0.04735101759433746,
-0.011660569347441196,
0.1752219945192337,
-0.045861776918172836,
-0.03854446858167648,
-0.01575442962348461,
-0.0665709376335144,
-0.022863078862428665,
0.10598274320363998,
0.037966202944517136,
-0.0007634584326297045,
-0.038225531578063965,
0.05182699114084244,
-0.04673553630709648,
0.08890023827552795,
0.07583434879779816,
0.04619341716170311,
-0.04643237590789795,
0.09008411318063736,
-0.06011928617954254,
0.017934752628207207,
-0.028440969064831734,
0.010681179352104664,
-0.12279113382101059,
-0.08593051135540009,
-0.06468939036130905,
-0.009989041835069656,
-0.03259512782096863,
0.02521858923137188,
-0.005891885608434677,
-0.040877602994441986,
0.03151147812604904,
0.012689980678260326,
-0.055997058749198914,
-0.025142062455415726,
-0.04044488072395325,
0.06001732125878334,
-0.12416905164718628,
-0.04774956405162811,
0.04483013600111008,
-0.035917479544878006,
0.09789364039897919,
0.02857409603893757,
0.013651137240231037,
0.09272116422653198,
-0.12376341223716736,
0.002269750228151679,
-0.02888033352792263,
0.01383226364850998,
0.03592168167233467,
0.005295072216540575,
-0.029376795515418053,
-0.028661755844950676,
0.0030408462043851614,
-0.02441358007490635,
0.08576715737581253,
-0.08049213141202927,
0.09137309342622757,
0.010293741710484028,
-0.11265052855014801,
-0.051271144300699234,
0.0407058484852314,
0.04610876366496086,
0.05185343325138092,
0.11805404722690582,
-0.09771604090929031,
0.00817074254155159,
-0.06281635910272598,
0.0016129439463838935,
0.08460436016321182,
-0.05057740584015846,
-0.05349281430244446,
-0.053875427693128586,
0.018547726795077324,
-0.007698108442127705,
0.06025493144989014,
0.07480188459157944,
-0.00962937343865633,
0.01732092909514904,
-0.047593310475349426,
-0.02554274909198284,
-0.0012188362888991833,
-0.004404454957693815,
-0.052883781492710114,
0.020603308454155922,
-0.06565514951944351,
-0.021662738174200058,
0.018184861168265343,
-0.03426242247223854,
0.19452622532844543,
0.037965577095746994,
0.02134113572537899,
0.11397063732147217,
0.05903838574886322,
-0.0008341947104781866,
-0.14091700315475464,
-0.025776531547307968,
-0.013111921027302742,
0.056530456990003586,
-0.07462432980537415,
0.09231863915920258,
0.03315721079707146,
-0.16394297778606415,
0.08884809166193008,
0.035207320004701614,
-0.051326025277376175,
-0.11788870394229889,
-0.21358619630336761,
-0.05682559311389923,
-0.01477746106684208,
0.02794565074145794,
-0.11209413409233093,
0.01796581596136093,
0.05016520619392395,
0.01300108339637518,
-0.015236668288707733,
0.08373231440782547,
-0.1799003928899765,
-0.05464703589677811,
0.06427557021379471,
0.03179319575428963,
0.03409407287836075,
0.0427216999232769,
-0.033100396394729614,
-0.041958924382925034,
0.08869805186986923,
-0.015989629551768303,
0.052226725965738297,
0.045235391706228256,
-0.003988282755017281,
-0.01231889147311449,
-0.04579389840364456,
-0.006906024180352688,
0.009025045670568943,
-0.02623780071735382,
0.09196443855762482,
0.0725824385881424,
-0.019165243953466415,
-0.020329158753156662,
0.17402084171772003,
-0.07092978805303574,
-0.029998628422617912,
-0.11634975671768188,
0.12110946327447891,
0.0026080452371388674,
0.07123416662216187,
-0.01366247609257698,
-0.09881710261106491,
-0.03875972330570221,
0.18915635347366333,
0.11665236204862595,
0.013777351938188076,
0.030654683709144592,
-0.0010464676888659596,
-0.008840519934892654,
0.0034906950313597918,
0.13986551761627197,
0.010684631764888763,
0.23257021605968475,
-0.03904763236641884,
0.05618799850344658,
0.01701958104968071,
-0.009892825968563557,
-0.13948170840740204,
0.12919795513153076,
-0.056189924478530884,
-0.0010471177520230412,
-0.10164695978164673,
0.03633014112710953,
-0.0856955349445343,
-0.29833143949508667,
-0.014244668185710907,
-0.03466333448886871,
-0.10108229517936707,
0.0038294338155537844,
0.001830247463658452,
0.04214884340763092,
0.11320792138576508,
0.017785118892788887,
0.0217434149235487,
0.21330036222934723,
0.004204031080007553,
-0.06748329102993011,
-0.062065158039331436,
0.081325963139534,
-0.04739611968398094,
0.210035502910614,
0.020831216126680374,
-0.0167512446641922,
0.07095330208539963,
0.013423282653093338,
-0.04906131699681282,
-0.008259869180619717,
0.026311293244361877,
-0.13859876990318298,
0.005085299722850323,
0.0826123058795929,
-0.05717764422297478,
0.10774480551481247,
0.016525179147720337,
-0.09498702734708786,
0.05521218478679657,
0.10192573815584183,
-0.026433102786540985,
-0.041955847293138504,
0.07897771149873734,
-0.12408965080976486,
0.14837117493152618,
0.16475190222263336,
0.027857694774866104,
-0.0302426740527153,
-0.06911633163690567,
0.03293927013874054,
0.003639073111116886,
-0.024872101843357086,
0.025263959541916847,
-0.12211854755878448,
0.014962900429964066,
-0.003739639651030302,
0.04506819695234299,
-0.08906690031290054,
-0.04792959615588188,
-0.010095926001667976,
0.021359572187066078,
-0.04901537299156189,
0.07085920870304108,
0.03382761403918266,
-0.0309553574770689,
-0.00525621697306633,
-0.045182425528764725,
0.009646380320191383,
0.05588601902127266,
-0.04754241555929184,
-0.07641079276800156
] |
null | null | transformers |
Test | {"tags": ["automatic-speech-recognition", "generated_from_trainer", "asr_seq2seq"]} | automatic-speech-recognition | KBLab/asr-voxrex-bart-base | [
"transformers",
"pytorch",
"speech-encoder-decoder",
"automatic-speech-recognition",
"generated_from_trainer",
"asr_seq2seq",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #speech-encoder-decoder #automatic-speech-recognition #generated_from_trainer #asr_seq2seq #endpoints_compatible #region-us
|
Test | [] | [
"TAGS\n#transformers #pytorch #speech-encoder-decoder #automatic-speech-recognition #generated_from_trainer #asr_seq2seq #endpoints_compatible #region-us \n"
] | [
56
] | [
"passage: TAGS\n#transformers #pytorch #speech-encoder-decoder #automatic-speech-recognition #generated_from_trainer #asr_seq2seq #endpoints_compatible #region-us \n"
] | [
-0.09500028192996979,
0.09114520996809006,
-0.005689716897904873,
-0.024601999670267105,
0.1655881404876709,
-0.043288055807352066,
0.06729280203580856,
0.09898694604635239,
0.04314488545060158,
-0.002924209926277399,
0.057673390954732895,
0.21010282635688782,
-0.015351895242929459,
0.007386545184999704,
-0.04841482266783714,
-0.2008666694164276,
0.07445354759693146,
0.0383094884455204,
0.09454573690891266,
0.09255727380514145,
0.1130395457148552,
-0.044528983533382416,
0.05562644451856613,
0.03731168806552887,
-0.12416800111532211,
0.08499941229820251,
0.038040392100811005,
-0.15152014791965485,
0.09465595334768295,
0.0038110329769551754,
0.07201838493347168,
0.00045214692363515496,
0.0068899840116500854,
-0.23354986310005188,
0.009813684970140457,
-0.014686892740428448,
-0.004917086102068424,
-0.023761091753840446,
0.01717335358262062,
-0.11357937008142471,
0.02265530824661255,
0.09296315163373947,
0.02099461480975151,
0.09452974051237106,
-0.08605799823999405,
-0.11264482885599136,
0.03504735976457596,
0.003769697854295373,
0.09637244790792465,
0.12062617391347885,
-0.026521824300289154,
0.033271100372076035,
-0.1462104469537735,
0.11313319206237793,
0.07015697658061981,
-0.26329120993614197,
0.0523555614054203,
-0.09189539402723312,
0.018255865201354027,
0.026460830122232437,
-0.03641142696142197,
0.0017807264812290668,
-0.015253827907145023,
0.023383772000670433,
-0.05471901595592499,
-0.07309860736131668,
-0.14053340256214142,
0.006636045407503843,
-0.10542039573192596,
-0.04678112640976906,
0.14382365345954895,
-0.0067977276630699635,
0.0521974042057991,
-0.0635327473282814,
-0.01774229295551777,
-0.061298925429582596,
-0.03691596910357475,
-0.02242303267121315,
-0.048338498920202255,
0.06399334967136383,
-0.020350107923150063,
-0.048937488347291946,
-0.09141092002391815,
-0.10362674295902252,
-0.14442355930805206,
0.199201300740242,
0.02622520551085472,
0.043809209018945694,
-0.17167727649211884,
0.016314269974827766,
0.04360891133546829,
-0.027078930288553238,
-0.005892106331884861,
0.004705422092229128,
-0.0400313064455986,
0.041451700031757355,
-0.08199021965265274,
-0.0649089366197586,
0.09670852869749069,
0.113480344414711,
0.009693318977952003,
0.058247849345207214,
-0.002749059582129121,
0.07471273094415665,
-0.059044137597084045,
0.1647002249956131,
-0.010929890908300877,
0.03738213703036308,
0.012823039665818214,
-0.05727112293243408,
-0.02318924479186535,
-0.02164255827665329,
-0.14258171617984772,
-0.056076034903526306,
0.05180823430418968,
0.0677308589220047,
-0.05119335651397705,
0.040581073611974716,
-0.0452456921339035,
0.0219159834086895,
0.010641446337103844,
-0.11594675481319427,
-0.013040234334766865,
0.05498112738132477,
0.014100058935582638,
0.042439043521881104,
0.02451874129474163,
0.04120781272649765,
-0.13816456496715546,
0.007126873824745417,
0.006272407714277506,
0.06224968284368515,
0.059216879308223724,
-0.0075647407211363316,
-0.005510128568857908,
-0.19762387871742249,
0.04945719987154007,
-0.19725224375724792,
-0.0912776067852974,
-0.02282186783850193,
-0.08531854301691055,
0.030693070963025093,
0.004426950588822365,
-0.14488689601421356,
-0.041922006756067276,
0.0017945935251191258,
-0.09171713888645172,
-0.15276281535625458,
-0.05068925395607948,
0.06490907818078995,
0.05699937418103218,
0.06472248584032059,
-0.14782403409481049,
0.1001160591840744,
-0.0974944680929184,
-0.023892275989055634,
-0.009280429221689701,
0.19696034491062164,
-0.04516330733895302,
0.09320590645074844,
-0.0768449604511261,
-0.03819064423441887,
-0.14227096736431122,
0.07472547143697739,
-0.010387947782874107,
0.14139701426029205,
-0.1684017777442932,
-0.14102527499198914,
0.23588475584983826,
-0.07326574623584747,
-0.0657464936375618,
0.13119113445281982,
0.008768410421907902,
-0.03231373056769371,
0.10079426318407059,
0.3350335955619812,
0.03633399307727814,
-0.03792212903499603,
0.025924144312739372,
0.1206107884645462,
-0.11334668099880219,
-0.1260705292224884,
0.04427017644047737,
-0.11576671898365021,
0.004298578482121229,
0.0354943610727787,
0.06900633871555328,
0.11677861213684082,
-0.01727757789194584,
-0.08945577591657639,
-0.01482906099408865,
-0.08934313803911209,
0.027023522183299065,
0.0033480823040008545,
0.10721468925476074,
-0.01924913190305233,
-0.017428994178771973,
0.03406781330704689,
0.019686568528413773,
-0.08495126664638519,
0.0783677026629448,
-0.17729321122169495,
0.08063866198062897,
-0.01445681881159544,
0.0022202518302947283,
-0.20053791999816895,
0.14296293258666992,
-0.03680776432156563,
0.0379171185195446,
0.07546603679656982,
-0.0671614408493042,
0.08726873248815536,
-0.08085143566131592,
0.029478562995791435,
-0.05871126800775528,
0.10631321370601654,
0.043870650231838226,
-0.029246650636196136,
-0.01954052411019802,
0.038225628435611725,
-0.056755635887384415,
0.0341193750500679,
-0.0025995345786213875,
0.015916593372821808,
0.06522456556558609,
0.12042272090911865,
-0.002741684904322028,
-0.021272767335176468,
0.01390951219946146,
0.09632868319749832,
-0.004337134771049023,
0.015342925675213337,
0.07437632232904434,
-0.00997823104262352,
-0.11497394740581512,
0.1788451075553894,
-0.1805579662322998,
0.12315400689840317,
0.19316543638706207,
-0.2529352605342865,
0.02326560579240322,
0.05397254228591919,
0.0053190491162240505,
0.02223416045308113,
0.0987098440527916,
-0.06550843268632889,
0.316965252161026,
-0.02389494888484478,
0.19015103578567505,
-0.02588903158903122,
0.00730340089648962,
-0.002556334249675274,
-0.0567459799349308,
-0.01061315555125475,
0.07815480977296829,
0.021489063277840614,
-0.038237314671278,
0.11699186265468597,
0.08382907509803772,
-0.08427879959344864,
0.10974771529436111,
-0.034266453236341476,
-0.046301525086164474,
0.0927986428141594,
0.01851492002606392,
-0.04545380175113678,
-0.06749653816223145,
-0.2996785342693329,
-0.10163070261478424,
0.01863616704940796,
0.014305368065834045,
0.13257554173469543,
-0.14169658720493317,
0.010100827552378178,
-0.007809583563357592,
-0.08108619600534439,
-0.0816948264837265,
0.05866004899144173,
0.022231167182326317,
0.0389387272298336,
-0.04771203175187111,
-0.14285358786582947,
0.08314680308103561,
-0.026005825027823448,
-0.108222097158432,
0.11945997923612595,
-0.140341654419899,
-0.2714352607727051,
-0.19729942083358765,
-0.04282006248831749,
0.008725916035473347,
0.08813268691301346,
0.127462238073349,
-0.1532634049654007,
0.037869881838560104,
-0.020186936482787132,
0.02064356952905655,
-0.0720038115978241,
0.029736865311861038,
0.006637051701545715,
0.007291038520634174,
0.009682778269052505,
-0.09602925181388855,
-0.024204550310969353,
-0.0570991151034832,
-0.027488838881254196,
0.038943931460380554,
-0.0768977627158165,
0.0842241495847702,
0.1887742578983307,
0.03067857399582863,
0.05948318913578987,
-0.03424195572733879,
0.18633073568344116,
-0.06092684343457222,
-0.1354774534702301,
0.16173617541790009,
-0.10784491151571274,
0.006709873676300049,
0.12845151126384735,
-0.018213873729109764,
-0.07229574769735336,
-0.029786834493279457,
-0.041312966495752335,
-0.08254466950893402,
-0.18456943333148956,
-0.11897827684879303,
-0.07962741702795029,
-0.027492672204971313,
-0.0036203539930284023,
0.0717933177947998,
0.04783908650279045,
-0.006445546168833971,
0.059070173650979996,
-0.07448942214250565,
0.03364435210824013,
0.01940089836716652,
0.17406167089939117,
-0.020572233945131302,
0.10519977658987045,
-0.04894766956567764,
-0.10904482752084732,
0.013784665614366531,
0.1088864877820015,
0.02622748352587223,
0.11164960265159607,
0.10116641223430634,
0.0006478607538156211,
0.1268901228904724,
0.13440977036952972,
0.0549943782389164,
0.03827706351876259,
0.017570912837982178,
0.05274762585759163,
0.012106064707040787,
-0.12015198916196823,
0.08089867979288101,
0.20212052762508392,
-0.09526876360177994,
-0.0867273285984993,
-0.05974022299051285,
0.07731755822896957,
0.19902774691581726,
0.03842960298061371,
-0.22822882235050201,
-0.013792685233056545,
0.05352681875228882,
-0.07736589759588242,
-0.011786210350692272,
0.1507313996553421,
0.05124865099787712,
-0.04619820415973663,
0.028696728870272636,
0.06102127954363823,
0.06442079693078995,
-0.08900315314531326,
0.06886684149503708,
-0.054134298115968704,
-0.10046208649873734,
0.07136984169483185,
0.04160749912261963,
-0.2680169343948364,
0.19092798233032227,
-0.004285922273993492,
0.05724748596549034,
-0.006225640419870615,
0.01276342198252678,
0.003628529142588377,
0.048172056674957275,
0.1886216551065445,
0.0028083627112209797,
-0.10419692099094391,
-0.2079574018716812,
-0.03793835639953613,
0.028085188940167427,
0.17707328498363495,
0.03320746496319771,
-0.03733187913894653,
-0.018511852249503136,
-0.025533774867653847,
0.010245204903185368,
-0.16208869218826294,
-0.027240434661507607,
-0.14479470252990723,
-0.012506989762187004,
0.24079658091068268,
0.1394946277141571,
0.009158977307379246,
0.007613167632371187,
-0.13235951960086823,
0.06935679167509079,
-0.21369081735610962,
-0.026265187188982964,
-0.06706337630748749,
-0.1629074662923813,
0.0868355929851532,
-0.07946372032165527,
0.06644465029239655,
0.016996772959828377,
-0.030843138694763184,
-0.00549196545034647,
-0.12321332842111588,
0.12015073746442795,
-0.07007452100515366,
0.005585387349128723,
0.005777167621999979,
0.21476007997989655,
0.0016405652277171612,
0.01668330654501915,
0.06412293761968613,
0.008158325217664242,
-0.06019069254398346,
-0.03510995954275131,
0.10019669681787491,
0.1009514331817627,
-0.06536184996366501,
0.10437063127756119,
-0.052332691848278046,
-0.14210696518421173,
-0.08775009959936142,
0.0445193313062191,
0.316353976726532,
0.053443633019924164,
-0.0610835924744606,
0.15536417067050934,
0.19376197457313538,
-0.04607969895005226,
-0.27749666571617126,
-0.12627607583999634,
-0.03107026405632496,
0.009607270359992981,
-0.11100216209888458,
-0.1774410605430603,
0.0891449972987175,
-0.02789132110774517,
-0.027750950306653976,
-0.06300026923418045,
-0.2356594055891037,
-0.09400753676891327,
0.2846345901489258,
-0.043825674802064896,
0.24474464356899261,
-0.09676389396190643,
-0.11301956325769424,
-0.07274600863456726,
-0.09842990338802338,
0.04341166839003563,
0.014909273013472557,
0.08883654326200485,
0.025956477969884872,
0.07758095115423203,
0.04128550365567207,
-0.03136670961976051,
0.07798237353563309,
0.16006484627723694,
-0.036280836910009384,
-0.02640620432794094,
-0.039172131568193436,
-0.0716412290930748,
0.025885481387376785,
0.0878194272518158,
-0.003415988991037011,
0.043666772544384,
-0.1521526277065277,
-0.04706483334302902,
-0.11003230512142181,
0.08138775825500488,
0.12578052282333374,
0.012903954833745956,
0.04984557628631592,
-0.11381662636995316,
0.024244708940386772,
0.06314408779144287,
0.16279558837413788,
-0.1416478157043457,
0.08311916887760162,
0.11575755476951599,
0.18119768798351288,
-0.11264003068208694,
-0.05156003683805466,
-0.0446128211915493,
-0.055187053978443146,
0.08360075205564499,
0.04461551085114479,
0.10225550830364227,
0.09170762449502945,
0.020945314317941666,
0.09044607728719711,
0.08778046816587448,
0.022232381626963615,
0.0929812341928482,
0.07806316018104553,
-0.10181547701358795,
-0.09018294513225555,
-0.039231229573488235,
-0.05893190577626228,
0.08699223399162292,
0.1525050550699234,
0.1291714757680893,
0.02963877096772194,
-0.007165892980992794,
-0.06568990647792816,
-0.007954857312142849,
-0.15044733881950378,
0.11651445925235748,
0.07203204184770584,
0.00517879007384181,
-0.1515810191631317,
0.09907525032758713,
-0.03886258602142334,
-0.14439691603183746,
0.06692466139793396,
0.011576712131500244,
-0.10526974499225616,
-0.10010448843240738,
-0.17102335393428802,
0.06923261284828186,
-0.07312223315238953,
-0.11720779538154602,
-0.04850104823708534,
-0.11372354626655579,
0.06030678004026413,
0.19311822950839996,
0.061994753777980804,
0.07984455674886703,
-0.09020897001028061,
-0.023809731006622314,
-0.02734830416738987,
-0.06417466700077057,
-0.0157266054302454,
-0.004215678665786982,
-0.0993974506855011,
0.06486399471759796,
-0.01887284591794014,
0.12139556556940079,
-0.06578218936920166,
-0.08485095202922821,
-0.11614800244569778,
0.10539516806602478,
-0.10410789400339127,
-0.027788059785962105,
-0.11444094777107239,
-0.0020349256228655577,
0.06977227330207825,
-0.05552256852388382,
-0.011766944080591202,
0.024493811652064323,
-0.12504194676876068,
0.030957983806729317,
0.004344600718468428,
0.04679373651742935,
-0.10615917295217514,
0.01632189005613327,
0.048495110124349594,
-0.009056213311851025,
0.12403956800699234,
0.24039524793624878,
-0.1615152806043625,
0.13499708473682404,
-0.1806962639093399,
-0.18314050137996674,
0.16175706684589386,
0.010236517526209354,
-0.013615017756819725,
0.08534670621156693,
0.026129858568310738,
0.1310073882341385,
0.016335470601916313,
0.0033658891916275024,
0.14750906825065613,
-0.07743937522172928,
0.030038943514227867,
-0.06276890635490417,
-0.06275548785924911,
-0.0729454904794693,
-0.04896806925535202,
0.15093311667442322,
0.1003032997250557,
0.1510263979434967,
-0.061111919581890106,
0.054414693266153336,
0.02151741273701191,
0.021340347826480865,
-0.01755678467452526,
-0.09491220861673355,
-0.09777407348155975,
-0.07208189368247986,
0.05438524857163429,
-0.011904891580343246,
0.2245095819234848,
-0.04143596440553665,
0.029174262657761574,
0.0070113795809447765,
-0.028466636314988136,
0.0019931981805711985,
0.049306098371744156,
0.30305060744285583,
0.11913137137889862,
-0.07885508239269257,
0.013230087235569954,
0.010142522864043713,
0.029434187337756157,
0.1164395660161972,
-0.06582199782133102,
0.15537585318088531,
-0.03801780939102173,
0.17090949416160583,
0.1009603887796402,
0.03998225927352905,
-0.09726997464895248,
-0.07904704660177231,
-0.0737195685505867,
-0.00009328623855253682,
-0.06341228634119034,
0.20919625461101532,
0.11854778230190277,
0.010859563015401363,
0.05616486072540283,
0.02628987841308117,
-0.06864691525697708,
-0.19077174365520477,
-0.04900632053613663,
-0.07537835091352463,
-0.1352594792842865,
0.06853689253330231,
-0.03431189805269241,
-0.007558721117675304,
0.08678027242422104,
0.021274633705615997,
0.007383301854133606,
0.1352500170469284,
-0.02051670104265213,
-0.050460848957300186,
0.05734672769904137,
-0.08997074514627457,
0.03263712301850319,
-0.04693446680903435,
-0.059158362448215485,
0.0884988084435463,
-0.021934382617473602,
0.02731000818312168,
-0.005858388729393482,
-0.1294213831424713,
0.013785201124846935,
-0.1708083599805832,
-0.06521887332201004,
-0.024807332083582878,
0.059463970363140106,
-0.02556452341377735,
0.06425626575946808,
0.10479056090116501,
-0.10788852721452713,
0.02452344074845314,
0.15156377851963043,
-0.08983564376831055,
-0.09088147431612015,
-0.06418251246213913,
0.21215040981769562,
0.09875091910362244,
0.12856726348400116,
-0.05305919796228409,
-0.0621219165623188,
-0.06025810167193413,
0.2310839593410492,
0.1852770745754242,
-0.0506705678999424,
0.05402468517422676,
-0.025468949228525162,
0.04381830617785454,
0.031536392867565155,
0.02085624448955059,
0.1399126797914505,
0.18291793763637543,
0.008494099602103233,
-0.07912743836641312,
-0.01889163628220558,
-0.06013905256986618,
-0.06260084360837936,
0.07619529217481613,
-0.06099718436598778,
-0.06906091421842575,
-0.05610521510243416,
0.10021794587373734,
-0.2603585720062256,
0.04326948896050453,
-0.06737130135297775,
-0.11775211244821548,
-0.01874598115682602,
0.008372710086405277,
0.08847089856863022,
0.09122885018587112,
0.014115005731582642,
-0.004540412686765194,
-0.08069059997797012,
0.03287327289581299,
0.024743370711803436,
-0.22660475969314575,
0.03067459724843502,
-0.014189195819199085,
-0.12029729038476944,
-0.030004726722836494,
-0.017248662188649178,
0.08716966211795807,
0.0328228734433651,
0.17598579823970795,
0.03101266361773014,
0.16709476709365845,
-0.04131700471043587,
-0.0292968712747097,
0.0357888787984848,
0.1541917622089386,
-0.0074848891235888,
0.06542405486106873,
0.006498704198747873,
-0.13466820120811462,
0.07740698754787445,
-0.13821499049663544,
-0.10156398266553879,
-0.0770300105214119,
-0.0469692163169384,
-0.03607970103621483,
0.05169660970568657,
0.005885588936507702,
-0.007716065738350153,
0.004976440686732531,
0.0012604370713233948,
-0.016978120431303978,
0.0045835524797439575,
-0.14767451584339142,
-0.11885890364646912,
-0.15022243559360504,
-0.08735418319702148,
0.021107526496052742,
-0.012867326848208904,
-0.11124258488416672,
-0.006413289811462164,
-0.05686800926923752,
0.012830372899770737,
-0.04826093837618828,
0.05223892629146576,
0.0793699249625206,
0.03579803928732872,
-0.015520632266998291,
-0.08355287462472916,
0.11842548102140427,
0.1561763882637024,
-0.14708207547664642,
-0.12930414080619812
] |
null | null | transformers |
## KB-BART
A [BART](https://arxiv.org/abs/1910.13461) model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with [Fairseq](https://github.com/pytorch/fairseq), and converted to be compatible with Huggingface.
Training code can be found [here](https://github.com/kb-labb/kb_bart).
## Usage
```python
from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast, AutoTokenizer
model = BartForConditionalGeneration.from_pretrained("KBLab/bart-base-swedish-cased")
tok = AutoTokenizer.from_pretrained("KBLab/bart-base-swedish-cased")
model.eval()
input_ids = tok.encode(
"Jag har ätit en utsökt <mask> på restaurang vid <mask> .", return_tensors="pt"
)
# Simple greedy search
output_ids = model.generate(
input_ids,
min_length=15,
max_length=25,
num_beams=1,
do_sample=False,
)
tok.decode(output_ids[0])
# '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang vid havet på restaurang vid havet.</s>'
# Sampling
output_ids = model.generate(
input_ids,
min_length=15,
max_length=20,
num_beams=1,
do_sample=True,
)
tok.decode(output_ids[0])
#'</s><s> Jag har ätit en utsökt god mat som de tagit in på restaurang vid avröjda</s>'
# Beam search
output_ids = model.generate(
input_ids,
min_length=15,
max_length=25,
no_repeat_ngram_size=3,
num_beams=8,
early_stopping=True,
do_sample=True,
num_return_sequences=6
)
tok.decode(output_ids[0])
# '</s><s> Jag har ätit en utsökt middag på restaurang vid havet. Jag har varit ute och gått en sväng.</s><pad><pad>'
# Diverse beam generation
output_ids = model.generate(
input_ids,
min_length=50,
max_length=100,
no_repeat_ngram_size=3,
num_beams=8,
early_stopping=True,
do_sample=False,
num_return_sequences=6,
num_beam_groups=8,
diversity_penalty=2.0,
)
tok.decode(output_ids[0])
# '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang. Jag har varit på restaurang i två dagar... Jag..,..!!!.. Så.. Nu.. Hej.. Vi.. Här.</s>'
```
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)). | {"language": "sv", "widget": [{"text": "Jag har \u00e4tit en <mask>"}]} | text2text-generation | KBLab/bart-base-swedish-cased | [
"transformers",
"pytorch",
"safetensors",
"bart",
"text2text-generation",
"sv",
"arxiv:1910.13461",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1910.13461"
] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #bart #text2text-generation #sv #arxiv-1910.13461 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
## KB-BART
A BART model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with Fairseq, and converted to be compatible with Huggingface.
Training code can be found here.
## Usage
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL). | [
"## KB-BART\n\nA BART model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with Fairseq, and converted to be compatible with Huggingface. \n\nTraining code can be found here.",
"## Usage",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
"TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #sv #arxiv-1910.13461 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"## KB-BART\n\nA BART model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with Fairseq, and converted to be compatible with Huggingface. \n\nTraining code can be found here.",
"## Usage",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
58,
57,
3,
50
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #sv #arxiv-1910.13461 #autotrain_compatible #endpoints_compatible #has_space #region-us \n## KB-BART\n\nA BART model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with Fairseq, and converted to be compatible with Huggingface. \n\nTraining code can be found here.## Usage## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
-0.03490263223648071,
-0.029685411602258682,
0.0004649616894312203,
0.039070531725883484,
0.07315792888402939,
0.022564087063074112,
0.057810135185718536,
0.07599560171365738,
0.024855870753526688,
0.043881140649318695,
0.15892188251018524,
0.06641476601362228,
0.0021898287814110518,
0.16155651211738586,
-0.05574743077158928,
-0.2029293030500412,
0.09264647960662842,
0.054883923381567,
-0.043254077434539795,
0.05462321639060974,
0.08857709914445877,
-0.083736352622509,
0.06228948011994362,
-0.03908338397741318,
-0.11230228841304779,
-0.007381821516901255,
-0.06729396432638168,
-0.04059220477938652,
0.1203986182808876,
0.020599689334630966,
0.14973489940166473,
0.07103051245212555,
0.047895535826683044,
-0.03064267337322235,
0.036940351128578186,
-0.0346478596329689,
-0.03904784470796585,
0.1027500182390213,
-0.06137053295969963,
0.08397208899259567,
0.23123615980148315,
-0.03178531676530838,
-0.03193894773721695,
-0.018266642466187477,
-0.025656117126345634,
-0.1442069560289383,
-0.022263258695602417,
0.01761665567755699,
0.010229180566966534,
0.020277073606848717,
0.013997845351696014,
0.17913994193077087,
-0.08438067883253098,
0.07164350897073746,
0.11907168477773666,
-0.2795521020889282,
-0.06127748638391495,
0.14248281717300415,
0.04969212785363197,
0.12760096788406372,
-0.004334756638854742,
0.08133835345506668,
0.12396780401468277,
0.007049901876598597,
0.07382196933031082,
-0.05672138184309006,
-0.15537214279174805,
-0.009620788507163525,
-0.10618967562913895,
-0.03366200625896454,
0.2989594638347626,
-0.02972511388361454,
0.012754027731716633,
-0.006298563908785582,
-0.0835370272397995,
-0.01676252856850624,
-0.021339943632483482,
-0.04312481731176376,
-0.008930308744311333,
-0.017603030428290367,
0.048605695366859436,
0.008726266212761402,
-0.12551674246788025,
-0.072060726583004,
-0.06040983274579048,
0.09354528784751892,
0.012260413728654385,
0.053235143423080444,
-0.02286301925778389,
0.08802282065153122,
0.007323892787098885,
-0.11562719941139221,
0.019275326281785965,
-0.06642991304397583,
0.11976941674947739,
0.004411256872117519,
-0.06418506801128387,
-0.07061722874641418,
0.12062856554985046,
-0.023803338408470154,
-0.03926970437169075,
-0.015772664919495583,
0.046574126929044724,
0.07597433030605316,
-0.01802809163928032,
0.01883060857653618,
-0.10192830860614777,
-0.07114272564649582,
0.04683060571551323,
-0.03682837635278702,
0.04309053346514702,
-0.008807946927845478,
-0.12750309705734253,
-0.07707404345273972,
0.03967515379190445,
0.005751482211053371,
-0.08229737728834152,
0.11089210957288742,
0.021245446056127548,
0.06377320736646652,
0.14606061577796936,
-0.03182363510131836,
-0.004307060968130827,
0.04341990128159523,
0.011949730105698109,
0.044063057750463486,
0.08728136122226715,
-0.008373202756047249,
-0.05346837639808655,
0.03580186143517494,
-0.06083394214510918,
-0.01102499756962061,
-0.07062332332134247,
-0.13707631826400757,
0.06302659213542938,
-0.017990510910749435,
0.019826436415314674,
-0.1824353039264679,
-0.0494207963347435,
-0.029144875705242157,
0.06724824011325836,
-0.02566961944103241,
0.026137489825487137,
-0.050627805292606354,
-0.021379021927714348,
0.0318739116191864,
-0.03442570939660072,
0.1050645262002945,
-0.05140182748436928,
0.058983899652957916,
-0.11402371525764465,
0.1704644113779068,
-0.18555642664432526,
-0.00024422165006399155,
-0.082514189183712,
-0.030962927266955376,
-0.16002726554870605,
-0.052897386252880096,
-0.0653422474861145,
0.08822090923786163,
0.009190102107822895,
-0.05994093045592308,
-0.12180839478969574,
0.029513267800211906,
0.056349627673625946,
0.15576870739459991,
-0.0925857201218605,
-0.016129396855831146,
0.14963355660438538,
-0.11218833923339844,
-0.1534803956747055,
0.1572684794664383,
-0.01748615875840187,
0.14296653866767883,
0.03813747689127922,
0.14734525978565216,
0.044108375906944275,
-0.11104054003953934,
-0.024868303909897804,
0.09432563930749893,
-0.029385147616267204,
-0.19818109273910522,
0.03927752003073692,
0.08883002400398254,
-0.08071527630090714,
0.0583321787416935,
0.026332460343837738,
0.0216639693826437,
-0.03605785593390465,
-0.027195245027542114,
-0.05345117673277855,
-0.06632997840642929,
-0.05482451617717743,
0.048900965601205826,
0.14217817783355713,
-0.10594122111797333,
-0.0013483461225405335,
-0.05370239168405533,
0.06817149370908737,
-0.10230716317892075,
0.05293591320514679,
0.005607100203633308,
0.1552491933107376,
-0.08444392681121826,
0.04890396445989609,
-0.08705016225576401,
0.07648643106222153,
-0.01615319773554802,
0.04667310789227486,
-0.032458409667015076,
0.2512296140193939,
0.06607471406459808,
0.030382070690393448,
-0.0013885980006307364,
0.06543228775262833,
0.10395634174346924,
0.01995231583714485,
-0.09818147122859955,
-0.11353567242622375,
0.04343778267502785,
-0.0743328183889389,
0.08355875313282013,
-0.09981104731559753,
0.011601024307310581,
0.04521975666284561,
0.1341952085494995,
-0.030732283368706703,
0.0617532953619957,
-0.011419007554650307,
0.04069579765200615,
-0.05872165039181709,
0.033068351447582245,
0.08815059810876846,
0.019396083429455757,
-0.020480316132307053,
0.08473946899175644,
-0.03680630773305893,
0.12937980890274048,
0.1731022447347641,
-0.12447424978017807,
-0.022957157343626022,
-0.03861811384558678,
0.005654131527990103,
0.022373370826244354,
-0.005897398106753826,
-0.03245466947555542,
0.020022550597786903,
-0.05331062525510788,
0.13904042541980743,
-0.08824923634529114,
-0.021230891346931458,
0.041102975606918335,
-0.08523876219987869,
0.011593170464038849,
0.14358754456043243,
-0.020893307402729988,
-0.17600804567337036,
0.10539811104536057,
0.10135751217603683,
-0.08318832516670227,
0.19629600644111633,
0.028963061049580574,
-0.05636870115995407,
0.05472878739237785,
0.026564620435237885,
0.011367278173565865,
0.11725686490535736,
-0.17268908023834229,
-0.06545109301805496,
0.08039989322423935,
-0.022961203008890152,
0.06402595341205597,
-0.12090038508176804,
0.009947328828275204,
-0.06163407489657402,
0.0023711547255516052,
-0.010633217170834541,
0.06549731642007828,
-0.061679210513830185,
0.1383882462978363,
-0.002524829702451825,
-0.13204137980937958,
-0.01091514527797699,
-0.01303522102534771,
-0.06977558135986328,
0.1578880250453949,
-0.056307725608348846,
-0.19336076080799103,
-0.15331855416297913,
0.04791686311364174,
0.03625931963324547,
0.037109121680259705,
0.0809100866317749,
-0.05080941691994667,
-0.07462228834629059,
-0.03639530763030052,
-0.06381860375404358,
0.11200723052024841,
0.006885827053338289,
0.056518133729696274,
0.02888466790318489,
-0.00769770285114646,
-0.10596540570259094,
-0.01773427054286003,
-0.0903586596250534,
0.027014175429940224,
0.1189812496304512,
-0.12019148468971252,
0.1359781175851822,
0.08558355271816254,
-0.07390173524618149,
0.027512144297361374,
0.012347221374511719,
0.08144480735063553,
-0.04629993811249733,
0.01276840828359127,
0.05365772917866707,
-0.008910457603633404,
0.002027088776230812,
0.12889261543750763,
0.03719748929142952,
-0.0446707159280777,
0.032907016575336456,
-0.14689365029335022,
-0.12162252515554428,
-0.11732219904661179,
-0.15416528284549713,
-0.04993627965450287,
0.044327884912490845,
0.0055688004940748215,
0.026996036991477013,
-0.09935993701219559,
0.10910673439502716,
0.0038909208960831165,
0.044793155044317245,
-0.0019528657430782914,
0.05363565310835838,
0.08690357953310013,
-0.035105347633361816,
0.09490736573934555,
-0.09891516715288162,
-0.09605558216571808,
0.0598994679749012,
-0.0037548725958913565,
0.11536721140146255,
-0.06105902045965195,
0.01968877948820591,
-0.00008377852645935491,
0.12700921297073364,
0.08092785626649857,
0.2528645992279053,
-0.030544031411409378,
-0.03506094589829445,
-0.05069366469979286,
-0.031623635441064835,
-0.10517876595258713,
0.04868539050221443,
-0.11211921274662018,
-0.022076085209846497,
-0.02705400064587593,
-0.050903283059597015,
0.07438664883375168,
0.08396235853433609,
0.09672321379184723,
-0.19807448983192444,
-0.049367163330316544,
0.05654934048652649,
0.015328274108469486,
-0.06966070085763931,
0.03438658267259598,
0.17768825590610504,
-0.038986120373010635,
-0.015230318531394005,
-0.0012170497793704271,
0.08204258233308792,
-0.0299836415797472,
0.06555580347776413,
-0.11994940787553787,
-0.049246881157159805,
-0.015907440334558487,
0.11632668226957321,
-0.2306923270225525,
0.2487189620733261,
-0.0008084368309937418,
0.01458919420838356,
-0.0969867929816246,
-0.061364710330963135,
0.00949442945420742,
0.17629374563694,
0.09406735748052597,
0.024134939536452293,
-0.027225570753216743,
-0.09063313901424408,
-0.10087615996599197,
0.09159942716360092,
-0.01378010492771864,
0.04160965979099274,
0.024621212854981422,
0.017661595717072487,
-0.010941014625132084,
-0.021380877122282982,
0.05178333818912506,
0.01980363018810749,
-0.0826369896531105,
-0.000465188903035596,
0.09369289875030518,
0.01451937947422266,
0.0064320736564695835,
-0.0707876905798912,
-0.13636408746242523,
0.0938357561826706,
-0.010782348923385143,
-0.05773961544036865,
-0.0673050582408905,
-0.04059670865535736,
0.0035146481823176146,
-0.0740128755569458,
0.01767694763839245,
-0.012547512538731098,
-0.019039390608668327,
-0.050236865878105164,
-0.06398326903581619,
0.0768095850944519,
-0.08297321200370789,
-0.01802932098507881,
-0.018497014418244362,
-0.011217139661312103,
-0.02226126566529274,
0.038534220308065414,
0.03756388649344444,
0.017294669523835182,
-0.11829224973917007,
-0.08119641989469528,
-0.08949088305234909,
0.00975006353110075,
0.1954442411661148,
-0.034954559057950974,
-0.1104860007762909,
-0.06361118704080582,
0.06263377517461777,
-0.01680447906255722,
0.13439317047595978,
0.1253143548965454,
-0.08943214267492294,
0.028511833399534225,
0.28115493059158325,
-0.009647274389863014,
-0.39107728004455566,
-0.08502936363220215,
-0.0781095027923584,
0.03935170918703079,
-0.12188871204853058,
-0.0015857949620112777,
0.08153607696294785,
0.04439875856041908,
-0.07012675702571869,
-0.021907364949584007,
0.0219600647687912,
-0.09546440094709396,
0.17340636253356934,
0.07681455463171005,
0.4427262544631958,
-0.0718633159995079,
0.006170760840177536,
-0.11034556478261948,
-0.2703096270561218,
0.05630754679441452,
-0.2198403924703598,
0.07969393581151962,
-0.05118046700954437,
0.02140979841351509,
0.0018619574839249253,
-0.0968095064163208,
0.09656085073947906,
-0.05508045107126236,
0.024243459105491638,
-0.09357722103595734,
0.021527079865336418,
-0.022732289507985115,
-0.027617819607257843,
0.15655696392059326,
-0.0919136255979538,
-0.0049082632176578045,
-0.07631273567676544,
-0.007202652748674154,
-0.0486978217959404,
0.07427967339754105,
0.025840912014245987,
-0.07769303768873215,
-0.0489017479121685,
-0.010799385607242584,
-0.0010292757069692016,
0.0024997147265821695,
0.17169815301895142,
-0.029159238561987877,
0.1470455825328827,
0.19962865114212036,
0.14674822986125946,
-0.22357523441314697,
0.23691107332706451,
0.08699310570955276,
-0.05400262400507927,
0.11554211378097534,
-0.12964116036891937,
0.002783760894089937,
0.11788453906774521,
-0.03429804742336273,
0.029008785262703896,
0.05756514146924019,
-0.02553248219192028,
0.004166577942669392,
0.15445175766944885,
-0.23943164944648743,
0.007216224912554026,
0.017950894311070442,
-0.0824417769908905,
0.031234247609972954,
0.12409861385822296,
0.12425282597541809,
-0.11718456447124481,
0.008985341526567936,
-0.024187158793210983,
0.004519969690591097,
-0.0558340921998024,
0.11308707296848297,
0.09246814250946045,
0.03622280806303024,
-0.1080917939543724,
-0.01978997513651848,
-0.009598983451724052,
-0.08096881210803986,
-0.010927252471446991,
0.024445541203022003,
-0.17189620435237885,
-0.11899808049201965,
0.06664006412029266,
0.17636556923389435,
-0.06309033185243607,
-0.11498221009969711,
-0.0941704735159874,
-0.09169267117977142,
-0.018296528607606888,
0.09204445779323578,
0.13473986089229584,
0.005935159977525473,
0.00047705124597996473,
-0.005089737940579653,
-0.117591992020607,
0.06587857007980347,
-0.05232518911361694,
0.038080159574747086,
-0.05020967498421669,
0.06463862955570221,
-0.04995794966816902,
0.03165336325764656,
-0.10507307201623917,
0.05987713858485222,
-0.13336510956287384,
-0.013079991564154625,
-0.13279935717582703,
-0.02554125338792801,
-0.06960315257310867,
-0.028886813670396805,
-0.020062152296304703,
-0.04184015095233917,
-0.038963496685028076,
0.014848124235868454,
-0.08417398482561111,
0.08007713407278061,
-0.03289993852376938,
0.03151540458202362,
-0.04551547393202782,
-0.016832975670695305,
0.03273611143231392,
-0.01848122477531433,
0.0608169287443161,
0.07365449517965317,
-0.049629319459199905,
0.09465666860342026,
-0.1732897311449051,
0.022525202482938766,
0.09997016191482544,
0.04190767928957939,
0.12991906702518463,
0.03857443481683731,
-0.014887201599776745,
0.07896434515714645,
0.08940848708152771,
0.05045371130108833,
0.1167745366692543,
0.010511822998523712,
0.09089117497205734,
-0.07614130526781082,
-0.05345798283815384,
-0.02715727686882019,
0.024726146832108498,
0.0735071524977684,
0.08902063965797424,
0.08318065851926804,
-0.04469005763530731,
-0.019441640004515648,
-0.06109246611595154,
0.009695816785097122,
0.05110868439078331,
-0.1865290254354477,
-0.09732239693403244,
-0.05445898696780205,
0.021485092118382454,
0.004035041201859713,
0.21836519241333008,
0.059598155319690704,
-0.09074174612760544,
-0.00887486431747675,
0.021837837994098663,
0.01177187729626894,
-0.02765689790248871,
0.11644287407398224,
0.022508196532726288,
0.013641907833516598,
-0.12924586236476898,
0.09786577522754669,
0.04858793690800667,
0.006591869983822107,
0.0550847053527832,
0.03628749027848244,
0.0356646403670311,
0.09753359109163284,
-0.026191623881459236,
0.0708705261349678,
-0.029704220592975616,
-0.05547752603888512,
-0.05588122084736824,
0.05450446531176567,
-0.0310672614723444,
0.08520793169736862,
0.18198636174201965,
-0.10757555812597275,
-0.057575784623622894,
-0.06709505617618561,
-0.048702389001846313,
-0.1650388389825821,
-0.061714962124824524,
-0.10502175986766815,
-0.16060636937618256,
0.0002613769320305437,
-0.09029079973697662,
-0.03395313024520874,
0.10732343792915344,
0.028198735788464546,
0.0034935460425913334,
0.09916026145219803,
0.03283140808343887,
0.036307137459516525,
0.0232985932379961,
0.01007458008825779,
-0.004427562467753887,
-0.0913429781794548,
-0.029548518359661102,
-0.03648443892598152,
-0.02004132606089115,
-0.008610778488218784,
0.01077255792915821,
-0.0008691744296811521,
-0.05465410649776459,
0.006542528979480267,
-0.021406853571534157,
-0.053050797432661057,
0.043227266520261765,
0.025925153866410255,
0.1254873424768448,
0.03467468172311783,
-0.03511766344308853,
0.016033539548516273,
0.11706535518169403,
-0.0543232299387455,
-0.06171884387731552,
-0.09800171852111816,
0.14586512744426727,
-0.04346771910786629,
0.10719811171293259,
0.014833689667284489,
-0.015441031195223331,
-0.04544911906123161,
0.2616083323955536,
0.23312118649482727,
-0.0341724194586277,
0.05434703826904297,
0.0031891101971268654,
0.01986762508749962,
-0.02811862714588642,
0.10460837930440903,
0.14849744737148285,
0.167379230260849,
-0.05223085731267929,
-0.024904360994696617,
-0.05268457159399986,
-0.010557896457612514,
-0.11355224996805191,
-0.04359693452715874,
-0.02954813465476036,
-0.09573408961296082,
-0.04924466088414192,
-0.006179877556860447,
-0.03407597914338112,
-0.15263397991657257,
-0.009271448478102684,
-0.11292075365781784,
-0.03855675831437111,
0.0033533149398863316,
0.10162923485040665,
-0.022895384579896927,
0.05719853937625885,
-0.050365619361400604,
0.013001590967178345,
0.05464554950594902,
-0.015726670622825623,
-0.0681866854429245,
-0.000002987768539242097,
0.024307699874043465,
-0.13891856372356415,
0.0706091895699501,
0.0011814323952421546,
0.079107366502285,
0.06919708102941513,
-0.02074284479022026,
-0.06529966741800308,
0.09529697895050049,
0.018762003630399704,
-0.037132568657398224,
0.009139706380665302,
-0.007749450393021107,
-0.05343275144696236,
-0.06174244359135628,
0.04205078259110451,
-0.14599613845348358,
0.03851223737001419,
0.02636115252971649,
-0.005623023957014084,
-0.03150634467601776,
0.03666174039244652,
-0.035682640969753265,
0.12621670961380005,
0.11460079252719879,
-0.0016162251122295856,
-0.009874085895717144,
-0.03097616881132126,
0.03083595260977745,
-0.005802949890494347,
-0.05602358281612396,
-0.014524905011057854,
-0.1740894466638565,
-0.04358762502670288,
0.023739861324429512,
-0.014765835367143154,
-0.1798156499862671,
0.02660132572054863,
-0.17197373509407043,
-0.01774272322654724,
-0.06992662698030472,
-0.00971606932580471,
0.09289874136447906,
-0.011963995173573494,
-0.023191004991531372,
-0.030956367030739784,
-0.003263006219640374,
0.07746051251888275,
-0.0724387913942337,
-0.1382879614830017
] |
null | null | transformers |
# 🤗 BERT Swedish
This BERT model was trained using the 🤗 transformers library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
To avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
Training was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps.
The model has three sister models trained on the same dataset:
- [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k)
- [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k)
- [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k)
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si). | {"language": ["sv"]} | fill-mask | KBLab/bert-base-swedish-cased-new | [
"transformers",
"pytorch",
"safetensors",
"bert",
"fill-mask",
"sv",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us
|
# BERT Swedish
This BERT model was trained using the transformers library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
To avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following URL
Training was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps.
The model has three sister models trained on the same dataset:
- Megatron-BERT-base-125k
- Megatron-BERT-base-600k
- Megatron-BERT-large-110k
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL). | [
"# BERT Swedish\n\nThis BERT model was trained using the transformers library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\nTo avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following URL\n\nTraining was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps.\n\nThe model has three sister models trained on the same dataset:\n- Megatron-BERT-base-125k\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n",
"# BERT Swedish\n\nThis BERT model was trained using the transformers library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\nTo avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following URL\n\nTraining was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps.\n\nThe model has three sister models trained on the same dataset:\n- Megatron-BERT-base-125k\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
43,
193,
51
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n# BERT Swedish\n\nThis BERT model was trained using the transformers library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\nTo avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following URL\n\nTraining was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps.\n\nThe model has three sister models trained on the same dataset:\n- Megatron-BERT-base-125k\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
0.019289275631308556,
0.08382461220026016,
-0.0009072371758520603,
0.0914185643196106,
0.09944631904363632,
0.033013731241226196,
0.08769387751817703,
0.08385496586561203,
-0.07819538563489914,
0.017119519412517548,
0.08669845759868622,
-0.04120129719376564,
0.054331764578819275,
0.05746418982744217,
-0.01932729035615921,
-0.28217813372612,
0.037408068776130676,
0.05975243076682091,
-0.1682385504245758,
0.007116022054105997,
0.07802785187959671,
-0.13613903522491455,
0.04951170086860657,
-0.030302057042717934,
-0.10467175394296646,
0.04710756614804268,
-0.04356846213340759,
-0.013848339207470417,
0.11625881493091583,
0.0648747980594635,
0.10867337137460709,
0.017319075763225555,
0.08050207048654556,
0.013048910535871983,
0.02171775884926319,
0.0029854264575988054,
0.04967612400650978,
0.10625353455543518,
-0.02275221422314644,
0.1888832002878189,
0.1501934677362442,
-0.10105471312999725,
-0.002082362538203597,
0.0010204437421634793,
0.021317701786756516,
-0.1515158861875534,
-0.04729542136192322,
0.06773434579372406,
-0.020630287006497383,
-0.037938326597213745,
0.009309288114309311,
0.19050192832946777,
-0.09010236710309982,
0.058266907930374146,
0.10661350935697556,
-0.2421255260705948,
-0.08095943927764893,
0.09366732090711594,
0.010284648276865482,
0.13843439519405365,
0.017238028347492218,
0.07961413264274597,
0.07256679981946945,
0.04173734411597252,
0.14812901616096497,
-0.043157584965229034,
-0.14433936774730682,
-0.02339990809559822,
-0.13882432878017426,
-0.012652368284761906,
0.20285432040691376,
0.005781322252005339,
-0.006009911186993122,
-0.04065559431910515,
-0.09665714204311371,
0.052015893161296844,
0.001524914288893342,
-0.020592009648680687,
0.05341719090938568,
-0.0617765448987484,
-0.012416001409292221,
-0.01443350687623024,
-0.09827553480863571,
-0.05093305557966232,
-0.11132568120956421,
0.07684172689914703,
0.02174212411046028,
0.07107297331094742,
-0.004100813064724207,
0.08204884082078934,
-0.133501335978508,
-0.07747894525527954,
0.028504153713583946,
-0.07189979404211044,
0.04402288421988487,
-0.015942253172397614,
-0.041308630257844925,
-0.11714999377727509,
0.10894014686346054,
0.028453310951590538,
-0.03142731264233589,
-0.04924429580569267,
0.013477690517902374,
0.008895201608538628,
0.09310698509216309,
0.08163559436798096,
-0.19181227684020996,
-0.0413900651037693,
0.04372115805745125,
-0.009065846912562847,
0.03647182136774063,
0.0375572107732296,
-0.033222977072000504,
-0.03214825689792633,
0.017364786937832832,
-0.002294502453878522,
-0.11294157058000565,
0.13419854640960693,
0.02725471742451191,
0.041863515973091125,
0.05645810067653656,
-0.053993236273527145,
0.0032409685663878918,
0.029489854350686073,
0.0008041076944209635,
0.20633459091186523,
-0.0049811857752501965,
-0.017712684348225594,
-0.033082664012908936,
0.06924481689929962,
-0.09116219729185104,
-0.0804518461227417,
-0.08532048761844635,
-0.15776289999485016,
0.07731941342353821,
-0.015793196856975555,
0.028069211170077324,
-0.14525951445102692,
-0.02901277132332325,
0.05582539737224579,
0.11913705617189407,
-0.05153929814696312,
-0.005619627423584461,
0.058596596121788025,
0.005074969492852688,
0.022696899250149727,
-0.04091057553887367,
0.25088778138160706,
0.002381355734542012,
0.040395691990852356,
-0.0882619172334671,
0.10808689147233963,
-0.1266019642353058,
0.006561757996678352,
-0.06405793875455856,
0.0012455048272386193,
-0.16978982090950012,
-0.06704476475715637,
-0.09313981980085373,
0.009921295568346977,
-0.03377974033355713,
-0.03025716543197632,
-0.033425524830818176,
0.025191254913806915,
0.08348511904478073,
0.12108983099460602,
-0.048217520117759705,
-0.01528322696685791,
0.06653249263763428,
-0.07874403148889542,
-0.027104880660772324,
0.16453830897808075,
-0.032495513558387756,
0.06422839313745499,
0.1025356575846672,
0.09667426347732544,
0.026533009484410286,
-0.08321311324834824,
-0.1283635050058365,
0.07527986168861389,
0.03947754576802254,
-0.14454345405101776,
0.07031857967376709,
0.08139689266681671,
-0.0650879517197609,
0.04571543261408806,
-0.025924386456608772,
-0.032723359763622284,
-0.0698079764842987,
-0.001939468551427126,
-0.042863629758358,
-0.10781892389059067,
-0.03872597590088844,
-0.005987528711557388,
0.10323911905288696,
-0.11043629795312881,
-0.013953523710370064,
0.07341011613607407,
0.08694560825824738,
-0.07626897096633911,
0.04591524600982666,
-0.016771355643868446,
0.050702039152383804,
-0.12087464332580566,
0.04479091614484787,
-0.1076953336596489,
0.00152948300819844,
0.06781674176454544,
-0.14366264641284943,
-0.011160655878484249,
0.12300446629524231,
0.03517316281795502,
0.07418514788150787,
-0.05598884075880051,
0.10508932173252106,
0.04060835763812065,
0.0008013101760298014,
-0.10434994101524353,
-0.0441475436091423,
-0.033229388296604156,
-0.04245220869779587,
-0.07235114276409149,
-0.009025516919791698,
0.0054678237065672874,
0.0572994127869606,
0.06534499675035477,
-0.009538033977150917,
0.0387125164270401,
-0.004935132339596748,
0.02384294755756855,
-0.026474211364984512,
-0.003737345105037093,
0.04009094461798668,
0.02386217564344406,
-0.0156761072576046,
0.0015138366725295782,
-0.0029587133321911097,
-0.004401955753564835,
0.10444749891757965,
0.07148489356040955,
0.003679513931274414,
0.006481760647147894,
-0.025905810296535492,
-0.003618626855313778,
-0.07578050345182419,
-0.12876631319522858,
0.09512241929769516,
-0.0011489551980048418,
0.09071710705757141,
-0.08947419375181198,
-0.03105170466005802,
0.045716479420661926,
-0.053065963089466095,
-0.02337396889925003,
0.09365067631006241,
0.10574852675199509,
-0.18108104169368744,
0.06854164600372314,
-0.0005258084856905043,
-0.09140852093696594,
0.2109536975622177,
-0.02061481401324272,
-0.061502691358327866,
0.016941649839282036,
-0.08436241000890732,
0.017251819372177124,
0.09556670486927032,
-0.026216108351945877,
0.005450242664664984,
0.0723949447274208,
-0.0023888777941465378,
0.029437575489282608,
-0.10440549999475479,
0.06844735145568848,
-0.053738854825496674,
-0.010235113091766834,
-0.051812443882226944,
0.031181873753666878,
-0.07329178601503372,
0.12737268209457397,
0.014619187451899052,
-0.0038607397582381964,
-0.0032395932357758284,
-0.014888046309351921,
-0.005723402835428715,
0.11504042893648148,
-0.044729627668857574,
-0.10281968861818314,
-0.16865770518779755,
0.042161379009485245,
-0.02346549741923809,
0.007180606480687857,
0.03820658475160599,
-0.04267503321170807,
-0.12751753628253937,
-0.09047998487949371,
0.012302044779062271,
0.10418544709682465,
0.014009048230946064,
0.06062565743923187,
-0.001664989162236452,
0.009350690990686417,
-0.12540800869464874,
-0.015417751856148243,
-0.05352006480097771,
-0.011937943287193775,
0.07096506655216217,
-0.03190630301833153,
0.08507461845874786,
0.0029772010166198015,
-0.054672688245773315,
-0.016280949115753174,
0.0037918658927083015,
0.08081339299678802,
0.0048989527858793736,
0.09528284519910812,
0.08053068816661835,
0.04425686597824097,
0.03510911017656326,
0.12190895527601242,
0.08687679469585419,
-0.03833674639463425,
0.04294208809733391,
-0.03751667961478233,
-0.11620672047138214,
-0.18466117978096008,
-0.06286081671714783,
-0.018359055742621422,
0.035933151841163635,
0.014533346518874168,
0.010688205249607563,
-0.2689613103866577,
0.10433048754930496,
-0.009497509337961674,
0.06424688547849655,
-0.012662719935178757,
0.015258981846272945,
0.10272013396024704,
0.028867505490779877,
0.06849846988916397,
-0.07281356304883957,
-0.05480615422129631,
0.07113555818796158,
0.029079509899020195,
0.16923175752162933,
-0.07363857328891754,
0.12928102910518646,
-0.003788188798353076,
0.028780506923794746,
0.056390468031167984,
0.3042893409729004,
-0.025316279381513596,
-0.0018475662218406796,
-0.05921773985028267,
-0.0072401403449475765,
0.014786356128752232,
-0.03592288866639137,
-0.07346461713314056,
0.0060704429633915424,
-0.031212806701660156,
-0.009308837354183197,
0.02279706485569477,
0.3874931335449219,
0.019065584987401962,
-0.13234372437000275,
-0.05984974652528763,
0.07160460948944092,
-0.06297006458044052,
-0.048806220293045044,
0.013314484618604183,
0.2005026787519455,
-0.05441023409366608,
-0.011468690820038319,
-0.05567779392004013,
0.051893990486860275,
-0.056665219366550446,
0.06262829899787903,
-0.015981031581759453,
0.0827256292104721,
-0.04806799814105034,
0.08602354675531387,
-0.1856829822063446,
0.21529346704483032,
0.04424899071455002,
0.06447626650333405,
-0.09090229123830795,
-0.002194958506152034,
-0.007060088682919741,
0.05050937086343765,
0.035167060792446136,
0.008732011541724205,
-0.013642826117575169,
-0.08231838047504425,
-0.11869815737009048,
0.09802547097206116,
-0.0237358920276165,
-0.03732021898031235,
0.10110682994127274,
-0.012971441261470318,
-0.022909190505743027,
-0.00935599859803915,
0.03986414149403572,
-0.023438608273863792,
-0.11029515415430069,
-0.04333734139800072,
0.07511597126722336,
-0.059218406677246094,
-0.03334920108318329,
-0.09461946040391922,
-0.12325914204120636,
0.05209750682115555,
-0.07311233133077621,
-0.11013263463973999,
-0.07717471569776535,
0.01291236374527216,
0.053388554602861404,
-0.039282336831092834,
-0.014426030218601227,
-0.010559171438217163,
0.08169140666723251,
-0.057879265397787094,
-0.08012223988771439,
0.05699307844042778,
-0.0732206478714943,
-0.10429952293634415,
-0.0162972379475832,
-0.005105995107442141,
0.027254628017544746,
0.06798986345529556,
-0.022011732682585716,
0.014873649924993515,
-0.009826356545090675,
-0.03306512162089348,
-0.08046996593475342,
0.11048497259616852,
0.19907233119010925,
-0.0007772247772663832,
-0.14455270767211914,
-0.04376494884490967,
0.06610454618930817,
-0.030803393572568893,
0.10620496422052383,
0.1925399750471115,
-0.05078095570206642,
-0.0009522864711470902,
0.3373294174671173,
-0.03361973911523819,
-0.31171858310699463,
-0.06056971102952957,
0.022617286071181297,
0.042823728173971176,
-0.01657620072364807,
-0.11607412993907928,
0.11865605413913727,
0.11738450825214386,
-0.020367642864584923,
-0.09564831852912903,
-0.053817011415958405,
-0.05471140518784523,
0.030002659186720848,
0.08841566741466522,
0.3144890367984772,
-0.029015107080340385,
0.040286120027303696,
-0.08026207983493805,
-0.09216247498989105,
0.1396162062883377,
-0.14734633266925812,
0.1445162296295166,
-0.014924225397408009,
0.05707548186182976,
0.004207470454275608,
-0.10429613292217255,
0.053040120750665665,
-0.032771699130535126,
0.05342664569616318,
-0.02994331531226635,
-0.009224110282957554,
0.08801454305648804,
-0.028795965015888214,
0.1772242784500122,
-0.09246213734149933,
-0.0000375209201592952,
0.027682190760970116,
-0.04559696838259697,
-0.0194767564535141,
0.06112431734800339,
0.007051081862300634,
-0.11184260994195938,
-0.05257057771086693,
0.0430665947496891,
-0.006546751596033573,
-0.026005376130342484,
0.03953598067164421,
0.003886208636686206,
-0.03977314755320549,
0.21568256616592407,
0.1903282105922699,
-0.08428449928760529,
0.07570423185825348,
0.02499258704483509,
-0.040377531200647354,
0.10570124536752701,
-0.07243717461824417,
0.019256874918937683,
0.12326902896165848,
-0.03995469957590103,
-0.003641679650172591,
0.04084134101867676,
-0.0713917687535286,
0.021917732432484627,
0.06558037549257278,
-0.19572781026363373,
-0.05493805557489395,
0.06168077886104584,
-0.06773115694522858,
-0.09911513328552246,
0.0812094658613205,
0.14375776052474976,
-0.08261575549840927,
-0.014937901869416237,
0.00908359233289957,
0.0338796004652977,
-0.0089736832305789,
0.16813895106315613,
0.01654471829533577,
0.036374423652887344,
-0.09256259351968765,
0.0771675556898117,
0.006063153501600027,
-0.011723648756742477,
0.013504406437277794,
0.02211562544107437,
-0.10507886111736298,
-0.042159587144851685,
0.11779814213514328,
0.07671810686588287,
-0.007573553826659918,
-0.06522482633590698,
-0.06973300874233246,
-0.10522207617759705,
-0.017536930739879608,
0.048387426882982254,
0.056652963161468506,
0.015639103949069977,
-0.08081232011318207,
0.021993091329932213,
-0.14024662971496582,
0.10694879293441772,
-0.06682714819908142,
0.04554642364382744,
-0.06687860935926437,
0.007906448096036911,
-0.07969481498003006,
-0.007729628123342991,
-0.07407031208276749,
0.08103323727846146,
-0.09071674197912216,
-0.04902989789843559,
-0.14592953026294708,
-0.02244063839316368,
0.011697700247168541,
-0.0005370417493395507,
-0.04756728187203407,
0.006843869108706713,
-0.059971340000629425,
-0.007576269563287497,
-0.059519872069358826,
0.06700199842453003,
-0.016626358032226562,
0.05611006170511246,
-0.011363925412297249,
-0.006085662171244621,
0.03829953819513321,
-0.02765701152384281,
0.07466944307088852,
-0.05526667460799217,
-0.04949944093823433,
0.07063400000333786,
-0.05113048851490021,
-0.013037985190749168,
-0.006849761586636305,
0.08288870006799698,
0.1027795821428299,
0.0739535540342331,
-0.01998564973473549,
0.04053173214197159,
0.1174212321639061,
0.022674566134810448,
0.05009910464286804,
-0.015828963369131088,
0.04658447206020355,
-0.023303743451833725,
-0.018023373559117317,
-0.039962634444236755,
-0.03620649501681328,
0.09018999338150024,
0.08309215307235718,
0.13127024471759796,
-0.05620821937918663,
-0.053841106593608856,
-0.1094890832901001,
0.012922174297273159,
0.05653811991214752,
-0.16382840275764465,
-0.10686588287353516,
-0.03160526230931282,
0.04705667123198509,
0.0113836033269763,
0.22660472989082336,
0.05269871652126312,
-0.07969354093074799,
0.01601317711174488,
-0.05726960673928261,
0.051356758922338486,
-0.0017654752591624856,
0.19321249425411224,
0.025657521560788155,
-0.02052212320268154,
-0.07177082449197769,
0.04983540251851082,
0.0037577045150101185,
0.03400697186589241,
0.17245930433273315,
0.04903032258152962,
-0.008629996329545975,
0.06270449608564377,
0.016530564054846764,
0.06946060806512833,
-0.05180931091308594,
-0.027971774339675903,
-0.025727830827236176,
0.10579156875610352,
-0.09349838644266129,
0.15461325645446777,
0.07772894948720932,
-0.1528918445110321,
-0.020214276388287544,
-0.07144925743341446,
-0.0522022470831871,
-0.12960602343082428,
-0.17122262716293335,
-0.10238263756036758,
-0.07089117914438248,
0.020457668229937553,
-0.12698589265346527,
-0.03013576567173004,
0.13390426337718964,
0.03951669856905937,
-0.038742050528526306,
0.08063291013240814,
-0.0173085518181324,
0.06079042702913284,
0.039474647492170334,
-0.0015880671562626958,
-0.052414651960134506,
-0.02204618975520134,
-0.08995747566223145,
-0.010915490798652172,
0.05332527309656143,
0.012504826299846172,
0.0428515262901783,
0.0027240596245974302,
-0.06540905684232712,
0.018556790426373482,
-0.027099549770355225,
-0.07016124576330185,
-0.022513311356306076,
0.035180553793907166,
-0.016410166397690773,
0.01425357535481453,
-0.054146744310855865,
-0.00804180558770895,
0.026000963523983955,
-0.03182746097445488,
-0.016689889132976532,
-0.1230727806687355,
0.14532503485679626,
-0.08100990951061249,
0.09886396676301956,
0.050690826028585434,
-0.038764651864767075,
-0.11443483084440231,
0.2460382580757141,
0.19255785644054413,
-0.0018614873988553882,
-0.01599811390042305,
-0.06379323452711105,
-0.019249724224209785,
-0.11821247637271881,
0.23485727608203888,
0.09893777966499329,
0.06147240102291107,
-0.04830879718065262,
0.045909248292446136,
-0.038282837718725204,
-0.0064320252276957035,
-0.12379975616931915,
0.06356179714202881,
0.0022575464099645615,
-0.03223425894975662,
-0.04438423737883568,
-0.007567343767732382,
0.05504642799496651,
-0.24447153508663177,
-0.07386567443609238,
-0.010024020448327065,
-0.07147939503192902,
0.0094181839376688,
-0.008822549134492874,
-0.015170915052294731,
0.08703544735908508,
-0.06623120605945587,
0.0673675388097763,
0.049074240028858185,
-0.018032308667898178,
-0.04172515496611595,
-0.050453826785087585,
0.07322517782449722,
-0.09985955059528351,
0.16042256355285645,
0.05302877351641655,
0.05713566020131111,
0.09231395274400711,
-0.10936412215232849,
-0.12209020555019379,
0.0943479835987091,
0.008384951390326023,
-0.12701065838336945,
0.014889764599502087,
0.03892321139574051,
-0.07533802092075348,
0.017213547602295876,
-0.0399811789393425,
-0.03163817897439003,
-0.003762793028727174,
-0.03156626224517822,
0.037311505526304245,
-0.07268363982439041,
0.018440047279000282,
-0.06657550483942032,
0.12615707516670227,
0.18134599924087524,
-0.017469219863414764,
-0.02594362571835518,
-0.04923425242304802,
0.09711673110723495,
0.015932781621813774,
0.00588784646242857,
0.021039677783846855,
-0.2580634653568268,
-0.020354079082608223,
-0.03345445916056633,
0.017229652032256126,
-0.18927836418151855,
0.001249150256626308,
-0.160321444272995,
-0.01257475558668375,
-0.09491702169179916,
-0.02948181889951229,
0.12346910685300827,
-0.0027648669201880693,
-0.033171117305755615,
-0.10725277662277222,
-0.08743929862976074,
0.06966833770275116,
-0.12414363026618958,
-0.08211293071508408
] |
null | null | transformers |
# KB-BERT for NER
## Cased data
This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and cased data.
For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.
The model was trained on the training data only, with the best model chosen by its performance on the validation data.
You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner | {"language": "sv", "tags": ["token-classification", "sequence-tagger-model", "bert"], "datasets": ["KBLab/sucx3_ner"], "widget": [{"text": "Emil bor i L\u00f6nneberga"}]} | token-classification | KBLab/bert-base-swedish-cased-reallysimple-ner | [
"transformers",
"pytorch",
"megatron-bert",
"token-classification",
"sequence-tagger-model",
"bert",
"sv",
"dataset:KBLab/sucx3_ner",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #megatron-bert #token-classification #sequence-tagger-model #bert #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us
|
# KB-BERT for NER
## Cased data
This model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and cased data.
For this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.
The model was trained on the training data only, with the best model chosen by its performance on the validation data.
You find more information about the model and the performance on our blog: URL | [
"# KB-BERT for NER",
"## Cased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and cased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
"TAGS\n#transformers #pytorch #megatron-bert #token-classification #sequence-tagger-model #bert #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us \n",
"# KB-BERT for NER",
"## Cased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and cased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
66,
8,
123
] | [
"passage: TAGS\n#transformers #pytorch #megatron-bert #token-classification #sequence-tagger-model #bert #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us \n# KB-BERT for NER## Cased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and cased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
0.0007594872731715441,
0.024714583531022072,
0.0005962449940852821,
0.072800412774086,
0.09308472275733948,
0.010811369866132736,
0.06823736429214478,
0.03082730434834957,
-0.057850711047649384,
0.07901792228221893,
0.06924203038215637,
0.010583426803350449,
0.001203344203531742,
0.10568718612194061,
0.026605643332004547,
-0.2308887392282486,
0.07451967895030975,
0.05506117641925812,
0.09978353977203369,
0.07831257581710815,
0.0683574452996254,
-0.15194983780384064,
0.08432108163833618,
0.07489725947380066,
-0.11169157922267914,
0.03874431923031807,
0.005121008958667517,
0.005598364397883415,
0.08245668560266495,
-0.04571297764778137,
0.18680377304553986,
0.0037934202700853348,
0.09952817112207413,
-0.09396488964557648,
0.030209071934223175,
-0.010581743903458118,
0.04241779446601868,
0.11110928654670715,
0.0167020745575428,
-0.006708821281790733,
0.06955110281705856,
0.028033506125211716,
0.04456021636724472,
0.012977391481399536,
-0.08142012357711792,
-0.08358096331357956,
-0.028449445962905884,
0.15883134305477142,
0.05812600255012512,
0.02154066599905491,
-0.031090212985873222,
0.08636009693145752,
-0.17963825166225433,
0.04465088993310928,
0.1768743246793747,
-0.241697758436203,
-0.057073306292295456,
0.06778328120708466,
0.05601929500699043,
0.016770686954259872,
-0.050976499915122986,
-0.006999957840889692,
0.04904932528734207,
-0.012068325653672218,
0.11427585035562515,
0.004556773230433464,
-0.1162232980132103,
0.05090780928730965,
-0.15773992240428925,
0.03842690959572792,
0.12283153086900711,
-0.008084956556558609,
-0.008652489632368088,
0.024611696600914,
-0.03509598597884178,
-0.11062265187501907,
-0.020015832036733627,
-0.05661066994071007,
0.01791076548397541,
-0.06270457059144974,
0.014952951110899448,
-0.008848720230162144,
-0.04508410021662712,
-0.13567686080932617,
-0.14769692718982697,
0.13882681727409363,
0.03879876062273979,
0.02063262276351452,
-0.07231484353542328,
0.10969961434602737,
-0.1067800521850586,
-0.07791995257139206,
-0.008748161606490612,
-0.04483102634549141,
-0.054326292127370834,
-0.058114152401685715,
-0.04213228449225426,
0.032417114824056625,
-0.00012169601541245356,
0.1493716686964035,
0.14125041663646698,
-0.009438390843570232,
0.043055545538663864,
0.03069334477186203,
0.021479949355125427,
0.11400018632411957,
-0.09719806909561157,
0.003966362681239843,
0.08158233016729355,
0.013409805484116077,
-0.06723431497812271,
0.013654968701303005,
-0.1251286119222641,
-0.030249834060668945,
0.06659576296806335,
-0.031818799674510956,
-0.06389682739973068,
0.09472585469484329,
-0.05083112791180611,
-0.03588145971298218,
0.05967281758785248,
-0.11770760267972946,
0.04186177998781204,
0.05139347165822983,
-0.032403189688920975,
0.011631838046014309,
-0.03420143574476242,
0.003754091216251254,
-0.028279852122068405,
0.040794260799884796,
-0.15802988409996033,
-0.07222114503383636,
-0.07233326137065887,
-0.11696498841047287,
0.03997571021318436,
-0.12238810211420059,
-0.027389299124479294,
-0.11245032399892807,
-0.21399439871311188,
-0.008247772231698036,
0.029247717931866646,
-0.05914004147052765,
-0.001201258390210569,
-0.03229799121618271,
0.02455095201730728,
0.02150782011449337,
-0.020697861909866333,
-0.006864931900054216,
-0.030455652624368668,
-0.024731328710913658,
0.028909172862768173,
0.09718308597803116,
-0.07746033370494843,
0.03773975744843483,
-0.11653565615415573,
0.02882663533091545,
-0.14588335156440735,
0.018983924761414528,
-0.07765431702136993,
-0.03349463269114494,
-0.11128723621368408,
-0.01943146623671055,
-0.12253645807504654,
-0.03582421690225601,
0.054321788251399994,
0.1075672134757042,
-0.07892142981290817,
-0.11438252776861191,
0.16281570494174957,
-0.07262912392616272,
-0.036551542580127716,
0.0912693589925766,
-0.0806211307644844,
0.08752618730068207,
0.11112438142299652,
0.16541220247745514,
0.07701621949672699,
-0.09751810878515244,
-0.03815167397260666,
0.004837873391807079,
0.04282331466674805,
-0.060487959533929825,
0.10941269248723984,
0.06405466049909592,
-0.14728914201259613,
0.059206850826740265,
-0.11291062086820602,
0.052303556352853775,
-0.06347854435443878,
-0.04726671800017357,
0.04596085101366043,
-0.04744608700275421,
0.12236357480287552,
-0.031207630410790443,
0.07961563766002655,
0.02358362264931202,
0.007627472281455994,
0.20517942309379578,
0.10798312723636627,
-0.07572975009679794,
0.01374228298664093,
-0.05549195781350136,
0.12978951632976532,
-0.17177772521972656,
-0.0051978533156216145,
-0.14671316742897034,
-0.07560234516859055,
0.06790902465581894,
-0.13237227499485016,
0.08975615352392197,
0.02998124435544014,
0.020693672820925713,
0.02372112311422825,
-0.061632510274648666,
0.04768364131450653,
-0.04047508165240288,
0.05455983802676201,
-0.10201776027679443,
-0.13731859624385834,
-0.04756231978535652,
-0.02726181596517563,
0.04346580430865288,
-0.19205331802368164,
0.007214423269033432,
-0.022193845361471176,
0.08051109313964844,
-0.00002914349897764623,
-0.024248378351330757,
-0.0002148282655980438,
0.038002192974090576,
-0.03810713067650795,
0.02524496801197529,
0.03187725692987442,
-0.002181361196562648,
-0.06860030442476273,
0.10833069682121277,
-0.03023727796971798,
-0.0034141759388148785,
0.0499395988881588,
0.010063289664685726,
-0.01991075836122036,
0.0023242325987666845,
-0.047798722982406616,
-0.05449672415852547,
-0.07292116433382034,
-0.06573574990034103,
0.22617177665233612,
0.007014993578195572,
0.10433200746774673,
-0.12268540263175964,
-0.08062621206045151,
0.014434723183512688,
-0.04685680940747261,
0.015263060107827187,
0.07695675641298294,
0.11811418831348419,
-0.19683948159217834,
0.1046401709318161,
0.055876199156045914,
-0.14782007038593292,
0.1746298223733902,
0.014185598120093346,
-0.08633201569318771,
-0.021728137508034706,
-0.09768231958150864,
-0.011403363198041916,
0.07320202142000198,
-0.08061909675598145,
-0.018756898120045662,
0.05281959846615791,
0.02520790882408619,
0.050431638956069946,
-0.09717947244644165,
0.05328965559601784,
0.02519163116812706,
-0.008422437123954296,
-0.06275562942028046,
-0.04595618322491646,
-0.049334172159433365,
0.1183631420135498,
0.07500842213630676,
-0.03571317344903946,
-0.004818654153496027,
0.013314299285411835,
-0.11143609136343002,
0.1851736605167389,
-0.07728024572134018,
-0.09421256929636002,
-0.1421470195055008,
-0.011245781555771828,
-0.08209674060344696,
0.032375939190387726,
-0.046675652265548706,
-0.03940684720873833,
-0.02479231171309948,
-0.04131346568465233,
0.0038854796439409256,
0.05621901899576187,
0.021806620061397552,
-0.024401411414146423,
-0.06090185046195984,
0.001597595983184874,
-0.06261130422353745,
-0.02019200660288334,
-0.07876213639974594,
-0.019994549453258514,
-0.008152306079864502,
-0.1191103607416153,
0.1415112316608429,
0.19340628385543823,
-0.06131906434893608,
-0.022866737097501755,
-0.018284430727362633,
0.1626230925321579,
-0.036953676491975784,
0.04758528620004654,
0.09157183766365051,
-0.03632977232336998,
0.026541374623775482,
0.06329722702503204,
0.026633581146597862,
0.017040379345417023,
0.03581947460770607,
0.022825175896286964,
-0.06738888472318649,
-0.20570366084575653,
-0.07392901927232742,
-0.08581697940826416,
-0.042896948754787445,
0.10386477410793304,
0.028980495408177376,
-0.01527894102036953,
0.03201019763946533,
0.05214223265647888,
0.05098636448383331,
0.058025434613227844,
0.10269086807966232,
0.09909265488386154,
0.03317175433039665,
0.14088454842567444,
0.009317053481936455,
-0.09255030006170273,
0.07617564499378204,
0.08644428104162216,
0.09330829977989197,
0.0038704422768205404,
0.1161610409617424,
0.06971295922994614,
0.027578948065638542,
0.10367418825626373,
0.15460380911827087,
-0.0508127361536026,
0.010685890913009644,
-0.04076777398586273,
-0.06848373264074326,
-0.027616377919912338,
-0.007389248814433813,
-0.030908752232789993,
0.011409313417971134,
-0.05626187101006508,
-0.07516800612211227,
0.032623451203107834,
0.09636309742927551,
0.1184973418712616,
-0.31268513202667236,
-0.08098934590816498,
-0.0017477096989750862,
-0.022966952994465828,
-0.022606490179896355,
0.013547451235353947,
0.0829705223441124,
-0.07997699826955795,
0.015366914682090282,
0.03392873331904411,
0.11426609009504318,
0.005064485594630241,
0.032432571053504944,
-0.02209818735718727,
0.03866656869649887,
-0.039088163524866104,
0.10898656398057938,
-0.11699984222650528,
0.13084359467029572,
0.017766369506716728,
0.0024934664834290743,
-0.05551563948392868,
-0.050213880836963654,
0.009071934968233109,
0.12903904914855957,
0.07509472966194153,
0.0347946472465992,
-0.01003733929246664,
-0.10395460575819016,
-0.0977410301566124,
0.05774276703596115,
-0.0003275328199379146,
-0.09149139374494553,
0.06552934646606445,
-0.02303505875170231,
0.007156009785830975,
0.022254500538110733,
0.10603530704975128,
-0.06200302764773369,
-0.0617140457034111,
-0.0008754456648603082,
0.04231458902359009,
-0.04931904003024101,
-0.017675865441560745,
-0.10840358585119247,
-0.006788020487874746,
0.17332260310649872,
-0.09725165367126465,
-0.013511715456843376,
-0.15313778817653656,
0.04120025411248207,
0.0853801742196083,
-0.13040736317634583,
-0.02950821816921234,
-0.03654232621192932,
0.17207899689674377,
-0.008898948319256306,
-0.17998766899108887,
0.04148062691092491,
-0.07031736522912979,
-0.14957061409950256,
-0.0333370603621006,
0.013318140991032124,
0.09947261959314346,
0.06580332666635513,
0.04597057029604912,
0.019391754642128944,
-0.05192308500409126,
-0.07573898136615753,
-0.01815941371023655,
0.16016939282417297,
0.09140676259994507,
0.0725344642996788,
-0.15356925129890442,
-0.02604864351451397,
0.0015175625449046493,
0.07305114716291428,
0.11826376616954803,
0.06657518446445465,
-0.04559537023305893,
0.10015710443258286,
0.30205607414245605,
-0.11898832023143768,
-0.3723081052303314,
-0.011960859410464764,
0.07680295407772064,
0.0377635657787323,
-0.022664712741971016,
-0.16655460000038147,
0.24663452804088593,
0.11356142908334732,
-0.05905797705054283,
-0.0757240355014801,
-0.031903643161058426,
-0.1337728649377823,
0.13045057654380798,
0.03477167338132858,
0.256696879863739,
-0.010312835685908794,
-0.011221395805478096,
-0.06544477492570877,
-0.10035856068134308,
0.15498533844947815,
-0.10725770145654678,
0.09720363467931747,
-0.014251205138862133,
0.03382221236824989,
0.008927376940846443,
-0.05436680093407631,
0.07039916515350342,
0.08689781278371811,
0.048432156443595886,
0.00024201831547543406,
-0.10952360928058624,
0.11048624664545059,
-0.07255925238132477,
0.10411427915096283,
0.022320730611681938,
0.05161932855844498,
-0.09928423166275024,
-0.08194848895072937,
-0.08220884948968887,
0.06960523128509521,
0.041445542126894,
-0.08334099501371384,
-0.10457868129014969,
0.08333083242177963,
0.08679305016994476,
0.013649615459144115,
0.1288500279188156,
-0.03777032718062401,
0.04750516638159752,
0.08527970314025879,
0.15560565888881683,
0.01385463960468769,
0.06742347776889801,
0.0054375422187149525,
-0.05862978845834732,
0.09520743042230606,
-0.058021511882543564,
0.09191933274269104,
0.14430512487888336,
-0.001665981486439705,
0.11960827559232712,
0.0962037444114685,
-0.06790141016244888,
-0.08913719654083252,
0.061518460512161255,
-0.13319432735443115,
0.06161500886082649,
-0.021805744618177414,
-0.15794658660888672,
-0.14517800509929657,
0.05568205192685127,
0.0862201526761055,
-0.11272270232439041,
-0.03657155856490135,
0.0018716244958341122,
0.03262760490179062,
-0.07612431049346924,
0.16272948682308197,
0.07433370500802994,
0.062037330120801926,
-0.07657904922962189,
0.018630921840667725,
0.09717943519353867,
0.07200778275728226,
0.029020637273788452,
-0.0532367080450058,
-0.11776810139417648,
-0.03752866014838219,
0.062095388770103455,
0.2414868175983429,
-0.082099549472332,
-0.07499055564403534,
-0.07009823620319366,
-0.08410767465829849,
0.0514654703438282,
0.16949859261512756,
0.07990317046642303,
0.07003076374530792,
-0.06458041816949844,
0.007670622784644365,
-0.1337062567472458,
0.13384997844696045,
-0.06585441529750824,
0.08530712872743607,
-0.10948429256677628,
0.041921745985746384,
-0.045528654009103775,
0.08080698549747467,
-0.09506694227457047,
0.027731509879231453,
-0.19898982346057892,
-0.009082318283617496,
-0.05055118724703789,
0.030994590371847153,
-0.06113958731293678,
-0.023696159943938255,
-0.004732361529022455,
-0.017029011622071266,
-0.04123951122164726,
0.036878664046525955,
-0.08849021047353745,
0.04722229763865471,
-0.011402959004044533,
0.060249198228120804,
-0.08238668739795685,
0.03099099174141884,
0.0938420444726944,
-0.018369030207395554,
0.07583016157150269,
0.004547555930912495,
0.056944191455841064,
0.08826510608196259,
-0.12283043563365936,
-0.016789663583040237,
0.017702616751194,
0.08096186816692352,
0.012201179750263691,
-0.04028357192873955,
0.02712436392903328,
0.02236192859709263,
-0.00009654388850321993,
0.0010020246263593435,
0.014043904840946198,
-0.05799297243356705,
-0.02816198766231537,
-0.04612315818667412,
-0.06275624781847,
-0.042972877621650696,
0.0255446620285511,
-0.0017818704945966601,
0.09769193828105927,
0.07821666449308395,
-0.0493941493332386,
-0.00004573092519422062,
-0.10552160441875458,
0.004985718987882137,
0.01417232770472765,
-0.10852273553609848,
-0.10525982826948166,
-0.13405875861644745,
0.03720439225435257,
-0.015217847190797329,
0.24735082685947418,
0.09463612735271454,
-0.15683703124523163,
-0.017791014164686203,
0.025051334872841835,
0.03788774833083153,
0.01537284441292286,
0.1482800990343094,
0.05134575068950653,
-0.08181461691856384,
0.016971422359347343,
0.03884941339492798,
-0.009239879436790943,
0.1305166333913803,
0.23207366466522217,
0.12729783356189728,
-0.007437222171574831,
0.05036737397313118,
0.1089266687631607,
-0.005819888319820166,
-0.10416148602962494,
-0.10106949508190155,
-0.11551258713006973,
0.03834491968154907,
-0.030541401356458664,
0.1322094351053238,
0.07239599525928497,
-0.13066589832305908,
0.03769274055957794,
-0.022889897227287292,
-0.07810112088918686,
-0.2145892083644867,
-0.2556445300579071,
-0.09551235288381577,
-0.04544418677687645,
-0.03601618483662605,
-0.13264134526252747,
-0.09439554065465927,
-0.008729721419513226,
0.015848571434617043,
-0.02404085546731949,
0.12859101593494415,
-0.11874878406524658,
-0.006867640186101198,
0.06296741217374802,
-0.013548209331929684,
-0.027414744719862938,
-0.017128974199295044,
-0.01965257339179516,
0.06935593485832214,
0.04103028029203415,
0.07488002628087997,
-0.05960271507501602,
0.04223240539431572,
0.011814037337899208,
0.014741849154233932,
-0.08365511894226074,
-0.01768455281853676,
-0.03286980837583542,
0.006938874255865812,
-0.03836705535650253,
0.017537524923682213,
-0.05437460169196129,
-0.004538144450634718,
0.11367655545473099,
-0.004086615517735481,
0.012988262809813023,
-0.10304542630910873,
0.27030450105667114,
0.03585300222039223,
0.044885531067848206,
0.004948274232447147,
-0.050829317420721054,
-0.03518010303378105,
0.2719716727733612,
0.1788204163312912,
-0.028605833649635315,
-0.005974641069769859,
0.03171861916780472,
0.008631549775600433,
0.0410318598151207,
0.13441883027553558,
-0.023724107071757317,
0.21416878700256348,
-0.02467096410691738,
0.0010906700044870377,
-0.020095404237508774,
-0.045972950756549835,
-0.021746259182691574,
0.00015345141582656652,
0.06675104796886444,
-0.02613038197159767,
-0.11999624222517014,
-0.016505733132362366,
-0.11654504388570786,
-0.11830762028694153,
0.019675975665450096,
-0.021454740315675735,
-0.11291733384132385,
-0.07132794708013535,
-0.014769818633794785,
0.0009550653048790991,
0.011616306379437447,
-0.05654675513505936,
0.04013890400528908,
0.012502750381827354,
0.041676152497529984,
-0.05746212974190712,
-0.02719798870384693,
0.13517706096172333,
0.10510628670454025,
0.14007839560508728,
0.0001744140317896381,
0.06392871588468552,
0.05497715622186661,
-0.028481438755989075,
-0.11350873112678528,
0.07310476899147034,
-0.02001630701124668,
-0.06550417840480804,
0.0057543362490832806,
0.07538022100925446,
-0.0014359174529090524,
-0.03679327294230461,
0.0407877080142498,
-0.08887811005115509,
-0.009743645787239075,
-0.06913115084171295,
-0.046688709408044815,
-0.08947066217660904,
0.029644077643752098,
-0.055382195860147476,
0.14090462028980255,
0.18163587152957916,
-0.04238104075193405,
-0.04313882067799568,
-0.06307882070541382,
0.040681999176740646,
0.007552728988230228,
0.07032790035009384,
0.008759088814258575,
-0.149121955037117,
-0.02989368885755539,
-0.04922206327319145,
0.02040776237845421,
-0.2329520732164383,
0.013169619254767895,
-0.030489014461636543,
-0.021379666402935982,
-0.03490511700510979,
0.07526351511478424,
0.09348031133413315,
0.04677557200193405,
-0.026094727218151093,
-0.28064000606536865,
-0.021733973175287247,
0.04596173018217087,
-0.1266571581363678,
-0.07448964565992355
] |
null | null | transformers |
# KB-BERT for NER
## Mixed cased and uncased data
This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and partially lowercased data.
For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.
The model was trained on the training data only, with the best model chosen by its performance on the validation data.
You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner | {"language": "sv", "tags": ["token-classification", "sequence-tagger-model", "bert"], "datasets": ["KBLab/sucx3_ner"], "model": ["KB/bert-base-swedish-cased"], "widget": [{"text": "Emil bor i L\u00f6nneberga"}]} | token-classification | KBLab/bert-base-swedish-lowermix-reallysimple-ner | [
"transformers",
"pytorch",
"safetensors",
"bert",
"token-classification",
"sequence-tagger-model",
"sv",
"dataset:KBLab/sucx3_ner",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #bert #token-classification #sequence-tagger-model #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us
|
# KB-BERT for NER
## Mixed cased and uncased data
This model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and partially lowercased data.
For this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.
The model was trained on the training data only, with the best model chosen by its performance on the validation data.
You find more information about the model and the performance on our blog: URL | [
"# KB-BERT for NER",
"## Mixed cased and uncased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and partially lowercased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sequence-tagger-model #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us \n",
"# KB-BERT for NER",
"## Mixed cased and uncased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and partially lowercased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
66,
8,
132
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #token-classification #sequence-tagger-model #sv #dataset-KBLab/sucx3_ner #autotrain_compatible #endpoints_compatible #region-us \n# KB-BERT for NER## Mixed cased and uncased data\n\nThis model is based on KB-BERT and was fine-tuned on the SUCX 3.0 - NER corpus, using the _simple_ tags and partially lowercased data.\nFor this model we used a variation of the data that did not use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags.\n\nThe model was trained on the training data only, with the best model chosen by its performance on the validation data.\nYou find more information about the model and the performance on our blog: URL"
] | [
-0.023458734154701233,
0.0377076081931591,
0.00007830293907318264,
0.048691362142562866,
0.07062684744596481,
-0.002325455192476511,
0.06843457370996475,
0.046728603541851044,
-0.028597936034202576,
0.08280329406261444,
0.04872550815343857,
0.04078206419944763,
0.014642547816038132,
0.14246514439582825,
-0.025099415332078934,
-0.1902986615896225,
0.1150849387049675,
0.05147483944892883,
0.17014598846435547,
0.08646188676357269,
0.07160236686468124,
-0.14355386793613434,
0.06467955559492111,
0.07281718403100967,
-0.09047713130712509,
0.014517058618366718,
0.004382178653031588,
0.005191951058804989,
0.08140009641647339,
-0.040455084294080734,
0.19604243338108063,
0.03307471424341202,
0.08145250380039215,
-0.15536415576934814,
0.03201456740498543,
-0.010085995309054852,
0.031899210065603256,
0.09565972536802292,
0.022070400416851044,
-0.052365172654390335,
0.06613968312740326,
0.04509881138801575,
0.03288278356194496,
0.013648875057697296,
-0.07042910158634186,
-0.14502574503421783,
-0.047273892909288406,
0.13375958800315857,
0.05898421257734299,
0.01968851499259472,
-0.03140358254313469,
0.09906119108200073,
-0.15032953023910522,
0.0610780231654644,
0.17684006690979004,
-0.26930004358291626,
-0.03633851557970047,
0.0568416602909565,
0.07020152360200882,
-0.022920792922377586,
-0.05275198817253113,
-0.010412868112325668,
0.060826774686574936,
-0.007239529397338629,
0.13192425668239594,
0.019570643082261086,
-0.14264686405658722,
0.018049955368041992,
-0.1389932632446289,
0.027704473584890366,
0.09466148912906647,
0.010458622127771378,
-0.030529359355568886,
-0.03209460899233818,
-0.05062829703092575,
-0.07237394899129868,
-0.029145650565624237,
-0.07068401575088501,
0.001209741341881454,
-0.035538241267204285,
0.020847996696829796,
-0.004339809063822031,
-0.05682012438774109,
-0.12533730268478394,
-0.1317121833562851,
0.17929521203041077,
0.07255078107118607,
0.03009168803691864,
-0.0594271756708622,
0.10561921447515488,
-0.08647420257329941,
-0.0996120497584343,
-0.04498908296227455,
-0.07324247062206268,
-0.04416792094707489,
-0.049567271023988724,
-0.05832555145025253,
-0.031562238931655884,
0.01738607883453369,
0.18028810620307922,
0.06893830746412277,
-0.011968464590609074,
0.0031522829085588455,
0.022069044411182404,
0.013894261792302132,
0.07502370327711105,
-0.09864971041679382,
0.05529065057635307,
0.10111884027719498,
0.006106819957494736,
-0.04288177192211151,
0.008488476276397705,
-0.09947594255208969,
-0.04970181733369827,
0.09226550161838531,
-0.01601865142583847,
-0.07363581657409668,
0.10239952802658081,
-0.0787825956940651,
-0.01973036490380764,
0.03207315877079964,
-0.11397165805101395,
0.018121546134352684,
0.05959043279290199,
-0.008968586102128029,
-0.02280411310493946,
-0.001978188520297408,
0.019062889739871025,
-0.030325165018439293,
0.023217862471938133,
-0.11768578737974167,
-0.04992154985666275,
-0.049118977040052414,
-0.11405788362026215,
0.03583983704447746,
-0.13869953155517578,
-0.015545650385320187,
-0.14140000939369202,
-0.22304025292396545,
0.00469523249194026,
0.020871639251708984,
-0.036587994545698166,
0.055718354880809784,
-0.036631353199481964,
0.028043808415532112,
0.008870833553373814,
-0.029920246452093124,
-0.08623495697975159,
-0.04107446223497391,
-0.00449646869674325,
0.014157009311020374,
0.09719597548246384,
-0.06937362998723984,
0.027748150750994682,
-0.14482183754444122,
0.03529250621795654,
-0.12363485991954803,
0.04350801557302475,
-0.08281748741865158,
-0.053553540259599686,
-0.09122645109891891,
-0.02200712449848652,
-0.13165202736854553,
-0.050846803933382034,
0.05818426236510277,
0.11594005674123764,
-0.08150885999202728,
-0.07738921791315079,
0.20636862516403198,
-0.10507572442293167,
-0.056315965950489044,
0.10519734025001526,
-0.08197364956140518,
0.08086924999952316,
0.10535728931427002,
0.1840103417634964,
0.07245378196239471,
-0.1269497126340866,
-0.05570097640156746,
0.03369962424039841,
0.012832971289753914,
-0.0077787721529603004,
0.08668997138738632,
0.06595909595489502,
-0.1480848640203476,
0.07363365590572357,
-0.06112615764141083,
0.06464870274066925,
-0.0645451471209526,
-0.05290184170007706,
0.0014814177993685007,
-0.05190394073724747,
0.15579622983932495,
-0.019494472071528435,
0.059625715017318726,
0.023112904280424118,
-0.005815672222524881,
0.14015857875347137,
0.10687515884637833,
-0.1173335537314415,
0.023208370432257652,
-0.07461894303560257,
0.14481380581855774,
-0.15334825217723846,
-0.010922632180154324,
-0.16110512614250183,
-0.07218895852565765,
0.059198249131441116,
-0.11513824015855789,
0.02304539829492569,
0.0005099745467305183,
0.027355631813406944,
0.02306167408823967,
-0.06251479685306549,
0.017781484872102737,
-0.0289672389626503,
0.05409878492355347,
-0.095404714345932,
-0.1164453849196434,
-0.052950918674468994,
-0.04378988593816757,
0.0907105877995491,
-0.17271533608436584,
0.02085285820066929,
-0.04496973007917404,
0.14222612977027893,
0.0029840695206075907,
-0.023112958297133446,
0.027085958048701286,
0.023633290082216263,
-0.05490206182003021,
0.018817102536559105,
0.03249027207493782,
0.00955583993345499,
-0.09849341213703156,
0.11329527944326401,
-0.033525556325912476,
0.004772508516907692,
0.05154918506741524,
0.03739107772707939,
-0.04127945750951767,
0.009166941978037357,
-0.04470578953623772,
-0.05220577120780945,
-0.06905544549226761,
-0.035431232303380966,
0.17771272361278534,
0.0059267873875796795,
0.11047729104757309,
-0.1428985893726349,
-0.06495949625968933,
0.01879158243536949,
-0.06669622659683228,
0.01377065945416689,
0.07037923485040665,
0.02620558626949787,
-0.18703775107860565,
0.09461991488933563,
0.04774228483438492,
-0.10135979950428009,
0.1537928581237793,
0.005902606528252363,
-0.09395578503608704,
-0.009858597069978714,
-0.0405094288289547,
-0.016684146597981453,
0.04094531014561653,
-0.06923641264438629,
0.005513770505785942,
0.06125062704086304,
0.019566548988223076,
0.05555281415581703,
-0.09874272346496582,
0.049379535019397736,
0.02813127636909485,
-0.021853290498256683,
-0.03637125715613365,
-0.011054364033043385,
-0.015878787264227867,
0.09669671952724457,
0.05830733850598335,
-0.028590353205800056,
0.018574707210063934,
0.022008679807186127,
-0.12095841765403748,
0.2132272720336914,
-0.08472099900245667,
-0.14385484158992767,
-0.1282920241355896,
-0.04104243591427803,
-0.07897723466157913,
0.032427169382572174,
-0.00983720738440752,
-0.00642025750130415,
-0.040523599833250046,
-0.05267386883497238,
-0.006891959812492132,
0.06251189112663269,
0.024903161451220512,
-0.01724156364798546,
-0.033901382237672806,
0.02190813235938549,
-0.06324342638254166,
-0.003312388202175498,
-0.07306960225105286,
0.004961808677762747,
0.02871990203857422,
-0.11764981597661972,
0.14864106476306915,
0.1635332554578781,
-0.0755724087357521,
-0.03857233747839928,
-0.021835165098309517,
0.16757136583328247,
-0.018229112029075623,
0.023445963859558105,
0.12154686450958252,
-0.07689174264669418,
0.03885491564869881,
0.08970347046852112,
0.010748456232249737,
0.006709415931254625,
0.025985030457377434,
0.0013921838253736496,
-0.058053482323884964,
-0.21613802015781403,
-0.0656408816576004,
-0.06598509848117828,
-0.049688514322042465,
0.07188314199447632,
0.016556084156036377,
0.012282897718250751,
0.06751774251461029,
-0.003739758161827922,
0.023788290098309517,
0.0652492418885231,
0.11396132409572601,
0.06895428150892258,
0.030675498768687248,
0.13750594854354858,
0.016631044447422028,
-0.07826969772577286,
0.06681551784276962,
0.06778701394796371,
0.10260374844074249,
-0.026933472603559494,
0.068076491355896,
0.09133210778236389,
0.10126087069511414,
0.09420789033174515,
0.13367511332035065,
-0.05693276971578598,
0.004857027903199196,
-0.018484337255358696,
-0.0682637020945549,
-0.05325717478990555,
0.003974569961428642,
-0.08325784653425217,
0.02801133319735527,
-0.06999123096466064,
-0.07930634170770645,
0.03915337845683098,
0.07297684997320175,
0.14794513583183289,
-0.3173545300960541,
-0.10332642495632172,
0.0007554175681434572,
-0.013169846497476101,
-0.06182566657662392,
0.005489042028784752,
0.08537144213914871,
-0.08716239035129547,
0.04234640300273895,
0.014064101502299309,
0.10262435674667358,
0.01044032908976078,
0.025925658643245697,
-0.0725395455956459,
0.03530222177505493,
-0.031852103769779205,
0.1254180520772934,
-0.11284837871789932,
0.12351181358098984,
0.024823486804962158,
0.04107093811035156,
-0.04938443377614021,
-0.038690753281116486,
0.008477812632918358,
0.13108383119106293,
0.11463496088981628,
0.014786996878683567,
-0.02718302793800831,
-0.1027998998761177,
-0.10760620981454849,
0.0555959977209568,
0.029559388756752014,
-0.05898413807153702,
0.08123333752155304,
-0.013246143236756325,
0.014979304745793343,
0.008383495733141899,
0.08575289696455002,
-0.11825241893529892,
-0.06875558942556381,
0.002993961563333869,
0.07173562794923782,
0.0025327785406261683,
-0.030934281647205353,
-0.0936519056558609,
-0.0230032280087471,
0.2240453064441681,
-0.09256850928068161,
-0.0504295714199543,
-0.14220742881298065,
0.02295822463929653,
0.08365808427333832,
-0.1261521875858307,
-0.0021252911537885666,
-0.04637819156050682,
0.1849079728126526,
-0.023004179820418358,
-0.20797209441661835,
0.02693164348602295,
-0.05891866981983185,
-0.13870440423488617,
-0.022526785731315613,
0.025388401001691818,
0.11059100925922394,
0.033467747271060944,
0.07501266151666641,
0.004215562250465155,
-0.06658399105072021,
-0.06129513308405876,
-0.03699833154678345,
0.17335858941078186,
0.13055449724197388,
0.11044333130121231,
-0.15461945533752441,
-0.10659173876047134,
-0.022259030491113663,
0.07612666487693787,
0.1031237244606018,
0.07451116293668747,
-0.06724665313959122,
0.11972144991159439,
0.30240967869758606,
-0.10129623115062714,
-0.3556942641735077,
-0.029057612642645836,
0.060476381331682205,
0.04217902198433876,
-0.010610520839691162,
-0.13994397222995758,
0.1931503564119339,
0.09941024333238602,
-0.0537964291870594,
-0.09448450803756714,
-0.03250701725482941,
-0.1285051703453064,
0.14960870146751404,
0.06650340557098389,
0.27032244205474854,
0.007997743785381317,
-0.02149757742881775,
-0.05340568348765373,
-0.16964611411094666,
0.1158350259065628,
-0.13502487540245056,
0.09372618794441223,
-0.03422124683856964,
-0.0015158207388594747,
0.029768606647849083,
-0.04898391291499138,
0.07168489694595337,
0.05944516882300377,
0.06868346035480499,
-0.0037662384565919638,
-0.009724351577460766,
0.1051902323961258,
-0.09205641597509384,
0.12811368703842163,
0.01280894223600626,
0.07355448603630066,
-0.0636770948767662,
-0.08466832339763641,
-0.08148952573537827,
0.0801435261964798,
0.04522975906729698,
-0.0761176198720932,
-0.1142595112323761,
0.05832892283797264,
0.10277455300092697,
0.011659839190542698,
0.16076385974884033,
-0.03727203607559204,
0.11080685257911682,
0.09386333078145981,
0.15571196377277374,
-0.012456090189516544,
0.1011316254734993,
-0.0050902715884149075,
-0.06937059015035629,
0.08715590834617615,
-0.060708895325660706,
0.09577398002147675,
0.12766112387180328,
-0.005515973083674908,
0.11067425459623337,
0.09217263758182526,
-0.07364380359649658,
-0.06307334452867508,
0.06525079905986786,
-0.1538609117269516,
0.01986519806087017,
-0.021520964801311493,
-0.1653863787651062,
-0.15275269746780396,
0.09428256005048752,
0.10177071392536163,
-0.10061458498239517,
-0.043640948832035065,
-0.019827289506793022,
0.03466075286269188,
-0.05444847419857979,
0.12460972368717194,
0.06642851233482361,
0.04489488899707794,
-0.08016327023506165,
0.018079133704304695,
0.06757150590419769,
0.05983705073595047,
0.03512457013130188,
-0.10105641186237335,
-0.14327451586723328,
-0.04198094829916954,
0.04036547988653183,
0.22004760801792145,
-0.04743529111146927,
-0.09734006971120834,
-0.0660356879234314,
-0.08914590626955032,
0.026666834950447083,
0.19581373035907745,
0.08072182536125183,
0.09978689253330231,
-0.022517768666148186,
-0.008237403817474842,
-0.13381753861904144,
0.13962723314762115,
-0.037000734359025955,
0.09132984280586243,
-0.1337546557188034,
0.058846984058618546,
-0.0488017238676548,
0.09047557413578033,
-0.095516636967659,
0.02320900373160839,
-0.17355871200561523,
-0.011397875845432281,
-0.11117802560329437,
0.044048164039850235,
-0.0897865816950798,
-0.023701775819063187,
-0.008489728905260563,
-0.016356997191905975,
-0.02861768938601017,
0.06526336073875427,
-0.06577888876199722,
0.05684030428528786,
-0.01369201298803091,
0.04321796074509621,
-0.10634595900774002,
0.000639410805888474,
0.0662749856710434,
-0.03844526782631874,
0.08557415753602982,
0.05683314427733421,
0.030409401282668114,
0.07859538495540619,
-0.17924369871616364,
-0.016567237675189972,
0.044112030416727066,
0.07719700783491135,
-0.010494718328118324,
-0.044064655900001526,
0.015620480291545391,
0.04214879497885704,
-0.044645875692367554,
0.006087239366024733,
0.047647081315517426,
-0.06852739304304123,
-0.05068526417016983,
-0.043368663638830185,
-0.010272332467138767,
-0.04821193218231201,
0.03212554752826691,
0.005215898621827364,
0.08975444734096527,
0.10014206916093826,
-0.046414293348789215,
0.0035289351362735033,
-0.1042114794254303,
-0.0028748991899192333,
0.007729748263955116,
-0.1050952821969986,
-0.09854970872402191,
-0.11976062506437302,
0.026090029627084732,
-0.003963022958487272,
0.2402491569519043,
0.06062804535031319,
-0.12542042136192322,
-0.0355277955532074,
0.004595980979502201,
0.07606761157512665,
0.01061974000185728,
0.1713637262582779,
0.02451786771416664,
-0.08215995877981186,
0.022088879719376564,
0.038793910294771194,
-0.014648367650806904,
0.08970262110233307,
0.180204838514328,
0.125861257314682,
0.004981251899152994,
0.04533488303422928,
0.07222402840852737,
0.03882059082388878,
-0.10972233861684799,
-0.10927199572324753,
-0.10456389933824539,
0.016245277598500252,
0.003084533615037799,
0.09159129112958908,
0.09662047028541565,
-0.11180315166711807,
0.05233703926205635,
0.00018874043598771095,
-0.0756707563996315,
-0.21878105401992798,
-0.22919616103172302,
-0.1061740294098854,
-0.06259862333536148,
-0.015530102886259556,
-0.13695909082889557,
-0.10518811643123627,
-0.0064225266687572,
0.0030729728750884533,
-0.022552672773599625,
0.13006100058555603,
-0.08144675940275192,
-0.014949534088373184,
0.054467152804136276,
-0.009091613814234734,
-0.02807331457734108,
0.023024434223771095,
-0.027512582018971443,
0.1102362647652626,
0.030433544889092445,
0.08253907412290573,
-0.05403375253081322,
0.08126503974199295,
0.01949416473507881,
-0.013084602542221546,
-0.0868762880563736,
-0.002937082899734378,
-0.002884401474148035,
0.0030215519946068525,
-0.02465181052684784,
0.045549243688583374,
-0.06441483646631241,
-0.0025206105783581734,
0.15725266933441162,
-0.0019978254567831755,
0.0137696648016572,
-0.12409786134958267,
0.2572307586669922,
0.03559890761971474,
0.05017544701695442,
0.0285518579185009,
-0.0630951002240181,
0.0016716773388907313,
0.24201582372188568,
0.09943009912967682,
0.009725152514874935,
0.014979210682213306,
0.008107716217637062,
0.0046389601193368435,
0.03316729888319969,
0.09833251684904099,
0.0050951577723026276,
0.2094402015209198,
-0.024143125861883163,
-0.008571047335863113,
-0.013250143267214298,
-0.04069725051522255,
-0.06588229537010193,
-0.005396694876253605,
-0.00622573122382164,
-0.03594785928726196,
-0.1224370151758194,
-0.003527433378621936,
-0.10908085852861404,
-0.09843340516090393,
0.035665933042764664,
-0.0006321271066553891,
-0.0856865867972374,
-0.07854380458593369,
0.002130197361111641,
-0.030473455786705017,
-0.01119742076843977,
-0.058239784091711044,
0.04729916900396347,
0.06680408120155334,
0.03739368915557861,
-0.02850600704550743,
-0.0004448343242984265,
0.08841478079557419,
0.1019853949546814,
0.1278853714466095,
0.019931044429540634,
0.0672852098941803,
0.0531034953892231,
-0.006405308376997709,
-0.10528035461902618,
0.08680412173271179,
-0.022803813219070435,
-0.01597222127020359,
0.035787682980298996,
0.08288799971342087,
-0.0009281139937229455,
-0.03453397378325462,
0.05735621601343155,
-0.11725097894668579,
0.006759330630302429,
-0.05563976988196373,
-0.08194898813962936,
-0.08855191618204117,
0.05117287486791611,
-0.04291345551609993,
0.1348390281200409,
0.1609201282262802,
-0.05139080435037613,
-0.03710301220417023,
-0.04111991822719574,
0.03621139004826546,
0.011610343120992184,
0.06034426391124725,
0.03482179343700409,
-0.14629390835762024,
-0.023209240287542343,
0.0438811257481575,
0.03631174936890602,
-0.24998363852500916,
0.004966358654201031,
-0.024728400632739067,
-0.04353461042046547,
-0.0390172079205513,
0.06998751312494278,
0.08802558481693268,
0.03938433155417442,
-0.029154948890209198,
-0.2574232816696167,
-0.004602845758199692,
0.04633043333888054,
-0.08815215528011322,
-0.08990085124969482
] |
null | null | transformers |
# Megatron-BERT-base Swedish 600k
This BERT model was trained using the Megatron-LM library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
Training was done for 600k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) used the same setup, but was instead trained for only 125k steps.
The model has three sister models trained on the same dataset:
- [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new)
- [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k)
- [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k)
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si). | {"language": ["sv"]} | fill-mask | KBLab/megatron-bert-base-swedish-cased-600k | [
"transformers",
"pytorch",
"safetensors",
"megatron-bert",
"fill-mask",
"sv",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us
|
# Megatron-BERT-base Swedish 600k
This BERT model was trained using the Megatron-LM library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
Training was done for 600k training steps. Its sister model used the same setup, but was instead trained for only 125k steps.
The model has three sister models trained on the same dataset:
- BERT Swedish
- Megatron-BERT-base-125k
- Megatron-BERT-large-110k
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL). | [
"# Megatron-BERT-base Swedish 600k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 600k training steps. Its sister model used the same setup, but was instead trained for only 125k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-125k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
"TAGS\n#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n",
"# Megatron-BERT-base Swedish 600k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 600k training steps. Its sister model used the same setup, but was instead trained for only 125k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-125k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
46,
146,
51
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n# Megatron-BERT-base Swedish 600k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 600k training steps. Its sister model used the same setup, but was instead trained for only 125k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-125k\n- Megatron-BERT-large-110k## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
-0.004741418641060591,
0.09306690841913223,
0.0005201532621867955,
0.1133204773068428,
0.06318337470293045,
0.02965877391397953,
0.12991838157176971,
0.021663792431354523,
0.02010485902428627,
-0.00964262243360281,
0.06869585067033768,
0.004120018798857927,
0.030609721317887306,
0.09079986810684204,
0.0227957870811224,
-0.22734345495700836,
0.055781058967113495,
0.040238022804260254,
-0.1654113382101059,
0.016220370307564735,
0.0716230496764183,
-0.10628978163003922,
0.03845712170004845,
-0.011031717993319035,
-0.06406989693641663,
0.03018743172287941,
-0.06196305900812149,
0.02672446146607399,
0.13483573496341705,
0.02190467156469822,
0.1673862189054489,
0.023046819493174553,
0.10784446448087692,
0.02179124392569065,
0.02567289210855961,
-0.019688380882143974,
-0.0007105860277079046,
0.08835989981889725,
-0.004515585955232382,
0.12738190591335297,
0.22437486052513123,
0.0015554748242720962,
-0.0003303433477412909,
0.005504055880010128,
0.01166022103279829,
-0.10882634669542313,
-0.05005618557333946,
0.09867946803569794,
-0.010111995041370392,
-0.009791748598217964,
0.03574846684932709,
0.12083588540554047,
-0.16048765182495117,
0.06404249370098114,
0.0717754065990448,
-0.1951155960559845,
-0.05691798776388168,
0.15731056034564972,
-0.03605148196220398,
0.1624486893415451,
0.02969079650938511,
0.07559359818696976,
0.06721954047679901,
0.02969660609960556,
0.10810068994760513,
-0.03781638666987419,
-0.11760196834802628,
-0.03354823216795921,
-0.17118847370147705,
-0.03854537755250931,
0.23561936616897583,
0.000864831090439111,
0.008045969530940056,
0.06348948925733566,
-0.09421030431985855,
0.06120825931429863,
-0.0008980580023489892,
-0.052830953150987625,
0.06083563342690468,
-0.032115619629621506,
0.057556480169296265,
-0.008182758465409279,
-0.10142555832862854,
-0.07396404445171356,
-0.056527651846408844,
0.12084698677062988,
0.023989150300621986,
0.0802222341299057,
0.02456243894994259,
0.12797027826309204,
-0.04778657481074333,
-0.05571514740586281,
0.051498427987098694,
-0.054924376308918,
0.11874353140592575,
0.005757972132414579,
-0.01533859595656395,
-0.07337240874767303,
0.07422194629907608,
-0.046435434371232986,
-0.07432477921247482,
-0.07368586212396622,
0.07116766273975372,
0.06881377846002579,
0.01024824008345604,
0.028608348220586777,
-0.17339901626110077,
-0.051293108612298965,
0.03404838219285011,
0.014955068938434124,
0.029190106317400932,
0.03684532269835472,
-0.06943503022193909,
-0.010492630302906036,
-0.026459595188498497,
-0.003983682487159967,
-0.10775944590568542,
0.10529231280088425,
-0.019527757540345192,
0.02936350740492344,
0.07448675483465195,
-0.03811970353126526,
-0.004409811459481716,
0.04176861792802811,
0.018948551267385483,
0.19551345705986023,
0.09867195785045624,
0.012103362008929253,
-0.03099120780825615,
0.07510854303836823,
-0.09107328206300735,
-0.037171557545661926,
-0.11628986150026321,
-0.13832923769950867,
0.0841251090168953,
0.03423360735177994,
0.016374142840504646,
-0.15568509697914124,
-0.06219426169991493,
0.007443123497068882,
0.12530258297920227,
-0.029018163681030273,
0.0036300166975706816,
-0.007889187894761562,
-0.008328473195433617,
0.01264435425400734,
0.002257308457046747,
0.1643397957086563,
-0.0036917037796229124,
0.040543291717767715,
-0.15666456520557404,
0.12051011621952057,
-0.11441542208194733,
-0.0041729360818862915,
-0.07476203888654709,
-0.003013476263731718,
-0.15798892080783844,
-0.07798939198255539,
-0.09975069761276245,
0.02290492132306099,
-0.033187106251716614,
-0.04123489931225777,
-0.1042681410908699,
0.04164234921336174,
0.07585737854242325,
0.1554023176431656,
-0.021010620519518852,
-0.021381719037890434,
0.0772930160164833,
-0.09941022843122482,
-0.05470990017056465,
0.1248907819390297,
-0.0381152369081974,
0.19132158160209656,
0.10342024266719818,
0.06228204071521759,
0.0567544586956501,
-0.16039428114891052,
-0.0772920548915863,
0.062296848744153976,
0.03879653289914131,
-0.19333934783935547,
0.11398132890462875,
0.045254018157720566,
-0.17682436108589172,
0.04006030037999153,
-0.12626667320728302,
-0.0299861840903759,
-0.057631827890872955,
-0.020637739449739456,
-0.014157991856336594,
-0.1136537492275238,
-0.047537826001644135,
-0.003842900274321437,
0.1076454147696495,
-0.05994540825486183,
-0.0006501852185465395,
0.05394706130027771,
0.1245313435792923,
-0.0909731313586235,
0.034511543810367584,
0.024805907160043716,
0.08090860396623611,
-0.12522263824939728,
0.04585471376776695,
-0.05015275627374649,
0.013862857595086098,
0.033929817378520966,
-0.12809301912784576,
0.003705247538164258,
0.18738912045955658,
0.04888685792684555,
0.0818498358130455,
-0.04503859207034111,
0.09672762453556061,
-0.04265085980296135,
0.0013043147046118975,
-0.08643190562725067,
-0.10737229883670807,
-0.029612362384796143,
-0.040066808462142944,
-0.029747141525149345,
-0.024129144847393036,
-0.006752916146069765,
-0.0058388183824718,
0.06914233416318893,
-0.018005385994911194,
0.02937648631632328,
-0.028643878176808357,
0.029797829687595367,
-0.014993705786764622,
0.022767385467886925,
0.06867039948701859,
0.009311167523264885,
0.02708556316792965,
-0.002501996699720621,
0.05145585909485817,
0.011963652446866035,
0.08111229538917542,
-0.04703450947999954,
0.005626493599265814,
0.01123776938766241,
-0.029053116217255592,
0.0024076837580651045,
-0.04533035680651665,
-0.09957632422447205,
0.049714479595422745,
-0.03958441689610481,
0.0833105817437172,
-0.09909404814243317,
0.003071479732170701,
0.010865333490073681,
-0.04030477628111839,
0.003415093757212162,
0.15232738852500916,
0.19279292225837708,
-0.13529954850673676,
0.07359958440065384,
0.03520321846008301,
-0.11242403835058212,
0.19537822902202606,
0.045332275331020355,
-0.08353188633918762,
0.019657853990793228,
-0.04012209549546242,
0.022191708907485008,
0.1328967660665512,
-0.04793013259768486,
0.019181672483682632,
0.06067800521850586,
0.005761467386037111,
0.059899792075157166,
-0.13355204463005066,
0.028074663132429123,
-0.062043290585279465,
-0.015346652828156948,
-0.08402423560619354,
0.03221528232097626,
-0.12720106542110443,
0.13309291005134583,
-0.0045015765354037285,
-0.0699552670121193,
-0.03205132856965065,
-0.017672991380095482,
-0.036735765635967255,
0.1376311182975769,
-0.015674840658903122,
-0.10461411625146866,
-0.1515984684228897,
0.07189679145812988,
0.01972874067723751,
0.0176690686494112,
0.03443778306245804,
-0.03487804904580116,
-0.10631885379552841,
-0.06340482831001282,
-0.00820242054760456,
0.09314287453889847,
-0.03027942404150963,
0.0244455449283123,
0.0037831433583050966,
-0.038809724152088165,
-0.13152296841144562,
-0.005768098868429661,
-0.10268744826316833,
-0.0266805998980999,
0.022287076339125633,
-0.07367018610239029,
0.12448964267969131,
0.08219855278730392,
-0.024783410131931305,
-0.0007249353220686316,
0.02939055673778057,
0.07743623852729797,
-0.019896700978279114,
0.061831261962652206,
0.0537484847009182,
0.07766219228506088,
0.02421247959136963,
0.1295158565044403,
0.10245998203754425,
-0.05314945802092552,
0.02985520474612713,
-0.08376433700323105,
-0.1167895644903183,
-0.1792626529932022,
-0.12195596843957901,
-0.028753669932484627,
0.018956363201141357,
0.003568266984075308,
0.014593327417969704,
-0.2195148468017578,
0.10002181679010391,
0.01606122963130474,
0.03931131586432457,
0.003114160383120179,
0.0013837999431416392,
0.022696780040860176,
0.016447385773062706,
0.06415340304374695,
-0.08594732731580734,
-0.058676671236753464,
0.03027518279850483,
0.04635043069720268,
0.1508805900812149,
-0.08362910151481628,
0.08061212301254272,
0.057556141167879105,
0.0862625241279602,
0.05919023975729942,
0.3097231388092041,
-0.0015373614151030779,
-0.003495769575238228,
-0.03308240696787834,
-0.03921844810247421,
-0.002581861801445484,
0.006173888687044382,
-0.12743498384952545,
0.01455695554614067,
-0.029955949634313583,
-0.01017042901366949,
0.004283817484974861,
0.29932114481925964,
0.0018224316881969571,
-0.135964035987854,
-0.02320525422692299,
0.04219259321689606,
0.021983308717608452,
0.003372333012521267,
0.011848756112158298,
0.15696553885936737,
-0.06875098496675491,
-0.056155022233724594,
-0.020734064280986786,
0.061665233224630356,
-0.05065342038869858,
0.009286489337682724,
-0.017148159444332123,
0.03723491355776787,
-0.042410217225551605,
0.07928939908742905,
-0.11624161154031754,
0.25172609090805054,
0.04378446191549301,
0.08944585174322128,
-0.06084934249520302,
-0.06309574097394943,
-0.004601000342518091,
0.16040866076946259,
0.0802810788154602,
0.04432908073067665,
0.026792773976922035,
-0.12067720293998718,
-0.14917662739753723,
0.09421785920858383,
-0.05039524286985397,
-0.05451057478785515,
0.062173031270504,
-0.004759763367474079,
-0.028035959228873253,
-0.015976743772625923,
-0.0007187605369836092,
-0.043409861624240875,
-0.07712706923484802,
-0.015937088057398796,
0.037855833768844604,
-0.0414406955242157,
-0.011187558062374592,
-0.12246324867010117,
-0.12587407231330872,
0.06244327872991562,
-0.10820160061120987,
-0.0991017073392868,
-0.06907214224338531,
-0.03301016986370087,
0.02246747352182865,
-0.06533734500408173,
0.007341410033404827,
-0.017853783443570137,
-0.0014990278286859393,
-0.036313559859991074,
-0.07382351160049438,
0.029743172228336334,
-0.10090641677379608,
-0.06402426213026047,
0.009522582404315472,
0.012354303151369095,
0.04183021932840347,
0.08168040215969086,
0.000910333008505404,
0.008706001564860344,
-0.05329689383506775,
-0.06099319830536842,
-0.09778538346290588,
0.13996441662311554,
0.1908465027809143,
0.015400411561131477,
-0.17662864923477173,
0.029942788183689117,
0.0838889479637146,
-0.018480343744158745,
0.08159227669239044,
0.16151019930839539,
-0.06794729828834534,
0.011839103884994984,
0.34676116704940796,
-0.05858895182609558,
-0.36926397681236267,
-0.047876037657260895,
-0.008258377201855183,
0.031821079552173615,
0.006637094542384148,
-0.08149681985378265,
0.1210697591304779,
0.07847927510738373,
-0.05113622918725014,
-0.05670710653066635,
-0.07885828614234924,
-0.07479188591241837,
0.03178748860955238,
0.12146373838186264,
0.34001967310905457,
-0.011046559549868107,
0.04251674935221672,
-0.06740763038396835,
-0.18225599825382233,
0.0742485523223877,
-0.1518729031085968,
0.12047841399908066,
-0.01352763269096613,
0.029505636543035507,
-0.015562677755951881,
-0.10426677018404007,
0.07534339278936386,
-0.02071324735879898,
0.01850000210106373,
-0.012075807899236679,
-0.005724714137613773,
0.012449540197849274,
0.0038850533310323954,
0.20886941254138947,
0.0033536467235535383,
0.016690891236066818,
0.04989046975970268,
-0.05208601802587509,
-0.03743087127804756,
0.07327067106962204,
-0.003442765213549137,
-0.10245165973901749,
-0.06362805515527725,
0.061075057834386826,
0.039383288472890854,
0.01979580707848072,
-0.00653441809117794,
-0.008908113464713097,
-0.010815001092851162,
0.1898118108510971,
0.17367935180664062,
-0.12739498913288116,
0.06075518950819969,
0.012269355356693268,
-0.03969624266028404,
0.10442478954792023,
-0.06455779820680618,
-0.014385942369699478,
0.12336454540491104,
-0.025809798389673233,
-0.013454575091600418,
0.054753951728343964,
-0.07494378834962845,
-0.006461262237280607,
0.09492521733045578,
-0.20871293544769287,
-0.0716341882944107,
0.04129583761096001,
-0.10967761278152466,
-0.04997514188289642,
0.1361018419265747,
0.15558041632175446,
-0.12279827892780304,
0.005010492634028196,
-0.011487781070172787,
0.03272887319326401,
-0.056583844125270844,
0.1365216076374054,
0.05409469082951546,
0.017733780667185783,
-0.09487590938806534,
0.05599631741642952,
0.020245525985956192,
0.04957868531346321,
-0.026879269629716873,
-0.026265790686011314,
-0.13382360339164734,
-0.060882531106472015,
0.1166040375828743,
0.10906358063220978,
-0.05074036121368408,
-0.0964953675866127,
-0.11132439225912094,
-0.0799935832619667,
-0.0280270054936409,
0.02961634285748005,
0.09641026705503464,
0.009359003975987434,
-0.06130820885300636,
0.004437954165041447,
-0.13125233352184296,
0.09063508361577988,
-0.07405026257038116,
-0.0029051858000457287,
-0.05655756965279579,
0.04570838809013367,
-0.02439281716942787,
0.020221129059791565,
-0.08977153897285461,
0.07222168892621994,
-0.09699200093746185,
-0.014009129256010056,
-0.07252251356840134,
-0.057237688452005386,
0.04944493621587753,
0.003607492195442319,
-0.04512304812669754,
-0.027285221964120865,
-0.07394717633724213,
0.03525794669985771,
-0.08397286385297775,
0.08464691042900085,
-0.022075576707720757,
0.051675353199243546,
-0.028412237763404846,
0.022590823471546173,
0.05710762366652489,
0.005157815758138895,
0.024483000859618187,
-0.05591665580868721,
-0.024215396493673325,
0.10085593909025192,
-0.13192521035671234,
0.05919539928436279,
-0.006457409355789423,
0.04013487696647644,
0.09401252865791321,
0.06738940626382828,
-0.03412187099456787,
0.041792839765548706,
0.10164742171764374,
0.019492311403155327,
0.036899033933877945,
-0.0001391754049109295,
0.04652269557118416,
-0.053198423236608505,
-0.03187882527709007,
-0.03963740915060043,
0.005928346887230873,
0.008557279594242573,
0.10862632840871811,
0.10887527465820312,
-0.02943676896393299,
-0.042779095470905304,
-0.06755610555410385,
-0.012299740687012672,
0.07204945385456085,
-0.10435800999403,
-0.15058930218219757,
-0.034151822328567505,
0.0324682779610157,
0.03472420573234558,
0.22128166258335114,
0.08482516556978226,
-0.07226160913705826,
-0.0400722436606884,
-0.0006158554460853338,
0.10973867028951645,
-0.0310179702937603,
0.09732415527105331,
-0.01526700984686613,
0.03059539943933487,
-0.07722003012895584,
0.07895679026842117,
-0.003541819751262665,
-0.027848366647958755,
0.16513018310070038,
0.0448826402425766,
0.015378892421722412,
0.034958723932504654,
-0.0003339199465699494,
0.1050766110420227,
-0.056322380900382996,
-0.10384487360715866,
-0.014471117407083511,
0.05425235256552696,
-0.09412194788455963,
0.1973029375076294,
0.09796410799026489,
-0.1306462436914444,
-0.011635026894509792,
-0.027749108150601387,
-0.0482867993414402,
-0.16358909010887146,
-0.15726040303707123,
-0.09490810334682465,
-0.13540861010551453,
0.014658812433481216,
-0.09664390981197357,
-0.0661165788769722,
0.1616605818271637,
0.030585166066884995,
-0.04828082397580147,
0.10610097646713257,
-0.0280704814940691,
0.07194308936595917,
-0.006354131735861301,
-0.01183304749429226,
-0.007288297638297081,
-0.08564089983701706,
-0.0872504860162735,
-0.023769130930304527,
0.023051923140883446,
0.00534016964957118,
0.009396008215844631,
-0.05048767477273941,
-0.0924162045121193,
0.054450493305921555,
-0.0033472771756350994,
-0.05759299546480179,
-0.005784553941339254,
0.03947754576802254,
0.05253887176513672,
0.024576380848884583,
-0.05162495747208595,
-0.0002667823282536119,
0.004009472671896219,
0.004968028049916029,
-0.00030473212245851755,
-0.09716407209634781,
0.13044433295726776,
-0.10539677739143372,
0.11813617497682571,
0.056057583540678024,
-0.03932445868849754,
-0.09771179407835007,
0.279616117477417,
0.18134257197380066,
-0.07467804849147797,
0.002744463738054037,
-0.03203441947698593,
-0.006200858391821384,
-0.09435956925153732,
0.20155242085456848,
0.06507608294487,
0.1526077538728714,
-0.062729611992836,
0.009218857623636723,
-0.06131312623620033,
-0.007857412099838257,
-0.09963595122098923,
-0.029499249532818794,
-0.020435277372598648,
-0.051709309220314026,
-0.0704226940870285,
0.010012434795498848,
0.0454292818903923,
-0.20501886308193207,
-0.05475791171193123,
0.006955866701900959,
-0.0507303811609745,
-0.013771363534033298,
-0.0034999134950339794,
-0.007091127801686525,
0.07666238397359848,
-0.0973149985074997,
0.030549680814146996,
0.04410453885793686,
-0.011480368673801422,
-0.04090643674135208,
-0.11547542363405228,
0.06700170785188675,
-0.012637152336537838,
0.20579220354557037,
0.030133385211229324,
0.05659615248441696,
0.058696284890174866,
-0.09835343062877655,
-0.07140615582466125,
0.06392931193113327,
0.030181067064404488,
-0.12034483253955841,
-0.0018229219131171703,
-0.024787290021777153,
-0.09596266597509384,
-0.001162705128081143,
-0.021286340430378914,
-0.024090953171253204,
0.043226417154073715,
-0.023170458152890205,
0.014119940809905529,
-0.057913485914468765,
0.01621798612177372,
-0.0691831111907959,
0.11049279570579529,
0.17760981619358063,
-0.015221365727484226,
-0.02415156364440918,
-0.06320102512836456,
0.1412452608346939,
0.016344642266631126,
-0.023191554471850395,
0.04522978886961937,
-0.22106626629829407,
-0.011934984475374222,
-0.0517122708261013,
-0.005673867650330067,
-0.14376185834407806,
-0.006668195128440857,
-0.18154805898666382,
-0.006514230743050575,
-0.08922139555215836,
-0.05530233681201935,
0.08606923371553421,
-0.01776311546564102,
-0.04056810960173607,
-0.15311814844608307,
-0.07767000794410706,
0.05361369252204895,
-0.11491166055202484,
-0.09280958026647568
] |
null | null | transformers |
# Megatron-BERT-base Swedish 125k
This BERT model was trained using the Megatron-LM library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
Training was done for 125k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) used the same setup, but was instead trained for 600k steps.
The model has three sister models trained on the same dataset:
- [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new)
- [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k)
- [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k)
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si). | {"language": ["sv"]} | fill-mask | KBLab/megatron-bert-base-swedish-cased-125k | [
"transformers",
"pytorch",
"safetensors",
"megatron-bert",
"fill-mask",
"sv",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us
|
# Megatron-BERT-base Swedish 125k
This BERT model was trained using the Megatron-LM library.
The size of the model is a regular BERT-base with 110M parameters.
The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.
Training was done for 125k training steps. Its sister model used the same setup, but was instead trained for 600k steps.
The model has three sister models trained on the same dataset:
- BERT Swedish
- Megatron-BERT-base-600k
- Megatron-BERT-large-110k
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL). | [
"# Megatron-BERT-base Swedish 125k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 125k training steps. Its sister model used the same setup, but was instead trained for 600k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
"TAGS\n#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n",
"# Megatron-BERT-base Swedish 125k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 125k training steps. Its sister model used the same setup, but was instead trained for 600k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k",
"## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
46,
145,
51
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #megatron-bert #fill-mask #sv #autotrain_compatible #endpoints_compatible #region-us \n# Megatron-BERT-base Swedish 125k\n\nThis BERT model was trained using the Megatron-LM library.\nThe size of the model is a regular BERT-base with 110M parameters.\nThe model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden.\n\nTraining was done for 125k training steps. Its sister model used the same setup, but was instead trained for 600k steps.\n\n\nThe model has three sister models trained on the same dataset:\n- BERT Swedish\n- Megatron-BERT-base-600k\n- Megatron-BERT-large-110k## Acknowledgements\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
-0.0043349964544177055,
0.0819835513830185,
0.0008947666501626372,
0.11186394840478897,
0.07352238148450851,
0.0392250195145607,
0.13334067165851593,
0.021594451740384102,
0.032542984932661057,
-0.022152533754706383,
0.07939598709344864,
0.004845567047595978,
0.030538436025381088,
0.09372910112142563,
0.03250397741794586,
-0.2285488247871399,
0.05763581395149231,
0.04201887175440788,
-0.16184404492378235,
0.01960887387394905,
0.07014399766921997,
-0.11041773110628128,
0.043384335935115814,
-0.012212391942739487,
-0.06984547525644302,
0.026579231023788452,
-0.07357250899076462,
0.030485201627016068,
0.1336902230978012,
0.020465781912207603,
0.15879717469215393,
0.021582825109362602,
0.11000639200210571,
0.03343231976032257,
0.028836071491241455,
-0.014374672435224056,
0.004469503648579121,
0.08553415536880493,
-0.007597698364406824,
0.1282748281955719,
0.23592647910118103,
0.0064353300258517265,
-0.005787981674075127,
0.002409156411886215,
0.017377223819494247,
-0.12316536158323288,
-0.040235139429569244,
0.09376820176839828,
-0.010288498364388943,
-0.015090431086719036,
0.03236354887485504,
0.1336263120174408,
-0.16864868998527527,
0.06803908199071884,
0.067929208278656,
-0.18468521535396576,
-0.0608578622341156,
0.15515673160552979,
-0.028578320518136024,
0.16136153042316437,
0.03702566400170326,
0.07348957657814026,
0.06684574484825134,
0.03338121622800827,
0.11096148192882538,
-0.03957950696349144,
-0.105271115899086,
-0.029981454834342003,
-0.17448283731937408,
-0.03759312629699707,
0.23780950903892517,
-0.0030743551906198263,
0.015136153437197208,
0.06159871816635132,
-0.09359919279813766,
0.06793513894081116,
0.003424636088311672,
-0.04595484584569931,
0.06214537471532822,
-0.03702473267912865,
0.05264342576265335,
-0.00285211019217968,
-0.09720660001039505,
-0.08170121908187866,
-0.05425440892577171,
0.11681009083986282,
0.0294205192476511,
0.08368686586618423,
0.015292772091925144,
0.13090932369232178,
-0.027805283665657043,
-0.05509423464536667,
0.05168585851788521,
-0.05985008180141449,
0.11583790183067322,
0.012635179795324802,
-0.020732125267386436,
-0.05203501880168915,
0.08082643151283264,
-0.05508836358785629,
-0.05878136679530144,
-0.06420024484395981,
0.08489303290843964,
0.06884261965751648,
0.018459253013134003,
0.026673665270209312,
-0.18037976324558258,
-0.05503930151462555,
0.03255283832550049,
0.026216406375169754,
0.02651195228099823,
0.03662853688001633,
-0.07298072427511215,
-0.00003554379509296268,
-0.01780206710100174,
-0.009282395243644714,
-0.1002197340130806,
0.11490533500909805,
-0.017042817547917366,
0.0258952584117651,
0.06431293487548828,
-0.03742815926671028,
-0.005715079139918089,
0.04280431941151619,
0.017174940556287766,
0.18982788920402527,
0.0949447900056839,
0.0038141959812492132,
-0.03283408284187317,
0.06665859371423721,
-0.09208900481462479,
-0.04322228953242302,
-0.11781658232212067,
-0.12983784079551697,
0.07822885364294052,
0.03645920008420944,
0.020196542143821716,
-0.15202105045318604,
-0.07069851458072662,
0.009779423475265503,
0.1326504647731781,
-0.027758248150348663,
0.004719996824860573,
-0.008478918112814426,
-0.005752361845225096,
0.005117359571158886,
-0.0001249380875378847,
0.1866685152053833,
-0.0029221808072179556,
0.04766527935862541,
-0.14872676134109497,
0.1211116686463356,
-0.11204537004232407,
0.0009461829904466867,
-0.07435451447963715,
-0.000824081536848098,
-0.15175575017929077,
-0.07537411153316498,
-0.0939730852842331,
0.02325841784477234,
-0.026031162589788437,
-0.05030246451497078,
-0.10062887519598007,
0.05286520719528198,
0.0736834853887558,
0.14549598097801208,
-0.022872377187013626,
-0.02407662943005562,
0.06299154460430145,
-0.09225713461637497,
-0.06216338649392128,
0.12380398064851761,
-0.03764915466308594,
0.1975276917219162,
0.09819859266281128,
0.06740528345108032,
0.05703119561076164,
-0.13841788470745087,
-0.07083623111248016,
0.059206731617450714,
0.03401795029640198,
-0.2004801630973816,
0.11194171756505966,
0.05975398048758507,
-0.18018294870853424,
0.044567644596099854,
-0.13830909132957458,
-0.028368622064590454,
-0.060265857726335526,
-0.018573492765426636,
-0.014919632114470005,
-0.11692517250776291,
-0.05123832821846008,
0.002978842705488205,
0.10557670891284943,
-0.057659223675727844,
-0.005412360653281212,
0.05400954931974411,
0.1287337839603424,
-0.0927550420165062,
0.029869619756937027,
0.020220037549734116,
0.08745431900024414,
-0.11143580824136734,
0.05721758306026459,
-0.057721350342035294,
0.024341197684407234,
0.029976140707731247,
-0.1350323110818863,
-0.00011767585965571925,
0.18629300594329834,
0.043999481946229935,
0.07836205512285233,
-0.04100795090198517,
0.09023186564445496,
-0.03513777628540993,
0.0014910498866811395,
-0.0788966566324234,
-0.10879689455032349,
-0.03546299785375595,
-0.036797694861888885,
-0.0287646371871233,
-0.022017575800418854,
-0.006814516615122557,
-0.015770141035318375,
0.0692945346236229,
-0.0247127003967762,
0.033251941204071045,
-0.03345002233982086,
0.03208841755986214,
-0.01611531525850296,
0.02092875726521015,
0.07507210969924927,
0.006066479720175266,
0.02667785994708538,
-0.009262572973966599,
0.04617030918598175,
0.01930343173444271,
0.08547960221767426,
-0.042903535068035126,
0.010742129758000374,
0.02114085853099823,
-0.034041717648506165,
0.0025147423148155212,
-0.03340156748890877,
-0.10027769953012466,
0.04908786714076996,
-0.03996918350458145,
0.07662807404994965,
-0.10035914927721024,
-0.00047194137005135417,
0.012406464666128159,
-0.04061896353960037,
0.006560260895639658,
0.15224717557430267,
0.1951453685760498,
-0.1437269151210785,
0.07200092077255249,
0.049131058156490326,
-0.11111260205507278,
0.20569783449172974,
0.03890584036707878,
-0.0764998123049736,
0.01796879805624485,
-0.04310552775859833,
0.010913087986409664,
0.1390606313943863,
-0.058799464255571365,
0.009812396951019764,
0.0580393485724926,
-0.000025691049813758582,
0.06186659634113312,
-0.13525955379009247,
0.032583195716142654,
-0.0719914436340332,
-0.006904362700879574,
-0.08891627192497253,
0.03135637566447258,
-0.12581101059913635,
0.1317598670721054,
-0.0010870357509702444,
-0.07504846155643463,
-0.02558721788227558,
-0.017163431271910667,
-0.03430572897195816,
0.1418055295944214,
-0.008058936335146427,
-0.11021492630243301,
-0.14309465885162354,
0.06972017139196396,
0.0188433900475502,
0.010198677890002728,
0.034776199609041214,
-0.03517979383468628,
-0.10082639008760452,
-0.05972480773925781,
-0.00442612124606967,
0.0971662774682045,
-0.03139730915427208,
0.02134234644472599,
0.011333483271300793,
-0.03977657109498978,
-0.1257239431142807,
-0.00587241817265749,
-0.10628889501094818,
-0.030503802001476288,
0.030533863231539726,
-0.072996586561203,
0.11765468865633011,
0.0761168897151947,
-0.018233628943562508,
0.002437643241137266,
0.028001880273222923,
0.07021022588014603,
-0.01839340291917324,
0.06253328919410706,
0.05773777887225151,
0.07479175925254822,
0.023163240402936935,
0.126909539103508,
0.09550833702087402,
-0.05573185160756111,
0.030132144689559937,
-0.08850637078285217,
-0.11887418478727341,
-0.16438916325569153,
-0.12326724827289581,
-0.03020205907523632,
0.021466465666890144,
0.0009962428594008088,
0.0138965779915452,
-0.2470521330833435,
0.09307254105806351,
0.021387454122304916,
0.037505317479372025,
-0.0027381624095141888,
-0.005451784934848547,
0.010769530199468136,
0.011529739946126938,
0.06647275388240814,
-0.0865904688835144,
-0.0602508969604969,
0.02702537551522255,
0.05282564461231232,
0.1661534458398819,
-0.09188519418239594,
0.06654556095600128,
0.065392404794693,
0.08957814425230026,
0.05873718485236168,
0.3056931793689728,
0.0014646321069449186,
-0.0030290279537439346,
-0.03818821907043457,
-0.03325982764363289,
-0.007447890937328339,
0.005322733428329229,
-0.12260310351848602,
0.008788193576037884,
-0.022317301481962204,
-0.0011412006570026278,
0.008143150247633457,
0.30699822306632996,
-0.007178222760558128,
-0.14733801782131195,
-0.016031965613365173,
0.043941058218479156,
0.023326003924012184,
0.0030180984176695347,
0.012435439974069595,
0.15315686166286469,
-0.07005448639392853,
-0.057135164737701416,
-0.02042255736887455,
0.05783476680517197,
-0.05743223801255226,
0.01653253473341465,
-0.018804434686899185,
0.04567619785666466,
-0.03649807721376419,
0.0822887271642685,
-0.1216520220041275,
0.25395092368125916,
0.03930032253265381,
0.08665438741445541,
-0.07112142443656921,
-0.06956279277801514,
0.00799430813640356,
0.1513805240392685,
0.07141169160604477,
0.046220872551202774,
0.028599807992577553,
-0.11866874992847443,
-0.14089271426200867,
0.10313315689563751,
-0.04636157304048538,
-0.04681382700800896,
0.0593988299369812,
-0.011059093289077282,
-0.023220719769597054,
-0.016795773059129715,
0.005014748778194189,
-0.02923339605331421,
-0.07376353442668915,
-0.020670324563980103,
0.03258764371275902,
-0.0506962314248085,
-0.014577812515199184,
-0.12280575186014175,
-0.11682692915201187,
0.05596034601330757,
-0.11093038320541382,
-0.10212525725364685,
-0.060499463230371475,
-0.030618570744991302,
0.021515602245926857,
-0.0658370703458786,
0.0018970764940604568,
-0.018706578761339188,
-0.00037612824235111475,
-0.02546798251569271,
-0.07794865220785141,
0.028978142887353897,
-0.09992669522762299,
-0.06369525194168091,
0.008126147091388702,
0.010239847004413605,
0.04090873897075653,
0.07876354455947876,
-0.005727040581405163,
0.004778382834047079,
-0.06423377990722656,
-0.05777778476476669,
-0.09468214213848114,
0.14935041964054108,
0.18116316199302673,
0.014769826084375381,
-0.17517739534378052,
0.026261085644364357,
0.09055738151073456,
-0.018511518836021423,
0.07451053708791733,
0.1523224115371704,
-0.06152757257223129,
0.007830874063074589,
0.35021212697029114,
-0.0516543947160244,
-0.3804638981819153,
-0.04741526395082474,
-0.0026265596970915794,
0.029558999463915825,
0.01090164389461279,
-0.08920183032751083,
0.12505148351192474,
0.07628736644983292,
-0.050671715289354324,
-0.04704669862985611,
-0.06807734072208405,
-0.06995077431201935,
0.04102306440472603,
0.12457199394702911,
0.34429386258125305,
-0.010655864141881466,
0.049030084162950516,
-0.07090932875871658,
-0.1661967933177948,
0.07708057016134262,
-0.16316533088684082,
0.12364517897367477,
-0.018872274085879326,
0.035501036792993546,
-0.0216160137206316,
-0.1032852753996849,
0.06974922120571136,
-0.03229403868317604,
0.018619628623127937,
-0.01321910135447979,
-0.006530658341944218,
0.011832518503069878,
0.001147770439274609,
0.204267218708992,
-0.012536036781966686,
0.019758574664592743,
0.05399540066719055,
-0.053820181638002396,
-0.0446498766541481,
0.06832136958837509,
-0.0020425303373485804,
-0.10080230236053467,
-0.05677662417292595,
0.06602330505847931,
0.024551838636398315,
0.0181193295866251,
-0.015839964151382446,
-0.003271243069320917,
-0.024596557021141052,
0.18381145596504211,
0.17972615361213684,
-0.1439937949180603,
0.07407549768686295,
-0.0009656203328631818,
-0.03944500908255577,
0.10720936954021454,
-0.06768014281988144,
-0.020365921780467033,
0.12532006204128265,
-0.029192278161644936,
-0.015998708084225655,
0.05956580117344856,
-0.07366376370191574,
-0.010572044178843498,
0.10113047808408737,
-0.21096855401992798,
-0.0862772986292839,
0.03747841343283653,
-0.11078773438930511,
-0.05708310380578041,
0.1415412575006485,
0.14675208926200867,
-0.11406964808702469,
0.0008441341342404485,
-0.01032429188489914,
0.03827959671616554,
-0.05555345118045807,
0.1367919147014618,
0.05669292062520981,
0.020985448732972145,
-0.09961842000484467,
0.05524156987667084,
0.012439226731657982,
0.06301548331975937,
-0.018528003245592117,
-0.021249905228614807,
-0.13577529788017273,
-0.06415370106697083,
0.10962379723787308,
0.11837352812290192,
-0.038383599370718,
-0.10335711389780045,
-0.1103309690952301,
-0.08284684270620346,
-0.028423765674233437,
0.012754344381392002,
0.10062291473150253,
0.0034866451751440763,
-0.060991834849119186,
0.004145452752709389,
-0.12733791768550873,
0.09288690239191055,
-0.0786321684718132,
-0.004266776610165834,
-0.059977587312459946,
0.03637177497148514,
-0.01325472816824913,
0.028100071474909782,
-0.09281153976917267,
0.06678401678800583,
-0.10440987348556519,
-0.009089140221476555,
-0.07449303567409515,
-0.06473363190889359,
0.04707881435751915,
0.004666320513933897,
-0.04327017441391945,
-0.027129150927066803,
-0.07641932368278503,
0.041316986083984375,
-0.08503920584917068,
0.08202719688415527,
-0.017236819490790367,
0.0501994788646698,
-0.028255516663193703,
0.02592828869819641,
0.05686613917350769,
0.003618799615651369,
0.028772106394171715,
-0.06332534551620483,
-0.030572423711419106,
0.10153033584356308,
-0.11868792027235031,
0.048680324107408524,
-0.010667403228580952,
0.04668351635336876,
0.09676900506019592,
0.06413000077009201,
-0.03560943901538849,
0.04497899115085602,
0.1079416573047638,
0.01625123806297779,
0.042758144438266754,
0.002458608476445079,
0.05772922560572624,
-0.06021389365196228,
-0.026889638975262642,
-0.032965388149023056,
0.0016818252624943852,
0.0034308210015296936,
0.11805446445941925,
0.11196925491094589,
-0.026256464421749115,
-0.0471121184527874,
-0.07142561674118042,
-0.012388119474053383,
0.07065606862306595,
-0.11221479624509811,
-0.15188109874725342,
-0.035428959876298904,
0.03253990039229393,
0.03185979276895523,
0.22678221762180328,
0.09429395943880081,
-0.08065947145223618,
-0.045141372829675674,
0.01591753028333187,
0.10544868558645248,
-0.03627591207623482,
0.09753265976905823,
-0.020791012793779373,
0.035667262971401215,
-0.0742793157696724,
0.08078337460756302,
-0.008370110765099525,
-0.023562949150800705,
0.16015920042991638,
0.044947780668735504,
0.026624273508787155,
0.032620396465063095,
0.01157339196652174,
0.10987618565559387,
-0.05881796032190323,
-0.10590174794197083,
-0.017000900581479073,
0.06416323781013489,
-0.09834697097539902,
0.20003977417945862,
0.09054341167211533,
-0.12773334980010986,
-0.019491689279675484,
-0.040512993931770325,
-0.051410648971796036,
-0.15287719666957855,
-0.16271723806858063,
-0.0937277302145958,
-0.13800907135009766,
0.0122481444850564,
-0.09359345585107803,
-0.07829242199659348,
0.16453246772289276,
0.02793983928859234,
-0.05510080233216286,
0.10931365936994553,
-0.016575949266552925,
0.0748208612203598,
-0.008754218928515911,
-0.016040168702602386,
-0.013212934136390686,
-0.08106940984725952,
-0.09016094356775284,
-0.023761801421642303,
0.024047650396823883,
0.009699233807623386,
0.003801686456426978,
-0.06815928965806961,
-0.09269577264785767,
0.04830862209200859,
0.0008575877873227,
-0.05797523260116577,
-0.005905691999942064,
0.0300998967140913,
0.0426856130361557,
0.018406180664896965,
-0.056776296347379684,
0.003295572241768241,
-0.0023155836388468742,
0.006852681748569012,
-0.0021185611840337515,
-0.09569101780653,
0.14860522747039795,
-0.11156778782606125,
0.10405707359313965,
0.055284276604652405,
-0.03667330741882324,
-0.10678236931562424,
0.28542861342430115,
0.18660932779312134,
-0.08600950986146927,
-0.000311399286147207,
-0.03379141539335251,
-0.00582678709179163,
-0.10215454548597336,
0.21876835823059082,
0.07852920144796371,
0.14769841730594635,
-0.059206441044807434,
0.008167469874024391,
-0.06648295372724533,
-0.011908097192645073,
-0.0921643003821373,
-0.0341644361615181,
-0.00869055837392807,
-0.051112350076436996,
-0.06864370405673981,
0.0037637713830918074,
0.03958026319742203,
-0.2084047645330429,
-0.0601937472820282,
0.0054976483806967735,
-0.05413619801402092,
-0.01417177077382803,
0.0023458085488528013,
-0.007687075529247522,
0.08046658337116241,
-0.10191553086042404,
0.04082813113927841,
0.03057635761797428,
-0.018028121441602707,
-0.039246074855327606,
-0.11447606235742569,
0.07179650664329529,
-0.024044977501034737,
0.20359785854816437,
0.023959461599588394,
0.05004817619919777,
0.06258504092693329,
-0.09865482896566391,
-0.07825305312871933,
0.06795568764209747,
0.025013374164700508,
-0.11790310591459274,
-0.0034696566872298717,
-0.028069935739040375,
-0.09491036087274551,
-0.017109232023358345,
-0.018682043999433517,
-0.009333109483122826,
0.03947414830327034,
-0.021955806761980057,
0.017388971522450447,
-0.0623970590531826,
0.016761304810643196,
-0.06969903409481049,
0.10814540088176727,
0.1754165142774582,
-0.015428584069013596,
-0.028369348496198654,
-0.07194781303405762,
0.14349474012851715,
0.011187604628503323,
-0.028466708958148956,
0.04334275797009468,
-0.22648616135120392,
-0.01575295999646187,
-0.051711905747652054,
-0.012823411263525486,
-0.1445729285478592,
-0.0012673531891778111,
-0.18570129573345184,
-0.007937285117805004,
-0.08435976505279541,
-0.0563434362411499,
0.08988858014345169,
-0.007508338429033756,
-0.04193636402487755,
-0.13795769214630127,
-0.08722636848688126,
0.053287915885448456,
-0.11561188101768494,
-0.09451138228178024
] |
null | null | transformers | # Roberta base TEST | {} | fill-mask | KBLab/roberta-base-swedish-cased | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| # Roberta base TEST | [
"# Roberta base TEST"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n",
"# Roberta base TEST"
] | [
37,
6
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# Roberta base TEST"
] | [
-0.1305830478668213,
0.07845703512430191,
-0.006633846554905176,
0.04511832818388939,
0.06559691578149796,
0.04639168828725815,
0.08251310884952545,
0.1603599637746811,
0.08093643933534622,
0.040117956697940826,
0.20618920028209686,
0.18755564093589783,
-0.040080804377794266,
0.11865094304084778,
-0.07036108523607254,
-0.13096237182617188,
0.0268620103597641,
0.09912754595279694,
-0.11081955581903458,
0.1584138721227646,
0.07742054015398026,
-0.1049564927816391,
0.0682697668671608,
-0.005806232802569866,
-0.12364064157009125,
0.06409338861703873,
0.0188214723020792,
-0.09253901988267899,
0.1257607340812683,
-0.025303293019533157,
0.19360890984535217,
0.0610758513212204,
-0.03170868754386902,
-0.05471961200237274,
0.048360083252191544,
-0.0050216009840369225,
-0.02304121106863022,
0.055371519178152084,
-0.04274681210517883,
-0.0761248841881752,
0.026460997760295868,
0.10303453356027603,
0.059114038944244385,
0.03529614582657814,
-0.10699009150266647,
-0.17301970720291138,
-0.04314703121781349,
0.011345519684255123,
0.012258093804121017,
0.060788754373788834,
-0.01299564354121685,
0.2836698889732361,
-0.1838718205690384,
0.0805651843547821,
0.1992282271385193,
-0.2376914769411087,
-0.032970868051052094,
0.08944811671972275,
0.10456354171037674,
-0.06132912263274193,
0.005209201946854591,
0.03727828338742256,
0.07157396525144577,
0.03527818247675896,
-0.06589705497026443,
-0.07360837608575821,
0.01886356621980667,
0.045509349554777145,
-0.11395951360464096,
-0.06804735958576202,
0.16668419539928436,
-0.006695151794701815,
-0.0018118068110197783,
0.05231551453471184,
-0.08149951696395874,
-0.02886384166777134,
0.02007558010518551,
-0.058984044939279556,
-0.05203257128596306,
-0.01615161821246147,
-0.11700461804866791,
0.011385707184672356,
-0.07082726806402206,
-0.08935364335775375,
-0.17540498077869415,
0.2675536870956421,
0.04400978609919548,
0.05274822190403938,
-0.1246912032365799,
0.07868029922246933,
-0.025343487039208412,
-0.14772212505340576,
-0.019952744245529175,
-0.07913918793201447,
-0.007558098528534174,
-0.03083840012550354,
-0.10692296177148819,
-0.04439672455191612,
0.15343615412712097,
0.2789301872253418,
0.13840343058109283,
0.060424063354730606,
0.006805115379393101,
0.07321178168058395,
0.008443081751465797,
0.11137030273675919,
0.025974679738283157,
-0.06665690243244171,
0.06145864352583885,
-0.03378673270344734,
-0.020846625789999962,
-0.011836457997560501,
-0.034652646631002426,
-0.06909787654876709,
0.09182083606719971,
0.06452171504497528,
0.07548218220472336,
-0.008327038027346134,
-0.0736052542924881,
0.016838205978274345,
0.018103836104273796,
-0.08698192238807678,
-0.008746733888983727,
0.016681576147675514,
-0.0011977937538176775,
0.027504267171025276,
0.03764485940337181,
-0.030219027772545815,
0.03570789843797684,
0.0205922182649374,
-0.055297061800956726,
-0.07987022399902344,
-0.05156360939145088,
-0.05906866863369942,
0.03392762690782547,
-0.08701665699481964,
0.037399254739284515,
-0.18832571804523468,
-0.18506252765655518,
-0.02831820398569107,
0.05642595514655113,
-0.05588051676750183,
-0.010376350954174995,
0.008288436569273472,
-0.006519629620015621,
-0.002915784949436784,
-0.02188860811293125,
-0.0035942557733505964,
-0.036396607756614685,
0.1496647149324417,
0.13197432458400726,
0.09838174283504486,
0.03835649788379669,
0.022084694355726242,
-0.11663459241390228,
0.019878162071108818,
-0.19197770953178406,
-0.021029697731137276,
-0.08456623554229736,
0.11821750551462173,
-0.05390220135450363,
-0.09359060227870941,
-0.131296306848526,
0.025355316698551178,
0.04748470336198807,
0.2157239317893982,
-0.07057030498981476,
-0.06727947294712067,
0.14696818590164185,
-0.09233611822128296,
-0.15082840621471405,
0.10204985737800598,
-0.02721381187438965,
0.0662151500582695,
0.04237939044833183,
0.10576940327882767,
0.07319096475839615,
-0.10612812638282776,
0.1359722763299942,
0.030776191502809525,
-0.08013831824064255,
-0.08850148320198059,
0.06841320544481277,
-0.04409245401620865,
-0.17864260077476501,
0.033043816685676575,
-0.025769555941224098,
0.04327155649662018,
-0.07797741144895554,
-0.044206004589796066,
-0.06499497592449188,
-0.09571027010679245,
0.17436915636062622,
0.09602660685777664,
0.07872501015663147,
-0.12052392214536667,
-0.07000721991062164,
-0.11364630609750748,
0.05842633917927742,
0.00598911801353097,
0.002007433446124196,
-0.120724618434906,
0.21309234201908112,
-0.06317351758480072,
-0.03311596438288689,
-0.1921839565038681,
-0.0064134071581065655,
-0.009060008451342583,
0.0798659697175026,
0.0033238523174077272,
0.12514780461788177,
0.12074641138315201,
-0.06649704277515411,
0.003563910722732544,
-0.01641160622239113,
0.06716026365756989,
0.024770792573690414,
-0.03350406885147095,
-0.1348477005958557,
0.0038400432094931602,
-0.07892259955406189,
0.004058255814015865,
-0.045061081647872925,
0.0058569107204675674,
-0.010956165380775928,
0.1140577420592308,
-0.035802893340587616,
0.022535555064678192,
-0.03308830037713051,
0.020814012736082077,
-0.04987867921590805,
-0.012101924046874046,
0.01673203520476818,
0.0020649509970098734,
-0.04222868010401726,
0.0436488576233387,
-0.014623508788645267,
0.20980137586593628,
0.12913832068443298,
-0.18923646211624146,
-0.08778540790081024,
0.08859521895647049,
-0.034483298659324646,
0.021818937733769417,
0.005520748905837536,
-0.009592045098543167,
0.016009368002414703,
-0.034271880984306335,
0.10891909152269363,
-0.033900536596775055,
-0.04331722483038902,
0.02280811034142971,
-0.078169085085392,
0.014166045933961868,
0.09316160529851913,
0.10163523256778717,
-0.12481238692998886,
0.10219599306583405,
0.14777016639709473,
-0.12247239053249359,
0.06552068144083023,
0.007766733877360821,
-0.04041941091418266,
-0.00016356655396521091,
0.0036314851604402065,
-0.0038463794626295567,
0.09752537310123444,
-0.19368726015090942,
-0.0008281667251139879,
0.06986275315284729,
-0.02863139845430851,
0.03172522038221359,
-0.09287840127944946,
-0.04426409304141998,
0.035958461463451385,
0.037063002586364746,
-0.07783781737089157,
0.12285938858985901,
0.028679847717285156,
0.06223282963037491,
-0.002155667869374156,
-0.09141460061073303,
0.053926289081573486,
0.010045302100479603,
-0.08510508388280869,
0.19442065060138702,
-0.013733558356761932,
-0.13510458171367645,
-0.09928473085165024,
-0.11780337989330292,
0.05248687043786049,
0.04190754517912865,
0.0979689508676529,
-0.11082439869642258,
-0.013907087966799736,
0.04209752380847931,
-0.03668218106031418,
0.04112342372536659,
0.06796389818191528,
-0.058026619255542755,
0.03201130032539368,
-0.0009141849586740136,
-0.06706969439983368,
-0.06856288015842438,
-0.019399648532271385,
0.02664385922253132,
0.13068394362926483,
-0.11105291545391083,
0.08124183118343353,
0.11577096581459045,
-0.007568898145109415,
0.05569784715771675,
0.00976775772869587,
0.21886229515075684,
-0.10408490896224976,
-0.00656433729454875,
0.21109610795974731,
-0.04446052014827728,
0.031996216624975204,
0.09919419884681702,
-0.006568093318492174,
-0.03859834745526314,
0.016878537833690643,
-0.0685938373208046,
-0.09116458147764206,
-0.24171309173107147,
-0.055343687534332275,
-0.07003113627433777,
-0.04045938327908516,
0.09174194931983948,
0.04300999268889427,
0.08357606828212738,
0.15120787918567657,
0.05781681835651398,
-0.1043335348367691,
-0.09847590327262878,
0.03397497907280922,
0.100091852247715,
-0.009243914857506752,
0.12740465998649597,
-0.04563712701201439,
-0.13815109431743622,
0.023924002423882484,
0.02077898569405079,
0.12291025370359421,
0.0675734430551529,
-0.07334858179092407,
0.07445330172777176,
0.21756689250469208,
0.0982585996389389,
0.10928524285554886,
0.08021709322929382,
-0.0754888579249382,
0.0201803520321846,
-0.01578952930867672,
-0.05626785010099411,
0.020137427374720573,
0.11710933595895767,
-0.028228221461176872,
-0.07137572765350342,
-0.19894655048847198,
0.020050132647156715,
0.11527251452207565,
0.10444047302007675,
-0.28533297777175903,
-0.025402558967471123,
0.007719516754150391,
-0.006897616665810347,
-0.05342145636677742,
0.016780981793999672,
-0.09089910238981247,
-0.1575554609298706,
0.04683569073677063,
-0.0508682057261467,
0.0996997132897377,
0.09813539683818817,
0.027627302333712578,
-0.04547855630517006,
-0.0856897309422493,
0.004995883908122778,
0.10629919916391373,
-0.2607748210430145,
0.27514222264289856,
-0.02234615385532379,
0.0038057873025536537,
-0.08709439635276794,
-0.028199566528201103,
0.06663711369037628,
0.05796185880899429,
0.11054159700870514,
-0.04867302253842354,
-0.08938705176115036,
-0.13066276907920837,
-0.005859010852873325,
0.06395018100738525,
0.040938012301921844,
0.006331971380859613,
0.07293938100337982,
-0.030396848917007446,
-0.002147758612409234,
-0.026627110317349434,
0.054986923933029175,
-0.06712383776903152,
0.01267304364591837,
0.0134964594617486,
-0.046806275844573975,
-0.02183949016034603,
-0.04216456040740013,
-0.08081480860710144,
-0.06526052951812744,
0.1971237063407898,
-0.025121476501226425,
-0.020123600959777832,
-0.09832540154457092,
0.0020540941040962934,
0.17179812490940094,
-0.08872932940721512,
0.06162232905626297,
-0.06833051890134811,
0.023060807958245277,
-0.03456581011414528,
-0.13005255162715912,
0.06366585940122604,
-0.10555996745824814,
-0.0912039503455162,
-0.07837290316820145,
0.09695827960968018,
-0.0021218410693109035,
0.06851769238710403,
0.07312983274459839,
0.05168626084923744,
-0.153866708278656,
-0.022178472951054573,
0.08175241947174072,
-0.17982827126979828,
-0.0239684097468853,
0.03920653462409973,
-0.007346172351390123,
0.027901416644454002,
-0.05555897578597069,
0.037097323685884476,
0.19406946003437042,
0.24440817534923553,
-0.05279223993420601,
0.03133103623986244,
0.12782372534275055,
-0.012043392285704613,
-0.3092784881591797,
-0.0179817583411932,
-0.06777743250131607,
0.04232340306043625,
0.043640173971652985,
-0.09706458449363708,
0.11136389523744583,
0.018282270058989525,
-0.07227642834186554,
0.07589653879404068,
-0.18449540436267853,
-0.07895868271589279,
0.2946675419807434,
0.03878098353743553,
0.39811214804649353,
-0.14225809276103973,
-0.06687957793474197,
-0.014962535351514816,
-0.09394289553165436,
-0.08889113366603851,
-0.023021886125206947,
0.09057672321796417,
-0.07134965062141418,
0.03616056591272354,
0.038890548050403595,
-0.09815307706594467,
0.12876516580581665,
-0.0767938569188118,
0.000489663565531373,
-0.07514321804046631,
-0.01745878905057907,
0.06174875423312187,
-0.030951743945479393,
0.023770641535520554,
-0.005850524175912142,
0.07738839834928513,
-0.10658609122037888,
-0.022689884528517723,
-0.09287289530038834,
0.1370042860507965,
0.03274460509419441,
-0.019862564280629158,
-0.0414571575820446,
-0.010369852185249329,
-0.030427876859903336,
-0.006481681019067764,
0.13183006644248962,
-0.05300116911530495,
0.21255649626255035,
0.06763432174921036,
0.07562780380249023,
-0.0393952876329422,
-0.05571893975138664,
0.035221125930547714,
-0.08883709460496902,
0.06839685887098312,
-0.09519471228122711,
0.02621755376458168,
0.11848706752061844,
0.04294333979487419,
0.014727501198649406,
0.09651955962181091,
-0.059493593871593475,
0.009769868105649948,
0.15085268020629883,
-0.18026553094387054,
0.09888983517885208,
-0.006426012143492699,
-0.10359108448028564,
-0.06249355897307396,
0.05157973989844322,
0.0800546333193779,
0.007046010345220566,
-0.036277443170547485,
-0.0189182348549366,
-0.05304716154932976,
-0.11085386574268341,
0.18408100306987762,
0.14864613115787506,
0.08487427234649658,
-0.09470487385988235,
-0.005899775307625532,
-0.03486958518624306,
-0.07142969220876694,
0.010397727601230145,
0.020000072196125984,
-0.0541837178170681,
-0.11778336018323898,
0.05046499893069267,
0.12284357845783234,
-0.08960048854351044,
-0.0227204579859972,
-0.2056487649679184,
-0.06933160126209259,
0.05374796688556671,
0.2438085377216339,
0.14863762259483337,
0.062009841203689575,
0.004971334710717201,
-0.0353994257748127,
-0.04602115601301193,
0.037472452968358994,
0.09907643496990204,
0.03929733484983444,
-0.07005323469638824,
0.026960771530866623,
-0.04300566762685776,
0.1576138585805893,
-0.11314911395311356,
-0.031038552522659302,
-0.14853860437870026,
0.08223491162061691,
-0.130794957280159,
-0.090241439640522,
-0.031476277858018875,
-0.08653673529624939,
0.04867782071232796,
-0.10240229964256287,
-0.07188590615987778,
-0.022419018670916557,
-0.11499401181936264,
0.056191109120845795,
0.05300460383296013,
-0.019739843904972076,
-0.07958827912807465,
0.004992572590708733,
0.17448727786540985,
-0.08248528838157654,
0.023969199508428574,
0.08019621670246124,
-0.05676962435245514,
0.04392736032605171,
-0.10917399823665619,
-0.09254932403564453,
0.044340845197439194,
0.00895233079791069,
0.05586036294698715,
-0.05890972167253494,
0.0800464004278183,
0.06130977347493172,
0.041046563535928726,
0.07412862032651901,
0.10286068171262741,
-0.09364978224039078,
0.046735599637031555,
-0.03154979273676872,
-0.17395015060901642,
-0.03177342936396599,
-0.06732809543609619,
0.08434323966503143,
0.03252706304192543,
0.1139436587691307,
-0.04863544553518295,
0.08569927513599396,
-0.10623656958341599,
-0.005486972630023956,
-0.04546753317117691,
-0.07428036630153656,
-0.034880731254816055,
-0.014435481280088425,
0.053595710545778275,
0.013913302682340145,
0.2104223370552063,
-0.05014784634113312,
0.010607081465423107,
0.020904524251818657,
0.05738220736384392,
0.11992445588111877,
-0.015530010685324669,
0.2088535726070404,
0.06648515164852142,
-0.032014716416597366,
-0.06473184376955032,
0.07893498241901398,
-0.026775233447551727,
-0.07864241302013397,
0.10122207552194595,
0.17005209624767303,
0.013981238007545471,
0.06304889172315598,
-0.007527761161327362,
0.09041448682546616,
0.04006370157003403,
-0.13338498771190643,
0.0004405059153214097,
0.01123867928981781,
0.0827421024441719,
0.11546123027801514,
0.14486870169639587,
-0.03906972333788872,
0.03577959164977074,
-0.07649458199739456,
-0.016819199547171593,
-0.19961990416049957,
-0.0763828456401825,
-0.12632887065410614,
-0.13668660819530487,
0.07295604050159454,
-0.019053665921092033,
-0.04967441409826279,
0.1093958392739296,
0.025796666741371155,
-0.051077090203762054,
0.11694145202636719,
0.04837547987699509,
-0.005610504653304815,
0.041905030608177185,
-0.022016890347003937,
-0.01323476992547512,
0.07333488017320633,
-0.030506858602166176,
-0.044354140758514404,
-0.0036449285689741373,
-0.0024956464767456055,
-0.032108817249536514,
-0.13331277668476105,
0.034097567200660706,
-0.09927751868963242,
-0.14048774540424347,
-0.03471903130412102,
0.025714753195643425,
0.017787020653486252,
0.08721937984228134,
-0.01912628673017025,
0.08902844786643982,
0.01513407751917839,
0.14460057020187378,
-0.029201775789260864,
-0.0901787132024765,
-0.11010803282260895,
0.1951521635055542,
0.05109773948788643,
0.03996071219444275,
-0.022229937836527824,
-0.02018752321600914,
-0.01116727665066719,
0.32540082931518555,
0.21778438985347748,
-0.003372117644175887,
0.0319860577583313,
0.08208030462265015,
0.007990708574652672,
0.058077123016119,
0.056146394461393356,
0.06524775177240372,
0.16455523669719696,
-0.11692515760660172,
-0.10563129931688309,
-0.06548261642456055,
-0.04568087309598923,
-0.08656420558691025,
0.004224724136292934,
0.04627830535173416,
-0.0411565825343132,
-0.0490165576338768,
0.12837989628314972,
-0.06137846037745476,
0.03385873883962631,
0.14289459586143494,
-0.16534344851970673,
-0.10726861655712128,
-0.03806810453534126,
0.08882278949022293,
-0.004138769581913948,
0.07364752143621445,
-0.08224757760763168,
-0.04475698620080948,
-0.0037073956336826086,
-0.022140707820653915,
-0.12110841274261475,
-0.13583876192569733,
0.11714926362037659,
-0.020540272817015648,
0.10177436470985413,
-0.04540986195206642,
0.11658409982919693,
0.14258037507534027,
0.016619140282273293,
-0.06441675126552582,
0.06468615680932999,
0.06256072223186493,
-0.11129065603017807,
0.015258186496794224,
0.044866930693387985,
0.043291009962558746,
-0.04775451496243477,
0.08594553172588348,
-0.09423954784870148,
0.04801200330257416,
-0.15724807977676392,
0.0003516166761983186,
-0.13337396085262299,
0.09650819003582001,
-0.054700110107660294,
0.058256231248378754,
0.0915263220667839,
-0.045231789350509644,
0.015123548917472363,
-0.08057058602571487,
0.05941819027066231,
0.09516791254281998,
-0.06666970998048782,
-0.12370414286851883,
-0.17674799263477325,
-0.03179106488823891,
0.003129905555397272,
-0.06636538356542587,
-0.2465364784002304,
-0.06310989707708359,
-0.11150184273719788,
-0.01950552873313427,
-0.02309218794107437,
0.07182541489601135,
0.05714594945311546,
0.06814480572938919,
0.015543755143880844,
-0.10236413776874542,
-0.00004409982648212463,
0.09633524715900421,
-0.19923074543476105,
-0.08872856199741364
] |
null | null | sentence-transformers |
# KBLab/sentence-bert-swedish-cased
This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/).
**Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default.
| Model version | Teacher Model | Max Sequence Length |
|---------------|---------|----------|
| v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 |
| v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 |
| v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 |
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
```
### Loading an older model version (Sentence-Transformers)
Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model:
```bash
git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased
```
Then you can load the model by pointing to the local folder where you cloned the model:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased")
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
# Load model from HuggingFace Hub
# To load an older version, e.g. v1.0, add the argument revision="v1.0"
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
### Loading an older model (Hugginfface Transformers)
To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code:
```python
AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below.
| Model version | Pearson | Spearman |
|---------------|---------|----------|
| v1.0 | 0.9183 | 0.9114 |
| v1.1 | 0.9183 | 0.9114 |
| v2.0 | **0.9283** | **0.9130** |
The following code snippet can be used to reproduce the above results:
```python
from sentence_transformers import SentenceTransformer
import pandas as pd
df = pd.read_csv(
"sweparaphrase-dev-165.csv",
sep="\t",
header=None,
names=[
"original_id",
"source",
"type",
"sentence_swe1",
"sentence_swe2",
"score",
"sentence1",
"sentence2",
],
)
model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()
# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)
cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()
df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
```
### Sweparaphrase v2.0
In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.
| Model version | Data split | Pearson | Spearman |
|---------------|------------|------------|------------|
| v1.0 | train | 0.8355 | 0.8256 |
| v1.1 | train | **0.8383** | **0.8302** |
| v2.0 | train | 0.8209 | 0.8059 |
| v1.0 | dev | 0.8682 | 0.8774 |
| v1.1 | dev | **0.8739** | **0.8833** |
| v2.0 | dev | 0.8638 | 0.8668 |
| v1.0 | test | 0.8356 | 0.8476 |
| v1.1 | test | **0.8393** | **0.8550** |
| v2.0 | test | 0.8232 | 0.8213 |
### SweFAQ v2.0
When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.
| Model version | Data split | Accuracy |
|---------------|------------|------------|
| v1.0 | train | 0.5262 |
| v1.1 | train | 0.6236 |
| v2.0 | train | **0.7106** |
| v1.0 | dev | 0.4636 |
| v1.1 | dev | 0.5818 |
| v2.0 | dev | **0.6727** |
| v1.0 | test | 0.4495 |
| v1.1 | test | 0.5229 |
| v2.0 | test | **0.5871** |
Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
## Training
An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MSELoss.MSELoss`
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 8e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 5000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
This model was trained by KBLab, a data lab at the National Library of Sweden.
You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .
```
@misc{rekathati2021introducing,
author = {Rekathati, Faton},
title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},
url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},
year = {2021}
}
```
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)). | {"language": ["sv"], "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity", "lang": ["sv"], "widget": [{"source_sentence": "Mannen \u00e5t mat.", "sentences": ["Han f\u00f6rt\u00e4rde en n\u00e4rande och nyttig m\u00e5ltid.", "Det var ett sunkigt hak med ganska gott k\u00e4k.", "Han inmundigade middagen tillsammans med ett glas r\u00f6dvin.", "Potatischips \u00e4r j\u00e4ttegoda.", "Tryck p\u00e5 knappen f\u00f6r att f\u00e5 tala med kundsupporten."], "example_title": "Mat"}, {"source_sentence": "Kan jag deklarera digitalt fr\u00e5n utlandet?", "sentences": ["Du som befinner dig i utlandet kan deklarera digitalt p\u00e5 flera olika s\u00e4tt.", "Du som har kvarskatt att betala ska g\u00f6ra en inbetalning till ditt skattekonto.", "Efter att du har deklarerat g\u00e5r vi igenom uppgifterna i din deklaration och r\u00e4knar ut din skatt.", "I din deklaration som du f\u00e5r fr\u00e5n oss har vi r\u00e4knat ut vad du ska betala eller f\u00e5 tillbaka.", "Tryck p\u00e5 knappen f\u00f6r att f\u00e5 tala med kundsupporten."], "example_title": "Skatteverket FAQ"}, {"source_sentence": "Hon kunde g\u00f6ra bak\u00e5tvolter.", "sentences": ["Hon var atletisk.", "Hon var bra p\u00e5 gymnastik.", "Hon var inte atletisk.", "Hon var of\u00f6rm\u00f6gen att flippa bakl\u00e4nges."], "example_title": "Gymnastik"}]} | sentence-similarity | KBLab/sentence-bert-swedish-cased | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"sv",
"arxiv:2004.09813",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2004.09813"
] | [
"sv"
] | TAGS
#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #sv #arxiv-2004.09813 #license-apache-2.0 #endpoints_compatible #has_space #region-us
| KBLab/sentence-bert-swedish-cased
=================================
This is a sentence-transformers model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation and the documentation accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder (all-mpnet-base-v2) as a teacher model, and the pretrained Swedish KB-BERT as the student model.
A more detailed description of the model can be found in an article we published on the KBLab blog here and for the updated model here.
Update: We have released updated versions of the model since the initial release. The original model described in the blog post is v1.0. The current version is v2.0. The newer versions are trained on longer paragraphs, and have a longer max sequence length. v2.0 is trained with a stronger teacher model and is the current default.
Model version: v1.0, Teacher Model: paraphrase-mpnet-base-v2, Max Sequence Length: 256
Model version: v1.1, Teacher Model: paraphrase-mpnet-base-v2, Max Sequence Length: 384
Model version: v2.0, Teacher Model: all-mpnet-base-v2, Max Sequence Length: 384
Usage (Sentence-Transformers)
-----------------------------
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
### Loading an older model version (Sentence-Transformers)
Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the v1.0 model:
Then you can load the model by pointing to the local folder where you cloned the model:
Usage (HuggingFace Transformers)
--------------------------------
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
### Loading an older model (Hugginfface Transformers)
To load an older model specify the version tag with the 'revision' arg. For example, to load the v1.0 model, use the following code:
Evaluation Results
------------------
The model was evaluated on SweParaphrase v1.0 and SweParaphrase v2.0. This test set is part of SuperLim -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from SweParaphrase v1.0 are displayed below.
Model version: v1.0, Pearson: 0.9183, Spearman: 0.9114
Model version: v1.1, Pearson: 0.9183, Spearman: 0.9114
Model version: v2.0, Pearson: 0.9283, Spearman: 0.9130
The following code snippet can be used to reproduce the above results:
### Sweparaphrase v2.0
In general, v1.1 correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.
### SweFAQ v2.0
When it comes to retrieval tasks, v2.0 performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.
Model version: v1.0, Data split: train, Accuracy: 0.5262
Model version: v1.1, Data split: train, Accuracy: 0.6236
Model version: v2.0, Data split: train, Accuracy: 0.7106
Model version: v1.0, Data split: dev, Accuracy: 0.4636
Model version: v1.1, Data split: dev, Accuracy: 0.5818
Model version: v2.0, Data split: dev, Accuracy: 0.6727
Model version: v1.0, Data split: test, Accuracy: 0.4495
Model version: v1.1, Data split: test, Accuracy: 0.5229
Model version: v2.0, Data split: test, Accuracy: 0.5871
Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: evaluate\_faq.py (Swedish FAQ), evaluate\_swesat.py (SweSAT synonyms), evaluate\_supersim.py (SuperSim).
Training
--------
An article with more details on data and v1.0 of the model can be found on the KBLab blog.
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the Open Parallel Corpus (OPUS) and downloaded via the python package opustools. Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 180513 with parameters:
Loss:
'sentence\_transformers.losses.MSELoss.MSELoss'
Parameters of the fit()-Method:
Full Model Architecture
-----------------------
Citing & Authors
----------------
This model was trained by KBLab, a data lab at the National Library of Sweden.
You can cite the article on our blog: URL .
Acknowledgements
----------------
We gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL).
| [
"### Loading an older model version (Sentence-Transformers)\n\n\nCurrently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the v1.0 model:\n\n\nThen you can load the model by pointing to the local folder where you cloned the model:\n\n\nUsage (HuggingFace Transformers)\n--------------------------------\n\n\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"### Loading an older model (Hugginfface Transformers)\n\n\nTo load an older model specify the version tag with the 'revision' arg. For example, to load the v1.0 model, use the following code:\n\n\nEvaluation Results\n------------------\n\n\nThe model was evaluated on SweParaphrase v1.0 and SweParaphrase v2.0. This test set is part of SuperLim -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from SweParaphrase v1.0 are displayed below.\n\n\nModel version: v1.0, Pearson: 0.9183, Spearman: 0.9114\nModel version: v1.1, Pearson: 0.9183, Spearman: 0.9114\nModel version: v2.0, Pearson: 0.9283, Spearman: 0.9130\n\n\nThe following code snippet can be used to reproduce the above results:",
"### Sweparaphrase v2.0\n\n\nIn general, v1.1 correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.",
"### SweFAQ v2.0\n\n\nWhen it comes to retrieval tasks, v2.0 performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.\n\n\nModel version: v1.0, Data split: train, Accuracy: 0.5262\nModel version: v1.1, Data split: train, Accuracy: 0.6236\nModel version: v2.0, Data split: train, Accuracy: 0.7106\nModel version: v1.0, Data split: dev, Accuracy: 0.4636\nModel version: v1.1, Data split: dev, Accuracy: 0.5818\nModel version: v2.0, Data split: dev, Accuracy: 0.6727\nModel version: v1.0, Data split: test, Accuracy: 0.4495\nModel version: v1.1, Data split: test, Accuracy: 0.5229\nModel version: v2.0, Data split: test, Accuracy: 0.5871\n\n\nExamples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: evaluate\\_faq.py (Swedish FAQ), evaluate\\_swesat.py (SweSAT synonyms), evaluate\\_supersim.py (SuperSim).\n\n\nTraining\n--------\n\n\nAn article with more details on data and v1.0 of the model can be found on the KBLab blog.\n\n\nAround 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the Open Parallel Corpus (OPUS) and downloaded via the python package opustools. Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.\n\n\nThe model was trained with the parameters:\n\n\nDataLoader:\n\n\n'URL.dataloader.DataLoader' of length 180513 with parameters:\n\n\nLoss:\n\n\n'sentence\\_transformers.losses.MSELoss.MSELoss'\n\n\nParameters of the fit()-Method:\n\n\nFull Model Architecture\n-----------------------\n\n\nCiting & Authors\n----------------\n\n\nThis model was trained by KBLab, a data lab at the National Library of Sweden.\n\n\nYou can cite the article on our blog: URL .\n\n\nAcknowledgements\n----------------\n\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
"TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #sv #arxiv-2004.09813 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n",
"### Loading an older model version (Sentence-Transformers)\n\n\nCurrently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the v1.0 model:\n\n\nThen you can load the model by pointing to the local folder where you cloned the model:\n\n\nUsage (HuggingFace Transformers)\n--------------------------------\n\n\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"### Loading an older model (Hugginfface Transformers)\n\n\nTo load an older model specify the version tag with the 'revision' arg. For example, to load the v1.0 model, use the following code:\n\n\nEvaluation Results\n------------------\n\n\nThe model was evaluated on SweParaphrase v1.0 and SweParaphrase v2.0. This test set is part of SuperLim -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from SweParaphrase v1.0 are displayed below.\n\n\nModel version: v1.0, Pearson: 0.9183, Spearman: 0.9114\nModel version: v1.1, Pearson: 0.9183, Spearman: 0.9114\nModel version: v2.0, Pearson: 0.9283, Spearman: 0.9130\n\n\nThe following code snippet can be used to reproduce the above results:",
"### Sweparaphrase v2.0\n\n\nIn general, v1.1 correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.",
"### SweFAQ v2.0\n\n\nWhen it comes to retrieval tasks, v2.0 performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.\n\n\nModel version: v1.0, Data split: train, Accuracy: 0.5262\nModel version: v1.1, Data split: train, Accuracy: 0.6236\nModel version: v2.0, Data split: train, Accuracy: 0.7106\nModel version: v1.0, Data split: dev, Accuracy: 0.4636\nModel version: v1.1, Data split: dev, Accuracy: 0.5818\nModel version: v2.0, Data split: dev, Accuracy: 0.6727\nModel version: v1.0, Data split: test, Accuracy: 0.4495\nModel version: v1.1, Data split: test, Accuracy: 0.5229\nModel version: v2.0, Data split: test, Accuracy: 0.5871\n\n\nExamples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: evaluate\\_faq.py (Swedish FAQ), evaluate\\_swesat.py (SweSAT synonyms), evaluate\\_supersim.py (SuperSim).\n\n\nTraining\n--------\n\n\nAn article with more details on data and v1.0 of the model can be found on the KBLab blog.\n\n\nAround 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the Open Parallel Corpus (OPUS) and downloaded via the python package opustools. Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.\n\n\nThe model was trained with the parameters:\n\n\nDataLoader:\n\n\n'URL.dataloader.DataLoader' of length 180513 with parameters:\n\n\nLoss:\n\n\n'sentence\\_transformers.losses.MSELoss.MSELoss'\n\n\nParameters of the fit()-Method:\n\n\nFull Model Architecture\n-----------------------\n\n\nCiting & Authors\n----------------\n\n\nThis model was trained by KBLab, a data lab at the National Library of Sweden.\n\n\nYou can cite the article on our blog: URL .\n\n\nAcknowledgements\n----------------\n\n\nWe gratefully acknowledge the HPC RIVR consortium (URL) and EuroHPC JU (URL for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (URL)."
] | [
64,
142,
219,
68,
560
] | [
"passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #sv #arxiv-2004.09813 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Loading an older model version (Sentence-Transformers)\n\n\nCurrently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the v1.0 model:\n\n\nThen you can load the model by pointing to the local folder where you cloned the model:\n\n\nUsage (HuggingFace Transformers)\n--------------------------------\n\n\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.### Loading an older model (Hugginfface Transformers)\n\n\nTo load an older model specify the version tag with the 'revision' arg. For example, to load the v1.0 model, use the following code:\n\n\nEvaluation Results\n------------------\n\n\nThe model was evaluated on SweParaphrase v1.0 and SweParaphrase v2.0. This test set is part of SuperLim -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from SweParaphrase v1.0 are displayed below.\n\n\nModel version: v1.0, Pearson: 0.9183, Spearman: 0.9114\nModel version: v1.1, Pearson: 0.9183, Spearman: 0.9114\nModel version: v2.0, Pearson: 0.9283, Spearman: 0.9130\n\n\nThe following code snippet can be used to reproduce the above results:### Sweparaphrase v2.0\n\n\nIn general, v1.1 correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning."
] | [
-0.06099911779165268,
0.12500141561031342,
-0.004358328878879547,
0.015595441684126854,
0.09357485175132751,
0.010454850271344185,
0.05736342817544937,
0.11783820390701294,
0.03648168593645096,
0.10052580386400223,
-0.00496927322819829,
-0.0017115884693339467,
0.11010155826807022,
0.06416676193475723,
0.0851268395781517,
-0.25577354431152344,
0.04870627075433731,
-0.10701059550046921,
0.03351598232984543,
0.07425016164779663,
0.08438901603221893,
-0.07501628994941711,
0.07476433366537094,
0.043426260352134705,
0.0232230257242918,
0.009540357626974583,
-0.00354155246168375,
0.004931278992444277,
0.06175297498703003,
0.015629734843969345,
0.05364421010017395,
0.0025169497821480036,
0.0993962362408638,
-0.16669249534606934,
-0.002595913829281926,
0.052386682480573654,
0.06301864981651306,
0.038625359535217285,
0.07523976266384125,
0.006201855838298798,
0.11682641506195068,
-0.03784213587641716,
0.04610183462500572,
0.06515835970640182,
-0.038508202880620956,
-0.12677063047885895,
-0.13934092223644257,
0.02799724042415619,
0.10584113746881485,
0.0512433797121048,
-0.027890492230653763,
0.07229568809270859,
0.0011690332321450114,
0.04569769278168678,
0.14463338255882263,
-0.2086687535047531,
-0.04284549131989479,
0.04588748514652252,
0.026410244405269623,
0.0543750561773777,
-0.04730654135346413,
0.04208957403898239,
-0.0035326359793543816,
0.021204514428973198,
0.02625233307480812,
-0.04429793357849121,
0.009748668409883976,
-0.017837168648838997,
-0.13204145431518555,
-0.002365959109738469,
0.15049666166305542,
0.016621384769678116,
-0.11092060804367065,
-0.09665101766586304,
-0.06010594218969345,
0.022205280140042305,
-0.03113834746181965,
-0.040069688111543655,
0.05544963851571083,
0.016759857535362244,
0.04677501693367958,
-0.1327829360961914,
-0.10025197267532349,
-0.05701300874352455,
-0.01844889298081398,
0.0678316131234169,
0.0032721711322665215,
0.03656483814120293,
0.04168052226305008,
0.052580416202545166,
-0.08756700158119202,
-0.04634738713502884,
-0.09326902776956558,
-0.0682530552148819,
-0.13430742919445038,
-0.01578381285071373,
-0.06574483215808868,
-0.21510271728038788,
-0.005841989070177078,
0.2092488557100296,
-0.0063968850299716,
0.04765082895755768,
0.053171876817941666,
-0.0006267853314056993,
0.04432876035571098,
0.20901958644390106,
-0.0014157184632495046,
-0.10663062334060669,
-0.04456982761621475,
-0.023715579882264137,
0.03761686384677887,
-0.034981854259967804,
-0.0044257547706365585,
-0.02030530758202076,
0.050107333809137344,
0.04871183633804321,
0.04142437502741814,
0.017443830147385597,
-0.006501310504972935,
-0.02377256751060486,
0.07278582453727722,
-0.14633004367351532,
0.02070760540664196,
0.009999438188970089,
-0.032128702849149704,
0.09662003815174103,
0.0935695618391037,
-0.054983675479888916,
-0.12772607803344727,
0.017337817698717117,
-0.05492912605404854,
-0.0016494957963004708,
-0.06477517634630203,
-0.08417251706123352,
0.00035534013295546174,
-0.06498958170413971,
-0.08656210452318192,
-0.05511100962758064,
-0.15830868482589722,
-0.11172918230295181,
0.031361185014247894,
-0.023914841935038567,
0.03068586252629757,
-0.02439074218273163,
-0.012783740647137165,
-0.012009753845632076,
-0.023845752701163292,
-0.013101701624691486,
-0.02984948270022869,
-0.016753746196627617,
-0.10007752478122711,
0.022010870277881622,
0.02258261665701866,
0.017911812290549278,
-0.1149502545595169,
0.018999673426151276,
-0.20964941382408142,
0.08798563480377197,
-0.14438948035240173,
-0.011016450822353363,
-0.08969104290008545,
-0.028931574895977974,
0.015014206990599632,
0.03871212527155876,
0.03401978313922882,
0.11809069663286209,
-0.2341601550579071,
-0.04429665207862854,
0.08236560225486755,
-0.18215174973011017,
-0.04953611269593239,
0.04189921170473099,
0.04770376905798912,
0.009100583381950855,
0.11631617695093155,
0.1314225047826767,
0.14303505420684814,
-0.10150517523288727,
-0.09038896858692169,
0.0044733383692801,
-0.029229404404759407,
0.06846252083778381,
0.04530863091349602,
-0.0993700921535492,
0.10150867700576782,
0.060921307653188705,
-0.19738230109214783,
-0.02433166466653347,
0.027288923040032387,
-0.0257717352360487,
-0.013976995833218098,
-0.03463268652558327,
-0.016904283314943314,
0.009694010950624943,
-0.02033541165292263,
-0.03857818618416786,
-0.08055464923381805,
0.15798725187778473,
0.08335298299789429,
-0.052665095776319504,
0.05757448077201843,
-0.06471901386976242,
0.03371678292751312,
0.03889281675219536,
0.0176316536962986,
-0.184853658080101,
-0.14387550950050354,
0.023221107199788094,
-0.1314423829317093,
0.04445861652493477,
0.022440902888774872,
0.06614088267087936,
0.054561715573072433,
0.007092105224728584,
-0.024725990369915962,
-0.04759281501173973,
-0.003219274803996086,
-0.03614194691181183,
-0.06916998326778412,
-0.09088635444641113,
0.0023937514051795006,
0.07202364504337311,
-0.01565917767584324,
0.008114117197692394,
0.0012150651309639215,
0.11314540356397629,
0.01063959114253521,
-0.09859870374202728,
0.003994709346443415,
-0.026669692248106003,
-0.006010985467582941,
-0.0395888090133667,
0.019060947000980377,
0.002266286639496684,
-0.05607379227876663,
0.1033724844455719,
-0.12226796895265579,
-0.20119160413742065,
0.04940180107951164,
0.012312470003962517,
-0.05791804566979408,
0.046807970851659775,
-0.032083675265312195,
0.006537891458719969,
-0.08912111818790436,
-0.07175209373235703,
0.1007324829697609,
0.07568898797035217,
0.06102781370282173,
-0.049861639738082886,
-0.052081212401390076,
-0.03214868903160095,
-0.023628313094377518,
-0.012484264560043812,
0.026519890874624252,
0.013296306133270264,
-0.08530015498399734,
0.036548204720020294,
0.016196588054299355,
-0.02655959501862526,
0.17415928840637207,
-0.0253684613853693,
-0.11052118241786957,
-0.039113808423280716,
-0.02541462890803814,
-0.006103537976741791,
0.0845794603228569,
-0.018824787810444832,
0.02176550216972828,
0.06374653428792953,
0.027666307985782623,
0.0013242504792287946,
-0.07231543958187103,
0.05917979031801224,
0.004299588035792112,
-0.04725128412246704,
0.05791154503822327,
-0.015351677313446999,
-0.00021529408695641905,
0.032178089022636414,
-0.010290171019732952,
0.09893251955509186,
-0.0808165892958641,
-0.04936406388878822,
-0.11501628160476685,
0.13090239465236664,
-0.10059709846973419,
-0.1910470724105835,
-0.17642684280872345,
0.10952072590589523,
-0.1381685882806778,
0.010750379413366318,
0.013868661597371101,
-0.04957280680537224,
-0.11952904611825943,
-0.1060687005519867,
0.06372960656881332,
0.07008051872253418,
-0.03615270182490349,
-0.047370556741952896,
-0.009358885698020458,
0.06866541504859924,
-0.1064450815320015,
-0.011928437277674675,
-0.026844970881938934,
-0.04959369823336601,
-0.041464272886514664,
0.06841722130775452,
0.0667453408241272,
0.05172143876552582,
0.014449968002736568,
-0.01400113943964243,
0.03391668200492859,
0.18346881866455078,
-0.05238128826022148,
0.132230743765831,
0.178872212767601,
-0.049798451364040375,
0.0774339959025383,
-0.009388918988406658,
-0.0012782786507159472,
-0.03054591827094555,
-0.001535543822683394,
0.09554264694452286,
-0.04069981351494789,
-0.19606104493141174,
-0.07940846681594849,
-0.022520728409290314,
0.06068415567278862,
0.04661085456609726,
0.030293967574834824,
-0.1344640702009201,
0.05238310620188713,
-0.08618548512458801,
-0.12104806303977966,
0.05239420384168625,
0.0636676773428917,
0.10145563632249832,
-0.030694302171468735,
0.07771322131156921,
-0.05770580843091011,
0.03839686140418053,
0.130806103348732,
-0.030289864167571068,
0.08253627270460129,
-0.01707659475505352,
0.09214144945144653,
0.04085627198219299,
0.03839777782559395,
0.0014031798345968127,
0.0755021870136261,
0.01847282610833645,
0.009823435917496681,
0.020622698590159416,
-0.07352708280086517,
-0.10486552119255066,
0.06791087239980698,
0.009120266884565353,
-0.04097098112106323,
-0.011004263535141945,
0.06274881213903427,
0.06352871656417847,
0.204695463180542,
0.03923291340470314,
-0.1265796422958374,
-0.12091248482465744,
0.04049258679151535,
-0.0692104771733284,
-0.07443824410438538,
-0.015823347494006157,
0.07658594101667404,
-0.14124351739883423,
0.1497470736503601,
-0.030145682394504547,
0.0708542913198471,
-0.04249386116862297,
0.006869067437946796,
0.011026667430996895,
0.07933614403009415,
0.018981197848916054,
0.055431004613637924,
0.02244894579052925,
-0.024434469640254974,
-0.015559106133878231,
0.07701308280229568,
-0.017792649567127228,
0.06139054521918297,
0.03884325921535492,
0.04051457718014717,
0.1529538929462433,
0.05975472927093506,
-0.1748618334531784,
0.05010850727558136,
-0.01755189523100853,
0.005034285131841898,
0.06127145141363144,
-0.09167907387018204,
0.08397477120161057,
-0.07162253558635712,
0.0016547515988349915,
-0.0677761659026146,
-0.050384700298309326,
-0.08442094922065735,
-0.08989863842725754,
0.03170597925782204,
-0.09828155487775803,
0.02263456955552101,
-0.046889618039131165,
-0.015314556658267975,
-0.11616380512714386,
0.1970634013414383,
-0.13058370351791382,
-0.10641364753246307,
-0.1293921023607254,
0.018329542130231857,
0.1380746066570282,
-0.07541191577911377,
0.024509664624929428,
-0.009151915088295937,
0.17297008633613586,
-0.04198583588004112,
-0.07931752502918243,
-0.019968044012784958,
-0.05567006766796112,
-0.15105198323726654,
0.021545689553022385,
0.11507970839738846,
0.03197073936462402,
0.02784825675189495,
0.016413042321801186,
0.06617967039346695,
-0.003335108980536461,
-0.12235386669635773,
0.019348908215761185,
0.17651718854904175,
-0.009698734618723392,
0.0701083242893219,
-0.027298053726553917,
-0.05964124947786331,
-0.03285400569438934,
0.04063446819782257,
0.11563339829444885,
0.21449896693229675,
-0.05967807397246361,
0.12348690629005432,
0.10696680843830109,
-0.10635974258184433,
-0.28378796577453613,
-0.06060182303190231,
0.0644744262099266,
0.01736755669116974,
0.1275775134563446,
-0.1318085938692093,
0.11185116320848465,
0.10570866614580154,
-0.015244001522660255,
-0.08486587554216385,
-0.17979541420936584,
-0.13206882774829865,
0.05298914760351181,
0.059571705758571625,
0.035385798662900925,
-0.050967395305633545,
-0.04975702986121178,
-0.03908037766814232,
-0.03480306267738342,
0.08279266208410263,
0.012008034624159336,
0.056555215269327164,
-0.0056680478155612946,
0.01351195853203535,
0.06218338385224342,
-0.03840057924389839,
0.1420026570558548,
-0.02201998233795166,
0.02506900392472744,
-0.06377346813678741,
0.12915153801441193,
0.07218322902917862,
-0.06685429066419601,
0.1918945610523224,
-0.005088021978735924,
0.045945506542921066,
-0.08012440800666809,
-0.007512366399168968,
-0.049416929483413696,
0.07556217908859253,
-0.04357435554265976,
-0.038448531180620193,
-0.04614892974495888,
0.06007590517401695,
0.06350777298212051,
-0.0011780644999817014,
0.09302707016468048,
-0.0674029290676117,
-0.03915257379412651,
0.17644736170768738,
0.0814070850610733,
0.02064579725265503,
-0.17986561357975006,
-0.008656671270728111,
0.00957411341369152,
0.028918074443936348,
-0.05600666254758835,
0.06562356650829315,
0.08472685515880585,
0.03344229236245155,
0.08202072978019714,
-0.01939738541841507,
-0.12412704527378082,
-0.012182515114545822,
0.06088535860180855,
-0.12424401193857193,
-0.1775836944580078,
-0.02876986190676689,
-0.10324114561080933,
-0.10849872976541519,
-0.015177988447248936,
0.1754179745912552,
-0.027791908010840416,
0.004512912128120661,
0.015795104205608368,
0.07038312405347824,
-0.017465637996792793,
0.08547160029411316,
0.006570599973201752,
0.01645520143210888,
-0.08075448125600815,
0.17092099785804749,
0.017251286655664444,
-0.040605898946523666,
0.029677776619791985,
0.12450417876243591,
-0.09610430896282196,
-0.04214216396212578,
-0.05951269716024399,
0.09351714700460434,
-0.17882363498210907,
-0.029484078288078308,
-0.04582757502794266,
-0.10269994288682938,
-0.004325262736529112,
0.006127701606601477,
0.03856392577290535,
0.02879709005355835,
-0.008862078189849854,
0.013253232464194298,
-0.011590151116251945,
0.09659109264612198,
0.006801289971917868,
0.03569125011563301,
-0.0919199287891388,
0.07110393792390823,
-0.005644592922180891,
-0.00037432252429425716,
-0.02415485680103302,
-0.02115730755031109,
-0.03800395131111145,
-0.0254252627491951,
-0.13474124670028687,
-0.03378082439303398,
-0.08113640546798706,
-0.029687069356441498,
-0.0013911206042394042,
-0.0203232541680336,
-0.00037318552494980395,
0.027907580137252808,
-0.041421279311180115,
-0.07407882064580917,
-0.07469220459461212,
0.0458417646586895,
-0.15499180555343628,
0.043814416974782944,
0.05169888958334923,
-0.08123163878917694,
0.061177730560302734,
0.049808070063591,
0.01706785336136818,
0.1092296838760376,
0.02547885663807392,
-0.019597863778471947,
-0.018613938242197037,
0.043440669775009155,
0.05118519067764282,
-0.04054421931505203,
-0.041893549263477325,
-0.0005182249587960541,
-0.0416107140481472,
-0.013750068843364716,
0.08553365617990494,
-0.09123068302869797,
0.026323771104216576,
0.06395499408245087,
-0.009241832420229912,
-0.07226385176181793,
0.011706790886819363,
0.08789493888616562,
0.11173105239868164,
0.150725856423378,
-0.04161175712943077,
0.047720860689878464,
-0.17788933217525482,
0.011848210357129574,
0.034022796899080276,
-0.004008169285953045,
0.025509124621748924,
-0.03434845805168152,
0.03260989114642143,
-0.02735152281820774,
0.056434329599142075,
-0.010477420873939991,
0.09091275930404663,
0.07864173501729965,
0.06386805325746536,
-0.06076113134622574,
0.045491352677345276,
0.05197467282414436,
0.0019463556818664074,
0.02445860207080841,
0.02801673114299774,
-0.0005130688077770174,
-0.019393259659409523,
-0.11241143941879272,
0.1408407986164093,
0.035859301686286926,
0.03997872769832611,
0.1170494481921196,
0.03974726423621178,
0.025675425305962563,
-0.15919244289398193,
0.077976755797863,
-0.026422204449772835,
0.08614334464073181,
-0.019500115886330605,
0.06028832122683525,
0.13801385462284088,
-0.18934138119220734,
0.10942763835191727,
-0.0023160420823842287,
-0.06471657752990723,
-0.11235014349222183,
-0.189051553606987,
-0.059424493461847305,
-0.07488475739955902,
-0.010567506775259972,
-0.11085165292024612,
0.04001525416970253,
0.045091524720191956,
-0.019312841817736626,
-0.008857197128236294,
0.09658145904541016,
-0.19354577362537384,
-0.09871670603752136,
0.0009971864055842161,
0.00924721546471119,
0.021645421162247658,
0.10324537754058838,
0.0010945209069177508,
0.07613679766654968,
0.11975079029798508,
0.0652180165052414,
0.04740612953901291,
0.0856732577085495,
0.026749758049845695,
-0.02028389647603035,
-0.07428940385580063,
-0.003800367470830679,
-0.03515120968222618,
-0.02435177192091942,
0.06574874371290207,
0.06679394841194153,
-0.002347521251067519,
-0.030471155419945717,
0.2189399152994156,
-0.07312922924757004,
-0.05277996510267258,
-0.17894187569618225,
0.1357543021440506,
0.05032135918736458,
0.05383053794503212,
0.04994503781199455,
-0.11435992270708084,
0.0036104172468185425,
0.12540455162525177,
0.06767488270998001,
0.03151565417647362,
0.0003501163446344435,
-0.0254205409437418,
-0.014037344604730606,
-0.02958555519580841,
0.0715203657746315,
-0.02289716526865959,
0.1188509464263916,
0.007261472754180431,
0.1743757426738739,
-0.04291476681828499,
-0.0654468759894371,
-0.08169721812009811,
0.12431477010250092,
-0.03371601924300194,
0.022296616807579994,
-0.02529625967144966,
0.10875023901462555,
-0.051967766135931015,
-0.2584262788295746,
0.012065301649272442,
-0.033730458468198776,
-0.12853187322616577,
-0.002262003952637315,
0.12357591837644577,
0.01868543028831482,
0.06618212908506393,
0.026001982390880585,
0.02740088477730751,
0.19890402257442474,
-0.002719349227845669,
-0.03612392023205757,
-0.11788451671600342,
0.05498405545949936,
-0.08545763790607452,
0.1820141077041626,
0.039754677563905716,
-0.02786780148744583,
0.04635944589972496,
0.007844896055758,
-0.12963949143886566,
0.045586958527565,
0.013392454013228416,
-0.11700316518545151,
0.03822529688477516,
0.17986871302127838,
-0.010515288449823856,
0.1392199844121933,
0.028028350323438644,
-0.09814266860485077,
-0.03627128526568413,
0.0895116925239563,
-0.04324555769562721,
-0.012153523042798042,
0.07620982825756073,
-0.10992838442325592,
0.14063489437103271,
0.16771160066127777,
-0.013124365359544754,
0.007894615642726421,
-0.08403702825307846,
0.04336119443178177,
-0.027928858995437622,
0.05897661671042442,
0.02079673483967781,
-0.12336940318346024,
-0.015322230756282806,
0.03698531538248062,
0.02490624412894249,
-0.066224105656147,
-0.03875739499926567,
0.03403901308774948,
-0.011183463968336582,
0.028815414756536484,
0.10406530648469925,
-0.005301581230014563,
0.0017592300428077579,
-0.012438287027180195,
-0.022768374532461166,
0.05704325810074806,
0.06782616674900055,
-0.08518082648515701,
-0.06242598593235016
] |
null | null | transformers | # Wav2vec 2.0 base-voxpopuli-sv-swedish
Finetuned version of Facebooks [VoxPopuli-sv base](https://huggingface.co/facebook/wav2vec2-base-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
``` | {"language": "sv-SE", "license": "cc-by-nc-4.0", "tags": ["audio", "automatic-speech-recognition", "speech", "voxpopuli"], "datasets": ["common_voice", "NST Swedish ASR Database"], "metrics": ["wer"]} | automatic-speech-recognition | KBLab/wav2vec2-base-voxpopuli-sv-swedish | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"voxpopuli",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv-SE"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #endpoints_compatible #region-us
| # Wav2vec 2.0 base-voxpopuli-sv-swedish
Finetuned version of Facebooks VoxPopuli-sv base model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 5.62%, WER for Common Voice test set is 19.15%.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
| [
"# Wav2vec 2.0 base-voxpopuli-sv-swedish\nFinetuned version of Facebooks VoxPopuli-sv base model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 5.62%, WER for Common Voice test set is 19.15%.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n",
"# Wav2vec 2.0 base-voxpopuli-sv-swedish\nFinetuned version of Facebooks VoxPopuli-sv base model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 5.62%, WER for Common Voice test set is 19.15%.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
59,
104,
20
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n# Wav2vec 2.0 base-voxpopuli-sv-swedish\nFinetuned version of Facebooks VoxPopuli-sv base model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 5.62%, WER for Common Voice test set is 19.15%.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
-0.17358310520648956,
-0.06745722889900208,
-0.0013424053322523832,
-0.08678203076124191,
0.01895415037870407,
-0.09596389532089233,
0.04930689558386803,
0.04081876948475838,
0.054502710700035095,
0.034620173275470734,
0.06434313952922821,
-0.07952842861413956,
0.05260620638728142,
0.11074846237897873,
-0.06758230179548264,
-0.15179547667503357,
0.053450509905815125,
0.003591344691812992,
0.11746787279844284,
0.07228264212608337,
0.08291198313236237,
-0.03584675490856171,
-0.004285687115043402,
0.10307805985212326,
-0.06335542351007462,
0.03345246985554695,
0.08426815271377563,
-0.07803091406822205,
0.13071437180042267,
0.05915648490190506,
-0.03629879653453827,
0.05004940181970596,
0.028575969859957695,
-0.11856124550104141,
0.018917934969067574,
0.018781403079628944,
0.05180631950497627,
-0.023409787565469742,
0.05450303480029106,
0.01751982606947422,
0.14899751543998718,
0.1023406982421875,
-0.09416291862726212,
0.08628322929143906,
-0.015041741542518139,
-0.15067027509212494,
-0.007043592631816864,
-0.007545836269855499,
0.07566067576408386,
0.10101963579654694,
-0.09742403775453568,
0.08265767991542816,
-0.09952662885189056,
0.11628121882677078,
0.06985130906105042,
-0.2530864477157593,
-0.02416558936238289,
0.017780888825654984,
0.09112158417701721,
0.06610377877950668,
-0.016131574288010597,
0.09353264421224594,
0.1082419753074646,
0.04750989377498627,
-0.08984970301389694,
-0.04916200414299965,
-0.1439792960882187,
-0.06873224675655365,
-0.15374886989593506,
0.0396924763917923,
0.2752104103565216,
0.07236456125974655,
-0.10219185054302216,
-0.03754844143986702,
-0.027903135865926743,
0.06269746273756027,
0.01280240062624216,
-0.09734325110912323,
-0.06967935711145401,
0.02298106625676155,
-0.03165409341454506,
-0.054757259786129,
-0.10915736854076385,
-0.13662591576576233,
0.011232669465243816,
0.03217189759016037,
0.009031802415847778,
0.05424453318119049,
-0.05346139892935753,
-0.014669140800833702,
-0.21252097189426422,
-0.04284912347793579,
-0.0019033810822293162,
-0.049550142139196396,
-0.10967610031366348,
0.011896011419594288,
-0.1095171719789505,
-0.24003438651561737,
0.06197637692093849,
-0.021490182727575302,
-0.0026683614123612642,
0.004349248483777046,
-0.07786032557487488,
0.027825593948364258,
0.028808841481804848,
0.08811454474925995,
-0.07614875584840775,
-0.04964831471443176,
0.021272243931889534,
-0.0628281682729721,
0.015404165722429752,
-0.002120208228006959,
-0.05426483973860741,
-0.08469739556312561,
0.05705397203564644,
0.006147562991827726,
-0.0482802540063858,
-0.05875258892774582,
-0.020864535123109818,
-0.037650685757398605,
-0.0034803319722414017,
-0.04663137346506119,
-0.028644289821386337,
0.05348842591047287,
0.03584785386919975,
0.1845111846923828,
0.011099671944975853,
0.023644257336854935,
-0.10236343741416931,
-0.05539822205901146,
0.05010967701673508,
-0.020578326657414436,
0.037966202944517136,
-0.07738672941923141,
0.044623203575611115,
-0.06477463990449905,
0.004350465256720781,
-0.10792956501245499,
-0.09149256348609924,
-0.09778182208538055,
-0.03830506652593613,
-0.017893992364406586,
-0.05322250351309776,
-0.08377572149038315,
-0.02083582617342472,
-0.004982892423868179,
-0.09349306672811508,
0.015099840238690376,
-0.05803622677922249,
0.03885558620095253,
0.05600438266992569,
0.08318798243999481,
-0.021751385182142258,
0.051082514226436615,
-0.04392901435494423,
-0.03003196232020855,
-0.014460883103311062,
0.1383078545331955,
-0.0842699185013771,
-0.06086038425564766,
-0.0725533589720726,
-0.08897803723812103,
-0.16365091502666473,
0.055779311805963516,
0.06701461970806122,
0.10480917990207672,
-0.2778607904911041,
-0.10855035483837128,
0.13092045485973358,
-0.16484585404396057,
-0.012113045901060104,
0.270860493183136,
0.06350789964199066,
-0.019451621919870377,
0.16613884270191193,
0.29320186376571655,
0.08271138370037079,
-0.21427789330482483,
0.007485243957489729,
0.05948910862207413,
-0.0678367167711258,
-0.10631068050861359,
0.041031330823898315,
-0.06981275230646133,
-0.035995859652757645,
0.017288407310843468,
0.046468380838632584,
0.0695635974407196,
-0.029666941612958908,
-0.026240788400173187,
-0.018721621483564377,
-0.10807527601718903,
0.08658014237880707,
0.046706072986125946,
0.003871122607961297,
-0.11067371070384979,
-0.06680169701576233,
0.0061276257038116455,
0.07116631418466568,
-0.12516722083091736,
0.06576783210039139,
-0.08284740895032883,
0.15322484076023102,
-0.09149938076734543,
-0.013298333622515202,
-0.09301510453224182,
0.1524549126625061,
-0.03501807525753975,
0.11112863570451736,
0.06995360553264618,
0.21769671142101288,
0.05325169116258621,
-0.015154704451560974,
-0.044290050864219666,
0.029459284618496895,
0.02757111005485058,
-0.015901021659374237,
-0.0049876198172569275,
-0.06999240815639496,
-0.03565673530101776,
-0.06330695748329163,
0.041229721158742905,
-0.1106162890791893,
-0.05806649103760719,
0.07742371410131454,
0.06908626854419708,
-0.033159416168928146,
-0.020032834261655807,
0.0761912539601326,
0.06685341894626617,
0.04250518977642059,
0.024701828137040138,
0.00560435326769948,
0.02496691793203354,
-0.024507660418748856,
0.14783510565757751,
-0.026579206809401512,
-0.022146394476294518,
0.09665598720312119,
-0.06522632390260696,
-0.009779401123523712,
0.12662120163440704,
-0.013374250382184982,
-0.014546303078532219,
-0.0631430447101593,
-0.07494889199733734,
0.20764301717281342,
0.005593876354396343,
0.04244811832904816,
-0.11059588938951492,
0.02199849858880043,
0.06155897676944733,
-0.11429519951343536,
0.027528561651706696,
0.040941301733255386,
-0.014727319590747356,
-0.025059018284082413,
-0.032631371170282364,
-0.054477233439683914,
-0.10215554386377335,
0.24045322835445404,
-0.04858279228210449,
-0.10135387629270554,
0.05191850662231445,
-0.007248520385473967,
-0.04945634678006172,
0.10532441735267639,
-0.29292407631874084,
-0.029459111392498016,
0.017754757776856422,
0.013650123961269855,
0.09324406832456589,
-0.07402218878269196,
0.06386395543813705,
-0.024198636412620544,
-0.13952749967575073,
-0.06567875295877457,
0.08151508122682571,
-0.03830437734723091,
0.010630077682435513,
-0.09843282401561737,
-0.16742345690727234,
-0.0013778044376522303,
-0.02491009049117565,
-0.18061363697052002,
0.05606149509549141,
-0.02793799340724945,
-0.2131306231021881,
-0.1120816096663475,
0.06408178806304932,
-0.05897298827767372,
0.0423976369202137,
0.0993277058005333,
-0.12586385011672974,
-0.024015096947550774,
-0.003303365083411336,
0.07355707883834839,
0.03745045140385628,
0.036299414932727814,
0.019096268340945244,
-0.03885182365775108,
0.06384006142616272,
-0.0821661576628685,
-0.005166008602827787,
-0.1146831288933754,
0.0004746612685266882,
-0.014502943493425846,
-0.054609619081020355,
0.03515616059303284,
0.20264171063899994,
0.007094735745340586,
0.02885308675467968,
-0.01608765311539173,
0.19371572136878967,
-0.044788964092731476,
0.015220009721815586,
0.21042779088020325,
0.030293185263872147,
-0.04500488564372063,
0.0694819912314415,
-0.017318205907940865,
-0.056758079677820206,
-0.007501722779124975,
0.003010684158653021,
-0.054006945341825485,
-0.23294763267040253,
-0.15481610596179962,
-0.0684027150273323,
-0.02377227693796158,
-0.07516691833734512,
-0.005766994785517454,
0.05090312659740448,
0.0028228943701833487,
-0.040579210966825485,
-0.07461106777191162,
0.03422778844833374,
-0.042256567627191544,
0.21206994354724884,
-0.04846550524234772,
0.10419994592666626,
-0.05298863723874092,
-0.029022665694355965,
0.06978347897529602,
-0.07556191831827164,
0.07295538485050201,
0.06975894421339035,
0.007546341046690941,
0.04356251284480095,
0.12468770146369934,
0.11837947368621826,
0.05148130655288696,
-0.04416562616825104,
-0.031138792634010315,
0.022107258439064026,
-0.05547802522778511,
-0.06383546441793442,
0.057101231068372726,
0.19213467836380005,
-0.10781386494636536,
-0.03883359953761101,
0.03563423454761505,
0.022174665704369545,
0.18657399713993073,
0.2213829904794693,
-0.1306559443473816,
-0.09158658236265182,
-0.055972397327423096,
-0.08525046706199646,
-0.0213320329785347,
0.07398293167352676,
0.19354300200939178,
-0.08208566904067993,
0.10218848288059235,
0.02022690698504448,
0.0578681044280529,
0.0455862320959568,
0.08495951443910599,
-0.10642122477293015,
0.023456159979104996,
0.009328290820121765,
0.06619445234537125,
-0.1364491879940033,
0.1415538638830185,
0.0012254657922312617,
0.1252005696296692,
-0.052995868027210236,
-0.03376786783337593,
-0.026959797367453575,
-0.02440083958208561,
0.09906944632530212,
0.020628534257411957,
-0.011729100719094276,
0.061835628002882004,
-0.061902184039354324,
0.03555811569094658,
0.009766483679413795,
0.16254892945289612,
-0.0004067485861014575,
0.04256463050842285,
-0.017120592296123505,
0.008159519173204899,
-0.013253032229840755,
-0.16359496116638184,
0.04245750233530998,
-0.043173737823963165,
0.20322974026203156,
0.11025642603635788,
-0.0013541344087570906,
-0.08024563640356064,
-0.17126873135566711,
0.12096155434846878,
-0.01588200405240059,
-0.0705939382314682,
-0.02945329248905182,
-0.029194345697760582,
0.12065134942531586,
-0.01950720325112343,
0.01751047559082508,
0.09189965575933456,
0.09885448962450027,
-0.05045101046562195,
-0.024433976039290428,
0.02579842135310173,
-0.08192338049411774,
-0.06727446615695953,
0.035973187536001205,
0.26267704367637634,
0.031691212207078934,
0.06201637536287308,
0.0958598330616951,
-0.03823532909154892,
0.021429354324936867,
-0.061116136610507965,
0.06402689218521118,
-0.03333253785967827,
-0.21985715627670288,
0.0280015729367733,
0.12288054078817368,
-0.13957230746746063,
-0.08879030495882034,
0.02096536010503769,
0.15664508938789368,
0.0569421648979187,
-0.0474894754588604,
0.13072088360786438,
0.2674850821495056,
-0.02350311353802681,
-0.19001160562038422,
-0.045552123337984085,
0.10319962352514267,
0.12446506321430206,
-0.08591149747371674,
-0.045241761952638626,
0.09969700872898102,
0.006371915340423584,
-0.046694155782461166,
-0.07323870062828064,
-0.10920493304729462,
-0.1309201866388321,
0.19047623872756958,
-0.11475826054811478,
0.31449323892593384,
0.03558506816625595,
-0.07284514605998993,
-0.04568517580628395,
0.06258879601955414,
-0.03677576780319214,
-0.14852318167686462,
0.0950869470834732,
0.029783716425299644,
0.03996405005455017,
0.04674133285880089,
-0.0033878397662192583,
0.05506721884012222,
0.07602175325155258,
-0.04531998932361603,
0.04366709291934967,
0.20117194950580597,
0.011721093207597733,
0.05703812465071678,
0.1812186986207962,
0.00015170570986811072,
0.02113785594701767,
-0.031848955899477005,
-0.10448584705591202,
-0.09963914006948471,
0.10726942121982574,
0.07506824284791946,
-0.013681601732969284,
0.03320480138063431,
-0.05545559152960777,
-0.036000873893499374,
0.03399377316236496,
-0.06518132984638214,
-0.15491323173046112,
0.04066954925656319,
0.23735399544239044,
0.18700483441352844,
-0.1830694079399109,
-0.06260154396295547,
0.018437853083014488,
-0.07448671013116837,
0.08464502543210983,
0.053462546318769455,
0.03615133464336395,
0.07097716629505157,
0.04458896070718765,
0.06303901970386505,
-0.02608123980462551,
-0.16833354532718658,
0.07034079730510712,
0.04230905696749687,
-0.08018858730792999,
-0.12994520366191864,
-0.08212178200483322,
-0.16461266577243805,
-0.019113454967737198,
0.1126195415854454,
0.18428932130336761,
-0.08166596293449402,
0.02683326229453087,
-0.06498252600431442,
-0.004290709272027016,
-0.14871235191822052,
0.23881720006465912,
0.07305525243282318,
0.05808102339506149,
-0.14341461658477783,
0.05813276395201683,
-0.04972570389509201,
0.03821328654885292,
0.08926640450954437,
-0.040327753871679306,
-0.04904896765947342,
-0.039395514875650406,
-0.0768418088555336,
0.011455093510448933,
0.07014448940753937,
-0.17290069162845612,
-0.04788750410079956,
-0.16278991103172302,
0.020510876551270485,
0.14065758883953094,
0.03865506127476692,
0.035103943198919296,
-0.09040490537881851,
-0.07920289039611816,
-0.0639551654458046,
0.02775745652616024,
0.13800005614757538,
-0.015013035386800766,
-0.15102460980415344,
0.09507725387811661,
-0.000085355197370518,
0.06604255735874176,
-0.07694923132658005,
-0.0668935552239418,
-0.008032080717384815,
0.085446797311306,
-0.2026364803314209,
-0.027391904965043068,
-0.04001432657241821,
-0.009455679915845394,
0.012134147807955742,
-0.06762781739234924,
-0.034926846623420715,
0.0827510803937912,
-0.07161127775907516,
0.10108219087123871,
-0.010384568944573402,
0.0008476734510622919,
-0.1026320680975914,
0.06765974313020706,
-0.003498244797810912,
-0.03158990666270256,
0.047138918191194534,
0.13632236421108246,
-0.10408346354961395,
0.13262483477592468,
-0.17718352377414703,
-0.10042555630207062,
0.13115575909614563,
0.07521416246891022,
-0.018938293680548668,
-0.038144562393426895,
0.025979140773415565,
0.17644064128398895,
0.07534315437078476,
-0.0033593957778066397,
0.010893200524151325,
-0.004547412507236004,
0.01286012027412653,
-0.06858088821172714,
-0.026637449860572815,
-0.012517575174570084,
-0.013007691130042076,
0.06649795174598694,
0.1718287318944931,
0.14537547528743744,
-0.11317452788352966,
0.03276212140917778,
-0.11944712698459625,
0.029521407559514046,
-0.06526422500610352,
0.005886847618967295,
-0.06456387042999268,
-0.026875227689743042,
0.08404602110385895,
0.000033930340578081086,
0.09424111992120743,
0.01644400879740715,
0.06358368694782257,
-0.04741855338215828,
-0.061978988349437714,
0.015849631279706955,
-0.01939491555094719,
0.17303290963172913,
0.04082991182804108,
0.02044108882546425,
-0.07675383239984512,
-0.02038067765533924,
0.0872611477971077,
0.15828821063041687,
0.060852404683828354,
0.06120585277676582,
-0.0030515226535499096,
0.12580440938472748,
0.10616274178028107,
-0.012888013385236263,
-0.0001659520057728514,
0.0058056665584445,
-0.09598292410373688,
0.05961286276578903,
-0.005590698681771755,
0.04384244605898857,
0.11785946786403656,
-0.11187218874692917,
0.02863599732518196,
0.0452658049762249,
-0.0907275602221489,
-0.1915101408958435,
-0.15168292820453644,
-0.1027851402759552,
-0.20134077966213226,
0.04046500846743584,
-0.10464676469564438,
0.01264019962400198,
0.0033929976634681225,
0.04212949424982071,
-0.05514153093099594,
0.12793341279029846,
-0.040805112570524216,
-0.09329554438591003,
0.15982502698898315,
-0.08837176114320755,
-0.009098217822611332,
0.011855483055114746,
0.015986667945981026,
0.1705666184425354,
0.04182962700724602,
0.024328483268618584,
0.016497137024998665,
-0.05092849209904671,
0.023122036829590797,
-0.018520142883062363,
-0.05502043291926384,
-0.023975981399416924,
-0.02836613915860653,
0.05790295451879501,
0.1659504473209381,
0.12435927242040634,
-0.08849675953388214,
0.007092044223099947,
0.03382733464241028,
-0.08003829419612885,
-0.1437237560749054,
-0.16270941495895386,
0.11891122907400131,
0.011664042249321938,
0.08678024262189865,
-0.02063189633190632,
-0.06769726425409317,
0.03806554153561592,
0.19586974382400513,
0.12352171540260315,
0.06949666887521744,
0.0229982640594244,
-0.07391577214002609,
-0.018289977684617043,
-0.037435129284858704,
0.03892906382679939,
0.07114872336387634,
0.22689084708690643,
0.015921374782919884,
0.05634455010294914,
-0.03414777293801308,
-0.10206562280654907,
-0.0634869858622551,
-0.010157093405723572,
-0.03458164259791374,
-0.11466432362794876,
0.026479115709662437,
0.17653918266296387,
-0.1257505863904953,
-0.060019735246896744,
-0.15081924200057983,
-0.023664167150855064,
-0.06872814893722534,
-0.013824504800140858,
-0.016949644312262535,
0.10926734656095505,
0.039737600833177567,
-0.09952409565448761,
0.04602997750043869,
0.0692562684416771,
-0.02960725501179695,
-0.07418683916330338,
-0.06640782952308655,
0.018588852137327194,
-0.08564828336238861,
-0.06144353747367859,
0.031812045723199844,
0.1448470950126648,
0.00275461096316576,
0.08520835638046265,
-0.004245307762175798,
0.17175491154193878,
-0.05960917845368385,
-0.13149480521678925,
0.05220557376742363,
0.14173632860183716,
-0.006768425926566124,
0.1562267243862152,
0.010718378238379955,
-0.1049419641494751,
-0.02786296233534813,
-0.057211216539144516,
0.02173563465476036,
-0.08971884846687317,
0.06915321201086044,
-0.06647579371929169,
0.052263904362916946,
0.0187882911413908,
-0.07057125121355057,
-0.025706559419631958,
-0.045284271240234375,
0.06243458017706871,
0.02156798355281353,
-0.07409407943487167,
0.001190284499898553,
-0.23109886050224304,
-0.03365776315331459,
-0.00459396094083786,
-0.03052586503326893,
-0.08038575947284698,
-0.008918337523937225,
-0.05387653782963753,
-0.0052015045657753944,
0.01892714761197567,
0.03453773632645607,
0.0543980747461319,
-0.0014896274078637362,
0.01735307089984417,
0.12772022187709808,
0.04916737973690033,
0.07212314009666443,
-0.14543509483337402,
-0.1148165911436081
] |
null | null | transformers | # Wav2vec 2.0 large-voxpopuli-sv-swedish
**PLEASE NOTE that [this](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) model performs better and has a less restrictive license.**
Additionally pretrained and finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.95%**. WER for Common Voice test set is **10.99%** directly and **7.82%** with a 4-gram language model.
When using this model, make sure that your speech input is sampled at 16kHz.
## Training
This model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
``` | {"language": "sv-SE", "license": "cc-by-nc-4.0", "tags": ["audio", "automatic-speech-recognition", "speech", "voxpopuli"], "datasets": ["common_voice", "NST Swedish ASR Database"], "metrics": ["wer", "cer"], "model-index": [{"name": "Wav2vec 2.0 large VoxPopuli-sv swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 10.994764, "name": "Test WER"}, {"type": "cer", "value": 3.946846, "name": "Test CER"}]}]}]} | automatic-speech-recognition | KBLab/wav2vec2-large-voxpopuli-sv-swedish | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"voxpopuli",
"license:cc-by-nc-4.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv-SE"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #model-index #endpoints_compatible #region-us
| # Wav2vec 2.0 large-voxpopuli-sv-swedish
PLEASE NOTE that this model performs better and has a less restrictive license.
Additionally pretrained and finetuned version of Facebooks VoxPopuli-sv large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 3.95%. WER for Common Voice test set is 10.99% directly and 7.82% with a 4-gram language model.
When using this model, make sure that your speech input is sampled at 16kHz.
## Training
This model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].
## Usage
The model can be used directly (without a language model) as follows:
| [
"# Wav2vec 2.0 large-voxpopuli-sv-swedish\n\nPLEASE NOTE that this model performs better and has a less restrictive license.\n\n\nAdditionally pretrained and finetuned version of Facebooks VoxPopuli-sv large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 3.95%. WER for Common Voice test set is 10.99% directly and 7.82% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Training\nThis model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].",
"## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #model-index #endpoints_compatible #region-us \n",
"# Wav2vec 2.0 large-voxpopuli-sv-swedish\n\nPLEASE NOTE that this model performs better and has a less restrictive license.\n\n\nAdditionally pretrained and finetuned version of Facebooks VoxPopuli-sv large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 3.95%. WER for Common Voice test set is 10.99% directly and 7.82% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Training\nThis model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].",
"## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
66,
145,
105,
20
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #voxpopuli #license-cc-by-nc-4.0 #model-index #endpoints_compatible #region-us \n# Wav2vec 2.0 large-voxpopuli-sv-swedish\n\nPLEASE NOTE that this model performs better and has a less restrictive license.\n\n\nAdditionally pretrained and finetuned version of Facebooks VoxPopuli-sv large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 3.95%. WER for Common Voice test set is 10.99% directly and 7.82% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Training\nThis model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed].## Usage\nThe model can be used directly (without a language model) as follows:"
] | [
-0.08723034709692001,
0.08451341092586517,
-0.0022502217907458544,
-0.006915040779858828,
0.06182077154517174,
0.006005958653986454,
0.00345283723436296,
0.08656564354896545,
-0.010233966633677483,
0.09422232210636139,
0.04441381245851517,
-0.023223187774419785,
0.0561002641916275,
0.011316370218992233,
0.05670784413814545,
-0.17767998576164246,
0.1020837053656578,
-0.10317736864089966,
0.15079091489315033,
0.024062924087047577,
0.08844513446092606,
-0.0016578460345044732,
-0.007744699250906706,
0.014554773457348347,
0.022199220955371857,
0.02553975209593773,
0.04064261168241501,
0.016010476276278496,
0.12817510962486267,
0.026306821033358574,
-0.012609211727976799,
0.01810487173497677,
0.03411639481782913,
-0.19901016354560852,
0.01207155641168356,
0.07571114599704742,
0.0268463846296072,
-0.0022209526505321264,
0.06432144343852997,
0.09491556882858276,
0.18833358585834503,
-0.04711838811635971,
-0.027291910722851753,
0.055315084755420685,
-0.02827187068760395,
-0.13869540393352509,
-0.12403497844934464,
0.042223114520311356,
0.058077700436115265,
0.10903153568506241,
-0.08791299164295197,
0.1485631912946701,
-0.07143819332122803,
0.07223586738109589,
0.1012849509716034,
-0.19169746339321136,
0.004280828405171633,
0.07828852534294128,
0.02515282854437828,
0.03828715533018112,
-0.03871634602546692,
0.051078811287879944,
0.0806005671620369,
0.0029274665284901857,
-0.11292239278554916,
-0.018520845100283623,
-0.14854733645915985,
-0.07428563386201859,
-0.09063515812158585,
-0.030593430623412132,
0.12695349752902985,
0.04407945275306702,
-0.1135154739022255,
-0.11277804523706436,
0.013052398338913918,
-0.09347052127122879,
0.03010929375886917,
-0.07265471667051315,
0.0003395381208974868,
0.032567352056503296,
0.01726626604795456,
-0.06247030943632126,
-0.09486361593008041,
-0.02098163589835167,
0.021484622731804848,
0.024238811805844307,
0.035816989839076996,
0.014786063693463802,
0.05676399543881416,
0.057267043739557266,
-0.29932814836502075,
-0.030972028151154518,
-0.04257168620824814,
-0.05381537973880768,
-0.15003235638141632,
-0.031011167913675308,
-0.0932740792632103,
-0.23045878112316132,
0.02098720893263817,
0.10384625196456909,
-0.05843088775873184,
0.06803030520677567,
-0.0884062647819519,
-0.001153445104137063,
0.05605887994170189,
0.08121225237846375,
-0.08116219192743301,
-0.016972243785858154,
0.004675045609474182,
0.002954590367153287,
0.0763283520936966,
-0.037152908742427826,
-0.021893491968512535,
-0.03772064298391342,
0.13920475542545319,
0.05000266060233116,
-0.006148523185402155,
-0.013119368813931942,
-0.07360909879207611,
0.008375626988708973,
-0.009042738936841488,
-0.1019766703248024,
0.029670629650354385,
-0.0139198312535882,
0.04227028787136078,
0.062192656099796295,
0.045603979378938675,
0.05600900202989578,
-0.10989943146705627,
0.07149790227413177,
0.002854306250810623,
-0.049854692071676254,
0.0025762678124010563,
-0.058970578014850616,
0.08568813651800156,
-0.09843101352453232,
-0.03000539168715477,
-0.06544455140829086,
-0.0650753304362297,
-0.08253337442874908,
-0.0019001886248588562,
-0.020616818219423294,
-0.0661439374089241,
-0.0524229034781456,
-0.0781978890299797,
0.00567232258617878,
-0.04282236099243164,
0.0046857609413564205,
-0.03295259177684784,
-0.0006970884278416634,
-0.10019158571958542,
0.04476054385304451,
-0.006889228709042072,
0.007313784211874008,
-0.07558631896972656,
-0.005532290320843458,
-0.036276787519454956,
0.12200840562582016,
-0.15648117661476135,
-0.15391069650650024,
-0.04589647427201271,
-0.023821713402867317,
-0.13541525602340698,
0.03842689096927643,
0.12131791561841965,
0.122565858066082,
-0.2976532578468323,
-0.043108902871608734,
0.12668272852897644,
-0.1765781044960022,
0.06693509966135025,
0.19583803415298462,
0.021466873586177826,
0.00659464905038476,
0.12591524422168732,
0.15994113683700562,
0.11394291371107101,
-0.17709030210971832,
-0.13095298409461975,
0.07073372602462769,
-0.06036364659667015,
0.13127531111240387,
-0.008030877448618412,
-0.10922517627477646,
-0.012764398008584976,
0.025052597746253014,
0.03542066738009453,
-0.040473468601703644,
0.008840340189635754,
-0.059451889246702194,
-0.047030672430992126,
-0.01785857602953911,
0.07162012904882431,
0.056224431842565536,
-0.06434024125337601,
-0.06707482784986496,
-0.1379588395357132,
-0.04785676673054695,
0.10818269848823547,
-0.0529337041079998,
0.09472406655550003,
-0.027239322662353516,
0.023930974304676056,
-0.0324583426117897,
-0.006889829877763987,
-0.14989890158176422,
-0.005453483201563358,
0.014651424251496792,
-0.06177784129977226,
0.08741610497236252,
0.11763366311788559,
0.027999652549624443,
0.017832769080996513,
-0.04681887850165367,
0.020895089954137802,
-0.05604420602321625,
-0.0014460847014561296,
-0.04030423238873482,
-0.1492864191532135,
-0.028727112337946892,
-0.03240975737571716,
0.09460053592920303,
-0.08496616780757904,
-0.06781017780303955,
0.08086774498224258,
0.09874362498521805,
-0.013604391366243362,
-0.09894918650388718,
0.011042146943509579,
0.04178353026509285,
0.028341174125671387,
-0.03104478493332863,
-0.00895268376916647,
0.012403667904436588,
-0.06667671352624893,
0.07753269374370575,
-0.10096772760152817,
-0.2119247317314148,
0.05353621393442154,
0.09004191309213638,
-0.07664333283901215,
0.1317998319864273,
-0.024823414161801338,
-0.039121028035879135,
-0.08269551396369934,
-0.103056401014328,
0.16218701004981995,
0.060370467603206635,
0.019669797271490097,
-0.09234800189733505,
0.00560867739841342,
0.021666904911398888,
-0.10201728343963623,
-0.04001372680068016,
0.05539677292108536,
-0.028989870101213455,
-0.04760674014687538,
-0.0163770392537117,
-0.1207575649023056,
-0.07453516125679016,
0.2037229984998703,
-0.01769016496837139,
-0.09487176686525345,
0.007263110484927893,
-0.02886320650577545,
0.023585554212331772,
0.08690764009952545,
-0.08876365423202515,
0.06766850501298904,
0.027095042169094086,
0.039628177881240845,
0.0747758075594902,
-0.0754612535238266,
0.032114025205373764,
-0.013087870553135872,
-0.08094757795333862,
-0.07053473591804504,
0.06968118995428085,
-0.024889934808015823,
0.03255285695195198,
-0.05514605715870857,
0.006180922035127878,
-0.004799013026058674,
-0.036554086953401566,
-0.14080692827701569,
0.07371938973665237,
-0.11326002329587936,
-0.23732365667819977,
-0.21480756998062134,
0.09750287234783173,
-0.0785519927740097,
-0.005601570475846529,
0.07114400714635849,
-0.16012819111347198,
-0.07853959500789642,
-0.08410731703042984,
0.036427948623895645,
-0.014682530425488949,
-0.03281688317656517,
-0.03650069236755371,
-0.018234288319945335,
0.061896175146102905,
-0.1175626814365387,
0.017495211213827133,
-0.05286485701799393,
-0.04504738003015518,
-0.019124798476696014,
0.024313142523169518,
0.04179062694311142,
0.14491620659828186,
0.02935752272605896,
-0.036691825836896896,
0.018130861222743988,
0.18121424317359924,
-0.0734281986951828,
0.06254720687866211,
0.08111413568258286,
-0.04912833869457245,
0.05627072602510452,
0.1081683486700058,
0.020194299519062042,
-0.050571687519550323,
-0.008204423822462559,
0.09340018779039383,
-0.04648653045296669,
-0.24321585893630981,
-0.10117344558238983,
-0.030569957569241524,
-0.03590545430779457,
-0.008110150694847107,
0.0175754614174366,
0.03821966052055359,
0.010296616703271866,
-0.06080484762787819,
-0.031442929059267044,
0.0543028861284256,
0.013453571125864983,
0.09378957748413086,
-0.029030339792370796,
0.0512407086789608,
-0.03822575882077217,
0.03922848775982857,
0.10713572055101395,
-0.03625538945198059,
0.13881948590278625,
-0.0008436951902695,
0.10219614207744598,
0.09470216929912567,
0.13359248638153076,
-0.007027020212262869,
0.0027736907359212637,
-0.0012465176405385137,
-0.02350263111293316,
0.02662150003015995,
-0.06439319252967834,
-0.08786208182573318,
0.006248476915061474,
0.08104261755943298,
-0.05635857209563255,
-0.033579666167497635,
0.06906827539205551,
-0.009428285993635654,
0.1503397822380066,
0.07753369212150574,
-0.03932012990117073,
-0.057485997676849365,
-0.021839264780282974,
-0.09173500537872314,
-0.03881685808300972,
-0.00857803225517273,
0.11423540115356445,
-0.13475069403648376,
0.10599794238805771,
-0.025546163320541382,
0.050914015620946884,
-0.04229980707168579,
0.03912065178155899,
-0.07510921359062195,
0.07532311230897903,
0.016097556799650192,
0.10821174085140228,
-0.09349311888217926,
0.0812213346362114,
0.015166941098868847,
0.15781886875629425,
-0.06350945681333542,
0.022806663066148758,
0.0005360179347917438,
-0.011311664246022701,
0.14347198605537415,
0.04561135545372963,
-0.12844261527061462,
-0.03645437955856323,
-0.054465167224407196,
-0.0014809247804805636,
0.082737997174263,
0.09068964421749115,
0.03939303383231163,
-0.005570916458964348,
0.04147068411111832,
0.0057868147268891335,
0.01366814412176609,
-0.19784630835056305,
-0.13372960686683655,
0.05239381268620491,
0.07850029319524765,
0.02821839228272438,
-0.0551619790494442,
-0.07868886739015579,
-0.14752674102783203,
0.16082212328910828,
-0.05354340374469757,
-0.03852471709251404,
-0.07981625944375992,
0.018196796998381615,
0.21138979494571686,
-0.022559909150004387,
-0.029251575469970703,
0.07917532324790955,
0.13336417078971863,
-0.0850834995508194,
-0.04121948778629303,
-0.05923769623041153,
-0.0612979456782341,
-0.1358262598514557,
0.015397874638438225,
0.19848637282848358,
0.09504813700914383,
0.051630593836307526,
0.033634789288043976,
0.02038441225886345,
0.07102319598197937,
-0.1161455512046814,
-0.0025701019912958145,
0.13277512788772583,
-0.1183122918009758,
0.08166919648647308,
0.04448939114809036,
-0.09008980542421341,
-0.0794745460152626,
-0.024021631106734276,
0.1082344725728035,
0.2056480050086975,
-0.05892321839928627,
0.19653873145580292,
0.15349730849266052,
-0.11019113659858704,
-0.2348136305809021,
-0.04551597312092781,
0.1319027543067932,
0.03832223638892174,
0.05292145162820816,
-0.060849860310554504,
0.07160539925098419,
0.07326393574476242,
-0.017867406830191612,
-0.10828747600317001,
-0.21513985097408295,
-0.14013183116912842,
0.09847082942724228,
-0.057952407747507095,
0.12574544548988342,
0.03857702016830444,
-0.05236203968524933,
-0.056827276945114136,
0.01527944952249527,
0.04558326303958893,
-0.12718051671981812,
0.09511822462081909,
0.06262391805648804,
-0.0007177584338933229,
0.08743048459291458,
-0.024528520181775093,
0.15464074909687042,
0.05296114832162857,
-0.0007214393117465079,
-0.012058254331350327,
0.1563137173652649,
0.03763045743107796,
-0.013096865266561508,
0.16700637340545654,
0.06135869026184082,
0.009624360129237175,
-0.05695435777306557,
-0.044773463159799576,
-0.07797510176897049,
0.09018591046333313,
-0.044070567935705185,
-0.0019441595068201423,
-0.028945250436663628,
0.04323233664035797,
0.07914526015520096,
-0.000936463417019695,
0.01607610285282135,
-0.10907218605279922,
0.033540815114974976,
0.1806580275297165,
0.19047918915748596,
-0.03155847266316414,
-0.11968708783388138,
0.060929082334041595,
-0.06454773992300034,
0.04377323389053345,
0.05547567084431648,
0.03332030028104782,
0.03833702579140663,
0.009188609197735786,
0.05132296308875084,
-0.04490495100617409,
-0.20778144896030426,
0.021089475601911545,
0.03682924807071686,
-0.0680941566824913,
-0.12244026362895966,
-0.020133525133132935,
-0.08925765007734299,
-0.07174467295408249,
-0.02523602917790413,
0.1713705062866211,
-0.08003047108650208,
0.024169081822037697,
0.012331959791481495,
0.04412253573536873,
-0.06238783895969391,
0.16118517518043518,
0.033534929156303406,
0.05556973069906235,
-0.09336015582084656,
0.185404971241951,
0.02650490216910839,
-0.0806589126586914,
0.14422574639320374,
-0.008510862477123737,
-0.06292203068733215,
-0.04156222194433212,
-0.06751028448343277,
0.08913504332304001,
0.03670554235577583,
-0.12779070436954498,
0.036313727498054504,
-0.027885884046554565,
0.011734497733414173,
-0.031549062579870224,
0.0022746885661035776,
0.04814722388982773,
-0.08641363680362701,
-0.02169136330485344,
-0.10885003209114075,
0.04041549190878868,
0.14411240816116333,
0.04073156788945198,
-0.09794365614652634,
0.06438176333904266,
-0.016126152127981186,
0.03335164114832878,
-0.03539561107754707,
-0.020940490067005157,
-0.015840178355574608,
-0.01571451500058174,
-0.04261282831430435,
0.02508743666112423,
-0.016892174258828163,
-0.01142533216625452,
0.016314959153532982,
-0.01459766086190939,
0.002448196755722165,
0.06701486557722092,
-0.038518570363521576,
-0.032186754047870636,
-0.04169924929738045,
0.0070728217251598835,
-0.10234531760215759,
0.057561058551073074,
0.03660889342427254,
-0.04897788539528847,
0.03585653007030487,
0.014338487759232521,
-0.025885984301567078,
0.12861549854278564,
-0.12308912724256516,
-0.005755534395575523,
0.019852112978696823,
0.019946150481700897,
-0.04023416340351105,
-0.07182768732309341,
-0.029672525823116302,
0.050531789660453796,
0.044348664581775665,
0.002546950476244092,
-0.002477897796779871,
-0.05778161436319351,
-0.024891484528779984,
0.007061612326651812,
-0.007933750748634338,
-0.04395516589283943,
0.06240685284137726,
0.0963292047381401,
0.05088990181684494,
0.17671100795269012,
-0.08126319199800491,
0.00540798157453537,
-0.11030686646699905,
0.014820687472820282,
-0.019079117104411125,
0.019896935671567917,
-0.030966533347964287,
-0.006785273551940918,
0.0656002089381218,
-0.03238416463136673,
0.07611031085252762,
-0.0338822640478611,
0.04347613826394081,
-0.007174639031291008,
-0.0019160317024216056,
-0.0964684709906578,
-0.010795621201395988,
0.1239255964756012,
0.030872579663991928,
-0.0056872242130339146,
-0.12472619116306305,
-0.08026863634586334,
-0.03069029562175274,
-0.023556726053357124,
0.08488412201404572,
0.04084005951881409,
0.07694479823112488,
0.10001055151224136,
0.02751351147890091,
-0.04347074031829834,
0.0196621622890234,
0.16246722638607025,
-0.09192517399787903,
0.05609814450144768,
0.022315803915262222,
0.05448306351900101,
0.08801624178886414,
-0.1481238603591919,
0.14078685641288757,
0.03467579931020737,
-0.0936976745724678,
-0.14807859063148499,
-0.2649012506008148,
-0.05046975612640381,
-0.09661932289600372,
0.05557938665151596,
-0.1251641809940338,
0.10046444833278656,
0.07647651433944702,
0.004416006617248058,
-0.027001993730664253,
0.14497892558574677,
-0.19466683268547058,
-0.10640932619571686,
0.09009457379579544,
-0.04831327497959137,
-0.012564441189169884,
0.054281774908304214,
-0.0033394498750567436,
0.1384788602590561,
0.06024639680981636,
0.06181205064058304,
0.02679271623492241,
0.09083695709705353,
0.02617720328271389,
-0.02006918005645275,
-0.06252289563417435,
0.04762721061706543,
-0.010034166276454926,
0.08326234668493271,
0.12160217761993408,
0.09352260082960129,
-0.041278865188360214,
-0.025429617613554,
0.1737678200006485,
-0.04398692399263382,
-0.11232420802116394,
-0.1574040949344635,
0.10302216559648514,
-0.0002402614481979981,
0.06456207484006882,
-0.01726406440138817,
-0.1384977549314499,
0.05451073497533798,
0.10318046808242798,
0.0688604786992073,
0.06382466107606888,
-0.010504765436053276,
-0.05503065139055252,
-0.017609449103474617,
-0.04594315588474274,
0.13379445672035217,
-0.010285022668540478,
0.11902966350317001,
-0.02886628359556198,
0.14275561273097992,
-0.012979742139577866,
-0.03126015141606331,
-0.07588106393814087,
0.1330738514661789,
-0.04009190946817398,
-0.0825081393122673,
-0.031860314309597015,
0.13569775223731995,
-0.08657751232385635,
-0.19781121611595154,
-0.07975947856903076,
-0.0263995174318552,
-0.10740430653095245,
0.012994545511901379,
0.09767195582389832,
0.03456250578165054,
0.04846701771020889,
0.01153560820966959,
0.05575425550341606,
0.11814442276954651,
-0.04893970862030983,
-0.04270065203309059,
-0.07429966330528259,
-0.04420456290245056,
-0.004700112622231245,
0.07001509517431259,
0.06269076466560364,
0.13512198626995087,
0.0502750538289547,
0.005133072379976511,
-0.023251892998814583,
0.07460850477218628,
0.002453669672831893,
-0.10336117446422577,
0.04971223697066307,
0.22203046083450317,
0.015184461139142513,
0.07803066074848175,
0.04876406863331795,
-0.1311277598142624,
-0.0036575777921825647,
0.057208478450775146,
0.029600854963064194,
-0.05050673708319664,
0.12377122044563293,
-0.11893806606531143,
0.12214972823858261,
0.0975361168384552,
-0.012174347415566444,
0.015398895367980003,
-0.09219571948051453,
0.018961632624268532,
-0.03783012926578522,
0.06704189628362656,
0.05560458451509476,
-0.18386755883693695,
0.003584956983104348,
-0.009038758464157581,
0.0048547713086009026,
-0.09149593859910965,
-0.05428805574774742,
0.02807552181184292,
-0.02626955509185791,
0.008833666332066059,
0.09083471447229385,
0.00483250617980957,
-0.027632685378193855,
0.020980216562747955,
-0.03394382819533348,
0.0643182173371315,
0.07181698828935623,
-0.08318096399307251,
-0.054914820939302444
] |
null | null | transformers | # Wav2vec 2.0 large VoxRex Swedish (C)
Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **2.5%**. WER for Common Voice test set is **8.49%** directly and **7.37%** with a 4-gram language model.
When using this model, make sure that your speech input is sampled at 16kHz.
**Update 2022-01-10:** Updated to VoxRex-C version.
**Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026).
# Performance\*

<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>
## Training
This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.

## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Citation
https://arxiv.org/abs/2205.03026
```
@misc{malmsten2022hearing,
title={Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language},
author={Martin Malmsten and Chris Haffenden and Love Börjeson},
year={2022},
eprint={2205.03026},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "speech", "hf-asr-leaderboard"], "datasets": ["common_voice", "NST_Swedish_ASR_Database", "P4"], "metrics": ["wer"], "arxiv": "https://arxiv.org/abs/2205.03026", "model-index": [{"name": "Wav2vec 2.0 large VoxRex Swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 8.49, "name": "Test WER"}]}]}]} | automatic-speech-recognition | KBLab/wav2vec2-large-voxrex-swedish | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"sv",
"dataset:common_voice",
"dataset:NST_Swedish_ASR_Database",
"dataset:P4",
"arxiv:2205.03026",
"license:cc0-1.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2205.03026"
] | [
"sv"
] | TAGS
#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #sv #dataset-common_voice #dataset-NST_Swedish_ASR_Database #dataset-P4 #arxiv-2205.03026 #license-cc0-1.0 #model-index #endpoints_compatible #region-us
| # Wav2vec 2.0 large VoxRex Swedish (C)
Finetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.
When using this model, make sure that your speech input is sampled at 16kHz.
Update 2022-01-10: Updated to VoxRex-C version.
Update 2022-05-16: Paper is is here.
# Performance\*
!Comparison
<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>
## Training
This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.
!WER during training
## Usage
The model can be used directly (without a language model) as follows:
URL
| [
"# Wav2vec 2.0 large VoxRex Swedish (C)\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nUpdate 2022-05-16: Paper is is here.",
"# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>",
"## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training",
"## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nURL"
] | [
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #sv #dataset-common_voice #dataset-NST_Swedish_ASR_Database #dataset-P4 #arxiv-2205.03026 #license-cc0-1.0 #model-index #endpoints_compatible #region-us \n",
"# Wav2vec 2.0 large VoxRex Swedish (C)\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nUpdate 2022-05-16: Paper is is here.",
"# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>",
"## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training",
"## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nURL"
] | [
112,
141,
41,
101,
21
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #sv #dataset-common_voice #dataset-NST_Swedish_ASR_Database #dataset-P4 #arxiv-2205.03026 #license-cc0-1.0 #model-index #endpoints_compatible #region-us \n# Wav2vec 2.0 large VoxRex Swedish (C)\n\nFinetuned version of KBs VoxRex large model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is 2.5%. WER for Common Voice test set is 8.49% directly and 7.37% with a 4-gram language model.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.\n\nUpdate 2022-01-10: Updated to VoxRex-C version.\n\nUpdate 2022-05-16: Paper is is here.# Performance\\*\n\n!Comparison\n<center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center>## Training\nThis model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>.\n\n!WER during training## Usage\nThe model can be used directly (without a language model) as follows:\n\n\nURL"
] | [
-0.12421827763319016,
0.1282394677400589,
-0.0033581724856048822,
-0.025910280644893646,
0.05116340517997742,
-0.04779288172721863,
0.046222735196352005,
0.09678563475608826,
-0.01780330203473568,
0.1352054923772812,
0.026389962062239647,
-0.013611654751002789,
0.07635226100683212,
0.09610283374786377,
0.04129115119576454,
-0.20292231440544128,
0.05325764790177345,
-0.09579392522573471,
0.11159607768058777,
0.052914731204509735,
0.10222349315881729,
-0.07435447722673416,
0.006417325232177973,
0.007480466738343239,
0.05664291977882385,
0.01060425490140915,
0.027936089783906937,
-0.05221782997250557,
0.11596205830574036,
0.04696761071681976,
-0.043348826467990875,
0.03380568325519562,
0.03445889428257942,
-0.19527404010295868,
0.02074708603322506,
0.07967793196439743,
0.05395926162600517,
0.016164250671863556,
0.06974007934331894,
0.050606053322553635,
0.16217927634716034,
-0.04003165289759636,
-0.04668426513671875,
0.06888701021671295,
-0.02179582603275776,
-0.15303008258342743,
-0.13046562671661377,
0.06923594325780869,
0.10739090293645859,
0.10066185146570206,
-0.08302999287843704,
0.11844031512737274,
-0.014677870087325573,
0.08740415424108505,
0.0682068020105362,
-0.17355838418006897,
0.009928672574460506,
0.0162963904440403,
0.024544334039092064,
0.08017665892839432,
-0.07555460184812546,
0.07922815531492233,
0.057754036039114,
0.006527640391141176,
-0.05600505322217941,
-0.001374542247503996,
-0.1049603521823883,
-0.06212018057703972,
-0.10502143949270248,
-0.029091831296682358,
0.14550833404064178,
0.03211306035518646,
-0.10497783124446869,
-0.16893406212329865,
-0.0018598658498376608,
-0.03237488865852356,
0.0195278599858284,
-0.06463068723678589,
0.005872948095202446,
-0.008150056004524231,
0.02438090369105339,
-0.09916050732135773,
-0.10372615605592728,
-0.04087762162089348,
0.029920298606157303,
0.02609734982252121,
0.02525121532380581,
-0.013478672131896019,
0.030842598527669907,
0.06686782836914062,
-0.18359903991222382,
-0.07094014436006546,
-0.06230297312140465,
-0.006863489747047424,
-0.11846515536308289,
-0.044090915471315384,
-0.031511884182691574,
-0.1970808207988739,
0.03348986431956291,
0.1027553603053093,
-0.045468367636203766,
0.031385865062475204,
-0.0588834285736084,
-0.017715856432914734,
0.02210722677409649,
0.08359801769256592,
-0.1117263063788414,
-0.03699205443263054,
0.023682259023189545,
-0.012044685892760754,
0.08549074828624725,
-0.0204825010150671,
-0.015346093103289604,
-0.02288837358355522,
0.11160336434841156,
0.0780758336186409,
0.03056272305548191,
-0.033981576561927795,
-0.018957892432808876,
0.007011970970779657,
0.08683494478464127,
-0.1305297315120697,
0.01240453403443098,
0.02017456851899624,
0.010333972051739693,
0.05684259533882141,
0.012908081524074078,
0.04643813148140907,
-0.10901132971048355,
0.06856104731559753,
0.011380989104509354,
-0.019949523732066154,
0.020839620381593704,
-0.06096853315830231,
0.06506311148405075,
-0.09056539088487625,
-0.02519875206053257,
-0.05856218561530113,
-0.09096277505159378,
-0.08612290769815445,
-0.026480380445718765,
-0.03378589078783989,
-0.050303101539611816,
-0.047177400439977646,
-0.0686410665512085,
0.012376001104712486,
-0.057301852852106094,
0.050327759236097336,
-0.05389261990785599,
0.02537226863205433,
-0.007714055944234133,
0.03587017580866814,
0.03236530348658562,
0.023457301780581474,
-0.08633328229188919,
-0.02376355417072773,
-0.07402412593364716,
0.11657986789941788,
-0.11260846257209778,
-0.1129615381360054,
-0.08055616170167923,
-0.0022231959737837315,
-0.06452789902687073,
0.04657047614455223,
0.06841368228197098,
0.1130838617682457,
-0.27860361337661743,
-0.06276204437017441,
0.13781559467315674,
-0.1352735459804535,
0.007901385426521301,
0.1759665310382843,
0.034396909177303314,
-0.007755285128951073,
0.13065581023693085,
0.18363620340824127,
0.09969250857830048,
-0.21554386615753174,
-0.13893797993659973,
0.011459669098258018,
-0.062109824270009995,
0.06411954015493393,
0.020172415301203728,
-0.12098418176174164,
0.12254226952791214,
0.020552298054099083,
0.0028771376237273216,
-0.026396172121167183,
0.02047843672335148,
-0.026684444397687912,
-0.019269049167633057,
-0.03118096850812435,
0.0350550152361393,
0.019487202167510986,
-0.06069760024547577,
-0.07650993764400482,
-0.12811721861362457,
-0.030556635931134224,
0.09790188819169998,
-0.05135496333241463,
0.06801782548427582,
-0.04839087277650833,
0.07407837361097336,
-0.06819283217191696,
-0.015226185321807861,
-0.12510594725608826,
0.01484658569097519,
0.005363769829273224,
0.02192160300910473,
0.06573682278394699,
0.0758710503578186,
0.03012985922396183,
0.0498260036110878,
-0.044381123036146164,
-0.005926028359681368,
0.0056546772830188274,
-0.006135054863989353,
-0.03339511901140213,
-0.10373777896165848,
-0.021706847473978996,
-0.040866877883672714,
0.16335511207580566,
-0.15820160508155823,
-0.04936371371150017,
0.09155168384313583,
0.1199071928858757,
0.0010613646591082215,
-0.07759187370538712,
0.079658642411232,
0.0066953906789422035,
0.004940596409142017,
-0.03943412005901337,
-0.025264721363782883,
0.006869342178106308,
-0.04673546925187111,
0.10813254863023758,
-0.15506239235401154,
-0.23775288462638855,
0.06312179565429688,
0.09377912431955338,
-0.057794272899627686,
0.10669809579849243,
-0.019031917676329613,
-0.03199520334601402,
-0.0947011336684227,
-0.06923463940620422,
0.1917591542005539,
0.061153244227170944,
0.07079017162322998,
-0.08372167497873306,
-0.013587121851742268,
0.017610441893339157,
-0.07766550034284592,
-0.017949843779206276,
0.06195000559091568,
-0.05732991173863411,
-0.020193608477711678,
0.016792627051472664,
-0.1053592637181282,
-0.060330748558044434,
0.23992225527763367,
-0.00669361324980855,
-0.11074158549308777,
0.027531316503882408,
-0.014730989001691341,
0.012649644166231155,
0.08892063796520233,
0.01979132369160652,
0.05010227859020233,
0.04593527317047119,
0.022179072722792625,
0.04123305529356003,
-0.08394873887300491,
0.061838939785957336,
0.009334398433566093,
-0.10174202919006348,
-0.01933729462325573,
0.09356794506311417,
-0.028144044801592827,
0.04265391081571579,
-0.07687640190124512,
-0.000567532260902226,
-0.022909630089998245,
-0.03151674568653107,
-0.14506392180919647,
0.08042941987514496,
-0.07391835749149323,
-0.22492685914039612,
-0.1841365247964859,
0.06285429000854492,
-0.08534227311611176,
0.017283480614423752,
0.07873331010341644,
-0.08770179748535156,
-0.07579177618026733,
-0.12881071865558624,
0.009523245505988598,
0.034285467118024826,
-0.051554884761571884,
-0.09546394646167755,
0.001970729324966669,
0.0666409358382225,
-0.1117485761642456,
0.02266966924071312,
-0.06206079572439194,
-0.03350678086280823,
-0.025782620534300804,
0.0965457558631897,
0.030904462561011314,
0.11293056607246399,
0.018189899623394012,
-0.009776481427252293,
0.004000411834567785,
0.1269555538892746,
-0.12068372219800949,
0.07052115350961685,
0.15585951507091522,
0.0003437928098719567,
0.000463979784399271,
0.11029496043920517,
-0.00566379027441144,
-0.01647809147834778,
-0.012090022675693035,
0.07000353932380676,
-0.05467971786856651,
-0.2230691760778427,
-0.1242164671421051,
-0.03329693153500557,
-0.04792795702815056,
-0.011073059402406216,
0.04075419157743454,
0.04769634082913399,
0.006916986778378487,
-0.10130538046360016,
-0.06861484795808792,
0.045486945658922195,
0.0011282152263447642,
0.08787818998098373,
-0.0010493631707504392,
0.05931932106614113,
-0.03046805039048195,
0.04716523736715317,
0.07053840905427933,
0.0030915476381778717,
0.05860782414674759,
-0.03575368970632553,
0.1308102309703827,
0.04799077287316322,
0.07132881879806519,
0.012973839417099953,
0.03536265715956688,
0.004876249935477972,
-0.012629142962396145,
0.03464223071932793,
-0.10708644986152649,
-0.055216219276189804,
0.022507324814796448,
0.1367570012807846,
-0.025513947010040283,
-0.04046065732836723,
0.06262605637311935,
0.01178336888551712,
0.21581999957561493,
0.09839404374361038,
-0.14273113012313843,
-0.10196342319250107,
-0.01147178653627634,
-0.06396283209323883,
-0.03381427749991417,
-0.014317401684820652,
0.13510851562023163,
-0.1361486166715622,
0.11278461664915085,
-0.004233728628605604,
0.04389598220586777,
-0.055227261036634445,
0.02221871353685856,
-0.06642574071884155,
0.09581735730171204,
0.0012425328604876995,
0.0990191176533699,
-0.12054634839296341,
0.09910596162080765,
0.02306283265352249,
0.16179127991199493,
-0.049333974719047546,
0.03236739709973335,
-0.0009143403149209917,
-0.027080534026026726,
0.17453114688396454,
0.009715309366583824,
-0.09813518077135086,
-0.041726794093847275,
-0.12866497039794922,
-0.009128686971962452,
0.036851584911346436,
0.041463639587163925,
0.06388290226459503,
-0.0016078711487352848,
-0.03075239434838295,
-0.03164010867476463,
-0.08013733476400375,
-0.19353799521923065,
-0.11190151423215866,
0.03267106041312218,
0.1163456067442894,
0.062028639018535614,
-0.03443564102053642,
-0.06401581317186356,
-0.1396535336971283,
0.13036556541919708,
-0.14066898822784424,
-0.08101402968168259,
-0.08754929155111313,
-0.00664864294230938,
0.16866105794906616,
-0.040237896144390106,
-0.01351675670593977,
0.03804725781083107,
0.16905353963375092,
-0.07974356412887573,
-0.007004456594586372,
-0.0076472945511341095,
-0.1000351533293724,
-0.1818387359380722,
0.03281136974692345,
0.23494285345077515,
0.02977093867957592,
0.05213131010532379,
0.04188265651464462,
0.05736928805708885,
0.04080386459827423,
-0.06997261196374893,
0.03938867524266243,
0.13175858557224274,
-0.07676354795694351,
0.0715276226401329,
0.029154153540730476,
-0.12598873674869537,
-0.08372347801923752,
-0.05034581571817398,
0.13738861680030823,
0.21993744373321533,
-0.05379318818449974,
0.20253175497055054,
0.14467906951904297,
-0.10053277760744095,
-0.22974753379821777,
-0.05670134350657463,
0.08270954340696335,
0.07159877568483353,
0.05539431795477867,
-0.08520301431417465,
0.07523369789123535,
0.055796027183532715,
-0.030793961137533188,
-0.028745654970407486,
-0.16349463164806366,
-0.14063070714473724,
0.0773705393075943,
-0.08213982731103897,
-0.014934336766600609,
0.007141001522541046,
-0.07120048999786377,
-0.05593840777873993,
0.07460370659828186,
-0.02417641691863537,
-0.0812416598200798,
0.09435223042964935,
0.048590123653411865,
0.0028933370485901833,
0.07511655241250992,
-0.04237435385584831,
0.11304308474063873,
0.00782688893377781,
-0.037222445011138916,
-0.023984218016266823,
0.12507669627666473,
0.02707033045589924,
-0.03972042724490166,
0.1785658895969391,
-0.010396317578852177,
0.018987180665135384,
-0.06039475277066231,
-0.04666772857308388,
-0.07935747504234314,
0.12167683988809586,
-0.019714370369911194,
-0.006674455013126135,
-0.006520131602883339,
0.030538583174347878,
0.06362918764352798,
-0.0015349006280303001,
0.025856317952275276,
-0.1383979469537735,
0.01944798417389393,
0.2031407654285431,
0.17667873203754425,
-0.046419333666563034,
-0.11685317754745483,
0.025783592835068703,
-0.034790657460689545,
0.03342004120349884,
0.024257546290755272,
0.06880540400743484,
0.059318993240594864,
0.04387802258133888,
0.052630696445703506,
-0.04607733339071274,
-0.1804671585559845,
0.04367796331644058,
0.0311123114079237,
-0.09980128705501556,
-0.13798724114894867,
-0.03757064417004585,
-0.04595644026994705,
-0.04328196123242378,
0.017438462004065514,
0.19194652140140533,
-0.08970827609300613,
0.00976553000509739,
-0.008202536031603813,
0.06515515595674515,
-0.05599283427000046,
0.16746868193149567,
0.011502350680530071,
0.06567763537168503,
-0.07704542577266693,
0.1352112889289856,
0.03869737684726715,
-0.047209400683641434,
0.11399365961551666,
-0.01119737233966589,
-0.05832679197192192,
-0.056189071387052536,
-0.054337333887815475,
-0.006024279166013002,
0.05568842962384224,
-0.12890465557575226,
-0.008348383940756321,
-0.03545796498656273,
-0.003920624498277903,
-0.02245071344077587,
-0.000046810266212560236,
0.02637125551700592,
-0.053401198238134384,
-0.04385213553905487,
-0.1433667242527008,
0.09640379995107651,
0.08250156044960022,
0.037305790930986404,
-0.12413033843040466,
0.1236121878027916,
-0.019743317738175392,
0.01650978997349739,
-0.03530732914805412,
-0.03698521852493286,
0.03473394736647606,
0.031151093542575836,
-0.044963471591472626,
0.004731972236186266,
-0.049840666353702545,
-0.030715567991137505,
-0.012098339386284351,
-0.00651854882016778,
0.007201931439340115,
0.08714567124843597,
-0.03992913290858269,
-0.015440714545547962,
-0.06937303394079208,
0.05602685734629631,
-0.1439240574836731,
0.06040975823998451,
0.00547031220048666,
-0.055522892624139786,
0.08085547387599945,
0.03519711270928383,
-0.04780680686235428,
0.09628234058618546,
-0.15860499441623688,
-0.05874904990196228,
0.025433314964175224,
0.026161175221204758,
-0.011617203243076801,
-0.11479128897190094,
-0.02130102552473545,
0.06592360138893127,
0.005037187598645687,
-0.017667638137936592,
-0.03360642492771149,
-0.07099379599094391,
-0.00004416407682583667,
0.010142889805138111,
0.021233102306723595,
-0.055956125259399414,
0.07196154445409775,
0.04921345412731171,
0.04702242463827133,
0.16998536884784698,
-0.10838312655687332,
0.008858214132487774,
-0.10438252240419388,
0.01683666557073593,
-0.04097558930516243,
0.008600647561252117,
-0.06766794621944427,
0.02837458625435829,
0.08715368062257767,
-0.0313279964029789,
0.0416337251663208,
-0.0094622066244483,
0.05591380596160889,
0.024607691913843155,
-0.05704864487051964,
-0.03253011405467987,
0.03056824579834938,
0.1620810329914093,
0.021950766444206238,
0.014483971521258354,
-0.028717180714011192,
-0.05537690222263336,
0.004153866320848465,
0.07865014672279358,
0.07725931704044342,
0.09969304502010345,
0.055289819836616516,
0.09713297337293625,
0.060060132294893265,
-0.08886142820119858,
-0.0497085340321064,
0.07096130400896072,
-0.11102557182312012,
0.07285410165786743,
0.004410905763506889,
0.022804133594036102,
0.14252059161663055,
-0.16187575459480286,
0.08822929114103317,
0.017152057960629463,
-0.07562235742807388,
-0.13789932429790497,
-0.2133284956216812,
-0.07399699091911316,
-0.05122482776641846,
0.04731301963329315,
-0.09490222483873367,
0.08970624208450317,
0.07694151252508163,
0.04810304939746857,
-0.015017256140708923,
0.1273055374622345,
-0.13012059032917023,
-0.10239236801862717,
0.08036760240793228,
-0.041508253663778305,
-0.0033648712560534477,
0.05042603984475136,
0.007188867777585983,
0.11218778043985367,
0.025144163519144058,
0.07900658994913101,
0.029280418530106544,
0.04544040188193321,
0.0637301504611969,
-0.027362700551748276,
-0.05833452194929123,
0.029054969549179077,
-0.024500370025634766,
0.09856962412595749,
0.09528003633022308,
0.11404165625572205,
-0.05429248884320259,
-0.014001945964992046,
0.19193744659423828,
-0.06798923760652542,
-0.12292883545160294,
-0.12934814393520355,
0.15286608040332794,
0.03786974400281906,
0.05654805898666382,
-0.02500619925558567,
-0.13743066787719727,
0.048185672610998154,
0.08980312943458557,
0.12533961236476898,
0.05391700193285942,
0.005185040179640055,
-0.08420407027006149,
-0.01690477505326271,
-0.05135445296764374,
0.05590248107910156,
0.026161450892686844,
0.17809566855430603,
-0.01720024086534977,
0.1289336234331131,
-0.007717103697359562,
-0.05298712104558945,
-0.10210287570953369,
0.12706421315670013,
-0.08645355701446533,
-0.049143724143505096,
0.013278099708259106,
0.1584981232881546,
-0.05735856667160988,
-0.2488454282283783,
-0.12799184024333954,
-0.026566248387098312,
-0.1338973194360733,
0.016940221190452576,
0.06174679473042488,
0.08300795406103134,
0.023595670238137245,
-0.000045269021939020604,
0.019768375903367996,
0.13114027678966522,
-0.008131543174386024,
-0.02032293938100338,
-0.02060778997838497,
-0.03144023194909096,
-0.05939097702503204,
0.11893712729215622,
0.04189889132976532,
0.11382407695055008,
0.042657941579818726,
0.0035495951306074858,
-0.07260086387395859,
0.13521696627140045,
0.01722227968275547,
-0.15868937969207764,
0.09776856005191803,
0.2428380399942398,
0.011087864637374878,
0.12758834660053253,
0.04827797785401344,
-0.10980454087257385,
0.02963787317276001,
0.02089983969926834,
0.0028602785896509886,
-0.0592040941119194,
0.11118955910205841,
-0.06709559261798859,
0.1294061690568924,
0.07529249042272568,
-0.047958239912986755,
0.008110305294394493,
-0.06883717328310013,
0.03697289153933525,
0.0012513396795839071,
0.06570407748222351,
0.037698086351156235,
-0.21654832363128662,
0.035507187247276306,
-0.03748534992337227,
0.023178325966000557,
-0.14773185551166534,
-0.023755837231874466,
0.005796295590698719,
-0.04467252269387245,
0.017164357006549835,
0.08549176156520844,
0.05790901184082031,
-0.020294498652219772,
-0.01936425268650055,
0.04374436289072037,
0.048513900488615036,
0.1023394986987114,
-0.13930059969425201,
-0.08479069173336029
] |
null | null | transformers |
# Wav2vec 2.0 large VoxRex (C)
**Please note:** The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at [KBLab/wav2vec2-large-voxrex-swedish](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish). The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier).
**Disclaimer:** This is a work in progress.<br>
**Update 2022-01-08:** Updated to VoxRex-C version, use git to get the older (B) version.<br>
**Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026).
This model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections.

| {"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "voxrex"]} | automatic-speech-recognition | KBLab/wav2vec2-large-voxrex | [
"transformers",
"pytorch",
"wav2vec2",
"pretraining",
"audio",
"automatic-speech-recognition",
"voxrex",
"sv",
"arxiv:2205.03026",
"license:cc0-1.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2205.03026"
] | [
"sv"
] | TAGS
#transformers #pytorch #wav2vec2 #pretraining #audio #automatic-speech-recognition #voxrex #sv #arxiv-2205.03026 #license-cc0-1.0 #endpoints_compatible #region-us
|
# Wav2vec 2.0 large VoxRex (C)
Please note: The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at KBLab/wav2vec2-large-voxrex-swedish. The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier).
Disclaimer: This is a work in progress.<br>
Update 2022-01-08: Updated to VoxRex-C version, use git to get the older (B) version.<br>
Update 2022-05-16: Paper is is here.
This model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections.
!Accuracy during training
| [
"# Wav2vec 2.0 large VoxRex (C)\n\nPlease note: The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at KBLab/wav2vec2-large-voxrex-swedish. The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier). \n\nDisclaimer: This is a work in progress.<br>\nUpdate 2022-01-08: Updated to VoxRex-C version, use git to get the older (B) version.<br>\nUpdate 2022-05-16: Paper is is here.\n\nThis model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections.\n\n!Accuracy during training"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #pretraining #audio #automatic-speech-recognition #voxrex #sv #arxiv-2205.03026 #license-cc0-1.0 #endpoints_compatible #region-us \n",
"# Wav2vec 2.0 large VoxRex (C)\n\nPlease note: The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at KBLab/wav2vec2-large-voxrex-swedish. The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier). \n\nDisclaimer: This is a work in progress.<br>\nUpdate 2022-01-08: Updated to VoxRex-C version, use git to get the older (B) version.<br>\nUpdate 2022-05-16: Paper is is here.\n\nThis model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections.\n\n!Accuracy during training"
] | [
67,
296
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #pretraining #audio #automatic-speech-recognition #voxrex #sv #arxiv-2205.03026 #license-cc0-1.0 #endpoints_compatible #region-us \n# Wav2vec 2.0 large VoxRex (C)\n\nPlease note: The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at KBLab/wav2vec2-large-voxrex-swedish. The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier). \n\nDisclaimer: This is a work in progress.<br>\nUpdate 2022-01-08: Updated to VoxRex-C version, use git to get the older (B) version.<br>\nUpdate 2022-05-16: Paper is is here.\n\nThis model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections.\n\n!Accuracy during training"
] | [
-0.08566644042730331,
0.14496557414531708,
-0.002567002782598138,
-0.07486801594495773,
0.040304169058799744,
-0.014088877476751804,
0.06092286854982376,
0.11006432771682739,
-0.08119048178195953,
0.09739692509174347,
0.030053459107875824,
0.014877979643642902,
0.0910911038517952,
0.08953065425157547,
-0.011468022130429745,
-0.2471541315317154,
-0.0005744060035794973,
-0.03742041438817978,
0.11264435946941376,
0.04789034277200699,
0.1012452021241188,
-0.0806494876742363,
0.0322161503136158,
0.0053621698170900345,
-0.0704389438033104,
0.021161142736673355,
-0.01855168677866459,
-0.10210108011960983,
0.0919790044426918,
0.07932963222265244,
0.041704874485731125,
0.04065396264195442,
0.1153760477900505,
-0.08463388681411743,
0.027574343606829643,
0.0771767795085907,
0.024506382644176483,
0.06790261715650558,
0.0735151395201683,
0.008796579204499722,
0.14286820590496063,
0.023843152448534966,
-0.043059587478637695,
0.045833468437194824,
-0.09408726543188095,
-0.11960957199335098,
-0.1744592785835266,
0.11227340251207352,
0.07832113653421402,
0.07306108623743057,
-0.02721620909869671,
0.0657181665301323,
0.026951581239700317,
0.038593169301748276,
0.19109879434108734,
-0.24788427352905273,
-0.015722109004855156,
0.0911048948764801,
0.08742586523294449,
0.09374292939901352,
-0.042948346585035324,
0.056517474353313446,
0.0354556143283844,
0.0016097957268357277,
0.055184025317430496,
-0.014817827381193638,
-0.08272195607423782,
-0.015827443450689316,
-0.12821440398693085,
-0.043849922716617584,
0.15792135894298553,
0.02255750633776188,
-0.1316518783569336,
-0.086601123213768,
-0.06402996182441711,
-0.10961117595434189,
-0.022686706855893135,
-0.07715282589197159,
0.05170975998044014,
0.014216290786862373,
0.07747551053762436,
-0.17162054777145386,
-0.0705747902393341,
-0.10605625808238983,
-0.0955505445599556,
0.13751713931560516,
0.029547646641731262,
0.01087833009660244,
0.01947055757045746,
0.06849365681409836,
-0.10068964213132858,
-0.046776097267866135,
-0.06912792474031448,
-0.0127489622682333,
-0.061504680663347244,
-0.048053015023469925,
-0.021284805610775948,
-0.12452973425388336,
-0.06612453609704971,
0.1828046590089798,
-0.05648558586835861,
-0.03706388175487518,
-0.10255922377109528,
0.012529781088232994,
0.03721797838807106,
0.08745522797107697,
-0.08272018283605576,
-0.03677564859390259,
0.07674556970596313,
-0.0011230213567614555,
0.013356952928006649,
-0.03283066302537918,
-0.0513271689414978,
-0.06435097754001617,
0.04508631303906441,
0.07858557999134064,
0.02588222734630108,
-0.03366849198937416,
0.002937198616564274,
-0.05344545841217041,
0.20616823434829712,
-0.09669005125761032,
-0.016399675980210304,
0.012594535015523434,
-0.06919538974761963,
0.08113311976194382,
-0.008332057856023312,
0.055083200335502625,
-0.09711312502622604,
0.016138074919581413,
-0.0369550921022892,
-0.0648064985871315,
-0.007685450837016106,
-0.10019031167030334,
0.05246901884675026,
-0.16649432480335236,
-0.041660111397504807,
-0.09795255959033966,
-0.184447780251503,
-0.051146116107702255,
-0.03639796003699303,
-0.027067342773079872,
-0.03130676969885826,
0.017745252698659897,
-0.03632192686200142,
-0.02001877687871456,
-0.08487647771835327,
0.07166987657546997,
-0.042015474289655685,
0.012264864519238472,
-0.10169727355241776,
0.05631900578737259,
-0.039039213210344315,
0.07129421830177307,
-0.0184383112937212,
-0.008713691495358944,
-0.1017279177904129,
0.05028052628040314,
-0.05273573845624924,
-0.12265008687973022,
-0.09817052632570267,
-0.01933135837316513,
-0.1243232786655426,
0.05169450119137764,
0.023491518571972847,
0.06502176821231842,
-0.17889150977134705,
-0.03699534758925438,
0.11630739271640778,
-0.09038025885820389,
-0.016945604234933853,
0.07406137138605118,
0.05337994918227196,
-0.003652604529634118,
0.12153574824333191,
0.07598648965358734,
0.0003509291273076087,
-0.20561367273330688,
-0.1538114696741104,
-0.05051276087760925,
-0.03354553505778313,
0.023525401949882507,
0.08117275685071945,
-0.028013691306114197,
0.1674671173095703,
-0.03788026049733162,
-0.0032354651484638453,
-0.03900199010968208,
-0.0032555595971643925,
-0.030931057408452034,
0.013719774782657623,
-0.0768023431301117,
0.01976204477250576,
-0.047649215906858444,
0.017953408882021904,
0.0331161804497242,
-0.11520544439554214,
-0.025349419564008713,
0.11229647696018219,
-0.04111117869615555,
0.03772575035691261,
-0.08392634987831116,
0.05120798200368881,
-0.027699274942278862,
0.008800974115729332,
-0.20230913162231445,
0.06125256419181824,
0.05183962732553482,
-0.0028882024344056845,
0.06257106363773346,
0.11786609888076782,
0.009059213101863861,
0.05012364685535431,
-0.004534370731562376,
-0.014069939032196999,
-0.04784834012389183,
-0.0487184040248394,
-0.04760854318737984,
-0.04097544774413109,
-0.07234639674425125,
-0.03642357513308525,
0.10957812517881393,
-0.13266852498054504,
0.009670809842646122,
0.03829415142536163,
0.08801960945129395,
0.03743406757712364,
-0.05675426125526428,
0.03925356641411781,
-0.020816044881939888,
0.0063847750425338745,
-0.03959847614169121,
-0.00634528836235404,
-0.0009441081783734262,
0.0064096637070178986,
0.17605191469192505,
-0.15541020035743713,
-0.055715952068567276,
0.11124370992183685,
0.11862251162528992,
-0.012141220271587372,
0.029516175389289856,
-0.04514988511800766,
0.0026279184967279434,
-0.0778036117553711,
-0.07181251049041748,
0.24582313001155853,
0.034117940813302994,
0.09775528311729431,
-0.12792252004146576,
-0.07322295010089874,
0.012784518301486969,
-0.005006987135857344,
-0.00746928621083498,
-0.0756269246339798,
-0.002949448535218835,
-0.09775467216968536,
0.008470894768834114,
0.021444076672196388,
-0.013541998341679573,
0.2246571034193039,
0.01891140639781952,
-0.12570348381996155,
0.016314838081598282,
-0.04478439688682556,
0.012668823823332787,
0.06865275651216507,
0.0060247983783483505,
0.018028127029538155,
0.03835351765155792,
0.02624235488474369,
0.06432535499334335,
-0.09573854506015778,
0.05821996182203293,
0.0019343651365488768,
-0.10279569774866104,
-0.03974155709147453,
0.04909541457891464,
-0.010676796548068523,
0.08334081619977951,
0.012167454697191715,
0.11295586824417114,
-0.07245412468910217,
-0.001504693296737969,
-0.09905025362968445,
0.08406839519739151,
-0.11184372007846832,
-0.21078342199325562,
-0.15544772148132324,
0.00014742891653440893,
-0.04181133583188057,
0.050258610397577286,
0.0052244518883526325,
-0.019076533615589142,
-0.05305546522140503,
-0.08573488146066666,
0.1406560242176056,
-0.02619123086333275,
0.010196788236498833,
0.002732739085331559,
0.021648487076163292,
0.009110802784562111,
-0.13650771975517273,
0.03003329411149025,
-0.04635809361934662,
-0.11103970557451248,
-0.058558106422424316,
0.10606186836957932,
0.04025488346815109,
0.0931348130106926,
-0.010124689899384975,
-0.03811570629477501,
-0.012241014279425144,
0.16445200145244598,
-0.09196572750806808,
0.11995749175548553,
0.25017932057380676,
-0.024160409346222878,
0.013538024388253689,
0.03502679616212845,
0.011799199506640434,
-0.057549651712179184,
-0.0005804597749374807,
0.07259447872638702,
-0.028648387640714645,
-0.2723005712032318,
-0.07123768329620361,
-0.021210646256804466,
-0.002216654596850276,
0.04727206006646156,
0.045668330043554306,
0.060649529099464417,
0.024761484935879707,
-0.16166722774505615,
0.08470951020717621,
0.008414564654231071,
0.018432460725307465,
0.06028980016708374,
-0.037909187376499176,
0.08390478044748306,
-0.009206962771713734,
0.05613423511385918,
0.13353820145130157,
0.06620746850967407,
0.11739114671945572,
0.0007191058248281479,
0.12011868506669998,
0.062245506793260574,
-0.01600828766822815,
0.1101108118891716,
0.06889596581459045,
0.0026108853053301573,
-0.02098189853131771,
-0.02302546612918377,
-0.0751866027712822,
-0.06987486034631729,
0.05010277032852173,
0.1074029803276062,
-0.0608130618929863,
-0.003452302422374487,
-0.059621378779411316,
-0.06732288748025894,
0.22449661791324615,
0.0369737446308136,
-0.21341952681541443,
-0.09880547970533371,
0.03140409663319588,
-0.10553548485040665,
-0.08925815671682358,
-0.008253341540694237,
0.10162182152271271,
-0.09962604939937592,
0.03978521749377251,
0.021964525803923607,
0.07720696926116943,
-0.11943963915109634,
0.0018878132104873657,
-0.081865593791008,
0.11275730282068253,
-0.02424011379480362,
0.02246413379907608,
-0.038897112011909485,
0.09246499836444855,
0.05608353763818741,
0.139690101146698,
-0.044260699301958084,
0.05374601110816002,
0.044388171285390854,
-0.003867425723001361,
0.09227686375379562,
-0.018039021641016006,
-0.04433228448033333,
-0.005542620085179806,
-0.10975810140371323,
0.0023598845582455397,
0.052603580057621,
-0.06655040383338928,
0.0836297944188118,
-0.012163468636572361,
-0.004783014301210642,
-0.03159375488758087,
-0.11489249020814896,
-0.18886218965053558,
-0.058373626321554184,
0.05444316193461418,
0.0615074522793293,
0.16961820423603058,
-0.0712718516588211,
-0.02025494910776615,
-0.07400214672088623,
0.08075582981109619,
-0.1372079849243164,
-0.035566046833992004,
-0.10003075003623962,
0.07152586430311203,
0.12703083455562592,
-0.03161224350333214,
0.07553886622190475,
0.04209013283252716,
0.2017359584569931,
-0.07707785069942474,
-0.062417007982730865,
-0.025414902716875076,
-0.09482789784669876,
-0.1543608009815216,
0.0016953451558947563,
0.15300439298152924,
0.06348317116498947,
0.0680423378944397,
0.009543707594275475,
0.03145398572087288,
0.03061472624540329,
-0.05172451585531235,
0.07847067713737488,
0.12137095630168915,
0.04192546755075455,
0.056613195687532425,
-0.06656236201524734,
-0.12076538801193237,
-0.032060980796813965,
-0.007450546137988567,
0.11890853196382523,
0.26733559370040894,
-0.029533417895436287,
0.14578431844711304,
0.17639239132404327,
-0.09735828638076782,
-0.2696968913078308,
-0.029981568455696106,
0.08950161188840866,
0.0791158676147461,
0.018263814970850945,
-0.26381438970565796,
0.03846939280629158,
0.13056351244449615,
-0.034746620804071426,
0.026999523863196373,
-0.20262394845485687,
-0.09794995188713074,
0.06775698810815811,
0.002205037046223879,
0.05967790260910988,
-0.019785156473517418,
-0.06033333018422127,
-0.0010710072237998247,
-0.011388082057237625,
0.04465952515602112,
-0.13403308391571045,
0.0892755463719368,
0.009377766400575638,
-0.014484332874417305,
0.027627995237708092,
0.0025518322363495827,
0.0714118555188179,
-0.02947951853275299,
0.006760018412023783,
-0.0035863027442246675,
0.057564035058021545,
0.10881786793470383,
-0.018617313355207443,
0.10097238421440125,
0.01100461557507515,
0.031564805656671524,
-0.0796913355588913,
-0.04211603105068207,
-0.038126084953546524,
0.07651766389608383,
-0.021831460297107697,
-0.06367051601409912,
-0.03790135681629181,
0.03446199744939804,
-0.0034132746513932943,
-0.003443855093792081,
0.06600853055715561,
-0.07186318188905716,
0.02358708158135414,
0.12431355565786362,
0.11970704793930054,
-0.08281832933425903,
0.0070081972517073154,
-0.012240935117006302,
-0.026469403877854347,
0.0897722914814949,
-0.07964222878217697,
0.029206471517682076,
0.02988787181675434,
0.041496433317661285,
0.04448496177792549,
-0.0017442579846829176,
-0.17159634828567505,
0.0559471920132637,
0.021660158410668373,
-0.12161681056022644,
-0.03584732487797737,
-0.054149940609931946,
-0.017507420852780342,
-0.06651172786951065,
-0.002088719978928566,
0.20888562500476837,
-0.033867791295051575,
-0.03570063039660454,
0.01459371205419302,
0.007398304995149374,
-0.005753130652010441,
0.0859590396285057,
0.00801224447786808,
0.03468000888824463,
-0.06938257813453674,
0.14691218733787537,
0.08735143393278122,
-0.10423102229833603,
0.0410614013671875,
0.023525968194007874,
-0.02209278754889965,
-0.05198977142572403,
-0.0978478342294693,
-0.08145871758460999,
-0.014542914927005768,
-0.04203887656331062,
0.017723185941576958,
-0.03920941427350044,
0.07093068957328796,
0.09743012487888336,
-0.03228176757693291,
0.03751302510499954,
-0.03956440091133118,
0.05668656900525093,
-0.07960915565490723,
0.07702750712633133,
-0.03392773121595383,
0.03698776662349701,
-0.1455400139093399,
0.07979707419872284,
0.0064329965971410275,
-0.021793164312839508,
-0.025856854394078255,
-0.04293278977274895,
0.011279566213488579,
-0.02115788497030735,
-0.06722074747085571,
-0.04914895445108414,
-0.06871902942657471,
-0.03988956660032272,
-0.06763387471437454,
0.0041611213237047195,
-0.06367160379886627,
0.04502971097826958,
-0.05776295065879822,
-0.012384012341499329,
-0.07192246615886688,
0.05701208487153053,
-0.1103079691529274,
0.0599522702395916,
0.00695217028260231,
-0.0824873074889183,
0.08397097140550613,
0.08265165984630585,
0.02180580049753189,
0.0841069146990776,
-0.08779793232679367,
-0.04605152830481529,
0.059044647961854935,
0.05612804368138313,
0.030470915138721466,
-0.06720946729183197,
0.006914396770298481,
0.008325890637934208,
-0.034961998462677,
-0.028188737109303474,
0.02258518524467945,
-0.047611936926841736,
-0.043319884687662125,
-0.014524265192449093,
0.10083875805139542,
-0.07958550751209259,
0.05236896499991417,
0.1659526228904724,
0.046858035027980804,
0.08701223880052567,
-0.01222928799688816,
-0.0026055227499455214,
-0.15018701553344727,
0.06145646795630455,
-0.05471786856651306,
-0.01967102475464344,
0.0315743014216423,
-0.01401375513523817,
0.03183649107813835,
-0.002668490633368492,
0.13939012587070465,
-0.029086926952004433,
0.025383826345205307,
0.050238996744155884,
-0.006386145483702421,
-0.08770034462213516,
0.02592194452881813,
0.1802860051393509,
0.1124342530965805,
-0.02570725604891777,
-0.04066816717386246,
0.01564149744808674,
0.027872668579220772,
0.014290710911154747,
0.11807340383529663,
0.049707915633916855,
0.1013934463262558,
0.08568601310253143,
0.10143760591745377,
-0.14916428923606873,
-0.14572305977344513,
0.0962972491979599,
-0.06820163875818253,
0.034345511347055435,
-0.03707939386367798,
0.049263063818216324,
0.1668456643819809,
-0.15663036704063416,
0.047362811863422394,
0.08311612159013748,
-0.035835254937410355,
-0.13563525676727295,
-0.13077425956726074,
-0.023000026121735573,
-0.06816373020410538,
0.002916988218203187,
-0.1048685610294342,
0.13570931553840637,
-0.0017883592518046498,
-0.0070685287937521935,
0.01966729760169983,
0.09221041202545166,
-0.14710645377635956,
-0.13943034410476685,
0.08820142596960068,
0.004875501152127981,
0.015653038397431374,
-0.0038804523646831512,
-0.02113945409655571,
0.14571481943130493,
0.0019227294251322746,
0.0926336944103241,
-0.009836460463702679,
0.04673340916633606,
0.08360403031110764,
-0.05615711957216263,
-0.06298867613077164,
0.015322625637054443,
-0.02375463955104351,
0.01892702281475067,
0.13731516897678375,
0.06904713809490204,
-0.04355432838201523,
0.019308481365442276,
0.21678651869297028,
-0.03468547761440277,
-0.0297342911362648,
-0.16289003193378448,
0.005662819836288691,
0.09139209985733032,
0.04891316965222359,
0.025898512452840805,
-0.09531592577695847,
0.0021668081171810627,
0.15241120755672455,
0.09252217411994934,
0.06566014140844345,
0.021029645577073097,
0.03136648237705231,
-0.012002195231616497,
-0.05709584057331085,
0.09281985461711884,
0.10521921515464783,
0.20248232781887054,
0.014345090836286545,
0.02213325724005699,
-0.02116742543876171,
-0.05275849997997284,
-0.03980080783367157,
0.15963004529476166,
-0.0820092260837555,
-0.04637019336223602,
0.03428829088807106,
0.08179082721471786,
-0.036741215735673904,
-0.30507609248161316,
-0.11693989485502243,
-0.058552660048007965,
-0.08979257196187973,
-0.02018280141055584,
0.00043265047133900225,
0.0023441719822585583,
0.059561800211668015,
-0.0034908228553831577,
-0.04214569181203842,
0.18781082332134247,
0.005742076318711042,
-0.036259960383176804,
-0.06325318664312363,
0.04603473097085953,
-0.06299871951341629,
0.1734175980091095,
-0.02870502509176731,
0.05600811168551445,
0.030738936737179756,
0.015139392577111721,
-0.10714796185493469,
0.08721937239170074,
-0.0204018522053957,
-0.15921832621097565,
0.035903386771678925,
0.2957576811313629,
-0.024375401437282562,
0.1632896512746811,
0.05417356640100479,
-0.08642386645078659,
0.02931843511760235,
0.010246030986309052,
-0.11011108756065369,
-0.028351973742246628,
0.07192180305719376,
-0.08656015992164612,
0.12375932186841965,
0.06767435371875763,
-0.00894289743155241,
0.01968143880367279,
-0.060552701354026794,
0.02680031955242157,
0.04739319533109665,
0.12276025116443634,
0.057961270213127136,
-0.1984643191099167,
-0.009519812650978565,
-0.06624846160411835,
0.036346808075904846,
-0.16924798488616943,
-0.0031733973883092403,
-0.015449738129973412,
-0.04776672273874283,
-0.02624252811074257,
0.04492788389325142,
0.06068534776568413,
-0.02414587512612343,
-0.014179407618939877,
0.04390954598784447,
-0.015432797372341156,
0.05827152729034424,
-0.15929968655109406,
-0.07929189503192902
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.