sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | transformers |
# roberta-base-thai-spm
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune `roberta-base-thai-spm` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-spm")
```
| {"language": ["th"], "license": "apache-2.0", "tags": ["thai", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]"} | fill-mask | KoichiYasuoka/roberta-base-thai-spm | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"thai",
"masked-lm",
"wikipedia",
"th",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"th"
] | TAGS
#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# roberta-base-thai-spm
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune 'roberta-base-thai-spm' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
| [
"# roberta-base-thai-spm",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune 'roberta-base-thai-spm' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# roberta-base-thai-spm",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune 'roberta-base-thai-spm' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
60,
10,
59,
4
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# roberta-base-thai-spm## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune 'roberta-base-thai-spm' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use"
] | [
0.05093991011381149,
-0.07123710960149765,
-0.0011114802910014987,
0.05071325600147247,
0.1360267847776413,
-0.055995866656303406,
0.07800708711147308,
0.07903733104467392,
-0.0034628920257091522,
0.012696846388280392,
0.15143530070781708,
0.11461769044399261,
0.0023727556690573692,
0.17356397211551666,
0.04440992325544357,
-0.4112846553325653,
0.09005557000637054,
0.018555764108896255,
-0.1173287108540535,
0.12053278088569641,
0.16337652504444122,
-0.03195476531982422,
0.11548681557178497,
0.029563186690211296,
-0.053702544420957565,
0.0020343689247965813,
-0.03859715536236763,
-0.1171257346868515,
0.08102300018072128,
0.003365753684192896,
0.10796820372343063,
-0.007204677443951368,
0.05570002645254135,
-0.11187098175287247,
0.026185328140854836,
-0.000009765727554622572,
0.0313100703060627,
0.027997618541121483,
-0.06740127503871918,
0.0030738741625100374,
0.0905935987830162,
-0.014993959106504917,
0.0666700154542923,
0.0028675412759184837,
-0.09393883496522903,
-0.09452512115240097,
-0.029822830110788345,
0.050642360001802444,
0.17644380033016205,
0.0835527777671814,
-0.03324007987976074,
0.15104445815086365,
-0.1584959179162979,
0.05348069593310356,
0.1144007220864296,
-0.2618865370750427,
-0.05435439571738243,
0.052797090262174606,
0.012947753071784973,
0.016987621784210205,
0.05092066153883934,
0.04817664623260498,
0.03759259358048439,
0.041759077459573746,
0.08735772222280502,
-0.10618336498737335,
-0.07310987263917923,
-0.029936179518699646,
-0.12604057788848877,
0.001954045845195651,
0.2654483914375305,
0.005595750641077757,
-0.04668205603957176,
-0.060749877244234085,
-0.07483911514282227,
0.05647461116313934,
-0.0757840946316719,
0.0035084623377770185,
0.00547131197527051,
0.05646452680230141,
0.05084288865327835,
-0.05784458667039871,
-0.09786299616098404,
-0.018343914300203323,
-0.10182884335517883,
0.08831369131803513,
0.042494092136621475,
0.00971569586545229,
-0.14901450276374817,
0.041010838001966476,
-0.11592736095190048,
-0.08036239445209503,
0.01743767037987709,
-0.05854903161525726,
0.030230987817049026,
0.02504458837211132,
-0.0022261200938373804,
-0.0015249517746269703,
0.07144142687320709,
0.25173014402389526,
0.07266703248023987,
0.061982568353414536,
-0.052227623760700226,
0.07901439070701599,
0.034502577036619186,
0.12707829475402832,
-0.18193285167217255,
-0.02313494123518467,
0.08187425136566162,
-0.0728280246257782,
0.01761491969227791,
-0.002434669528156519,
-0.07137057930231094,
-0.05133989453315735,
-0.012166948057711124,
0.011195013299584389,
0.056634750217199326,
0.14672638475894928,
0.026851363480091095,
-0.022984545677900314,
0.11177384108304977,
-0.10288058966398239,
-0.07545774430036545,
-0.0714602991938591,
-0.014454886317253113,
0.03403064236044884,
0.1433282196521759,
0.048624034970998764,
-0.04828152060508728,
0.09672451764345169,
-0.027465099468827248,
-0.02818601205945015,
-0.04410979896783829,
-0.08839832991361618,
-0.026041453704237938,
-0.1286604404449463,
0.0525939017534256,
-0.13628171384334564,
-0.1761525422334671,
0.020129719749093056,
0.1047259196639061,
-0.041108857840299606,
-0.1024356484413147,
0.03139348700642586,
0.024131393060088158,
-0.034659601747989655,
-0.0521114282310009,
0.12096139043569565,
-0.036052633076906204,
0.03507564216852188,
-0.03163319081068039,
0.14695753157138824,
-0.0900317132472992,
0.058849792927503586,
-0.14006026089191437,
0.049110837280750275,
-0.2598481774330139,
0.005193495191633701,
-0.06610653549432755,
0.12416505068540573,
-0.11315883696079254,
-0.018223285675048828,
-0.08477559685707092,
0.07585884630680084,
0.0034230388700962067,
0.1053486317396164,
-0.014511562883853912,
-0.027623839676380157,
0.17351610958576202,
-0.11168015003204346,
-0.0928635522723198,
0.09907999634742737,
-0.01284707523882389,
0.254814088344574,
0.025443241000175476,
0.1105436384677887,
0.04828883334994316,
-0.023134544491767883,
0.17158563435077667,
0.05174453556537628,
-0.08597209304571152,
-0.036006685346364975,
0.05521693825721741,
-0.017256343737244606,
-0.14825794100761414,
0.09850600361824036,
-0.14433467388153076,
0.08005508780479431,
-0.019100824370980263,
-0.018331538885831833,
-0.02060053125023842,
-0.08381357043981552,
-0.01900765486061573,
-0.007195209618657827,
0.14280956983566284,
0.018808111548423767,
-0.0346919447183609,
0.10346780717372894,
0.08303219825029373,
-0.007988760247826576,
0.041577890515327454,
-0.09353993088006973,
0.0965305045247078,
-0.0036262264475226402,
0.005558979231864214,
-0.20241712033748627,
0.14306306838989258,
-0.032438453286886215,
0.15809540450572968,
0.09539464116096497,
-0.003721254412084818,
0.052350565791130066,
-0.06450845301151276,
-0.004340671002864838,
0.06805745512247086,
0.15979689359664917,
0.043855465948581696,
0.012531810440123081,
-0.08856884390115738,
0.04172049090266228,
-0.042404282838106155,
0.13566438853740692,
-0.006950746290385723,
0.010226081125438213,
-0.11164488643407822,
0.11367204040288925,
-0.01752372831106186,
0.11318323761224747,
0.04455175995826721,
0.052111633121967316,
0.001637180452235043,
0.0029954705387353897,
0.05656488612294197,
0.010529669001698494,
-0.04492124170064926,
0.16544169187545776,
-0.03150163218379021,
0.09550853073596954,
0.19375841319561005,
-0.14482685923576355,
-0.05834023654460907,
0.13242894411087036,
-0.021312018856406212,
-0.024238424375653267,
-0.06070058047771454,
0.05978253483772278,
0.012207858264446259,
-0.019069360569119453,
0.170191690325737,
-0.043296054005622864,
0.06779635697603226,
0.007771084550768137,
-0.13215212523937225,
0.014248314313590527,
0.07706379145383835,
0.17894300818443298,
-0.20602741837501526,
0.11487969011068344,
0.11532586067914963,
-0.05600719153881073,
0.08461964130401611,
-0.007953261025249958,
-0.03574691340327263,
0.0013993058819323778,
0.05441125109791756,
-0.01174107100814581,
0.014890650287270546,
-0.135127454996109,
-0.03887699544429779,
0.06755676865577698,
-0.015593328513205051,
0.04370006173849106,
-0.07531247287988663,
-0.02333890087902546,
0.03207789361476898,
0.016829703003168106,
-0.04240170493721962,
0.1303488165140152,
-0.05420558527112007,
0.0505744107067585,
0.061048295348882675,
-0.002570164855569601,
0.015922822058200836,
0.06692063808441162,
-0.07106930762529373,
0.1741580069065094,
-0.05879313498735428,
-0.23315250873565674,
-0.10386738926172256,
-0.1592247188091278,
0.055153120309114456,
-0.008182692341506481,
0.05449838563799858,
-0.13543657958507538,
-0.11448050290346146,
-0.027395347133278847,
-0.005189280491322279,
-0.05931604653596878,
0.014912872575223446,
-0.10828398913145065,
0.02356230653822422,
-0.007817039266228676,
-0.03689287230372429,
-0.039537616074085236,
-0.002007182687520981,
0.0021985892672091722,
0.10115128010511398,
-0.1432993859052658,
0.00919196754693985,
0.039398375898599625,
-0.027954712510108948,
0.05095744505524635,
0.02246950939297676,
0.19536224007606506,
-0.05215498432517052,
0.056568752974271774,
0.19694925844669342,
-0.045381370931863785,
0.032277654856443405,
0.2077266275882721,
0.0019006776856258512,
-0.04035712778568268,
0.06369958072900772,
0.04363948106765747,
-0.11256913095712662,
-0.15714198350906372,
-0.0839567705988884,
-0.09797904640436172,
0.06035022437572479,
0.08672153204679489,
0.0520000196993351,
0.065435990691185,
0.13243915140628815,
0.02899870090186596,
0.07208355516195297,
-0.023982567712664604,
0.06239306554198265,
0.1164601519703865,
-0.03054739534854889,
0.11577694118022919,
-0.07606195658445358,
-0.08506367355585098,
0.04414747655391693,
0.011878015473484993,
0.1864883303642273,
0.06279261410236359,
-0.018347101286053658,
0.11445975303649902,
0.16583363711833954,
0.12298492342233658,
0.1086336150765419,
-0.052205640822649,
-0.014022576622664928,
-0.054657746106386185,
-0.03194566071033478,
0.004230187740176916,
0.037368353456258774,
-0.03684692457318306,
-0.12367188185453415,
0.020557207986712456,
0.0024489874485880136,
-0.004803663585335016,
0.2868199646472931,
-0.013310057111084461,
-0.1372973769903183,
-0.013163316063582897,
0.06169299781322479,
-0.02715044654905796,
-0.03091275691986084,
0.05449496582150459,
-0.15096861124038696,
-0.16758441925048828,
0.04604126140475273,
-0.0008240315946750343,
0.1377309262752533,
-0.003983706701546907,
0.007312685251235962,
-0.10466202348470688,
-0.05899559706449509,
0.017403678968548775,
0.04696759209036827,
-0.1559554636478424,
0.33108362555503845,
-0.002844726899638772,
-0.03314673528075218,
-0.0653681606054306,
-0.0024922427255660295,
0.04410577192902565,
0.12511876225471497,
0.1612788885831833,
-0.005546775180846453,
-0.1796417087316513,
-0.0649101510643959,
-0.062195371836423874,
0.045451026409864426,
-0.034823618829250336,
-0.003860595403239131,
0.006268290337175131,
-0.06049075350165367,
-0.02517361007630825,
0.003915352281183004,
-0.04729051887989044,
-0.12459088116884232,
-0.08930464088916779,
-0.008762918412685394,
-0.05913706123828888,
-0.08053116500377655,
0.008618626743555069,
-0.014428014867007732,
-0.007693376392126083,
0.19590234756469727,
0.07875048369169235,
-0.07178892940282822,
-0.09457095712423325,
0.02739819511771202,
0.111459881067276,
-0.1038859635591507,
0.10055320709943771,
-0.09814056754112244,
-0.044413741677999496,
-0.004581288434565067,
-0.06961703300476074,
0.083173967897892,
-0.05587589368224144,
0.05921792611479759,
0.044033776968717575,
-0.01042238436639309,
0.016298888251185417,
-0.008006937801837921,
0.009080996736884117,
0.031176645308732986,
-0.05624973401427269,
-0.09310068190097809,
-0.06967388093471527,
-0.005417379550635815,
0.009097417816519737,
0.01705799251794815,
-0.1346728503704071,
-0.059948381036520004,
-0.048443347215652466,
-0.0897538885474205,
0.15345150232315063,
0.1369698941707611,
-0.05677534639835358,
0.07435250282287598,
0.20917145907878876,
-0.008658023551106453,
-0.2862231433391571,
-0.1261836588382721,
-0.10580841451883316,
0.05726338550448418,
0.04897908493876457,
-0.12503843009471893,
0.13247732818126678,
-0.02956543117761612,
-0.04648308828473091,
-0.1235734149813652,
-0.11220810562372208,
-0.1503474861383438,
0.27322709560394287,
0.06578508019447327,
0.2638363838195801,
-0.08997201919555664,
-0.017610006034374237,
-0.05147365853190422,
-0.17104046046733856,
0.02111402340233326,
-0.19311684370040894,
0.07990964502096176,
0.0006745024584233761,
0.05472485348582268,
-0.00535168219357729,
-0.0260618943721056,
0.11154349148273468,
-0.11189620941877365,
-0.03711910545825958,
-0.11829078197479248,
-0.05400935932993889,
0.03546011820435524,
0.02500150538980961,
0.1503993421792984,
-0.0021707150153815746,
0.012890173122286797,
-0.09622841328382492,
-0.05813763290643692,
-0.03925276920199394,
-0.02089257724583149,
0.004868252668529749,
-0.08555691689252853,
-0.04982365295290947,
0.07605335861444473,
-0.006738140247762203,
0.016390690580010414,
0.045136190950870514,
-0.09058012813329697,
-0.05391283333301544,
0.06673852354288101,
0.06547030061483383,
-0.014457848854362965,
0.04563692584633827,
-0.0018318183720111847,
-0.07302398234605789,
0.07488922774791718,
-0.28621551394462585,
0.006461769342422485,
-0.008836334571242332,
0.007600876968353987,
0.05936600640416145,
0.009738038294017315,
-0.04025149345397949,
0.03837043419480324,
0.09874801337718964,
-0.054258085787296295,
-0.1383790522813797,
0.044566214084625244,
-0.10758133977651596,
0.06009405106306076,
-0.09358225762844086,
0.08627616614103317,
-0.11100833863019943,
-0.04806758090853691,
0.03248154744505882,
-0.016502365469932556,
-0.148622065782547,
0.03547185659408569,
0.06633872538805008,
0.01657210849225521,
-0.06554567813873291,
0.07338523119688034,
0.07987772673368454,
0.008310897275805473,
0.01858672872185707,
0.0797005146741867,
-0.16322094202041626,
-0.1030045822262764,
0.033128656446933746,
0.009571205824613571,
-0.037998829036951065,
-0.07656916975975037,
-0.08428070694208145,
-0.09626121073961258,
0.014451483264565468,
0.06277094036340714,
0.08679402619600296,
-0.056546639651060104,
-0.01974014937877655,
-0.004966266453266144,
-0.043325480073690414,
-0.012373212724924088,
0.15356400609016418,
0.00008089743641903624,
-0.07844424992799759,
-0.07745177298784256,
0.06919189542531967,
0.12975938618183136,
-0.07033819705247879,
-0.039998944848775864,
-0.128445565700531,
0.05836251378059387,
-0.10132806748151779,
-0.009479748085141182,
-0.09601116925477982,
-0.06609880179166794,
0.008920359425246716,
-0.10109993070363998,
-0.06468917429447174,
-0.006166683975607157,
-0.05541349947452545,
0.01591266319155693,
-0.03683840110898018,
0.007869252003729343,
-0.041807033121585846,
-0.04335830360651016,
0.17424456775188446,
-0.028679901733994484,
0.021041862666606903,
0.0740431472659111,
-0.06475602835416794,
0.050082895904779434,
-0.09754769504070282,
-0.08307013660669327,
0.02415924333035946,
-0.02584621123969555,
0.07719160616397858,
-0.08174921572208405,
0.0023360345512628555,
-0.010925264097750187,
0.09230709820985794,
-0.002601900603622198,
0.12760035693645477,
-0.1066691055893898,
0.022908909246325493,
-0.050833288580179214,
-0.06123006343841553,
-0.04347538948059082,
-0.009663883596658707,
0.11759181320667267,
0.08545482903718948,
0.043677084147930145,
-0.04818468168377876,
0.03601484000682831,
-0.05343564227223396,
0.04145679622888565,
-0.07696764171123505,
-0.077703557908535,
0.03682117164134979,
-0.11054627597332001,
-0.043998833745718,
-0.02038269117474556,
0.20466965436935425,
0.021347541362047195,
0.02195216901600361,
0.07284267246723175,
0.026807455345988274,
0.056969888508319855,
0.04084010049700737,
0.22799310088157654,
0.020840222015976906,
0.018954064697027206,
-0.09323937445878983,
0.052168119698762894,
-0.03804256021976471,
0.054993610829114914,
0.007262531667947769,
0.17497175931930542,
0.020167477428913116,
0.017882484942674637,
-0.015125453472137451,
0.10891986638307571,
-0.08518199622631073,
-0.07792334258556366,
-0.030488543212413788,
0.03361057490110397,
-0.053634848445653915,
0.01358440425246954,
0.2870487570762634,
-0.057462748140096664,
0.04123707115650177,
-0.005734821315854788,
-0.05535997822880745,
-0.1721825897693634,
-0.16636471450328827,
-0.1097206175327301,
-0.08372963219881058,
0.014479606412351131,
-0.031626783311367035,
-0.033444181084632874,
0.11565234512090683,
0.07265300303697586,
0.0022101427894085646,
0.12141622602939606,
0.006396206095814705,
-0.05923570320010185,
0.014423376880586147,
-0.031262561678886414,
-0.04901879280805588,
-0.011338350363075733,
-0.014998211525380611,
-0.10309917479753494,
0.002249928191304207,
-0.04651140794157982,
-0.007206096779555082,
-0.09930866211652756,
0.06900811195373535,
-0.06655540317296982,
-0.031548358500003815,
-0.06481221318244934,
0.04090616852045059,
0.026274392381310463,
0.1884630024433136,
0.0014579189009964466,
-0.0593859925866127,
-0.012735145166516304,
0.19829528033733368,
-0.022886890918016434,
-0.2171386182308197,
-0.2063063681125641,
0.11930754035711288,
0.02473335526883602,
-0.014312773942947388,
-0.008450367487967014,
0.010792161338031292,
-0.0639394000172615,
0.4166406989097595,
0.28002890944480896,
0.022519806399941444,
0.03207843750715256,
0.029651572927832603,
0.006461405195295811,
-0.011574101634323597,
0.11595381796360016,
0.09015842527151108,
0.15826785564422607,
-0.11211995035409927,
-0.05467315763235092,
-0.10788017511367798,
-0.10565505176782608,
-0.22960948944091797,
-0.037904832512140274,
0.10493195801973343,
-0.06026339530944824,
-0.024630188941955566,
0.12150640785694122,
-0.1612439900636673,
-0.0435376837849617,
-0.04452354833483696,
-0.08406209200620651,
-0.09960347414016724,
-0.048644401133060455,
-0.07240176945924759,
0.07564597576856613,
0.03086053766310215,
-0.07699428498744965,
0.03626119717955589,
0.05528589338064194,
0.052018437534570694,
-0.05906205251812935,
-0.0691937655210495,
0.1341233253479004,
0.16369979083538055,
0.10745754837989807,
-0.001063467818312347,
-0.010787378996610641,
0.08633878082036972,
0.028354011476039886,
-0.029770899564027786,
0.07486212253570557,
0.0024532675743103027,
0.07875993102788925,
-0.0014615367399528623,
0.016960307955741882,
-0.04711702838540077,
-0.10229837149381638,
-0.005009065382182598,
-0.09640258550643921,
0.08841104805469513,
-0.07284671068191528,
0.020252667367458344,
-0.09526541829109192,
0.10434908419847488,
-0.12641890347003937,
0.09548170864582062,
0.15418332815170288,
-0.05045778304338455,
-0.020342031493782997,
-0.1002352312207222,
0.05800778046250343,
-0.02513837441802025,
-0.13555051386356354,
-0.1245797649025917,
-0.07221478968858719,
-0.0554155670106411,
0.04532715678215027,
-0.0060117896646261215,
-0.21792884171009064,
-0.054929014295339584,
-0.07057659327983856,
0.0010130467126145959,
-0.053078483790159225,
0.07197534292936325,
0.0828758254647255,
0.019980907440185547,
-0.007877622731029987,
-0.1459466516971588,
-0.0023604677990078926,
0.050290822982788086,
-0.1269887387752533,
-0.10271596908569336
] |
null | null | transformers |
# roberta-base-thai-syllable-upos
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-syllable](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos")
s="หลายหัวดีกว่าหัวเดียว"
t=tokenizer.tokenize(s)
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(t,p)))
```
or
```
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-base-thai-syllable-upos")
print(nlp("หลายหัวดีกว่าหัวเดียว"))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["th"], "license": "apache-2.0", "tags": ["thai", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u0e2b\u0e25\u0e32\u0e22\u0e2b\u0e31\u0e27\u0e14\u0e35\u0e01\u0e27\u0e48\u0e32\u0e2b\u0e31\u0e27\u0e40\u0e14\u0e35\u0e22\u0e27"}]} | token-classification | KoichiYasuoka/roberta-base-thai-syllable-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"thai",
"pos",
"wikipedia",
"dependency-parsing",
"th",
"dataset:universal_dependencies",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"th"
] | TAGS
#transformers #pytorch #roberta #token-classification #thai #pos #wikipedia #dependency-parsing #th #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-base-thai-syllable-upos
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from roberta-base-thai-syllable. Every word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-base-thai-syllable-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from roberta-base-thai-syllable. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #thai #pos #wikipedia #dependency-parsing #th #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-base-thai-syllable-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from roberta-base-thai-syllable. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
71,
14,
63,
5,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #thai #pos #wikipedia #dependency-parsing #th #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-thai-syllable-upos## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from roberta-base-thai-syllable. Every word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
0.0424811951816082,
0.03360377252101898,
-0.006662005092948675,
0.05583079159259796,
0.15287621319293976,
-0.05649029091000557,
0.03427759185433388,
0.10054571181535721,
0.008446545340120792,
0.00623455923050642,
0.09183242917060852,
0.1618356853723526,
0.04071927070617676,
0.1154007613658905,
0.009464520029723644,
-0.3832760751247406,
0.09619887918233871,
0.03934667631983757,
-0.02798185870051384,
0.11994101852178574,
0.1356603056192398,
-0.006907116621732712,
0.10446281731128693,
0.06255196779966354,
-0.05121999606490135,
0.00154049729462713,
-0.046991199254989624,
-0.1498870700597763,
0.03663388639688492,
-0.01363629475235939,
0.09430631995201111,
-0.020389728248119354,
0.031877271831035614,
-0.1174754723906517,
0.0016057263128459454,
0.003710282500833273,
0.01726321317255497,
0.01735331304371357,
0.007654307410120964,
-0.04367571324110031,
-0.0018388048047199845,
-0.04061645641922951,
0.08400363475084305,
0.020633639767766,
-0.05385802686214447,
-0.17848439514636993,
-0.0361642949283123,
-0.0016496058087795973,
0.09419456869363785,
0.07222525030374527,
-0.063825823366642,
0.16152048110961914,
-0.07867162674665451,
0.042466528713703156,
0.0889778733253479,
-0.2543981373310089,
-0.026541929692029953,
-0.0413077287375927,
-0.022260837256908417,
0.010290064848959446,
0.00876900739967823,
-0.030384637415409088,
0.04075738042593002,
0.04630538821220398,
0.059760574251413345,
-0.08964242041110992,
0.012665227055549622,
-0.03583860024809837,
-0.14338426291942596,
0.060362592339515686,
0.25080013275146484,
0.040352825075387955,
-0.08371715992689133,
-0.057767320424318314,
-0.06894707679748535,
0.0392218753695488,
-0.024945054203271866,
-0.07583246380090714,
0.04403623193502426,
0.07147420942783356,
0.13552479445934296,
0.0009102564072236419,
-0.09338417649269104,
0.03281404823064804,
-0.147770494222641,
0.11102235317230225,
0.05335957929491997,
0.004874500446021557,
-0.09190045297145844,
-0.013160248287022114,
-0.07477433979511261,
-0.06966985017061234,
-0.019365578889846802,
-0.06401197612285614,
0.006363407708704472,
0.005570019595324993,
0.022628048434853554,
-0.006699074059724808,
0.0636257454752922,
0.11454584449529648,
-0.02941294200718403,
0.03268210217356682,
-0.08394673466682434,
0.04107377305626869,
0.11574037373065948,
0.17413383722305298,
-0.12074598670005798,
0.01270910631865263,
0.029421813786029816,
-0.05072631314396858,
0.004785803612321615,
-0.02015877142548561,
-0.04691973328590393,
0.011990970931947231,
0.06852058321237564,
-0.04313861206173897,
0.034973207861185074,
0.11496219038963318,
-0.04381332919001579,
-0.0746450275182724,
0.044915154576301575,
-0.13216014206409454,
-0.005798585247248411,
-0.054068319499492645,
-0.025953534990549088,
0.2495475560426712,
0.058304063975811005,
0.02224985510110855,
-0.1109018474817276,
0.058408718556165695,
-0.04577521234750748,
0.02369367703795433,
-0.05612380802631378,
-0.02327667735517025,
0.018982037901878357,
-0.06623641401529312,
0.021727949380874634,
-0.12266683578491211,
-0.1315092146396637,
-0.012999954633414745,
0.02849401906132698,
-0.043868061155080795,
-0.09085538238286972,
-0.03876077011227608,
0.018964704126119614,
-0.03195827826857567,
-0.0269086342304945,
-0.1027643010020256,
-0.032715097069740295,
0.06370092183351517,
-0.04139837250113487,
0.0741228461265564,
-0.08947048336267471,
0.09263180196285248,
-0.16324998438358307,
0.005892043933272362,
-0.23417994379997253,
0.08044563233852386,
-0.04926342889666557,
0.11951939761638641,
-0.09578268229961395,
-0.00395539216697216,
0.018181711435317993,
0.05735710635781288,
-0.07029512524604797,
0.11575417965650558,
-0.06800486147403717,
-0.07584748417139053,
0.28116676211357117,
-0.12636405229568481,
-0.07836368680000305,
0.16501906514167786,
0.004714832175523043,
0.16711704432964325,
0.06603922694921494,
0.1430809646844864,
-0.01652689091861248,
0.015723824501037598,
0.0741678774356842,
0.025708403438329697,
-0.04006515443325043,
0.02750927023589611,
0.1186184287071228,
-0.07332433015108109,
-0.07696778327226639,
0.09472829848527908,
-0.07929203659296036,
-0.011753440834581852,
0.0077316612005233765,
-0.05399205535650253,
-0.009413332678377628,
-0.008401624858379364,
-0.026939747855067253,
-0.03384668380022049,
0.07146257907152176,
-0.022113526239991188,
-0.08137818425893784,
0.21505430340766907,
0.08492893725633621,
-0.029526300728321075,
0.050167981535196304,
-0.13031168282032013,
0.1288718432188034,
0.05748866870999336,
0.02815892919898033,
-0.14593560993671417,
0.15669582784175873,
0.0037111404817551374,
0.12465955317020416,
0.0866839587688446,
-0.11384698003530502,
0.04069861024618149,
-0.05111382156610489,
0.020463908091187477,
0.02714688517153263,
0.13523109257221222,
0.005898597184568644,
0.021393954753875732,
-0.11810995638370514,
0.08469375967979431,
-0.029417293146252632,
0.16232384741306305,
-0.0150650879368186,
0.0312271099537611,
-0.04665105417370796,
0.10164233297109604,
-0.010415814816951752,
0.06015466898679733,
0.007878920063376427,
0.060222554951906204,
0.007455151993781328,
0.03394967317581177,
0.0631558895111084,
0.023600367829203606,
-0.04606165736913681,
0.10052947700023651,
-0.0395212285220623,
0.0956917330622673,
0.19609087705612183,
-0.1819673776626587,
-0.02716829814016819,
0.028315916657447815,
0.001153597142547369,
0.0001458799815736711,
-0.048765577375888824,
0.005835019983351231,
0.025892214849591255,
-0.009722386486828327,
0.12004179507493973,
-0.05726013705134392,
0.06566789001226425,
-0.0010774640832096338,
-0.1522059142589569,
-0.04573908448219299,
0.09087180346250534,
0.06571394205093384,
-0.13982094824314117,
0.17689919471740723,
0.17319399118423462,
-0.04184465482831001,
0.1353066861629486,
-0.07187791913747787,
-0.06626475602388382,
-0.022457372397184372,
0.08589083701372147,
-0.036144331097602844,
-0.0900726318359375,
-0.2347782552242279,
-0.008866547606885433,
0.07381505519151688,
0.022613221779465675,
-0.018390459939837456,
-0.056954070925712585,
-0.01589275896549225,
0.04141205921769142,
0.03162048012018204,
-0.0410124734044075,
0.04181685298681259,
-0.013470426201820374,
0.050769638270139694,
0.048822324723005295,
-0.02870682254433632,
0.03355515003204346,
0.0598285049200058,
-0.0816238597035408,
0.15559127926826477,
-0.1629296988248825,
-0.24590907990932465,
-0.14027893543243408,
-0.1561875343322754,
-0.019663790240883827,
-0.0015534498961642385,
0.06875979900360107,
-0.14864970743656158,
-0.064117431640625,
-0.001433833851478994,
0.0726076066493988,
-0.0469866506755352,
-0.0004153453919570893,
-0.0243451576679945,
0.012550094164907932,
-0.032709524035453796,
-0.025904839858412743,
-0.0703769251704216,
-0.026386944577097893,
-0.10772360116243362,
0.12502238154411316,
-0.08812123537063599,
-0.027034077793359756,
0.0779246911406517,
-0.038192760199308395,
-0.02052842639386654,
-0.0031279532704502344,
0.11758976429700851,
-0.0677189826965332,
-0.006778581999242306,
0.1763833612203598,
-0.07658156007528305,
0.06373121589422226,
0.11181649565696716,
0.014213599264621735,
-0.01269115786999464,
0.010834957472980022,
0.051056358963251114,
-0.033847879618406296,
-0.24771283566951752,
-0.06089973822236061,
-0.04482628405094147,
0.15326206386089325,
0.034411609172821045,
0.027696922421455383,
0.07586893439292908,
0.09286972135305405,
0.017234595492482185,
0.019183989614248276,
-0.03255779668688774,
0.06511728465557098,
0.17189116775989532,
-0.04385661706328392,
0.13790319859981537,
-0.049713753163814545,
-0.08347658812999725,
0.09680836647748947,
0.008569447323679924,
0.15477226674556732,
0.109176866710186,
0.041109614074230194,
0.10064298659563065,
0.14105837047100067,
0.05878539755940437,
0.025270111858844757,
-0.0325138159096241,
0.02494383417069912,
-0.05780553072690964,
-0.048704843968153,
-0.04260239750146866,
0.05046602338552475,
-0.02510564960539341,
-0.05213659256696701,
0.021128898486495018,
0.0184414591640234,
0.08044993132352829,
0.2670748233795166,
-0.00819648802280426,
-0.09390900284051895,
0.007330230437219143,
0.06450263410806656,
-0.04439719021320343,
-0.031554870307445526,
0.058725323528051376,
-0.1825275719165802,
-0.16126008331775665,
0.10633651167154312,
0.054757602512836456,
0.11113348603248596,
-0.09447475522756577,
0.02021101303398609,
-0.08956246823072433,
-0.027896838262677193,
0.04932815581560135,
0.02341458946466446,
-0.18824827671051025,
0.1896159052848816,
0.01021299697458744,
-0.03615371137857437,
-0.026174522936344147,
0.06381678581237793,
0.02387803979218006,
0.10560997575521469,
0.13355013728141785,
-0.003435941878706217,
-0.06385628879070282,
-0.04487702250480652,
-0.04525996372103691,
0.0010612698970362544,
-0.0187000073492527,
0.018409932032227516,
0.005040127784013748,
-0.050181254744529724,
0.040126100182533264,
-0.013510984368622303,
-0.01398757565766573,
-0.0514739491045475,
-0.10146807879209518,
0.013444196432828903,
-0.08377563208341599,
0.008099601604044437,
0.020449332892894745,
-0.06277286261320114,
-0.13514693081378937,
0.17955242097377777,
0.009376595728099346,
-0.09256868809461594,
-0.0739026814699173,
-0.002353822812438011,
0.006493147928267717,
-0.10392475873231888,
0.022597501054406166,
-0.07945450395345688,
-0.03524532914161682,
0.022940875962376595,
-0.043972328305244446,
0.10476895421743393,
-0.00046937630395404994,
0.049595192074775696,
0.025773916393518448,
0.0412360318005085,
0.05278396978974342,
0.007835338823497295,
-0.008201968856155872,
-0.0288511011749506,
-0.008116823621094227,
-0.06678671389818192,
-0.00020635922555811703,
0.11422345787286758,
0.041231244802474976,
0.07815069705247879,
-0.1641286015510559,
-0.16802935302257538,
-0.09967689216136932,
-0.0845976397395134,
0.16925674676895142,
0.1590636819601059,
-0.00016511918511241674,
0.06900440901517868,
0.24388469755649567,
-0.04984932392835617,
-0.2136213630437851,
-0.09370844066143036,
-0.041909776628017426,
0.011807842180132866,
0.007146632764488459,
-0.19395743310451508,
0.17879867553710938,
0.12423582375049591,
-0.0117456940934062,
-0.11481838673353195,
-0.041993506252765656,
-0.1024647131562233,
0.2872307598590851,
0.012176301330327988,
0.1998865157365799,
-0.11815106868743896,
-0.03285523131489754,
-0.011091618798673153,
-0.18517160415649414,
0.12665921449661255,
-0.12125478684902191,
0.0401899479329586,
0.01841629110276699,
0.056167613714933395,
-0.010046795010566711,
0.05069950222969055,
0.13660411536693573,
-0.036961618810892105,
-0.05557440221309662,
-0.08533284813165665,
-0.02175319939851761,
0.026089031249284744,
0.04708234220743179,
0.10674194991588593,
0.0434100478887558,
-0.072388656437397,
-0.1389305144548416,
-0.05719398334622383,
-0.022179314866662025,
-0.006163106765598059,
0.019391274079680443,
-0.10324762761592865,
-0.0013364064507186413,
0.0678555816411972,
0.004146459978073835,
-0.017808301374316216,
0.07688212394714355,
-0.06300459057092667,
-0.03057750128209591,
0.15080271661281586,
0.07799065113067627,
-0.09150408953428268,
0.07014786452054977,
-0.06658440828323364,
-0.08208765089511871,
0.08945106714963913,
-0.18551373481750488,
0.010678136721253395,
-0.0021118882577866316,
-0.02224033698439598,
0.10580164939165115,
0.025492966175079346,
-0.06457339972257614,
0.026054292917251587,
0.07238642871379852,
-0.02955595776438713,
-0.17675043642520905,
0.03417737036943436,
-0.0854652151465416,
0.0012033419916406274,
-0.0048757800832390785,
0.10193246603012085,
-0.03870095685124397,
-0.08223921805620193,
0.03217426687479019,
0.02834988944232464,
-0.12081384658813477,
0.060593996196985245,
-0.014483322389423847,
-0.017305945977568626,
-0.0989849716424942,
0.09556442499160767,
0.10857758671045303,
-0.0535685196518898,
0.04522903263568878,
0.047631628811359406,
-0.12302935123443604,
-0.07079394161701202,
0.0032766065560281277,
0.022658422589302063,
-0.04997387155890465,
-0.07465121150016785,
-0.022437967360019684,
-0.12234616279602051,
0.0378505140542984,
0.01379988994449377,
0.12951664626598358,
0.0018293283646926284,
0.012688004411756992,
0.018371019512414932,
0.0010747767519205809,
0.0003620853240136057,
0.13369688391685486,
0.004716683644801378,
-0.08785183727741241,
-0.1026260033249855,
0.024116242304444313,
0.1374327391386032,
-0.05679440498352051,
-0.09423310309648514,
-0.1316208690404892,
0.020176706835627556,
-0.05040000379085541,
-0.029555365443229675,
-0.11917440593242645,
-0.026960430666804314,
0.052604466676712036,
-0.0815354511141777,
-0.028814665973186493,
-0.02351301908493042,
-0.040008824318647385,
-0.0013561607338488102,
0.030101822689175606,
0.07876519858837128,
-0.08101384341716766,
-0.027654826641082764,
0.1327742636203766,
-0.02158309519290924,
0.05668977275490761,
0.1256699562072754,
-0.06443718075752258,
0.06640136986970901,
-0.05113673210144043,
-0.026501085609197617,
0.06891939789056778,
0.0016977246850728989,
0.07767694443464279,
-0.10087574273347855,
0.015046395361423492,
0.033211372792720795,
-0.006195015739649534,
0.021846739575266838,
0.18986967206001282,
-0.09701930731534958,
0.03478722646832466,
-0.05027211084961891,
-0.12434771656990051,
-0.05847691744565964,
0.005696662236005068,
0.11498048156499863,
0.057069066911935806,
0.11938358843326569,
-0.02892887033522129,
0.02342892251908779,
-0.05397934839129448,
0.03244931623339653,
-0.037188149988651276,
-0.07058075070381165,
0.0809076651930809,
-0.07951967418193817,
-0.03821577876806259,
0.005195342004299164,
0.1714794635772705,
0.0147959403693676,
0.007231101393699646,
0.07292971014976501,
0.011392699554562569,
0.045903634279966354,
0.03290713578462601,
0.13630278408527374,
0.08464068919420242,
-0.030425861477851868,
-0.06299932301044464,
0.02271351031959057,
0.013466986827552319,
0.035358976572752,
-0.0870981365442276,
0.1448819637298584,
-0.021839693188667297,
0.03755353391170502,
0.02428237907588482,
0.1411820501089096,
-0.1715536117553711,
-0.058147311210632324,
-0.010572509840130806,
-0.004364250227808952,
-0.016517003998160362,
0.12596669793128967,
0.2107345461845398,
-0.025494476780295372,
0.08374763280153275,
0.0064022112637758255,
-0.055449482053518295,
-0.1924569457769394,
-0.1664576679468155,
-0.09592555463314056,
-0.15707264840602875,
0.00487480778247118,
-0.03881492465734482,
-0.02450689487159252,
0.10470704734325409,
0.08721809834241867,
-0.03295730799436569,
0.029850991442799568,
-0.07007172703742981,
-0.08890119194984436,
0.02976980432868004,
-0.018707260489463806,
-0.05487575754523277,
-0.06326809525489807,
-0.03941558301448822,
-0.060529932379722595,
0.10550662130117416,
0.0037163260858505964,
0.008152630180120468,
-0.04006072133779526,
0.047359153628349304,
-0.14387191832065582,
-0.056101616472005844,
-0.005022226367145777,
0.04336394742131233,
-0.084116131067276,
0.1440870612859726,
0.024781523272395134,
-0.07330295443534851,
0.022973697632551193,
0.17500394582748413,
-0.024679742753505707,
-0.11257658153772354,
-0.2433898001909256,
0.08264611661434174,
0.03941960632801056,
0.05006600543856621,
0.029156194999814034,
-0.043949101120233536,
-0.08571268618106842,
0.2568715214729309,
0.22143574059009552,
0.04739134758710861,
-0.0008111487841233611,
0.03994939848780632,
0.01689993031322956,
-0.028843741863965988,
0.07179171591997147,
0.109195776283741,
0.12648141384124756,
-0.07382230460643768,
0.026176393032073975,
-0.11223380267620087,
-0.08579633384943008,
-0.21937616169452667,
-0.08054367452859879,
0.1110050305724144,
-0.00845390185713768,
-0.03522801771759987,
0.09262446314096451,
-0.1794380396604538,
-0.010549582540988922,
-0.06780785322189331,
-0.047966018319129944,
-0.10253016650676727,
-0.04879601672291756,
-0.03221454843878746,
0.06780803948640823,
0.026230189949274063,
0.011880352161824703,
-0.02246709354221821,
0.13862550258636475,
0.06350776553153992,
-0.08156061172485352,
-0.04091990739107132,
0.1299932450056076,
0.06888022273778915,
0.07467783987522125,
0.03200199827551842,
0.005806881934404373,
0.056075356900691986,
0.10315132886171341,
0.02642063796520233,
0.034425195306539536,
-0.021885568276047707,
0.0903233140707016,
-0.004378561396151781,
0.003930804319679737,
-0.014918816275894642,
-0.041058801114559174,
0.056391652673482895,
-0.048965539783239365,
-0.003145903581753373,
-0.11766466498374939,
-0.011513101868331432,
-0.07887283712625504,
0.1268014758825302,
-0.16594254970550537,
0.04552914947271347,
0.16797897219657898,
-0.015804514288902283,
-0.004535838030278683,
-0.11184713244438171,
0.02615768276154995,
-0.0062065147794783115,
-0.160459965467453,
-0.0632002204656601,
-0.09955190867185593,
-0.04503735899925232,
0.06757858395576477,
0.022671712562441826,
-0.13765747845172882,
-0.059154823422431946,
-0.018482843413949013,
0.016582662239670753,
-0.11431971937417984,
0.04630536586046219,
0.014973138459026814,
0.009029733017086983,
-0.029724199324846268,
-0.12411938607692719,
0.02689254656434059,
0.04686538502573967,
-0.05239301919937134,
-0.04347455874085426
] |
null | null | transformers |
# roberta-base-thai-syllable
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from [wangchanberta-base-wiki-syllable](https://huggingface.co/airesearch/wangchanberta-base-wiki-syllable). Character-embeddings are modified to use BertTokenizerFast. You can fine-tune `roberta-base-thai-syllable` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-ud-goeswith), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable")
```
| {"language": ["th"], "license": "apache-2.0", "tags": ["thai", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "<mask>", "widget": [{"text": "\u0e41\u0e1c\u0e19\u0e01\u0e19\u0e35\u0e49\u0e01\u0e33\u0e25\u0e31\u0e07<mask>\u0e01\u0e31\u0e1a\u0e04\u0e27\u0e32\u0e21\u0e17\u0e49\u0e32\u0e17\u0e32\u0e22\u0e43\u0e2b\u0e21\u0e48"}]} | fill-mask | KoichiYasuoka/roberta-base-thai-syllable | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"thai",
"masked-lm",
"wikipedia",
"th",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"th"
] | TAGS
#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-base-thai-syllable
## Model Description
This is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from wangchanberta-base-wiki-syllable. Character-embeddings are modified to use BertTokenizerFast. You can fine-tune 'roberta-base-thai-syllable' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
| [
"# roberta-base-thai-syllable",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from wangchanberta-base-wiki-syllable. Character-embeddings are modified to use BertTokenizerFast. You can fine-tune 'roberta-base-thai-syllable' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-base-thai-syllable",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from wangchanberta-base-wiki-syllable. Character-embeddings are modified to use BertTokenizerFast. You can fine-tune 'roberta-base-thai-syllable' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
56,
11,
95,
4
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #thai #masked-lm #wikipedia #th #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-thai-syllable## Model Description\n\nThis is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from wangchanberta-base-wiki-syllable. Character-embeddings are modified to use BertTokenizerFast. You can fine-tune 'roberta-base-thai-syllable' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use"
] | [
0.08140142261981964,
-0.09432225674390793,
-0.0037509531248360872,
0.041787829250097275,
0.1496889293193817,
-0.045594267547130585,
0.07427110522985458,
0.09215844422578812,
-0.0010895211016759276,
-0.009024042636156082,
0.08670873194932938,
0.09311164915561676,
0.03102237917482853,
0.10040903091430664,
0.02334871143102646,
-0.4080175757408142,
0.10159588605165482,
0.02391703799366951,
0.010511985048651695,
0.08746898174285889,
0.13558731973171234,
-0.0177842378616333,
0.0964934304356575,
0.06290562450885773,
-0.0813690647482872,
0.03845168650150299,
-0.014165188185870647,
-0.14436009526252747,
0.09170088917016983,
0.029952337965369225,
0.10070085525512695,
-0.02386724203824997,
0.00480422331020236,
-0.1670159250497818,
0.017035705968737602,
-0.021387025713920593,
0.04082375392317772,
-0.00038220369606278837,
-0.07699719071388245,
0.006975030992180109,
0.06615490466356277,
-0.01801839843392372,
0.05685649812221527,
0.01238466426730156,
-0.05259473994374275,
-0.10189508646726608,
0.009333902969956398,
0.013897686265408993,
0.13641320168972015,
0.08093149960041046,
-0.052201393991708755,
0.1227978765964508,
-0.14401204884052277,
0.07256537675857544,
0.17211231589317322,
-0.2713744342327118,
-0.020673366263508797,
0.0014365222305059433,
0.0330146849155426,
0.004326806403696537,
-0.025029899552464485,
0.03093048371374607,
-0.006185232196003199,
0.049585215747356415,
0.07143265753984451,
-0.13770684599876404,
-0.09866047650575638,
-0.06304165720939636,
-0.08996041119098663,
0.05240866169333458,
0.2084408402442932,
-0.022600149735808372,
-0.08587858080863953,
-0.09672162681818008,
-0.03788679465651512,
0.09396332502365112,
-0.07782458513975143,
-0.025126485154032707,
-0.00880143977701664,
0.05142875015735626,
0.07676723599433899,
-0.1063973531126976,
-0.08471688628196716,
-0.0009724459960125387,
-0.10322590917348862,
0.08874963968992233,
0.0598226822912693,
-0.02030283585190773,
-0.15151944756507874,
-0.0059885852970182896,
-0.14751788973808289,
-0.09551118314266205,
-0.02218310907483101,
-0.028403637930750847,
0.039046209305524826,
0.047697488218545914,
-0.029152769595384598,
-0.06869493424892426,
0.07647991925477982,
0.159026101231575,
0.018334733322262764,
0.08399882167577744,
-0.14732012152671814,
0.058302707970142365,
0.02128622494637966,
0.14930887520313263,
-0.08126503229141235,
-0.012023942545056343,
0.09649587422609329,
-0.09390778839588165,
0.015735726803541183,
-0.022345058619976044,
-0.09545686841011047,
-0.05284202843904495,
0.00727804796770215,
0.028178321197628975,
0.020076436921954155,
0.15181511640548706,
-0.0010763523168861866,
-0.02783851884305477,
0.11517120152711868,
-0.1322237253189087,
-0.06436817348003387,
-0.06089499965310097,
0.003493744879961014,
0.07307974249124527,
0.11561708897352219,
0.04604565352201462,
-0.10485165566205978,
0.10347547382116318,
-0.012432007119059563,
-0.018083840608596802,
-0.011847450397908688,
-0.07380300015211105,
-0.005168374162167311,
-0.12647166848182678,
0.026609785854816437,
-0.1316806674003601,
-0.15186916291713715,
0.031361039727926254,
0.03262019529938698,
-0.008937787264585495,
-0.05692104250192642,
-0.01578097976744175,
0.027805866673588753,
-0.03622186556458473,
-0.06499533355236053,
-0.007854476571083069,
-0.0220037754625082,
0.051586661487817764,
-0.023206979036331177,
0.13981088995933533,
-0.14830829203128815,
0.07793659716844559,
-0.15891054272651672,
0.020893972367048264,
-0.24902524054050446,
0.04178269952535629,
-0.034296683967113495,
0.09186451137065887,
-0.10660972446203232,
-0.01504737138748169,
-0.06715012341737747,
0.0797458291053772,
-0.008767440915107727,
0.11449848115444183,
-0.02488495036959648,
-0.06527943164110184,
0.2470031976699829,
-0.10372000187635422,
-0.06595420092344284,
0.1408202201128006,
-0.0008878225926309824,
0.20507143437862396,
0.09519997239112854,
0.1877545714378357,
0.0262215007096529,
-0.06235845759510994,
0.16138885915279388,
0.02345595322549343,
-0.0281530749052763,
0.012090415693819523,
0.03175438567996025,
-0.07238555699586868,
-0.08848116546869278,
0.0996081680059433,
-0.0987977460026741,
0.06348000466823578,
0.025716934353113174,
-0.02831612154841423,
-0.01452366542071104,
-0.04118598252534866,
0.0036456675734370947,
-0.0159294456243515,
0.123118557035923,
-0.006263845134526491,
-0.06481409072875977,
0.1339663863182068,
0.04147278517484665,
-0.06052330508828163,
0.11182209849357605,
-0.11483488231897354,
0.06050591170787811,
0.09027387946844101,
0.04566813260316849,
-0.18177028000354767,
0.10977461189031601,
0.0023147210013121367,
0.13287974894046783,
0.10268855839967728,
-0.10624606907367706,
0.008625091053545475,
-0.06667543202638626,
-0.027273787185549736,
0.06534607708454132,
0.17071527242660522,
0.008265995420515537,
0.02672998607158661,
-0.06459222733974457,
0.06553119421005249,
-0.010812869295477867,
0.07684317231178284,
-0.012744119390845299,
-0.001612963736988604,
-0.0893549844622612,
0.07613703608512878,
0.011681199073791504,
0.07570617645978928,
0.019792452454566956,
0.09507723897695541,
0.0012754742056131363,
0.04576316475868225,
0.04337429627776146,
0.004357869271188974,
-0.07453775405883789,
0.18073448538780212,
-0.03764347732067108,
0.011495537124574184,
0.16903240978717804,
-0.08254139125347137,
-0.019749533385038376,
0.05507480353116989,
0.032144129276275635,
-0.029770096763968468,
-0.02483317255973816,
0.009167523123323917,
0.08665312081575394,
0.0060522956773638725,
0.16316868364810944,
-0.061147164553403854,
0.09740570932626724,
-0.00675882026553154,
-0.14648279547691345,
-0.008125015534460545,
0.04933958128094673,
0.10711535811424255,
-0.16306649148464203,
0.0892794206738472,
0.07561182975769043,
-0.0653720423579216,
0.1779332309961319,
-0.02532608062028885,
-0.041054949164390564,
0.0267079658806324,
0.04175092279911041,
-0.005755476653575897,
-0.06859402358531952,
-0.19714786112308502,
-0.04052990674972534,
0.052746985107660294,
-0.0043325661681592464,
0.03555147722363472,
-0.053720008581876755,
-0.015629367902874947,
0.019794385880231857,
-0.0012529463274404407,
-0.023187648504972458,
0.10405285656452179,
-0.011719371192157269,
0.02450818009674549,
0.05879690498113632,
0.016670744866132736,
0.02790919877588749,
0.03939469903707504,
-0.0849609449505806,
0.17366160452365875,
-0.13393671810626984,
-0.32156679034233093,
-0.18595242500305176,
-0.24518141150474548,
0.01872238516807556,
-0.011250235140323639,
0.10340849310159683,
-0.13743247091770172,
-0.1030939593911171,
-0.01409109216183424,
0.12196852266788483,
-0.004165438935160637,
-0.012600166723132133,
-0.05458571016788483,
-0.019566921517252922,
-0.052957307547330856,
-0.04823855310678482,
-0.04698675870895386,
0.003061317140236497,
-0.039848145097494125,
0.10217520594596863,
-0.18403437733650208,
0.010953572578728199,
0.04112539067864418,
-0.013375897891819477,
0.005687430966645479,
-0.03401040658354759,
0.1853921115398407,
-0.06568451970815659,
0.022695837542414665,
0.1774817705154419,
-0.10480927675962448,
0.05748866870999336,
0.1968863308429718,
-0.000810645695310086,
-0.05346500501036644,
0.07397938519716263,
0.04241643473505974,
-0.08180639147758484,
-0.19450801610946655,
-0.0724220871925354,
-0.07999126613140106,
0.07545787841081619,
0.028722206130623817,
0.049848444759845734,
0.13773213326931,
0.06921789795160294,
0.013281898573040962,
0.0504114031791687,
-0.0007488090195693076,
0.05868741124868393,
0.22816425561904907,
-0.004847951233386993,
0.10620909184217453,
-0.04067191109061241,
-0.06092333793640137,
0.03217573091387749,
0.0036429790779948235,
0.17341777682304382,
0.09994245320558548,
0.11484517902135849,
0.08757349848747253,
0.15776748955249786,
0.1236010268330574,
0.07049104571342468,
-0.10570021718740463,
-0.002767108380794525,
-0.019221093505620956,
-0.04282625392079353,
0.014703487046062946,
0.032345570623874664,
0.012410154566168785,
-0.12182734906673431,
0.03415095806121826,
0.03528926149010658,
-0.008337938226759434,
0.2765432596206665,
-0.0634080097079277,
-0.06501483917236328,
-0.009839440695941448,
0.04913204908370972,
-0.06405716389417648,
-0.05501047894358635,
0.05585745349526405,
-0.11947812885046005,
-0.1868036836385727,
0.07418506592512131,
0.013446813449263573,
0.11543848365545273,
-0.011428531259298325,
0.03776472806930542,
-0.11958810687065125,
-0.04196244478225708,
0.031944841146469116,
0.03635101020336151,
-0.21485337615013123,
0.22750382125377655,
0.02423759736120701,
0.008724601939320564,
-0.08004987239837646,
0.029567791149020195,
0.016236796975135803,
0.08819554001092911,
0.1700150966644287,
-0.024563539773225784,
-0.05702890828251839,
-0.08790998160839081,
-0.0434957779943943,
0.04663310572504997,
0.05484135076403618,
0.032427240163087845,
0.014811862260103226,
-0.04015714302659035,
-0.018716273829340935,
0.001961732981726527,
-0.0535874105989933,
-0.12594135105609894,
-0.12026616185903549,
0.015653496608138084,
0.024586154147982597,
0.0001695750397630036,
0.016601208597421646,
-0.026477335020899773,
0.0011306877713650465,
0.19407252967357635,
0.04376718029379845,
-0.07919954508543015,
-0.08869873732328415,
-0.012539545074105263,
0.10044050961732864,
-0.13783173263072968,
0.11321751773357391,
-0.10493986308574677,
-0.032378897070884705,
-0.032413311302661896,
-0.07891704142093658,
0.09672577679157257,
0.00029227352933958173,
0.06528165936470032,
0.04522612318396568,
0.04813304543495178,
0.06510426104068756,
0.010867378674447536,
0.040979038923978806,
0.004822152201086283,
0.02310585230588913,
-0.06636076420545578,
-0.0992022305727005,
0.03307318314909935,
-0.028630783781409264,
0.009807608090341091,
-0.18557067215442657,
-0.13589158654212952,
-0.12520252168178558,
-0.12296411395072937,
0.24694161117076874,
0.1153322160243988,
-0.008587193675339222,
0.122740738093853,
0.25945430994033813,
-0.03151578828692436,
-0.2824573218822479,
-0.11354891955852509,
-0.044288311153650284,
0.07067843526601791,
0.00853839609771967,
-0.22900857031345367,
0.16167804598808289,
-0.018526827916502953,
-0.009724401868879795,
-0.07242663949728012,
-0.118370421230793,
-0.16979852318763733,
0.26028090715408325,
0.043839599937200546,
0.15793344378471375,
-0.10899072140455246,
-0.06821621209383011,
-0.05281528830528259,
-0.20980750024318695,
0.05885425955057144,
-0.09019781649112701,
0.09044654667377472,
0.02024906873703003,
0.087482750415802,
0.0013490593992173672,
0.02981148287653923,
0.08793976902961731,
-0.06578567624092102,
-0.04232003167271614,
-0.08208035677671432,
-0.05002665892243385,
0.013556466437876225,
0.05033301189541817,
0.15932179987430573,
-0.019713841378688812,
-0.05498908832669258,
-0.08003275841474533,
-0.0724320337176323,
-0.0822923481464386,
0.02082722634077072,
0.00791836716234684,
-0.08162358403205872,
-0.022821521386504173,
0.06358174979686737,
-0.01731903664767742,
0.015554839745163918,
0.10710084438323975,
-0.12838362157344818,
-0.04778759926557541,
0.05891251564025879,
0.09954618662595749,
-0.037667613476514816,
0.06354572623968124,
-0.001347410143353045,
-0.0832338035106659,
0.09310254454612732,
-0.21655167639255524,
0.020378069952130318,
-0.015611177310347557,
0.006495261564850807,
0.10247888416051865,
-0.005425509065389633,
-0.0673118382692337,
0.04634910076856613,
0.0886133462190628,
-0.052838657051324844,
-0.12015817314386368,
0.019694481045007706,
-0.06637422740459442,
0.057494811713695526,
-0.06916479021310806,
0.09633534401655197,
-0.061230771243572235,
-0.06900972127914429,
0.022772932425141335,
-0.0262759942561388,
-0.11405301839113235,
0.03430541604757309,
0.04543447494506836,
0.0042181010358035564,
-0.08435842394828796,
0.07618876546621323,
0.08951862156391144,
-0.016305288299918175,
0.08742465823888779,
0.1595180183649063,
-0.14081965386867523,
-0.06357254832983017,
-0.0352637879550457,
0.04171660169959068,
-0.013771622441709042,
-0.091570645570755,
-0.035873983055353165,
-0.10916128009557724,
-0.011766960844397545,
0.12456350773572922,
0.06022941693663597,
-0.03235222399234772,
-0.06020614132285118,
-0.008755511604249477,
-0.03696296364068985,
-0.011413701809942722,
0.11932653933763504,
-0.007966467179358006,
-0.029949834570288658,
-0.09860870242118835,
0.08034086972475052,
0.13786739110946655,
-0.05861911177635193,
-0.0729784369468689,
-0.10860295593738556,
0.051977671682834625,
-0.11196015775203705,
0.021800445392727852,
-0.1158294752240181,
-0.04364002123475075,
0.0168303269892931,
-0.07935891300439835,
-0.01575561985373497,
0.00727507658302784,
-0.052261900156736374,
-0.008013049140572548,
-0.048662230372428894,
0.007316798437386751,
-0.08634702116250992,
-0.03577954322099686,
0.1525718867778778,
-0.02654378116130829,
0.048470307141542435,
0.07831678539514542,
-0.10127145051956177,
0.13181617856025696,
-0.120193712413311,
-0.04755553603172302,
0.06204364076256752,
-0.02427397482097149,
0.05989829823374748,
-0.041846130043268204,
-0.028253350406885147,
0.014953060075640678,
0.1175079345703125,
-0.002294800477102399,
0.12426985055208206,
-0.13346387445926666,
-0.023929113522171974,
-0.07142866402864456,
-0.07079070806503296,
-0.029594551771879196,
0.01814410276710987,
0.12033656239509583,
0.03609948232769966,
0.0811040922999382,
-0.05653661862015724,
0.05545620992779732,
0.014046397060155869,
0.01904650591313839,
-0.06165336072444916,
-0.07688211649656296,
0.026447953656315804,
-0.12191195040941238,
-0.04334311559796333,
-0.012503034435212612,
0.11832280457019806,
-0.00205081794410944,
0.01618264615535736,
0.051397621631622314,
-0.016989268362522125,
0.0066675301641225815,
0.029344122856855392,
0.26479819416999817,
0.07262970507144928,
-0.013741600327193737,
-0.03970855847001076,
0.0067914677783846855,
-0.03521498292684555,
0.1486530303955078,
0.001281260047107935,
0.1653674691915512,
0.060503438115119934,
0.08577606081962585,
0.025028960779309273,
0.14108218252658844,
-0.08436724543571472,
-0.07833021879196167,
-0.039539217948913574,
0.04401172325015068,
-0.03469513729214668,
0.07490824162960052,
0.2135525345802307,
-0.0524439811706543,
0.0623665526509285,
0.02882840670645237,
-0.09476123005151749,
-0.17935334146022797,
-0.15692268311977386,
-0.10398440808057785,
-0.05753110349178314,
0.032610438764095306,
-0.07066892832517624,
-0.014448940753936768,
0.1024479940533638,
0.06493522971868515,
-0.03255016729235649,
0.1917840987443924,
0.009984837844967842,
-0.12301259487867355,
0.09932410717010498,
-0.05385179445147514,
-0.025287359952926636,
0.010573724284768105,
0.004229966551065445,
-0.059047847986221313,
0.023092098534107208,
-0.019485969096422195,
0.05006897822022438,
-0.0792093351483345,
0.050237756222486496,
-0.14634083211421967,
-0.07552758604288101,
-0.040392011404037476,
0.07361457496881485,
-0.008581111207604408,
0.2129349410533905,
0.040458161383867264,
-0.07397739589214325,
-0.013397861272096634,
0.1394805759191513,
0.009342631325125694,
-0.1917797327041626,
-0.18371033668518066,
0.1475885659456253,
0.055802877992391586,
-0.0056316242553293705,
-0.03618905320763588,
-0.03472176939249039,
-0.07457326352596283,
0.41303837299346924,
0.2237100750207901,
0.06265273690223694,
0.029052307829260826,
0.04007309302687645,
0.030327457934617996,
-0.02054482512176037,
0.1690460741519928,
0.10419413447380066,
0.178856760263443,
-0.0556374192237854,
-0.02715284936130047,
-0.08733735233545303,
-0.138907328248024,
-0.2393641173839569,
-0.06515495479106903,
0.10785897821187973,
-0.05694563314318657,
-0.03419291973114014,
0.09289728850126266,
-0.2016150951385498,
-0.04678542539477348,
-0.06091352552175522,
-0.08853332698345184,
-0.08167178183794022,
-0.05339939147233963,
-0.06376846134662628,
0.09554974734783173,
0.030657552182674408,
-0.032146286219358444,
0.018805837258696556,
0.1087920293211937,
0.04485085606575012,
-0.08489160984754562,
-0.03729509189724922,
0.1297767013311386,
0.031927548348903656,
0.0435364656150341,
0.031195396557450294,
0.03526518493890762,
0.028232408687472343,
0.08850619941949844,
0.0276657622307539,
0.08688580989837646,
0.007632061373442411,
0.10714630782604218,
-0.0015004526358097792,
0.07800690829753876,
-0.022811105474829674,
-0.03676176071166992,
0.0014650647062808275,
-0.05032053589820862,
0.07749271392822266,
-0.06132896989583969,
0.0012862997828051448,
-0.08438484370708466,
0.07061953097581863,
-0.16556918621063232,
0.06836164742708206,
0.1540461629629135,
-0.011976411566138268,
-0.029847288504242897,
-0.08903706818819046,
0.02781360037624836,
-0.017402321100234985,
-0.16416481137275696,
-0.15364034473896027,
-0.1163506805896759,
-0.05563010275363922,
0.07924891263246536,
0.0036337710916996002,
-0.27468371391296387,
-0.04788999259471893,
-0.056609347462654114,
0.03648853674530983,
-0.11111486703157425,
0.07338248938322067,
0.07374384999275208,
-0.002850976772606373,
0.0042759934440255165,
-0.20171166956424713,
0.04716154560446739,
0.05417558178305626,
-0.14208760857582092,
-0.10214630514383316
] |
null | null | transformers |
# roberta-classical-chinese-base-char
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-base](https://huggingface.co/ethanyt/guwenbert-base). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-base-char` for downstream tasks, such as [sentence-segmentation](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation), [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-ud-goeswith), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char")
```
## See Also
[SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u5b5f\u5b50[MASK]\u6881\u60e0\u738b"}]} | fill-mask | KoichiYasuoka/roberta-classical-chinese-base-char | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"classical chinese",
"literary chinese",
"ancient chinese",
"masked-lm",
"lzh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-base-char
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-base. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-base-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.
## How to Use
## See Also
SuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese
| [
"# roberta-classical-chinese-base-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-base. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-base-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-base-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-base. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-base-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
68,
13,
97,
4,
27
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-base-char## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-base. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-base-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.## How to Use## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
0.007963040843605995,
0.029324285686016083,
-0.0041060312651097775,
0.03161801025271416,
0.12388534098863602,
-0.04886306822299957,
0.13829447329044342,
0.10185476392507553,
-0.023784784600138664,
-0.006391921080648899,
0.037385862320661545,
-0.01254117488861084,
0.05741392821073532,
0.058286070823669434,
0.06629566103219986,
-0.3602024018764496,
0.05239376053214073,
0.08404644578695297,
-0.04073897376656532,
0.10310792177915573,
0.12991519272327423,
-0.016561035066843033,
0.09840457886457443,
0.05031576007604599,
0.007796459831297398,
0.018567703664302826,
-0.01856016181409359,
-0.13730263710021973,
0.11287850141525269,
0.014750623144209385,
0.07243657112121582,
-0.03845794498920441,
0.017585651949048042,
-0.1510700285434723,
0.014871831052005291,
-0.04032748192548752,
-0.018060004338622093,
0.0059629445895552635,
-0.03580871596932411,
-0.030291186645627022,
0.09705215692520142,
0.01602816954255104,
0.03327412158250809,
0.0448695570230484,
-0.0499260351061821,
-0.07564663887023926,
-0.04592025279998779,
0.16593149304389954,
0.08631128072738647,
0.09972003847360611,
-0.012127884663641453,
0.0831461250782013,
-0.11100438982248306,
0.055782098323106766,
0.1915673017501831,
-0.36175215244293213,
-0.016511475667357445,
0.017868593335151672,
0.029569517821073532,
0.01673066057264805,
-0.06460500508546829,
-0.011825472116470337,
-0.02589944191277027,
-0.04603879153728485,
-0.02424379251897335,
-0.1192471906542778,
-0.016427747905254364,
0.04266424477100372,
-0.10978271067142487,
0.06804073601961136,
0.22141845524311066,
-0.04862353205680847,
-0.07080627977848053,
-0.08915466070175171,
-0.012128540314733982,
0.05339834839105606,
-0.08955539017915726,
-0.041676778346300125,
0.019680477678775787,
0.06233436241745949,
0.09051089733839035,
-0.11997604370117188,
-0.025537218898534775,
-0.05975840985774994,
-0.05379381775856018,
0.0194456335157156,
0.05946517363190651,
-0.018884385004639626,
-0.0980997383594513,
0.0019344589672982693,
-0.08662961423397064,
-0.06268227100372314,
0.019614670425653458,
-0.06348665803670883,
0.01506004948168993,
0.09304843097925186,
0.007552673574537039,
-0.01489876490086317,
0.04232501983642578,
0.2470439076423645,
0.0766075998544693,
0.08703869581222534,
-0.003986806608736515,
0.053456660360097885,
-0.013598542660474777,
0.13906338810920715,
-0.07179144024848938,
-0.08675067871809006,
0.09704256057739258,
-0.019290931522846222,
0.007241498213261366,
-0.0337185300886631,
-0.13648490607738495,
-0.01390021201223135,
-0.005428395699709654,
0.014735673554241657,
0.0006783052813261747,
0.05336054041981697,
-0.02520509995520115,
-0.012630939483642578,
0.08709666132926941,
-0.13545052707195282,
-0.0073302509263157845,
-0.049162816256284714,
-0.03238172084093094,
0.13655570149421692,
0.04547261819243431,
0.028195444494485855,
-0.0945340171456337,
0.05351276695728302,
-0.056833665817976,
0.0006491427193395793,
-0.012441311962902546,
-0.030867375433444977,
-0.005373741965740919,
-0.16601981222629547,
-0.000004234999778418569,
-0.10850011557340622,
-0.1530226767063141,
0.015405136160552502,
0.01950927823781967,
-0.008148462511599064,
-0.07467228174209595,
-0.0023990883491933346,
-0.06325503438711166,
-0.06925317645072937,
-0.01103059109300375,
-0.07216047495603561,
-0.03020697832107544,
0.04321718215942383,
0.022853665053844452,
0.022275472059845924,
-0.07282241433858871,
0.05193805694580078,
-0.16701887547969818,
0.01985478773713112,
-0.27160245180130005,
0.07010607421398163,
-0.006356436759233475,
0.05886176601052284,
-0.044257499277591705,
0.0015103052137419581,
0.0045612882822752,
0.055282995104789734,
-0.0009743992704898119,
0.08847002685070038,
-0.09098691493272781,
-0.09217092394828796,
0.25418585538864136,
-0.15382592380046844,
-0.060187384486198425,
0.13502205908298492,
-0.00697777234017849,
0.1039254367351532,
0.08383139967918396,
0.14927002787590027,
0.06927933543920517,
-0.052201636135578156,
0.04114320129156113,
0.051709890365600586,
-0.02491985820233822,
0.04232170060276985,
0.09671951085329056,
-0.008250745944678783,
-0.023319436237215996,
0.0500500351190567,
-0.177407369017601,
0.0022716328967362642,
0.01597072184085846,
-0.10250391811132431,
-0.003482234198600054,
-0.02943878248333931,
0.024392513558268547,
-0.03438525274395943,
0.10121480375528336,
-0.009036688134074211,
-0.08349721878767014,
0.022489896044135094,
0.03802642598748207,
-0.021294280886650085,
0.12069392949342728,
-0.15222014486789703,
0.11070790141820908,
0.20394392311573029,
0.08322302252054214,
-0.16599613428115845,
0.1325613260269165,
0.02176680602133274,
0.13413800299167633,
0.09289450198411942,
-0.11166005581617355,
-0.022206565365195274,
0.0005026753642596304,
-0.04757838323712349,
0.05451841279864311,
0.029192078858613968,
-0.022425377741456032,
0.013333242386579514,
-0.13008664548397064,
0.018776249140501022,
-0.0035802226047962904,
0.15626882016658783,
-0.025720516219735146,
0.027009662240743637,
-0.13372622430324554,
0.05542869120836258,
-0.026901045814156532,
0.0721074715256691,
-0.03224106505513191,
0.09207306057214737,
-0.03890841454267502,
0.06667279452085495,
0.023175137117505074,
0.030779672786593437,
-0.15797059237957,
0.1744120717048645,
-0.05557940527796745,
-0.02675730176270008,
0.15229342877864838,
-0.08152758330106735,
-0.06477171182632446,
0.006451111286878586,
-0.005570031236857176,
-0.03748061880469322,
0.01984754391014576,
0.00505103450268507,
0.17461928725242615,
-0.02937246672809124,
0.1461433619260788,
-0.09635765105485916,
0.0999210998415947,
-0.04290385544300079,
-0.12673544883728027,
0.017072834074497223,
0.09806140512228012,
0.04763099551200867,
-0.05729639157652855,
0.10280448943376541,
0.015022641979157925,
-0.06858260929584503,
0.10704371333122253,
-0.009565954096615314,
-0.044286228716373444,
-0.015804661437869072,
0.03189851716160774,
0.015489445067942142,
0.060357142239809036,
-0.15923653542995453,
-0.07182834297418594,
0.02579098753631115,
-0.054566144943237305,
0.020374419167637825,
-0.11917952448129654,
-0.03547811135649681,
-0.00413091154769063,
-0.03680352494120598,
0.008642217144370079,
0.012373487465083599,
-0.052050620317459106,
0.0854102224111557,
0.0020483401603996754,
-0.012787793762981892,
0.010783996433019638,
0.028101684525609016,
-0.09842201322317123,
0.07821624726057053,
-0.15183530747890472,
-0.24007491767406464,
-0.07262236624956131,
-0.2031223624944687,
0.029192933812737465,
0.035863522440195084,
0.033679377287626266,
-0.1157914474606514,
-0.06196543201804161,
-0.0638984814286232,
-0.05446743965148926,
-0.021969184279441833,
-0.04289587214589119,
-0.031787268817424774,
0.0387328639626503,
-0.06792968511581421,
-0.0013770043151453137,
-0.015849024057388306,
-0.02233964577317238,
-0.07810267060995102,
0.07202718406915665,
-0.11258739978075027,
0.05554153397679329,
0.09210199117660522,
0.037216395139694214,
-0.012940921820700169,
-0.07577192038297653,
0.002208958612754941,
-0.05308689922094345,
0.01666153222322464,
0.22192667424678802,
-0.04230768233537674,
0.038840316236019135,
0.04520124942064285,
-0.039017681032419205,
0.00586568983271718,
0.026492206379771233,
0.026989519596099854,
-0.09305137395858765,
-0.19079743325710297,
-0.05561469495296478,
-0.10326271504163742,
0.14707699418067932,
-0.01720043644309044,
0.05180676653981209,
0.07882571220397949,
0.03820934146642685,
-0.0192756075412035,
0.101799875497818,
0.05952371656894684,
0.06468018144369125,
0.10249991714954376,
0.0061115394346416,
0.09992701560258865,
-0.0480884350836277,
-0.06021406501531601,
0.04132894054055214,
0.015368722379207611,
0.12877961993217468,
0.03978094831109047,
0.09489075094461441,
0.03802311420440674,
0.2195235937833786,
0.09623025357723236,
-0.01311582699418068,
-0.061263591051101685,
0.02858693152666092,
-0.036147672683000565,
-0.04731559380888939,
-0.0153654208406806,
0.08737741410732269,
0.018827974796295166,
-0.08543515205383301,
0.017412278801202774,
0.19838972389698029,
0.05786893144249916,
0.17503724992275238,
-0.029135921970009804,
-0.027459383010864258,
-0.02581629902124405,
0.03890133649110794,
-0.010388486087322235,
-0.016768481582403183,
0.1166193038225174,
-0.050730302929878235,
-0.20862166583538055,
0.0950218215584755,
0.01302427425980568,
0.13990403711795807,
0.09501814842224121,
0.03366291895508766,
-0.11391595751047134,
0.018914150074124336,
0.048090558499097824,
0.046656910330057144,
-0.3048323392868042,
0.13454382121562958,
0.0004577625950332731,
-0.00011727668606908992,
-0.0820835754275322,
0.01807764545083046,
0.07726794481277466,
0.009312138892710209,
0.18759949505329132,
-0.03200108930468559,
-0.03027126006782055,
0.017187824472784996,
-0.0922253280878067,
0.04928820952773094,
0.08354684710502625,
0.004561716224998236,
0.004138299264013767,
-0.04932037368416786,
-0.028456369414925575,
-0.03674008324742317,
0.020569708198308945,
-0.06925615668296814,
-0.14490292966365814,
0.007966981269419193,
-0.042310599237680435,
-0.04695620387792587,
0.01583840139210224,
-0.0065262760035693645,
-0.03157155215740204,
0.127460315823555,
0.027164198458194733,
-0.04646139591932297,
-0.03162388876080513,
0.013210596516728401,
0.0562598779797554,
-0.08368455618619919,
0.04199904575943947,
-0.0673394724726677,
-0.02234538458287716,
-0.04039478302001953,
-0.04873817786574364,
0.06544017046689987,
-0.01813189685344696,
-0.04580216482281685,
-0.0003636401379480958,
0.11961211264133453,
0.04281634837388992,
0.07941377907991409,
0.007483770605176687,
-0.01741258054971695,
0.005273646209388971,
-0.10295384377241135,
-0.06870795786380768,
-0.06558844447135925,
0.009120412170886993,
0.16331590712070465,
-0.23621393740177155,
-0.10084042698144913,
-0.15265652537345886,
-0.09340298920869827,
0.1656321883201599,
0.11662578582763672,
-0.04002419114112854,
0.18105773627758026,
0.18589326739311218,
-0.0518464557826519,
-0.3032996654510498,
-0.1422681361436844,
-0.06590601801872253,
0.0517367348074913,
-0.011230058036744595,
-0.23121334612369537,
0.11971863359212875,
-0.017945753410458565,
0.0029437404591590166,
-0.07540754973888397,
-0.16327916085720062,
-0.1459600329399109,
0.17573021352291107,
-0.03976503014564514,
0.07811485230922699,
-0.14733435213565826,
-0.0582064650952816,
-0.015758108347654343,
-0.0635208934545517,
0.021102193742990494,
-0.09421144425868988,
0.08229871094226837,
0.01196818333119154,
-0.039667412638664246,
-0.02186252921819687,
-0.004312604200094938,
0.08782849460840225,
-0.0008869998855516315,
-0.035841818898916245,
-0.05576378479599953,
-0.06573977321386337,
0.2099257856607437,
0.06313685327768326,
0.10426196455955505,
-0.07580246031284332,
-0.002335969591513276,
-0.08353424072265625,
-0.04839596897363663,
-0.0019361356971785426,
-0.018868906423449516,
-0.027210911735892296,
-0.05184454470872879,
-0.0955008864402771,
0.10806641727685928,
-0.002286141738295555,
0.032986726611852646,
0.152426615357399,
-0.03929712250828743,
-0.007583199068903923,
0.015661893412470818,
0.06762368232011795,
-0.027992499992251396,
0.048920709639787674,
-0.024795878678560257,
-0.03321145102381706,
0.08343013375997543,
-0.09547343105077744,
0.0272071436047554,
0.021672336384654045,
0.022748658433556557,
0.10017577558755875,
0.044280920177698135,
-0.04027889668941498,
0.03753205016255379,
0.031095556914806366,
-0.1438484936952591,
-0.11764292418956757,
-0.04885181412100792,
-0.08076351135969162,
0.0521673858165741,
-0.03609774261713028,
0.07776571065187454,
-0.08189211040735245,
-0.07035005837678909,
0.020972080528736115,
0.023718319833278656,
-0.09067315608263016,
0.03762098029255867,
-0.025692831724882126,
-0.006243441719561815,
-0.09885869920253754,
0.06440804153680801,
0.09816928952932358,
-0.011886682361364365,
0.06873813271522522,
0.13051852583885193,
-0.13227589428424835,
-0.02556772157549858,
-0.09392713755369186,
0.154012069106102,
-0.02966279909014702,
-0.05759193375706673,
-0.11076709628105164,
-0.15624088048934937,
0.025742121040821075,
0.07415301352739334,
0.07821375131607056,
-0.021761996671557426,
-0.041976723819971085,
-0.03196164593100548,
-0.055310558527708054,
0.011007835157215595,
0.12467778474092484,
-0.04042992368340492,
-0.02720632217824459,
0.023922529071569443,
0.08584414422512054,
0.14347034692764282,
-0.0501641184091568,
-0.05900229513645172,
-0.1319199800491333,
0.05179482325911522,
-0.08138386160135269,
0.03862127661705017,
-0.11553727090358734,
-0.05221152678132057,
-0.012283657677471638,
-0.03750302642583847,
-0.022625401616096497,
-0.006491259206086397,
-0.03438369184732437,
-0.033302854746580124,
-0.022662179544568062,
0.05958765372633934,
-0.09903468936681747,
0.002936521079391241,
0.12862569093704224,
-0.0452912375330925,
0.06498278677463531,
0.15457089245319366,
-0.04390033707022667,
0.06087438762187958,
-0.09752079844474792,
-0.038592927157878876,
0.00958204735070467,
0.063788041472435,
-0.00820317491889,
-0.01001091580837965,
-0.015446326695382595,
0.04421480372548103,
0.02406465634703636,
0.0242067351937294,
0.13215889036655426,
-0.10059146583080292,
0.0007793750846758485,
-0.15965798497200012,
-0.09132319688796997,
-0.06110036373138428,
0.03352577984333038,
0.11484881490468979,
0.1045495867729187,
0.08637109398841858,
-0.075418621301651,
0.09066325426101685,
-0.05971471592783928,
0.01692790724337101,
-0.04971204325556755,
-0.02607845515012741,
-0.031865328550338745,
-0.09624653309583664,
-0.002460559830069542,
0.005673954263329506,
0.2218390256166458,
-0.04776918143033981,
-0.04654676839709282,
0.040274444967508316,
0.06015153229236603,
0.09744716435670853,
0.009241004474461079,
0.1757427304983139,
0.11863232403993607,
-0.029496027156710625,
0.017007900401949883,
0.023614516481757164,
-0.04069335386157036,
0.03972940519452095,
0.08140649646520615,
0.10204743593931198,
0.13156211376190186,
0.09788018465042114,
0.022672463208436966,
0.031287532299757004,
0.03592256084084511,
0.022898264229297638,
-0.04751913622021675,
-0.015394543297588825,
-0.023214401677250862,
0.20641082525253296,
0.23449181020259857,
-0.06473440676927567,
0.1432616263628006,
0.044972777366638184,
-0.11972364038228989,
-0.13442443311214447,
-0.15075814723968506,
-0.05778934061527252,
-0.05910513922572136,
-0.004132866859436035,
-0.05349704995751381,
-0.030735980719327927,
0.014505218714475632,
0.01575620099902153,
-0.0407806858420372,
0.05328809469938278,
-0.09037700295448303,
-0.09508165717124939,
0.07765490561723709,
-0.010121013037860394,
0.01638057827949524,
0.03714125230908394,
-0.0699264332652092,
-0.016076713800430298,
-0.029713798314332962,
-0.014100122265517712,
0.048562679439783096,
0.01619608886539936,
0.10799766331911087,
-0.06490443646907806,
-0.030121399089694023,
0.007018389645963907,
-0.018907317891716957,
0.0690990537405014,
0.15299423038959503,
0.04177190363407135,
-0.07068657130002975,
-0.00011311809794278815,
0.2063083052635193,
0.007475059479475021,
-0.10046394914388657,
-0.15034323930740356,
0.07000792771577835,
0.04483378306031227,
-0.05681173503398895,
0.012720860540866852,
-0.00025262709823437035,
-0.019507981836795807,
0.2861584424972534,
0.31827312707901,
-0.09287551790475845,
-0.0028074863366782665,
-0.027497990056872368,
0.020742427557706833,
0.04628152400255203,
0.04008810222148895,
0.12890028953552246,
0.29759490489959717,
-0.04244261607527733,
-0.06614424288272858,
-0.1444414258003235,
-0.05058575049042702,
-0.2192787081003189,
-0.013393168337643147,
0.09817131608724594,
-0.08517184108495712,
0.0025595487095415592,
0.08222468942403793,
-0.1962159425020218,
-0.08036238700151443,
0.015863237902522087,
-0.12096666544675827,
-0.049603961408138275,
0.010489030741155148,
-0.014327216893434525,
0.1137879490852356,
0.03349824249744415,
0.017195291817188263,
0.059778809547424316,
0.08811472356319427,
0.07229285687208176,
-0.08560773730278015,
-0.006988536566495895,
0.12314023077487946,
0.045398201793432236,
0.090097576379776,
0.0036923731677234173,
0.0429643914103508,
0.04176728427410126,
0.1356741338968277,
0.06762375682592392,
0.06266812235116959,
0.01401012483984232,
-0.0018850750057026744,
-0.004278786014765501,
-0.02738766372203827,
0.0028184426482766867,
0.013829422183334827,
0.053002528846263885,
0.07448023557662964,
0.06719721853733063,
-0.005400271154940128,
-0.05585097521543503,
-0.07599477469921112,
0.08749466389417648,
-0.1916607916355133,
0.09349904209375381,
0.16262610256671906,
-0.05011949688196182,
0.00880570150911808,
-0.05971087887883186,
-0.025499407202005386,
-0.05175912752747536,
-0.160731703042984,
-0.08638828992843628,
-0.09143676608800888,
-0.009384806267917156,
-0.008342569693922997,
-0.019828809425234795,
-0.17539562284946442,
-0.08851800858974457,
-0.055202025920152664,
0.013617166317999363,
-0.14271828532218933,
0.03171750530600548,
0.09034938365221024,
0.012725249864161015,
-0.02365380898118019,
-0.18961885571479797,
0.046948108822107315,
0.06733080744743347,
-0.11979059129953384,
-0.09544876217842102
] |
null | null | transformers |
# roberta-classical-chinese-base-sentence-segmentation
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S").
## How to Use
```py
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation")
s="子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print("".join(c+"。" if q=="E" or q=="S" else c for c,q in zip(s,p)))
```
## Reference
Koichi Yasuoka: [Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models](http://hdl.handle.net/2433/266539), IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "token-classification"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]} | token-classification | KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"classical chinese",
"literary chinese",
"ancient chinese",
"sentence segmentation",
"lzh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-base-sentence-segmentation
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-base-char. Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S").
## How to Use
## Reference
Koichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
| [
"# roberta-classical-chinese-base-sentence-segmentation",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-base-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").",
"## How to Use",
"## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-base-sentence-segmentation",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-base-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").",
"## How to Use",
"## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
69,
18,
84,
4,
59
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-base-sentence-segmentation## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-base-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").## How to Use## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
0.033020004630088806,
0.09912887215614319,
-0.004081005696207285,
0.029614975675940514,
0.07378548383712769,
-0.05866677314043045,
0.17236043512821198,
0.10782459378242493,
-0.08569099754095078,
0.009640580043196678,
0.05670551955699921,
0.024699939414858818,
0.06530049443244934,
-0.015874173492193222,
-0.025921298190951347,
-0.3643780052661896,
0.05717892199754715,
0.12786220014095306,
0.03316725045442581,
0.11039350181818008,
0.15200522541999817,
-0.0813622996211052,
0.06894811242818832,
0.06667128205299377,
-0.1016976535320282,
0.0011104790028184652,
-0.008995380252599716,
-0.10860984027385712,
0.13170240819454193,
0.025744888931512833,
0.11704245209693909,
0.0011075773509219289,
0.023741478100419044,
-0.09842576086521149,
0.0011523645371198654,
-0.02918819710612297,
-0.03024578094482422,
0.05102809518575668,
0.01646321453154087,
0.007348113227635622,
0.12193697690963745,
-0.015425009652972221,
0.07635451853275299,
0.027205972000956535,
-0.08807775378227234,
-0.07027099281549454,
-0.08537304401397705,
0.21772199869155884,
0.1588590145111084,
0.0900273397564888,
-0.044784996658563614,
0.05034487694501877,
-0.05335870385169983,
0.06425505131483078,
0.16030454635620117,
-0.36587241291999817,
-0.018605994060635567,
-0.04960774630308151,
0.03548077493906021,
0.03238600492477417,
-0.08244214951992035,
-0.004317508079111576,
0.020825034007430077,
-0.03320644795894623,
0.006312036421149969,
-0.11615283787250519,
-0.04898528382182121,
0.028928816318511963,
-0.14273975789546967,
0.04644162952899933,
0.2853943407535553,
-0.019413229078054428,
-0.034407179802656174,
-0.03146633505821228,
-0.02114349789917469,
-0.02931206487119198,
-0.049871355295181274,
-0.09729065746068954,
0.03297979012131691,
0.01820524036884308,
0.09430987387895584,
-0.10924647748470306,
-0.08962157368659973,
-0.023019183427095413,
-0.11974984407424927,
0.12893792986869812,
0.058931615203619,
0.0063264500349760056,
-0.12933221459388733,
-0.01810612343251705,
-0.03671707957983017,
-0.04153630882501602,
-0.011053003370761871,
-0.048135049641132355,
-0.02981434389948845,
-0.0022349748760461807,
0.0003834376693703234,
-0.10373513400554657,
-0.06718151271343231,
0.1847652643918991,
-0.06364849954843521,
0.05802401527762413,
0.04222702980041504,
0.03969276696443558,
0.04077446460723877,
0.14862780272960663,
-0.02156560868024826,
0.019709665328264236,
0.05653217434883118,
-0.019373059272766113,
0.050282809883356094,
0.0022628381848335266,
-0.12086308002471924,
0.00004260367131792009,
0.040127892047166824,
0.014236693270504475,
-0.04464781656861305,
0.05234209820628166,
0.010556638240814209,
-0.027474569156765938,
0.058108482509851456,
-0.10884261131286621,
-0.008450252003967762,
-0.028927434235811234,
-0.038459789007902145,
0.11671172082424164,
-0.012269118800759315,
0.027562281116843224,
-0.0897451862692833,
0.12801428139209747,
-0.10488861799240112,
0.012868775986135006,
0.0013395844725891948,
-0.026284733787178993,
0.014916669577360153,
-0.13570664823055267,
-0.028801091015338898,
-0.07048050314188004,
-0.08851836621761322,
0.001346128061413765,
-0.027439400553703308,
-0.017906099557876587,
-0.10980535298585892,
-0.007395035587251186,
-0.04638764634728432,
-0.030576903373003006,
-0.012258612550795078,
-0.015410834923386574,
-0.008388949558138847,
0.026183703914284706,
0.04028095304965973,
0.02608237788081169,
-0.0948217436671257,
0.07772967964410782,
-0.1250932365655899,
0.02439230866730213,
-0.15310551226139069,
0.03250107541680336,
-0.007975596934556961,
0.002530973171815276,
-0.023091699928045273,
0.02498573623597622,
0.12495527416467667,
0.05281420424580574,
-0.04313844069838524,
0.10573019087314606,
-0.14591467380523682,
-0.09003021568059921,
0.18338800966739655,
-0.1484333723783493,
-0.08986218273639679,
0.1246737390756607,
-0.011866186745464802,
0.00754140131175518,
0.07018433511257172,
0.19620917737483978,
-0.12742382287979126,
-0.0014030892634764314,
-0.05784936621785164,
-0.004522179719060659,
-0.00929243117570877,
0.04847518727183342,
0.11512412875890732,
0.032748132944107056,
0.08582117408514023,
-0.009695461951196194,
-0.03386484831571579,
-0.1086052730679512,
-0.02797459252178669,
-0.08784232288599014,
-0.007891377434134483,
-0.01896192692220211,
0.062937431037426,
-0.027181526646018028,
0.10752610117197037,
-0.04404474422335625,
-0.05836867913603783,
0.14344720542430878,
0.05829106271266937,
0.013935266993939877,
0.1075306385755539,
-0.12481045722961426,
0.10107624530792236,
0.11663421988487244,
0.027942301705479622,
-0.18672145903110504,
0.049388907849788666,
0.04177404195070267,
0.13878841698169708,
0.10519897937774658,
-0.05598597973585129,
-0.0565812923014164,
-0.005047473590821028,
-0.09416182339191437,
0.027460835874080658,
0.0010081104701384902,
0.012932644225656986,
-0.038077615201473236,
-0.17346927523612976,
0.00998186320066452,
-0.015049528330564499,
0.07335776090621948,
-0.11618370562791824,
0.018222814425826073,
0.02563249133527279,
0.11859893053770065,
-0.007334879599511623,
0.052054453641176224,
0.0014719978207722306,
0.07336922734975815,
-0.03882477805018425,
0.062041155993938446,
0.02915811911225319,
0.05739976093173027,
-0.0879649743437767,
0.1578102707862854,
-0.09147369861602783,
-0.10676531493663788,
0.12139066308736801,
-0.10908659547567368,
-0.08985891938209534,
-0.060419823974370956,
-0.04659334197640419,
-0.037080068141222,
0.006255716551095247,
0.013102970086038113,
0.22534652054309845,
-0.0389028936624527,
0.16036686301231384,
-0.1016436293721199,
0.0063262926414608955,
-0.0653376504778862,
-0.11442314088344574,
-0.00266111153177917,
0.10258550941944122,
0.03370576724410057,
-0.26577305793762207,
0.162364661693573,
-0.019975433126091957,
-0.0832827091217041,
0.12187352031469345,
-0.008139641024172306,
-0.014651591889560223,
-0.0214224960654974,
-0.028438866138458252,
0.01366505678743124,
0.08319367468357086,
-0.17600472271442413,
-0.10076214373111725,
0.004919886589050293,
-0.029682183638215065,
0.00041706982301548123,
-0.14321081340312958,
0.006580139975994825,
-0.004695080686360598,
-0.008762170560657978,
0.04812666028738022,
-0.032443296164274216,
-0.014076163060963154,
0.10174982994794846,
0.0462060384452343,
0.019900092855095863,
0.013335595838725567,
0.018935691565275192,
-0.14432397484779358,
0.11096780747175217,
-0.1299428790807724,
-0.24436312913894653,
-0.03229483217000961,
-0.23369744420051575,
-0.03952065110206604,
0.040895696729421616,
0.04683210328221321,
-0.12468459457159042,
-0.04793873801827431,
-0.04093487560749054,
-0.002052498748525977,
-0.09451329708099365,
-0.006493929773569107,
-0.029215870425105095,
0.056289076805114746,
-0.08033955842256546,
-0.02382754534482956,
-0.024052442982792854,
-0.08155960589647293,
0.0003622555814217776,
0.024956906214356422,
-0.08262206614017487,
0.013739197514951229,
0.12729325890541077,
-0.0032443953678011894,
-0.025912022218108177,
-0.07357161492109299,
0.056032244116067886,
-0.08803275972604752,
0.04145192354917526,
0.1673138588666916,
-0.09932645410299301,
0.04052501171827316,
0.05935506522655487,
0.0065035466104745865,
0.012450030073523521,
0.028320437297225,
0.06413335353136063,
-0.024336043745279312,
-0.27959102392196655,
-0.05400967225432396,
-0.07954555749893188,
0.08740276843309402,
-0.026330452412366867,
0.033265870064496994,
0.1392611563205719,
0.016383731737732887,
-0.03437817469239235,
0.10530263930559158,
-0.01702912338078022,
0.1256345510482788,
0.1995897889137268,
0.014921526424586773,
0.12004386633634567,
-0.06577286869287491,
-0.02871878072619438,
0.043329425156116486,
-0.019479766488075256,
0.12839306890964508,
0.0698394924402237,
0.12322476506233215,
0.059046681970357895,
0.12309647351503372,
0.14930744469165802,
-0.03532581031322479,
-0.050648245960474014,
0.0028162274975329638,
-0.04050392284989357,
-0.047273002564907074,
0.011030266061425209,
0.13333910703659058,
-0.0005065847653895617,
-0.04639366269111633,
-0.028203260153532028,
0.1254706233739853,
0.06178969517350197,
0.2798392176628113,
0.07844975590705872,
-0.03451503813266754,
-0.07572521269321442,
0.04564942419528961,
-0.09603945165872574,
-0.05369797721505165,
0.1033845990896225,
-0.041324105113744736,
-0.1640252321958542,
0.09522916376590729,
0.021394867449998856,
0.1327168047428131,
-0.056666433811187744,
0.04317818582057953,
-0.08277501165866852,
-0.010321501642465591,
0.015995819121599197,
0.03175654262304306,
-0.29732921719551086,
0.2410898059606552,
0.02834146097302437,
-0.021454786881804466,
-0.05456720292568207,
0.02898748591542244,
0.03876322880387306,
0.07846071571111679,
0.10898221284151077,
-0.017189471051096916,
-0.07867199182510376,
0.08992262184619904,
-0.03953056409955025,
-0.01660298742353916,
0.09128200262784958,
0.03154517337679863,
0.035243526101112366,
-0.04772614687681198,
-0.01575438678264618,
-0.010387268848717213,
0.08432531356811523,
0.023045942187309265,
-0.13810749351978302,
0.05318077653646469,
-0.08105413615703583,
-0.019330618903040886,
0.041438065469264984,
-0.036908697336912155,
0.026197295635938644,
0.17228969931602478,
-0.01997636817395687,
-0.07679575681686401,
-0.06514932215213776,
-0.0002251516270916909,
0.00036663434002548456,
-0.07852628082036972,
0.028432199731469154,
-0.05427152290940285,
0.06591416150331497,
-0.0424959734082222,
-0.007986302487552166,
0.05682897940278053,
-0.018855907022953033,
-0.10400832444429398,
-0.052731774747371674,
0.13951480388641357,
-0.027904953807592392,
0.07432414591312408,
0.011131281033158302,
0.028645405545830727,
0.012672144919633865,
-0.08087490499019623,
0.044318586587905884,
-0.0570288747549057,
0.13832102715969086,
0.041371073573827744,
-0.19303388893604279,
-0.06477096676826477,
-0.1558300256729126,
-0.14369753003120422,
0.1465696394443512,
0.1882464736700058,
-0.02364155650138855,
0.12917032837867737,
0.15514925122261047,
-0.06436743587255478,
-0.20194315910339355,
-0.11124046891927719,
-0.006539337337017059,
-0.008254021406173706,
-0.11586248129606247,
-0.24103140830993652,
0.07344236969947815,
0.025455757975578308,
-0.0032111394684761763,
-0.10829119384288788,
-0.031412843614816666,
-0.14530345797538757,
0.10529572516679764,
-0.03697483614087105,
0.025276213884353638,
-0.1405908316373825,
-0.11892415583133698,
0.04380789399147034,
0.008615258149802685,
0.11017768085002899,
0.039288315922021866,
0.08646682649850845,
0.008571475744247437,
-0.013446194119751453,
-0.030365798622369766,
0.024378303438425064,
0.08607715368270874,
-0.05124136433005333,
-0.034257326275110245,
-0.053996820002794266,
-0.24565038084983826,
0.11980623006820679,
0.0026632139924913645,
0.07659279555082321,
-0.02847215160727501,
0.044508811086416245,
-0.12372919917106628,
-0.03894425183534622,
-0.007196182385087013,
-0.06755606830120087,
-0.07268186658620834,
-0.07750020921230316,
-0.10962335020303726,
0.0813717171549797,
-0.02316773682832718,
-0.030341925099492073,
0.2851479947566986,
-0.051887959241867065,
0.06238776072859764,
0.09126736223697662,
0.10710745304822922,
-0.04443594813346863,
0.012895350344479084,
-0.09262750297784805,
-0.0579148530960083,
0.05985427275300026,
-0.11896264553070068,
0.01598287932574749,
0.06582090258598328,
0.02809825912117958,
0.16721811890602112,
0.0442565456032753,
-0.037043821066617966,
0.041124045848846436,
0.012933406047523022,
-0.20895852148532867,
-0.07464601844549179,
-0.06336123496294022,
0.015887359157204628,
0.015706509351730347,
0.019526135176420212,
0.11738353222608566,
-0.08055444061756134,
-0.10005848109722137,
0.038427285850048065,
0.022411448881030083,
-0.04365694522857666,
-0.01741521991789341,
-0.03261728212237358,
0.04900356009602547,
-0.09307993948459625,
0.07119878381490707,
0.17036770284175873,
-0.015076307579874992,
0.0466374009847641,
0.23949305713176727,
-0.09362353384494781,
-0.01617569848895073,
-0.10839130729436874,
0.13910065591335297,
-0.12233255058526993,
-0.0350167341530323,
-0.11734531074762344,
-0.17844617366790771,
0.052878595888614655,
0.21107034385204315,
0.05762183293700218,
0.009910259395837784,
-0.040642037987709045,
-0.023914342746138573,
-0.056236665695905685,
0.05554322153329849,
0.04421628266572952,
0.006378767546266317,
-0.08089109510183334,
0.13176657259464264,
0.023772934451699257,
0.14119955897331238,
-0.04651360213756561,
-0.029802167788147926,
-0.14928768575191498,
0.0178484246134758,
-0.2160373479127884,
0.032071713358163834,
-0.09974698722362518,
-0.07027049362659454,
-0.024651527404785156,
-0.04750087857246399,
-0.06667917221784592,
-0.026364818215370178,
-0.03426194190979004,
0.02017037756741047,
0.010078111663460732,
0.04797102510929108,
-0.09303591400384903,
0.0045523084700107574,
0.06455732882022858,
-0.0377805195748806,
0.09214689582586288,
0.11781539767980576,
-0.030609989538788795,
0.03720835596323013,
0.1470634937286377,
0.012892017140984535,
0.013886719010770321,
0.043476544320583344,
0.02359931729733944,
-0.07258229702711105,
-0.058879245072603226,
0.030628370121121407,
-0.0024405468720942736,
0.03161394223570824,
0.07671447098255157,
-0.06306323409080505,
-0.03917521983385086,
-0.07973463088274002,
-0.1199352964758873,
-0.07972253859043121,
0.03812333568930626,
0.129827082157135,
0.02665911614894867,
0.06841389089822769,
-0.05741854012012482,
0.07112742215394974,
-0.07315601408481598,
0.05928768217563629,
-0.031603604555130005,
-0.06637587398290634,
-0.06788914650678635,
-0.0834103673696518,
-0.0030952238012105227,
-0.03997962549328804,
0.17040809988975525,
-0.031948357820510864,
-0.07316096872091293,
0.0995449498295784,
0.013842632994055748,
0.0854913592338562,
0.06922757625579834,
0.145579993724823,
0.07573981583118439,
-0.07712157815694809,
-0.015512729994952679,
0.02016099914908409,
-0.05461426451802254,
0.08425251394510269,
0.16686637699604034,
0.09159545600414276,
0.0961836501955986,
0.09001757204532623,
0.027398349717259407,
-0.025848835706710815,
-0.008680627681314945,
-0.009471042081713676,
-0.04776110500097275,
-0.0340314656496048,
-0.005014460999518633,
0.16075830161571503,
0.2378380298614502,
-0.08967231959104538,
0.14307112991809845,
-0.004352124407887459,
-0.12146098166704178,
-0.10741987824440002,
-0.09426195174455643,
-0.06896822899580002,
-0.02779620699584484,
-0.0328969806432724,
-0.11274620145559311,
0.007924697361886501,
-0.027407824993133545,
0.04761982709169388,
-0.0666390061378479,
-0.023923151195049286,
-0.014085170812904835,
-0.07845551520586014,
0.09649655222892761,
0.01483392994850874,
0.040580376982688904,
-0.06197202950716019,
-0.03320947661995888,
0.02089557982981205,
-0.043909694999456406,
-0.041828714311122894,
0.028666069731116295,
0.019910139963030815,
0.04075278341770172,
0.017741968855261803,
-0.04967019334435463,
0.051058534532785416,
-0.03876829519867897,
0.0915917381644249,
0.13642309606075287,
-0.002676434349268675,
-0.008803333155810833,
0.036069106310606,
0.24364039301872253,
-0.020227869972586632,
-0.019296256825327873,
-0.1538270115852356,
0.1940820962190628,
-0.019387632608413696,
-0.005759202875196934,
0.04210086911916733,
-0.031842999160289764,
-0.029032617807388306,
0.2377619594335556,
0.19689695537090302,
-0.04188808053731918,
-0.0064680143259465694,
-0.0067329416051507,
0.01996917650103569,
0.03562820330262184,
-0.01175711490213871,
0.0981692224740982,
0.27890491485595703,
-0.03730342537164688,
-0.06684000045061111,
-0.11800404638051987,
0.015356849879026413,
-0.09866087883710861,
0.12425831705331802,
0.1462233066558838,
-0.07904781401157379,
-0.03553411364555359,
0.023554310202598572,
-0.1590219885110855,
-0.049091875553131104,
-0.06415165960788727,
-0.17816030979156494,
-0.11644291877746582,
0.05170012637972832,
-0.012813198380172253,
0.08161430060863495,
0.0372786819934845,
0.07403978705406189,
0.03848343342542648,
0.08241737633943558,
0.08558303862810135,
-0.06519804149866104,
-0.054421938955783844,
0.21454627811908722,
-0.05796338990330696,
0.05741918087005615,
-0.01742532104253769,
0.054473984986543655,
0.05829525738954544,
0.09048900008201599,
0.03391703590750694,
0.030621834099292755,
0.026506759226322174,
-0.09173683822154999,
0.00506008043885231,
0.10690063238143921,
0.02877087891101837,
0.031020812690258026,
0.06807583570480347,
-0.009714099578559399,
0.04150206223130226,
0.030085772275924683,
-0.13773921132087708,
-0.03770413249731064,
0.10057637095451355,
-0.1670786738395691,
0.09258418530225754,
0.22483843564987183,
-0.06352631747722626,
0.020421672612428665,
-0.024122366681694984,
-0.008614365011453629,
0.008074008859694004,
-0.14486443996429443,
-0.031918566673994064,
-0.1655406653881073,
0.05162561684846878,
0.05294984206557274,
-0.03303992375731468,
-0.15839920938014984,
-0.08253965526819229,
-0.023758137598633766,
0.00041288562351837754,
-0.15239286422729492,
-0.01584850624203682,
0.12310156226158142,
0.013429807499051094,
-0.05938202142715454,
-0.1648121029138565,
0.02980324625968933,
0.0672101080417633,
-0.06648832559585571,
-0.06635778397321701
] |
null | null | transformers |
# roberta-classical-chinese-base-upos
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-base-upos")
```
## Reference
Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]} | token-classification | KoichiYasuoka/roberta-classical-chinese-base-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"classical chinese",
"literary chinese",
"ancient chinese",
"pos",
"dependency-parsing",
"lzh",
"dataset:universal_dependencies",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-base-upos
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-base-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.
## How to Use
or
## Reference
Koichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-classical-chinese-base-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-base-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\n\nor",
"## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-base-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-base-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\n\nor",
"## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
83,
14,
70,
5,
48,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-base-upos## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-base-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.## How to Use\n\n\n\nor## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.02112862840294838,
0.1822965294122696,
-0.0057645319029688835,
0.036058779805898666,
0.10079339146614075,
-0.04796313866972923,
0.08489438891410828,
0.10349568724632263,
0.052220702171325684,
0.05503305420279503,
0.012567002326250076,
0.05471661314368248,
0.06163276359438896,
0.027449555695056915,
0.0008759364718571305,
-0.2677164077758789,
0.059231583029031754,
0.08010540157556534,
-0.0352814607322216,
0.09646029025316238,
0.08466127514839172,
-0.06329814344644547,
0.0836748257279396,
-0.001460375264286995,
-0.024599589407444,
-0.005949344020336866,
-0.0922691598534584,
-0.13274233043193817,
0.08846438676118851,
0.012493489310145378,
0.05888880044221878,
-0.0011787586845457554,
-0.012716244906187057,
-0.08927727490663528,
0.009363331831991673,
-0.00881345197558403,
-0.06729834526777267,
0.008444169536232948,
0.054287683218717575,
-0.06837045401334763,
0.13004247844219208,
-0.032838672399520874,
0.038573116064071655,
0.02909082919359207,
-0.09283579140901566,
-0.15096160769462585,
-0.1282140165567398,
0.11864684522151947,
0.06766404211521149,
0.08592380583286285,
-0.03496807813644409,
0.0862523689866066,
0.001084736781194806,
0.0348229855298996,
0.13022272288799286,
-0.27809277176856995,
-0.012040697038173676,
0.04516042023897171,
0.03353654593229294,
0.07102091610431671,
-0.07999897003173828,
-0.026352928951382637,
0.056494999676942825,
-0.011784233152866364,
-0.031399205327034,
-0.061910878866910934,
0.14275188744068146,
0.02060740441083908,
-0.13778384029865265,
0.04129573330283165,
0.23351237177848816,
-0.0031296699307858944,
-0.034124162048101425,
-0.06614973396062851,
-0.04630585014820099,
0.012512815184891224,
-0.04182559251785278,
-0.0882771909236908,
0.061004187911748886,
0.006628206465393305,
0.13135020434856415,
-0.04001476243138313,
-0.0368746742606163,
0.0638057291507721,
-0.11133526265621185,
0.13741013407707214,
0.05933370813727379,
-0.011290084570646286,
-0.05460703372955322,
-0.029285501688718796,
0.01460073608905077,
-0.0744229108095169,
-0.034425582736730576,
-0.05087806656956673,
0.011355141177773476,
0.021678045392036438,
0.0009139105095528066,
0.039418067783117294,
0.007069502491503954,
0.19360777735710144,
-0.06664464622735977,
0.027740027755498886,
-0.009054135531187057,
0.02920602075755596,
0.10546030104160309,
0.12511107325553894,
-0.06297305226325989,
-0.07789859920740128,
0.02744496800005436,
-0.007334153633564711,
0.05786483734846115,
-0.04001855477690697,
-0.05616116151213646,
0.02289443090558052,
-0.006072557531297207,
-0.0046408395282924175,
0.03452730551362038,
-0.0019457499729469419,
-0.03769940882921219,
-0.08460740745067596,
0.10380969196557999,
-0.11602751910686493,
-0.004144220147281885,
-0.030782680958509445,
-0.04438412934541702,
0.23854005336761475,
-0.025914711877703667,
0.004464589990675449,
-0.0801820456981659,
0.10953102260828018,
-0.08758506178855896,
0.02429228089749813,
-0.017508160322904587,
-0.006103551480919123,
0.0661507248878479,
-0.0842907577753067,
0.004044287838041782,
-0.07515397667884827,
-0.0865798071026802,
-0.038807086646556854,
-0.028313420712947845,
-0.015201987698674202,
-0.06302876770496368,
-0.010922231711447239,
-0.04042506590485573,
-0.056375086307525635,
0.014220671728253365,
-0.12735339999198914,
-0.05691163241863251,
0.04004770144820213,
0.006708106957376003,
0.03930412232875824,
-0.05034135282039642,
0.06832809746265411,
-0.12647710740566254,
-0.02274198830127716,
-0.22031255066394806,
0.07936732470989227,
-0.08791588991880417,
0.08762819319963455,
-0.0034070508554577827,
0.020130205899477005,
0.02494901604950428,
0.04447034001350403,
-0.06022581458091736,
0.14558549225330353,
-0.1284085214138031,
-0.13549792766571045,
0.2356027364730835,
-0.15330681204795837,
-0.08521167188882828,
0.12849128246307373,
-0.006250241305679083,
-0.021106788888573647,
0.07399095594882965,
0.15390713512897491,
-0.07580800354480743,
0.013204616494476795,
-0.13130977749824524,
-0.015428734943270683,
-0.007164278067648411,
0.056309524923563004,
0.12389689683914185,
0.005771751049906015,
0.09106766432523727,
0.017729004845023155,
-0.07165248692035675,
-0.10725399851799011,
-0.016560140997171402,
-0.08413302153348923,
0.00022253057977650315,
-0.008902386762201786,
0.05797110125422478,
-0.024752261117100716,
0.04568915814161301,
-0.07336460798978806,
-0.06185369938611984,
0.1353747546672821,
0.06877119839191437,
0.011267926543951035,
0.08534180372953415,
-0.09739052504301071,
0.09367641806602478,
0.14853286743164062,
0.0761180967092514,
-0.12253493815660477,
0.0569717139005661,
0.05461331456899643,
0.05660982057452202,
0.09260889887809753,
-0.10270760953426361,
-0.006717149168252945,
-0.01471448503434658,
-0.06078597158193588,
0.003636946203187108,
-0.04846883937716484,
-0.02910570614039898,
0.008166439831256866,
-0.1457301378250122,
0.06522100418806076,
-0.04227011650800705,
0.16808728873729706,
-0.08433540165424347,
0.04162348061800003,
0.03756171092391014,
0.14246796071529388,
-0.019634529948234558,
0.019863635301589966,
-0.012015655636787415,
0.06910081207752228,
-0.042332883924245834,
0.04011790454387665,
0.006910575553774834,
0.01639379747211933,
-0.12848429381847382,
0.13082389533519745,
-0.027979552745819092,
0.024752046912908554,
0.19233247637748718,
-0.07484333217144012,
-0.014601698145270348,
0.017765069380402565,
-0.024288015440106392,
-0.021567722782492638,
0.03631112724542618,
-0.010082093067467213,
0.1613834649324417,
-0.012943344190716743,
0.08408963680267334,
-0.08359512686729431,
-0.010760168544948101,
-0.033113110810518265,
-0.04410248622298241,
-0.062479108572006226,
0.14362618327140808,
-0.009587462060153484,
-0.03325275331735611,
0.17187467217445374,
0.13450035452842712,
-0.01141944620758295,
0.14002448320388794,
-0.036470141261816025,
-0.04965703561902046,
0.00537576200440526,
0.018987132236361504,
-0.012564302422106266,
0.0488005094230175,
-0.15662524104118347,
-0.04816926270723343,
0.013982231728732586,
-0.023763539269566536,
0.0023640140425413847,
-0.10007450729608536,
-0.021432209759950638,
-0.0024639752227813005,
0.019243068993091583,
-0.014392217621207237,
-0.01815168373286724,
-0.018357696011662483,
0.09679484367370605,
0.0029073799960315228,
0.021890489384531975,
0.017032679170370102,
0.008620765060186386,
-0.08571242541074753,
0.10174047946929932,
-0.15560470521450043,
-0.28964078426361084,
-0.05441286042332649,
-0.10490543395280838,
-0.06365284323692322,
0.01627870462834835,
0.05544590950012207,
-0.12779690325260162,
-0.03702149540185928,
-0.02006072923541069,
0.01577247679233551,
-0.0818912461400032,
-0.05896761640906334,
0.06744275987148285,
0.04344307631254196,
-0.09628340601921082,
-0.04648200795054436,
-0.010215199552476406,
-0.05361971631646156,
-0.07688546180725098,
0.0874171033501625,
-0.006139528006315231,
0.04349667951464653,
0.07797984033823013,
0.0094969617202878,
-0.05347326770424843,
-0.056547317653894424,
0.023375682532787323,
-0.13101117312908173,
-0.010244310833513737,
0.16576454043388367,
-0.014965692535042763,
0.042817335575819016,
0.005988812539726496,
-0.0034025029744952917,
-0.025724075734615326,
0.0039254347793757915,
0.06607822328805923,
-0.04251140356063843,
-0.30465078353881836,
-0.10284169763326645,
-0.051139745861291885,
0.15526063740253448,
-0.04714324697852135,
0.041786666959524155,
0.09703116863965988,
-0.014980664476752281,
-0.08068777620792389,
0.013713685795664787,
-0.025835420936346054,
0.08801943808794022,
0.15209941565990448,
-0.017010988667607307,
0.13362756371498108,
-0.05695099011063576,
0.007166306488215923,
0.12188182026147842,
0.0030444778967648745,
0.12643243372440338,
0.0825720727443695,
0.09898906946182251,
0.031651683151721954,
0.1359887570142746,
0.07002672553062439,
-0.06002594530582428,
0.023754093796014786,
0.01801024004817009,
-0.0527096726000309,
-0.04458330199122429,
-0.019275667145848274,
0.1252882033586502,
0.002109274733811617,
-0.06695373356342316,
0.007775166071951389,
0.0402531698346138,
0.10695656388998032,
0.17995718121528625,
0.0010726688196882606,
-0.03589373454451561,
-0.06360242515802383,
0.04867085814476013,
-0.04063050076365471,
-0.011083127930760384,
0.0919959768652916,
-0.10353085398674011,
-0.1532277911901474,
0.1486285924911499,
0.05096567049622536,
0.11908019334077835,
-0.09325412660837173,
0.020431753247976303,
-0.1261022686958313,
-0.0432736799120903,
0.024988355115056038,
0.00760904373601079,
-0.2991431653499603,
0.12183750420808792,
-0.01090009231120348,
-0.04197978973388672,
-0.005561755038797855,
0.033703070133924484,
0.07605094462633133,
0.043586596846580505,
0.08266951143741608,
0.0011523700086399913,
-0.043327413499355316,
0.07878623902797699,
-0.05383361503481865,
-0.012548772618174553,
0.05032837390899658,
-0.05642962455749512,
0.012891278602182865,
0.006620680447667837,
0.008995715528726578,
-0.060954492539167404,
0.006193423178046942,
-0.0174594484269619,
-0.1338997632265091,
0.07552172243595123,
-0.1283125877380371,
0.01476151030510664,
0.02832425944507122,
-0.1000351756811142,
-0.12412156909704208,
0.11682523787021637,
-0.04892893508076668,
-0.05087093636393547,
-0.062283579260110855,
-0.05873402580618858,
0.030205637216567993,
-0.05999712646007538,
0.04358089715242386,
-0.021224895492196083,
0.0363922193646431,
-0.0489223413169384,
-0.0654265284538269,
0.056034788489341736,
-0.04308611527085304,
-0.08344189822673798,
0.0009522394393570721,
0.1537526249885559,
0.029238007962703705,
0.05430174246430397,
-0.041837178170681,
0.027563977986574173,
0.012974427081644535,
-0.07847224920988083,
0.08012589812278748,
0.048565104603767395,
0.0756915733218193,
0.10487139225006104,
-0.16154278814792633,
-0.11224920302629471,
-0.14102992415428162,
-0.1332135647535324,
0.04815024882555008,
0.22277460992336273,
-0.004281527828425169,
0.1426534801721573,
0.19195127487182617,
-0.06003984063863754,
-0.24281910061836243,
-0.07254040986299515,
-0.04112568497657776,
-0.000011246808753639925,
-0.019410334527492523,
-0.2725961208343506,
0.1579563468694687,
0.14435558021068573,
0.00918211042881012,
0.012378484010696411,
-0.0895116999745369,
-0.10483583062887192,
0.08628807216882706,
-0.05089718848466873,
0.0694725438952446,
-0.13533912599086761,
-0.08384822309017181,
0.01791999861598015,
-0.08957251906394958,
0.08247692883014679,
-0.017405955120921135,
0.04502153396606445,
0.00552113214507699,
0.010458435863256454,
-0.04171581566333771,
0.04224887117743492,
0.11043313145637512,
0.03706338256597519,
-0.03672867640852928,
-0.05136149376630783,
-0.07207008451223373,
0.12273095548152924,
0.013430354185402393,
0.0392693467438221,
-0.003921584691852331,
0.010465072467923164,
-0.11354769021272659,
-0.018398182466626167,
-0.006384697742760181,
0.015833763405680656,
-0.03331189975142479,
-0.03758872300386429,
-0.09778043627738953,
0.07536451518535614,
-0.001955692656338215,
-0.016194693744182587,
0.2167821079492569,
0.00795979704707861,
0.03366696462035179,
0.07464756071567535,
0.06664872914552689,
-0.11166749149560928,
0.055935997515916824,
-0.12143730372190475,
-0.05093545839190483,
0.055467262864112854,
-0.10677586495876312,
-0.0029344221111387014,
0.08695963025093079,
0.03362835943698883,
0.08736871927976608,
0.027146443724632263,
-0.06755563616752625,
0.014474601484835148,
0.024389417842030525,
-0.15240821242332458,
-0.2005334496498108,
-0.032672565430402756,
-0.10722430795431137,
0.0387175977230072,
0.06528430432081223,
0.1235121339559555,
-0.03189681097865105,
-0.11028236150741577,
0.013001172803342342,
0.03471938148140907,
-0.012582177296280861,
0.026788294315338135,
-0.09315280616283417,
-0.008645706810057163,
-0.13745169341564178,
0.09837677329778671,
0.1016995832324028,
-0.11025956273078918,
0.04138408601284027,
0.15479838848114014,
-0.065628781914711,
-0.028028639033436775,
-0.1474592685699463,
0.06666112691164017,
-0.11494966596364975,
-0.004377430304884911,
-0.07094914466142654,
-0.1189182922244072,
0.05316006764769554,
0.16189974546432495,
0.08910366147756577,
0.030045773833990097,
0.028259584680199623,
0.027429722249507904,
-0.009721171110868454,
0.03375625237822533,
0.0777229368686676,
0.016661379486322403,
-0.060544244945049286,
0.019506458193063736,
0.03032624162733555,
0.07070109993219376,
-0.03599747642874718,
-0.05717267468571663,
-0.11896828562021255,
-0.006299691274762154,
-0.08786096423864365,
-0.01967323012650013,
-0.09852137416601181,
-0.03628237172961235,
-0.021937623620033264,
-0.06459611654281616,
-0.03409011289477348,
-0.018164770677685738,
-0.04606885835528374,
-0.030803045257925987,
0.007851381786167622,
0.11604586243629456,
-0.11490439623594284,
0.01338815689086914,
0.08397265523672104,
-0.0373600572347641,
0.10467679053544998,
0.171686053276062,
-0.0022790615912526846,
0.06029616668820381,
0.05811382457613945,
0.008432413451373577,
0.0607939250767231,
0.058317575603723526,
0.01622777059674263,
-0.03374844416975975,
-0.023893587291240692,
0.024589765816926956,
-0.0469021312892437,
0.041734080761671066,
0.050252705812454224,
-0.08979754149913788,
-0.038446128368377686,
-0.10483282059431076,
-0.13573762774467468,
-0.038185421377420425,
0.024250421673059464,
0.18357720971107483,
0.05906771123409271,
0.128738135099411,
-0.04623996838927269,
0.03750522434711456,
-0.0770680159330368,
0.029679959639906883,
-0.023509100079536438,
-0.07751838117837906,
-0.04846074432134628,
-0.04214503616094589,
0.02161400206387043,
0.021042905747890472,
0.2281619757413864,
-0.090025395154953,
-0.036021891981363297,
0.0924191027879715,
0.05128848925232887,
0.005852092057466507,
0.026366082951426506,
0.09630677849054337,
0.10969778150320053,
-0.06614592671394348,
-0.021580757573246956,
0.03622261807322502,
-0.0030811720062047243,
-0.052765052765607834,
0.016898956149816513,
0.1358015090227127,
0.08620094507932663,
0.06451744586229324,
0.03136541321873665,
0.009623282589018345,
-0.044240158051252365,
0.01913084089756012,
-0.05590837821364403,
-0.025562142953276634,
0.0020206812769174576,
0.22282655537128448,
0.18549658358097076,
-0.07165170460939407,
0.14616432785987854,
0.027659766376018524,
-0.0579095222055912,
-0.0689253881573677,
-0.0351303406059742,
-0.054892074316740036,
-0.11766664683818817,
-0.01587466523051262,
-0.09666205197572708,
0.018022462725639343,
0.03339953348040581,
0.06365469098091125,
-0.08306223899126053,
-0.03724805265665054,
-0.03382527083158493,
-0.09883567690849304,
0.07782618701457977,
0.013955552130937576,
0.004085645079612732,
-0.04489646852016449,
-0.09521067142486572,
-0.023737294599413872,
0.04858165606856346,
-0.008133495226502419,
0.028692444786429405,
-0.01677112840116024,
0.05715996026992798,
-0.055219653993844986,
-0.05936715006828308,
0.06715047359466553,
-0.02032620459794998,
-0.0018995520658791065,
0.12842446565628052,
0.02950405701994896,
-0.044435709714889526,
0.038494616746902466,
0.23066657781600952,
-0.0203254334628582,
0.05571744963526726,
-0.1314992606639862,
0.0664498582482338,
0.042162664234638214,
0.03198600560426712,
0.029173843562602997,
-0.05350799113512039,
-0.06813620030879974,
0.12066873908042908,
0.19316236674785614,
-0.010260317474603653,
-0.019608326256275177,
-0.0029069005977362394,
0.0463666133582592,
0.0381535142660141,
-0.05540391430258751,
0.11631793528795242,
0.26346907019615173,
-0.02231461927294731,
-0.062079016119241714,
-0.1287301927804947,
-0.005984882824122906,
-0.16635841131210327,
0.04433508962392807,
0.05270003527402878,
-0.08765793591737747,
-0.016575923189520836,
0.043732937425374985,
-0.1410704106092453,
-0.09240245819091797,
-0.043680980801582336,
-0.1881161481142044,
-0.10254035890102386,
-0.004109534900635481,
-0.04740959778428078,
0.08807852864265442,
0.04431668296456337,
0.10251659899950027,
-0.041191861033439636,
0.1349761188030243,
0.06906866282224655,
-0.09268026053905487,
-0.0620720237493515,
0.10391842573881149,
-0.03228089585900307,
0.09042223542928696,
-0.018975388258695602,
0.01072726957499981,
0.041668374091386795,
0.1325947642326355,
0.041389722377061844,
-0.010293976403772831,
0.01391560398042202,
-0.04150520637631416,
-0.01469412725418806,
0.056061066687107086,
0.010917041450738907,
0.05882637947797775,
0.11749434471130371,
0.011019937694072723,
-0.004997186828404665,
-0.006699513643980026,
-0.07506895810365677,
-0.04286215826869011,
0.15073537826538086,
-0.17737187445163727,
0.06739354878664017,
0.1880495399236679,
-0.031462978571653366,
0.01608695648610592,
-0.038559190928936005,
-0.03684282675385475,
0.006349628791213036,
-0.07399309426546097,
0.00012703209358733147,
-0.15071994066238403,
0.009902960620820522,
-0.0431973859667778,
-0.0053304401226341724,
-0.09903628379106522,
-0.06505683809518814,
-0.014488369226455688,
0.03242480754852295,
-0.1313723623752594,
0.006820684298872948,
0.04936130344867706,
-0.03136344999074936,
-0.022225037217140198,
-0.07720661908388138,
0.051691025495529175,
0.08758478611707687,
-0.059484343975782394,
-0.033158235251903534
] |
null | null | transformers |
# roberta-classical-chinese-large-char
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-large-char` for downstream tasks, such as [sentence-segmentation](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation), [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-ud-goeswith), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char")
```
## See Also
[SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u5b5f\u5b50[MASK]\u6881\u60e0\u738b"}]} | fill-mask | KoichiYasuoka/roberta-classical-chinese-large-char | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"classical chinese",
"literary chinese",
"ancient chinese",
"masked-lm",
"lzh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-large-char
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-large. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-large-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.
## How to Use
## See Also
SuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese
| [
"# roberta-classical-chinese-large-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-large. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-large-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-large-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-large. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-large-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
68,
14,
99,
4,
27
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #classical chinese #literary chinese #ancient chinese #masked-lm #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-large-char## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts, derived from GuwenBERT-large. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune 'roberta-classical-chinese-large-char' for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.## How to Use## See Also\n\nSuPar-Kanbun: Tokenizer POS-tagger and Dependency-parser for Classical Chinese"
] | [
0.005809355061501265,
0.00727474270388484,
-0.004585398361086845,
0.04012397304177284,
0.12378816306591034,
-0.045320458710193634,
0.13897167146205902,
0.08558929711580276,
-0.032312747091054916,
-0.0007888590916991234,
0.033219270408153534,
-0.026099029928445816,
0.05608045309782028,
0.06379620730876923,
0.06283783167600632,
-0.377416729927063,
0.045421671122312546,
0.08705773204565048,
-0.035552043467760086,
0.0943693220615387,
0.12505437433719635,
-0.024866528809070587,
0.11236715316772461,
0.061994314193725586,
0.009068988263607025,
0.003774919081479311,
-0.01255732774734497,
-0.14363820850849152,
0.11685501784086227,
0.015178771689534187,
0.06316597014665604,
-0.04908797889947891,
0.015861649066209793,
-0.13544563949108124,
0.008548841811716557,
-0.05645310506224632,
-0.00585911376401782,
-0.0020434835460036993,
-0.012349913828074932,
0.008788039907813072,
0.12227515876293182,
-0.017959492281079292,
0.03013990819454193,
0.04543032869696617,
-0.028122395277023315,
-0.0923907682299614,
-0.05485015735030174,
0.16488409042358398,
0.07949763536453247,
0.09303851425647736,
-0.016713103279471397,
0.08150316774845123,
-0.09434372186660767,
0.04594717174768448,
0.18839174509048462,
-0.39000067114830017,
-0.024316268041729927,
0.017938360571861267,
0.02623836323618889,
0.023041414096951485,
-0.06768642365932465,
0.0033670058473944664,
-0.02008858323097229,
-0.051790833473205566,
-0.008714387193322182,
-0.12229394167661667,
0.00025341854779981077,
0.029216768220067024,
-0.10468903928995132,
0.07249295711517334,
0.22921594977378845,
-0.05351731553673744,
-0.06844019144773483,
-0.1219087541103363,
-0.005979527719318867,
0.07044654339551926,
-0.08875878900289536,
-0.05528976395726204,
0.03531844913959503,
0.062499143183231354,
0.10626991838216782,
-0.12192359566688538,
-0.036943018436431885,
-0.051846038550138474,
-0.07245617359876633,
-0.0009530682000331581,
0.05735786631703377,
-0.024239614605903625,
-0.104494608938694,
-0.03257282078266144,
-0.10022283345460892,
-0.05648386850953102,
0.017170360311865807,
-0.06164058670401573,
0.010925870388746262,
0.08693508803844452,
0.0008398392237722874,
-0.030638836324214935,
0.043057844042778015,
0.23493963479995728,
0.06808491051197052,
0.08992724865674973,
0.013291154988110065,
0.04479728266596794,
-0.013164537958800793,
0.14966252446174622,
-0.06900287419557571,
-0.07949500530958176,
0.0823364406824112,
-0.04045109450817108,
0.022146789357066154,
-0.030043229460716248,
-0.1341596394777298,
-0.033692121505737305,
-0.013858230784535408,
0.002619339618831873,
-0.03144095093011856,
0.04897530376911163,
-0.019375916570425034,
-0.01047219056636095,
0.08708561956882477,
-0.13018399477005005,
0.0070509836077690125,
-0.06039203703403473,
-0.007124449126422405,
0.1714312583208084,
0.003924165852367878,
0.02270450070500374,
-0.09126215428113937,
0.07991809397935867,
-0.06097736209630966,
0.0178420040756464,
0.014407254755496979,
-0.016859065741300583,
-0.005755231250077486,
-0.15707869827747345,
-0.0055859386920928955,
-0.12011171877384186,
-0.11763860285282135,
0.02673010341823101,
0.009455970488488674,
-0.004490633495151997,
-0.06802602112293243,
0.021149778738617897,
-0.0732303112745285,
-0.0757235661149025,
-0.003578439587727189,
-0.05923742055892944,
-0.0247054323554039,
0.03354787454009056,
0.0209086611866951,
0.037650078535079956,
-0.08047095686197281,
0.03910021856427193,
-0.15756523609161377,
0.022126760333776474,
-0.25220730900764465,
0.0633496344089508,
0.028372686356306076,
0.056883737444877625,
-0.03978554904460907,
-0.005346405785530806,
0.0007976620690897107,
0.05343925952911377,
-0.0008833326864987612,
0.059786856174468994,
-0.1088559478521347,
-0.09155093133449554,
0.2819153368473053,
-0.15951597690582275,
-0.07553514838218689,
0.1540023535490036,
0.010822191834449768,
0.08275385946035385,
0.08362753689289093,
0.14473526179790497,
0.07177892327308655,
-0.053152162581682205,
0.02325315959751606,
0.04594884440302849,
-0.03473149240016937,
0.04023636132478714,
0.10404525697231293,
-0.00987790897488594,
-0.003741141641512513,
0.044026587158441544,
-0.1463666409254074,
-0.007439601235091686,
0.02950338087975979,
-0.1079961359500885,
-0.015506729483604431,
-0.04096025228500366,
0.023197364062070847,
-0.03949422761797905,
0.11298321932554245,
-0.012511614710092545,
-0.06601613759994507,
-0.01174174714833498,
0.028937313705682755,
-0.007682993542402983,
0.12442701309919357,
-0.16715270280838013,
0.09427128732204437,
0.21644970774650574,
0.09376654773950577,
-0.16718238592147827,
0.1462608426809311,
0.025810422375798225,
0.12031789124011993,
0.07218604534864426,
-0.09205948561429977,
-0.020142562687397003,
-0.00895220972597599,
-0.05925124138593674,
0.07369944453239441,
0.0458834171295166,
-0.03602081164717674,
0.012559437192976475,
-0.0921582356095314,
0.032371990382671356,
0.007320359814912081,
0.14470812678337097,
-0.04187766835093498,
0.022267986088991165,
-0.12399302423000336,
0.030811218544840813,
-0.023491643369197845,
0.06896401941776276,
-0.04368627071380615,
0.0912070944905281,
-0.049544807523489,
0.07506317645311356,
0.015299102291464806,
0.026074187830090523,
-0.1630343794822693,
0.15805946290493011,
-0.06739728897809982,
0.01317392848432064,
0.15316031873226166,
-0.07786214351654053,
-0.06798163056373596,
-0.015036317519843578,
0.0014406329719349742,
-0.03751716762781143,
0.008734624832868576,
0.000458382855867967,
0.16069775819778442,
-0.03211726248264313,
0.14126430451869965,
-0.10095405578613281,
0.10471689701080322,
-0.025294700637459755,
-0.1265394687652588,
0.01915283501148224,
0.07303135842084885,
0.05315566807985306,
-0.06087109446525574,
0.08194620907306671,
0.04690098389983177,
-0.07730989158153534,
0.10381539911031723,
-0.00385116133838892,
-0.05702491104602814,
-0.009331276640295982,
0.03951909765601158,
0.02736823260784149,
0.045423369854688644,
-0.14919985830783844,
-0.07466302812099457,
0.03376220166683197,
-0.04905325174331665,
0.00503219198435545,
-0.11774437874555588,
-0.03496444970369339,
0.006289939861744642,
-0.03027777560055256,
0.0007347009959630668,
0.02060641534626484,
-0.05775612220168114,
0.08745782822370529,
-0.0055888015776872635,
-0.00046199708594940603,
0.003061342518776655,
0.030351758003234863,
-0.09586513042449951,
0.06268474459648132,
-0.13031162321567535,
-0.25532206892967224,
-0.05584484338760376,
-0.19760297238826752,
0.03223891928792,
0.0424807071685791,
0.030750742182135582,
-0.1283065676689148,
-0.06270405650138855,
-0.06361931562423706,
-0.050681401044130325,
-0.022725040093064308,
-0.02750544808804989,
-0.013567464426159859,
0.04349257051944733,
-0.06301573663949966,
0.024319836869835854,
-0.0199274979531765,
-0.020167222246527672,
-0.08123358339071274,
0.06884527951478958,
-0.10305029153823853,
0.06435559689998627,
0.08685093373060226,
0.03127124905586243,
-0.016519557684659958,
-0.07325180619955063,
-0.017911551520228386,
-0.056176282465457916,
0.009344040416181087,
0.24605098366737366,
-0.03049147129058838,
0.04624860733747482,
0.04380162060260773,
-0.03528076410293579,
-0.005328040104359388,
0.024401266127824783,
0.024746615439653397,
-0.098719023168087,
-0.17623278498649597,
-0.05578164756298065,
-0.11102671921253204,
0.1624041497707367,
-0.007609967608004808,
0.043668512254953384,
0.07504203915596008,
0.048962127417325974,
-0.012574135325849056,
0.11271033436059952,
0.06185566633939743,
0.05851840600371361,
0.1271878182888031,
0.02105681039392948,
0.10167215019464493,
-0.06043274328112602,
-0.05801770091056824,
0.05583716183900833,
0.004883704707026482,
0.12980329990386963,
0.05335528403520584,
0.1113586351275444,
0.018233003094792366,
0.1848612278699875,
0.08643259108066559,
-0.013471952639520168,
-0.055575404316186905,
0.004723806399852037,
-0.034603673964738846,
-0.040047843009233475,
-0.012836869806051254,
0.10354284942150116,
0.031784381717443466,
-0.0928330272436142,
0.010220644064247608,
0.23408491909503937,
0.06064062565565109,
0.16145749390125275,
-0.023100819438695908,
-0.022754300385713577,
-0.028925755992531776,
0.03211548924446106,
-0.021560586988925934,
-0.01582425832748413,
0.1255527287721634,
-0.006937761791050434,
-0.20662350952625275,
0.11961156874895096,
0.01133347675204277,
0.13405278325080872,
0.10566097497940063,
0.04802830517292023,
-0.1077742800116539,
0.024937530979514122,
0.058884236961603165,
0.04181874915957451,
-0.3058532774448395,
0.12404575198888779,
0.002718839095905423,
0.0029017217457294464,
-0.09507773071527481,
0.02854136936366558,
0.08479936420917511,
0.0016978891799226403,
0.18788903951644897,
-0.03582732006907463,
-0.03712965175509453,
0.02787802368402481,
-0.07471369206905365,
0.052963998168706894,
0.10265911370515823,
0.012483237311244011,
-0.004650147631764412,
-0.06948288530111313,
-0.027416162192821503,
-0.04450763016939163,
0.0375855527818203,
-0.054440755397081375,
-0.16317911446094513,
0.010241055861115456,
-0.010631529614329338,
-0.08709068596363068,
0.026148779317736626,
0.004362889565527439,
-0.057635512202978134,
0.12519925832748413,
0.05347859486937523,
-0.05057067796587944,
-0.020543165504932404,
0.013239745981991291,
0.04826118052005768,
-0.08181942254304886,
0.04679657518863678,
-0.05873832106590271,
-0.01076548732817173,
-0.04575052112340927,
-0.02149558998644352,
0.057345811277627945,
-0.012831522151827812,
-0.04985051229596138,
0.0031833085231482983,
0.12565229833126068,
0.014692540280520916,
0.08034632354974747,
0.01913660764694214,
-0.013881489634513855,
0.018710743635892868,
-0.10721330344676971,
-0.06688292324542999,
-0.06113302707672119,
0.016634099185466766,
0.1465553343296051,
-0.2224963754415512,
-0.10809420049190521,
-0.13769055902957916,
-0.11226964741945267,
0.17742733657360077,
0.1221967339515686,
-0.04789578914642334,
0.16795597970485687,
0.15097814798355103,
-0.0213153176009655,
-0.29755663871765137,
-0.15349070727825165,
-0.0694025456905365,
0.040938831865787506,
0.008050375618040562,
-0.23304611444473267,
0.13054613769054413,
0.004330194089561701,
0.010364593006670475,
-0.07341677695512772,
-0.1737518161535263,
-0.150782510638237,
0.14191898703575134,
-0.05147271975874901,
0.07497473061084747,
-0.14068403840065002,
-0.053529318422079086,
-0.025710947811603546,
-0.03600461781024933,
0.003209048416465521,
-0.06595718860626221,
0.07592140138149261,
0.012362001463770866,
-0.04542410746216774,
-0.015175459906458855,
-0.0020618480630218983,
0.09962823241949081,
-0.0008573457016609609,
-0.046748630702495575,
-0.06026617810130119,
-0.0552818663418293,
0.22318412363529205,
0.06363487988710403,
0.11574437469244003,
-0.1080109030008316,
-0.007754884194582701,
-0.05541730299592018,
-0.05941646173596382,
-0.0027701575309038162,
-0.03893943503499031,
-0.015815507620573044,
-0.049504052847623825,
-0.1043231189250946,
0.09532953798770905,
-0.0013622562400996685,
0.028940558433532715,
0.1261250376701355,
-0.02350921928882599,
-0.05520732328295708,
-0.03010358102619648,
0.09560002386569977,
-0.053616758435964584,
0.047079216688871384,
-0.03548409789800644,
-0.032377708703279495,
0.08578769862651825,
-0.09177152067422867,
0.03767266869544983,
0.014975197613239288,
0.022056490182876587,
0.07412745803594589,
0.04747311398386955,
-0.010167509317398071,
0.04101092368364334,
0.03886481374502182,
-0.12987291812896729,
-0.15830940008163452,
-0.04534883424639702,
-0.050956133753061295,
0.048955969512462616,
-0.02570844069123268,
0.06186148151755333,
-0.07633833587169647,
-0.06772921979427338,
0.026986440643668175,
0.0264370609074831,
-0.08014874160289764,
0.041503291577100754,
-0.05585365742444992,
-0.012649879790842533,
-0.09664448350667953,
0.045659389346838,
0.10339165478944778,
-0.03231603279709816,
0.06606835126876831,
0.12303152680397034,
-0.13317540287971497,
-0.022821849212050438,
-0.09509193897247314,
0.1116928905248642,
-0.021037284284830093,
-0.06136074289679527,
-0.074253149330616,
-0.15697012841701508,
0.01729300618171692,
0.03260108456015587,
0.08862576633691788,
-0.028797432780265808,
-0.039694856852293015,
-0.04223698750138283,
-0.06027144938707352,
0.005205649882555008,
0.11616851389408112,
-0.02527206763625145,
-0.0532866045832634,
0.030241871252655983,
0.07182363420724869,
0.13540321588516235,
-0.04638967663049698,
-0.04026097431778908,
-0.10847669094800949,
0.04102581366896629,
-0.09273286163806915,
0.050719670951366425,
-0.13099302351474762,
-0.055896613746881485,
-0.010223028250038624,
-0.0241562332957983,
-0.025825260207057,
-0.01662309095263481,
-0.030276166275143623,
-0.03639586269855499,
-0.017886219546198845,
0.07994379103183746,
-0.0963863655924797,
0.006735846400260925,
0.12000766396522522,
-0.04123758152127266,
0.07890072464942932,
0.13402315974235535,
-0.04294401407241821,
0.062217116355895996,
-0.07299111038446426,
-0.05314483493566513,
0.03086845390498638,
0.07890565693378448,
-0.010280431248247623,
-0.004020077642053366,
-0.013984623365104198,
0.05945239216089249,
0.020769884809851646,
0.0352422297000885,
0.12623992562294006,
-0.0949520617723465,
0.010032874532043934,
-0.17667222023010254,
-0.10086488723754883,
-0.06123390421271324,
0.013924650847911835,
0.10655494034290314,
0.09578359127044678,
0.1034073531627655,
-0.06966888159513474,
0.08655591309070587,
-0.061816539615392685,
0.026825925335288048,
-0.057605013251304626,
-0.02037183567881584,
-0.014567149803042412,
-0.09561406821012497,
0.0033731607254594564,
0.0028023722115904093,
0.2259855419397354,
-0.047524094581604004,
-0.06021110340952873,
0.03923057019710541,
0.07124677300453186,
0.08608777821063995,
0.009378394111990929,
0.22008605301380157,
0.13092269003391266,
-0.04183341562747955,
0.024970607832074165,
0.01566280797123909,
-0.03181106224656105,
0.08910658210515976,
0.09778498858213425,
0.11624973267316818,
0.0835237205028534,
0.10315435379743576,
0.008614806458353996,
0.020933331921696663,
-0.0018730234587565064,
0.031903158873319626,
-0.07501719146966934,
-0.012205995619297028,
-0.03274016082286835,
0.18517722189426422,
0.23197726905345917,
-0.06791748106479645,
0.1272915005683899,
0.037628427147865295,
-0.11321470886468887,
-0.12563903629779816,
-0.14630484580993652,
-0.06633897125720978,
-0.037298284471035004,
-0.009989572688937187,
-0.043361131101846695,
-0.0346713550388813,
0.012130922637879848,
0.0027405875734984875,
-0.04702140763401985,
0.07008711248636246,
-0.13180147111415863,
-0.08692329376935959,
0.07895591855049133,
-0.012660587206482887,
0.013337936252355576,
0.05667708069086075,
-0.07610975950956345,
-0.03308675438165665,
-0.03098517470061779,
-0.011287849396467209,
0.04173716530203819,
0.009512828662991524,
0.08867307007312775,
-0.07222166657447815,
-0.023181835189461708,
-0.0015052579110488296,
-0.023838233202695847,
0.07616391777992249,
0.10156414657831192,
0.04911035671830177,
-0.07957544177770615,
-0.0074816979467868805,
0.18914031982421875,
0.004874527920037508,
-0.09748717397451401,
-0.15582194924354553,
0.06730274111032486,
0.03553478792309761,
-0.055501870810985565,
0.011046131141483784,
0.00724807009100914,
-0.0256740003824234,
0.2852224111557007,
0.31841176748275757,
-0.09995054453611374,
0.0002529690391384065,
-0.025697769597172737,
0.021816037595272064,
0.04061823710799217,
0.05740015208721161,
0.12364064157009125,
0.31914934515953064,
-0.03079221211373806,
-0.06884538382291794,
-0.1473962813615799,
-0.03923714905977249,
-0.2281952202320099,
0.0008457571966573596,
0.10291790217161179,
-0.07307253032922745,
0.007356378249824047,
0.08837098628282547,
-0.16286054253578186,
-0.03250662609934807,
0.015823552384972572,
-0.1131381019949913,
-0.0460171103477478,
0.03995019942522049,
-0.017700891941785812,
0.10588087886571884,
0.04227409139275551,
0.012603489682078362,
0.06309324502944946,
0.060956358909606934,
0.07096314430236816,
-0.09016617387533188,
0.026662947610020638,
0.12531349062919617,
0.05079345777630806,
0.09608495980501175,
0.0030387742444872856,
0.04536197707056999,
0.03821459040045738,
0.1436198651790619,
0.07366584241390228,
0.051412537693977356,
0.012084098532795906,
0.011133831925690174,
0.005242889281362295,
-0.021687857806682587,
-0.001666641910560429,
-0.014187346212565899,
0.06714148074388504,
0.06238891929388046,
0.05582296848297119,
0.024980578571558,
-0.03708583861589432,
-0.07308412343263626,
0.09849943965673447,
-0.1937650889158249,
0.08649715781211853,
0.17055267095565796,
-0.04236030951142311,
0.010599318891763687,
-0.04228094220161438,
-0.014948727563023567,
-0.041221264749765396,
-0.16767369210720062,
-0.10655707865953445,
-0.09015814960002899,
-0.02259078435599804,
-0.045993175357580185,
-0.026671476662158966,
-0.13442040979862213,
-0.09589266777038574,
-0.05324285849928856,
0.027179237455129623,
-0.1632618010044098,
0.017548486590385437,
0.0948319360613823,
0.004400982987135649,
-0.02324904128909111,
-0.1892014890909195,
0.046833690255880356,
0.05979251489043236,
-0.11849301308393478,
-0.09563034027814865
] |
null | null | transformers |
# roberta-classical-chinese-large-sentence-segmentation
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S").
## How to Use
```py
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation")
s="子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print("".join(c+"。" if q=="E" or q=="S" else c for c,q in zip(s,p)))
```
## Reference
Koichi Yasuoka: [Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models](http://hdl.handle.net/2433/266539), IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "token-classification"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]} | token-classification | KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"classical chinese",
"literary chinese",
"ancient chinese",
"sentence segmentation",
"lzh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-large-sentence-segmentation
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-large-char. Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S").
## How to Use
## Reference
Koichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
| [
"# roberta-classical-chinese-large-sentence-segmentation",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-large-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").",
"## How to Use",
"## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-large-sentence-segmentation",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-large-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").",
"## How to Use",
"## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
69,
19,
85,
4,
59
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #sentence segmentation #lzh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-large-sentence-segmentation## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from roberta-classical-chinese-large-char. Every segmented sentence begins with token-class \"B\" and ends with token-class \"E\" (except for single-character sentence with token-class \"S\").## How to Use## Reference\n\nKoichi Yasuoka: Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models, IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109."
] | [
0.037513311952352524,
0.0975465178489685,
-0.004166421480476856,
0.0272576492279768,
0.07115154713392258,
-0.05965854972600937,
0.17432966828346252,
0.10051213204860687,
-0.08598242700099945,
0.010562528856098652,
0.0535971000790596,
0.026721416041254997,
0.06846315413713455,
-0.041711289435625076,
-0.021596793085336685,
-0.3636298179626465,
0.05788661539554596,
0.12811903655529022,
0.013252275064587593,
0.11315472424030304,
0.1477368324995041,
-0.08500641584396362,
0.06970459222793579,
0.07694916427135468,
-0.09638015180826187,
-0.01069561205804348,
-0.017960555851459503,
-0.10869904607534409,
0.1305486410856247,
0.02092987298965454,
0.10638551414012909,
0.0020967794116586447,
0.021679427474737167,
-0.10159777849912643,
-0.0003090403333771974,
-0.0327783077955246,
-0.019567232578992844,
0.05380653962492943,
0.02224418893456459,
0.024436239153146744,
0.11990659683942795,
-0.032599080353975296,
0.07258924841880798,
0.027252670377492905,
-0.0807589516043663,
-0.08307380974292755,
-0.07558940351009369,
0.2257947325706482,
0.15456676483154297,
0.08185777068138123,
-0.044661421328783035,
0.04921858757734299,
-0.06392353028059006,
0.06373406946659088,
0.15528197586536407,
-0.3675605356693268,
-0.01642220839858055,
-0.03825369104743004,
0.0373874194920063,
0.0266941599547863,
-0.07865887880325317,
-0.003040177747607231,
0.005486857146024704,
-0.03753316029906273,
0.0077993543818593025,
-0.1234615370631218,
-0.048024676740169525,
0.02457421086728573,
-0.1420559138059616,
0.05585587024688721,
0.2843834161758423,
-0.014841988682746887,
-0.029398323968052864,
-0.042135585099458694,
-0.012274193577468395,
-0.01728823408484459,
-0.05638087913393974,
-0.09744558483362198,
0.04342251271009445,
0.013340207748115063,
0.09388318657875061,
-0.10864492505788803,
-0.08906538784503937,
-0.021012382581830025,
-0.12311240285634995,
0.13413918018341064,
0.05744832754135132,
0.0034497901797294617,
-0.13607200980186462,
-0.025162596255540848,
-0.029762528836727142,
-0.039714112877845764,
-0.010144652798771858,
-0.04369411990046501,
-0.03895793482661247,
-0.0022967092227190733,
0.011801629327237606,
-0.1119350790977478,
-0.0654381737112999,
0.16295671463012695,
-0.05365542694926262,
0.05531393736600876,
0.05637545883655548,
0.038343559950590134,
0.03924507275223732,
0.14830486476421356,
-0.03197132423520088,
0.024630999192595482,
0.04797696694731712,
-0.025929607450962067,
0.0452071912586689,
0.007694740779697895,
-0.117494136095047,
-0.00035224479506723583,
0.026030324399471283,
0.013616061769425869,
-0.041787039488554,
0.05384835600852966,
0.010344171896576881,
-0.031165700405836105,
0.05292573943734169,
-0.10086314380168915,
-0.0032392749562859535,
-0.02140248380601406,
-0.027557680383324623,
0.13318775594234467,
-0.0231312308460474,
0.026624757796525955,
-0.09461860358715057,
0.1300872564315796,
-0.10653302073478699,
0.020277196541428566,
0.006382465362548828,
-0.01981920562684536,
0.014682911336421967,
-0.12724563479423523,
-0.033871620893478394,
-0.0664229691028595,
-0.08198852092027664,
0.0041206167079508305,
-0.033165134489536285,
-0.0220488291233778,
-0.10352474451065063,
-0.005735899321734905,
-0.03885768726468086,
-0.03383191302418709,
-0.00965674314647913,
0.0025426687207072973,
-0.008560337126255035,
0.027412647381424904,
0.03580557182431221,
0.03614673763513565,
-0.07615157216787338,
0.07999254018068314,
-0.12363290786743164,
0.025907767936587334,
-0.13720159232616425,
0.038434501737356186,
0.0020690415985882282,
-0.008980422280728817,
-0.030776098370552063,
0.01862179860472679,
0.13087336719036102,
0.05951712280511856,
-0.05782238021492958,
0.10818600654602051,
-0.15195192396640778,
-0.09301712363958359,
0.1985391080379486,
-0.13706865906715393,
-0.08081524819135666,
0.13267894089221954,
-0.0053799692541360855,
0.01379837840795517,
0.06558805704116821,
0.19346657395362854,
-0.1225266307592392,
0.00412846589460969,
-0.04724101722240448,
0.012063134461641312,
-0.004881271161139011,
0.04110323637723923,
0.12149138748645782,
0.029111016541719437,
0.090923011302948,
-0.01349406223744154,
-0.03681984171271324,
-0.09956442564725876,
-0.022670084610581398,
-0.08410166949033737,
-0.00604675617069006,
-0.021967316046357155,
0.05862695351243019,
-0.026204194873571396,
0.10880003124475479,
-0.03531626984477043,
-0.05472235754132271,
0.14025874435901642,
0.0587850920855999,
0.009145541116595268,
0.09870752692222595,
-0.12363625317811966,
0.09996703267097473,
0.10547154396772385,
0.02914983220398426,
-0.18415208160877228,
0.06470216810703278,
0.03811454400420189,
0.11713597178459167,
0.09900821000337601,
-0.026920665055513382,
-0.050317615270614624,
-0.0013894252479076385,
-0.09553058445453644,
0.029493678361177444,
0.022075876593589783,
0.010895751416683197,
-0.031009001657366753,
-0.17306466400623322,
0.012722937390208244,
-0.008865448646247387,
0.06759379059076309,
-0.12011024355888367,
0.015803365036845207,
0.027757830917835236,
0.11887673288583755,
-0.002325331559404731,
0.048299554735422134,
0.011084141209721565,
0.07067061215639114,
-0.03450460359454155,
0.06510096043348312,
0.034541793167591095,
0.05660896748304367,
-0.09336245059967041,
0.16064028441905975,
-0.09068868309259415,
-0.10919362306594849,
0.11699754744768143,
-0.11303466558456421,
-0.08457407355308533,
-0.059286247938871384,
-0.04272611066699028,
-0.03534112870693207,
0.004828002769500017,
0.01467443909496069,
0.22873957455158234,
-0.030671799555420876,
0.162741556763649,
-0.10264641046524048,
-0.0048195491544902325,
-0.06387870758771896,
-0.11405795812606812,
0.0005613649846054614,
0.11331954598426819,
0.02941376529633999,
-0.27051252126693726,
0.16297432780265808,
-0.020548081025481224,
-0.08266223967075348,
0.1251792311668396,
-0.010657886043190956,
-0.016330378130078316,
-0.021545015275478363,
-0.018038367852568626,
0.016875403001904488,
0.07292266935110092,
-0.19008778035640717,
-0.09750284254550934,
0.014068788848817348,
-0.03010701946914196,
-0.007118925452232361,
-0.14206862449645996,
0.001852713292464614,
0.003612843342125416,
-0.005104187875986099,
0.039140842854976654,
-0.029835108667612076,
-0.011621050536632538,
0.10631969571113586,
0.046503160148859024,
0.02427932620048523,
0.010602636262774467,
0.018309323117136955,
-0.1435272991657257,
0.11493480205535889,
-0.11521477997303009,
-0.26058030128479004,
-0.032170314341783524,
-0.2357339859008789,
-0.03721301257610321,
0.037202395498752594,
0.03709809109568596,
-0.13780830800533295,
-0.044650573283433914,
-0.03691268712282181,
0.008598917163908482,
-0.09020598977804184,
-0.007312358822673559,
-0.02752617932856083,
0.06008021906018257,
-0.07754764705896378,
-0.02232673205435276,
-0.0255132969468832,
-0.0789112076163292,
0.008506612852215767,
0.022703463211655617,
-0.0745406448841095,
0.01685757376253605,
0.1257021129131317,
0.0026086331345140934,
-0.02714163064956665,
-0.06287013739347458,
0.05137139558792114,
-0.08939845860004425,
0.03462405875325203,
0.17862874269485474,
-0.10001693665981293,
0.03820474073290825,
0.05440409854054451,
0.014910577796399593,
0.02056140825152397,
0.014272063039243221,
0.05665278807282448,
-0.021070700138807297,
-0.27621176838874817,
-0.05334969982504845,
-0.0879025012254715,
0.0845986008644104,
-0.03196191415190697,
0.026858529075980186,
0.13002252578735352,
0.014399782754480839,
-0.03185754641890526,
0.11208176612854004,
-0.020325347781181335,
0.12013795226812363,
0.20499540865421295,
0.015681888908147812,
0.11700379103422165,
-0.06563731282949448,
-0.04022965207695961,
0.04000762104988098,
-0.029804600402712822,
0.12321052700281143,
0.06666246056556702,
0.1376686841249466,
0.05588255450129509,
0.10871061682701111,
0.14702653884887695,
-0.023963075131177902,
-0.05745677277445793,
-0.0047788601368665695,
-0.039060138165950775,
-0.05173959210515022,
0.014947079122066498,
0.12571707367897034,
0.010814170353114605,
-0.04312124475836754,
-0.0189208947122097,
0.13449540734291077,
0.061887212097644806,
0.28528162837028503,
0.08789651095867157,
-0.03541727364063263,
-0.07371384650468826,
0.050798337906599045,
-0.09359022974967957,
-0.057940591126680374,
0.10035660862922668,
-0.016435647383332253,
-0.16299821436405182,
0.0967298299074173,
0.02695169486105442,
0.12430500984191895,
-0.07501029223203659,
0.04890236258506775,
-0.07821108400821686,
-0.006475001107901335,
0.02005632221698761,
0.03955349698662758,
-0.29129859805107117,
0.24342602491378784,
0.030159879475831985,
-0.025920921936631203,
-0.06541062146425247,
0.02887556701898575,
0.03400357812643051,
0.06338450312614441,
0.12083201110363007,
-0.011374663561582565,
-0.057481080293655396,
0.0813882052898407,
-0.046260587871074677,
-0.01965559646487236,
0.08878451585769653,
0.034287020564079285,
0.027072196826338768,
-0.05255166068673134,
-0.0216815248131752,
-0.015298006124794483,
0.06563466042280197,
0.03610799461603165,
-0.14645257592201233,
0.059462349861860275,
-0.06879355013370514,
-0.02850796841084957,
0.04463512822985649,
-0.030559033155441284,
0.031878113746643066,
0.17553524672985077,
-0.02788248099386692,
-0.07538639008998871,
-0.06222132593393326,
0.002892680699005723,
0.006068230606615543,
-0.08130057156085968,
0.013745979405939579,
-0.06213308498263359,
0.07532969117164612,
-0.04067065566778183,
0.004062111489474773,
0.052879128605127335,
-0.027293628081679344,
-0.1073525995016098,
-0.05380391702055931,
0.14249595999717712,
-0.031222283840179443,
0.08003164082765579,
0.013388867489993572,
0.02745422162115574,
0.012545738369226456,
-0.08288408070802689,
0.042068105190992355,
-0.07456350326538086,
0.13869091868400574,
0.04393305256962776,
-0.1887470930814743,
-0.06513945758342743,
-0.14500269293785095,
-0.1510051190853119,
0.15285716950893402,
0.19672778248786926,
-0.020724590867757797,
0.12871254980564117,
0.15149155259132385,
-0.050322603434324265,
-0.1976381242275238,
-0.11180533468723297,
-0.01438072882592678,
-0.013875866308808327,
-0.11092925071716309,
-0.23407970368862152,
0.08198685199022293,
0.028650319203734398,
0.00023107058950699866,
-0.11599446833133698,
-0.03775540739297867,
-0.14407756924629211,
0.09964495897293091,
-0.03845938667654991,
0.03589431196451187,
-0.1339828222990036,
-0.12223754078149796,
0.04689246788620949,
0.010842851363122463,
0.10760565847158432,
0.04837538301944733,
0.08584750443696976,
0.0044679343700408936,
-0.016902610659599304,
-0.023920971900224686,
0.016737492755055428,
0.09588402509689331,
-0.04700617864727974,
-0.04340127483010292,
-0.04951152577996254,
-0.2517138719558716,
0.09864253550767899,
0.012744130566716194,
0.07338407635688782,
-0.04006859287619591,
0.04047314077615738,
-0.11776792258024216,
-0.037738900631666183,
-0.01924707181751728,
-0.07616794109344482,
-0.07691721618175507,
-0.0754937082529068,
-0.10382255911827087,
0.08487853407859802,
-0.016888704150915146,
-0.026794005185365677,
0.2731189727783203,
-0.05366168171167374,
0.04235430434346199,
0.07750990986824036,
0.11683793365955353,
-0.041404638439416885,
-0.0046215420588850975,
-0.09988661110401154,
-0.05184522271156311,
0.0553969070315361,
-0.11175718158483505,
0.019333548843860626,
0.06030423566699028,
0.031177746132016182,
0.16948410868644714,
0.040620189160108566,
-0.029551232233643532,
0.035848669707775116,
0.012697539292275906,
-0.2063838541507721,
-0.09377738833427429,
-0.0578942596912384,
0.021882059052586555,
0.010853181593120098,
0.012502419762313366,
0.10971587151288986,
-0.07544086128473282,
-0.0968347042798996,
0.04120628908276558,
0.029228102415800095,
-0.04271962121129036,
-0.016359807923436165,
-0.04060453549027443,
0.05871201679110527,
-0.09784036874771118,
0.05353764072060585,
0.17280206084251404,
-0.015070229768753052,
0.035251934081315994,
0.22810834646224976,
-0.09532083570957184,
-0.017005475237965584,
-0.09666266292333603,
0.13404229283332825,
-0.10865110903978348,
-0.036322299391031265,
-0.10655809938907623,
-0.18586885929107666,
0.05223322659730911,
0.18445585668087006,
0.055991753935813904,
0.003112135687842965,
-0.04014507308602333,
-0.03449876233935356,
-0.05765364319086075,
0.05494607985019684,
0.04443855956196785,
0.003555418225005269,
-0.07771177589893341,
0.12800103425979614,
0.021797580644488335,
0.13930976390838623,
-0.044763218611478806,
-0.024599196389317513,
-0.15274690091609955,
0.018307512626051903,
-0.21782049536705017,
0.02594030648469925,
-0.10915853083133698,
-0.0700148493051529,
-0.025881607085466385,
-0.04880708456039429,
-0.06397095322608948,
-0.033351752907037735,
-0.03434797003865242,
0.02484794706106186,
0.015379169955849648,
0.05548949912190437,
-0.08957091718912125,
0.0028584615793079138,
0.06879345327615738,
-0.04275999963283539,
0.0954630970954895,
0.10305323451757431,
-0.03263409063220024,
0.024899063631892204,
0.14348724484443665,
0.007035689428448677,
0.014102425426244736,
0.04981444403529167,
0.026864267885684967,
-0.08256340771913528,
-0.04935099929571152,
0.030719663947820663,
-0.0038712252862751484,
0.03174124285578728,
0.0663033053278923,
-0.058601073920726776,
-0.015791304409503937,
-0.09071289002895355,
-0.11897298693656921,
-0.0849449634552002,
0.042496491223573685,
0.12823724746704102,
0.015186360105872154,
0.07167693227529526,
-0.05848934128880501,
0.07444772124290466,
-0.07152906060218811,
0.06140363961458206,
-0.031454309821128845,
-0.06917361170053482,
-0.06736250966787338,
-0.08539360761642456,
-0.0010641765547916293,
-0.043180450797080994,
0.16190673410892487,
-0.034505799412727356,
-0.07947161793708801,
0.09725700318813324,
0.016225241124629974,
0.08743640780448914,
0.06529060751199722,
0.136741042137146,
0.07771946489810944,
-0.08208753913640976,
-0.005231793504208326,
0.02034149505198002,
-0.050361983478069305,
0.10154419392347336,
0.16455405950546265,
0.09892457723617554,
0.07756489515304565,
0.08735200017690659,
0.027064064517617226,
-0.032449617981910706,
-0.01662423647940159,
0.0069508799351751804,
-0.053492967039346695,
-0.02475602552294731,
-0.007273334544152021,
0.1659480780363083,
0.22852636873722076,
-0.10082101076841354,
0.13881252706050873,
-0.008306995965540409,
-0.11749893426895142,
-0.10448005795478821,
-0.10264618694782257,
-0.06493411213159561,
-0.016222070902585983,
-0.033624038100242615,
-0.1058640331029892,
0.002015012549236417,
-0.03215014189481735,
0.049542661756277084,
-0.06169361248612404,
-0.031758710741996765,
-0.02108192816376686,
-0.06998118758201599,
0.09609110653400421,
0.014312596060335636,
0.0430465042591095,
-0.061301425099372864,
-0.027838334441184998,
0.01658663898706436,
-0.046135712414979935,
-0.03397470340132713,
0.02786886692047119,
0.0161807369440794,
0.03386320173740387,
0.012614358216524124,
-0.05742572247982025,
0.0499412901699543,
-0.044604960829019547,
0.09791579097509384,
0.12799547612667084,
-0.0002819131186697632,
-0.0070922644808888435,
0.03072482906281948,
0.2322847545146942,
-0.018197238445281982,
-0.015484372153878212,
-0.14738789200782776,
0.1712922304868698,
-0.026571767404675484,
-0.005121968220919371,
0.04329828545451164,
-0.03293047845363617,
-0.038172926753759384,
0.2597348392009735,
0.19775861501693726,
-0.04182408004999161,
-0.00768410786986351,
0.00033539984724484384,
0.020127611234784126,
0.038425665348768234,
-0.018696347251534462,
0.10317035019397736,
0.2857778072357178,
-0.04232477769255638,
-0.06529945880174637,
-0.1109677329659462,
0.0072597418911755085,
-0.09401147812604904,
0.1300009936094284,
0.15207615494728088,
-0.07313542813062668,
-0.029101699590682983,
0.02054380252957344,
-0.16031323373317719,
-0.04994286596775055,
-0.055948033928871155,
-0.1768069863319397,
-0.12028538435697556,
0.050939757376909256,
-0.016537973657250404,
0.08496469259262085,
0.040198709815740585,
0.0694393739104271,
0.02987937442958355,
0.07072694599628448,
0.08352364599704742,
-0.06635871529579163,
-0.04417805001139641,
0.21571838855743408,
-0.03867477923631668,
0.055522944778203964,
-0.01361837424337864,
0.05951244756579399,
0.062444474548101425,
0.0826290100812912,
0.03099837154150009,
0.021359125152230263,
0.02680487371981144,
-0.08861352503299713,
0.011099056340754032,
0.11158081889152527,
0.02695128135383129,
0.024848373606801033,
0.07440362125635147,
-0.0107567822560668,
0.04198073968291283,
0.03326968103647232,
-0.13109463453292847,
-0.034576430916786194,
0.09803829342126846,
-0.16007408499717712,
0.08965688943862915,
0.2287917584180832,
-0.05959458649158478,
0.015134591609239578,
-0.024537187069654465,
-0.007459960877895355,
0.010125614702701569,
-0.14323145151138306,
-0.03853914141654968,
-0.15619993209838867,
0.04682556912302971,
0.032251421362161636,
-0.02442661114037037,
-0.15500706434249878,
-0.0830613300204277,
-0.024051079526543617,
-0.005051090847700834,
-0.15512843430042267,
-0.019266318529844284,
0.1302987039089203,
0.018618136644363403,
-0.061046138405799866,
-0.1659768521785736,
0.03240358829498291,
0.06095433607697487,
-0.0616488941013813,
-0.060592032968997955
] |
null | null | transformers |
# roberta-classical-chinese-large-upos
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-large-upos")
```
## Reference
Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]} | token-classification | KoichiYasuoka/roberta-classical-chinese-large-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"classical chinese",
"literary chinese",
"ancient chinese",
"pos",
"dependency-parsing",
"lzh",
"dataset:universal_dependencies",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lzh"
] | TAGS
#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-classical-chinese-large-upos
## Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-large-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.
## How to Use
or
## Reference
Koichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-classical-chinese-large-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-large-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\nor",
"## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-classical-chinese-large-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-large-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\nor",
"## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
83,
15,
71,
5,
48,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #classical chinese #literary chinese #ancient chinese #pos #dependency-parsing #lzh #dataset-universal_dependencies #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-classical-chinese-large-upos## Model Description\n\nThis is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from roberta-classical-chinese-large-char. Every word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.## How to Use\n\n\nor## Reference\n\nKoichi Yasuoka: Universal Dependencies Treebank of the Four Books in Classical Chinese, DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.014116891659796238,
0.19802673161029816,
-0.005710621364414692,
0.03226587176322937,
0.08918368816375732,
-0.04193994402885437,
0.08241958171129227,
0.09920697659254074,
0.05439382791519165,
0.04774247854948044,
0.013136827386915684,
0.0430484265089035,
0.07583176344633102,
0.0010995907941833138,
-0.01328157726675272,
-0.26730242371559143,
0.05242376774549484,
0.07548531889915466,
-0.06632506102323532,
0.08175279200077057,
0.0872538760304451,
-0.05302979424595833,
0.07969082146883011,
-0.011610588058829308,
-0.0041470895521342754,
-0.02202966995537281,
-0.09285575151443481,
-0.1222924217581749,
0.08207189291715622,
0.025069501250982285,
0.04583384841680527,
-0.004142932128161192,
-0.0026472934987396,
-0.07518495619297028,
0.011874580755829811,
-0.011612786911427975,
-0.07183250784873962,
0.007426172029227018,
0.058660540729761124,
-0.05752509832382202,
0.14547698199748993,
-0.03584815189242363,
0.030672254040837288,
0.01868523843586445,
-0.08748102933168411,
-0.14088566601276398,
-0.13291670382022858,
0.10223092883825302,
0.05987785756587982,
0.08891409635543823,
-0.02725539170205593,
0.06834990531206131,
0.0025074039585888386,
0.028373632580041885,
0.11723290383815765,
-0.2718517482280731,
-0.020762387663125992,
0.05559918284416199,
0.03511344641447067,
0.06557239592075348,
-0.08697188645601273,
-0.021705372259020805,
0.043372806161642075,
-0.00519965123385191,
-0.040362853556871414,
-0.07063701748847961,
0.1358197182416916,
0.018684377893805504,
-0.13236230611801147,
0.041813768446445465,
0.24892297387123108,
-0.002283533103764057,
-0.03275856748223305,
-0.05085339769721031,
-0.04562155529856682,
0.03252989053726196,
-0.0363970622420311,
-0.08480332791805267,
0.06317757070064545,
0.0017072154441848397,
0.12428580969572067,
-0.033379290252923965,
-0.03041672892868519,
0.07566432654857635,
-0.12207235395908356,
0.1488267481327057,
0.05626048892736435,
-0.002548128366470337,
-0.04639119282364845,
-0.03878950700163841,
0.010811456479132175,
-0.06026408448815346,
-0.028346242383122444,
-0.04663744568824768,
0.00959732010960579,
0.015997635200619698,
-0.0051957834511995316,
0.032428253442049026,
0.005004934500902891,
0.20976534485816956,
-0.06966803967952728,
0.020956935361027718,
-0.0025560965295881033,
0.028529008850455284,
0.11641640961170197,
0.11627955734729767,
-0.07438980787992477,
-0.07812145352363586,
0.03226324915885925,
-0.0017057036748155951,
0.05893125757575035,
-0.031708117574453354,
-0.04884520173072815,
0.01926048845052719,
-0.006851413752883673,
-0.015633558854460716,
0.046870049089193344,
-0.013247079215943813,
-0.03205202892422676,
-0.08163360506296158,
0.09575553983449936,
-0.10415232926607132,
-0.004596359562128782,
-0.0345878079533577,
-0.04772461950778961,
0.25747668743133545,
-0.03439903259277344,
0.0016150444280356169,
-0.08371026068925858,
0.12550871074199677,
-0.0783272236585617,
0.027983738109469414,
-0.007740320637822151,
0.000030275363315013237,
0.07404805719852448,
-0.07265840470790863,
0.015405611135065556,
-0.07105450332164764,
-0.06895480304956436,
-0.04858315363526344,
-0.007374136243015528,
-0.028541341423988342,
-0.057999808341264725,
0.0020464679691940546,
-0.044092562049627304,
-0.05746911093592644,
0.011587712913751602,
-0.11451543122529984,
-0.05769755691289902,
0.04406732693314552,
-0.021838776767253876,
0.03650783374905586,
-0.05887436494231224,
0.067930206656456,
-0.11084704846143723,
-0.02733469381928444,
-0.20509617030620575,
0.05834367871284485,
-0.07696925103664398,
0.0785275548696518,
0.007567095570266247,
0.0217900387942791,
0.021099891513586044,
0.047957468777894974,
-0.058778733015060425,
0.14242087304592133,
-0.12821084260940552,
-0.12442682683467865,
0.22430968284606934,
-0.1361922174692154,
-0.07351289689540863,
0.14602312445640564,
-0.0013126429403200746,
-0.03347919136285782,
0.06474687159061432,
0.1351539045572281,
-0.07001496851444244,
0.012320376001298428,
-0.13525795936584473,
-0.009348982945084572,
0.001493168412707746,
0.06008611619472504,
0.12938888370990753,
0.014509719796478748,
0.10719220340251923,
0.012056441977620125,
-0.05788315087556839,
-0.11015180498361588,
-0.010818067006766796,
-0.08267331123352051,
0.004771319683641195,
0.00007953820750117302,
0.05878299102187157,
-0.012259241193532944,
0.04533734545111656,
-0.08222613483667374,
-0.05904996395111084,
0.11314127594232559,
0.05902719870209694,
0.023968568071722984,
0.08118307590484619,
-0.08889728039503098,
0.08959794044494629,
0.15086030960083008,
0.08636604249477386,
-0.11695098131895065,
0.08052205294370651,
0.05230877548456192,
0.05461541563272476,
0.09907315671443939,
-0.08320417255163193,
-0.000003494350721666706,
-0.021685397252440453,
-0.07246406376361847,
0.015103345736861229,
-0.0460064522922039,
-0.03494108095765114,
0.008009827695786953,
-0.1363430619239807,
0.07598192244768143,
-0.035825133323669434,
0.16353172063827515,
-0.0866236537694931,
0.039407361298799515,
0.03238361328840256,
0.14552466571331024,
-0.017757296562194824,
0.019264575093984604,
-0.018055956810712814,
0.06753980368375778,
-0.04185398668050766,
0.04189120605587959,
0.0007092138985171914,
0.019541973248124123,
-0.1298508495092392,
0.11398600041866302,
-0.009345613420009613,
0.034679561853408813,
0.1878509223461151,
-0.08472233265638351,
-0.014371397905051708,
0.03345882520079613,
-0.028388669714331627,
-0.013592114672064781,
0.03587137162685394,
-0.018914002925157547,
0.15515749156475067,
-0.013474933803081512,
0.07081484794616699,
-0.08338944613933563,
-0.007503381930291653,
-0.03227999433875084,
-0.04947133734822273,
-0.06661220639944077,
0.1490747034549713,
-0.0072754607535898685,
-0.0550880953669548,
0.17168238759040833,
0.14399045705795288,
-0.030551815405488014,
0.13444161415100098,
-0.046376023441553116,
-0.04941627383232117,
0.0006846552132628858,
0.01492542214691639,
-0.012628266587853432,
0.055907078087329865,
-0.13709214329719543,
-0.027263304218649864,
0.012875055894255638,
-0.021264059469103813,
-0.00624840147793293,
-0.10519373416900635,
-0.023218227550387383,
-0.01343432255089283,
0.03059440851211548,
-0.00099196657538414,
-0.019324183464050293,
-0.019378161057829857,
0.10216784477233887,
0.015262115746736526,
0.018624350428581238,
0.024245580658316612,
0.0016692448407411575,
-0.07496799528598785,
0.09635252505540848,
-0.1523745208978653,
-0.27686208486557007,
-0.05402179807424545,
-0.08578769117593765,
-0.07799939811229706,
0.01104761939495802,
0.04235462099313736,
-0.11783187836408615,
-0.04015621170401573,
-0.016402823850512505,
0.014448367059230804,
-0.08776676654815674,
-0.0545908622443676,
0.07235095649957657,
0.05640283226966858,
-0.106627456843853,
-0.026518797501921654,
-0.012818959541618824,
-0.05829767882823944,
-0.08649016171693802,
0.09909714758396149,
-0.006856676656752825,
0.035498104989528656,
0.05578121542930603,
0.009499062784016132,
-0.06109806150197983,
-0.05266973376274109,
0.00922761857509613,
-0.13949203491210938,
0.004860503599047661,
0.16968148946762085,
-0.019656164571642876,
0.038154229521751404,
0.012529948726296425,
0.0028166708070784807,
-0.016497015953063965,
-0.008508769795298576,
0.06095350906252861,
-0.041434213519096375,
-0.30957305431365967,
-0.10295756906270981,
-0.06297322362661362,
0.16846366226673126,
-0.04286366328597069,
0.03403488174080849,
0.09117460250854492,
-0.014471389353275299,
-0.09570508450269699,
0.022717900574207306,
-0.012081115506589413,
0.07759802043437958,
0.14477413892745972,
-0.012011710554361343,
0.12263427674770355,
-0.06336071342229843,
0.013597269542515278,
0.1368415504693985,
0.017482759431004524,
0.13773976266384125,
0.08631965517997742,
0.07867259532213211,
0.02451648935675621,
0.10872426629066467,
0.05314594507217407,
-0.05692010372877121,
0.035620540380477905,
0.014361685141921043,
-0.059058528393507004,
-0.038249798119068146,
-0.015863187611103058,
0.13502715528011322,
0.008733050897717476,
-0.08287584781646729,
0.01642487570643425,
0.026098476722836494,
0.1026671901345253,
0.17040136456489563,
0.006899293512105942,
-0.009201071225106716,
-0.06862733513116837,
0.06421174108982086,
-0.04119494929909706,
-0.018746841698884964,
0.10025709122419357,
-0.09516280889511108,
-0.1535201370716095,
0.15843939781188965,
0.05084194615483284,
0.11498190462589264,
-0.10735876113176346,
0.017142703756690025,
-0.12507368624210358,
-0.04828369617462158,
0.028732994571328163,
-0.00022154321777634323,
-0.30451518297195435,
0.12674236297607422,
-0.00809523556381464,
-0.03781343251466751,
-0.012913906946778297,
0.03151591494679451,
0.08334673196077347,
0.03878556936979294,
0.07107865065336227,
0.004146564286202192,
-0.05647936090826988,
0.11303994059562683,
-0.03276325389742851,
-0.014401189051568508,
0.0514972060918808,
-0.04747680574655533,
0.012419890612363815,
-0.002008875133469701,
0.014747023582458496,
-0.06314828991889954,
-0.0018041356233879924,
0.0012499846052378416,
-0.13898929953575134,
0.08210501074790955,
-0.1376313865184784,
-0.0007696799584664404,
0.03084554709494114,
-0.09625295549631119,
-0.14030157029628754,
0.10685979574918747,
-0.04924187436699867,
-0.04179677739739418,
-0.06094520539045334,
-0.055216968059539795,
0.03167565166950226,
-0.047878164798021317,
0.03317011892795563,
-0.02621888741850853,
0.0206754207611084,
-0.05479145050048828,
-0.07017935812473297,
0.05188383907079697,
-0.046494901180267334,
-0.0893034115433693,
-0.00211319443769753,
0.148773655295372,
0.025088146328926086,
0.06263943016529083,
-0.05557616427540779,
0.033241115510463715,
0.009100735187530518,
-0.07663824409246445,
0.09529084712266922,
0.048546500504016876,
0.08168429881334305,
0.11385631561279297,
-0.16034284234046936,
-0.1335497498512268,
-0.12570959329605103,
-0.14286749064922333,
0.025713728740811348,
0.21790480613708496,
0.007969225756824017,
0.13009671866893768,
0.1876257061958313,
-0.0507948100566864,
-0.26002562046051025,
-0.06576520204544067,
-0.05313223972916603,
-0.004132548347115517,
-0.02500268444418907,
-0.26490524411201477,
0.14466600120067596,
0.14922522008419037,
0.00634833425283432,
0.02625362202525139,
-0.08444710075855255,
-0.09556285291910172,
0.07929647713899612,
-0.051825881004333496,
0.09474627673625946,
-0.1344536691904068,
-0.06994237750768661,
0.00767409848049283,
-0.08560539036989212,
0.08434827625751495,
-0.016424598172307014,
0.04355456680059433,
0.0039280676282942295,
0.005038082599639893,
-0.048636674880981445,
0.044411689043045044,
0.10616779327392578,
0.013841165229678154,
-0.04190344735980034,
-0.05437083542346954,
-0.06776563078165054,
0.12025830894708633,
0.013735026121139526,
0.02062411792576313,
-0.01104665081948042,
0.00023775392037350684,
-0.10702653974294662,
-0.010127110406756401,
-0.010001414455473423,
0.010731987655162811,
-0.035838533192873,
-0.036872416734695435,
-0.11298106610774994,
0.09049034118652344,
0.002473409753292799,
-0.015188571065664291,
0.222708061337471,
0.022159811109304428,
0.02748822420835495,
0.055219221860170364,
0.06890614330768585,
-0.09836385399103165,
0.07363101094961166,
-0.11975802481174469,
-0.04747598245739937,
0.04927533492445946,
-0.10317206382751465,
-0.015955228358507156,
0.09131530672311783,
0.02962753176689148,
0.0825498029589653,
0.026344608515501022,
-0.05461680144071579,
0.0047990549355745316,
0.013907596468925476,
-0.1480630487203598,
-0.22072461247444153,
-0.03154021501541138,
-0.1032569482922554,
0.03614746034145355,
0.07352042943239212,
0.13402459025382996,
-0.02165929414331913,
-0.10297926515340805,
0.018273843452334404,
0.053657762706279755,
-0.012543103657662868,
0.011390198953449726,
-0.10255169123411179,
-0.015197142027318478,
-0.12923014163970947,
0.10513320565223694,
0.10530272871255875,
-0.1136995330452919,
0.038383353501558304,
0.15097537636756897,
-0.055947259068489075,
-0.0267438106238842,
-0.15259942412376404,
0.05101214349269867,
-0.11366905272006989,
-0.00008242874901043251,
-0.06302810460329056,
-0.13138103485107422,
0.04717452451586723,
0.14450092613697052,
0.08226554095745087,
0.02197197452187538,
0.032001398503780365,
0.028712129220366478,
-0.006432254798710346,
0.03601265326142311,
0.06847691535949707,
0.00932264607399702,
-0.050383035093545914,
-0.008434019982814789,
0.012284096330404282,
0.05856870859861374,
-0.036328550428152084,
-0.0507657527923584,
-0.131534606218338,
-0.006938098464161158,
-0.08512654155492783,
-0.0321044884622097,
-0.10750975459814072,
-0.0315055176615715,
-0.024986710399389267,
-0.06436369568109512,
-0.03585457429289818,
-0.03047432191669941,
-0.04486521705985069,
-0.029668239876627922,
0.007494829595088959,
0.1145244762301445,
-0.09195855259895325,
0.00728021701797843,
0.07981943339109421,
-0.04114013537764549,
0.09880246967077255,
0.1680796891450882,
-0.00010719232523115352,
0.05708653852343559,
0.044288355857133865,
0.01129502896219492,
0.048030611127614975,
0.06298583745956421,
0.009773863479495049,
-0.025868039578199387,
-0.03368965536355972,
0.02754148840904236,
-0.04812581092119217,
0.046587809920310974,
0.034469977021217346,
-0.07431983202695847,
-0.027742648497223854,
-0.11106804758310318,
-0.13510622084140778,
-0.037186507135629654,
0.029589103534817696,
0.195429727435112,
0.05121564865112305,
0.12933947145938873,
-0.046132080256938934,
0.036729078739881516,
-0.07587075978517532,
0.032793693244457245,
-0.01718394085764885,
-0.08436518162488937,
-0.05425037816166878,
-0.04188854247331619,
0.026093391701579094,
0.03186097741127014,
0.22473928332328796,
-0.08493632078170776,
-0.050260595977306366,
0.10065056383609772,
0.05169021338224411,
-0.003908082842826843,
0.03027268499135971,
0.07490870356559753,
0.11561276763677597,
-0.08386705815792084,
-0.0475911870598793,
0.025356540456414223,
-0.00562270637601614,
-0.06950799375772476,
0.03111533261835575,
0.14844238758087158,
0.08602554351091385,
0.06077556684613228,
0.0219733864068985,
0.0041285315528512,
-0.042594023048877716,
0.03639295697212219,
-0.04587878659367561,
-0.021041493862867355,
-0.0022455123253166676,
0.22292238473892212,
0.18192224204540253,
-0.08007147908210754,
0.14065015316009521,
0.015504235401749611,
-0.0471835657954216,
-0.05443212017416954,
-0.03884241357445717,
-0.0527539998292923,
-0.11390315741300583,
-0.020396806299686432,
-0.0897376537322998,
0.02705155499279499,
0.031943369656801224,
0.06522433459758759,
-0.09435134381055832,
-0.055963728576898575,
-0.04711228609085083,
-0.0924656093120575,
0.08205119520425797,
0.020146558061242104,
0.009596860967576504,
-0.03315524384379387,
-0.10549483448266983,
-0.032767508178949356,
0.05492531880736351,
-0.00319713749922812,
0.028553102165460587,
-0.0146879181265831,
0.05548441410064697,
-0.04729574918746948,
-0.0570051483809948,
0.07025934755802155,
-0.018331829458475113,
0.0023675092961639166,
0.1379239708185196,
0.023726046085357666,
-0.03519103303551674,
0.041878119111061096,
0.223517507314682,
-0.02285287342965603,
0.06363767385482788,
-0.12913186848163605,
0.04672796651721001,
0.03788739815354347,
0.025461621582508087,
0.035674698650836945,
-0.057184454053640366,
-0.06746567785739899,
0.10911666601896286,
0.19242525100708008,
-0.01629491150379181,
-0.029516013339161873,
0.006772507447749376,
0.04898522421717644,
0.03676340728998184,
-0.05622482672333717,
0.11546145379543304,
0.28221559524536133,
-0.021902916952967644,
-0.07545120269060135,
-0.11673546582460403,
-0.002379649318754673,
-0.1670282483100891,
0.03784635290503502,
0.05455789342522621,
-0.08553320169448853,
-0.01150969136506319,
0.04148755967617035,
-0.13872301578521729,
-0.11504360288381577,
-0.04084847494959831,
-0.19752971827983856,
-0.10255014151334763,
-0.008595374412834644,
-0.04774158075451851,
0.0802864357829094,
0.048233307898044586,
0.1019880548119545,
-0.04791713133454323,
0.11763899773359299,
0.06981930881738663,
-0.07613251358270645,
-0.0510113462805748,
0.10325364768505096,
-0.013605806976556778,
0.07964625954627991,
-0.0178556889295578,
0.004755162633955479,
0.04600733146071434,
0.12792618572711945,
0.049787797033786774,
-0.01911342144012451,
0.018796339631080627,
-0.051672402769327164,
-0.01725936308503151,
0.06502297520637512,
0.0068867444060742855,
0.05339617282152176,
0.13687758147716522,
0.022137263789772987,
-0.010789036750793457,
0.0014466566499322653,
-0.09179108589887619,
-0.03790322318673134,
0.16316889226436615,
-0.18811160326004028,
0.06772831827402115,
0.2020033895969391,
-0.03249894082546234,
0.02267671748995781,
-0.037628818303346634,
-0.040833886712789536,
0.0068891760893166065,
-0.06579357385635376,
0.0019386365311220288,
-0.14403612911701202,
0.01210517156869173,
-0.056179944425821304,
0.004202871583402157,
-0.08747249096632004,
-0.058613020926713943,
-0.014263227581977844,
0.038807354867458344,
-0.1344037503004074,
-0.0015957291470840573,
0.04609980434179306,
-0.04134385660290718,
-0.020211372524499893,
-0.07277355343103409,
0.04899514839053154,
0.06887979060411453,
-0.039391908794641495,
-0.021191854029893875
] |
null | null | transformers |
# roberta-large-english-upos
## Model Description
This is a RoBERTa model pre-trained with [UD_English](https://universaldependencies.org/en/) for POS-tagging and dependency-parsing, derived from [roberta-large](https://huggingface.co/roberta-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-english-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-english-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-large-english-upos")
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["english", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"} | token-classification | KoichiYasuoka/roberta-large-english-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"english",
"pos",
"dependency-parsing",
"en",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-large-english-upos
## Model Description
This is a RoBERTa model pre-trained with UD_English for POS-tagging and dependency-parsing, derived from roberta-large. Every word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-large-english-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained with UD_English for POS-tagging and dependency-parsing, derived from roberta-large. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-large-english-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained with UD_English for POS-tagging and dependency-parsing, derived from roberta-large. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
73,
12,
57,
5,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-large-english-upos## Model Description\n\nThis is a RoBERTa model pre-trained with UD_English for POS-tagging and dependency-parsing, derived from roberta-large. Every word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.04145503044128418,
0.055087435990571976,
-0.005630208179354668,
0.04260353371500969,
0.1387137472629547,
-0.008083675988018513,
0.04698562249541283,
0.05121857300400734,
0.0601869635283947,
-0.0047288574278354645,
0.1025133728981018,
0.1568523496389389,
0.005721522960811853,
0.09443611651659012,
-0.004061448387801647,
-0.31177446246147156,
0.0777665376663208,
0.029248347505927086,
-0.03794258460402489,
0.11388947069644928,
0.1349451243877411,
-0.05714699998497963,
0.08178701996803284,
0.05887558311223984,
-0.11286982148885727,
-0.020192213356494904,
-0.018861927092075348,
-0.1075005978345871,
0.0814903974533081,
0.03868367522954941,
0.11716278642416,
0.030274614691734314,
0.04247969016432762,
-0.10283168405294418,
0.002549652475863695,
0.000737221329472959,
-0.021388405933976173,
0.061768487095832825,
0.06183228641748428,
-0.07966060191392899,
0.0028282764833420515,
-0.027631426230072975,
0.07889064401388168,
0.011416704393923283,
-0.09271446615457535,
-0.17185629904270172,
-0.016615601256489754,
0.04260749742388725,
0.02912672609090805,
0.056706301867961884,
-0.013199045322835445,
0.1713642030954361,
-0.11958606541156769,
0.05123722925782204,
0.13655802607536316,
-0.29982346296310425,
-0.018920013681054115,
0.038087937980890274,
0.034127961844205856,
-0.01771799474954605,
-0.017634069547057152,
-0.027313966304063797,
0.028143087401986122,
0.03699352219700813,
0.03780802711844444,
-0.08249438554048538,
0.057671159505844116,
-0.009311866946518421,
-0.16381123661994934,
-0.02065340057015419,
0.26057159900665283,
0.018914099782705307,
-0.05406937748193741,
-0.024990985170006752,
-0.04022679477930069,
0.11015580594539642,
-0.04816611856222153,
-0.0749630331993103,
0.042621511965990067,
0.018195701763033867,
0.003371304599568248,
0.01932578720152378,
-0.07289142161607742,
-0.019548607990145683,
-0.15318050980567932,
0.20284295082092285,
0.04222246631979942,
0.04798611253499985,
-0.06499970704317093,
0.028334112837910652,
-0.10424365848302841,
-0.060007885098457336,
0.004838297609239817,
-0.10305623710155487,
0.012873065657913685,
-0.026066867634654045,
-0.049111105501651764,
0.014246699400246143,
0.04808829352259636,
0.15987905859947205,
-0.049103789031505585,
-0.011641737073659897,
0.016984710469841957,
0.06437436491250992,
0.1169157475233078,
0.15636426210403442,
-0.1049363985657692,
-0.06398938596248627,
0.0035687091294676065,
-0.07368335127830505,
-0.06833229959011078,
-0.011565322987735271,
-0.12009991705417633,
-0.026010118424892426,
0.03930745646357536,
-0.027218922972679138,
0.04203784838318825,
0.0800795927643776,
-0.05818014219403267,
-0.08052847534418106,
0.04192141816020012,
-0.1000773087143898,
0.03692625090479851,
-0.04168258607387543,
-0.00888132769614458,
0.2096666544675827,
0.025671157985925674,
-0.016739018261432648,
-0.09206666052341461,
0.06347436457872391,
-0.08024470508098602,
-0.030805593356490135,
-0.08126412332057953,
-0.09653624892234802,
0.01595379039645195,
-0.08348923921585083,
0.04800615459680557,
-0.17007948458194733,
-0.13166524469852448,
-0.022698888555169106,
0.054785143584012985,
-0.024849940091371536,
-0.05805600434541702,
-0.03163266181945801,
0.010525512509047985,
-0.02308087982237339,
-0.041540760546922684,
-0.06065637990832329,
-0.02903052233159542,
0.04303741455078125,
-0.07169050723314285,
0.03111880086362362,
-0.1055915579199791,
0.07745671272277832,
-0.1332019567489624,
0.01331403385847807,
-0.22823196649551392,
0.09660238027572632,
-0.06448572129011154,
0.0933285653591156,
-0.11793828010559082,
-0.07172027975320816,
0.00910100806504488,
0.07207299023866653,
-0.024453038349747658,
0.10014566779136658,
-0.05586623772978783,
-0.08643833547830582,
0.22841385006904602,
-0.13370007276535034,
-0.05488463491201401,
0.1492033302783966,
-0.028445715084671974,
0.13294441998004913,
0.09547116607427597,
0.14093071222305298,
0.05944998562335968,
-0.015539499931037426,
0.038486361503601074,
0.10531577467918396,
-0.05913081020116806,
-0.06041570007801056,
0.11788163334131241,
-0.0321984700858593,
-0.11375954747200012,
0.041200149804353714,
-0.11365356296300888,
0.014872806146740913,
-0.04244176670908928,
-0.043456144630908966,
0.025789501145482063,
-0.025153113529086113,
0.016717607155442238,
-0.007650155574083328,
0.05898840352892876,
-0.017847025766968727,
-0.0862148180603981,
0.16854910552501678,
0.053608980029821396,
-0.023731669411063194,
0.04634084552526474,
-0.14387479424476624,
0.16167041659355164,
0.010268161073327065,
0.015695082023739815,
-0.18658137321472168,
0.07238975167274475,
-0.01409058552235365,
0.15089000761508942,
0.025789521634578705,
0.028292115777730942,
0.04183381050825119,
-0.03193054720759392,
0.0167391374707222,
0.03591291606426239,
0.09193424135446548,
0.00042324268724769354,
-0.028155174106359482,
-0.13703322410583496,
-0.01727735809981823,
-0.051998429000377655,
0.056941308081150055,
0.006619616411626339,
0.017230208963155746,
-0.023436013609170914,
0.05147317051887512,
-0.02040739171206951,
0.050253499299287796,
-0.06772945821285248,
0.07501685619354248,
0.0012460164725780487,
0.04271763935685158,
0.08751241117715836,
0.027691200375556946,
-0.05724332854151726,
0.08271474391222,
-0.003022216958925128,
0.11884208023548126,
0.1577378809452057,
-0.17189748585224152,
-0.048839639872312546,
-0.015850089490413666,
-0.015447068028151989,
0.022401340305805206,
0.0005349229904823005,
-0.06867417693138123,
0.12706661224365234,
0.01519265491515398,
0.07207381725311279,
-0.0794856995344162,
0.016734598204493523,
0.0002461839176248759,
-0.10926029086112976,
-0.039179179817438126,
0.10524624586105347,
0.02272518165409565,
-0.11761190742254257,
0.12671934068202972,
0.17495986819267273,
-0.043506525456905365,
0.08086823672056198,
-0.059455640614032745,
-0.06188551336526871,
-0.01921238750219345,
0.008520298637449741,
-0.010058299638330936,
-0.022574840113520622,
-0.22962449491024017,
-0.03736505284905434,
0.10453189164400101,
0.006792485248297453,
0.0183044895529747,
-0.061375539749860764,
-0.010681367479264736,
0.04297659173607826,
0.04238002002239227,
-0.05991505831480026,
0.00035027877311222255,
0.000011773989172070287,
0.05523163080215454,
0.05268095061182976,
-0.12359516322612762,
0.06119251623749733,
0.023991765454411507,
-0.07969057559967041,
0.1786479502916336,
-0.1191941499710083,
-0.1734628677368164,
-0.13584549725055695,
-0.20170898735523224,
0.02713298238813877,
0.014498858712613583,
0.05651627853512764,
-0.03225528821349144,
-0.06273234635591507,
0.020882515236735344,
0.04219536483287811,
-0.0704086497426033,
-0.03415790945291519,
0.010277163237333298,
0.016290850937366486,
-0.05203498899936676,
-0.05923851206898689,
-0.052506256848573685,
-0.03160831704735756,
-0.08948403596878052,
0.10245601832866669,
-0.10892600566148758,
0.057233795523643494,
0.11873527616262436,
-0.036347512155771255,
0.010551812127232552,
-0.03321055695414543,
0.17656216025352478,
-0.02225787565112114,
-0.03559081256389618,
0.1897445172071457,
-0.04524923488497734,
0.05869679898023605,
0.08170891553163528,
0.024508660659193993,
-0.0029849703423678875,
-0.049667008221149445,
-0.02005256712436676,
-0.06792087107896805,
-0.20596003532409668,
-0.11997555196285248,
-0.052240658551454544,
0.08410802483558655,
0.055404990911483765,
-0.0066455635242164135,
-0.003016049275174737,
0.11925207823514938,
0.036725807934999466,
0.03084161877632141,
-0.019157234579324722,
0.0977402850985527,
0.1561913937330246,
-0.04437187686562538,
0.15835903584957123,
-0.022204579785466194,
-0.090888611972332,
0.06804259866476059,
-0.0021823737770318985,
0.17579804360866547,
0.07481490820646286,
0.03254610300064087,
0.09138347208499908,
0.10970345884561539,
0.06289231032133102,
0.11061679571866989,
-0.029414070770144463,
0.027663232758641243,
-0.07287892699241638,
-0.04055582731962204,
-0.1000983789563179,
0.053569354116916656,
0.0009347767918370664,
-0.06682510673999786,
-0.022583026438951492,
0.0050515891052782536,
0.05394134297966957,
0.17218881845474243,
0.01965280994772911,
-0.21893110871315002,
-0.041776079684495926,
0.033867064863443375,
-0.031954728066921234,
-0.04781438782811165,
0.07247550785541534,
-0.08291693776845932,
-0.16062821447849274,
0.030014323070645332,
0.035496801137924194,
0.11887994408607483,
-0.030683372169733047,
0.036342520266771317,
-0.07969304919242859,
0.021264245733618736,
0.032587889581918716,
0.08676445484161377,
-0.21225643157958984,
0.19165241718292236,
-0.008800744079053402,
-0.0076785278506577015,
-0.04214390739798546,
0.02478191815316677,
0.013287156820297241,
0.14456048607826233,
0.16837194561958313,
0.010388605296611786,
-0.011294413357973099,
-0.031629566103219986,
-0.05049905925989151,
0.022047290578484535,
-0.007265347056090832,
-0.03765522316098213,
0.019466103985905647,
-0.04150443896651268,
0.04436401277780533,
0.001132328761741519,
0.04100795090198517,
-0.0036641675978899,
-0.1145951896905899,
-0.0011322370264679193,
-0.08018473535776138,
0.016662634909152985,
-0.005624288693070412,
-0.07006941735744476,
-0.16612109541893005,
0.14761540293693542,
0.007415491156280041,
-0.10247137397527695,
-0.07821346074342728,
-0.012879201211035252,
0.029096370562911034,
-0.10217710584402084,
0.005952499806880951,
-0.03464387357234955,
-0.0034843632020056248,
-0.015727948397397995,
-0.08778875321149826,
0.08991599828004837,
-0.07437114417552948,
0.003889675484970212,
-0.002578555606305599,
0.04827999323606491,
0.0569661483168602,
0.0482482872903347,
0.036011263728141785,
-0.0013880095211789012,
-0.06289438903331757,
-0.08795657753944397,
-0.009536944329738617,
0.03993033245205879,
0.08772370964288712,
0.07866816222667694,
-0.13065969944000244,
-0.12256539613008499,
-0.04008147120475769,
0.035769347101449966,
0.21635247766971588,
0.10008955001831055,
-0.05583374574780464,
0.07875705510377884,
0.27835848927497864,
-0.04003939777612686,
-0.2995157837867737,
-0.07042788714170456,
0.005943503696471453,
0.00753793865442276,
-0.013372175395488739,
-0.1780785769224167,
0.1826639175415039,
0.12793467938899994,
-0.0203353650867939,
-0.10414023697376251,
-0.11030641943216324,
-0.06958909332752228,
0.26524096727371216,
0.028543125838041306,
0.22032994031906128,
-0.09201493859291077,
-0.028092211112380028,
-0.03944974020123482,
-0.23216590285301208,
0.14033737778663635,
-0.06122633069753647,
0.046969134360551834,
0.007977656088769436,
0.0938287004828453,
0.002749943407252431,
-0.0028353144880384207,
0.10805321484804153,
0.055709585547447205,
-0.013714022934436798,
-0.05290810018777847,
-0.06809619814157486,
0.14477182924747467,
0.011065240018069744,
0.05556495860219002,
0.05028556287288666,
-0.021575860679149628,
-0.12126521021127701,
-0.06581592559814453,
-0.07040151208639145,
0.04285627231001854,
-0.0035438137128949165,
-0.10596954822540283,
-0.0064645265229046345,
0.08447423577308655,
0.030431658029556274,
-0.0022649462334811687,
0.09357999265193939,
-0.062028802931308746,
-0.002169806743040681,
0.13493651151657104,
0.14051511883735657,
-0.13109660148620605,
-0.051939304918050766,
-0.028565408661961555,
-0.07570003718137741,
0.11166693270206451,
-0.08937188237905502,
0.027023280039429665,
0.06319396197795868,
0.006315812934190035,
0.05831385776400566,
0.08229810744524002,
-0.06020715832710266,
-0.013605279847979546,
0.07447503507137299,
-0.08727667480707169,
-0.15675009787082672,
0.013758108951151371,
-0.03935585916042328,
-0.03999056667089462,
0.029270978644490242,
0.1112312451004982,
-0.01769636571407318,
-0.06783320009708405,
0.0023780104238539934,
0.016023850068449974,
-0.10286446660757065,
0.09339264035224915,
0.036852315068244934,
0.0199426282197237,
-0.12036946415901184,
0.011206797324120998,
0.05117305368185043,
-0.029012439772486687,
0.01395802479237318,
-0.012098335660994053,
-0.11769244819879532,
-0.07922638207674026,
-0.05601302161812782,
0.09988671541213989,
-0.148605078458786,
-0.09048613160848618,
-0.0019631818868219852,
-0.1481724977493286,
0.07081876695156097,
0.033201489597558975,
0.1289178878068924,
0.01856212504208088,
-0.012097694911062717,
-0.0041346121579408646,
-0.03728663548827171,
0.00961532723158598,
0.06906640529632568,
0.004079189617186785,
-0.060175441205501556,
0.026617735624313354,
-0.058648355305194855,
0.11732323467731476,
-0.06374932080507278,
-0.04500936344265938,
-0.17177900671958923,
0.026075605303049088,
-0.12870319187641144,
-0.020009173080325127,
-0.11124017089605331,
0.002377929165959358,
0.033964239060878754,
-0.027888307347893715,
-0.024578185752034187,
-0.00842160265892744,
-0.08539985865354538,
0.014121838845312595,
0.04811721295118332,
0.07467745989561081,
-0.05890221893787384,
-0.005183256696909666,
0.08192649483680725,
-0.0243049506098032,
0.053804732859134674,
0.09631235152482986,
-0.033074893057346344,
0.02989257499575615,
-0.07243043929338455,
-0.049525611102581024,
0.029369866475462914,
0.029510213062167168,
0.10710639506578445,
-0.054302603006362915,
0.03623594343662262,
0.04828866198658943,
-0.04731486365199089,
0.04137561097741127,
0.12562774121761322,
-0.09147916734218597,
0.15363767743110657,
-0.0024716665502637625,
-0.12780478596687317,
-0.06338346004486084,
0.013999329879879951,
0.08391882479190826,
0.09331365674734116,
0.13244099915027618,
0.003859207034111023,
0.04442480579018593,
-0.06839866936206818,
0.028077777475118637,
0.0024235823657363653,
-0.06365840137004852,
0.04013241082429886,
-0.09109068661928177,
-0.00689281988888979,
-0.0015450898790732026,
0.20122280716896057,
0.07248533517122269,
-0.021804876625537872,
0.036208562552928925,
0.052556201815605164,
0.09686760604381561,
-0.02466469816863537,
0.11776769161224365,
0.07550352066755295,
-0.017430437728762627,
-0.05476656183600426,
0.04929054528474808,
0.01569041796028614,
0.007211857475340366,
0.042221952229738235,
0.13674482703208923,
0.029813416302204132,
0.06206447631120682,
0.05457543954253197,
0.07154751569032669,
-0.12295280396938324,
-0.057249072939157486,
0.06245436519384384,
0.0019395799608901143,
-0.013747856952250004,
0.1400221884250641,
0.1435936987400055,
-0.09008890390396118,
0.09841365367174149,
0.021767111495137215,
-0.04443938657641411,
-0.1741291731595993,
-0.18295714259147644,
-0.07500471919775009,
-0.11876153945922852,
0.006229811813682318,
-0.1052909567952156,
-0.0813862532377243,
0.12063901871442795,
0.029314890503883362,
-0.016626795753836632,
-0.009661095216870308,
-0.1788041591644287,
-0.05923337861895561,
0.052481625229120255,
-0.03006160631775856,
0.026432907208800316,
-0.03687276318669319,
-0.04433183744549751,
-0.022587954998016357,
0.09118441492319107,
0.022584380581974983,
0.005560990422964096,
0.0024533718824386597,
0.016947198659181595,
-0.07840055227279663,
-0.05481244996190071,
-0.0365910641849041,
0.07305344939231873,
-0.024660568684339523,
0.1117546334862709,
-0.002303916262462735,
-0.04138655960559845,
0.008152886293828487,
0.147955521941185,
-0.049388330429792404,
-0.11918319016695023,
-0.15326029062271118,
0.15236219763755798,
0.03531428053975105,
0.06904847174882889,
0.04424493387341499,
-0.05500992015004158,
-0.03803524747490883,
0.24973854422569275,
0.27207934856414795,
-0.028421076014637947,
-0.011909965425729752,
0.03621014952659607,
0.013747925870120525,
0.0350709967315197,
0.09353559464216232,
0.06719236075878143,
0.23797428607940674,
-0.08626492321491241,
-0.013947469182312489,
-0.06809864193201065,
-0.011546081863343716,
-0.13757413625717163,
-0.04378904774785042,
0.0682598277926445,
-0.06747349351644516,
-0.04565000906586647,
0.09153123199939728,
-0.17212551832199097,
-0.034958574920892715,
0.025923198089003563,
-0.038477253168821335,
-0.08858252316713333,
-0.0387570746243,
0.015696488320827484,
0.03898671641945839,
0.09996195882558823,
-0.01865455135703087,
-0.039354901760816574,
0.10359103977680206,
0.031415846198797226,
-0.11900874227285385,
0.0038981016259640455,
0.1420070379972458,
0.11181183904409409,
0.09749379754066467,
0.010125861503183842,
0.0827399492263794,
0.09125440567731857,
0.09279590100049973,
-0.023075133562088013,
-0.003938137087970972,
-0.009238636121153831,
-0.010005911812186241,
0.024164482951164246,
-0.06478021293878555,
-0.019572321325540543,
-0.015805374830961227,
0.033970870077610016,
-0.13797122240066528,
0.0060371519066393375,
-0.013872530311346054,
-0.04098506271839142,
-0.09070075303316116,
0.05960826948285103,
-0.15153369307518005,
0.09156262874603271,
0.16307921707630157,
0.006341536529362202,
-0.05524062737822533,
-0.08397071063518524,
0.048159003257751465,
0.040396127849817276,
-0.11046962440013885,
-0.07192293554544449,
-0.0806809663772583,
-0.06374713778495789,
0.03899182751774788,
-0.007645149249583483,
-0.12162865698337555,
-0.02136891707777977,
-0.024331627413630486,
0.01089018676429987,
-0.07481622695922852,
0.03477109968662262,
0.04903355613350868,
0.0441293828189373,
-0.02181633561849594,
-0.047360461205244064,
0.010855847038328648,
0.06746740639209747,
-0.07026944309473038,
-0.04991082474589348
] |
null | null | transformers |
# roberta-large-japanese-aozora-char
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-large-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char")
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]} | fill-mask | KoichiYasuoka/roberta-large-japanese-aozora-char | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-large-japanese-aozora-char
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-large-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
## Reference
安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
| [
"# roberta-large-japanese-aozora-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-large-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-large-japanese-aozora-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-large-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
59,
16,
73,
4,
55
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-large-japanese-aozora-char## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-large-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
-0.019464951008558273,
-0.0037948214448988438,
-0.004080520942807198,
0.05404724180698395,
0.181609645485878,
0.02793782949447632,
0.157220721244812,
0.08580566197633743,
-0.0237503070384264,
0.039816487580537796,
0.062212973833084106,
0.07986822724342346,
0.06021923944354057,
0.16880790889263153,
-0.04594707861542702,
-0.4016914367675781,
0.07097136229276657,
0.06963201612234116,
0.028978101909160614,
0.10112789273262024,
0.14080600440502167,
-0.03927290439605713,
0.09106268733739853,
0.01959417760372162,
-0.10710299015045166,
-0.026183856651186943,
0.06612139940261841,
-0.18340235948562622,
0.09169314056634903,
0.05375991389155388,
0.11604362726211548,
-0.038223396986722946,
0.029762027785182,
-0.060627855360507965,
0.02655980736017227,
-0.03444458171725273,
-0.05678930878639221,
0.044338300824165344,
-0.06426659971475601,
-0.0034530111588537693,
0.05513222515583038,
-0.05724417790770531,
0.007125698495656252,
0.06870957463979721,
-0.09990683197975159,
-0.12877769768238068,
0.0033476902171969414,
0.07330929487943649,
0.15155191719532013,
0.0800107941031456,
-0.0026605238672345877,
0.10201934725046158,
-0.08452518284320831,
0.05512431263923645,
0.17993205785751343,
-0.25888577103614807,
-0.10105728358030319,
0.034784022718667984,
-0.0008805858087725937,
0.0028680707328021526,
-0.02688245102763176,
0.00034160036011599004,
0.017566820606589317,
0.0017586286412552,
-0.004094035364687443,
-0.1286105364561081,
0.10502689331769943,
-0.008292105048894882,
-0.07603011280298233,
0.07155770808458328,
0.21869449317455292,
0.012333114631474018,
-0.07765955477952957,
-0.11648553609848022,
-0.053038544952869415,
0.017754847183823586,
-0.1343357414007187,
-0.028307856991887093,
-0.01283198967576027,
-0.03840513154864311,
0.033042456954717636,
-0.030590547248721123,
-0.07724829018115997,
-0.08652444928884506,
-0.07912186533212662,
0.2583909332752228,
0.036130573600530624,
-0.005024149548262358,
-0.09089770913124084,
-0.04656407982110977,
-0.08613621443510056,
-0.10826531797647476,
-0.026456164196133614,
-0.0812697634100914,
0.04024146869778633,
0.07638941705226898,
-0.02379656210541725,
-0.09087398648262024,
0.0729713961482048,
0.15787746012210846,
0.02784018963575363,
0.08995222300291061,
0.02886594645678997,
0.059809159487485886,
0.01530473679304123,
0.1567617803812027,
-0.061312444508075714,
-0.026535697281360626,
0.053272124379873276,
-0.014328100718557835,
0.03662650287151337,
-0.07474100589752197,
-0.16070421040058136,
-0.08435618877410889,
-0.002494886051863432,
-0.003157107625156641,
0.004651128780096769,
0.10573817789554596,
-0.0322733148932457,
-0.04267963394522667,
0.09290934354066849,
-0.16182294487953186,
-0.004534372128546238,
-0.022017069160938263,
-0.03734324872493744,
0.12585005164146423,
-0.002947265515103936,
-0.03247524052858353,
-0.04159549996256828,
0.052668433636426926,
-0.0512717068195343,
0.005315518472343683,
-0.0670737773180008,
-0.05710562318563461,
-0.018862992525100708,
-0.06354613602161407,
0.0283754114061594,
-0.19278082251548767,
-0.08981690555810928,
-0.019008534029126167,
0.040935058146715164,
-0.012863055802881718,
-0.0105519387871027,
0.0043999371118843555,
-0.0505015030503273,
-0.006102906074374914,
-0.021107658743858337,
-0.059941429644823074,
-0.014407538808882236,
0.05871511623263359,
0.05432412400841713,
0.11789441108703613,
-0.1267220377922058,
0.030278069898486137,
-0.0883735939860344,
0.010533317923545837,
-0.28941792249679565,
-0.013440988957881927,
0.00023604386660736054,
0.02472434751689434,
-0.0862923115491867,
-0.04382507875561714,
0.006473013665527105,
0.0966796949505806,
0.023640643805265427,
0.11031191796064377,
-0.07015501707792282,
-0.0828952044248581,
0.2479054033756256,
-0.1282699555158615,
-0.09598638117313385,
0.1367006003856659,
-0.0030982436146587133,
0.12529902160167694,
0.04929829388856888,
0.12178371101617813,
0.0266889501363039,
-0.04849013313651085,
0.0428287498652935,
0.026030361652374268,
-0.07619063556194305,
-0.04879037290811539,
0.09603624790906906,
0.06653676182031631,
-0.09336095303297043,
0.08140908181667328,
-0.09277673810720444,
-0.04786299914121628,
-0.049892835319042206,
-0.07629107683897018,
0.04677865281701088,
-0.033128608018159866,
0.049195192754268646,
0.006649434100836515,
0.0748315155506134,
-0.03640533238649368,
-0.11107304692268372,
-0.051335692405700684,
0.04551020637154579,
-0.057655468583106995,
0.05751785263419151,
-0.1780131310224533,
0.08071690797805786,
0.06024159491062164,
0.052200935781002045,
-0.1236676275730133,
0.04084054008126259,
-0.016568806022405624,
0.15997253358364105,
0.05055028200149536,
-0.08011287450790405,
0.040359582751989365,
-0.0003380211419425905,
-0.017444072291254997,
-0.006523047108203173,
0.05400291830301285,
-0.03205326572060585,
0.006147025153040886,
-0.0935964286327362,
-0.03981873765587807,
-0.018719621002674103,
0.07821422815322876,
0.0017716416623443365,
0.0463043637573719,
-0.10068971663713455,
0.019505266100168228,
-0.046986013650894165,
0.06432098895311356,
-0.04215269163250923,
0.07874613255262375,
-0.02180212177336216,
0.08108733594417572,
0.05147838592529297,
0.030484303832054138,
-0.13052210211753845,
0.15100803971290588,
-0.14482127130031586,
0.22325308620929718,
0.13004960119724274,
-0.118453249335289,
-0.08628902584314346,
0.019496580585837364,
0.008226257748901844,
0.005284944083541632,
0.02466115914285183,
-0.0027164181228727102,
0.08328909426927567,
-0.031201109290122986,
0.1409815400838852,
-0.07285702973604202,
0.12179378420114517,
0.06542837619781494,
-0.16729921102523804,
-0.015464936383068562,
0.11069635301828384,
0.053729452192783356,
-0.09921364486217499,
0.13129428029060364,
0.02023194171488285,
-0.09556615352630615,
0.1933143138885498,
0.004696925636380911,
-0.057413529604673386,
-0.06002834066748619,
-0.005843149498105049,
0.05541841685771942,
0.04293609783053398,
-0.1389990895986557,
-0.051558900624513626,
0.0628250315785408,
-0.06591871380805969,
0.014622155576944351,
-0.0643414855003357,
-0.08032732456922531,
0.011204713024199009,
-0.0009792594937607646,
-0.03451851010322571,
0.07694872468709946,
-0.01543523371219635,
0.10131970793008804,
0.06559913605451584,
-0.04379497095942497,
0.01247548870742321,
0.018129730597138405,
-0.0616593174636364,
0.14294683933258057,
-0.08154110610485077,
-0.28734663128852844,
-0.19221191108226776,
-0.20789484679698944,
-0.012469076551496983,
0.03153117373585701,
0.05140704661607742,
-0.11890293657779694,
-0.06506184488534927,
-0.013253172859549522,
0.00455890316516161,
-0.05621112510561943,
-0.001274659764021635,
-0.006704090163111687,
0.04402925819158554,
-0.05479378253221512,
-0.05639411881566048,
-0.039719413965940475,
-0.025342043489217758,
-0.06808704137802124,
0.15150493383407593,
-0.11734162271022797,
0.1428382247686386,
0.1197282150387764,
-0.021005084738135338,
0.038387708365917206,
-0.03165891021490097,
0.054213669151067734,
-0.1074787825345993,
0.006193914916366339,
0.26810768246650696,
-0.0685783252120018,
0.05862090364098549,
0.10262312740087509,
0.015738967806100845,
-0.02509610541164875,
0.02127852663397789,
-0.05069464445114136,
-0.11527332663536072,
-0.14581823348999023,
-0.041793134063482285,
-0.09032133221626282,
0.16239090263843536,
0.015772202983498573,
0.030196089297533035,
0.1506175696849823,
0.088599793612957,
0.030876759439706802,
0.07839147746562958,
0.018790744245052338,
0.10362225770950317,
0.08878794312477112,
-0.0058869123458862305,
0.1435837298631668,
-0.04743686690926552,
-0.06320293247699738,
0.02845490165054798,
-0.0566302053630352,
0.11752722412347794,
0.06483973562717438,
0.10375649482011795,
0.04862798750400543,
0.10383296012878418,
0.11272820085287094,
0.020639929920434952,
0.04394347965717316,
-0.013784642331302166,
-0.02697671391069889,
-0.06175927072763443,
-0.09491026401519775,
0.10181944817304611,
-0.0020884890109300613,
-0.0366225503385067,
-0.05375825986266136,
0.07922171801328659,
0.012542695738375187,
0.16448841989040375,
-0.025718700140714645,
-0.20469430088996887,
-0.07633858919143677,
-0.006289147771894932,
-0.02380138263106346,
-0.016189420595765114,
0.04855574667453766,
-0.013227080926299095,
-0.16529907286167145,
0.03624206408858299,
-0.004363677930086851,
0.1276143193244934,
0.026534661650657654,
0.05002333223819733,
-0.07929009944200516,
0.043460413813591,
0.017119992524385452,
0.05529715493321419,
-0.2491750568151474,
0.25475701689720154,
0.023701539263129234,
0.06081540510058403,
-0.07235608249902725,
0.0022082028444856405,
0.05944196134805679,
-0.021584581583738327,
0.1987013965845108,
-0.050686001777648926,
-0.052015576511621475,
-0.15938815474510193,
-0.05207088217139244,
0.050592709332704544,
0.1246444582939148,
-0.020370926707983017,
0.04964948445558548,
-0.05352966859936714,
-0.03479987382888794,
-0.00539741013199091,
0.056362465023994446,
-0.07744703441858292,
-0.10710463672876358,
0.023211106657981873,
0.05771658197045326,
-0.08135340362787247,
0.0034630687441676855,
-0.022120047360658646,
-0.04951358959078789,
0.10567266494035721,
0.039785392582416534,
-0.021310817450284958,
-0.11622314900159836,
-0.003753062104806304,
0.06895235180854797,
-0.16251689195632935,
0.04439563304185867,
-0.07239167392253876,
0.03772304952144623,
-0.008713613264262676,
-0.08785121887922287,
0.07986714690923691,
-0.04349450394511223,
-0.024253517389297485,
0.01352690625935793,
0.06739085912704468,
0.03326263278722763,
0.07301726937294006,
0.013674136251211166,
0.0017531916964799166,
0.03486047312617302,
-0.08954557031393051,
0.00618672976270318,
-0.019626403227448463,
0.10759356617927551,
0.05868155509233475,
-0.14624139666557312,
-0.10720982402563095,
-0.08656193315982819,
-0.02219664305448532,
0.16098052263259888,
0.17179225385189056,
-0.013385692611336708,
0.029191797599196434,
0.1633359044790268,
0.010099112056195736,
-0.2887187898159027,
-0.12292894721031189,
-0.038982976227998734,
0.12051758915185928,
-0.057519957423210144,
-0.17050360143184662,
0.07367470115423203,
0.04937823489308357,
-0.016604922711849213,
0.0014996612444519997,
-0.11788033694028854,
-0.11436184495687485,
0.16617600619792938,
0.07658744603395462,
0.1351613998413086,
-0.14311040937900543,
-0.03265899419784546,
-0.06052675470709801,
-0.19204065203666687,
0.014228377491235733,
-0.07438531517982483,
0.10580647736787796,
-0.04159848019480705,
0.006635711994022131,
-0.00350385345518589,
-0.021528735756874084,
0.10291498154401779,
-0.061717722564935684,
-0.011123827658593655,
-0.08380033075809479,
-0.18195843696594238,
0.1367509663105011,
0.014579578302800655,
0.11130416393280029,
-0.0030191801488399506,
-0.0460885651409626,
-0.041488923132419586,
-0.06628762185573578,
-0.05290255323052406,
-0.006947978865355253,
0.0029498154763132334,
-0.09394027292728424,
-0.009303671307861805,
0.0838456004858017,
-0.03781421482563019,
0.03457792103290558,
0.1544737070798874,
-0.11569637805223465,
0.07222326099872589,
0.08296757936477661,
0.10118865221738815,
-0.013709697872400284,
0.024606825783848763,
-0.013500231318175793,
-0.05082925036549568,
0.1204410269856453,
-0.17394526302814484,
0.05698537081480026,
0.01034542266279459,
0.026791853830218315,
0.06373720616102219,
0.07466022670269012,
-0.021019788458943367,
0.05279634892940521,
0.08767596632242203,
-0.07577195763587952,
-0.11860285699367523,
-0.031089525669813156,
-0.06688390672206879,
-0.005024970509111881,
0.05561738461256027,
0.11458489298820496,
-0.05583588778972626,
-0.0348164364695549,
-0.01950506493449211,
-0.00016031699487939477,
-0.07462060451507568,
0.01005084253847599,
0.06706761568784714,
0.04271453619003296,
-0.0790700614452362,
-0.03727732598781586,
0.03986039012670517,
-0.025981063023209572,
0.07753913104534149,
0.0886949673295021,
-0.0706486776471138,
-0.09509605914354324,
-0.033653754740953445,
0.09566701948642731,
-0.005524986423552036,
-0.08738929778337479,
-0.1424141228199005,
-0.09940938651561737,
0.014651292003691196,
0.13198056817054749,
0.10167902708053589,
-0.029242347925901413,
-0.018693741410970688,
0.030999433249235153,
-0.1071464940905571,
-0.03931085765361786,
0.08322857320308685,
-0.007541841361671686,
-0.050596289336681366,
0.05646483972668648,
0.032629456371068954,
0.16328901052474976,
-0.07217583805322647,
-0.06681099534034729,
-0.18890057504177094,
0.06702073663473129,
-0.059367820620536804,
0.01777591183781624,
-0.13231498003005981,
-0.062045544385910034,
0.0013036630116403103,
-0.016261639073491096,
-0.09979689866304398,
-0.014576826244592667,
-0.0545135959982872,
-0.015204384922981262,
0.006214311346411705,
0.02287890575826168,
-0.029703956097364426,
0.007693926803767681,
0.08249038457870483,
-0.04930119961500168,
0.0076273102313280106,
0.11911550164222717,
-0.05899367481470108,
0.06569729745388031,
-0.09810028225183487,
0.03172174096107483,
0.03915467485785484,
-0.0001496033073635772,
0.07443255931138992,
0.024279586970806122,
0.02375991828739643,
0.028995204716920853,
0.05014077574014664,
0.031833913177251816,
0.13379628956317902,
-0.1072043627500534,
0.14156046509742737,
-0.1294020265340805,
-0.13124620914459229,
-0.08824065327644348,
0.03513072431087494,
0.11843141168355942,
0.07371099293231964,
0.05693156644701958,
-0.04510863870382309,
0.11521416157484055,
-0.06956415623426437,
0.013761813752353191,
-0.045470092445611954,
-0.08589204400777817,
0.05837232992053032,
-0.093657486140728,
0.031765248626470566,
-0.005184062756597996,
0.11959955841302872,
0.02914624661207199,
0.02789289690554142,
0.02129010111093521,
-0.024093057960271835,
0.05460198223590851,
0.031720343977212906,
0.1658656895160675,
0.08355429768562317,
-0.045172322541475296,
0.053245678544044495,
0.06049000844359398,
0.03442608192563057,
0.01193644106388092,
0.03468259423971176,
0.10224220156669617,
0.11587633192539215,
0.14339286088943481,
-0.0019860563334077597,
0.07885786890983582,
-0.06368298083543777,
-0.059424418956041336,
-0.07818949967622757,
-0.03202363848686218,
0.03950904309749603,
0.05717350170016289,
0.23515468835830688,
-0.04456685855984688,
0.08468329161405563,
0.0070856474339962006,
-0.06715656071901321,
-0.16452455520629883,
-0.16280816495418549,
-0.1114184632897377,
-0.07336266338825226,
0.02249310351908207,
-0.052874255925416946,
-0.062081411480903625,
0.13514113426208496,
0.015095704235136509,
-0.006098258774727583,
0.12578335404396057,
-0.017900215461850166,
0.007205584552139044,
0.1296297311782837,
-0.013126181438565254,
0.0017905768472701311,
0.04509074240922928,
-0.042720478028059006,
-0.05149663984775543,
-0.020380496978759766,
0.04314994812011719,
0.029950616881251335,
-0.044597990810871124,
0.06455474346876144,
-0.08307360112667084,
-0.13257238268852234,
-0.015997815877199173,
0.06433619558811188,
0.07791505008935928,
0.11412004381418228,
0.009022695943713188,
-0.07359422743320465,
-0.009574356488883495,
0.1693398803472519,
-0.02916165627539158,
-0.0680718943476677,
-0.15932822227478027,
0.12768234312534332,
0.05396726354956627,
-0.02778993546962738,
-0.044669266790151596,
-0.03553101420402527,
-0.0241865161806345,
0.2832525968551636,
0.2734030783176422,
-0.057823117822408676,
0.014985308051109314,
0.031845010817050934,
0.016311107203364372,
0.00657630804926157,
0.1561668962240219,
0.06744500249624252,
0.2943098545074463,
-0.05052543431520462,
-0.059834063053131104,
-0.08775317668914795,
-0.05279659107327461,
-0.10841641575098038,
0.01409191358834505,
0.10409027338027954,
-0.07408921420574188,
-0.05510956421494484,
0.08162951469421387,
-0.21575607359409332,
0.000566408853046596,
0.06505953520536423,
-0.13254162669181824,
-0.08968304842710495,
0.0004472477303352207,
0.017267964780330658,
0.05432775616645813,
0.11346510052680969,
-0.023840894922614098,
0.009559391066432,
0.037647560238838196,
0.06377551704645157,
-0.07559389621019363,
0.008572415448725224,
0.08819624781608582,
0.00929245911538601,
0.15502893924713135,
-0.00879600364714861,
0.05980720743536949,
0.09800451993942261,
0.08243807405233383,
0.06065061688423157,
0.0961444303393364,
0.008966002613306046,
-0.033995915204286575,
0.04062820225954056,
0.0823039710521698,
-0.05243605375289917,
-0.041142478585243225,
0.03072667121887207,
-0.16689349710941315,
0.05946822836995125,
-0.01909150369465351,
-0.03385072946548462,
-0.06919750571250916,
0.0905657708644867,
-0.1530173271894455,
0.10028987377882004,
0.17940664291381836,
-0.025241997092962265,
-0.07321183383464813,
-0.03421367332339287,
0.0841766893863678,
0.03284592926502228,
-0.09572810679674149,
-0.12085232883691788,
-0.12236136943101883,
-0.09447814524173737,
0.006399320438504219,
-0.016048302873969078,
-0.25730761885643005,
-0.04421074315905571,
-0.030716361477971077,
-0.006901252083480358,
-0.12038177251815796,
-0.014059243723750114,
0.03814776614308357,
-0.0029259338043630123,
0.00995657593011856,
-0.14692182838916779,
0.03720514476299286,
0.07671122997999191,
-0.09905722737312317,
-0.12647105753421783
] |
null | null | transformers |
# roberta-large-japanese-aozora
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-large-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-goeswith), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora")
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]} | fill-mask | KoichiYasuoka/roberta-large-japanese-aozora | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-large-japanese-aozora
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-large-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
## Reference
安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
| [
"# roberta-large-japanese-aozora",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-large-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-large-japanese-aozora",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-large-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
59,
14,
75,
4,
55
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-large-japanese-aozora## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-large-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8."
] | [
-0.020510314032435417,
-0.01790579780936241,
-0.0034232253674417734,
0.050900716334581375,
0.16173356771469116,
0.025975344702601433,
0.15667250752449036,
0.07087914645671844,
-0.006333553697913885,
0.031876955181360245,
0.060382600873708725,
0.11848470568656921,
0.0482528917491436,
0.14020425081253052,
-0.061767760664224625,
-0.41513073444366455,
0.07049135863780975,
0.07459324598312378,
-0.025147702544927597,
0.08827950805425644,
0.14611303806304932,
-0.038797393441200256,
0.09045832604169846,
0.02171488106250763,
-0.09969720989465714,
-0.023753730580210686,
0.05356384813785553,
-0.17163774371147156,
0.09742188453674316,
0.06455457210540771,
0.13384677469730377,
-0.03911437839269638,
0.04975152760744095,
-0.04590058699250221,
0.022969380021095276,
-0.039957862347364426,
-0.039373550564050674,
0.045246802270412445,
-0.05103766545653343,
-0.0005294354632496834,
0.0544048435986042,
-0.07059788703918457,
0.010305659845471382,
0.06589015573263168,
-0.09433774650096893,
-0.09624633938074112,
-0.0013639918761327863,
0.061334796249866486,
0.15981781482696533,
0.07583996653556824,
0.003942917101085186,
0.10579301416873932,
-0.09621162712574005,
0.05075635015964508,
0.1827269345521927,
-0.2629585564136505,
-0.10316286236047745,
0.07155188173055649,
0.010882999747991562,
-0.0279447790235281,
-0.041383374482393265,
-0.001828532898798585,
0.03430790826678276,
0.005154366139322519,
-0.0167798213660717,
-0.13218985497951508,
0.09858254343271255,
-0.016359928995370865,
-0.08404359966516495,
0.07860688865184784,
0.23201784491539001,
0.027438003569841385,
-0.07734113931655884,
-0.11478915065526962,
-0.054905686527490616,
0.04000575840473175,
-0.135379821062088,
-0.02517867088317871,
-0.006947273388504982,
-0.04718152433633804,
0.05461813136935234,
-0.023416919633746147,
-0.07741960883140564,
-0.08711207658052444,
-0.08286726474761963,
0.31187891960144043,
0.03184659779071808,
0.001726075541228056,
-0.08589459955692291,
-0.024980921298265457,
-0.07587714493274689,
-0.10758329182863235,
-0.026880793273448944,
-0.08339936286211014,
0.023479057475924492,
0.07397334277629852,
-0.007502913940697908,
-0.08939475566148758,
0.06169017031788826,
0.157441183924675,
0.06294754892587662,
0.08668363839387894,
0.05128658190369606,
0.06315942853689194,
0.01921076327562332,
0.15477697551250458,
-0.05108102038502693,
-0.0488264225423336,
0.053084537386894226,
-0.011605354025959969,
0.0309927836060524,
-0.053625963628292084,
-0.16033464670181274,
-0.10354778915643692,
-0.030927279964089394,
-0.0037852965760976076,
0.013598732650279999,
0.09598775953054428,
-0.0333331860601902,
-0.056122779846191406,
0.09044577926397324,
-0.15699502825737,
0.0070447493344545364,
-0.031515300273895264,
-0.04313112050294876,
0.13115502893924713,
0.032176364213228226,
-0.01648092269897461,
-0.02316029742360115,
0.06349926441907883,
-0.0514984056353569,
-0.004671253263950348,
-0.08087404072284698,
-0.05803678557276726,
-0.02312542125582695,
-0.07406972348690033,
0.05777458846569061,
-0.19117356836795807,
-0.11522665619850159,
-0.01641005091369152,
0.06612249463796616,
-0.00975352618843317,
-0.03241252154111862,
0.013860402628779411,
-0.04346031695604324,
-0.015223679132759571,
-0.01321977749466896,
-0.003358774119988084,
-0.008892389014363289,
0.05535579472780228,
0.04610439017415047,
0.10493969917297363,
-0.11354819685220718,
0.02493085153400898,
-0.07937650382518768,
0.029605990275740623,
-0.25195667147636414,
-0.01955709233880043,
-0.01616574078798294,
0.03834669291973114,
-0.09083914756774902,
-0.05155995488166809,
0.001900630071759224,
0.0986568033695221,
0.01459281612187624,
0.1194327175617218,
-0.048855822533369064,
-0.07063133269548416,
0.19737954437732697,
-0.12389779090881348,
-0.0767560601234436,
0.10162398219108582,
-0.01658809371292591,
0.16536903381347656,
0.04311021789908409,
0.09201227873563766,
0.031239807605743408,
-0.05891500413417816,
0.03942703828215599,
0.02033432200551033,
-0.09704770147800446,
-0.035190340131521225,
0.08610302209854126,
0.08950198441743851,
-0.1337878406047821,
0.07657962292432785,
-0.06969235092401505,
-0.05730116739869118,
-0.05998944863677025,
-0.08571071177721024,
0.038290396332740784,
-0.05213957279920578,
0.043234243988990784,
0.003168360562995076,
0.07851490378379822,
-0.02489854209125042,
-0.10705548524856567,
-0.012636951170861721,
0.06149160861968994,
-0.042070191353559494,
0.0353686586022377,
-0.16993612051010132,
0.048371925950050354,
0.03594810143113136,
0.03911697864532471,
-0.11296718567609787,
0.025661148130893707,
-0.01237828005105257,
0.142612025141716,
0.0600278414785862,
-0.03853120654821396,
0.05499747022986412,
0.007818588986992836,
-0.014129707589745522,
-0.017207490280270576,
0.03424582630395889,
-0.023997889831662178,
0.010664576664566994,
-0.10937459766864777,
-0.054465070366859436,
-0.030515678226947784,
0.053694795817136765,
-0.032846931368112564,
0.029264777898788452,
-0.1372321993112564,
0.03869835287332535,
-0.04647337272763252,
0.07319803535938263,
-0.02912319451570511,
0.06789597123861313,
-0.019868899136781693,
0.0742420107126236,
0.041839513927698135,
0.02162734791636467,
-0.1395491361618042,
0.1282934695482254,
-0.11177250742912292,
0.2564193904399872,
0.12001630663871765,
-0.09949097037315369,
-0.0918888971209526,
0.022873947396874428,
-0.012464504688978195,
-0.011510315351188183,
0.01968277059495449,
0.012895002961158752,
0.08707349747419357,
-0.032110631465911865,
0.11522156000137329,
-0.06914416700601578,
0.11944233626127243,
0.0772024467587471,
-0.16513998806476593,
-0.007475260179489851,
0.11115042865276337,
0.0831856057047844,
-0.12983402609825134,
0.12183520942926407,
0.00782031286507845,
-0.11266219615936279,
0.17046649754047394,
0.008117389865219593,
-0.05496574565768242,
-0.06583884358406067,
-0.004304537083953619,
0.05664956942200661,
0.0723358616232872,
-0.13513587415218353,
-0.024624599143862724,
0.06733196973800659,
-0.062373772263526917,
0.02171773463487625,
-0.06813128292560577,
-0.08264579623937607,
0.008280806243419647,
0.018505441024899483,
-0.01021012756973505,
0.08428378403186798,
-0.019085176289081573,
0.09762181341648102,
0.06265009194612503,
-0.0386967808008194,
0.012651982717216015,
0.032025955617427826,
-0.05172557756304741,
0.1474631279706955,
-0.0644848644733429,
-0.2676159739494324,
-0.17083574831485748,
-0.19236059486865997,
-0.01145339384675026,
0.017392359673976898,
0.03974006325006485,
-0.1045651063323021,
-0.08892598748207092,
0.01306290365755558,
0.013992532156407833,
-0.049858272075653076,
0.01896573044359684,
-0.004020238760858774,
0.05546556040644646,
-0.046893294900655746,
-0.06794892251491547,
-0.031612835824489594,
-0.02024032734334469,
-0.07494963705539703,
0.13547351956367493,
-0.1073559820652008,
0.14077244699001312,
0.10643421858549118,
-0.0012667789123952389,
0.033043939620256424,
-0.013030336238443851,
0.06619953364133835,
-0.1107863038778305,
0.022291533648967743,
0.25756874680519104,
-0.06968014687299728,
0.04829828813672066,
0.12515270709991455,
0.027515718713402748,
-0.03642819821834564,
0.01858704350888729,
-0.02622317336499691,
-0.10935044288635254,
-0.14923708140850067,
-0.04996709153056145,
-0.09632454067468643,
0.1347893476486206,
0.02117721550166607,
0.04414898529648781,
0.140051007270813,
0.1030006855726242,
0.04119423031806946,
0.0973467156291008,
0.0151294507086277,
0.09901411086320877,
0.04972682520747185,
-0.008563222363591194,
0.1292906105518341,
-0.05039040744304657,
-0.08091096580028534,
0.02289915457367897,
-0.04310852289199829,
0.1402461975812912,
0.0697718933224678,
0.052062373608350754,
0.055783290416002274,
0.10260140150785446,
0.1187179684638977,
0.050200942903757095,
0.04529029130935669,
-0.02690315432846546,
-0.029839355498552322,
-0.06874362379312515,
-0.08600093424320221,
0.12649673223495483,
0.0015665177488699555,
-0.028894247487187386,
-0.027803871780633926,
0.048905935138463974,
-0.0009208322735503316,
0.16322866082191467,
-0.02291887439787388,
-0.21711169183254242,
-0.08109001815319061,
0.003746941452845931,
-0.031381700187921524,
-0.031733300536870956,
0.04621131345629692,
-0.048234567046165466,
-0.15961845219135284,
0.042938195168972015,
-0.018362464383244514,
0.13427655398845673,
0.02452346310019493,
0.029818186536431313,
-0.09400410205125809,
0.04957352951169014,
0.01713469624519348,
0.06198982894420624,
-0.22911734879016876,
0.2643004357814789,
0.01370965875685215,
0.06885038316249847,
-0.06335657835006714,
0.0004335070843808353,
0.06519311666488647,
-0.009303874336183071,
0.20368866622447968,
-0.04751072824001312,
-0.010822465643286705,
-0.13861480355262756,
-0.07324004173278809,
0.05946784093976021,
0.09880748391151428,
-0.015544651076197624,
0.05607559531927109,
-0.04956713691353798,
-0.046554431319236755,
0.002605087123811245,
0.03498975932598114,
-0.10434862226247787,
-0.09428327530622482,
0.027728572487831116,
0.026184529066085815,
-0.04508446156978607,
-0.006280292756855488,
-0.032235000282526016,
-0.020236024633049965,
0.14136308431625366,
0.031239964067935944,
-0.011092644184827805,
-0.12875249981880188,
-0.0070348866283893585,
0.10257779806852341,
-0.1435622125864029,
0.06081606447696686,
-0.07275126129388809,
0.040824346244335175,
-0.01659533940255642,
-0.08445395529270172,
0.06500434875488281,
-0.05579736456274986,
-0.03584199398756027,
0.00968762394040823,
0.05124232545495033,
0.03618965670466423,
0.060581024736166,
0.006325620226562023,
-0.006208908744156361,
0.036425694823265076,
-0.10145331174135208,
0.009493488818407059,
0.0024087345227599144,
0.08849242329597473,
0.05500738322734833,
-0.14104218780994415,
-0.09272470325231552,
-0.06991017609834671,
-0.030090494081377983,
0.12024721503257751,
0.15197014808654785,
-0.010336076840758324,
0.019481854513287544,
0.14827843010425568,
0.007143271155655384,
-0.2811354100704193,
-0.1141836941242218,
-0.013403039425611496,
0.1363920420408249,
-0.06633655726909637,
-0.16258637607097626,
0.09521260112524033,
0.02691887505352497,
-0.03347042202949524,
0.034156862646341324,
-0.10810185223817825,
-0.11810891330242157,
0.1683730185031891,
0.08560416847467422,
0.13718022406101227,
-0.124900221824646,
-0.025979675352573395,
-0.047978006303310394,
-0.1703328937292099,
0.027262315154075623,
-0.03998095542192459,
0.11086341738700867,
-0.043495409190654755,
0.04323200881481171,
0.006445926148444414,
-0.03470368683338165,
0.10594657808542252,
-0.07158709317445755,
-0.002424901816993952,
-0.08114182204008102,
-0.19714608788490295,
0.09685143828392029,
0.013962885364890099,
0.1145845279097557,
0.028286060318350792,
-0.03126642107963562,
-0.02457536943256855,
-0.08062170445919037,
-0.044690970331430435,
0.03252704441547394,
-0.005102736409753561,
-0.10897262394428253,
-0.005640330724418163,
0.0913119837641716,
-0.0508597306907177,
0.03462981805205345,
0.16216252744197845,
-0.0883919894695282,
0.011465814895927906,
0.07316379994153976,
0.10181666165590286,
0.006607778836041689,
-0.019300468266010284,
-0.014532958157360554,
-0.048260100185871124,
0.12453509867191315,
-0.1815229207277298,
0.0444616973400116,
0.023867297917604446,
0.02813214622437954,
0.05905996263027191,
0.06700702011585236,
-0.030733274295926094,
0.0404147244989872,
0.09459726512432098,
-0.07570581883192062,
-0.0941467210650444,
-0.03457462787628174,
-0.06026201695203781,
0.002661440521478653,
0.04570074751973152,
0.12049143761396408,
-0.07469630986452103,
-0.02460898645222187,
-0.021448364481329918,
-0.010514468885958195,
-0.09515584260225296,
0.004276028368622065,
0.0708657056093216,
0.041851624846458435,
-0.06976184993982315,
-0.04717027023434639,
0.02701921947300434,
-0.03076917491853237,
0.057460967451334,
0.09320585429668427,
-0.06641341745853424,
-0.08742297440767288,
-0.026012586429715157,
0.10911363363265991,
-0.030196283012628555,
-0.080169178545475,
-0.1347847431898117,
-0.10980302095413208,
0.022985048592090607,
0.11482565850019455,
0.09609388560056686,
-0.03030671551823616,
-0.02307472564280033,
0.03445003181695938,
-0.11285754293203354,
-0.04274924471974373,
0.1052403524518013,
-0.00018480312428437173,
-0.0867651104927063,
0.014506039209663868,
0.044746991246938705,
0.16248759627342224,
-0.07258240878582001,
-0.06109635531902313,
-0.1993752419948578,
0.06934255361557007,
-0.07472384721040726,
0.028300601989030838,
-0.12930868566036224,
-0.058315686881542206,
-0.010653585195541382,
-0.04202719405293465,
-0.10829988121986389,
-0.010911094024777412,
-0.053397201001644135,
-0.008603092283010483,
0.00647039944306016,
0.02623964287340641,
-0.006506018340587616,
-0.01434930507093668,
0.09649516642093658,
-0.0657893717288971,
-0.013204184360802174,
0.12452299892902374,
-0.04806947335600853,
0.06155931577086449,
-0.06783413887023926,
0.04240715876221657,
0.05869990214705467,
0.004800980910658836,
0.08759230375289917,
-0.007840440608561039,
0.021537931635975838,
0.0214059017598629,
0.05976700410246849,
0.00968057569116354,
0.13353939354419708,
-0.12257838994264603,
0.1263567954301834,
-0.12401697784662247,
-0.14204534888267517,
-0.08731704950332642,
0.013518900610506535,
0.11416167765855789,
0.07305978983640671,
0.04318073391914368,
-0.0345236174762249,
0.12237121909856796,
-0.0822417363524437,
0.014269523322582245,
-0.05204659327864647,
-0.08286268264055252,
0.05341090261936188,
-0.09293298423290253,
0.029865026473999023,
-0.009142803959548473,
0.11705785989761353,
0.032508980482816696,
0.016687311232089996,
0.011100084520876408,
-0.037981707602739334,
0.05614228919148445,
0.04210503399372101,
0.16965807974338531,
0.08969622105360031,
-0.01067916490137577,
0.03219136968255043,
0.0653955489397049,
0.03170320391654968,
-0.010971682146191597,
0.021950263530015945,
0.10201148688793182,
0.11388242244720459,
0.13339759409427643,
0.0013151298044249415,
0.043478306382894516,
-0.08842305094003677,
-0.04009459912776947,
-0.07007132470607758,
-0.03332723304629326,
0.032192397862672806,
0.01603741943836212,
0.24088121950626373,
-0.04594423994421959,
0.08635221421718597,
0.03345439210534096,
-0.06070062145590782,
-0.15807987749576569,
-0.1739957183599472,
-0.12509717047214508,
-0.05757639929652214,
0.034178394824266434,
-0.05234171077609062,
-0.058407485485076904,
0.08081961423158646,
0.016763469204306602,
0.007857591845095158,
0.13404136896133423,
-0.02259029820561409,
0.020997868850827217,
0.09459428489208221,
0.0010967188281938434,
-0.005387008190155029,
0.04788808897137642,
-0.035371094942092896,
-0.0823286920785904,
-0.018800927326083183,
0.016383549198508263,
0.017194468528032303,
-0.06516256183385849,
0.06954743713140488,
-0.038791853934526443,
-0.11255203932523727,
-0.021651025861501694,
0.054595038294792175,
0.0871858149766922,
0.0929998978972435,
-0.002497689798474312,
-0.06588401645421982,
-0.016715561971068382,
0.17122167348861694,
-0.03561858460307121,
-0.1100262776017189,
-0.14722509682178497,
0.1359511911869049,
0.042306676506996155,
-0.025522196665406227,
-0.03239886090159416,
-0.019839121028780937,
-0.019518544897437096,
0.31244096159935,
0.2741281986236572,
-0.04105830565094948,
0.013771440833806992,
0.03329811245203018,
0.009916523471474648,
-0.0018331388710066676,
0.13550983369350433,
0.05435478314757347,
0.3436463475227356,
-0.06084062159061432,
-0.07237091660499573,
-0.09198898077011108,
-0.052230674773454666,
-0.09229110181331635,
0.026005098596215248,
0.10589607059955597,
-0.07435720413923264,
-0.0543055534362793,
0.08091271668672562,
-0.20603181421756744,
-0.019128330051898956,
0.09219702333211899,
-0.12955458462238312,
-0.09366292506456375,
-0.00764418113976717,
0.013582758605480194,
0.035265423357486725,
0.11182547360658646,
-0.04122665524482727,
-0.009703201241791248,
0.03946247696876526,
0.0552748441696167,
-0.07677746564149857,
0.014970207586884499,
0.08702345937490463,
0.046356700360774994,
0.16220754384994507,
-0.0035780698526650667,
0.05776091665029526,
0.0920872911810875,
0.07217776775360107,
0.02833050675690174,
0.08756639063358307,
0.004391815513372421,
-0.06894797831773758,
0.03060178831219673,
0.08241916447877884,
-0.06613488495349884,
-0.020969536155462265,
0.00952220056205988,
-0.19780665636062622,
0.05932403728365898,
0.0020783287473022938,
-0.04834717884659767,
-0.06904115527868271,
0.09455714374780655,
-0.1494915932416916,
0.11124914139509201,
0.1804995983839035,
-0.019685277715325356,
-0.07860088348388672,
-0.047657061368227005,
0.1264132708311081,
0.05307387560606003,
-0.09255463629961014,
-0.11037825793027878,
-0.13178595900535583,
-0.09785187989473343,
0.021113701164722443,
-0.022640399634838104,
-0.22037124633789062,
-0.07111350446939468,
-0.02035488560795784,
-0.017773941159248352,
-0.1052020937204361,
-0.030770668759942055,
0.041796330362558365,
-0.006814077030867338,
0.01120083499699831,
-0.16443227231502533,
0.019628770649433136,
0.06582781672477722,
-0.10465837270021439,
-0.14180992543697357
] |
null | null | transformers |
# roberta-large-japanese-char-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-char-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]} | token-classification | KoichiYasuoka/roberta-large-japanese-char-luw-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"japanese",
"pos",
"dependency-parsing",
"ja",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-large-japanese-char-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.
## How to Use
or
## Reference
安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-large-japanese-char-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\n\nor",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-large-japanese-char-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.",
"## How to Use\n\n\n\nor",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
74,
18,
80,
5,
55,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-large-japanese-char-luw-upos## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.## How to Use\n\n\n\nor## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.011652571149170399,
0.10821417719125748,
-0.006051981821656227,
0.024852868169546127,
0.12793442606925964,
0.015181366354227066,
0.11748465150594711,
0.08610206842422485,
0.005007452797144651,
0.06544937938451767,
0.037549927830696106,
0.052647002041339874,
0.07557815313339233,
0.05000944808125496,
-0.021611912176012993,
-0.3511437773704529,
0.08566262573003769,
0.07575701922178268,
-0.04855376109480858,
0.09171172976493835,
0.09993152320384979,
-0.03501807153224945,
0.08790741860866547,
0.01741194725036621,
-0.09330227971076965,
-0.026574643328785896,
0.0026698012370616198,
-0.13963626325130463,
0.04881485551595688,
0.034075114876031876,
0.0835241824388504,
-0.005646225996315479,
0.005973118357360363,
-0.06207539513707161,
0.0016930003184825182,
0.005393643397837877,
-0.05904665216803551,
0.053547102957963943,
0.023237593472003937,
-0.01646784134209156,
0.07818900793790817,
-0.07984987646341324,
0.010017565451562405,
0.036500729620456696,
-0.09121669828891754,
-0.13862551748752594,
-0.05581207945942879,
0.03699672594666481,
0.07218266278505325,
0.05429786443710327,
-0.018918417394161224,
0.0855218693614006,
-0.06967305392026901,
-0.004324755631387234,
0.13412703573703766,
-0.2673887610435486,
-0.06013546139001846,
0.03130348399281502,
-0.006542777176946402,
0.0178902018815279,
-0.05201549455523491,
-0.02458835393190384,
0.0590529665350914,
0.014076076447963715,
-0.012533909641206264,
-0.1024487242102623,
0.12980283796787262,
0.015283762477338314,
-0.12205516546964645,
0.08360326290130615,
0.20699679851531982,
0.05670363828539848,
-0.06497114896774292,
-0.04091231897473335,
-0.048620790243148804,
0.004668497014790773,
-0.07362008839845657,
-0.09933418780565262,
0.07450016587972641,
-0.004344163928180933,
0.1191265657544136,
0.02976929023861885,
-0.08448697626590729,
-0.002443348988890648,
-0.14843899011611938,
0.19880062341690063,
0.03510052338242531,
0.009196583181619644,
-0.051340147852897644,
-0.03929389268159866,
-0.1260969340801239,
-0.09930949658155441,
-0.0428864061832428,
-0.07309231162071228,
0.045462749898433685,
0.011985531076788902,
-0.012950528413057327,
-0.005106760188937187,
0.05584532395005226,
0.09108094125986099,
-0.08079472184181213,
0.026518860831856728,
0.01112325768917799,
0.013177280314266682,
0.06803612411022186,
0.13017745316028595,
-0.08517473191022873,
-0.0721997544169426,
0.007109643891453743,
-0.0021497695706784725,
-0.021623048931360245,
-0.03314167261123657,
-0.09606626629829407,
-0.07332959026098251,
0.009645374491810799,
-0.045244622975587845,
0.028783433139324188,
0.04309974983334541,
-0.036837562918663025,
-0.07901739329099655,
0.07222339510917664,
-0.1194683089852333,
0.013413513079285622,
-0.02161485143005848,
-0.05454332381486893,
0.2656286060810089,
-0.037311531603336334,
-0.03762942925095558,
-0.0737570971250534,
0.04499688372015953,
-0.09617052972316742,
-0.0037006742786616087,
-0.07538677006959915,
-0.032275907695293427,
0.019410597160458565,
-0.02414214238524437,
0.042351625859737396,
-0.13410617411136627,
-0.030296877026557922,
-0.06942569464445114,
0.0029581114649772644,
-0.05411437526345253,
0.006283686496317387,
0.007461582776159048,
-0.027546867728233337,
-0.010771473869681358,
0.0024167681112885475,
-0.0831151232123375,
-0.03525390848517418,
0.015373998321592808,
-0.00998049695044756,
0.05469907075166702,
-0.06102810055017471,
0.0668705627322197,
-0.11021890491247177,
0.009528938680887222,
-0.22980591654777527,
-0.0017805517418310046,
-0.05373798683285713,
0.03719283267855644,
-0.11096426844596863,
-0.043909478932619095,
0.016376042738556862,
0.0888865664601326,
-0.042389530688524246,
0.13116393983364105,
-0.07453110814094543,
-0.09593019634485245,
0.24952253699302673,
-0.12597258388996124,
-0.08542950451374054,
0.1272757202386856,
0.021688232198357582,
0.04920899495482445,
0.03996530547738075,
0.12607264518737793,
0.056167371571063995,
0.027307730168104172,
-0.044852856546640396,
0.04143904894590378,
-0.013272898271679878,
0.015841705724596977,
0.13014928996562958,
0.003001782577484846,
-0.023551417514681816,
0.0510653555393219,
-0.07600799947977066,
-0.11146924644708633,
-0.031721483916044235,
-0.05906384438276291,
0.026920780539512634,
0.001329344231635332,
0.01130716223269701,
-0.01713218167424202,
0.06185935437679291,
-0.05130549147725105,
-0.08541952073574066,
0.13751259446144104,
0.07582838088274002,
-0.019761065021157265,
0.0395815409719944,
-0.10278714448213577,
0.12695597112178802,
0.0650336965918541,
0.03964487090706825,
-0.08991584926843643,
0.013519002124667168,
0.016693567857146263,
0.10234435647726059,
0.03534100949764252,
0.005002669058740139,
0.04666728526353836,
-0.00534003134816885,
-0.013605489395558834,
0.0029898537322878838,
0.019830144941806793,
-0.023945402354002,
0.0013364591868594289,
-0.1475360095500946,
0.00955162663012743,
-0.021799396723508835,
0.10408458113670349,
-0.07190682739019394,
0.03327558934688568,
-0.03252498805522919,
0.0682130828499794,
-0.025892524048686028,
0.037881605327129364,
-0.042431287467479706,
0.05331315100193024,
-0.023269858211278915,
0.07722783088684082,
0.028285805135965347,
0.010012134909629822,
-0.06524887681007385,
0.0962955504655838,
-0.08917165547609329,
0.14050400257110596,
0.13874505460262299,
-0.04527147859334946,
-0.07180523127317429,
-0.032468829303979874,
-0.0012316507054492831,
-0.007503341883420944,
0.04402926564216614,
-0.029844140633940697,
0.051655493676662445,
-0.02265988476574421,
0.07003368437290192,
-0.07167631387710571,
0.09024281799793243,
0.030540822073817253,
-0.1412372887134552,
-0.05188965052366257,
0.1271132230758667,
0.02473899908363819,
-0.11970613896846771,
0.175528883934021,
0.14647620916366577,
-0.05753238871693611,
0.199868306517601,
-0.05746782198548317,
-0.11885720491409302,
-0.07015112042427063,
0.008927077054977417,
0.00699257105588913,
0.00035908512654714286,
-0.210317924618721,
-0.016111867502331734,
0.06839273869991302,
0.009250429458916187,
0.005688237026333809,
-0.05857405811548233,
-0.04304977506399155,
0.01956811733543873,
0.0317995622754097,
-0.024803848937153816,
0.02294953167438507,
0.008426308631896973,
0.10136337578296661,
0.06997687369585037,
-0.059314727783203125,
-0.010464002378284931,
0.01680833287537098,
-0.07994557917118073,
0.16114147007465363,
-0.12077675014734268,
-0.15291814506053925,
-0.1563495248556137,
-0.12630142271518707,
-0.04701783508062363,
0.009171527810394764,
0.02918918803334236,
-0.10030706971883774,
-0.04087591543793678,
-0.0025219374801963568,
0.07037600129842758,
-0.07606729865074158,
-0.0005730799748562276,
0.030367065221071243,
0.06431262195110321,
-0.09216570854187012,
-0.03796844929456711,
-0.047064159065485,
-0.06922932714223862,
-0.1039113774895668,
0.0962638333439827,
-0.05805636942386627,
0.05299888178706169,
0.13649451732635498,
-0.012604502029716969,
-0.034486640244722366,
-0.00025437973090447485,
0.06893603503704071,
-0.10593796521425247,
-0.00324981939047575,
0.24105863273143768,
0.0024672136642038822,
0.056249961256980896,
0.07356639951467514,
0.03542719781398773,
-0.013099342584609985,
-0.03732675686478615,
0.004121545702219009,
-0.04745849594473839,
-0.2294137179851532,
-0.049298591911792755,
-0.06839407980442047,
0.1861494779586792,
-0.002897755242884159,
-0.0004868728865403682,
0.04324205964803696,
0.08294110000133514,
0.007466016802936792,
0.018444523215293884,
-0.04271092638373375,
0.08101546764373779,
0.08850432187318802,
-0.02438168413937092,
0.11273252218961716,
-0.03956114873290062,
-0.028476642444729805,
0.1201513484120369,
-0.07058598101139069,
0.14059795439243317,
0.07303453236818314,
0.07671645283699036,
0.05943113937973976,
0.11543397605419159,
0.06023305654525757,
-0.0012869692873209715,
0.01870957389473915,
-0.027343852445483208,
-0.046957358717918396,
-0.07523812353610992,
-0.06169721484184265,
0.12216713279485703,
-0.022218603640794754,
-0.035084765404462814,
-0.021965788677334785,
0.04125748574733734,
0.04856628552079201,
0.13534918427467346,
0.07041582465171814,
-0.16768810153007507,
-0.08985087275505066,
0.035894766449928284,
-0.015565706416964531,
-0.03603200986981392,
0.03311961889266968,
-0.034987520426511765,
-0.1341124027967453,
0.07397198677062988,
0.05546683818101883,
0.08656375855207443,
-0.009690256789326668,
0.05040781944990158,
-0.062306374311447144,
0.06065601482987404,
0.02224958874285221,
0.03296791389584541,
-0.18559271097183228,
0.19798998534679413,
0.026232561096549034,
-0.017335280776023865,
-0.035980645567178726,
0.036985497921705246,
0.037828221917152405,
0.06125006452202797,
0.13030906021595,
0.0034147165715694427,
-0.0545286200940609,
-0.00858982466161251,
-0.05012384429574013,
0.001396095845848322,
0.08887329697608948,
-0.058481961488723755,
0.03594445809721947,
-0.03481665998697281,
0.021879758685827255,
-0.00458191055804491,
0.032960109412670135,
-0.014897669665515423,
-0.0923648327589035,
0.05183206498622894,
-0.08000604063272476,
0.0014263286720961332,
0.009988145902752876,
-0.05487370491027832,
-0.09698860347270966,
0.17199571430683136,
0.059450700879096985,
-0.017503781244158745,
-0.07697819173336029,
0.0010351919336244464,
0.055117905139923096,
-0.13794022798538208,
0.007521261461079121,
-0.04290618374943733,
0.023285042494535446,
0.034561462700366974,
-0.08013809472322464,
0.08851031213998795,
-0.04971323907375336,
-0.028778808191418648,
-0.010081283748149872,
0.08696161955595016,
0.01564387045800686,
0.0567864291369915,
-0.005477612838149071,
-0.009221352636814117,
0.011971298605203629,
-0.09195113927125931,
0.04607418552041054,
0.033304423093795776,
0.1302858144044876,
0.07435702532529831,
-0.16563153266906738,
-0.0979321151971817,
-0.041115015745162964,
-0.06281623989343643,
0.10178710520267487,
0.18986371159553528,
-0.025132564827799797,
0.025108380243182182,
0.18942046165466309,
-0.014987390488386154,
-0.22611911594867706,
-0.0380612276494503,
0.004681720398366451,
0.0543893538415432,
-0.020387353375554085,
-0.19244566559791565,
0.14689935743808746,
0.1577298492193222,
-0.0009387925965711474,
-0.0035812139976769686,
-0.10855056345462799,
-0.07982479780912399,
0.1512012779712677,
0.013438226655125618,
0.12617257237434387,
-0.12619705498218536,
-0.05170433223247528,
0.00752575509250164,
-0.20678818225860596,
0.09420165419578552,
-0.07597868889570236,
0.06594584882259369,
-0.023959685117006302,
0.0434083566069603,
-0.003261587116867304,
0.006034289952367544,
0.16821596026420593,
0.011442573741078377,
-0.019632991403341293,
-0.06647897511720657,
-0.1036456748843193,
0.10006878525018692,
0.002354256110265851,
0.07264938205480576,
0.07531575113534927,
-0.04078333452343941,
-0.09821135550737381,
-0.03743346035480499,
-0.05804876983165741,
-0.0024830151814967394,
-0.025696981698274612,
-0.10345173627138138,
-0.023722460493445396,
0.10550188273191452,
-0.01056724227964878,
-0.023285340517759323,
0.13149026036262512,
-0.055338941514492035,
0.05867229402065277,
0.1911821961402893,
0.08672145754098892,
-0.09783020615577698,
0.008372720330953598,
-0.03822701796889305,
-0.034631844609975815,
0.1036510244011879,
-0.13879390060901642,
0.019163496792316437,
0.04798681288957596,
0.014733878895640373,
0.04409143701195717,
0.05450465530157089,
-0.03757835924625397,
-0.01302934717386961,
0.0886170044541359,
-0.06595871597528458,
-0.20583736896514893,
-0.027177896350622177,
-0.10780777782201767,
-0.05290035158395767,
0.061633527278900146,
0.13222616910934448,
-0.02142254449427128,
-0.05767356604337692,
0.007143618538975716,
0.034239523112773895,
-0.09082622826099396,
0.061296023428440094,
-0.0010210814652964473,
0.010855553671717644,
-0.08888772875070572,
0.021622508764266968,
0.06277032941579819,
-0.04801670089364052,
0.03676941990852356,
0.07300899922847748,
-0.0715966522693634,
-0.07512342184782028,
-0.027409397065639496,
0.039831146597862244,
-0.10601554811000824,
-0.04777107387781143,
-0.05204404890537262,
-0.12554314732551575,
0.03812311217188835,
0.08114474266767502,
0.10767510533332825,
0.025071166455745697,
0.016319502145051956,
0.03475859761238098,
-0.04507192224264145,
-0.05000978708267212,
0.07841455191373825,
0.01900457590818405,
-0.05877748504281044,
0.038933273404836655,
-0.030485935509204865,
0.12011203169822693,
-0.05731912702322006,
-0.03839729353785515,
-0.18095119297504425,
-0.005966660566627979,
-0.09360304474830627,
-0.040017157793045044,
-0.1379416435956955,
-0.03323604539036751,
0.007333897054195404,
-0.03439977765083313,
-0.09618931263685226,
-0.031459469348192215,
-0.0672730952501297,
-0.003016055328771472,
0.004174227360635996,
0.10851814597845078,
-0.044797249138355255,
0.027865538373589516,
0.07727384567260742,
-0.037478912621736526,
0.03264125809073448,
0.11546551436185837,
0.023433135822415352,
0.0566791370511055,
-0.0271565280854702,
0.04879945516586304,
0.043786026537418365,
0.026485586538910866,
0.0718650221824646,
-0.054322563111782074,
0.032950934022665024,
0.009024134837090969,
-0.05384977161884308,
0.037229374051094055,
0.08498747646808624,
-0.1069401204586029,
0.08370113372802734,
-0.10020799934864044,
-0.13049563765525818,
-0.09709453582763672,
0.023305928334593773,
0.11019733548164368,
0.036396224051713943,
0.07183590531349182,
-0.0027480011340230703,
0.04535142332315445,
-0.11163721233606339,
0.008366884663701057,
-0.03268145024776459,
-0.06506425887346268,
0.10188085585832596,
-0.04887812212109566,
0.03128265216946602,
0.016787339001893997,
0.13101857900619507,
0.018351741135120392,
0.007266458589583635,
0.04690326005220413,
-0.013874325901269913,
0.07307261973619461,
0.03185615688562393,
0.1087208166718483,
0.12222910672426224,
-0.05331045389175415,
-0.0303107388317585,
0.05101703852415085,
0.02505359798669815,
0.005532413255423307,
0.01548980362713337,
0.10675396770238876,
0.02441108226776123,
0.1025579646229744,
0.04331178218126297,
0.04208042100071907,
-0.13122662901878357,
0.02749115228652954,
-0.05124747008085251,
-0.019789813086390495,
0.01575222983956337,
0.10814517736434937,
0.19691027700901031,
-0.09688898175954819,
0.10006579756736755,
0.00045781597145833075,
-0.04322643205523491,
-0.16929017007350922,
-0.15541718900203705,
-0.0877317413687706,
-0.14145295321941376,
0.010791127569973469,
-0.10452057421207428,
0.0022454909048974514,
0.1496727615594864,
0.053254466503858566,
-0.015526955015957355,
0.013922923244535923,
-0.072322778403759,
-0.07513130456209183,
0.08679646253585815,
0.01928234100341797,
0.009897531010210514,
-0.009254391305148602,
-0.05892183631658554,
-0.041987933218479156,
0.03141647204756737,
0.030043968930840492,
0.007859871722757816,
0.008003588765859604,
0.023415200412273407,
-0.07400597631931305,
-0.08710116147994995,
0.007050353102385998,
0.033256445080041885,
0.008544297888875008,
0.0950884148478508,
0.01004077959805727,
-0.07107565551996231,
0.011641980148851871,
0.2371354103088379,
-0.05258803442120552,
-0.00804701168090105,
-0.16869007050991058,
0.1079484224319458,
0.046532824635505676,
0.053277697414159775,
-0.007635799702256918,
-0.07819244265556335,
-0.045556217432022095,
0.17868487536907196,
0.22287312150001526,
-0.02873130701482296,
-0.0025625198613852262,
0.043854329735040665,
0.020721280947327614,
0.005654522683471441,
0.07648984342813492,
0.06647418439388275,
0.23675377666950226,
-0.06003785878419876,
-0.039259325712919235,
-0.06772293150424957,
0.005809560883790255,
-0.1430816501379013,
0.06295637786388397,
0.08281268179416656,
-0.04422631114721298,
-0.03322910889983177,
0.03784346580505371,
-0.1251896321773529,
-0.0740182027220726,
0.02659672684967518,
-0.13406305015087128,
-0.125675767660141,
-0.023414788767695427,
0.0043243905529379845,
0.057256247848272324,
0.12221496552228928,
0.019845064729452133,
-0.06409043073654175,
0.09216158092021942,
0.05691750347614288,
-0.0708666741847992,
-0.03917773813009262,
0.12314407527446747,
0.08751627802848816,
0.11063675582408905,
0.005794476717710495,
0.008502298034727573,
0.0902826339006424,
0.10493742674589157,
0.012631240300834179,
-0.003483185777440667,
0.02496211603283882,
-0.060916755348443985,
0.00975254736840725,
0.02373598888516426,
-0.048628635704517365,
0.005525021813809872,
0.08583240956068039,
-0.15981048345565796,
-0.012712192721664906,
-0.027488581836223602,
-0.046674419194459915,
-0.04247208684682846,
0.08034015446901321,
-0.1543598473072052,
0.12267859280109406,
0.21422728896141052,
-0.020402248948812485,
-0.06458787620067596,
-0.053008005023002625,
0.06437167525291443,
0.06076069548726082,
-0.04676606506109238,
-0.04300204664468765,
-0.11441798508167267,
-0.04085402190685272,
0.07241072505712509,
0.018912293016910553,
-0.1347578465938568,
-0.05585679039359093,
0.03961366415023804,
0.02403571642935276,
-0.11286052316427231,
0.015206417068839073,
0.02065197378396988,
0.007890034466981888,
-0.03720119595527649,
-0.17523586750030518,
0.03248000517487526,
0.07323886454105377,
-0.04242519661784172,
-0.08632271736860275
] |
null | null | transformers |
# roberta-large-japanese-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]} | token-classification | KoichiYasuoka/roberta-large-japanese-luw-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"japanese",
"pos",
"dependency-parsing",
"ja",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-large-japanese-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## Reference
安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-large-japanese-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-large-japanese-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
74,
16,
74,
5,
55,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-large-japanese-luw-upos## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-large-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## Reference\n\n安岡孝一: Transformersと国語研長単位による日本語係り受け解析モデルの製作, 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.004016886930912733,
0.07526794821023941,
-0.005909663625061512,
0.03531372547149658,
0.13233204185962677,
0.008971954695880413,
0.10974849760532379,
0.09634934365749359,
-0.026592757552862167,
0.06470048427581787,
0.05404926836490631,
0.08111636340618134,
0.05470942705869675,
0.04390016570687294,
-0.02267397753894329,
-0.34062764048576355,
0.08988413214683533,
0.09352566301822662,
-0.004634539596736431,
0.11604438722133636,
0.09710993617773056,
-0.04882138594985008,
0.0752648413181305,
0.025677435100078583,
-0.11640296876430511,
-0.020840974524617195,
0.0027990294620394707,
-0.1529345065355301,
0.0624152347445488,
0.018253931775689125,
0.08892838656902313,
-0.003649757709354162,
-0.01101063471287489,
-0.04400132596492767,
0.001891080872155726,
-0.005880839191377163,
-0.05743155628442764,
0.0540183000266552,
0.021786175668239594,
-0.02517715096473694,
0.044915344566106796,
-0.08595816791057587,
0.009029271081089973,
0.029844360426068306,
-0.08927794545888901,
-0.16885511577129364,
-0.044994112104177475,
0.057920295745134354,
0.08151297271251678,
0.07255567610263824,
-0.027842234820127487,
0.0947195515036583,
-0.10257914662361145,
0.0023684061598032713,
0.17016348242759705,
-0.27930501103401184,
-0.05610499531030655,
0.020056361332535744,
-0.03155351057648659,
0.024391211569309235,
-0.05708897486329079,
-0.03505607694387436,
0.04738476872444153,
0.01399165578186512,
0.000048595666157780215,
-0.09756170213222504,
0.12836675345897675,
0.014838931150734425,
-0.12891432642936707,
0.07306918501853943,
0.20573429763317108,
0.04663040116429329,
-0.03945538029074669,
-0.06432705372571945,
-0.04325687512755394,
-0.009034537710249424,
-0.0733896791934967,
-0.11090938001871109,
0.06108563393354416,
-0.011518910527229309,
0.10252032428979874,
0.02267495170235634,
-0.0962027832865715,
-0.0073431734926998615,
-0.1530175507068634,
0.20595775544643402,
0.04587426781654358,
0.009206538088619709,
-0.049479249864816666,
-0.03289446607232094,
-0.10085275024175644,
-0.09286092221736908,
-0.04076468572020531,
-0.06197752431035042,
0.07291041314601898,
0.034339405596256256,
-0.02004215121269226,
-0.02247961051762104,
0.050646208226680756,
0.07418084144592285,
-0.059363484382629395,
0.012823299504816532,
0.019242960959672928,
0.03056652843952179,
0.04659700393676758,
0.1450178027153015,
-0.07517174631357193,
-0.07803420722484589,
0.01515621691942215,
0.0015682644443586469,
-0.012236191891133785,
-0.025431865826249123,
-0.10692912340164185,
-0.07657982409000397,
0.042280618101358414,
-0.04859953001141548,
0.029558109119534492,
0.05788084864616394,
-0.04003915563225746,
-0.08910585194826126,
0.05976269394159317,
-0.1308748871088028,
0.010837011970579624,
-0.019933952018618584,
-0.05700979381799698,
0.2779825031757355,
-0.03043263964354992,
-0.04571207985281944,
-0.09020073711872101,
0.06028198450803757,
-0.09049668163061142,
0.006563957780599594,
-0.07808192074298859,
-0.036214035004377365,
0.01688806153833866,
-0.04829423874616623,
0.03208494931459427,
-0.14218220114707947,
-0.036753181368112564,
-0.05957051366567612,
-0.008160223253071308,
-0.03562113270163536,
-0.006768578663468361,
-0.012452548369765282,
-0.010185321792960167,
-0.01210016943514347,
-0.013699504546821117,
-0.08627142757177353,
-0.031682588160037994,
0.031993042677640915,
0.01895078644156456,
0.06793251633644104,
-0.06007864326238632,
0.08542044460773468,
-0.12305963039398193,
-0.0052984110079705715,
-0.21036696434020996,
0.0038405985105782747,
-0.03714444860816002,
0.033105894923210144,
-0.11046356707811356,
-0.06315725296735764,
-0.007214414421468973,
0.08309102803468704,
-0.03736501187086105,
0.1213207021355629,
-0.03287917748093605,
-0.11736705899238586,
0.24251921474933624,
-0.1328621208667755,
-0.08674085885286331,
0.12584926187992096,
0.030548276379704475,
0.06830534338951111,
0.05039909854531288,
0.14169494807720184,
0.04658590629696846,
0.02421657182276249,
-0.04247085005044937,
0.03308621793985367,
-0.044220417737960815,
-0.026958158239722252,
0.13522186875343323,
0.011719615198671818,
0.002797455061227083,
0.06648413091897964,
-0.0762828066945076,
-0.09863916039466858,
-0.024455029517412186,
-0.059205543249845505,
0.022984132170677185,
0.011140982620418072,
0.025708600878715515,
-0.017549317330121994,
0.0680273100733757,
-0.04101375490427017,
-0.09261777251958847,
0.17012839019298553,
0.06744252145290375,
-0.02783886529505253,
0.04973530024290085,
-0.101445771753788,
0.11949973553419113,
0.051882367581129074,
0.040708158165216446,
-0.09455757588148117,
0.016263628378510475,
0.0012169342953711748,
0.10161972045898438,
0.03326854482293129,
0.020645182579755783,
0.04298726096749306,
-0.024905750527977943,
-0.014148767106235027,
-0.010276555083692074,
0.008741842582821846,
-0.02939617447555065,
-0.002454065717756748,
-0.1136496365070343,
0.009739886038005352,
-0.00819540023803711,
0.09760875999927521,
-0.035599108785390854,
0.03809269517660141,
-0.03484530746936798,
0.03799889609217644,
-0.038380686193704605,
0.03894009441137314,
-0.04796081408858299,
0.06561541557312012,
-0.012931961566209793,
0.08896588534116745,
0.049509525299072266,
0.0061632501892745495,
-0.06515761464834213,
0.09707018733024597,
-0.09690728038549423,
0.17996658384799957,
0.1513514369726181,
-0.06743422150611877,
-0.046359069645404816,
-0.04134774208068848,
-0.011903996579349041,
-0.0216506477445364,
0.04383426532149315,
-0.018178341910243034,
0.06791012734174728,
-0.011210509575903416,
0.08304945379495621,
-0.07753580808639526,
0.08124934136867523,
0.026186462491750717,
-0.13410474359989166,
-0.047616586089134216,
0.12492460012435913,
0.010081768035888672,
-0.09145582467317581,
0.18274863064289093,
0.1444874405860901,
-0.08613569289445877,
0.20545712113380432,
-0.0380249060690403,
-0.11543315649032593,
-0.06167377158999443,
0.010531865991652012,
0.0009534378186799586,
-0.0216100811958313,
-0.22572194039821625,
-0.029215143993496895,
0.07838056236505508,
0.01885812170803547,
0.017435245215892792,
-0.07263520359992981,
-0.04828587546944618,
0.014676855877041817,
0.031179431825876236,
0.005319791845977306,
0.029550107195973396,
0.020175907760858536,
0.09189076721668243,
0.08253175020217896,
-0.05481793358922005,
0.0028943915385752916,
0.020169297233223915,
-0.07318449765443802,
0.15362781286239624,
-0.11375068873167038,
-0.2248414307832718,
-0.15995155274868011,
-0.12642431259155273,
-0.05339324101805687,
-0.011538407765328884,
0.05438437685370445,
-0.09744475781917572,
-0.029405590146780014,
0.004767273087054491,
0.08730494976043701,
-0.08013042062520981,
-0.004051912110298872,
0.01512463204562664,
0.06464288383722305,
-0.09205614030361176,
-0.04958974942564964,
-0.05132519081234932,
-0.08223550766706467,
-0.11008414626121521,
0.10897906869649887,
-0.0612940676510334,
0.04830356314778328,
0.14049981534481049,
-0.0000908912334125489,
-0.01710791140794754,
-0.009870285168290138,
0.044895607978105545,
-0.09923969954252243,
-0.02325516939163208,
0.26059216260910034,
0.016960978507995605,
0.05205146595835686,
0.06825221329927444,
0.030779827386140823,
-0.008272001519799232,
-0.033589381724596024,
0.011818815022706985,
-0.04837098345160484,
-0.2213382124900818,
-0.05016778036952019,
-0.06707492470741272,
0.1855146288871765,
0.004316558595746756,
0.003081906121224165,
0.055708639323711395,
0.08532195538282394,
0.009846540167927742,
-0.00041072367457672954,
-0.044794343411922455,
0.08603280782699585,
0.14143715798854828,
-0.034560780972242355,
0.1377081274986267,
-0.02632119692862034,
-0.039289653301239014,
0.09946954250335693,
-0.05642293766140938,
0.11943024396896362,
0.06121053174138069,
0.08674629777669907,
0.06596783548593521,
0.15435752272605896,
0.07024288922548294,
0.002941685263067484,
0.020245186984539032,
-0.030966203659772873,
-0.04067075997591019,
-0.07587584108114243,
-0.08052480220794678,
0.1062084510922432,
-0.01790493354201317,
-0.009983798488974571,
-0.02751392498612404,
0.03458899259567261,
0.05273676663637161,
0.1564081758260727,
0.0468636080622673,
-0.18078045547008514,
-0.10104689002037048,
0.00456487201154232,
-0.023780325427651405,
-0.021791396662592888,
0.03654944524168968,
-0.059077728539705276,
-0.14126533269882202,
0.04232492297887802,
0.04431753233075142,
0.08955088257789612,
-0.010027077049016953,
0.05607026815414429,
-0.08254019170999527,
0.04582991078495979,
0.037715233862400055,
0.05053102970123291,
-0.20864786207675934,
0.19460363686084747,
0.013206037692725658,
-0.014908655546605587,
-0.027511214837431908,
0.01947428099811077,
0.021553369238972664,
0.03943045437335968,
0.12241692841053009,
-0.007327931001782417,
0.006074599456042051,
-0.021568482741713524,
-0.06627024710178375,
-0.002082650549709797,
0.0805564895272255,
-0.04325477033853531,
0.03997952491044998,
-0.04309720918536186,
0.025134151801466942,
-0.001699333544820547,
0.07040222734212875,
0.017870768904685974,
-0.08597766607999802,
0.058612797409296036,
-0.0494486503303051,
0.025155814364552498,
0.01220705546438694,
-0.0731080174446106,
-0.07976747304201126,
0.19792094826698303,
0.028283841907978058,
-0.03446304053068161,
-0.08003024011850357,
0.015071195550262928,
0.04310224577784538,
-0.14589305222034454,
0.013424442149698734,
-0.05175419896841049,
0.010337818413972855,
0.020247815176844597,
-0.08203711360692978,
0.08526621013879776,
-0.04053070396184921,
-0.02770266681909561,
0.01647074520587921,
0.10673220455646515,
-0.0012877997942268848,
0.055803000926971436,
-0.00458031240850687,
-0.0044183009304106236,
-0.016137368977069855,
-0.08217807859182358,
0.03724505007266998,
0.04798970744013786,
0.11776666343212128,
0.04989660903811455,
-0.16118763387203217,
-0.09107297658920288,
-0.055055130273103714,
-0.05668334662914276,
0.14733858406543732,
0.17307345569133759,
-0.03105982579290867,
0.04511837288737297,
0.1843796968460083,
-0.004602781496942043,
-0.23454274237155914,
-0.05637860670685768,
0.019450604915618896,
0.05000167340040207,
-0.04272838309407234,
-0.1866295337677002,
0.16158527135849,
0.17764772474765778,
-0.004493400454521179,
-0.026823777705430984,
-0.14541304111480713,
-0.08408871293067932,
0.15137867629528046,
0.012048644945025444,
0.17158062756061554,
-0.12440147995948792,
-0.0450233593583107,
0.015653863549232483,
-0.1983834207057953,
0.07862572371959686,
-0.04006220027804375,
0.08624418824911118,
-0.04160664603114128,
0.0578828901052475,
0.00005550603964366019,
0.0015799953835085034,
0.14331264793872833,
0.009117966517806053,
-0.022426649928092957,
-0.06133073940873146,
-0.11517828702926636,
0.08702071011066437,
-0.002311157062649727,
0.09711358696222305,
0.06906279921531677,
-0.04623610898852348,
-0.09428439289331436,
-0.052129365503787994,
-0.0769929513335228,
0.016608061268925667,
-0.013988609425723553,
-0.1079830527305603,
-0.009093498811125755,
0.08601857721805573,
-0.013527833856642246,
-0.01840880699455738,
0.16760236024856567,
-0.05987438187003136,
0.048565324395895004,
0.18926796317100525,
0.05549195036292076,
-0.11237072199583054,
-0.031407423317432404,
-0.0663871020078659,
-0.0416601337492466,
0.11654874682426453,
-0.12177608907222748,
0.010890046134591103,
0.04977184161543846,
0.01870124787092209,
0.055654797703027725,
0.06327597051858902,
-0.03310277312994003,
-0.01151196751743555,
0.09171229600906372,
-0.07763762027025223,
-0.18074756860733032,
-0.027546238154172897,
-0.11057467013597488,
-0.052216872572898865,
0.060976292937994,
0.13650430738925934,
-0.03769785910844803,
-0.06710644066333771,
0.008086621761322021,
0.023729441687464714,
-0.09538396447896957,
0.07029479742050171,
0.0029262732714414597,
0.021487075835466385,
-0.09281429648399353,
0.018212925642728806,
0.06004893779754639,
-0.06683839112520218,
0.035990744829177856,
0.08852250874042511,
-0.06981673836708069,
-0.08106831461191177,
-0.027467258274555206,
0.01110519003123045,
-0.10296468436717987,
-0.04523085430264473,
-0.06717178225517273,
-0.11759413778781891,
0.04858763888478279,
0.0762559175491333,
0.11953270435333252,
0.036814555525779724,
0.011295855045318604,
0.03551166132092476,
-0.05104083567857742,
-0.038673724979162216,
0.06481973081827164,
0.006878906860947609,
-0.05326191708445549,
0.0721273273229599,
-0.010410316288471222,
0.12816673517227173,
-0.05899879336357117,
-0.05749077722430229,
-0.1726216822862625,
0.004605983383953571,
-0.07899903506040573,
-0.04149315878748894,
-0.1284877210855484,
-0.038893431425094604,
0.0021393708884716034,
-0.022747687995433807,
-0.09077874571084976,
-0.019939612597227097,
-0.0656445100903511,
-0.002199581591412425,
0.00021293674944899976,
0.09673929959535599,
-0.0566803403198719,
0.02517855353653431,
0.06810787320137024,
-0.02297092415392399,
0.03937573730945587,
0.13342028856277466,
0.012683233246207237,
0.06111352890729904,
-0.011134038679301739,
0.03648405522108078,
0.06213237717747688,
0.02015177719295025,
0.06607793271541595,
-0.043182238936424255,
0.037611864507198334,
0.02544282376766205,
-0.05471838638186455,
0.04336340352892876,
0.08139880746603012,
-0.12754970788955688,
0.08298499137163162,
-0.11254169791936874,
-0.1324692815542221,
-0.10178864002227783,
0.014967785216867924,
0.08284550160169601,
0.04936490207910538,
0.0816735178232193,
-0.009831225499510765,
0.055296335369348526,
-0.09855368733406067,
0.009824782609939575,
-0.03715606406331062,
-0.07557889074087143,
0.0838068276643753,
-0.06212181970477104,
0.024252327159047127,
0.02284870110452175,
0.11858321726322174,
0.031011812388896942,
-0.029080187901854515,
0.04452728480100632,
-0.004845158662647009,
0.04316265508532524,
0.014627362601459026,
0.11356227099895477,
0.12488653510808945,
-0.04923439025878906,
0.0022134517785161734,
0.06150409206748009,
0.021684428676962852,
0.03818705677986145,
0.007033368106931448,
0.1395885944366455,
0.03824419900774956,
0.11343847960233688,
0.03662697225809097,
0.06101056933403015,
-0.13885681331157684,
0.0308065265417099,
-0.05381688475608826,
-0.014765403233468533,
0.00963367335498333,
0.1150757446885109,
0.20275694131851196,
-0.07367237657308578,
0.09873863309621811,
0.01989850029349327,
-0.03259692341089249,
-0.16131523251533508,
-0.15247268974781036,
-0.09685072302818298,
-0.14749449491500854,
0.010760192759335041,
-0.10471820831298828,
-0.021613188087940216,
0.13556496798992157,
0.056963589042425156,
-0.024646306410431862,
0.03296639397740364,
-0.040163781493902206,
-0.09054271876811981,
0.0920276939868927,
-0.0005179053405299783,
0.011232277378439903,
-0.02637968771159649,
-0.040020767599344254,
-0.03668256476521492,
0.030836177989840508,
0.041640106588602066,
0.00428009731695056,
-0.0032576455269008875,
0.007009204942733049,
-0.09252924472093582,
-0.09654193371534348,
0.0004836144216824323,
0.04859207943081856,
0.02240290306508541,
0.0986059382557869,
0.006103381980210543,
-0.0811895877122879,
0.0017327312380075455,
0.24315735697746277,
-0.03859137371182442,
-0.0331217460334301,
-0.13618677854537964,
0.12686152756214142,
0.06559395790100098,
0.04534730315208435,
-0.0192122645676136,
-0.06164845824241638,
-0.049278032034635544,
0.2145424336194992,
0.21451438963413239,
-0.020764317363500595,
0.003720657667145133,
0.050408970564603806,
0.02204034850001335,
0.020991571247577667,
0.06707017868757248,
0.07941199839115143,
0.25915464758872986,
-0.05823478102684021,
-0.03561878949403763,
-0.0832960456609726,
0.0014694507699459791,
-0.14354467391967773,
0.03259902074933052,
0.08490535616874695,
-0.048814065754413605,
-0.05085292086005211,
0.024445807561278343,
-0.11533565074205399,
-0.024163447320461273,
0.028032660484313965,
-0.15127336978912354,
-0.12838222086429596,
-0.027371807023882866,
0.02432307042181492,
0.06150247901678085,
0.12357046455144882,
0.026092451065778732,
-0.06223433092236519,
0.08055999875068665,
0.0555109940469265,
-0.08887988328933716,
-0.03183804452419281,
0.12281419336795807,
0.08818209916353226,
0.07941894233226776,
-0.004405396990478039,
0.009634437970817089,
0.08219747245311737,
0.11462034285068512,
0.016041316092014313,
0.02193448320031166,
0.00860294234007597,
-0.06946931779384613,
0.019867833703756332,
0.013394922949373722,
-0.03516630455851555,
0.002839223947376013,
0.07836201041936874,
-0.1735771745443344,
-0.016726577654480934,
-0.0176622923463583,
-0.042839568108320236,
-0.044401027262210846,
0.0766649842262268,
-0.1358432024717331,
0.10806353390216827,
0.21713556349277496,
-0.025928080081939697,
-0.0854019746184349,
-0.06655377894639969,
0.061828188598155975,
0.04499834403395653,
-0.047499436885118484,
-0.051262106746435165,
-0.11952150613069534,
-0.04041403904557228,
0.043048277497291565,
0.00016217571101151407,
-0.14914852380752563,
-0.060578420758247375,
0.03751685842871666,
0.009978188201785088,
-0.12243550270795822,
0.006118769757449627,
0.010190744884312153,
0.006174770183861256,
-0.022438494488596916,
-0.17813816666603088,
0.03770742192864418,
0.07533299177885056,
-0.059853360056877136,
-0.09543614089488983
] |
null | null | transformers |
# roberta-small-japanese-aozora-char
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-small-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-char-luw-upos), dependency-parsing, and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char")
```
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]} | fill-mask | KoichiYasuoka/roberta-small-japanese-aozora-char | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-small-japanese-aozora-char
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-small-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
| [
"# roberta-small-japanese-aozora-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-small-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-small-japanese-aozora-char",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-small-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
59,
16,
73,
4
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-small-japanese-aozora-char## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune 'roberta-small-japanese-aozora-char' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use"
] | [
-0.022360241040587425,
-0.020621158182621002,
-0.003075547283515334,
0.0665835365653038,
0.21705560386180878,
0.014083623886108398,
0.16150319576263428,
0.10814006626605988,
-0.009365133009850979,
0.041604384779930115,
0.05815846845507622,
0.07600133866071701,
0.06202767789363861,
0.20258748531341553,
-0.03920682892203331,
-0.3488650321960449,
0.05235055834054947,
0.037272222340106964,
0.07667234539985657,
0.08738343417644501,
0.14594367146492004,
-0.04965437948703766,
0.07966811954975128,
0.03019445762038231,
-0.10368999093770981,
0.0011202255263924599,
0.0432029590010643,
-0.19327306747436523,
0.055136051028966904,
0.04855349659919739,
0.07175952196121216,
-0.03551314398646355,
0.021326646208763123,
-0.05841587856411934,
0.035822298377752304,
-0.0359496995806694,
-0.03991273045539856,
0.01954556070268154,
-0.04185808449983597,
-0.03129056468605995,
-0.007182115223258734,
-0.028841426596045494,
0.007171839941293001,
0.0565309040248394,
-0.05766523256897926,
-0.11328841745853424,
0.012268716469407082,
0.04669393599033356,
0.16789625585079193,
0.08832662552595139,
-0.007962427102029324,
0.11517061293125153,
-0.11840596050024033,
0.06829686462879181,
0.14994148910045624,
-0.21351802349090576,
-0.08078619092702866,
0.012616392225027084,
-0.006248093210160732,
0.03748037666082382,
0.0030157254077494144,
0.0016841706819832325,
-0.0036298378836363554,
-0.011680807918310165,
-0.032202206552028656,
-0.10569994896650314,
0.040786683559417725,
0.0006031693774275482,
-0.048518240451812744,
0.062202055007219315,
0.21033449470996857,
-0.016924377530813217,
-0.057580795139074326,
-0.16012416779994965,
-0.01963845267891884,
0.014767236076295376,
-0.14469866454601288,
0.005608231760561466,
-0.03641347587108612,
-0.011038252152502537,
0.04632611945271492,
-0.015314835123717785,
-0.08016812801361084,
-0.07454387098550797,
-0.0690583810210228,
0.1929108053445816,
0.05196131765842438,
0.0005971234641037881,
-0.15263566374778748,
-0.04197995737195015,
-0.1119985431432724,
-0.12163672596216202,
-0.014187865890562534,
-0.08392272144556046,
0.037703122943639755,
0.061129454523324966,
-0.03759199380874634,
-0.11425954103469849,
0.13362768292427063,
0.1788761466741562,
0.07493267208337784,
0.089154914021492,
0.014022698625922203,
0.04975932091474533,
0.02960500307381153,
0.15219560265541077,
-0.007348592393100262,
-0.046804606914520264,
0.1020202785730362,
-0.02667759731411934,
0.013855012133717537,
-0.07553648203611374,
-0.18926642835140228,
-0.05708334222435951,
-0.01141681894659996,
0.05255024507641792,
0.0007376918219961226,
0.08918361365795135,
-0.024716412648558617,
-0.03056754730641842,
0.10932106524705887,
-0.20012307167053223,
0.007495485711842775,
-0.031237417832016945,
-0.016869867220520973,
0.0838145762681961,
-0.03719516098499298,
-0.04068073257803917,
-0.059963248670101166,
0.05307169258594513,
-0.024097345769405365,
-0.009410775266587734,
-0.051066797226667404,
-0.048799216747283936,
-0.01915261335670948,
-0.0879172533750534,
0.03731267526745796,
-0.2081381380558014,
-0.1066896915435791,
-0.0241341944783926,
0.01824437826871872,
-0.03182104602456093,
-0.025150470435619354,
-0.024384746327996254,
-0.0346989743411541,
0.015163548290729523,
-0.039500642567873,
-0.030519090592861176,
-0.04071171581745148,
0.06810571253299713,
0.07051592320203781,
0.09465000033378601,
-0.0996696949005127,
0.029709188267588615,
-0.09664265811443329,
-0.024173175916075706,
-0.28020650148391724,
0.020033661276102066,
0.012373030185699463,
0.08751431107521057,
-0.07165566086769104,
-0.009710240177810192,
0.012491544708609581,
0.09439621865749359,
0.01116863451898098,
0.1204342171549797,
-0.07937497645616531,
-0.08058812469244003,
0.26893672347068787,
-0.11305975914001465,
-0.0747092142701149,
0.12367777526378632,
-0.009223268367350101,
0.13881342113018036,
0.06610240042209625,
0.17106054723262787,
0.0631583034992218,
-0.04469707980751991,
0.09933162480592728,
0.036259133368730545,
-0.07326806336641312,
-0.08931633085012436,
0.07021518051624298,
0.050851646810770035,
-0.08773986250162125,
0.09274373203516006,
-0.07290554791688919,
0.017172006890177727,
-0.016228944063186646,
-0.07093815505504608,
0.04333097115159035,
-0.02917005494236946,
-0.02494332566857338,
0.011426927521824837,
0.08676905184984207,
-0.05212170630693436,
-0.09438090771436691,
-0.09370068460702896,
0.05597100034356117,
-0.05077666416764259,
0.049423698335886,
-0.18503093719482422,
0.11334777623414993,
0.04283788800239563,
0.06183015927672386,
-0.13815155625343323,
0.07589777559041977,
-0.015297004021704197,
0.18264852464199066,
0.05474191531538963,
-0.10093783587217331,
0.023884784430265427,
-0.02413775585591793,
0.007001632358878851,
0.0148930037394166,
0.12120272219181061,
-0.035819053649902344,
-0.000006268390279728919,
-0.09661911427974701,
0.0029441739898175,
-0.026425547897815704,
0.08671128749847412,
0.013093702495098114,
0.0342116579413414,
-0.062144335359334946,
-0.001831894856877625,
-0.029996057972311974,
0.08382439613342285,
-0.026188543066382408,
0.0778559222817421,
-0.0386502668261528,
0.06475219875574112,
0.04310673847794533,
0.03189953789114952,
-0.09501843899488449,
0.1691552847623825,
-0.13717620074748993,
0.1080174595117569,
0.16251249611377716,
-0.03948267921805382,
-0.08080494403839111,
0.012708248570561409,
0.03131389617919922,
0.02573937363922596,
-0.016545040532946587,
0.00863960012793541,
0.042768336832523346,
-0.03545881062746048,
0.1812942624092102,
-0.07770784944295883,
0.07989531755447388,
0.04561535641551018,
-0.14791090786457062,
-0.006830339320003986,
0.09879489243030548,
0.04597458615899086,
-0.1375163048505783,
0.1284812092781067,
-0.01658244989812374,
-0.0547197088599205,
0.18626578152179718,
0.006507157348096371,
-0.05128537118434906,
-0.000491703802254051,
0.01231867354363203,
0.07547308504581451,
0.023555990308523178,
-0.12321044504642487,
-0.06320290267467499,
0.0648454874753952,
-0.048191215842962265,
0.015443052165210247,
-0.0421970896422863,
-0.058814458549022675,
0.007943756878376007,
-0.01268407329916954,
0.008399572223424911,
0.08466954529285431,
-0.004612982738763094,
0.09662818908691406,
0.04892067238688469,
-0.03970874100923538,
0.020872024819254875,
0.005573930684477091,
-0.04766028746962547,
0.12712641060352325,
-0.09837015718221664,
-0.300526887178421,
-0.1986938863992691,
-0.24586071074008942,
0.01965976133942604,
0.04078739136457443,
0.10646820068359375,
-0.15818260610103607,
-0.09057135879993439,
-0.027634674683213234,
-0.05996992439031601,
-0.006429565139114857,
-0.012326476164162159,
-0.0456259548664093,
0.0580853708088398,
-0.07157590985298157,
-0.05701112747192383,
-0.04745824262499809,
0.007346184924244881,
-0.011083999648690224,
0.17169184982776642,
-0.12291841953992844,
0.11456412076950073,
0.12730097770690918,
-0.019370974972844124,
0.07225267589092255,
-0.039129842072725296,
0.06416543573141098,
-0.1070341020822525,
-0.005111968144774437,
0.27950865030288696,
-0.05789762735366821,
0.0403955914080143,
0.09207871556282043,
-0.013933412730693817,
-0.043734509497880936,
0.03709590435028076,
-0.06613378971815109,
-0.1220637708902359,
-0.14989201724529266,
-0.05091816931962967,
-0.1089748665690422,
0.13060347735881805,
0.026676081120967865,
0.0642794743180275,
0.12175488471984863,
0.07446394860744476,
0.014587986283004284,
0.053328678011894226,
0.023790812119841576,
0.12093602120876312,
0.08963758498430252,
0.01624240353703499,
0.13324715197086334,
-0.04918860271573067,
-0.06777889281511307,
0.07135996967554092,
-0.0376691110432148,
0.08188582211732864,
0.03803262487053871,
0.1297856867313385,
0.03480047360062599,
0.11448168754577637,
0.13606242835521698,
0.02790958620607853,
0.029813556000590324,
0.020916935056447983,
-0.032787881791591644,
-0.04901037737727165,
-0.07917191088199615,
0.07797817885875702,
-0.03559616953134537,
-0.08035978674888611,
-0.06336717307567596,
0.09411688148975372,
0.012318483553826809,
0.17940044403076172,
-0.06362937390804291,
-0.20778460800647736,
-0.03733627870678902,
0.007752395235002041,
-0.047626789659261703,
-0.03800898417830467,
0.04054170474410057,
0.0033338507637381554,
-0.15137991309165955,
0.03423722833395004,
0.01830938458442688,
0.1306198388338089,
0.07052715867757797,
0.0420573428273201,
-0.039651550352573395,
0.029093539342284203,
0.0364384762942791,
0.08277502655982971,
-0.25906020402908325,
0.15423057973384857,
0.03882213309407234,
0.06842228770256042,
-0.11159666627645493,
0.018611866980791092,
0.05249285325407982,
-0.02260644920170307,
0.18876734375953674,
-0.06769846379756927,
-0.06283223628997803,
-0.12709984183311462,
-0.0740596204996109,
0.04412321373820305,
0.11870639026165009,
0.006422615610063076,
0.021882668137550354,
-0.05233219638466835,
-0.04691224917769432,
-0.03850703313946724,
0.004118166398257017,
-0.04261397197842598,
-0.16427654027938843,
-0.005296121817082167,
0.10157010704278946,
-0.10602816194295883,
0.023356901481747627,
0.01063227653503418,
-0.06959058344364166,
0.12093918025493622,
0.07653640955686569,
-0.02761332504451275,
-0.11024175584316254,
-0.017749128863215446,
0.04798196256160736,
-0.15219944715499878,
0.04061318188905716,
-0.07435198873281479,
0.04186876863241196,
-0.013073957525193691,
-0.10226896405220032,
0.05840763822197914,
-0.0548650361597538,
0.002742995275184512,
0.01314274687319994,
0.04930880665779114,
0.0161815844476223,
0.03632620349526405,
0.04078986495733261,
0.004687242675572634,
-0.0012324018171057105,
-0.0594019815325737,
-0.0385718047618866,
0.006748772691935301,
0.13314352929592133,
0.05044231936335564,
-0.15105700492858887,
-0.1363602578639984,
-0.10153107345104218,
-0.05873669311404228,
0.21834805607795715,
0.18756762146949768,
-0.02466735430061817,
0.09184261411428452,
0.13135261833667755,
-0.005799833685159683,
-0.28415578603744507,
-0.12165878713130951,
-0.0517553873360157,
0.1229870468378067,
-0.04549752548336983,
-0.14317192137241364,
0.08558106422424316,
0.0064271362498402596,
-0.021209776401519775,
-0.02172369882464409,
-0.1343500167131424,
-0.12053877115249634,
0.1556411236524582,
0.06801775097846985,
0.18998022377490997,
-0.14596113562583923,
-0.026142416521906853,
-0.08825495094060898,
-0.16138038039207458,
0.018726199865341187,
-0.09711628407239914,
0.10430071502923965,
-0.0242465827614069,
-0.006070599891245365,
0.007257478311657906,
-0.02280285954475403,
0.08603294938802719,
-0.05244387686252594,
-0.026975475251674652,
-0.08763261884450912,
-0.11148595064878464,
0.14252404868602753,
0.010063166730105877,
0.09019090980291367,
-0.058643076568841934,
-0.0611276850104332,
-0.07684677094221115,
-0.08177193254232407,
-0.0306063424795866,
-0.023309050127863884,
0.03405049815773964,
-0.0729682594537735,
-0.01913563348352909,
0.06886859238147736,
-0.01935875229537487,
0.02782389521598816,
0.13277027010917664,
-0.14937131106853485,
0.04190454259514809,
0.03906233608722687,
0.11750900000333786,
-0.05370667576789856,
0.07991942018270493,
-0.0032674353569746017,
-0.05545513704419136,
0.10026848316192627,
-0.1531490981578827,
0.08783113211393356,
-0.03636249154806137,
-0.008267696015536785,
0.06446003913879395,
0.048202864825725555,
-0.00812437292188406,
0.055873654782772064,
0.10619204491376877,
-0.07167233526706696,
-0.04914849251508713,
-0.022597430273890495,
-0.029838860034942627,
0.02483787015080452,
-0.010211672633886337,
0.08114761859178543,
-0.021045787259936333,
-0.06673993170261383,
-0.014178630895912647,
0.010930518619716167,
-0.06818130612373352,
0.02752889320254326,
0.03985723853111267,
0.044223807752132416,
-0.10659698396921158,
-0.04441037401556969,
0.06807001680135727,
-0.028738154098391533,
0.09552391618490219,
0.13464678823947906,
-0.09465190023183823,
-0.10359396785497665,
0.020818741992115974,
0.16835209727287292,
-0.0008014547056518495,
-0.11227786540985107,
-0.14898183941841125,
-0.08947476744651794,
0.008521893061697483,
0.07254165410995483,
0.09337168186903,
-0.05243806540966034,
0.022557295858860016,
-0.00047527498099952936,
-0.1118008941411972,
-0.01126406341791153,
0.09344262629747391,
-0.006068914197385311,
-0.03894419223070145,
0.0012933271937072277,
0.011638671159744263,
0.16232912242412567,
-0.06833294779062271,
-0.05640668049454689,
-0.17722544074058533,
0.06366948783397675,
-0.05013711005449295,
0.07807192951440811,
-0.10213958472013474,
-0.05067339912056923,
0.002639204729348421,
0.0195348858833313,
-0.04850571230053902,
-0.01656751148402691,
-0.05906984955072403,
-0.011668345890939236,
-0.03427310287952423,
0.029716039076447487,
-0.021237971261143684,
0.017744185402989388,
0.059588249772787094,
-0.02734079211950302,
0.03418415039777756,
0.09458251297473907,
-0.10503971576690674,
0.04738542437553406,
-0.07866942882537842,
-0.02253737300634384,
0.035595688968896866,
0.02311864122748375,
0.07284004986286163,
0.03707032650709152,
0.047047872096300125,
0.06098726764321327,
0.043951522558927536,
0.022231627255678177,
0.15126283466815948,
-0.10845556110143661,
0.12505082786083221,
-0.14849360287189484,
-0.1069071814417839,
-0.10283291339874268,
0.04404844716191292,
0.11142352968454361,
0.06697128713130951,
0.09027879685163498,
-0.0778070017695427,
0.11972584575414658,
-0.02846342697739601,
-0.008227355778217316,
-0.04157494753599167,
-0.08626646548509598,
0.008957176469266415,
-0.09669477492570877,
0.03158101812005043,
-0.01029269490391016,
0.12633806467056274,
0.08965960890054703,
0.009424458257853985,
0.03800727054476738,
-0.037727948278188705,
0.09258316457271576,
0.009242209605872631,
0.18683743476867676,
0.06900255382061005,
-0.011915232986211777,
0.060584280639886856,
0.04408445954322815,
0.03797677904367447,
0.039805103093385696,
0.05414895340800285,
0.1354525238275528,
0.13739530742168427,
0.12767353653907776,
-0.026042426005005836,
0.07269100099802017,
-0.02498474530875683,
-0.040391579270362854,
-0.0799349844455719,
-0.009895937517285347,
0.015013006515800953,
0.054503653198480606,
0.2367141842842102,
-0.048320524394512177,
0.06947117298841476,
-0.02176331914961338,
-0.07100348174571991,
-0.18047888576984406,
-0.19469872117042542,
-0.11902081221342087,
-0.07109665125608444,
0.02857227623462677,
-0.0401751808822155,
-0.05615057051181793,
0.08900119364261627,
0.005141305737197399,
-0.02468970976769924,
0.07885725051164627,
-0.05874126777052879,
-0.0006443890160880983,
0.1032901257276535,
-0.043518662452697754,
0.01391574740409851,
0.0647631362080574,
-0.04996538907289505,
-0.054530639201402664,
-0.03497682511806488,
0.042177408933639526,
0.05169525742530823,
-0.01985771767795086,
0.08592149615287781,
-0.1334347277879715,
-0.11069934070110321,
-0.0068422299809753895,
0.059525031596422195,
0.0851893424987793,
0.1487097144126892,
0.029704730957746506,
-0.08121844381093979,
0.0013881218619644642,
0.18286600708961487,
-0.011406372301280499,
-0.12419428676366806,
-0.14585325121879578,
0.07873091101646423,
0.07941024750471115,
-0.031840793788433075,
-0.037472669035196304,
-0.0521620512008667,
-0.018261928111314774,
0.3397723436355591,
0.2639366686344147,
-0.04600067436695099,
0.015889016911387444,
0.012925081886351109,
0.017719928175210953,
-0.003133467398583889,
0.20453467965126038,
0.09416163712739944,
0.2425471395254135,
-0.030913280323147774,
-0.032942771911621094,
-0.08743201941251755,
-0.062477752566337585,
-0.1857295036315918,
0.007852905429899693,
0.07480526715517044,
-0.09637614339590073,
-0.015401224605739117,
0.0752488449215889,
-0.2188132107257843,
0.06019678711891174,
0.07310941070318222,
-0.09376919269561768,
-0.10934058576822281,
-0.0113683445379138,
0.05777234211564064,
0.04653511196374893,
0.08264460414648056,
-0.02655140869319439,
0.03611723706126213,
0.005165971349924803,
0.04145002365112305,
-0.07250288873910904,
0.0008711122791282833,
0.06798361241817474,
-0.03759664669632912,
0.10441911965608597,
-0.0014991763746365905,
0.056502848863601685,
0.08697791397571564,
0.07507719099521637,
0.036152735352516174,
0.09503938257694244,
-0.017093075439333916,
-0.006981595419347286,
0.1036192998290062,
0.07357126474380493,
-0.04959449544548988,
-0.0743466168642044,
0.015213453210890293,
-0.11815847456455231,
0.05382288619875908,
-0.059609703719615936,
-0.002860541921108961,
-0.09219023585319519,
0.09874244034290314,
-0.15465882420539856,
0.0933356061577797,
0.1307026594877243,
-0.02522530034184456,
-0.06040643900632858,
-0.04495980218052864,
0.0936392992734909,
0.010171019472181797,
-0.13550986349582672,
-0.13243333995342255,
-0.12379308044910431,
-0.12594033777713776,
-0.004575274419039488,
0.0002956446842290461,
-0.26061561703681946,
-0.012560630217194557,
-0.09830661118030548,
0.0007657785899937153,
-0.16455164551734924,
0.03196100518107414,
0.09187692403793335,
-0.0066961138509213924,
0.0016695248195901513,
-0.1404503434896469,
0.05357278883457184,
0.07403051108121872,
-0.11204616725444794,
-0.11248627305030823
] |
null | null | transformers |
# roberta-small-japanese-aozora
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-small-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-luw-upos), dependency-parsing, and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora")
```
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]} | fill-mask | KoichiYasuoka/roberta-small-japanese-aozora | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-small-japanese-aozora
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-small-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
## How to Use
| [
"# roberta-small-japanese-aozora",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-small-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-small-japanese-aozora",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-small-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.",
"## How to Use"
] | [
59,
14,
75,
4
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #japanese #masked-lm #ja #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-small-japanese-aozora## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts with Japanese-LUW-Tokenizer. You can fine-tune 'roberta-small-japanese-aozora' for downstream tasks, such as POS-tagging, dependency-parsing, and so on.## How to Use"
] | [
-0.02098819427192211,
-0.029470039531588554,
-0.00238597858697176,
0.0711023285984993,
0.18685364723205566,
0.013343945145606995,
0.1641540229320526,
0.10058129578828812,
0.006640681531280279,
0.03235866501927376,
0.05299745500087738,
0.1254463940858841,
0.05189759284257889,
0.1753232777118683,
-0.058371663093566895,
-0.3665667176246643,
0.049692053347826004,
0.04686269164085388,
0.011575048789381981,
0.07782622426748276,
0.15006780624389648,
-0.04657798632979393,
0.078847736120224,
0.03297917917370796,
-0.10890090465545654,
-0.0016171950846910477,
0.024525225162506104,
-0.17753908038139343,
0.06343689560890198,
0.05886070057749748,
0.09594305604696274,
-0.026426777243614197,
0.04356064647436142,
-0.04895765706896782,
0.028591111302375793,
-0.048121269792318344,
-0.01911376416683197,
0.025745507329702377,
-0.03038989193737507,
-0.031045295298099518,
-0.013602993451058865,
-0.05509289726614952,
0.010858426801860332,
0.050258032977581024,
-0.05536283552646637,
-0.08461447805166245,
0.00449044443666935,
0.03894989565014839,
0.16358567774295807,
0.08892051130533218,
0.006605020258575678,
0.12255971878767014,
-0.12133356928825378,
0.06449345499277115,
0.1599234640598297,
-0.23086325824260712,
-0.08376546204090118,
0.059645961970090866,
0.007147291675209999,
-0.0020421550143510103,
-0.01583721674978733,
0.005714518949389458,
0.020081043243408203,
-0.007814093492925167,
-0.04633593559265137,
-0.11485496908426285,
0.03287435695528984,
-0.01742364466190338,
-0.05996678024530411,
0.07320787757635117,
0.23920495808124542,
-0.005138684529811144,
-0.061359405517578125,
-0.15253321826457977,
-0.024265505373477936,
0.043475937098264694,
-0.1396065652370453,
0.006079495884478092,
-0.025137828662991524,
-0.022855166345834732,
0.07253377884626389,
-0.012084211222827435,
-0.07878250628709793,
-0.06707385182380676,
-0.08215858787298203,
0.2591094374656677,
0.04705192148685455,
0.006983332801610231,
-0.14876481890678406,
-0.020528526976704597,
-0.11019441485404968,
-0.12014264613389969,
-0.021146906539797783,
-0.08435230702161789,
0.02555302157998085,
0.061348747462034225,
-0.006037801969796419,
-0.09778593480587006,
0.1222066879272461,
0.17083142697811127,
0.11411145329475403,
0.08883805572986603,
0.02454044111073017,
0.06211227551102638,
0.0382339172065258,
0.15694820880889893,
0.021805431693792343,
-0.08507011830806732,
0.1007508710026741,
-0.025680720806121826,
0.01649359054863453,
-0.052827853709459305,
-0.1858770102262497,
-0.07959084957838058,
-0.0460185632109642,
0.0563369020819664,
0.010863195173442364,
0.08891413360834122,
-0.03256197273731232,
-0.04521343111991882,
0.10712637007236481,
-0.19547230005264282,
0.020945442840456963,
-0.045431721955537796,
-0.02199779637157917,
0.09367642551660538,
0.006725124083459377,
-0.020682930946350098,
-0.040789540857076645,
0.05791088193655014,
-0.016852883622050285,
-0.01613815687596798,
-0.07053966075181961,
-0.05759734287858009,
-0.020977111533284187,
-0.1063300147652626,
0.06637337058782578,
-0.20508305728435516,
-0.13602730631828308,
-0.018692202866077423,
0.046275656670331955,
-0.02201947383582592,
-0.04955839365720749,
-0.018551651388406754,
-0.019430415704846382,
0.006905284244567156,
-0.033185966312885284,
0.01930970698595047,
-0.035835906863212585,
0.06453627347946167,
0.05903603136539459,
0.07906234264373779,
-0.09186762571334839,
0.026002591475844383,
-0.08501794189214706,
-0.0026914551854133606,
-0.23552206158638,
0.02519865892827511,
-0.014788530766963959,
0.10191784799098969,
-0.07967822998762131,
-0.02018062025308609,
0.00241318647749722,
0.10016359388828278,
-0.0004619607061613351,
0.12765276432037354,
-0.07323240488767624,
-0.07055927067995071,
0.20957915484905243,
-0.12189766019582748,
-0.057717274874448776,
0.08620405197143555,
-0.02735273167490959,
0.20197610557079315,
0.06171504035592079,
0.1643555760383606,
0.07859810441732407,
-0.05798901244997978,
0.1010410264134407,
0.02474699728190899,
-0.1011967733502388,
-0.06639838218688965,
0.050612471997737885,
0.0795912817120552,
-0.13216066360473633,
0.0872308537364006,
-0.05222024768590927,
-0.009752903133630753,
-0.024811767041683197,
-0.08041840046644211,
0.03162173554301262,
-0.04867405816912651,
-0.034720923751592636,
-0.002576559316366911,
0.09047821164131165,
-0.04389811307191849,
-0.0860588401556015,
-0.03583187237381935,
0.0760648101568222,
-0.039513301104307175,
0.03431664779782295,
-0.1795268952846527,
0.0698990449309349,
0.024953989312052727,
0.046137914061546326,
-0.12311738729476929,
0.06007835641503334,
-0.005453720688819885,
0.15411457419395447,
0.07670016586780548,
-0.04567459970712662,
0.036725614219903946,
-0.016262952238321304,
0.015591942705214024,
0.0033972919918596745,
0.1027020812034607,
-0.027803553268313408,
0.003755513345822692,
-0.11396333575248718,
-0.008345920592546463,
-0.038560982793569565,
0.051717400550842285,
-0.028435079380869865,
0.020088395103812218,
-0.08820025622844696,
0.006794092245399952,
-0.034925155341625214,
0.09683344513177872,
-0.00869524385780096,
0.0654265284538269,
-0.03567337617278099,
0.05304552614688873,
0.04109695181250572,
0.02967977151274681,
-0.11002523452043533,
0.13807953894138336,
-0.1028812974691391,
0.16768130660057068,
0.15758907794952393,
-0.023187736049294472,
-0.08436115831136703,
0.009377546608448029,
0.007433480117470026,
0.002116903429850936,
-0.023116005584597588,
0.0329580157995224,
0.061760563403367996,
-0.041054658591747284,
0.14836101233959198,
-0.07649625092744827,
0.0798259899020195,
0.05570368841290474,
-0.14169982075691223,
-0.002996886847540736,
0.10492485016584396,
0.06959395110607147,
-0.17349310219287872,
0.11758886277675629,
-0.03244682028889656,
-0.06967154890298843,
0.15877816081047058,
0.013278324156999588,
-0.033835023641586304,
-0.007686071563512087,
0.01538885198533535,
0.07491534948348999,
0.05895187333226204,
-0.13491888344287872,
-0.03972504660487175,
0.0703737661242485,
-0.03814205154776573,
0.024488350376486778,
-0.05361583083868027,
-0.06410027295351028,
-0.00016066640091594309,
0.0009733327897265553,
0.018521098420023918,
0.09236864745616913,
-0.014939186163246632,
0.09238237887620926,
0.04484236240386963,
-0.031630225479602814,
0.02706366777420044,
0.020923001691699028,
-0.03605888411402702,
0.12796799838542938,
-0.08384706825017929,
-0.2995993196964264,
-0.1694687157869339,
-0.22281986474990845,
0.017053214833140373,
0.02277314104139805,
0.09836731106042862,
-0.1341923028230667,
-0.11205068230628967,
0.00493976566940546,
-0.0443112775683403,
-0.011684590950608253,
0.005290395580232143,
-0.03179295361042023,
0.07277089357376099,
-0.06093177944421768,
-0.08095389604568481,
-0.041444338858127594,
0.011665837839245796,
-0.021709544584155083,
0.15880142152309418,
-0.12142006307840347,
0.11960280686616898,
0.11208955198526382,
0.000450276886112988,
0.06788045912981033,
-0.02424270659685135,
0.07849777489900589,
-0.11416789889335632,
0.022967461496591568,
0.26168179512023926,
-0.05547594651579857,
0.02993762120604515,
0.11949949711561203,
0.005176948383450508,
-0.062488194555044174,
0.03368062153458595,
-0.04195312038064003,
-0.11504893004894257,
-0.16294169425964355,
-0.059271957725286484,
-0.11707336455583572,
0.10640798509120941,
0.027871910482645035,
0.07877584546804428,
0.1037486121058464,
0.08933276683092117,
0.031414635479450226,
0.0802474170923233,
0.03329493850469589,
0.1131426990032196,
0.056495267897844315,
0.012462026439607143,
0.12178605794906616,
-0.06221042200922966,
-0.08702763170003891,
0.0659313052892685,
-0.01152910478413105,
0.10582951456308365,
0.0459127351641655,
0.07731203734874725,
0.050586167722940445,
0.12527284026145935,
0.15350879728794098,
0.05799677222967148,
0.029954321682453156,
0.010358869098126888,
-0.03894198685884476,
-0.0591241791844368,
-0.07989577203989029,
0.10269398987293243,
-0.03025800921022892,
-0.07396472990512848,
-0.029837222769856453,
0.04621405899524689,
0.002321513369679451,
0.17099548876285553,
-0.06297269463539124,
-0.21851998567581177,
-0.041927456855773926,
0.02311127632856369,
-0.04668392241001129,
-0.05210443213582039,
0.044098686426877975,
-0.04453517869114876,
-0.1549728512763977,
0.05512839928269386,
-0.00029827578691765666,
0.14056618511676788,
0.05414709821343422,
0.020037544891238213,
-0.061814241111278534,
0.033625632524490356,
0.03079940751194954,
0.09361466020345688,
-0.2526460587978363,
0.1729065179824829,
0.026447631418704987,
0.07248065620660782,
-0.09865574538707733,
0.012370201759040356,
0.05904925614595413,
-0.001802888116799295,
0.1933223009109497,
-0.06294739246368408,
-0.025593383237719536,
-0.10355884581804276,
-0.10435929149389267,
0.06006613373756409,
0.09788019210100174,
0.013046943582594395,
0.0294398982077837,
-0.04721507430076599,
-0.054862529039382935,
-0.034497667104005814,
-0.01861395500600338,
-0.07623434066772461,
-0.151821568608284,
0.005297012161463499,
0.06374020129442215,
-0.06373714655637741,
0.016308175399899483,
-0.010155916213989258,
-0.043182697147130966,
0.18195892870426178,
0.05800367146730423,
-0.026742832735180855,
-0.12816081941127777,
-0.03257954865694046,
0.07707415521144867,
-0.1294124275445938,
0.05332411453127861,
-0.07007662951946259,
0.05083143338561058,
-0.029083022847771645,
-0.10729458928108215,
0.04274728149175644,
-0.06212298944592476,
-0.006695186253637075,
0.012926371768116951,
0.03661661595106125,
0.02236107550561428,
0.026067350059747696,
0.03139954432845116,
-0.010804952122271061,
0.009358542971313,
-0.08152307569980621,
-0.032275427132844925,
0.04570213332772255,
0.10765162855386734,
0.044396061450242996,
-0.15110129117965698,
-0.12566860020160675,
-0.08969578146934509,
-0.06597407907247543,
0.168158158659935,
0.1627609133720398,
-0.019670570269227028,
0.09166136384010315,
0.1076248288154602,
-0.016677863895893097,
-0.28307387232780457,
-0.09532542526721954,
-0.027424734085798264,
0.13542653620243073,
-0.06927115470170975,
-0.13040006160736084,
0.10886780172586441,
-0.015276721678674221,
-0.04076813533902168,
0.024399949237704277,
-0.12803970277309418,
-0.12306820601224899,
0.1454065591096878,
0.07534439116716385,
0.1969333291053772,
-0.13271471858024597,
-0.01943911984562874,
-0.07457830011844635,
-0.14861221611499786,
0.0430498868227005,
-0.05533238872885704,
0.11269588768482208,
-0.029580092057585716,
0.0457582026720047,
0.01697360724210739,
-0.03355451300740242,
0.087025947868824,
-0.060372740030288696,
-0.014204158447682858,
-0.08807576447725296,
-0.13072730600833893,
0.09424018859863281,
0.0033609489910304546,
0.09877412766218185,
-0.021135028451681137,
-0.045313116163015366,
-0.057199060916900635,
-0.0968707948923111,
-0.019630659371614456,
0.02957089990377426,
0.015149249695241451,
-0.0941375270485878,
-0.01824164018034935,
0.0793192982673645,
-0.03477941453456879,
0.03056834638118744,
0.14228345453739166,
-0.12038394063711166,
-0.03125911206007004,
0.027130018919706345,
0.12553982436656952,
-0.030707959085702896,
0.023727141320705414,
-0.009948233142495155,
-0.052019618451595306,
0.10460555553436279,
-0.16759748756885529,
0.07426828891038895,
-0.010760879144072533,
-0.008639218285679817,
0.06369156390428543,
0.04151097312569618,
-0.02096015401184559,
0.03942040726542473,
0.10761259496212006,
-0.06870391964912415,
-0.01874704845249653,
-0.021887730807065964,
-0.01906530372798443,
0.0459362156689167,
-0.011498293839395046,
0.09304551035165787,
-0.0464283786714077,
-0.054991744458675385,
-0.013002258725464344,
0.0019364244071766734,
-0.09209630638360977,
0.022339768707752228,
0.043554626405239105,
0.045728594064712524,
-0.09873917698860168,
-0.04037656635046005,
0.04900478571653366,
-0.049488481134176254,
0.07452025264501572,
0.14286480844020844,
-0.09564604610204697,
-0.09440174698829651,
0.028841180726885796,
0.19032195210456848,
-0.036817584186792374,
-0.10848196595907211,
-0.133477121591568,
-0.10793069005012512,
0.013241520151495934,
0.06833042204380035,
0.0912158191204071,
-0.052846889942884445,
0.015373601578176022,
0.007817848585546017,
-0.11482840031385422,
-0.022423578426241875,
0.12439122051000595,
0.0019127815030515194,
-0.08190476894378662,
-0.030681859701871872,
0.03376678004860878,
0.16301164031028748,
-0.0706130862236023,
-0.053773168474435806,
-0.1934029757976532,
0.0689762681722641,
-0.05694792419672012,
0.10198448598384857,
-0.09240075200796127,
-0.03910364210605621,
-0.01588359847664833,
-0.010134194977581501,
-0.059819579124450684,
-0.011404470540583134,
-0.05569951608777046,
-0.0009462644811719656,
-0.03282378241419792,
0.02711472101509571,
0.00873630866408348,
-0.012534724548459053,
0.07857690006494522,
-0.0528646856546402,
0.005075240507721901,
0.10284963250160217,
-0.09596209228038788,
0.03838803619146347,
-0.05206212028861046,
-0.002072458155453205,
0.062229905277490616,
0.026932209730148315,
0.09176266938447952,
-0.001389900571666658,
0.03826688602566719,
0.05493168160319328,
0.056019511073827744,
0.002005767310038209,
0.1641271710395813,
-0.11842317134141922,
0.10899341851472855,
-0.14511001110076904,
-0.12770338356494904,
-0.0981382504105568,
0.021240152418613434,
0.11535690724849701,
0.06869854032993317,
0.07164643704891205,
-0.06532522290945053,
0.12483137100934982,
-0.04198396950960159,
-0.0052765426225960255,
-0.0445978119969368,
-0.09597142785787582,
0.0039237067103385925,
-0.09809856116771698,
0.02867025136947632,
-0.013442791067063808,
0.13508620858192444,
0.09462776780128479,
-0.012833826243877411,
0.022853290662169456,
-0.07131914794445038,
0.07538965344429016,
0.012217181734740734,
0.1877112090587616,
0.06834789365530014,
0.030564837157726288,
0.03958408534526825,
0.051202453672885895,
0.032378215342760086,
0.017517516389489174,
0.04369843378663063,
0.1455070674419403,
0.13472755253314972,
0.11740454286336899,
-0.019103532657027245,
0.03824525326490402,
-0.06306014209985733,
-0.013708994723856449,
-0.06416866928339005,
-0.005832284223288298,
0.008594535291194916,
0.007203897461295128,
0.2378041297197342,
-0.05606663227081299,
0.0758524164557457,
0.007075301371514797,
-0.06914615631103516,
-0.17068533599376678,
-0.21106022596359253,
-0.134999617934227,
-0.056751661002635956,
0.039915669709444046,
-0.04308147728443146,
-0.04975111410021782,
0.02342313528060913,
0.009855696931481361,
-0.0034109100233763456,
0.0772487223148346,
-0.08196482807397842,
0.014768196269869804,
0.06955162435770035,
-0.023313064128160477,
0.00029371361597441137,
0.06699371337890625,
-0.04733240604400635,
-0.09480279684066772,
-0.0258980393409729,
0.017817724496126175,
0.04557130113244057,
-0.027326203882694244,
0.08608325570821762,
-0.08367359638214111,
-0.08680660277605057,
-0.018215760588645935,
0.0496026948094368,
0.09675703942775726,
0.11781315505504608,
0.020252520218491554,
-0.08263036608695984,
-0.0013152007013559341,
0.18146970868110657,
-0.016516169533133507,
-0.17497994005680084,
-0.1255323886871338,
0.10248812288045883,
0.05413459986448288,
-0.027783555909991264,
-0.025146115571260452,
-0.02647770196199417,
-0.01057353988289833,
0.38548192381858826,
0.28498661518096924,
-0.02330729365348816,
0.01610771380364895,
0.008809410966932774,
0.012760951183736324,
-0.004210151731967926,
0.1832643747329712,
0.0798802524805069,
0.2978821396827698,
-0.04527587071061134,
-0.05834284424781799,
-0.09801934659481049,
-0.05446113646030426,
-0.16475190222263336,
0.028809931129217148,
0.06931138038635254,
-0.09556172788143158,
-0.01810811460018158,
0.07937700301408768,
-0.21032114326953888,
0.023687532171607018,
0.1038680225610733,
-0.10241280496120453,
-0.11653006821870804,
-0.011368769221007824,
0.04910237714648247,
0.019097276031970978,
0.08004198223352432,
-0.0482046864926815,
0.01900806836783886,
0.0010008607059717178,
0.03175422176718712,
-0.0797325000166893,
0.014024513773620129,
0.06283746659755707,
0.0010862891795113683,
0.1100684329867363,
0.0052340105175971985,
0.055182572454214096,
0.07790966331958771,
0.06905649602413177,
0.010415825061500072,
0.09336545318365097,
-0.024625375866889954,
-0.03626059368252754,
0.0846988707780838,
0.06821982562541962,
-0.0697513148188591,
-0.048962339758872986,
0.000031085332011571154,
-0.15523456037044525,
0.05221005156636238,
-0.02033780887722969,
-0.019060906022787094,
-0.09498501569032669,
0.10350432246923447,
-0.15603342652320862,
0.10455592721700668,
0.13745996356010437,
-0.01326566282659769,
-0.06881681084632874,
-0.06369774788618088,
0.14013555645942688,
0.03298845514655113,
-0.13117334246635437,
-0.11841006577014923,
-0.14043855667114258,
-0.1280631124973297,
0.0009322626865468919,
-0.009002452716231346,
-0.22426800429821014,
-0.048057615756988525,
-0.0882856622338295,
-0.012925984337925911,
-0.1482446938753128,
0.01669601909816265,
0.09062574803829193,
-0.009305871091783047,
0.003920904826372862,
-0.16846342384815216,
0.03954705223441124,
0.06431441754102707,
-0.11204789578914642,
-0.13010002672672272
] |
null | null | transformers |
# roberta-small-japanese-char-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-small-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-char-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-japanese-char-luw-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-small-japanese-char-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]} | token-classification | KoichiYasuoka/roberta-small-japanese-char-luw-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"japanese",
"pos",
"dependency-parsing",
"ja",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-small-japanese-char-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-small-japanese-char-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-small-japanese-char-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
74,
18,
76,
5,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-small-japanese-char-luw-upos## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora-char. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.026066403836011887,
0.07299303263425827,
-0.004260081797838211,
0.047372810542583466,
0.16918611526489258,
-0.006211655214428902,
0.09732070565223694,
0.0922626331448555,
-0.007363095413893461,
0.04588954150676727,
0.04996640980243683,
0.10690832138061523,
0.05433021858334541,
0.08133743703365326,
-0.019506894052028656,
-0.3279882073402405,
0.08257228136062622,
0.06368495523929596,
-0.054057274013757706,
0.09627237170934677,
0.10755854099988937,
-0.02838999405503273,
0.09838669002056122,
0.03988583758473396,
-0.10511762648820877,
-0.029189476743340492,
-0.020242346450686455,
-0.17902950942516327,
0.025010837242007256,
0.020744500681757927,
0.05948773771524429,
-0.01612331159412861,
-0.0046880533918738365,
-0.04489997774362564,
0.012717441655695438,
0.010396263562142849,
-0.04872332513332367,
0.05366835370659828,
0.039251551032066345,
-0.053928155452013016,
-0.021396994590759277,
-0.08268841356039047,
0.016470758244395256,
0.029648223891854286,
-0.062149714678525925,
-0.17528322339057922,
-0.02878199890255928,
-0.003924159333109856,
0.0631326362490654,
0.047247204929590225,
-0.00832541473209858,
0.10706733167171478,
-0.10191403329372406,
0.0027938433922827244,
0.14935395121574402,
-0.22827398777008057,
-0.03761894255876541,
0.032407667487859726,
0.005475321784615517,
0.015030136331915855,
-0.01791091449558735,
-0.04759799316525459,
0.03562183305621147,
0.009041245095431805,
0.01481554750353098,
-0.09814917296171188,
0.08137328922748566,
0.03842021897435188,
-0.1224086731672287,
0.09223108738660812,
0.20727290213108063,
0.04428494721651077,
-0.059800583869218826,
-0.06862519681453705,
-0.04379720985889435,
0.014832301996648312,
-0.06954601407051086,
-0.06410260498523712,
0.05929761007428169,
0.008688310161232948,
0.08819204568862915,
0.05049678683280945,
-0.0729321837425232,
-0.005536672193557024,
-0.16584226489067078,
0.20440293848514557,
0.044707100838422775,
0.03415171802043915,
-0.11304187029600143,
-0.02984284609556198,
-0.11848921328783035,
-0.08364544808864594,
-0.027713574469089508,
-0.08513389527797699,
0.04015716165304184,
0.021628405898809433,
-0.02314719744026661,
-0.0029192673973739147,
0.10126755386590958,
0.10653417557477951,
-0.032424792647361755,
-0.017949413508176804,
0.02294878475368023,
0.021334208548069,
0.0932600349187851,
0.1558072417974472,
-0.09287799894809723,
-0.07218557596206665,
0.05163104832172394,
-0.040673136711120605,
-0.045050494372844696,
-0.038351815193891525,
-0.12239404767751694,
-0.04777321219444275,
0.031849998980760574,
-0.04605129361152649,
0.05795561522245407,
0.05843362584710121,
-0.04607909917831421,
-0.11183123290538788,
0.04213711991906166,
-0.14239411056041718,
0.04012095928192139,
-0.023719310760498047,
-0.05391494184732437,
0.2857973575592041,
-0.035222526639699936,
-0.056678321212530136,
-0.08432035148143768,
0.025907985866069794,
-0.08214374631643295,
-0.01314910501241684,
-0.0928088054060936,
-0.03903606906533241,
0.031017787754535675,
-0.06809849292039871,
0.06097413972020149,
-0.1664137989282608,
-0.08439219743013382,
-0.0559721477329731,
-0.003824950195848942,
-0.04518032446503639,
-0.012620039284229279,
-0.027449065819382668,
-0.01930842734873295,
-0.026442507281899452,
-0.027592496946454048,
-0.08840158581733704,
-0.04640383645892143,
0.03959101065993309,
-0.02651142328977585,
0.059044189751148224,
-0.060362257063388824,
0.08445167541503906,
-0.12377384305000305,
-0.014699164777994156,
-0.21489784121513367,
0.05726108327507973,
-0.019084375351667404,
0.09313995391130447,
-0.10908570885658264,
-0.04258573055267334,
0.04956904426217079,
0.09110728651285172,
-0.060877613723278046,
0.12365181744098663,
-0.06030728295445442,
-0.11479832977056503,
0.2630947530269623,
-0.10016292333602905,
-0.05358123406767845,
0.1116296723484993,
-0.0036008344031870365,
0.09273826330900192,
0.06688116490840912,
0.12416534870862961,
0.07235938310623169,
0.049477264285087585,
-0.00012313228216953576,
0.04037577658891678,
-0.057108256965875626,
-0.05517259240150452,
0.13943256437778473,
0.0011085831793025136,
-0.045400600880384445,
0.07509509474039078,
-0.10369867831468582,
-0.05312757566571236,
-0.013857459649443626,
-0.057434745132923126,
0.029672304168343544,
0.00791824609041214,
-0.02241220325231552,
-0.03610730171203613,
0.0761827826499939,
-0.05385631322860718,
-0.08337321132421494,
0.17416219413280487,
0.08725593239068985,
-0.023517275229096413,
0.038255564868450165,
-0.12228401750326157,
0.14748665690422058,
0.041007477790117264,
0.05432533472776413,
-0.09995914250612259,
0.05461769551038742,
0.0029616544488817453,
0.12091447412967682,
0.025550538673996925,
-0.06374084949493408,
0.04416697844862938,
-0.026476973667740822,
0.029795994982123375,
0.014576845802366734,
0.07835952937602997,
-0.0312529094517231,
0.030493173748254776,
-0.1482938826084137,
0.012657331302762032,
-0.025047017261385918,
0.0990704745054245,
-0.0025287435855716467,
0.030532637611031532,
-0.034661125391721725,
0.034583497792482376,
-0.016391316428780556,
0.0635325014591217,
-0.031461264938116074,
0.05836362764239311,
-0.02203908935189247,
0.05670429766178131,
0.037261445075273514,
0.01271742582321167,
-0.056559234857559204,
0.08300882577896118,
-0.052974019199609756,
0.11891026794910431,
0.17518307268619537,
-0.07893680781126022,
-0.04313676059246063,
-0.034996263682842255,
0.013756207190454006,
0.009910588152706623,
0.0076746949926018715,
-0.028840750455856323,
0.03487420827150345,
-0.02073800377547741,
0.08544119447469711,
-0.07639240473508835,
0.07792908698320389,
0.012188050895929337,
-0.14954087138175964,
-0.043139804154634476,
0.11871630698442459,
0.011438420042395592,
-0.08728604763746262,
0.18747322261333466,
0.12088946998119354,
-0.04547717422246933,
0.17832691967487335,
-0.05891392379999161,
-0.11126731336116791,
-0.042518749833106995,
0.027063261717557907,
0.009476983919739723,
-0.03378007933497429,
-0.2282584309577942,
-0.023251822218298912,
0.09084108471870422,
0.021836936473846436,
-0.005655749700963497,
-0.046035632491111755,
-0.04291507601737976,
0.026631640270352364,
0.03244451433420181,
-0.011649111285805702,
0.013168147765100002,
0.027089649811387062,
0.08108124881982803,
0.07151602953672409,
-0.08982595056295395,
0.03410619497299194,
0.021319236606359482,
-0.04908473417162895,
0.16878589987754822,
-0.14123505353927612,
-0.17485478520393372,
-0.18554377555847168,
-0.20361706614494324,
-0.04353512451052666,
0.013392715714871883,
0.06098698079586029,
-0.13173483312129974,
-0.04224006086587906,
0.012774511240422726,
0.11227895319461823,
-0.03256179392337799,
0.014431128278374672,
-0.021440206095576286,
0.07025088369846344,
-0.10928628593683243,
-0.03974132239818573,
-0.04610090330243111,
-0.05955534428358078,
-0.11753533035516739,
0.14289280772209167,
-0.0563012920320034,
0.030314311385154724,
0.13912270963191986,
-0.010998206213116646,
-0.024234483018517494,
-0.006621252279728651,
0.04229404404759407,
-0.08159863948822021,
-0.02644514851272106,
0.2570990324020386,
0.002948886714875698,
0.035100363194942474,
0.0443975031375885,
0.029888074845075607,
-0.0011346889659762383,
-0.04947753623127937,
-0.02110457234084606,
-0.059760622680187225,
-0.2292613834142685,
-0.060265615582466125,
-0.07184801995754242,
0.17212170362472534,
0.01798597164452076,
0.010171374306082726,
0.024540791288018227,
0.09172618389129639,
0.030709026381373405,
0.019882267341017723,
-0.049242325127124786,
0.08046677708625793,
0.08657299727201462,
-0.027829192578792572,
0.12171921133995056,
-0.023073721677064896,
-0.05388600006699562,
0.13552463054656982,
-0.02106659486889839,
0.1415613293647766,
0.04356986656785011,
0.10879761725664139,
0.07350286841392517,
0.1419011652469635,
0.0759744793176651,
0.02011634223163128,
0.004771122708916664,
0.011281579732894897,
-0.059385187923908234,
-0.06710128486156464,
-0.059418145567178726,
0.09107690304517746,
-0.07493679970502853,
-0.020548250526189804,
-0.02142609842121601,
0.013542849570512772,
0.05786483734846115,
0.16178414225578308,
0.028047317638993263,
-0.20867256820201874,
-0.05772542208433151,
0.04133785888552666,
-0.007665849756449461,
-0.04176211357116699,
0.03704638034105301,
-0.06650196760892868,
-0.1394186019897461,
0.05185820534825325,
0.06260500848293304,
0.10349450260400772,
-0.017423532903194427,
0.03333469480276108,
-0.0355953648686409,
0.07960259169340134,
0.04723599553108215,
0.03668804466724396,
-0.19751030206680298,
0.1052825003862381,
0.02978479117155075,
-0.017935561016201973,
-0.05224009230732918,
0.0444636307656765,
0.02201787382364273,
0.0422373004257679,
0.11467377841472626,
-0.006021959241479635,
-0.0077245114371180534,
-0.01837572082877159,
-0.08367764204740524,
-0.0011047213338315487,
0.04197346046566963,
-0.026184946298599243,
0.015818199142813683,
-0.030444912612438202,
0.031438689678907394,
-0.019761819392442703,
0.018560225144028664,
0.08554147928953171,
-0.10359036177396774,
0.014242627657949924,
-0.040962401777505875,
0.01166856661438942,
0.0154612110927701,
-0.042486898601055145,
-0.144716277718544,
0.1673283576965332,
0.05128555744886398,
-0.048114873468875885,
-0.08562127500772476,
0.0009022842859849334,
0.03095715306699276,
-0.13420403003692627,
0.015918128192424774,
-0.0464622899889946,
-0.009760833345353603,
0.04613444209098816,
-0.11392620950937271,
0.09857919067144394,
-0.032579075545072556,
0.02612197771668434,
-0.0029119085520505905,
0.06743937730789185,
0.01959114708006382,
0.032324861735105515,
-0.005507543683052063,
-0.03088519722223282,
-0.042180269956588745,
-0.060072414577007294,
0.0028772172518074512,
0.10397392511367798,
0.13079676032066345,
0.11803305894136429,
-0.18712446093559265,
-0.1289900690317154,
-0.03829461708664894,
-0.0428248830139637,
0.15415430068969727,
0.16060250997543335,
-0.035094160586595535,
0.05927054584026337,
0.18300430476665497,
-0.007505900226533413,
-0.23842017352581024,
-0.019367823377251625,
-0.010682129301130772,
0.06859030574560165,
-0.02880152314901352,
-0.16765479743480682,
0.19860075414180756,
0.15733690559864044,
0.0020634611137211323,
-0.016713490709662437,
-0.11677446216344833,
-0.07041113823652267,
0.2027757465839386,
0.009015005081892014,
0.23464572429656982,
-0.12400463968515396,
-0.023343145847320557,
0.001440604217350483,
-0.1744185835123062,
0.12213368713855743,
-0.10786300897598267,
0.0754268541932106,
-0.026369035243988037,
0.061484262347221375,
0.0027257660403847694,
0.012382824905216694,
0.14715175330638885,
0.03831654414534569,
-0.020573725923895836,
-0.06373543292284012,
-0.048014093190431595,
0.1208745464682579,
0.007576330099254847,
0.0544431172311306,
0.06866396963596344,
-0.06219843402504921,
-0.10694999992847443,
-0.056080110371112823,
-0.043516386300325394,
0.0020811769645661116,
0.017475752159953117,
-0.10575652867555618,
-0.01714216358959675,
0.09496801346540451,
-0.009448693133890629,
-0.019024096429347992,
0.12166567891836166,
-0.051475029438734055,
-0.0014245954807847738,
0.16802828013896942,
0.052987031638622284,
-0.14781628549098969,
0.009392054751515388,
-0.04855113476514816,
-0.04016878455877304,
0.12087984383106232,
-0.12484466284513474,
0.021039551123976707,
-0.001970839686691761,
-0.007464112248271704,
0.044080160558223724,
0.06111102178692818,
-0.03802362084388733,
-0.0024528547655791044,
0.09928345680236816,
-0.03690905123949051,
-0.14672765135765076,
-0.00466747535392642,
-0.10846806317567825,
-0.0415780283510685,
0.06360633671283722,
0.12184210866689682,
0.0004296518163755536,
-0.08538047969341278,
0.006975124124437571,
0.0417165532708168,
-0.10734283924102783,
0.0677109807729721,
-0.0024730053264647722,
-0.0012040910078212619,
-0.13192956149578094,
0.012602237053215504,
0.06862703710794449,
-0.00521463667973876,
0.02619958482682705,
0.056061506271362305,
-0.09383964538574219,
-0.07571785151958466,
0.01834532991051674,
0.06629591435194016,
-0.12595990300178528,
-0.060757994651794434,
-0.04866073653101921,
-0.12112677842378616,
0.05565623566508293,
0.00008866246935212985,
0.13154451549053192,
0.020715976133942604,
0.03880413621664047,
0.011921897530555725,
-0.03450359031558037,
-0.041760895401239395,
0.08538880199193954,
0.016363760456442833,
-0.059264976531267166,
-0.006950520444661379,
-0.04817194491624832,
0.14071355760097504,
-0.05873634293675423,
-0.06306025385856628,
-0.1940218210220337,
0.012360145337879658,
-0.059911638498306274,
-0.028977293521165848,
-0.11992935091257095,
-0.010065312497317791,
0.01966794580221176,
-0.005128894466906786,
-0.05627056211233139,
-0.022905318066477776,
-0.05487552285194397,
-0.026245778426527977,
0.003892672946676612,
0.10760925710201263,
-0.04404408112168312,
0.003687517251819372,
0.07089473307132721,
-0.015476526692509651,
0.055132072418928146,
0.1258862167596817,
-0.032392241060733795,
0.028070813044905663,
-0.03787372633814812,
-0.024016588926315308,
0.059947431087493896,
0.030379362404346466,
0.09893208742141724,
-0.05068125203251839,
0.06741265207529068,
0.03379587084054947,
-0.07920649647712708,
0.034034568816423416,
0.10759057104587555,
-0.11346126347780228,
0.09814491868019104,
-0.12214909493923187,
-0.09811125695705414,
-0.1046452596783638,
0.03261052817106247,
0.10105479508638382,
0.056567221879959106,
0.10980574041604996,
0.003906416241079569,
0.04718388244509697,
-0.08212865889072418,
-0.003745111171156168,
-0.04340268671512604,
-0.09340445697307587,
0.07818816602230072,
-0.05825963243842125,
0.014225076884031296,
0.02933444082736969,
0.1576053500175476,
0.07094737142324448,
-0.050889480859041214,
0.03668602928519249,
0.02723916806280613,
0.12267971783876419,
0.015021252445876598,
0.13266265392303467,
0.10922739654779434,
-0.025076167657971382,
-0.013022884726524353,
0.08935675024986267,
0.0510985292494297,
0.03949078917503357,
-0.03894372656941414,
0.1493196189403534,
0.02649061754345894,
0.09817144274711609,
0.03167470917105675,
0.07228773087263107,
-0.1119275689125061,
0.036310795694589615,
-0.01223458256572485,
-0.026109879836440086,
0.011957334354519844,
0.11746514588594437,
0.1867079734802246,
-0.07663382589817047,
0.10832688957452774,
0.03463441878557205,
-0.027250967919826508,
-0.18379005789756775,
-0.191643625497818,
-0.10046698898077011,
-0.18583698570728302,
-0.004563982132822275,
-0.07998586446046829,
-0.04812624305486679,
0.12988555431365967,
0.04055861011147499,
-0.02027146704494953,
-0.028480414301156998,
-0.10482736676931381,
-0.08521318435668945,
0.04923639073967934,
-0.003888858947902918,
0.0039223372004926205,
0.008134471252560616,
-0.0632033497095108,
-0.038240496069192886,
0.04160422459244728,
0.036827098578214645,
0.006319974083453417,
0.035530488938093185,
0.05707409605383873,
-0.14525611698627472,
-0.07976646721363068,
0.002546497853472829,
0.033354874700307846,
-0.025034470483660698,
0.11019834876060486,
0.024332234635949135,
-0.09909678250551224,
0.025148989632725716,
0.24601393938064575,
-0.02676289714872837,
-0.033197589218616486,
-0.1593797355890274,
0.026698965579271317,
0.06991121917963028,
0.051054395735263824,
-0.003901425050571561,
-0.08429006487131119,
-0.06290096789598465,
0.20548999309539795,
0.2643115222454071,
-0.026016145944595337,
-0.010291146114468575,
0.024681657552719116,
0.004954161588102579,
0.007541073951870203,
0.10324972122907639,
0.09002169966697693,
0.23648130893707275,
-0.04278101399540901,
-0.026320181787014008,
-0.06544182449579239,
-0.009812276810407639,
-0.20492137968540192,
-0.019191667437553406,
0.07994884252548218,
-0.06057000905275345,
-0.015678301453590393,
0.03479680418968201,
-0.16303645074367523,
-0.005734821315854788,
0.05013306811451912,
-0.09731213748455048,
-0.12973052263259888,
-0.06355322152376175,
0.023583656176924706,
0.0559711828827858,
0.1117580458521843,
0.009735568426549435,
-0.03825092688202858,
0.07119191437959671,
0.045646023005247116,
-0.098573237657547,
-0.04822676256299019,
0.11586357653141022,
0.11544303596019745,
0.06682351231575012,
-0.0003764811553992331,
-0.0036842876579612494,
0.09072406589984894,
0.10905339568853378,
-0.005711226724088192,
-0.005866624880582094,
-0.02840440906584263,
-0.04596468061208725,
0.0475832037627697,
-0.04055173322558403,
-0.058749303221702576,
-0.031061070039868355,
0.07892121374607086,
-0.11736192554235458,
-0.04205213487148285,
-0.07396441698074341,
-0.020587995648384094,
-0.08172325044870377,
0.06592679023742676,
-0.14805853366851807,
0.08023501932621002,
0.1761091649532318,
-0.02937590517103672,
-0.05774031579494476,
-0.09041298180818558,
0.0668400302529335,
0.05545453727245331,
-0.09988567978143692,
-0.05164887011051178,
-0.09117087721824646,
-0.08255510777235031,
0.045966677367687225,
0.010524556040763855,
-0.12217841297388077,
-0.04635614901781082,
-0.0017328878166154027,
0.01493404246866703,
-0.13956598937511444,
0.020012211054563522,
0.037981923669576645,
0.014181392267346382,
-0.04028951749205589,
-0.1126435250043869,
0.02763681858778,
0.05569823086261749,
-0.06252340972423553,
-0.08811865746974945
] |
null | null | transformers |
# roberta-small-japanese-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-small-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-small-japanese-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]} | token-classification | KoichiYasuoka/roberta-small-japanese-luw-upos | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"japanese",
"pos",
"dependency-parsing",
"ja",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ja"
] | TAGS
#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-small-japanese-luw-upos
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# roberta-small-japanese-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-small-japanese-luw-upos",
"## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
74,
16,
74,
5,
33
] | [
"passage: TAGS\n#transformers #pytorch #roberta #token-classification #japanese #pos #dependency-parsing #ja #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-small-japanese-luw-upos## Model Description\n\nThis is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from roberta-small-japanese-aozora. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.01592293754220009,
0.047484178096055984,
-0.004021595697849989,
0.04752727970480919,
0.17109203338623047,
-0.00633610412478447,
0.09386642277240753,
0.09626823663711548,
-0.011533974669873714,
0.04729534313082695,
0.04136564955115318,
0.09642636030912399,
0.0525994673371315,
0.0697559267282486,
-0.016545144841074944,
-0.3269883990287781,
0.09532202035188675,
0.0769919902086258,
-0.029038993641734123,
0.10697932541370392,
0.11296991258859634,
-0.033310651779174805,
0.08699758350849152,
0.05182376503944397,
-0.13020221889019012,
-0.02402578853070736,
-0.01691083051264286,
-0.1803492158651352,
0.030404124408960342,
0.01072678528726101,
0.06316566467285156,
-0.01379525475203991,
-0.01751733012497425,
-0.029566636309027672,
0.009747592732310295,
0.002121605211868882,
-0.045477304607629776,
0.04832499101758003,
0.03913288563489914,
-0.05376385897397995,
-0.038743410259485245,
-0.07541879266500473,
0.016051514074206352,
0.028991783037781715,
-0.0537894107401371,
-0.18396764993667603,
-0.022360172122716904,
0.019547421485185623,
0.06819482892751694,
0.06063282489776611,
-0.02004666067659855,
0.10691423714160919,
-0.12466076016426086,
0.0038405228406190872,
0.16463309526443481,
-0.2430783361196518,
-0.0364970862865448,
0.026490233838558197,
-0.012405040673911572,
0.005835554096847773,
-0.01866193301975727,
-0.048863448202610016,
0.031719714403152466,
0.0017066315049305558,
0.018901696428656578,
-0.08434781432151794,
0.08933541923761368,
0.02883741818368435,
-0.12025866657495499,
0.08646789193153381,
0.20274899899959564,
0.04228784516453743,
-0.040911175310611725,
-0.08891754597425461,
-0.03907644376158714,
0.01148696057498455,
-0.07513929903507233,
-0.058469008654356,
0.05162813514471054,
0.005554471630603075,
0.09294236451387405,
0.04956618323922157,
-0.07061667740345001,
-0.013567887246608734,
-0.1617012917995453,
0.21453849971294403,
0.054895102977752686,
0.029123742133378983,
-0.1067410409450531,
-0.021068541333079338,
-0.11159671097993851,
-0.08635631948709488,
-0.028770707547664642,
-0.08026868104934692,
0.05543344095349312,
0.039442095905542374,
-0.02896076813340187,
-0.014599617570638657,
0.09446845948696136,
0.09726094454526901,
-0.025271983817219734,
-0.0185787845402956,
0.027011100202798843,
0.027773670852184296,
0.07558806985616684,
0.15095655620098114,
-0.09132479876279831,
-0.07529780268669128,
0.05324040353298187,
-0.0409812293946743,
-0.043936099857091904,
-0.03454749658703804,
-0.12321923673152924,
-0.04682254046201706,
0.04113654047250748,
-0.04949183762073517,
0.05055387690663338,
0.0724916011095047,
-0.04165296256542206,
-0.11169521510601044,
0.051358431577682495,
-0.14966271817684174,
0.03496897965669632,
-0.02029869519174099,
-0.056498464196920395,
0.283921480178833,
-0.03588419035077095,
-0.05307779461145401,
-0.09996986389160156,
0.045363713055849075,
-0.07661965489387512,
-0.005795441102236509,
-0.09666876494884491,
-0.041838496923446655,
0.02484065666794777,
-0.08265824615955353,
0.055098794400691986,
-0.16322356462478638,
-0.08995428681373596,
-0.06049979478120804,
-0.015569590032100677,
-0.04193791747093201,
-0.023180484771728516,
-0.03267420828342438,
-0.009660815820097923,
-0.015057765878736973,
-0.03805164247751236,
-0.07336319983005524,
-0.04497441276907921,
0.045674506574869156,
-0.014781800098717213,
0.058606378734111786,
-0.049173109233379364,
0.09115196019411087,
-0.1286906898021698,
-0.01950398087501526,
-0.19904005527496338,
0.058895740658044815,
-0.019300177693367004,
0.0840843990445137,
-0.10005070269107819,
-0.0497884601354599,
0.0291846115142107,
0.09241440892219543,
-0.05673455819487572,
0.11779199540615082,
-0.029484637081623077,
-0.12251418828964233,
0.26998189091682434,
-0.11575054377317429,
-0.06663309037685394,
0.12774164974689484,
0.007961085997521877,
0.09229695796966553,
0.06381726264953613,
0.14476299285888672,
0.06903063505887985,
0.03331458196043968,
-0.0028296024538576603,
0.03574393317103386,
-0.05886348336935043,
-0.06895162165164948,
0.1379641890525818,
0.014855822548270226,
-0.03640276938676834,
0.08204645663499832,
-0.10709704458713531,
-0.042381651699543,
-0.007603739388287067,
-0.05340222641825676,
0.020502153784036636,
0.014805630780756474,
-0.02354448102414608,
-0.03533414006233215,
0.08046979457139969,
-0.05253006890416145,
-0.08529001474380493,
0.19394820928573608,
0.07836919277906418,
-0.03520611301064491,
0.04671212658286095,
-0.12510885298252106,
0.1485322117805481,
0.03860562667250633,
0.05101049318909645,
-0.10178323090076447,
0.06409145146608353,
-0.006767036393284798,
0.10772927105426788,
0.023906284943223,
-0.052093107253313065,
0.03751121833920479,
-0.03795895725488663,
0.019279619678854942,
0.006923956796526909,
0.07270299643278122,
-0.03322140499949455,
0.02974814362823963,
-0.12345784902572632,
0.013094880618155003,
-0.014114315621554852,
0.1081375703215599,
0.019357018172740936,
0.039207689464092255,
-0.02782578021287918,
0.03095615655183792,
-0.029479535296559334,
0.06411732733249664,
-0.03163117915391922,
0.06812222301959991,
-0.017054209485650063,
0.06634514778852463,
0.04539189487695694,
0.02260097861289978,
-0.056939199566841125,
0.10331962257623672,
-0.06030900031328201,
0.14788484573364258,
0.18472757935523987,
-0.08480487018823624,
-0.02694358490407467,
-0.032152630388736725,
0.008462238125503063,
-0.001266843406483531,
-0.007021837867796421,
-0.03773317486047745,
0.05768793821334839,
-0.012518569827079773,
0.09507064521312714,
-0.08460815250873566,
0.06751301139593124,
0.012916324660182,
-0.14162255823612213,
-0.04718191921710968,
0.11538387089967728,
0.010256975889205933,
-0.0762607753276825,
0.1934962123632431,
0.10454941540956497,
-0.06548763811588287,
0.1855694204568863,
-0.05637676641345024,
-0.10409319400787354,
-0.02709421142935753,
0.01790560409426689,
0.002133517060428858,
-0.04292632266879082,
-0.2563141882419586,
-0.03241334483027458,
0.10133155435323715,
0.025473086163401604,
0.010509045794606209,
-0.050055693835020065,
-0.044593311846256256,
0.024441616609692574,
0.02805292047560215,
0.00020496483193710446,
0.021787310019135475,
0.034436438232660294,
0.08115363866090775,
0.07373086363077164,
-0.06775394827127457,
0.025613093748688698,
0.019761521369218826,
-0.051354940980672836,
0.156393900513649,
-0.13334733247756958,
-0.217317596077919,
-0.17832008004188538,
-0.1857500821352005,
-0.04717082530260086,
0.00026873574825003743,
0.07169550657272339,
-0.1272951066493988,
-0.04155469685792923,
0.0062633478082716465,
0.10347223281860352,
-0.030988365411758423,
0.008564809337258339,
-0.019174791872501373,
0.0663335993885994,
-0.1033635288476944,
-0.05190921947360039,
-0.0487525649368763,
-0.061333272606134415,
-0.11270751804113388,
0.14325439929962158,
-0.058417536318302155,
0.032929882407188416,
0.14196552336215973,
-0.005046964157372713,
-0.01056723017245531,
-0.011417482048273087,
0.03652770817279816,
-0.08400798588991165,
-0.03097536973655224,
0.27617478370666504,
0.02073005586862564,
0.031375981867313385,
0.04589494690299034,
0.021736113354563713,
-0.0031008166261017323,
-0.04441431537270546,
-0.017390450462698936,
-0.06097723916172981,
-0.21585340797901154,
-0.06635177880525589,
-0.07318804413080215,
0.16519957780838013,
0.024267122149467468,
0.011722365394234657,
0.02509440667927265,
0.09171286970376968,
0.014013076201081276,
0.011392597109079361,
-0.04869673401117325,
0.0824609249830246,
0.11045022308826447,
-0.02516644448041916,
0.13332827389240265,
-0.018045123666524887,
-0.05283035710453987,
0.12438507378101349,
-0.017468536272644997,
0.11924593895673752,
0.02423153445124626,
0.1140531674027443,
0.07429992407560349,
0.16456398367881775,
0.0876670628786087,
0.034029651433229446,
-0.011217757128179073,
0.011812127195298672,
-0.05158707872033119,
-0.0689397007226944,
-0.06992141902446747,
0.08474961668252945,
-0.07464426010847092,
-0.014591186307370663,
-0.022805050015449524,
-0.0010358603904023767,
0.0657639130949974,
0.16866636276245117,
0.01407764945179224,
-0.19508077204227448,
-0.0703798308968544,
0.03420639410614967,
-0.013044103980064392,
-0.04137470945715904,
0.04082149639725685,
-0.06843899935483932,
-0.14472687244415283,
0.046233467757701874,
0.0627766102552414,
0.11044958233833313,
-0.0010128779103979468,
0.03443480283021927,
-0.04877195879817009,
0.06539259850978851,
0.04949663579463959,
0.049526605755090714,
-0.20882317423820496,
0.10495311766862869,
0.01622013747692108,
-0.011207779869437218,
-0.0524957999587059,
0.0358704999089241,
0.017089299857616425,
0.033863287419080734,
0.1072312742471695,
-0.012185904197394848,
0.0216489527374506,
-0.013219671323895454,
-0.09142737835645676,
-0.0029332994017750025,
0.026970092207193375,
-0.026267893612384796,
0.014861653558909893,
-0.030867062509059906,
0.03159496560692787,
-0.020124008879065514,
0.03242095559835434,
0.08876211196184158,
-0.10752230137586594,
0.01303476095199585,
-0.025712963193655014,
0.026821685954928398,
0.012683452107012272,
-0.057083792984485626,
-0.14912815392017365,
0.18127866089344025,
0.03336949646472931,
-0.06443275511264801,
-0.09256613254547119,
0.011157539673149586,
0.02175496332347393,
-0.13196317851543427,
0.012780075892806053,
-0.04563309624791145,
0.006275387480854988,
0.03522329777479172,
-0.10916527360677719,
0.09214990586042404,
-0.037431105971336365,
0.01884417235851288,
0.01392277143895626,
0.0805959403514862,
0.006065739784389734,
0.0380520336329937,
-0.005367823410779238,
-0.028693318367004395,
-0.050082977861166,
-0.06726944446563721,
-0.012572369538247585,
0.099245086312294,
0.1280003935098648,
0.0990503653883934,
-0.18395905196666718,
-0.12764492630958557,
-0.047596417367458344,
-0.04726802930235863,
0.17219220101833344,
0.1507345736026764,
-0.036353208124637604,
0.07171213626861572,
0.16982772946357727,
-0.0014248541556298733,
-0.23938100039958954,
-0.03154752403497696,
-0.0009174824808724225,
0.06827030330896378,
-0.060442883521318436,
-0.15125919878482819,
0.20859834551811218,
0.16918303072452545,
-0.0029075893107801676,
-0.04227328300476074,
-0.12822847068309784,
-0.08454135060310364,
0.18716691434383392,
0.014918592758476734,
0.246272474527359,
-0.11190426349639893,
-0.019965361803770065,
0.008976934477686882,
-0.18990406394004822,
0.11814603209495544,
-0.09180907905101776,
0.07632442563772202,
-0.0347859263420105,
0.056971367448568344,
0.005805939435958862,
0.003621881129220128,
0.13049784302711487,
0.03487236797809601,
-0.026804275810718536,
-0.060307931154966354,
-0.04663112759590149,
0.11049149185419083,
0.008840201422572136,
0.08258252590894699,
0.0594354122877121,
-0.06247029826045036,
-0.1168789267539978,
-0.06594942510128021,
-0.05480748042464256,
0.010443221777677536,
0.014201472513377666,
-0.10907071083784103,
-0.010123271495103836,
0.08681171387434006,
-0.00365888187661767,
-0.01473742350935936,
0.13444115221500397,
-0.06137080863118172,
-0.0002665088977664709,
0.16964714229106903,
0.04392315819859505,
-0.16526760160923004,
-0.003048528218641877,
-0.06023583188652992,
-0.04134518280625343,
0.12698626518249512,
-0.11808792501688004,
0.024058731272816658,
0.0014845760306343436,
-0.002904965076595545,
0.04798676818609238,
0.06402610242366791,
-0.03153109923005104,
-0.0006745916325598955,
0.09767588973045349,
-0.0448174849152565,
-0.13416872918605804,
-0.01332695409655571,
-0.10342439264059067,
-0.031233491376042366,
0.042748741805553436,
0.1202855184674263,
-0.015330655500292778,
-0.08962380886077881,
0.00671729352325201,
0.03465108200907707,
-0.10192809998989105,
0.07270295172929764,
-0.0038841250352561474,
0.012215869501233101,
-0.13672931492328644,
0.006693934556096792,
0.06480593234300613,
-0.04005470871925354,
0.025386305525898933,
0.06985470652580261,
-0.0982125923037529,
-0.07551484555006027,
0.013493056409060955,
0.055173974484205246,
-0.11343622952699661,
-0.06752100586891174,
-0.06042405217885971,
-0.13455811142921448,
0.056251995265483856,
0.002344327513128519,
0.13687191903591156,
0.02864622324705124,
0.04026117920875549,
0.012387520633637905,
-0.046847183257341385,
-0.030953597277402878,
0.08432801067829132,
0.006972986739128828,
-0.05566621199250221,
0.018293261528015137,
-0.03025617077946663,
0.1419268399477005,
-0.06395413726568222,
-0.0615401491522789,
-0.18507063388824463,
0.013741170056164265,
-0.05392711982131004,
-0.028644440695643425,
-0.117435522377491,
-0.012633074074983597,
0.0132681243121624,
-0.0081249438226223,
-0.05837088078260422,
-0.012550887651741505,
-0.05700165405869484,
-0.02116585522890091,
-0.0022286635357886553,
0.09615916013717651,
-0.0457891970872879,
0.013005717657506466,
0.07295907288789749,
-0.01812254823744297,
0.0524691678583622,
0.1376362293958664,
-0.03774627298116684,
0.030580727383494377,
-0.0311367679387331,
-0.02171904221177101,
0.06364549696445465,
0.03610642999410629,
0.0898919329047203,
-0.04767436906695366,
0.07283658534288406,
0.04425327479839325,
-0.07696296274662018,
0.03854946792125702,
0.1052684485912323,
-0.12150842696428299,
0.10617246478796005,
-0.1250845044851303,
-0.09385319799184799,
-0.10705222934484482,
0.02592240273952484,
0.09631907194852829,
0.06207292899489403,
0.1052756980061531,
-0.004151652101427317,
0.04875921830534935,
-0.08048532158136368,
0.0016749579226598144,
-0.03763996437191963,
-0.09405632317066193,
0.07870585471391678,
-0.05681408569216728,
0.01280429121106863,
0.031126853078603745,
0.16218608617782593,
0.07973935455083847,
-0.07141049206256866,
0.04257120192050934,
0.02998540736734867,
0.10365463048219681,
0.008767243474721909,
0.14155247807502747,
0.10908829420804977,
-0.015139388851821423,
0.004840525798499584,
0.07555406540632248,
0.04374198243021965,
0.05775878205895424,
-0.03378596156835556,
0.1577043980360031,
0.043786656111478806,
0.10181134939193726,
0.027026616036891937,
0.08154598623514175,
-0.12222469598054886,
0.036957595497369766,
-0.03155305236577988,
-0.017877498641610146,
0.0053824614733457565,
0.1223609521985054,
0.18941730260849,
-0.07877783477306366,
0.10684237629175186,
0.04354070872068405,
-0.021691765636205673,
-0.17521245777606964,
-0.18772034347057343,
-0.1040729433298111,
-0.18292082846164703,
0.0034390802029520273,
-0.09058957546949387,
-0.05650731921195984,
0.11905456334352493,
0.04776445031166077,
-0.023429006338119507,
-0.014526084065437317,
-0.09508571028709412,
-0.08438527584075928,
0.06377162784337997,
-0.011086827144026756,
0.002904399996623397,
-0.00006657282938249409,
-0.05167275667190552,
-0.03621445968747139,
0.04983563721179962,
0.04235178977251053,
0.010036530904471874,
0.02815873548388481,
0.044316474348306656,
-0.13789580762386322,
-0.08114181458950043,
-0.00002221524300694,
0.038266826421022415,
-0.0017368331318721175,
0.11215270310640335,
0.018426576629281044,
-0.09906406700611115,
0.01116301491856575,
0.25123855471611023,
-0.02039119228720665,
-0.05158098414540291,
-0.14692698419094086,
0.02018459513783455,
0.08279256522655487,
0.03952997550368309,
0.003344243858009577,
-0.07630620896816254,
-0.06738908588886261,
0.23872974514961243,
0.25328800082206726,
-0.017058391124010086,
-0.004296512342989445,
0.028744321316480637,
0.005793501157313585,
0.019559869542717934,
0.1007268875837326,
0.10390998423099518,
0.2501315474510193,
-0.04516303166747093,
-0.0245819091796875,
-0.07167894393205643,
-0.019302111119031906,
-0.19944509863853455,
-0.009426591917872429,
0.07108331471681595,
-0.07640927284955978,
-0.026263736188411713,
0.02341005764901638,
-0.15924455225467682,
0.005292582791298628,
0.04716777056455612,
-0.10492610186338425,
-0.130920872092247,
-0.05550159141421318,
0.028367985039949417,
0.06202082708477974,
0.10626984387636185,
0.020057212561368942,
-0.03306441009044647,
0.06823143362998962,
0.04338758811354637,
-0.09757297486066818,
-0.03639814630150795,
0.10731241106987,
0.113782599568367,
0.06164432317018509,
0.0034342112485319376,
-0.009218278340995312,
0.08361770957708359,
0.11132271587848663,
-0.004321669694036245,
0.010512205772101879,
-0.03505847975611687,
-0.05208129808306694,
0.05357838422060013,
-0.03113320656120777,
-0.04525361210107803,
-0.04051210358738899,
0.07070407271385193,
-0.1403769850730896,
-0.03595123067498207,
-0.07050871104001999,
-0.017946558073163033,
-0.08218304067850113,
0.07627347856760025,
-0.14331641793251038,
0.07621359080076218,
0.18319112062454224,
-0.03424050658941269,
-0.07163294404745102,
-0.09264593571424484,
0.06691218167543411,
0.032411687076091766,
-0.0896511822938919,
-0.04981250688433647,
-0.10680235922336578,
-0.07294830679893494,
0.036030132323503494,
-0.0038041945081204176,
-0.1309693306684494,
-0.0459546223282814,
-0.012097078375518322,
0.005025544669479132,
-0.14693515002727509,
0.015595714561641216,
0.037077583372592926,
0.013255732133984566,
-0.02965845912694931,
-0.13562515377998352,
0.038788579404354095,
0.057010751217603683,
-0.062311816960573196,
-0.09568814188241959
] |
null | null | transformers |
# xlm-roberta-base-english-upos
## Model Description
This is an XLM-RoBERTa model pre-trained with [UD_English-EWT](https://github.com/UniversalDependencies/UD_English-EWT) for POS-tagging and dependency-parsing, derived from [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/xlm-roberta-base-english-upos")
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| {"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["english", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"} | token-classification | KoichiYasuoka/xlm-roberta-base-english-upos | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"english",
"pos",
"dependency-parsing",
"en",
"dataset:universal_dependencies",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# xlm-roberta-base-english-upos
## Model Description
This is an XLM-RoBERTa model pre-trained with UD_English-EWT for POS-tagging and dependency-parsing, derived from xlm-roberta-base. Every word is tagged by UPOS (Universal Part-Of-Speech).
## How to Use
or
## See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
| [
"# xlm-roberta-base-english-upos",
"## Model Description\n\nThis is an XLM-RoBERTa model pre-trained with UD_English-EWT for POS-tagging and dependency-parsing, derived from xlm-roberta-base. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# xlm-roberta-base-english-upos",
"## Model Description\n\nThis is an XLM-RoBERTa model pre-trained with UD_English-EWT for POS-tagging and dependency-parsing, derived from xlm-roberta-base. Every word is tagged by UPOS (Universal Part-Of-Speech).",
"## How to Use\n\n\n\nor",
"## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
76,
14,
65,
5,
33
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #english #pos #dependency-parsing #en #dataset-universal_dependencies #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# xlm-roberta-base-english-upos## Model Description\n\nThis is an XLM-RoBERTa model pre-trained with UD_English-EWT for POS-tagging and dependency-parsing, derived from xlm-roberta-base. Every word is tagged by UPOS (Universal Part-Of-Speech).## How to Use\n\n\n\nor## See Also\n\nesupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models"
] | [
-0.06698888540267944,
0.08023364096879959,
-0.0063487752340734005,
0.024098217487335205,
0.13869495689868927,
-0.007475646678358316,
0.023669343441724777,
0.08857876807451248,
0.0722491592168808,
-0.008363424800336361,
0.06715034693479538,
0.20717571675777435,
0.015158538706600666,
0.12336784601211548,
-0.032014213502407074,
-0.2100830078125,
0.05390913411974907,
0.020345458760857582,
-0.06363842636346817,
0.08569181710481644,
0.09744321554899216,
-0.026312924921512604,
0.08223414421081543,
0.021261978894472122,
-0.11762554198503494,
0.022398971021175385,
-0.0174826942384243,
-0.13522224128246307,
0.042491789907217026,
0.05829120799899101,
0.0986834317445755,
0.008768724277615547,
0.0007372414111159742,
-0.14662308990955353,
0.021846376359462738,
0.01524865161627531,
-0.08574139326810837,
0.023689892143011093,
0.04516994580626488,
-0.11923417448997498,
-0.027063855901360512,
-0.0655122771859169,
0.04242425784468651,
0.03182527422904968,
-0.06972120702266693,
-0.16399694979190826,
0.006343867164105177,
0.03159680590033531,
0.03475019708275795,
0.03759671747684479,
-0.025685414671897888,
0.12860548496246338,
-0.04631666839122772,
0.06815095245838165,
0.1355413794517517,
-0.2401067614555359,
-0.009439696557819843,
0.0316055528819561,
0.019541513174772263,
0.014790408313274384,
-0.021490026265382767,
-0.02488536573946476,
0.02562880516052246,
0.032351285219192505,
0.015866363421082497,
-0.0826534628868103,
0.0926935076713562,
0.03733326494693756,
-0.1466759294271469,
0.05554915592074394,
0.2209615558385849,
0.04080631211400032,
-0.0696471706032753,
-0.05639655888080597,
-0.05230195075273514,
0.039222151041030884,
-0.03388134017586708,
-0.07391151785850525,
0.04927586391568184,
0.029037654399871826,
0.08764336258172989,
0.019235681742429733,
-0.05865507200360298,
0.010900106281042099,
-0.16709116101264954,
0.2929471731185913,
0.04304314777255058,
0.03393353149294853,
-0.03977563977241516,
0.02091933786869049,
-0.0873342901468277,
-0.050601787865161896,
-0.023641442880034447,
-0.08944583684206009,
-0.016985345631837845,
-0.004479925148189068,
-0.05334153771400452,
-0.003523609833791852,
0.07979511469602585,
0.1190233826637268,
-0.03488460183143616,
-0.013647878542542458,
0.020650142803788185,
0.05312955006957054,
0.12460409849882126,
0.15208563208580017,
-0.05653955414891243,
-0.07796911150217056,
0.04913762956857681,
-0.04558996856212616,
-0.03825383633375168,
-0.04121328890323639,
-0.10552645474672318,
0.024730101227760315,
0.0059719872660934925,
-0.04364641755819321,
0.060253262519836426,
0.06000595539808273,
-0.08775095641613007,
-0.10218779742717743,
0.005709193181246519,
-0.1487724334001541,
0.05285685509443283,
-0.023147279396653175,
-0.014781263656914234,
0.22128145396709442,
0.04894786328077316,
-0.020664609968662262,
-0.10838613659143448,
0.000989860505796969,
-0.08279547840356827,
0.0018840290140360594,
-0.09060413390398026,
-0.06660731136798859,
0.025204958394169807,
-0.05954933539032936,
0.04678866267204285,
-0.16493849456310272,
-0.1361958533525467,
-0.05906619131565094,
0.018397077918052673,
-0.0019836241845041513,
-0.043898407369852066,
-0.07693400979042053,
0.006658686324954033,
-0.024062342941761017,
-0.030138080939650536,
-0.12851303815841675,
-0.03983337804675102,
0.03438424691557884,
-0.04161723703145981,
0.046159613877534866,
-0.11946041136980057,
0.09342295676469803,
-0.09773873537778854,
-0.031142065301537514,
-0.1768132448196411,
0.13377442955970764,
-0.07673010975122452,
0.09922940284013748,
-0.057009920477867126,
0.007912502624094486,
-0.0006453472306020558,
0.11284537613391876,
-0.049926381558179855,
0.10636387765407562,
-0.10063140839338303,
-0.13372276723384857,
0.24137109518051147,
-0.0999545082449913,
-0.04768865928053856,
0.10423564910888672,
-0.0016411611577495933,
0.06999871879816055,
0.08762040734291077,
0.141591876745224,
0.007796052843332291,
0.00001968011201824993,
-0.017572805285453796,
0.08511584997177124,
-0.07052553445100784,
-0.037907298654317856,
0.11207569390535355,
-0.026346102356910706,
-0.042388543486595154,
0.05681324005126953,
-0.06122560426592827,
-0.01799359731376171,
-0.005314309615641832,
-0.049297209829092026,
0.012358957901597023,
0.016441799700260162,
-0.01645227149128914,
-0.050728850066661835,
0.016113368794322014,
-0.050027936697006226,
-0.12352782487869263,
0.21239162981510162,
0.06956234574317932,
-0.02462180145084858,
0.04770095646381378,
-0.1248188242316246,
0.11750782281160355,
0.026893582195043564,
0.06318114697933197,
-0.15149278938770294,
0.0312560498714447,
-0.028720464557409286,
0.14193379878997803,
0.07505246251821518,
-0.03272999823093414,
0.0310105849057436,
-0.03693373128771782,
0.027543973177671432,
-0.008238372392952442,
0.04767022281885147,
-0.019383318722248077,
-0.01863926462829113,
-0.15585148334503174,
0.016501083970069885,
-0.05586181581020355,
0.07659056782722473,
-0.04543808847665787,
0.0663641095161438,
-0.022695345804095268,
0.03264542296528816,
0.00944556389003992,
0.01845678500831127,
-0.05839768424630165,
0.07359910756349564,
-0.02678348496556282,
0.044844020158052444,
0.058322492986917496,
0.01807447150349617,
-0.09200719743967056,
0.0568612776696682,
-0.03438260406255722,
0.12721936404705048,
0.19138076901435852,
-0.18640905618667603,
-0.014568534679710865,
-0.015113172121345997,
-0.008928289636969566,
0.02575390599668026,
-0.002231829334050417,
-0.08962482213973999,
0.12356168776750565,
-0.0014708921080455184,
0.07187820225954056,
-0.059095386415719986,
0.0080488882958889,
-0.03251698613166809,
-0.09407977759838104,
-0.06283040344715118,
0.12057317793369293,
-0.0012497359421104193,
-0.022603392601013184,
0.1477804332971573,
0.21697208285331726,
-0.03217678144574165,
0.13322529196739197,
-0.04113592952489853,
-0.05551557242870331,
-0.015918536111712456,
0.013403997756540775,
-0.036664966493844986,
-0.060199130326509476,
-0.23526182770729065,
-0.01256218459457159,
0.07773104310035706,
0.02801000513136387,
0.02784448117017746,
-0.06439201533794403,
-0.025128919631242752,
0.04925702512264252,
0.023351101204752922,
-0.09779181331396103,
-0.022785164415836334,
0.0029364703223109245,
0.059712573885917664,
0.017405392602086067,
-0.09767204523086548,
0.05738280341029167,
0.0014410674339160323,
-0.07949920743703842,
0.15976904332637787,
-0.17024564743041992,
-0.17717374861240387,
-0.17132656276226044,
-0.1677173674106598,
-0.061259929090738297,
0.027968693524599075,
0.08800056576728821,
-0.0810697004199028,
-0.044344186782836914,
0.011435968801379204,
0.10946937650442123,
-0.024430029094219208,
-0.0018504103645682335,
0.01685926504433155,
0.03255672752857208,
-0.07654988765716553,
-0.07486069202423096,
-0.06867484748363495,
-0.0641186535358429,
-0.1093611940741539,
0.12560521066188812,
-0.04792623221874237,
0.03326581418514252,
0.15920203924179077,
-0.03389615938067436,
-0.015035705640912056,
-0.027284488081932068,
0.11895764619112015,
-0.040427207946777344,
-0.04570290073752403,
0.18376727402210236,
-0.039939478039741516,
0.03642040863633156,
0.03009643591940403,
0.03268185630440712,
-0.028456978499889374,
-0.05373787507414818,
0.010477610863745213,
-0.03998088091611862,
-0.27853211760520935,
-0.07978426665067673,
-0.04858250916004181,
0.08212605118751526,
-0.01139064785093069,
0.01852491870522499,
0.024284742772579193,
0.046542610973119736,
0.02186541073024273,
0.0033725437242537737,
-0.03263062611222267,
0.07550513744354248,
0.12825649976730347,
-0.06351024657487869,
0.15955406427383423,
-0.013268627226352692,
-0.048624809831380844,
0.09203633666038513,
0.02680075913667679,
0.12907034158706665,
0.10223326086997986,
0.06199103966355324,
0.09151890128850937,
0.05501389876008034,
0.024580741301178932,
0.05867535248398781,
-0.0022507323883473873,
0.010191688314080238,
-0.05274907127022743,
-0.05348630249500275,
-0.07694948464632034,
0.09173674881458282,
-0.02420460619032383,
-0.028263842687010765,
-0.013695881702005863,
-0.023936016485095024,
0.10359521210193634,
0.13411831855773926,
0.004996659699827433,
-0.16291926801204681,
0.010543696582317352,
0.04837605357170105,
-0.0376109853386879,
-0.03260493651032448,
0.03651582822203636,
-0.08110465109348297,
-0.09599005430936813,
0.0803559273481369,
0.07766273617744446,
0.11289821565151215,
-0.017748037353157997,
0.023407945409417152,
-0.055017128586769104,
0.051660481840372086,
0.027292197570204735,
0.025793004781007767,
-0.17578303813934326,
0.11961612105369568,
0.02780189737677574,
-0.006413610652089119,
-0.021654553711414337,
0.06374958157539368,
0.025904018431901932,
0.10799796134233475,
0.1229887306690216,
0.005622432101517916,
-0.062213920056819916,
-0.054210785776376724,
-0.03984731063246727,
0.013398665934801102,
0.019093303009867668,
-0.05086691305041313,
0.020012643188238144,
-0.0018604311626404524,
0.05177833512425423,
0.004182193428277969,
0.08767188340425491,
-0.004825853276997805,
-0.12684306502342224,
-0.002427759813144803,
-0.022290144115686417,
0.03576287627220154,
0.00699496828019619,
-0.07149142026901245,
-0.2185225486755371,
0.2031547576189041,
-0.09206254035234451,
-0.08217719197273254,
-0.10538449138402939,
0.005469181574881077,
-0.05928661301732063,
-0.09613794088363647,
-0.02098827436566353,
-0.001444765948690474,
0.0001314810651820153,
-0.0156230004504323,
-0.12156608700752258,
0.13180400431156158,
-0.0577593557536602,
0.06628528237342834,
-0.00961453840136528,
0.0947902649641037,
0.04577752202749252,
0.04535450413823128,
-0.008891305886209011,
-0.04855765402317047,
-0.028842346742749214,
-0.05519700422883034,
0.05913904309272766,
0.12416944652795792,
0.08292870223522186,
0.1584462821483612,
-0.1928980052471161,
-0.14810754358768463,
-0.05077805370092392,
-0.007499626837670803,
0.1996658742427826,
0.17665427923202515,
-0.02174665778875351,
0.07201869785785675,
0.17411811649799347,
-0.09031510353088379,
-0.27641022205352783,
-0.020825175568461418,
0.005151350516825914,
0.03867553174495697,
0.01289396919310093,
-0.17829425632953644,
0.2016310840845108,
0.1682305485010147,
0.019603632390499115,
0.0004910589777864516,
-0.06830182671546936,
-0.09049896150827408,
0.22869186103343964,
0.010394029319286346,
0.20543049275875092,
-0.10272274911403656,
-0.02530348114669323,
-0.038428276777267456,
-0.13997873663902283,
0.14260521531105042,
-0.09751575440168381,
0.048558492213487625,
0.02000708319246769,
0.05744645744562149,
-0.001379044959321618,
0.040224991738796234,
0.11021516472101212,
0.08970574289560318,
0.014416961930692196,
-0.01926984265446663,
-0.014512921683490276,
0.07043018192052841,
0.019933054223656654,
0.02822117879986763,
0.021953517571091652,
-0.08023788779973984,
-0.14863473176956177,
-0.056791964918375015,
-0.01798384264111519,
0.04794858396053314,
0.013846511952579021,
-0.09249410778284073,
0.04387098178267479,
0.030189812183380127,
0.01343326922506094,
-0.009122769348323345,
0.14640170335769653,
-0.10491855442523956,
0.04008806124329567,
0.21149830520153046,
0.08459128439426422,
-0.2072259783744812,
-0.014944273047149181,
-0.04596787318587303,
-0.04985109344124794,
0.09954342991113663,
-0.10963406413793564,
0.03721218928694725,
0.03524355590343475,
-0.004058638121932745,
0.08618266135454178,
0.09133242815732956,
-0.028580663725733757,
-0.027294501662254333,
0.09139101952314377,
-0.044297248125076294,
-0.10796508938074112,
-0.020273767411708832,
-0.08505692332983017,
-0.0529080405831337,
0.07820722460746765,
0.14234715700149536,
0.029364893212914467,
-0.07674039155244827,
-0.010754963383078575,
0.027201160788536072,
-0.1060974970459938,
0.10989894717931747,
0.032735809683799744,
0.002596355741843581,
-0.13739798963069916,
0.026270508766174316,
0.03269889950752258,
-0.04225801303982735,
0.03371070697903633,
-0.012697586789727211,
-0.05866247043013573,
-0.08504772931337357,
-0.009227786213159561,
0.12318433076143265,
-0.125727578997612,
-0.07413244992494583,
-0.011473465710878372,
-0.12677283585071564,
0.08444298803806305,
0.04491289705038071,
0.1407114714384079,
0.012334248051047325,
0.03500371053814888,
0.013203548267483711,
0.021074287593364716,
0.007674853783100843,
0.042228132486343384,
0.01571955345571041,
-0.07204175740480423,
-0.002633393509313464,
-0.05977828428149223,
0.12144944816827774,
-0.0638008788228035,
-0.062359489500522614,
-0.16737325489521027,
0.0187209565192461,
-0.043601494282484055,
-0.04263819754123688,
-0.07878654450178146,
0.015171533450484276,
0.06739954650402069,
-0.02021748572587967,
-0.051491692662239075,
-0.007878923788666725,
-0.07494291663169861,
-0.02703358605504036,
0.04696497321128845,
0.08144766837358475,
-0.06053980812430382,
-0.023358585312962532,
0.04001200199127197,
-0.019834646955132484,
0.0568416453897953,
0.12137416750192642,
-0.04051082953810692,
0.04806261882185936,
-0.10337422043085098,
-0.009983384050428867,
0.08042734116315842,
0.05016215145587921,
0.07217803597450256,
-0.037362825125455856,
0.06332149356603622,
0.03454744070768356,
-0.09996689856052399,
0.032256852835416794,
0.11274756491184235,
-0.10804550349712372,
0.1100294291973114,
-0.07525793462991714,
-0.12978973984718323,
-0.07129988819360733,
0.008573559112846851,
0.10515985637903214,
0.07689297199249268,
0.16863098740577698,
-0.010301248170435429,
0.01871763914823532,
-0.09052269160747528,
0.029101449996232986,
0.009720072150230408,
-0.05740964040160179,
0.07272919267416,
-0.07527586817741394,
0.004146936349570751,
0.02264065109193325,
0.2082856297492981,
0.05395060032606125,
-0.015999604016542435,
0.0449819378554821,
0.015840353444218636,
0.10012896358966827,
-0.0061091287061572075,
0.08481161296367645,
0.08074434101581573,
-0.0021385441068559885,
-0.035465337336063385,
0.07101629674434662,
0.08831341564655304,
-0.03372547775506973,
-0.019972460344433784,
0.11242513358592987,
0.020349500700831413,
0.109731025993824,
0.06820440292358398,
0.05560040846467018,
-0.12548871338367462,
-0.01861528865993023,
0.030712665989995003,
-0.019768882542848587,
-0.01476054172962904,
0.11448439955711365,
0.12951195240020752,
-0.06470333784818649,
0.10441292822360992,
0.052653953433036804,
-0.024688705801963806,
-0.18609488010406494,
-0.17908138036727905,
-0.07142733037471771,
-0.19984430074691772,
-0.01651684194803238,
-0.08071023225784302,
-0.0720595195889473,
0.07480338215827942,
0.019813697785139084,
-0.003415815532207489,
-0.03994382545351982,
-0.19032306969165802,
-0.08637028932571411,
0.010374483652412891,
-0.040938664227724075,
-0.0016000232426449656,
-0.05755407735705376,
-0.04699012264609337,
0.000969511573202908,
0.06977987289428711,
0.03539405018091202,
0.010945536196231842,
0.015456034801900387,
0.047200899571180344,
-0.1504337340593338,
-0.0544295608997345,
-0.023283755406737328,
0.03777892887592316,
-0.06687362492084503,
0.12074887007474899,
0.02836363948881626,
-0.09878849238157272,
0.037087876349687576,
0.1586529016494751,
-0.03232859820127487,
-0.04281536117196083,
-0.1533859372138977,
0.018258990719914436,
0.11377791315317154,
0.12775370478630066,
-0.0030129896476864815,
-0.09403764456510544,
-0.05579160526394844,
0.1530015915632248,
0.24879735708236694,
-0.01233755424618721,
-0.007664605509489775,
0.04434381052851677,
0.024884289130568504,
0.023546630516648293,
0.04798668250441551,
0.10555721074342728,
0.2066599726676941,
-0.03702417016029358,
-0.034316536039114,
-0.055636968463659286,
-0.00867223460227251,
-0.16033239662647247,
-0.061656367033720016,
0.06888021528720856,
-0.06966346502304077,
-0.007984690368175507,
0.042957209050655365,
-0.13159401714801788,
-0.02066994644701481,
0.04273217171430588,
-0.07223629206418991,
-0.0866144597530365,
-0.06621038168668747,
0.03514682129025459,
0.046142030507326126,
0.09088612347841263,
0.016206417232751846,
-0.09975674003362656,
0.12015104293823242,
0.024347670376300812,
-0.12689819931983948,
-0.028164120391011238,
0.09826210141181946,
0.048243965953588486,
0.04809146746993065,
-0.010084258392453194,
0.07246668636798859,
0.0691986158490181,
0.12878671288490295,
0.03357153758406639,
0.021767131984233856,
-0.05977693572640419,
-0.020455962046980858,
0.05180925503373146,
-0.03705163672566414,
-0.029743444174528122,
0.01772744581103325,
0.06997814029455185,
-0.07433421909809113,
-0.03439638763666153,
-0.09765539318323135,
-0.07124563306570053,
-0.050877396017313004,
0.08150346577167511,
-0.1573709398508072,
0.05105440691113472,
0.1254003494977951,
0.007836125791072845,
-0.021257467567920685,
-0.085886649787426,
0.020608186721801758,
0.05077458545565605,
-0.052665747702121735,
-0.03735201060771942,
-0.1092992052435875,
-0.02015971951186657,
0.03544619306921959,
-0.0068228463642299175,
-0.09986364096403122,
-0.04990345612168312,
-0.007437183987349272,
0.02189396135509014,
-0.11938004195690155,
0.03049377165734768,
0.08400332182645798,
0.017938055098056793,
-0.04228890314698219,
-0.12631767988204956,
0.04300374537706375,
0.07371332496404648,
-0.04665026068687439,
-0.051973070949316025
] |
null | null | null | #Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | Konggate/DialoGPT-small-harrypotter | [
"conversational",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#conversational #region-us
| #Harry Potter DialoGPT Model | [] | [
"TAGS\n#conversational #region-us \n"
] | [
10
] | [
"passage: TAGS\n#conversational #region-us \n"
] | [
0.04639962688088417,
0.010033470578491688,
-0.010517087765038013,
-0.09196841716766357,
0.07825888693332672,
0.025966141372919083,
0.0816626027226448,
0.03981694206595421,
0.1679982990026474,
-0.043665021657943726,
0.11948301643133163,
0.05959230661392212,
-0.03424782678484917,
-0.034178510308265686,
-0.03257700800895691,
-0.1518038958311081,
0.018241867423057556,
-0.03490595519542694,
0.09715951234102249,
0.046818334609270096,
-0.022061990574002266,
-0.08366407454013824,
0.008475017733871937,
-0.06431017816066742,
-0.04472750052809715,
0.10980460792779922,
0.019003495573997498,
-0.011012797243893147,
0.15410423278808594,
-0.0074986726976931095,
0.14888158440589905,
0.009007624350488186,
-0.1188141256570816,
-0.28230994939804077,
0.02435300685465336,
-0.021203843876719475,
-0.07150904089212418,
0.0029600884299725294,
0.03619120270013809,
-0.10715486854314804,
0.004403713159263134,
0.13426031172275543,
0.04114455729722977,
0.10832296311855316,
-0.2866811156272888,
-0.07511094957590103,
-0.01938454620540142,
-0.07511914521455765,
0.0601775124669075,
0.018052373081445694,
-0.038240283727645874,
0.1376611739397049,
-0.2073964774608612,
0.014560118317604065,
-0.006958445999771357,
-0.24119918048381805,
0.02869522012770176,
0.1752537488937378,
0.009645363315939903,
0.1909479796886444,
-0.06857001781463623,
0.11254259198904037,
0.02171272039413452,
-0.030739247798919678,
-0.2002624124288559,
-0.06604453176259995,
-0.07298440486192703,
0.1499089151620865,
-0.045723117887973785,
-0.0578390471637249,
0.34621670842170715,
0.040796760469675064,
0.04295415058732033,
0.07716298848390579,
-0.04492316022515297,
-0.055111076682806015,
0.04104352369904518,
-0.046185605227947235,
-0.031033141538500786,
0.15494981408119202,
0.09487586468458176,
-0.09688284248113632,
-0.14496852457523346,
0.03130095824599266,
-0.21760596334934235,
0.1465475857257843,
-0.02235398069024086,
0.11142805963754654,
-0.2653426229953766,
-0.05278157815337181,
-0.14670948684215546,
-0.002750956919044256,
0.02518310956656933,
-0.09457869827747345,
-0.04452421888709068,
-0.026268228888511658,
0.0005124040762893856,
0.050814010202884674,
0.048315394669771194,
0.07558848708868027,
-0.06942778080701828,
0.05394355580210686,
-0.06892558932304382,
0.12330366671085358,
0.11638157814741135,
0.05569762736558914,
0.13839077949523926,
0.022933602333068848,
-0.11806239187717438,
-0.17838133871555328,
-0.019715335220098495,
-0.0601036474108696,
-0.10126364231109619,
0.08322658389806747,
-0.1737145632505417,
0.1338171660900116,
0.0012900691945105791,
-0.049971867352724075,
-0.12574702501296997,
0.08353690057992935,
-0.10762350261211395,
0.015366755425930023,
-0.07289839535951614,
0.014196229167282581,
0.014544172212481499,
0.09311159700155258,
-0.14271733164787292,
0.045371901243925095,
0.08196624368429184,
0.008659054525196552,
-0.10070403665304184,
-0.020334109663963318,
-0.061532121151685715,
0.07091420143842697,
0.0486479289829731,
-0.06415147334337234,
0.032452572137117386,
-0.09036554396152496,
-0.024567680433392525,
-0.027267752215266228,
-0.025782402604818344,
-0.021218160167336464,
0.07835555076599121,
-0.055066075176000595,
0.09253078699111938,
-0.04640072211623192,
-0.041711848229169846,
-0.11547397822141647,
-0.08965431153774261,
0.08147980272769928,
0.027172693982720375,
0.06959657371044159,
-0.12756861746311188,
0.02954922616481781,
-0.07777036726474762,
0.09570813924074173,
-0.006574113853275776,
-0.0012808392057195306,
0.004620495717972517,
0.1427043229341507,
0.08222948759794235,
0.09464042633771896,
-0.22559843957424164,
0.03648834675550461,
-0.12657727301120758,
0.24771882593631744,
-0.12381736189126968,
-0.044696640223264694,
0.2730959355831146,
-0.02501245029270649,
-0.1168116107583046,
0.06332620233297348,
0.0016639905516058207,
0.08099539577960968,
0.11538345366716385,
0.41944384574890137,
-0.22503520548343658,
-0.10161785036325455,
0.09927807748317719,
0.24778489768505096,
-0.14139696955680847,
-0.0006701856036670506,
0.06758461147546768,
-0.15533412992954254,
-0.136672705411911,
-0.006923824083060026,
0.1993810385465622,
0.04563012346625328,
-0.09049045294523239,
-0.0581219419836998,
0.07278088480234146,
0.00251517235301435,
0.13227328658103943,
0.04847939684987068,
0.010761215351521969,
-0.09316329658031464,
0.046553950756788254,
-0.037219900637865067,
0.036988820880651474,
0.1257375329732895,
-0.011618656106293201,
-0.05261800438165665,
0.03806666284799576,
0.013964165933430195,
0.033028051257133484,
-0.1064353734254837,
-0.12926249206066132,
-0.05708497390151024,
0.1741386204957962,
0.1096852496266365,
0.20943976938724518,
0.08182037621736526,
-0.12570415437221527,
0.0029703727923333645,
0.045532144606113434,
0.05547904968261719,
0.04228522256016731,
0.019039174541831017,
-0.04716009274125099,
0.13804899156093597,
-0.0858609527349472,
0.010859129019081593,
-0.09182798862457275,
-0.042282480746507645,
0.13651718199253082,
0.041210491210222244,
0.07498065382242203,
-0.010899536311626434,
0.015351326204836369,
0.028546204790472984,
0.08829564601182938,
-0.004360926803201437,
0.10361789911985397,
-0.01836715266108513,
-0.07148222625255585,
0.15339210629463196,
-0.13760370016098022,
0.13399995863437653,
0.11577713489532471,
-0.25445905327796936,
0.024489950388669968,
-0.16331978142261505,
-0.048566605895757675,
-0.0037442597094923258,
0.09262824058532715,
-0.07037632167339325,
0.1059286817908287,
0.009663842618465424,
-0.008387367241084576,
-0.007202888373285532,
0.011079453863203526,
-0.11152531206607819,
-0.05292370170354843,
-0.10301605612039566,
0.10126874595880508,
0.05541692301630974,
-0.14166110754013062,
0.16527962684631348,
0.3414488136768341,
0.17333562672138214,
0.27744242548942566,
-0.057956866919994354,
-0.03626478835940361,
0.010029622353613377,
-0.00044385663932189345,
-0.09770774841308594,
0.09110020101070404,
-0.31978389620780945,
-0.03541385754942894,
0.02267313003540039,
0.007412234786897898,
0.1255423128604889,
-0.13101543486118317,
-0.09881267696619034,
-0.010800042189657688,
0.025675276294350624,
-0.03900112956762314,
0.03929384797811508,
-0.014210461638867855,
0.08690384775400162,
0.0927920937538147,
-0.036249399185180664,
0.14510478079319,
-0.011207361705601215,
-0.05273498222231865,
0.03845807909965515,
-0.19859567284584045,
-0.2588069438934326,
-0.03773140534758568,
-0.13656504452228546,
-0.0028873272240161896,
0.04133884236216545,
0.03800595924258232,
-0.1847713142633438,
-0.0074713281355798244,
0.11246740072965622,
0.11249840259552002,
-0.2133566290140152,
-0.06725399941205978,
-0.004905305802822113,
0.07729097455739975,
-0.13444942235946655,
-0.017578812316060066,
-0.031222449615597725,
-0.08281540870666504,
-0.04920298978686333,
0.03066551499068737,
-0.13418962061405182,
0.06677845120429993,
0.2178623527288437,
0.12527887523174286,
0.049752127379179,
-0.0385160967707634,
0.16139256954193115,
-0.15277819335460663,
-0.1438697725534439,
0.042516376823186874,
-0.07740364223718643,
0.05806797742843628,
0.21390840411186218,
0.032026711851358414,
-0.07256529480218887,
-0.0132212582975626,
-0.012072612531483173,
-0.07205180823802948,
-0.24367475509643555,
-0.10030107945203781,
-0.09424323588609695,
0.19197365641593933,
-0.0990254282951355,
0.03203873708844185,
0.14764715731143951,
-0.06457089632749557,
0.08433501422405243,
-0.19763901829719543,
-0.010215999558568,
0.01770659349858761,
0.22750094532966614,
-0.15916487574577332,
0.00014442045358009636,
-0.04882880300283432,
-0.05247480422258377,
0.09052883088588715,
0.11802905797958374,
-0.02051357924938202,
0.273624449968338,
0.16127364337444305,
0.06911300867795944,
0.07706662267446518,
0.10484999418258667,
-0.04469823092222214,
0.0611993744969368,
-0.05855664238333702,
-0.006833828054368496,
0.004713037051260471,
-0.047871965914964676,
0.016841065138578415,
0.2382238805294037,
-0.24595330655574799,
0.03640567511320114,
-0.16953878104686737,
0.13202151656150818,
-0.11020241677761078,
0.08590279519557953,
0.07235612720251083,
0.0316399447619915,
0.1150963231921196,
0.030863238498568535,
-0.08577798306941986,
0.16981296241283417,
0.10846661031246185,
-0.12081541866064072,
-0.06076256185770035,
0.06473146378993988,
0.08517883718013763,
-0.04448635131120682,
0.12020564824342728,
-0.21790917217731476,
-0.14890499413013458,
0.02830875851213932,
0.09715487062931061,
-0.20258614420890808,
0.30610308051109314,
0.03891199454665184,
-0.15730910003185272,
-0.0673779845237732,
-0.12655381858348846,
-0.05232610926032066,
0.05670171231031418,
0.10477700084447861,
0.042930278927087784,
-0.0985770970582962,
-0.04290907457470894,
0.04275950416922569,
-0.004747000988572836,
0.19975899159908295,
0.003670648904517293,
-0.15413632988929749,
-0.04198495298624039,
0.03424621373414993,
-0.06237080693244934,
-0.0023813066072762012,
0.003565198974683881,
-0.1303248107433319,
0.024640655145049095,
0.050463344901800156,
-0.016641467809677124,
0.040866199880838394,
0.10756327211856842,
-0.014962024055421352,
0.07353220880031586,
0.038472678512334824,
0.04593467339873314,
-0.07964198291301727,
-0.15523113310337067,
0.016211804002523422,
-0.023164959624409676,
-0.022165657952427864,
-0.09395032376050949,
-0.08139438927173615,
-0.13410617411136627,
-0.09676485508680344,
0.10384535789489746,
-0.06187068298459053,
0.1079651489853859,
-0.04443218186497688,
0.22777260839939117,
-0.01876998320221901,
0.0707821175456047,
-0.0014519646065309644,
0.017383376136422157,
-0.04173330217599869,
-0.05079682916402817,
0.13796241581439972,
-0.16388940811157227,
0.03631523996591568,
0.1287132054567337,
0.020674366503953934,
-0.011654446832835674,
-0.020724603906273842,
-0.10179019719362259,
0.2584770619869232,
0.2532082200050354,
0.008431713096797466,
0.20354236662387848,
0.2779310643672943,
-0.03405376151204109,
-0.23847854137420654,
-0.06443439424037933,
-0.24608860909938812,
-0.10001913458108902,
0.11060019582509995,
-0.17335651814937592,
0.048826683312654495,
0.04266653582453728,
-0.057426001876592636,
0.15894554555416107,
-0.26584717631340027,
0.018543260172009468,
0.16676761209964752,
-0.08710185438394547,
0.556063711643219,
-0.08401168882846832,
-0.1706315577030182,
0.028705457225441933,
-0.11849171668291092,
0.1369921863079071,
-0.059715449810028076,
0.05587036535143852,
0.06141930818557739,
0.1030082255601883,
0.0791819840669632,
0.024286393076181412,
0.2086247056722641,
-0.030721409246325493,
-0.011694102548062801,
-0.08707722276449203,
-0.2644178867340088,
0.022543715313076973,
0.014050757512450218,
-0.15220579504966736,
0.06714692711830139,
-0.03763264790177345,
-0.12996013462543488,
-0.00833086110651493,
-0.09469889849424362,
-0.03442717716097832,
0.05498296394944191,
-0.05582961067557335,
-0.04872966185212135,
-0.02503621205687523,
-0.12678851187229156,
0.0248456709086895,
0.2782087028026581,
-0.12460757046937943,
0.20962512493133545,
0.03189510107040405,
0.0826069712638855,
-0.11556048691272736,
-0.040044378489255905,
-0.08514855802059174,
-0.04452597722411156,
0.06780480593442917,
-0.04552831873297691,
0.01640397682785988,
0.13416710495948792,
-0.0347602553665638,
0.11645430326461792,
0.054678838700056076,
-0.04116342216730118,
0.0018401920096948743,
0.12186210602521896,
-0.19740338623523712,
-0.20969319343566895,
-0.04371960833668709,
0.03845932334661484,
0.13964368402957916,
0.008396233431994915,
0.07325775921344757,
0.15447303652763367,
-0.012220986187458038,
0.017707353457808495,
0.0063921562395989895,
-0.10938490182161331,
-0.10873667150735855,
0.054379791021347046,
0.013983300887048244,
-0.09227976948022842,
0.18084652721881866,
0.03675472363829613,
-0.22814933955669403,
-0.07893285900354385,
0.202446848154068,
-0.030374113470315933,
-0.05819692462682724,
-0.21532276272773743,
0.09139268845319748,
-0.01710049994289875,
-0.04101932793855667,
0.09945792704820633,
-0.04600068926811218,
-0.011849126778542995,
0.2088441699743271,
0.005288805812597275,
0.11521650105714798,
0.02289087511599064,
-0.014231379143893719,
0.18881471455097198,
-0.05520625784993172,
-0.1449955552816391,
-0.09115351736545563,
-0.029631074517965317,
-0.0884295105934143,
-0.029015889391303062,
0.16390375792980194,
-0.09958739578723907,
-0.19185857474803925,
-0.27840521931648254,
0.10097097605466843,
-0.09882879257202148,
-0.14626872539520264,
-0.06603177636861801,
-0.08046457916498184,
0.06351024657487869,
0.0007621019030921161,
-0.021881122142076492,
-0.08205366134643555,
-0.1492452621459961,
0.13080784678459167,
0.1057455912232399,
0.08206558227539062,
-0.016450341790914536,
0.016596172004938126,
0.19690342247486115,
0.026534590870141983,
0.14594069123268127,
0.17451751232147217,
-0.05074344202876091,
0.15319328010082245,
-0.20988412201404572,
-0.07780496776103973,
0.11590725928544998,
-0.025719670578837395,
0.04735324904322624,
0.19499944150447845,
-0.11897840350866318,
-0.006798566784709692,
0.019707852974534035,
0.05558319017291069,
-0.0690290778875351,
-0.07785819470882416,
0.07048150897026062,
0.04877069592475891,
-0.25241997838020325,
-0.007160451728850603,
-0.17783494293689728,
0.10817551612854004,
-0.04739189147949219,
-0.0037109223194420338,
0.0740538164973259,
0.08902791887521744,
0.06466685980558395,
0.05149034038186073,
0.03837009146809578,
-0.11509545892477036,
0.045814137905836105,
-0.08034229278564453,
0.009427596814930439,
-0.0007844272186048329,
0.3414205014705658,
-0.04865121468901634,
-0.012500427663326263,
0.060768552124500275,
0.13266195356845856,
-0.040937576442956924,
-0.004120932426303625,
0.07744668424129486,
0.11807578802108765,
-0.07814747095108032,
-0.13197903335094452,
0.0416797399520874,
-0.044970154762268066,
-0.03262122720479965,
0.10802089422941208,
0.04302893206477165,
0.08631748706102371,
0.037648510187864304,
-0.020762383937835693,
-0.009974390268325806,
0.06859339028596878,
-0.17212650179862976,
0.037296079099178314,
-0.045919448137283325,
-0.1130448579788208,
0.08897913247346878,
0.16728170216083527,
-0.00013685932208318263,
0.05126078054308891,
-0.09991825371980667,
-0.01692856475710869,
-0.12863412499427795,
-0.03461017832159996,
0.042484767735004425,
-0.11316732317209244,
0.051238011568784714,
-0.04773739352822304,
0.047609876841306686,
0.19828583300113678,
0.02608226239681244,
-0.07328592985868454,
0.11490452289581299,
-0.07990892231464386,
-0.14335277676582336,
-0.0557478666305542,
0.0005818892968818545,
0.15513694286346436,
-0.12246192991733551,
-0.07545425742864609,
-0.12798281013965607,
-0.088837631046772,
-0.08355767279863358,
0.0524747408926487,
-0.04950229078531265,
-0.11297126859426498,
-0.17672379314899445,
-0.03879760950803757,
-0.02510312758386135,
0.11135838180780411,
-0.112035371363163,
0.23329482972621918,
-0.01199720986187458,
0.05557756870985031,
0.02991287223994732,
0.24918290972709656,
-0.022521326318383217,
0.10415615141391754,
-0.02151179313659668,
0.05253418907523155,
-0.10356061160564423,
0.14413990080356598,
-0.0780073031783104,
-0.022134484723210335,
-0.07592874020338058,
0.26220473647117615,
0.24513402581214905,
-0.07298863679170609,
-0.015757491812109947,
-0.050771016627550125,
0.0689423605799675,
0.1046677827835083,
0.06776474416255951,
0.01116007100790739,
0.30758199095726013,
-0.07274506241083145,
0.028703520074486732,
0.05941295251250267,
0.025450630113482475,
-0.009023242630064487,
-0.00031586099066771567,
0.07820562273263931,
-0.02096210978925228,
-0.08039145916700363,
0.15984933078289032,
-0.2520323693752289,
0.12485187500715256,
-0.00880131684243679,
-0.2363835871219635,
-0.03988468647003174,
-0.07471023499965668,
0.1589323729276657,
-0.03234702721238136,
0.1501270979642868,
-0.02978230081498623,
-0.21741677820682526,
-0.12460041046142578,
0.03790215402841568,
-0.33398324251174927,
-0.20619212090969086,
0.13948045670986176,
0.0760318860411644,
0.023805538192391396,
-0.021741479635238647,
0.025529982522130013,
0.0032104600686579943,
0.04961394891142845,
0.03460799530148506,
0.02477840706706047,
0.08047868311405182,
-0.07015020400285721,
-0.22745169699192047,
0.017628446221351624,
0.04063417389988899,
-0.024304617196321487,
0.08310901373624802,
-0.1729861944913864,
-0.011919168755412102,
0.1467619687318802,
-0.04285425320267677,
0.047341711819171906,
0.06456191837787628,
-0.14956869184970856,
0.022001322358846664,
0.02662065252661705,
0.04635908454656601,
-0.03859921917319298,
0.035746656358242035,
-0.052021801471710205,
0.009805927984416485,
-0.16483484208583832,
-0.14164559543132782,
0.07857505232095718,
-0.07611528784036636,
0.14186875522136688,
-0.05144434794783592,
-0.03638307377696037,
0.02091086283326149,
0.01707182452082634,
0.19947703182697296,
-0.05914916470646858,
0.018417075276374817,
0.1404166966676712,
0.018141740933060646,
0.03283080831170082,
-0.22961781919002533,
0.11031536012887955,
0.013199768029153347,
-0.014010419137775898,
-0.01816931739449501
] |
null | null | transformers |
# Α lite RoBERTa fill mask model trained mostly in greek tweets
The training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018.
The model has been trained to support the work for the paper [Multimodal Hate Speech Detection in Greek Social Media](https://www.mdpi.com/2414-4088/5/7/34)
## Load the pretrained model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Konstantinos/BERTaTweetGR")
model = AutoModel.from_pretrained("Konstantinos/BERTaTweetGR")
```
| {"language": "el", "widget": [{"text": "\u03bc\u03c0\u03b1\u03b9\u03bd\u03c9 \u03c3\u03c4\u03bf <mask> \u03ba\u03b1\u03b9 \u03c4\u03b9 \u03bd\u03b1 \u03b4\u03c9."}]} | fill-mask | Konstantinos/BERTaTweetGR | [
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"el",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"el"
] | TAGS
#transformers #pytorch #jax #roberta #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us
|
# Α lite RoBERTa fill mask model trained mostly in greek tweets
The training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018.
The model has been trained to support the work for the paper Multimodal Hate Speech Detection in Greek Social Media
## Load the pretrained model
| [
"# Α lite RoBERTa fill mask model trained mostly in greek tweets\n\n\nThe training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018.\nThe model has been trained to support the work for the paper Multimodal Hate Speech Detection in Greek Social Media",
"## Load the pretrained model"
] | [
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us \n",
"# Α lite RoBERTa fill mask model trained mostly in greek tweets\n\n\nThe training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018.\nThe model has been trained to support the work for the paper Multimodal Hate Speech Detection in Greek Social Media",
"## Load the pretrained model"
] | [
42,
71,
8
] | [
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us \n# Α lite RoBERTa fill mask model trained mostly in greek tweets\n\n\nThe training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018.\nThe model has been trained to support the work for the paper Multimodal Hate Speech Detection in Greek Social Media## Load the pretrained model"
] | [
-0.04138036072254181,
-0.18430861830711365,
-0.0017057146178558469,
0.017559099942445755,
0.14231182634830475,
0.0065511972643435,
0.2954707145690918,
0.0234086774289608,
0.061693817377090454,
-0.005431975703686476,
0.15946148335933685,
0.056906986981630325,
-0.06077035143971443,
0.14821837842464447,
-0.009684240445494652,
-0.1973893642425537,
0.00679104495793581,
-0.06439569592475891,
-0.061097677797079086,
0.15137329697608948,
0.15939272940158844,
0.013255026191473007,
0.03173671290278435,
-0.014799483120441437,
-0.12344158440828323,
0.0393473245203495,
0.11255887895822525,
-0.13178101181983948,
0.14672471582889557,
0.0025364758912473917,
0.015848198905587196,
0.00019926494860555977,
0.05799313262104988,
0.12570205330848694,
0.04473090544342995,
0.053469136357307434,
-0.03613527864217758,
0.002245954005047679,
-0.030613088980317116,
-0.14494305849075317,
0.27244845032691956,
-0.06700059771537781,
0.10769245028495789,
0.053831566125154495,
-0.1552727222442627,
-0.0014871349558234215,
-0.023225050419569016,
0.026832714676856995,
0.16088071465492249,
0.18517307937145233,
-0.0791427493095398,
0.24116474390029907,
-0.00029273497057147324,
0.12323374301195145,
0.06549302488565445,
-0.14668355882167816,
-0.09517975151538849,
-0.04741910845041275,
0.013943987898528576,
0.015314256772398949,
0.04226535186171532,
0.17488937079906464,
0.06868734955787659,
0.03677855432033539,
-0.022068988531827927,
-0.07102717459201813,
0.03569217398762703,
-0.13503365218639374,
-0.11193077266216278,
-0.008632063865661621,
0.1264926642179489,
0.07910498976707458,
0.005516599863767624,
-0.1298077404499054,
-0.01880061626434326,
0.12819461524486542,
-0.030509937554597855,
-0.04757252335548401,
-0.11309250444173813,
-0.01539317611604929,
-0.1165805459022522,
-0.02216826193034649,
-0.028249824419617653,
-0.046183206140995026,
-0.10543997585773468,
0.2084960639476776,
0.021022435277700424,
0.058946460485458374,
-0.08879207819700241,
-0.01110032293945551,
-0.07644380629062653,
-0.06831623613834381,
0.11616357415914536,
0.016714638099074364,
-0.035419873893260956,
0.005944475997239351,
-0.043730247765779495,
-0.2895670235157013,
0.04496585950255394,
0.05166301503777504,
0.060324423015117645,
-0.04221383109688759,
0.05547722801566124,
0.023425880819559097,
0.10784849524497986,
-0.028964420780539513,
-0.058734796941280365,
-0.0019535028841346502,
0.04893778637051582,
0.023496832698583603,
0.05923881754279137,
0.02578318491578102,
-0.010895195417106152,
-0.0334552600979805,
0.036486055701971054,
0.04965775087475777,
0.02321203239262104,
0.13260771334171295,
-0.0008843512623570859,
-0.009032211266458035,
-0.12270545959472656,
-0.09547556936740875,
-0.053793735802173615,
-0.05860510468482971,
-0.042483460158109665,
0.11509737372398376,
0.03353217616677284,
0.002060814993456006,
-0.037191420793533325,
-0.022809315472841263,
0.0004413212009239942,
-0.034788068383932114,
0.02280554361641407,
-0.12474174052476883,
0.00937333982437849,
-0.08906365931034088,
0.010832186788320541,
-0.23330728709697723,
-0.16291214525699615,
-0.09875325858592987,
-0.004791331477463245,
-0.0073471409268677235,
-0.035658642649650574,
-0.09208662807941437,
0.04799904674291611,
0.02924175374209881,
-0.0056516025215387344,
-0.007047382183372974,
-0.009486042894423008,
0.06887037307024002,
-0.05493578687310219,
0.09724923223257065,
-0.024232402443885803,
0.026157064363360405,
-0.0718156024813652,
-0.008775756694376469,
0.01648358255624771,
0.11404493451118469,
-0.009592187590897083,
0.10573092848062515,
-0.04980302229523659,
-0.03405186906456947,
-0.08967562764883041,
0.08550532162189484,
0.09545210003852844,
0.2422652542591095,
-0.04958353564143181,
-0.08831901848316193,
0.061234790831804276,
-0.08991406112909317,
-0.08284762501716614,
0.18451222777366638,
-0.05809226259589195,
0.13588383793830872,
0.18962298333644867,
0.10374995321035385,
-0.13701148331165314,
-0.10671960562467575,
0.025961950421333313,
-0.030574757605791092,
-0.17399656772613525,
-0.0019911122508347034,
0.04625234752893448,
-0.0021395680960267782,
-0.07782577723264694,
-0.009147368371486664,
0.05726754292845726,
0.1197562888264656,
-0.07489246875047684,
-0.03107955865561962,
0.02869263105094433,
-0.08266973495483398,
0.04757623001933098,
-0.03364889696240425,
0.0554967038333416,
-0.15539410710334778,
-0.06581418961286545,
-0.08885721117258072,
0.11886706948280334,
-0.05337712541222572,
0.006638583727180958,
-0.1495276391506195,
0.07866401225328445,
-0.0010515794856473804,
0.012776902876794338,
-0.08550512045621872,
-0.04251119866967201,
-0.12146659195423126,
0.11494315415620804,
0.1723238080739975,
-0.025098947808146477,
0.07288601249456406,
-0.09642928093671799,
-0.019989188760519028,
0.05877145752310753,
-0.0032823551446199417,
0.0004470600397326052,
-0.08507039397954941,
-0.07926473021507263,
0.09277195483446121,
-0.029776087030768394,
0.058101095259189606,
-0.11132822930812836,
0.0171363428235054,
-0.050315555185079575,
0.019425172358751297,
-0.044712409377098083,
0.03680594265460968,
0.009129110723733902,
0.034149542450904846,
-0.004764508455991745,
-0.0842546746134758,
0.06580841541290283,
-0.03951526805758476,
-0.07423757761716843,
0.12359126657247543,
-0.09250404685735703,
0.11391189694404602,
0.2025146484375,
-0.1571553647518158,
-0.1374480426311493,
0.28033164143562317,
0.03157774358987808,
0.025872239843010902,
-0.003470830852165818,
-0.044434040784835815,
0.1407710313796997,
-0.04705261439085007,
0.09313260018825531,
-0.01839437521994114,
0.019903721287846565,
0.12308301776647568,
-0.08366893976926804,
-0.06962532550096512,
0.07672660052776337,
0.02606462687253952,
-0.28393760323524475,
0.049743473529815674,
0.09090611338615417,
-0.1117328628897667,
0.14749225974082947,
0.029318585991859436,
0.031271569430828094,
-0.009569174610078335,
-0.04623854532837868,
-0.02058565244078636,
0.028577711433172226,
-0.16938678920269012,
-0.1008237823843956,
-0.06092048063874245,
-0.006730580236762762,
0.05340975895524025,
0.005060776136815548,
-0.07103825360536575,
0.01732322946190834,
-0.015574964694678783,
-0.0993192121386528,
0.14343495666980743,
-0.053800903260707855,
0.15123523771762848,
-0.02358379401266575,
-0.1591942459344864,
0.00419948436319828,
-0.02137826569378376,
-0.13306252658367157,
0.0962003618478775,
0.037492550909519196,
-0.2666950523853302,
0.023457227274775505,
-0.0027415980584919453,
-0.01923123560845852,
0.017500124871730804,
-0.01105426624417305,
-0.14361217617988586,
0.012005584314465523,
0.0043633077293634415,
0.0985204353928566,
-0.008192102424800396,
0.07137085497379303,
0.07375543564558029,
-0.011671018786728382,
0.015359465964138508,
-0.0429372601211071,
-0.07981457561254501,
-0.13576671481132507,
-0.20118877291679382,
-0.009476151317358017,
-0.1608389914035797,
0.055626850575208664,
0.13638679683208466,
-0.06345449388027191,
0.03665848821401596,
-0.05600639432668686,
0.15314917266368866,
-0.17220154404640198,
-0.031161468476057053,
0.06092236936092377,
0.01587541773915291,
-0.049909695982933044,
0.017433950677514076,
0.001213064999319613,
-0.08779196441173553,
0.037870440632104874,
0.05373601242899895,
-0.08117197453975677,
-0.15677252411842346,
-0.16069886088371277,
0.02880910411477089,
-0.0007784676272422075,
0.11434181034564972,
0.05532199516892433,
0.07453348487615585,
0.06432511657476425,
0.06658236682415009,
-0.09792632609605789,
0.09539387375116348,
0.0037778185214847326,
0.054113201797008514,
0.004114718642085791,
0.11206965893507004,
-0.04628266394138336,
-0.05673357844352722,
0.11212962865829468,
-0.21643251180648804,
0.0763816237449646,
-0.0032337794546037912,
-0.0701340064406395,
0.0395841971039772,
0.0012236409820616245,
0.06830935925245285,
0.11210530996322632,
0.04914865270256996,
-0.018805477768182755,
0.005025539547204971,
0.017306119203567505,
-0.015409359708428383,
-0.026340045034885406,
0.0636415183544159,
-0.03519991412758827,
-0.11441107839345932,
-0.02092762105166912,
0.14863185584545135,
0.2234763205051422,
0.08638139814138412,
-0.24121934175491333,
-0.05994457006454468,
-0.010486842133104801,
-0.08894266188144684,
0.02661605179309845,
0.06390994042158127,
0.057146377861499786,
-0.15755154192447662,
0.1385558843612671,
-0.02472655661404133,
0.09356819093227386,
-0.059713076800107956,
0.019063226878643036,
-0.05469539761543274,
-0.0683843195438385,
-0.037263497710227966,
0.04958042874932289,
-0.22591593861579895,
0.32445961236953735,
-0.0426088310778141,
0.09749995917081833,
-0.09821726381778717,
-0.08907917141914368,
0.05172272026538849,
0.0386594757437706,
0.1862512081861496,
0.03982703015208244,
0.06745918840169907,
-0.03243838623166084,
-0.07214637845754623,
0.06114501133561134,
0.020108360797166824,
0.009039257653057575,
-0.014730347320437431,
0.016210297122597694,
-0.003676104824990034,
0.04494594410061836,
-0.104005366563797,
-0.14454859495162964,
-0.07590533047914505,
-0.06849163770675659,
0.08717956393957138,
-0.12491884082555771,
0.06371832638978958,
-0.15876246988773346,
-0.07913544774055481,
0.15706753730773926,
0.13111206889152527,
-0.08685335516929626,
-0.0977897197008133,
0.17040686309337616,
-0.015518088825047016,
-0.08749145269393921,
-0.004827531520277262,
0.05059244856238365,
-0.13023494184017181,
-0.10987237095832825,
-0.07687848806381226,
0.14632117748260498,
-0.05713791772723198,
-0.045099806040525436,
-0.0019316086545586586,
0.1287691444158554,
0.10791677236557007,
-0.0022887317463755608,
0.08207959681749344,
0.01200234517455101,
0.08646506816148758,
-0.0943535640835762,
0.04330972582101822,
-0.1120404303073883,
-0.13175205886363983,
0.046300455927848816,
0.08986388146877289,
-0.23138673603534698,
-0.12775546312332153,
0.03800268471240997,
0.14987002313137054,
0.19813743233680725,
-0.016093842685222626,
-0.02804681286215782,
0.1969691663980484,
-0.05085701122879982,
-0.17839427292346954,
-0.044328317046165466,
-0.015340156853199005,
0.11452672630548477,
0.010932053439319134,
-0.05577162653207779,
-0.04368722066283226,
0.0713619738817215,
0.009528569877147675,
-0.10436873883008957,
-0.30047401785850525,
-0.14919060468673706,
0.21424061059951782,
0.007624016143381596,
0.581996738910675,
-0.046780526638031006,
0.044179536402225494,
-0.09792526066303253,
0.1416769176721573,
0.08945009112358093,
-0.08702102303504944,
0.08222237229347229,
0.0353892482817173,
0.07689474523067474,
0.017727095633745193,
0.03452858328819275,
0.11068066209554672,
0.03038332238793373,
0.07139173150062561,
-0.1376998871564865,
-0.18216899037361145,
0.16025622189044952,
0.04897087439894676,
0.10657065361738205,
-0.026319779455661774,
0.012053530663251877,
-0.04007985070347786,
-0.08975553512573242,
-0.1073046401143074,
0.07654765248298645,
0.05642084777355194,
-0.008247600868344307,
0.02875036559998989,
0.02262212708592415,
-0.00014495992218144238,
-0.04321661964058876,
-0.019049501046538353,
-0.08384832739830017,
0.10663539916276932,
-0.08495504409074783,
0.15541888773441315,
0.05256912484765053,
-0.00768326735123992,
0.0372597761452198,
-0.07084637135267258,
0.04365501552820206,
-0.050892382860183716,
-0.06530099362134933,
0.032481275498867035,
0.02999134734272957,
0.046581435948610306,
0.012206314131617546,
-0.08918557316064835,
0.12043674290180206,
0.07743002474308014,
-0.10835310071706772,
-0.12054425477981567,
-0.0383099764585495,
-0.17210157215595245,
0.05077861621975899,
0.02591327764093876,
0.21021753549575806,
-0.0783669576048851,
-0.023785699158906937,
-0.01835288479924202,
0.007356164511293173,
-0.15925100445747375,
0.1555022895336151,
0.02369740605354309,
-0.053468748927116394,
-0.02402358315885067,
0.015050810761749744,
0.029284944757819176,
-0.04321582242846489,
0.09510073810815811,
0.17051900923252106,
-0.12863995134830475,
-0.05735257267951965,
-0.0488479919731617,
0.023285605013370514,
0.05036121606826782,
-0.023513277992606163,
-0.04919819533824921,
-0.07583830505609512,
-0.0425889678299427,
0.19390569627285004,
0.08545461297035217,
0.057779159396886826,
-0.05642978101968765,
-0.025075217708945274,
-0.06651320308446884,
-0.03511805459856987,
0.19250835478305817,
-0.10609661042690277,
0.009060727432370186,
0.06237037852406502,
0.07535134255886078,
0.11311306804418564,
-0.09193950146436691,
-0.06402570009231567,
-0.06591594219207764,
0.04721125215291977,
0.004778225906193256,
-0.10225968807935715,
-0.054771315306425095,
-0.0282719898968935,
0.010662699118256569,
-0.03178633376955986,
-0.039547283202409744,
-0.003957177046686411,
-0.04259469732642174,
0.013095160946249962,
0.04334235191345215,
-0.019410232082009315,
-0.10113231837749481,
0.01325052697211504,
0.023376213386654854,
0.011524777859449387,
0.14219382405281067,
0.17452873289585114,
-0.1022505834698677,
0.04555220901966095,
-0.20029820501804352,
-0.038822997361421585,
0.045869674533605576,
-0.0357038751244545,
0.018189789727330208,
-0.022377820685505867,
0.05096203833818436,
0.06779872626066208,
0.18455427885055542,
0.1105126291513443,
0.06553388386964798,
-0.023608015850186348,
0.16864220798015594,
0.15168797969818115,
-0.08882101625204086,
-0.011823300272226334,
0.0009662042721174657,
-0.013770180754363537,
0.11109743267297745,
0.13205380737781525,
-0.12114846706390381,
0.050352007150650024,
-0.09889498353004456,
0.04281650856137276,
-0.01566104032099247,
-0.06895352154970169,
-0.045606404542922974,
-0.0025619391817599535,
0.06592170894145966,
-0.05497376248240471,
0.10638591647148132,
0.09379661083221436,
-0.05846348777413368,
0.08823414146900177,
0.13586193323135376,
-0.0827852189540863,
-0.025377469137310982,
0.009202149696648121,
-0.01446137297898531,
-0.0032255544792860746,
-0.09227494150400162,
-0.030373262241482735,
0.0173846073448658,
-0.08783204853534698,
-0.0058489697985351086,
0.07250310480594635,
0.1752646267414093,
0.041604772210121155,
0.07263058423995972,
0.10955983400344849,
0.0536772720515728,
-0.10630597174167633,
-0.13460317254066467,
0.047678083181381226,
-0.036662813276052475,
-0.020462101325392723,
0.1826234757900238,
0.049954336136579514,
-0.04645906016230583,
-0.005754444748163223,
-0.07218022644519806,
-0.17023204267024994,
-0.2998960018157959,
-0.07614155113697052,
-0.05643437057733536,
0.03757843002676964,
-0.008188251405954361,
-0.044117044657468796,
0.06267750263214111,
0.1326092630624771,
-0.06142235919833183,
0.03042028471827507,
-0.047503069043159485,
-0.06741124391555786,
0.2226298600435257,
-0.07722439616918564,
0.0326794795691967,
-0.05402057245373726,
-0.01988503709435463,
-0.0944674089550972,
0.04166649654507637,
0.01775035820901394,
-0.020097821950912476,
-0.053092170506715775,
0.11746542900800705,
-0.1329854279756546,
-0.08992000669240952,
-0.010967676527798176,
0.044810619205236435,
0.015353748574852943,
0.07213500887155533,
0.09341303259134293,
-0.012349682860076427,
-0.036511749029159546,
0.09884608536958694,
0.07039575278759003,
-0.1421152651309967,
-0.14583685994148254,
0.10064473748207092,
-0.10349848866462708,
-0.019012143835425377,
-0.06712128967046738,
0.025633014738559723,
-0.07751089334487915,
0.2271365523338318,
0.4141072630882263,
-0.07789506018161774,
0.045025765895843506,
-0.15630725026130676,
0.020040417090058327,
0.013869067654013634,
0.060425374656915665,
-0.050132766366004944,
0.1339685618877411,
-0.041700273752212524,
0.04282541200518608,
-0.03501766920089722,
-0.018807755783200264,
0.028886348009109497,
-0.08127591758966446,
-0.018453486263751984,
0.0010596771026030183,
-0.009192352183163166,
0.2425379902124405,
-0.06026473641395569,
-0.03649651259183884,
-0.13451960682868958,
-0.07144651561975479,
-0.1454155445098877,
0.03710268437862396,
-0.1713676154613495,
0.17608344554901123,
0.16997158527374268,
-0.02745814435184002,
0.008508868515491486,
-0.13108862936496735,
0.04110856354236603,
-0.11868470907211304,
-0.18090768158435822,
0.1173572838306427,
0.07585980743169785,
0.044505033642053604,
0.0012804125435650349,
0.11331453919410706,
0.038737960159778595,
0.007171389181166887,
0.007653962820768356,
0.08686301112174988,
-0.002081718761473894,
0.18956010043621063,
0.04601064324378967,
0.030757872387766838,
-0.009215565398335457,
-0.03064248152077198,
0.04885505884885788,
-0.09053020179271698,
0.05695895478129387,
-0.21831338107585907,
-0.02062969096004963,
-0.12011172622442245,
0.11795690655708313,
-0.047852978110313416,
0.0476350411772728,
0.12700186669826508,
-0.005250188987702131,
0.002843090333044529,
0.016189882531762123,
-0.05020806938409805,
0.014030944555997849,
-0.14146578311920166,
-0.10069557279348373,
-0.21273234486579895,
-0.0837659165263176,
-0.15521366894245148,
-0.014394181780517101,
-0.09216354787349701,
0.029837369918823242,
-0.12475269287824631,
-0.07269739359617233,
0.01216618437319994,
0.06109470874071121,
0.007424172013998032,
-0.027563009411096573,
0.01730242744088173,
0.0020074020139873028,
0.08036307990550995,
0.10934790223836899,
-0.13064853847026825,
-0.09982861578464508
] |
null | null | null | from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelForCausalLM.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") | {} | null | Kookly/Kooklybots | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelForCausalLM.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
I'm dumb | {"tags": ["conversational"]} | text-generation | Koriyy/DialoGPT-medium-gf | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
I'm dumb | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Rick and Morty DialoGPT Model | {"tags": ["conversational"]} | text-generation | Koro/DialoGPT-medium-rickandmorty | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick and Morty DialoGPT Model | [
"# Rick and Morty DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick and Morty DialoGPT Model"
] | [
51,
10
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model"
] | [
-0.01990443281829357,
0.10367733240127563,
-0.006012056488543749,
0.013662099838256836,
0.1287931650876999,
0.004103946499526501,
0.13405320048332214,
0.13470496237277985,
-0.029608309268951416,
-0.0377325713634491,
0.1409052610397339,
0.2081032246351242,
-0.009616929106414318,
0.025026321411132812,
-0.08027864247560501,
-0.33285143971443176,
0.04419311136007309,
0.04611847549676895,
-0.04805411398410797,
0.11171722412109375,
0.09962809830904007,
-0.03511058911681175,
0.07650627940893173,
0.012189619243144989,
-0.11959464848041534,
0.014523470774292946,
0.01571112684905529,
-0.09889741986989975,
0.11399844288825989,
0.07783890515565872,
0.031239205971360207,
0.033389654010534286,
-0.042143791913986206,
-0.13308840990066528,
0.04855761677026749,
-0.0014628645731136203,
-0.03996938467025757,
0.06519230455160141,
0.0068825362250208855,
-0.09896008670330048,
0.13105708360671997,
0.11774895340204239,
-0.001342291128821671,
0.030811335891485214,
-0.1546017825603485,
-0.03095608949661255,
-0.013916928321123123,
0.04583658277988434,
0.05571185424923897,
0.1092928797006607,
-0.03970988467335701,
0.11546611040830612,
-0.046847838908433914,
0.11656361073255539,
0.13404695689678192,
-0.27711591124534607,
-0.013774634338915348,
0.14150507748126984,
0.03755388408899307,
0.031246060505509377,
-0.03764049708843231,
0.09234841167926788,
0.010574371553957462,
-0.009135077707469463,
-0.054559025913476944,
-0.07839421927928925,
-0.06956472247838974,
0.03881034255027771,
-0.08538595587015152,
-0.0028573249001055956,
0.22309143841266632,
-0.029777048155665398,
0.0931403860449791,
-0.061110686510801315,
-0.083645299077034,
0.0022445949725806713,
-0.04396601766347885,
-0.031562261283397675,
-0.0995510146021843,
0.08443354815244675,
-0.04024428874254227,
-0.08693728595972061,
-0.10731299221515656,
-0.022938303649425507,
-0.15873323380947113,
0.16214832663536072,
0.03501884266734123,
0.03956814110279083,
-0.21219894289970398,
0.07603893429040909,
-0.04213596507906914,
-0.10128775984048843,
0.025763655081391335,
-0.0809730738401413,
0.0031352867372334003,
0.01420458871871233,
-0.034850042313337326,
-0.01257789321243763,
0.09354974329471588,
0.11913833022117615,
-0.002085368847474456,
0.028482265770435333,
-0.03459439426660538,
0.04555915296077728,
0.04445279389619827,
0.04635937884449959,
-0.030874032527208328,
-0.005519113503396511,
0.024999095126986504,
-0.0903957337141037,
-0.010871811769902706,
-0.060442280024290085,
-0.1946737915277481,
0.013364237733185291,
0.05735969915986061,
0.055262304842472076,
0.030765585601329803,
0.13551434874534607,
0.0010974886827170849,
-0.0475224107503891,
0.03023342229425907,
-0.020769428461790085,
-0.016528211534023285,
0.029149476438760757,
-0.0072809201665222645,
0.1526104062795639,
0.022983204573392868,
0.05690442770719528,
-0.11451500654220581,
0.012773441150784492,
-0.03330712020397186,
-0.006917042192071676,
-0.03216493874788284,
-0.061537809669971466,
0.003289242973551154,
0.0014469954185187817,
0.013694697991013527,
-0.12761977314949036,
-0.15719962120056152,
-0.003717299085110426,
0.00613630935549736,
-0.05369097366929054,
-0.10004933178424835,
-0.10542158782482147,
-0.03153182193636894,
0.046352777630090714,
-0.053748197853565216,
0.03198752924799919,
-0.039340607821941376,
0.09383489936590195,
-0.03441528603434563,
0.0691300630569458,
-0.0863635316491127,
0.0905333161354065,
-0.06098577380180359,
-0.04111234471201897,
-0.0643690675497055,
0.12356391549110413,
0.011561519466340542,
0.04442533850669861,
-0.03781363368034363,
-0.01636880449950695,
-0.11087207496166229,
0.06495212018489838,
-0.03516015037894249,
0.22487092018127441,
-0.08996163308620453,
-0.09683383256196976,
0.22284504771232605,
-0.04562665522098541,
-0.12769415974617004,
0.12243670970201492,
-0.03600937873125076,
0.09682484716176987,
0.11536505818367004,
0.16257616877555847,
0.03866875544190407,
-0.0002237519365735352,
0.10846788436174393,
0.10610917955636978,
-0.07603283226490021,
0.006744202226400375,
0.0250004380941391,
-0.02382737584412098,
-0.09139634668827057,
0.015165179036557674,
0.07776524871587753,
0.04803644120693207,
-0.05478836968541145,
-0.015317765064537525,
0.015090391971170902,
-0.003627530997619033,
0.06564177572727203,
-0.017049036920070648,
0.11691898107528687,
-0.03955721855163574,
-0.07620245963335037,
-0.014626736752688885,
0.028113901615142822,
-0.06986767798662186,
0.026787258684635162,
-0.07962338626384735,
0.02948051132261753,
-0.01967560686171055,
0.06687499582767487,
-0.16950036585330963,
-0.09430424869060516,
-0.06010226905345917,
0.23349159955978394,
0.07496993243694305,
0.11698364466428757,
0.06350064277648926,
-0.056928664445877075,
0.0006459777359850705,
0.037900060415267944,
0.19767099618911743,
-0.006904584355652332,
-0.07503941655158997,
-0.11777795851230621,
0.10312607139348984,
-0.07375676929950714,
0.06138577312231064,
-0.0416308231651783,
0.007855354808270931,
0.019795136526226997,
0.11127804219722748,
-0.04220014438033104,
0.039965033531188965,
0.012499134056270123,
-0.03696384280920029,
-0.05908297002315521,
0.0004571304307319224,
0.09440597146749496,
-0.0005542659782804549,
-0.10514124482870102,
0.2379530370235443,
-0.21215155720710754,
0.12180843949317932,
0.1799643337726593,
-0.2256188690662384,
0.008836638182401657,
-0.10462760180234909,
-0.016665222123265266,
0.01030759233981371,
0.03996801748871803,
-0.040312353521585464,
0.24249082803726196,
-0.014560520648956299,
0.17035135626792908,
-0.04880015179514885,
-0.05010494217276573,
-0.0440804697573185,
-0.05291803553700447,
0.0003277618088759482,
0.12486644089221954,
0.09157522767782211,
-0.18372175097465515,
0.17465431988239288,
0.06325390189886093,
0.03004654310643673,
0.1566917598247528,
0.022896459326148033,
0.020663797855377197,
0.05599488690495491,
-0.0012882096925750375,
-0.03033529780805111,
-0.07880529016256332,
-0.20945574343204498,
-0.012111871503293514,
0.07547834515571594,
0.04618273675441742,
0.10363037884235382,
-0.1018955409526825,
-0.030724551528692245,
-0.006948297843337059,
-0.030821966007351875,
0.03848150745034218,
0.13554143905639648,
0.015318007208406925,
0.12024796009063721,
-0.019162237644195557,
-0.06668011844158173,
0.0741129145026207,
0.01461794413626194,
-0.09263674914836884,
0.18050695955753326,
-0.1221487745642662,
-0.3382752537727356,
-0.10329627990722656,
-0.20327065885066986,
-0.04040617123246193,
0.0422586165368557,
0.11002974957227707,
-0.1460546851158142,
-0.029720865190029144,
0.0010455691954120994,
0.08435780555009842,
-0.1366978883743286,
0.006720550823956728,
-0.017843635752797127,
-0.01294276025146246,
-0.1374056041240692,
-0.09384968876838684,
-0.04747654125094414,
-0.060003772377967834,
-0.03218422830104828,
0.10381519794464111,
-0.1596987098455429,
0.007801016326993704,
0.230968177318573,
0.04797196388244629,
0.07053504139184952,
-0.036995481699705124,
0.17910921573638916,
-0.08220451325178146,
0.016473548486828804,
0.24478016793727875,
-0.05610832944512367,
0.0740312784910202,
0.10560029745101929,
-0.005553957540541887,
-0.052998270839452744,
0.03756273165345192,
0.00788428820669651,
-0.0785532221198082,
-0.21784749627113342,
-0.1030275970697403,
-0.11046822369098663,
0.04284128174185753,
0.05120398849248886,
0.04543844982981682,
0.1585974246263504,
0.06446543335914612,
-0.05187172442674637,
-0.011306295171380043,
0.08315242826938629,
0.08576013147830963,
0.24794787168502808,
-0.06311704963445663,
0.1473274976015091,
-0.020790869370102882,
-0.16434483230113983,
0.07334780693054199,
0.06416254490613937,
0.07227631658315659,
0.06913222372531891,
0.11215730756521225,
0.0020037174690514803,
0.017364054918289185,
0.12614323198795319,
0.05889604985713959,
-0.011050567030906677,
-0.031410302966833115,
-0.04586650803685188,
-0.04347039759159088,
-0.020151739940047264,
0.041160233318805695,
0.05188119783997536,
-0.1600257307291031,
-0.02415069006383419,
0.022831739857792854,
0.046689603477716446,
-0.003216250566765666,
0.08608495444059372,
-0.19217506051063538,
-0.018159521743655205,
0.06477150321006775,
-0.0016290671192109585,
-0.09313707798719406,
0.08108778297901154,
-0.009849769994616508,
-0.09697907418012619,
0.03780587762594223,
-0.03585495799779892,
0.1301390826702118,
-0.0750122219324112,
0.07286842167377472,
-0.1119815781712532,
-0.02080838568508625,
-0.0087605444714427,
0.11860883235931396,
-0.3024371266365051,
0.1707288920879364,
-0.0030656929593533278,
-0.04842326417565346,
-0.11293680220842361,
-0.015061003156006336,
0.03821004554629326,
0.08916047215461731,
0.10371578484773636,
-0.030773809179663658,
-0.06436607241630554,
0.0791664570569992,
-0.050910793244838715,
0.03525971621274948,
0.10187692940235138,
-0.04662879928946495,
-0.014911266043782234,
-0.05685164034366608,
0.0027524156030267477,
0.02270045317709446,
-0.10804066807031631,
0.014929873868823051,
-0.19113284349441528,
0.07794220000505447,
0.0811065286397934,
0.0722472071647644,
0.04095001146197319,
-0.029467018321156502,
-0.1261810064315796,
0.2744207978248596,
0.007417048793286085,
-0.09985779225826263,
-0.11269644647836685,
0.04465123638510704,
0.05646880716085434,
-0.07145541161298752,
-0.028514720499515533,
-0.07924950867891312,
0.052012015134096146,
-0.07113154232501984,
-0.1981293261051178,
0.11338871717453003,
-0.09873685240745544,
-0.04736494645476341,
-0.03962721675634384,
0.2276533544063568,
-0.027753405272960663,
0.02130931057035923,
0.0393831804394722,
-0.001616212772205472,
-0.12734149396419525,
-0.09492160379886627,
0.004517016001045704,
-0.0013660878175869584,
0.02586340345442295,
0.022777099162340164,
-0.04388801380991936,
0.0049570053815841675,
-0.06949588656425476,
-0.0037953434512019157,
0.3158918023109436,
0.10998717695474625,
-0.04474896565079689,
0.1561327874660492,
0.10242960602045059,
-0.06360200047492981,
-0.28859275579452515,
-0.11298105865716934,
-0.07240703701972961,
-0.05466444417834282,
-0.0838940367102623,
-0.18133240938186646,
0.08497140556573868,
-0.042584747076034546,
-0.00881777424365282,
0.042027126997709274,
-0.2644155025482178,
-0.09412363916635513,
0.18815293908119202,
-0.01533579919487238,
0.4300551414489746,
-0.11307147145271301,
-0.07450833916664124,
-0.05387028306722641,
-0.13561248779296875,
0.18766070902347565,
-0.018648525699973106,
0.0966244488954544,
0.00443116994574666,
0.20654869079589844,
0.05815155804157257,
-0.0008219819865189493,
0.0747876986861229,
0.011587066575884819,
-0.0452013723552227,
-0.09014920890331268,
-0.09217863529920578,
-0.020688166841864586,
0.005974666681140661,
0.034957773983478546,
-0.0941787138581276,
0.05258546397089958,
-0.11336535215377808,
-0.05589618906378746,
-0.07209338247776031,
0.026715638116002083,
0.02418643794953823,
-0.06410122662782669,
-0.006407043896615505,
-0.048794936388731,
-0.0010418962920084596,
0.00979152973741293,
0.21295785903930664,
-0.11305148899555206,
0.12096642702817917,
0.04414689913392067,
0.1508360654115677,
-0.08366664499044418,
-0.03614836558699608,
-0.04910365119576454,
-0.05565084517002106,
0.0676501989364624,
-0.1319035291671753,
0.04462771117687225,
0.10053624957799911,
-0.030742639675736427,
0.0898696631193161,
0.11227817088365555,
-0.02972952462732792,
0.0016581144882366061,
0.07279330492019653,
-0.23832836747169495,
-0.08509121090173721,
-0.07718803733587265,
0.05435929819941521,
0.057659514248371124,
0.09007556736469269,
0.21964938938617706,
0.011087107472121716,
-0.023847850039601326,
0.027587326243519783,
0.029717741534113884,
-0.01658647321164608,
0.05797221511602402,
0.008770608343183994,
0.031205764040350914,
-0.14632299542427063,
0.04562913626432419,
-0.010501107200980186,
-0.07197817414999008,
0.03429242596030235,
0.16717956960201263,
-0.10209374874830246,
-0.12234743684530258,
-0.04288604483008385,
0.17517046630382538,
-0.13247300684452057,
-0.017495078966021538,
-0.05478521063923836,
-0.1241658553481102,
0.07977617532014847,
0.11423204839229584,
0.05072414129972458,
0.042339734733104706,
-0.09691346436738968,
-0.03881148621439934,
-0.05552472919225693,
0.01957569271326065,
0.018891409039497375,
-0.030404040589928627,
-0.037885911762714386,
0.025801094248890877,
-0.04172535613179207,
0.11203933507204056,
-0.087384894490242,
-0.09792038798332214,
-0.16838693618774414,
0.03925701230764389,
-0.049022991210222244,
-0.07899222522974014,
-0.09344983100891113,
-0.03523614630103111,
0.014231358654797077,
-0.03348008170723915,
-0.018664700910449028,
-0.02225758694112301,
-0.0958842933177948,
0.03419994190335274,
-0.048781368881464005,
-0.005008503329008818,
-0.08496184647083282,
0.017331385985016823,
0.04781922325491905,
-0.023604100570082664,
0.1431105136871338,
0.12453559041023254,
-0.11789791285991669,
0.10031480342149734,
-0.16611437499523163,
-0.06820093840360641,
0.09455996751785278,
0.02471991442143917,
0.043245621025562286,
0.028927266597747803,
0.005174829158931971,
0.04808570072054863,
0.05950818210840225,
0.03694291412830353,
0.041101954877376556,
-0.07111897319555283,
0.061451081186532974,
-0.06278520077466965,
-0.11226452142000198,
-0.04257739707827568,
-0.005422866903245449,
0.00011432790051912889,
0.07346735894680023,
0.11052975058555603,
-0.05098198726773262,
0.09580544382333755,
-0.050767768174409866,
0.046003878116607666,
0.0289035402238369,
-0.16526201367378235,
0.008764104917645454,
-0.08482556790113449,
0.05248309671878815,
0.0030253108125180006,
0.15688744187355042,
0.028536081314086914,
-0.03175791725516319,
0.02630779519677162,
0.05105529725551605,
0.06318540126085281,
-0.00840448122471571,
0.19050461053848267,
0.09726009517908096,
-0.04487645998597145,
-0.09418396651744843,
0.08849480748176575,
0.05022666975855827,
0.05143674090504646,
0.1403687596321106,
-0.020687401294708252,
0.012512898072600365,
0.07724163681268692,
0.014415515586733818,
0.017872430384159088,
-0.07756411284208298,
-0.09487451612949371,
-0.011494439095258713,
0.025514457374811172,
-0.02882363088428974,
0.1138797178864479,
0.16729387640953064,
-0.0008394720498472452,
0.013234704732894897,
-0.01801590994000435,
-0.05735309422016144,
-0.20129387080669403,
-0.1959676295518875,
-0.09400797635316849,
-0.13690303266048431,
-0.0009418319095857441,
-0.13835963606834412,
0.03616710752248764,
0.042394787073135376,
0.09917435795068741,
-0.039446551352739334,
0.019261397421360016,
0.026794444769620895,
-0.10323353111743927,
0.039175424724817276,
-0.04838612675666809,
0.09421038627624512,
-0.007761404849588871,
0.005773975048214197,
-0.046786144375801086,
0.02436385303735733,
0.02127891033887863,
0.038409680128097534,
-0.012736459262669086,
0.024856114760041237,
-0.11602245271205902,
-0.09478921443223953,
-0.058010075241327286,
0.0558818019926548,
0.0046934462152421474,
0.18179026246070862,
0.02449701726436615,
-0.03384847193956375,
0.0275272186845541,
0.19317778944969177,
-0.06196035072207451,
-0.09709009528160095,
-0.08241496980190277,
0.2182236760854721,
-0.018931716680526733,
0.09253086894750595,
-0.035876765847206116,
0.012440751306712627,
-0.07121489197015762,
0.33243879675865173,
0.29320472478866577,
-0.10524016618728638,
0.010426074266433716,
-0.0019151283195242286,
0.0405552051961422,
0.1290767937898636,
0.07575080543756485,
0.11663594841957092,
0.256552129983902,
-0.06501701474189758,
-0.057690393179655075,
-0.014668738469481468,
-0.027142031118273735,
-0.06502988189458847,
0.04214107245206833,
0.04939494654536247,
-0.07117093354463577,
-0.00912293791770935,
0.12242040783166885,
-0.24606983363628387,
0.04577518254518509,
-0.13518153131008148,
-0.14807558059692383,
-0.0726354643702507,
0.002261551097035408,
0.09914402663707733,
0.010166509076952934,
0.08546656370162964,
-0.014570544473826885,
-0.0710548534989357,
0.03896206244826317,
0.021210450679063797,
-0.2144380509853363,
0.021960165351629257,
0.07259857654571533,
-0.028754761442542076,
-0.07154250144958496,
-0.013138728216290474,
0.08338925242424011,
0.09720319509506226,
0.03173141926527023,
-0.009079075418412685,
0.04570826143026352,
-0.0000614441087236628,
-0.06747788935899734,
0.035688117146492004,
0.022403022274374962,
0.01331246830523014,
-0.05491582676768303,
0.07895619422197342,
-0.17176033556461334,
0.020258452743291855,
-0.03599786013364792,
-0.06506339460611343,
-0.006352625321596861,
0.02872123196721077,
-0.06236473098397255,
0.0810769721865654,
0.08681372553110123,
-0.010693355463445187,
-0.015406738966703415,
-0.019259916618466377,
-0.012411676347255707,
-0.028850549831986427,
-0.07069326192140579,
-0.09390060603618622,
-0.15529757738113403,
-0.12466321885585785,
0.08110006153583527,
-0.008061634376645088,
-0.2096063792705536,
0.012769150547683239,
-0.13104628026485443,
0.04622570425271988,
-0.10809949785470963,
0.09371429681777954,
0.08394473046064377,
0.020185640081763268,
-0.007141938898712397,
0.003890183288604021,
0.036074474453926086,
0.07894916087388992,
-0.13067346811294556,
-0.08049263805150986
] |
null | null | null |
# Rick and Morty DialoGPT Model | {"tags": ["conversational"]} | text-generation | Koro/DialoGPT-small-rickandmorty | [
"conversational",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#conversational #region-us
|
# Rick and Morty DialoGPT Model | [
"# Rick and Morty DialoGPT Model"
] | [
"TAGS\n#conversational #region-us \n",
"# Rick and Morty DialoGPT Model"
] | [
10,
10
] | [
"passage: TAGS\n#conversational #region-us \n# Rick and Morty DialoGPT Model"
] | [
0.005093088839203119,
0.19927947223186493,
-0.008960546925663948,
-0.03488808870315552,
0.044061098247766495,
0.040484581142663956,
0.15607783198356628,
0.07202912867069244,
0.12603838741779327,
-0.051908183842897415,
0.10778447240591049,
0.09289693832397461,
-0.04007204249501228,
-0.06258952617645264,
-0.03719186410307884,
-0.32119154930114746,
0.02658304013311863,
0.02152313105762005,
-0.06819593161344528,
0.06652167439460754,
0.018569394946098328,
-0.04726721718907356,
0.005917537957429886,
-0.010013122111558914,
-0.060647282749414444,
0.0483379028737545,
-0.0024744209367781878,
0.02396104671061039,
0.13110382854938507,
0.02105668932199478,
0.09319009631872177,
0.051562417298555374,
-0.04639055207371712,
-0.1828426867723465,
0.047561824321746826,
-0.037384144961833954,
-0.038049403578042984,
0.023922666907310486,
-0.013536892831325531,
-0.05016140639781952,
0.09986547380685806,
0.21584706008434296,
0.054361313581466675,
0.04436936974525452,
-0.2460358589887619,
-0.11453622579574585,
-0.03669647499918938,
0.02178594470024109,
0.00875016674399376,
0.036197397857904434,
-0.023609669879078865,
0.17765140533447266,
-0.1028178259730339,
0.03621787205338478,
0.04406966269016266,
-0.1749080866575241,
0.03300726041197777,
0.2589235007762909,
0.021619552746415138,
0.04522238299250603,
-0.0363750196993351,
0.10220155864953995,
0.007038028445094824,
-0.0584787018597126,
-0.2099609375,
-0.08253931254148483,
0.008414327166974545,
0.08041434735059738,
-0.060495588928461075,
0.023312807083129883,
0.3413132131099701,
0.05509517714381218,
0.09255621582269669,
0.08556169271469116,
-0.02703225612640381,
0.02864384651184082,
0.019243327900767326,
-0.13570590317249298,
-0.1019349917769432,
0.11877548694610596,
0.002970906672999263,
-0.07233241945505142,
-0.08053808659315109,
0.03441525250673294,
-0.1927192211151123,
0.1647808998823166,
0.008435215801000595,
0.08480226993560791,
-0.2620662748813629,
-0.03971667215228081,
-0.1885434240102768,
-0.06844177097082138,
0.06468210369348526,
-0.08452565222978592,
-0.05048491433262825,
-0.03132736682891846,
0.048701267689466476,
0.1259215623140335,
0.06460227817296982,
0.09181136637926102,
-0.04398289695382118,
0.05161767825484276,
-0.05196542665362358,
0.04876096546649933,
0.12826848030090332,
-0.012493260204792023,
0.006537395063787699,
0.05693710967898369,
-0.04212743416428566,
-0.08507057279348373,
-0.0319429375231266,
-0.05306656286120415,
-0.17340140044689178,
0.09638675302267075,
-0.03338293358683586,
0.06680402904748917,
0.03658623620867729,
-0.0026876379270106554,
-0.08655518293380737,
-0.015973763540387154,
-0.05551845207810402,
0.043333154171705246,
-0.033995527774095535,
0.02535625360906124,
-0.0037468529772013426,
0.16803519427776337,
-0.07432708889245987,
0.09066230058670044,
0.06473100185394287,
-0.017324622720479965,
-0.06070904806256294,
-0.034749481827020645,
-0.036221135407686234,
0.005749454256147146,
0.041516926139593124,
0.07471869140863419,
0.0655311569571495,
-0.07331697642803192,
-0.037864651530981064,
-0.006314437836408615,
0.014693211764097214,
-0.0457860566675663,
-0.022359510883688927,
-0.08025750517845154,
0.01414762157946825,
-0.05645216628909111,
-0.011759442277252674,
-0.09328565746545792,
-0.05530093237757683,
0.07203363627195358,
-0.014365963637828827,
0.060205310583114624,
-0.0701151117682457,
0.05231479927897453,
-0.015981432050466537,
0.03287772461771965,
-0.059715598821640015,
0.030803240835666656,
0.016564862802624702,
0.018709182739257812,
0.012307371012866497,
0.03293420001864433,
-0.21055461466312408,
0.026217469945549965,
-0.08323519676923752,
0.2414100617170334,
-0.1299189329147339,
-0.05120941996574402,
0.16905738413333893,
-0.04173998162150383,
-0.1135987862944603,
0.08401066064834595,
-0.07689128071069717,
0.15707483887672424,
0.08989095687866211,
0.31781139969825745,
-0.004457602743059397,
-0.0777219906449318,
0.13728156685829163,
0.1620863527059555,
-0.08907193690538406,
0.050430964678525925,
0.057051390409469604,
-0.08390634506940842,
-0.11532563716173172,
-0.0479414165019989,
0.1027999222278595,
0.04135419428348541,
-0.09742048382759094,
-0.012319591827690601,
0.08109842985868454,
-0.008996035903692245,
0.06650668382644653,
0.05055687949061394,
0.05285610631108284,
-0.04735955595970154,
-0.01197507232427597,
0.039749130606651306,
0.08345291763544083,
0.05727430060505867,
-0.018146486952900887,
-0.11017901450395584,
-0.019310561940073967,
-0.028830192983150482,
0.01843980886042118,
-0.13841216266155243,
-0.16821293532848358,
-0.09570493549108505,
0.2554621696472168,
0.15128597617149353,
0.2650822103023529,
0.07191749662160873,
-0.14178811013698578,
-0.005689598619937897,
0.08205141127109528,
0.12605541944503784,
0.04237942397594452,
-0.00691152224317193,
-0.1397124081850052,
0.14400774240493774,
-0.10660003870725632,
0.04693154990673065,
-0.022138452157378197,
-0.04050089791417122,
0.0454598031938076,
0.09398163110017776,
0.0007169296150095761,
0.010341568849980831,
0.0570530891418457,
-0.04464103654026985,
0.03031524270772934,
0.0035182926803827286,
0.06480670720338821,
-0.0028353806119412184,
-0.12002088874578476,
0.1837030053138733,
-0.17581744492053986,
0.12918855249881744,
0.11474857479333878,
-0.1865343302488327,
0.02269437164068222,
-0.14352864027023315,
0.011034169234335423,
-0.001644918811507523,
0.07115229964256287,
-0.0369642972946167,
0.2007889747619629,
-0.012581255286931992,
0.017807582393288612,
0.012262963689863682,
0.00797799602150917,
-0.09519333392381668,
-0.0673462525010109,
-0.08957753330469131,
0.15583692491054535,
0.054638106375932693,
-0.20499926805496216,
0.15496115386486053,
0.14944685995578766,
0.13792583346366882,
0.16626311838626862,
-0.035315580666065216,
0.02492690645158291,
-0.04748758673667908,
-0.0023018282372504473,
-0.049651965498924255,
0.05418285354971886,
-0.20891423523426056,
0.03674430027604103,
0.0416412316262722,
0.025932205840945244,
0.090814970433712,
-0.11508488655090332,
-0.09960871934890747,
-0.0012944129994139075,
0.011895142495632172,
-0.02932008169591427,
0.13907773792743683,
-0.05996984243392944,
0.07548024505376816,
0.03162184730172157,
-0.13770101964473724,
0.08469053357839584,
0.013422522693872452,
-0.05712267756462097,
0.07241236418485641,
-0.15361125767230988,
-0.19102078676223755,
0.009044108912348747,
-0.15493468940258026,
0.0024322255048900843,
0.011157144792377949,
0.04147210344672203,
-0.1765478104352951,
-0.018209414556622505,
0.09374940395355225,
0.05240244045853615,
-0.25197264552116394,
-0.049788910895586014,
0.039465080946683884,
-0.008151544257998466,
-0.17465746402740479,
-0.05130496621131897,
-0.03048846684396267,
-0.11975168436765671,
0.0064023020677268505,
0.03030807338654995,
-0.22884686291217804,
-0.025525687262415886,
0.27886340022087097,
0.10716938972473145,
0.08012106269598007,
-0.008384674787521362,
0.17203307151794434,
-0.09913051128387451,
-0.017490388825535774,
0.18211548030376434,
-0.08006906509399414,
0.08220591396093369,
0.13424181938171387,
0.05038522556424141,
-0.013486484996974468,
-0.0023367961402982473,
0.011113397777080536,
-0.08695077151060104,
-0.20338667929172516,
-0.06530693918466568,
-0.09319514036178589,
0.07883264869451523,
-0.04742532595992088,
0.018764859065413475,
0.14324623346328735,
-0.018184417858719826,
0.014913366176187992,
-0.1564049869775772,
0.046915024518966675,
0.02400539070367813,
0.2328663021326065,
-0.12752635776996613,
0.04422320798039436,
-0.012422836385667324,
-0.12162601947784424,
0.06895037740468979,
0.10247695446014404,
0.013950814493000507,
0.2427951693534851,
0.14603783190250397,
0.03863789513707161,
0.016271021217107773,
0.10279303044080734,
-0.028051668778061867,
-0.02202589251101017,
-0.050653647631406784,
-0.047210633754730225,
-0.029512574896216393,
0.008738807402551174,
0.012120279483497143,
0.14733825623989105,
-0.19399704039096832,
0.07101354748010635,
0.0375581793487072,
0.029072539880871773,
-0.23200397193431854,
0.10662084072828293,
0.0026359762996435165,
0.011091831140220165,
0.07778859883546829,
0.09189928323030472,
-0.02992522157728672,
0.12010508030653,
0.0082794688642025,
-0.031159937381744385,
-0.03695343807339668,
0.058943141251802444,
0.08855005353689194,
-0.05304950475692749,
0.06036393344402313,
-0.22304584085941315,
-0.07221268862485886,
-0.01222324464470148,
0.0931214913725853,
-0.23182468116283417,
0.24350380897521973,
0.029420651495456696,
-0.11688882112503052,
-0.06816235929727554,
-0.11806145310401917,
0.011251241900026798,
0.12812674045562744,
0.10364079475402832,
0.012222333811223507,
-0.15639635920524597,
0.1327642798423767,
-0.033299803733825684,
0.007126388605684042,
0.09494879096746445,
-0.018043827265501022,
-0.12896977365016937,
-0.027226069942116737,
0.049248311668634415,
0.05070166662335396,
-0.12641185522079468,
0.012676750309765339,
-0.08722805976867676,
0.055398475378751755,
0.06068314239382744,
-0.057186309248209,
0.058611270040273666,
0.00022942572832107544,
-0.06171861290931702,
0.14019261300563812,
0.12511460483074188,
-0.009355456568300724,
-0.07149095088243484,
0.03976484015583992,
0.08419517427682877,
-0.07031165808439255,
-0.10671504586935043,
-0.07404186576604843,
-0.04299936816096306,
-0.0920686200261116,
-0.13994358479976654,
0.09604387730360031,
-0.07562433928251266,
0.026293374598026276,
-0.06986434012651443,
0.25067952275276184,
0.008677582256495953,
0.08310393989086151,
0.02180998958647251,
0.016779139637947083,
-0.07394147664308548,
-0.08619123697280884,
0.061612579971551895,
-0.11350357532501221,
-0.02375236712396145,
0.04943949356675148,
0.01786453276872635,
0.053557951003313065,
-0.02270917035639286,
-0.029556304216384888,
0.2086198329925537,
0.22133435308933258,
-0.030382633209228516,
0.1042296513915062,
0.18644845485687256,
-0.02541784942150116,
-0.2135300189256668,
-0.02283230982720852,
-0.13852345943450928,
-0.12654928863048553,
0.04185314476490021,
-0.15561018884181976,
0.10798218101263046,
0.0066896951757371426,
-0.04185524955391884,
0.04086903855204582,
-0.27072957158088684,
-0.047928258776664734,
0.24134133756160736,
-0.07310473173856735,
0.6349372267723083,
-0.09364720433950424,
-0.0945897325873375,
0.003467736067250371,
-0.1374080777168274,
0.2007410079240799,
-0.00476799113675952,
0.024450063705444336,
0.053119078278541565,
0.20879392325878143,
0.08057531714439392,
0.032819654792547226,
0.14245431125164032,
0.0216042622923851,
-0.023203397169709206,
-0.07568246126174927,
-0.32027003169059753,
-0.011915621347725391,
0.012741667218506336,
-0.07255344837903976,
0.055950846523046494,
0.026781335473060608,
-0.1548631638288498,
-0.013244583271443844,
-0.07303768396377563,
-0.03240412473678589,
0.022737210616469383,
-0.07548820227384567,
-0.05451369658112526,
0.020909659564495087,
-0.06618944555521011,
-0.011021331883966923,
0.25409480929374695,
-0.14411328732967377,
0.08943235874176025,
-0.051782917231321335,
0.1301589459180832,
-0.047220319509506226,
-0.08075594156980515,
-0.027935979887843132,
-0.09503775089979172,
0.046199142932891846,
-0.11181595921516418,
0.012414053082466125,
0.1270957589149475,
0.008800816722214222,
0.10045554488897324,
0.09825074672698975,
-0.0941273644566536,
0.010994166135787964,
0.07919836789369583,
-0.20002929866313934,
-0.2597513198852539,
-0.0653623566031456,
0.07994753122329712,
0.09094631671905518,
0.06969662010669708,
0.13793474435806274,
0.10743453353643417,
0.0007702794973738492,
0.08217066526412964,
0.0261958260089159,
-0.0550357848405838,
-0.041952986270189285,
0.09857448935508728,
0.03329350799322128,
-0.07949704676866531,
0.07395603507757187,
0.007206845562905073,
-0.0679124966263771,
-0.03528072312474251,
0.1383197009563446,
-0.05266431346535683,
-0.07508807629346848,
-0.1505483090877533,
0.24179308116436005,
-0.10337374359369278,
-0.006293039303272963,
0.03837551176548004,
-0.047249916940927505,
-0.016558021306991577,
0.1443433165550232,
0.022705204784870148,
0.016919145360589027,
-0.05248528718948364,
-0.040650319308042526,
0.04180099070072174,
0.017249559983611107,
-0.050711214542388916,
-0.07837432622909546,
-0.014114108867943287,
-0.09337159991264343,
-0.03902788087725639,
0.11975296586751938,
-0.10052963346242905,
-0.16792936623096466,
-0.25990885496139526,
0.10026057809591293,
0.03274236246943474,
-0.1167624220252037,
-0.08463843911886215,
-0.04620477557182312,
0.04892631247639656,
-0.08699973672628403,
-0.003664802759885788,
-0.003061257302761078,
-0.11098460108041763,
0.12011771649122238,
0.040225546807050705,
0.005924798548221588,
-0.026815667748451233,
-0.00933952908962965,
0.11984387785196304,
0.01860220916569233,
0.12552566826343536,
0.11955627053976059,
-0.0503028929233551,
0.1298527866601944,
-0.17915739119052887,
-0.03492686524987221,
0.09856951236724854,
0.009500018320977688,
0.04856106638908386,
0.01987254060804844,
-0.08864757418632507,
0.004519523587077856,
0.0657036229968071,
0.03558541461825371,
0.020027168095111847,
-0.0247842688113451,
0.050002846866846085,
-0.021219005808234215,
-0.19572551548480988,
-0.011596687138080597,
-0.07206442207098007,
0.08400388807058334,
0.06284194439649582,
0.05382416024804115,
0.06626993417739868,
0.08269784599542618,
0.00038471072912216187,
0.04558832570910454,
0.032241713255643845,
-0.1175985112786293,
0.12396544218063354,
-0.04935513809323311,
0.02689611352980137,
-0.019824331626296043,
0.1945769339799881,
-0.049256425350904465,
-0.07514640688896179,
0.03366246819496155,
0.09796831756830215,
0.047966960817575455,
-0.03678353503346443,
0.12542925775051117,
0.0963071882724762,
-0.04567568376660347,
-0.1311291605234146,
0.08517805486917496,
-0.022730255499482155,
0.02603459358215332,
0.12211742997169495,
-0.019473455846309662,
-0.025590866804122925,
-0.006712807808071375,
0.04836605116724968,
-0.0003157970495522022,
0.07477413862943649,
-0.15382319688796997,
0.03625618666410446,
-0.04040079936385155,
-0.035431262105703354,
0.11927226185798645,
0.17616456747055054,
0.015233724378049374,
0.024570196866989136,
-0.07248900085687637,
-0.026722943410277367,
-0.19999241828918457,
-0.13544176518917084,
-0.04496445134282112,
-0.12085945159196854,
0.008213046006858349,
-0.10327867418527603,
0.017612764611840248,
0.1478513926267624,
0.08246800303459167,
-0.03211311623454094,
-0.022296985611319542,
-0.06513120979070663,
-0.09278932213783264,
-0.0696822851896286,
-0.03009921871125698,
0.06278026849031448,
-0.074339859187603,
-0.00001888411679829005,
-0.06779459118843079,
-0.008361054584383965,
-0.04647034779191017,
0.000977522344328463,
-0.0014105649897828698,
-0.07105173170566559,
-0.12638138234615326,
-0.07731177657842636,
-0.058932531625032425,
0.045329153537750244,
-0.02662266232073307,
0.1910039186477661,
-0.0037961099296808243,
0.03435399755835533,
0.022175773978233337,
0.1398942768573761,
-0.009619352407753468,
-0.01763329468667507,
-0.053413424640893936,
0.11594731360673904,
-0.11567986756563187,
0.09601164609193802,
-0.07564392685890198,
-0.00501846382394433,
-0.027263253927230835,
0.21498893201351166,
0.29231253266334534,
-0.10998830944299698,
-0.016043106094002724,
-0.07445577532052994,
0.05298156663775444,
0.09711715579032898,
0.05918237566947937,
0.05532761290669441,
0.22289885580539703,
-0.06830299645662308,
-0.01880456879734993,
0.015741631388664246,
0.007904116995632648,
0.016872091218829155,
-0.041596803814172745,
0.08965419977903366,
-0.04859465733170509,
-0.06184810400009155,
0.1736687868833542,
-0.1969393640756607,
0.024376049637794495,
-0.06537210196256638,
-0.18500888347625732,
-0.06580833345651627,
-0.05123363807797432,
0.11070949584245682,
-0.04745003581047058,
0.11779576539993286,
-0.05023210123181343,
-0.10648377984762192,
-0.10118154436349869,
0.02754831127822399,
-0.3170351982116699,
-0.10647138208150864,
0.13742347061634064,
0.10645290464162827,
-0.05234956368803978,
0.026148373261094093,
0.10853167623281479,
0.06901876628398895,
0.003144683549180627,
0.015313681215047836,
0.029571400955319405,
0.05534031614661217,
-0.08242599666118622,
-0.15999473631381989,
-0.03311701491475105,
0.015353710390627384,
-0.01757018268108368,
0.11000465601682663,
-0.196466326713562,
-0.03249166160821915,
0.058143120259046555,
-0.1178491935133934,
0.007811888586729765,
0.07849699258804321,
-0.10905780643224716,
0.08210452646017075,
0.04756347835063934,
0.026729518547654152,
-0.03891897574067116,
0.034974317997694016,
-0.014891442842781544,
0.024647563695907593,
-0.0650169625878334,
-0.11080547422170639,
-0.01006778422743082,
-0.10348617285490036,
0.09688367694616318,
-0.036617178469896317,
-0.07154173403978348,
0.004969981033354998,
-0.12252175807952881,
0.0964471772313118,
0.01982632279396057,
0.06508804857730865,
0.08371153473854065,
0.0465007983148098,
0.010308354161679745,
-0.0849994644522667,
0.060866937041282654,
0.015069077722728252,
-0.08464939147233963,
-0.050192415714263916
] |
null | null | transformers | # Bangla BERT Base
Here we published a pretrained Bangla bert language model as **bangla-bert**! which is now available in huggingface model hub.
Here we described [bangla-bert](https://github.com/Kowsher/bert-base-bangla) which is a pretrained Bangla language model based on mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and the GitHub [repository](https://github.com/google-research/bert)
## Corpus Details
We trained the Bangla bert language model using BanglaLM dataset from kaggle [BanglaLM](https://www.kaggle.com/gakowsher/bangla-language-model-dataset). There is 3 version of dataset which is almost 40GB.
After downloading the dataset, we went on the way to mask LM.
**bangla-bert Tokenizer**
```py
from transformers import AutoTokenizer, AutoModel
bnbert_tokenizer = AutoTokenizer.from_pretrained("Kowsher/bangla-bert")
text = "খাঁটি সোনার চাইতে খাঁটি আমার দেশের মাটি"
bnbert_tokenizer.tokenize(text)
# output: ['খাটি', 'সে', '##ানার', 'চাইতে', 'খাটি', 'আমার', 'দেশের', 'মাটি']
```
**MASK Generation**
here, we can use bert base bangla model as for masked language modeling:
```py
from transformers import BertForMaskedLM, BertTokenizer, pipeline
model = BertForMaskedLM.from_pretrained("Kowsher/bangla-bert")
tokenizer = BertTokenizer.from_pretrained("Kowsher/bangla-bert")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"আমি বাংলার গান {nlp.tokenizer.mask_token}"):
print(pred)
# {'sequence': 'আমি বাংলার গান লিখি', 'score': 0.17955434322357178, 'token': 24749, 'token_str': 'লিখি'}
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"তুই রাজাকার তুই {nlp.tokenizer.mask_token}"):
print(pred)
# {'sequence': 'তুই রাজাকার তুই রাজাকার', 'score': 0.9975168704986572, 'token': 13401, 'token_str': 'রাজাকার'}
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"বাংলা আমার {nlp.tokenizer.mask_token}"):
print(pred)
# {'sequence': 'বাংলা আমার অহংকার', 'score': 0.5679506063461304, 'token': 19009, 'token_str': 'অহংকার'}
```
**Cite this work**
M. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, "Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding," in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662.
## Author
[Kowsher](http://kowsher.org/)
| {"language": "bn", "tags": ["Bert base Bangla", "Bengali Bert", "Bengali lm", "Bangla Base Bert", "Bangla Bert language model", "Bangla Bert"], "datasets": ["BanglaLM dataset"]} | fill-mask | Kowsher/bangla-bert | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"Bert base Bangla",
"Bengali Bert",
"Bengali lm",
"Bangla Base Bert",
"Bangla Bert language model",
"Bangla Bert",
"bn",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1810.04805"
] | [
"bn"
] | TAGS
#transformers #pytorch #bert #fill-mask #Bert base Bangla #Bengali Bert #Bengali lm #Bangla Base Bert #Bangla Bert language model #Bangla Bert #bn #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us
| # Bangla BERT Base
Here we published a pretrained Bangla bert language model as bangla-bert! which is now available in huggingface model hub.
Here we described bangla-bert which is a pretrained Bangla language model based on mask language modeling described in BERT and the GitHub repository
## Corpus Details
We trained the Bangla bert language model using BanglaLM dataset from kaggle BanglaLM. There is 3 version of dataset which is almost 40GB.
After downloading the dataset, we went on the way to mask LM.
bangla-bert Tokenizer
MASK Generation
here, we can use bert base bangla model as for masked language modeling:
Cite this work
M. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, "Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding," in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662.
## Author
Kowsher
| [
"# Bangla BERT Base\nHere we published a pretrained Bangla bert language model as bangla-bert! which is now available in huggingface model hub. \nHere we described bangla-bert which is a pretrained Bangla language model based on mask language modeling described in BERT and the GitHub repository",
"## Corpus Details\nWe trained the Bangla bert language model using BanglaLM dataset from kaggle BanglaLM. There is 3 version of dataset which is almost 40GB.\nAfter downloading the dataset, we went on the way to mask LM.\n\n\nbangla-bert Tokenizer\n\n\nMASK Generation\nhere, we can use bert base bangla model as for masked language modeling:\n\n\nCite this work\nM. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, \"Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding,\" in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662.",
"## Author\nKowsher"
] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #Bert base Bangla #Bengali Bert #Bengali lm #Bangla Base Bert #Bangla Bert language model #Bangla Bert #bn #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Bangla BERT Base\nHere we published a pretrained Bangla bert language model as bangla-bert! which is now available in huggingface model hub. \nHere we described bangla-bert which is a pretrained Bangla language model based on mask language modeling described in BERT and the GitHub repository",
"## Corpus Details\nWe trained the Bangla bert language model using BanglaLM dataset from kaggle BanglaLM. There is 3 version of dataset which is almost 40GB.\nAfter downloading the dataset, we went on the way to mask LM.\n\n\nbangla-bert Tokenizer\n\n\nMASK Generation\nhere, we can use bert base bangla model as for masked language modeling:\n\n\nCite this work\nM. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, \"Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding,\" in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662.",
"## Author\nKowsher"
] | [
76,
66,
169,
5
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #Bert base Bangla #Bengali Bert #Bengali lm #Bangla Base Bert #Bangla Bert language model #Bangla Bert #bn #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us \n# Bangla BERT Base\nHere we published a pretrained Bangla bert language model as bangla-bert! which is now available in huggingface model hub. \nHere we described bangla-bert which is a pretrained Bangla language model based on mask language modeling described in BERT and the GitHub repository## Corpus Details\nWe trained the Bangla bert language model using BanglaLM dataset from kaggle BanglaLM. There is 3 version of dataset which is almost 40GB.\nAfter downloading the dataset, we went on the way to mask LM.\n\n\nbangla-bert Tokenizer\n\n\nMASK Generation\nhere, we can use bert base bangla model as for masked language modeling:\n\n\nCite this work\nM. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, \"Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding,\" in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662.## Author\nKowsher"
] | [
-0.07622753828763962,
0.024208925664424896,
-0.004750358872115612,
0.054171372205019,
0.08661749958992004,
-0.04043620079755783,
0.12146986275911331,
0.04489269107580185,
0.09537727385759354,
0.05250440910458565,
0.05032195895910263,
-0.029337391257286072,
0.08698710054159164,
0.18642108142375946,
0.058616265654563904,
-0.3414820432662964,
0.05052975192666054,
-0.03442538529634476,
-0.05992560833692551,
0.08978862315416336,
0.13209275901317596,
-0.0606531947851181,
0.09330528229475021,
0.018249772489070892,
0.011315942741930485,
0.03280841186642647,
-0.04277688264846802,
-0.09734348207712173,
0.02965741977095604,
0.05822216719388962,
0.11103080213069916,
-0.011122184805572033,
0.05930313467979431,
-0.13774056732654572,
0.022579262033104897,
0.006067266222089529,
0.010606173425912857,
0.022329114377498627,
-0.002216524677351117,
-0.052755970507860184,
0.04799598455429077,
-0.05065125972032547,
0.042779359966516495,
0.04794344678521156,
-0.1295928806066513,
-0.07409822940826416,
-0.06385774165391922,
0.1115540936589241,
0.06934212893247604,
0.02174297533929348,
-0.026264933869242668,
-0.010633852332830429,
-0.02676386944949627,
0.061649661511182785,
0.18930064141750336,
-0.22699074447155,
-0.04353606328368187,
0.01361801940947771,
0.15315386652946472,
0.08621605485677719,
-0.07839266210794449,
0.05799183249473572,
0.06495797634124756,
0.015701625496149063,
0.11443310976028442,
-0.07721555233001709,
0.14518608152866364,
-0.029521243646740913,
-0.10852909833192825,
0.021542496979236603,
0.14004597067832947,
-0.0344884917140007,
-0.08173060417175293,
-0.052572302520275116,
-0.02912954054772854,
0.05666181817650795,
-0.0029394016601145267,
-0.04799804836511612,
0.01943867653608322,
-0.03526735678315163,
0.03971360623836517,
-0.13112415373325348,
-0.02160162292420864,
-0.037353478372097015,
-0.04807722195982933,
0.22215993702411652,
0.014291740022599697,
0.01383861992508173,
-0.05627931281924248,
-0.020095763728022575,
-0.1033087894320488,
-0.11243147403001785,
-0.03871281072497368,
-0.08274438977241516,
0.0024485918693244457,
0.06731275469064713,
0.013273588381707668,
-0.06249997019767761,
-0.035577476024627686,
0.16971752047538757,
-0.0779576301574707,
0.06469827145338058,
-0.020132390782237053,
0.029288990423083305,
0.08749610930681229,
0.11142011731863022,
-0.12812113761901855,
-0.1513388454914093,
0.02877151034772396,
0.016430554911494255,
0.01911252737045288,
-0.07008663564920425,
-0.0306591484695673,
-0.004529772326350212,
-0.00009614007285563275,
0.0702437162399292,
-0.02445865608751774,
0.050878383219242096,
-0.00936109945178032,
-0.058526769280433655,
0.0912664458155632,
-0.15519797801971436,
-0.026525594294071198,
-0.0025392642710357904,
-0.04939649626612663,
-0.04997545853257179,
0.08047112077474594,
-0.017214786261320114,
-0.061442334204912186,
-0.05903977155685425,
-0.07297389209270477,
-0.04588109999895096,
-0.10744869709014893,
-0.1441625952720642,
0.0035414514131844044,
-0.12056009471416473,
-0.02469456195831299,
-0.12721428275108337,
-0.14185699820518494,
0.0015022651059553027,
0.031164145097136497,
-0.05335044115781784,
0.011347143910825253,
-0.05799354612827301,
-0.014989852905273438,
0.05399613454937935,
-0.05594279617071152,
0.0009031554800458252,
-0.010842644609510899,
0.015976976603269577,
0.00043616030598059297,
0.11172738671302795,
-0.04745953902602196,
0.04932055249810219,
-0.002305651316419244,
0.09630727767944336,
-0.2592983841896057,
0.0729077011346817,
-0.15516966581344604,
-0.03428458422422409,
-0.1343420147895813,
-0.03350117430090904,
-0.019899168983101845,
0.06178261339664459,
0.10641808807849884,
0.11695396155118942,
-0.10801658034324646,
-0.03533196449279785,
0.21535980701446533,
-0.0991523489356041,
-0.04871745407581329,
0.09091036021709442,
-0.03330443426966667,
0.08602012693881989,
0.04058809578418732,
0.17880108952522278,
-0.005898559466004372,
-0.06990054249763489,
0.0009290805319324136,
-0.012555539608001709,
0.05637575313448906,
0.04296436533331871,
0.09747643768787384,
-0.04999648407101631,
0.0069055319763720036,
0.005730269011110067,
-0.014738108031451702,
0.009122859686613083,
-0.03734704107046127,
-0.024980613961815834,
0.05535968020558357,
-0.04957635700702667,
0.08379121124744415,
-0.012153277173638344,
-0.00482439249753952,
-0.0362275168299675,
-0.07695242762565613,
0.13207358121871948,
0.0845126137137413,
-0.06545296311378479,
0.054761145263910294,
-0.1243780255317688,
0.13842709362506866,
-0.09276960045099258,
-0.018604492768645287,
-0.14004014432430267,
0.00023200089344754815,
0.030283786356449127,
0.004007197916507721,
0.09927251189947128,
-0.0866306945681572,
0.04167915880680084,
0.0607374869287014,
-0.06067098304629326,
-0.00039693157305009663,
-0.021898409351706505,
0.013940524309873581,
-0.07413093000650406,
-0.12534961104393005,
-0.032633740454912186,
-0.05820096656680107,
0.0016805884661152959,
-0.10417446494102478,
0.015432440675795078,
-0.05424824729561806,
0.0784420296549797,
0.03625619038939476,
-0.01838783547282219,
0.06079331412911415,
0.03425410017371178,
0.010157383978366852,
-0.024642834439873695,
0.04702075943350792,
-0.02551986835896969,
-0.029748164117336273,
0.2170199453830719,
-0.13985054194927216,
-0.13580885529518127,
0.056140195578336716,
-0.018918892368674278,
-0.006184376776218414,
0.02191196382045746,
0.008517516776919365,
-0.02820567600429058,
0.033263832330703735,
-0.04020428657531738,
0.21692226827144623,
0.01140408031642437,
0.13850301504135132,
-0.11492796987295151,
0.021515950560569763,
0.008029798045754433,
-0.07479684054851532,
-0.022406285628676414,
0.09273070096969604,
0.021148862317204475,
-0.16634730994701385,
0.1012403815984726,
0.08110735565423965,
0.024627672508358955,
0.2856890857219696,
0.02393503300845623,
-0.06844296306371689,
-0.07556627690792084,
-0.06502105295658112,
-0.026044579222798347,
0.12856583297252655,
-0.10665243119001389,
-0.06530491262674332,
0.020468223839998245,
0.024241695180535316,
0.04793474078178406,
-0.004854088183492422,
0.057749610394239426,
0.00021581932378467172,
-0.03181629255414009,
-0.018032491207122803,
0.047476235777139664,
-0.062409669160842896,
0.0426330491900444,
0.03093399666249752,
-0.00484383525326848,
-0.027701709419488907,
-0.02473912388086319,
-0.08071457594633102,
0.19429147243499756,
-0.13440419733524323,
-0.1883385181427002,
-0.11941853165626526,
-0.13102051615715027,
-0.05615239590406418,
-0.004426163155585527,
0.013965867459774017,
-0.04280411824584007,
-0.06584998220205307,
-0.05826028436422348,
0.0508437380194664,
-0.04588935524225235,
-0.0746917575597763,
-0.036781564354896545,
-0.07007574290037155,
-0.041020914912223816,
-0.16179460287094116,
-0.03740551695227623,
0.022169239819049835,
-0.052317697554826736,
0.038256969302892685,
-0.10878104716539383,
0.036456722766160965,
0.08225728571414948,
-0.0021155113354325294,
-0.013186789117753506,
-0.011988182552158833,
0.1754235476255417,
-0.061872050166130066,
0.09485306590795517,
0.042863547801971436,
-0.02889910899102688,
0.06444946676492691,
0.08740591257810593,
-0.01438379567116499,
-0.02043161727488041,
0.02681818976998329,
0.06331054121255875,
-0.05566587671637535,
-0.23942987620830536,
-0.07276996970176697,
-0.047460608184337616,
0.02982824295759201,
-0.013181126676499844,
-0.003651652717962861,
0.012030491605401039,
0.031577128916978836,
-0.022289467975497246,
0.025298791006207466,
0.05744579806923866,
0.04468570277094841,
-0.06262830644845963,
-0.06102510914206505,
0.08477554470300674,
0.009772458113729954,
0.011736053042113781,
0.05511678382754326,
0.03289152309298515,
0.23917156457901,
0.030570637434720993,
0.10832712799310684,
0.12735861539840698,
0.06215913966298103,
0.07067916542291641,
0.10618306696414948,
-0.11173804104328156,
0.07319579273462296,
-0.05073405057191849,
-0.06569147855043411,
-0.03136568143963814,
0.045823730528354645,
0.05206950381398201,
0.008347222581505775,
-0.059641025960445404,
-0.04775533080101013,
0.004135133698582649,
0.21713721752166748,
0.06453293561935425,
-0.11404434591531754,
-0.029956897720694542,
0.08047310262918472,
-0.02222449518740177,
-0.1137206181883812,
0.051222722977399826,
0.058541376143693924,
-0.09415944665670395,
0.05791603773832321,
-0.008599888533353806,
0.08812212198972702,
0.0077952612191438675,
-0.03743114322423935,
-0.14313186705112457,
0.07424446940422058,
-0.06760454922914505,
0.07254520803689957,
-0.16094030439853668,
0.2299632728099823,
0.03222363442182541,
0.06368819624185562,
-0.0315006822347641,
-0.008834486827254295,
0.06529826670885086,
0.026680584996938705,
0.1014639213681221,
0.057554446160793304,
0.026530969887971878,
-0.12225063145160675,
-0.10929974913597107,
0.009836144745349884,
0.09467095136642456,
-0.0257205069065094,
0.09368866682052612,
0.031729333102703094,
-0.003958802204579115,
-0.019775187596678734,
0.08411617577075958,
-0.19759134948253632,
-0.0669817104935646,
0.039553966373205185,
-0.06909363716840744,
0.005172781180590391,
-0.07925938814878464,
-0.07462615519762039,
0.039055563509464264,
0.09473402053117752,
-0.03244924172759056,
-0.13685451447963715,
-0.09659744799137115,
-0.07481783628463745,
0.12750007212162018,
-0.10089350491762161,
0.039567261934280396,
-0.005388167221099138,
0.06956011801958084,
-0.044704604893922806,
-0.03791823610663414,
0.08220017701387405,
-0.05773276463150978,
-0.06998089700937271,
-0.020849859341979027,
0.07561908662319183,
0.15522372722625732,
0.03150761500000954,
0.03155915066599846,
0.003086928278207779,
0.05906914174556732,
-0.07635112851858139,
-0.046955008059740067,
0.13817796111106873,
0.00855226069688797,
0.1472884565591812,
-0.1739370971918106,
-0.12014340609312057,
-0.09050853550434113,
-0.02234920859336853,
0.09972865879535675,
0.143754243850708,
-0.006864564027637243,
0.14789652824401855,
0.3373391628265381,
-0.1253025084733963,
-0.26856866478919983,
-0.11422253400087357,
0.015576675534248352,
0.09344851225614548,
-0.026790088042616844,
-0.17946083843708038,
0.014290169812738895,
-0.012240303680300713,
-0.01191177498549223,
-0.010631687007844448,
-0.12202409654855728,
-0.13301487267017365,
0.13783012330532074,
0.03250786289572716,
0.15092502534389496,
-0.12124216556549072,
-0.06497225910425186,
-0.06008708104491234,
-0.029681256040930748,
0.0922633707523346,
-0.1103166714310646,
0.08864890784025192,
0.009192120283842087,
0.027863090857863426,
-0.004296550992876291,
-0.005579487886279821,
0.13808433711528778,
-0.0326918363571167,
-0.021238945424556732,
-0.09765074402093887,
-0.07855452597141266,
0.10943955183029175,
-0.058689069002866745,
0.07613109052181244,
-0.02484210766851902,
0.018001018092036247,
-0.23622620105743408,
-0.07269276678562164,
-0.07349232584238052,
0.03968466818332672,
-0.055596042424440384,
-0.07637625932693481,
-0.02547580376267433,
0.13473765552043915,
0.07016914337873459,
0.020537761971354485,
-0.01707259565591812,
-0.08547192066907883,
-0.00973978266119957,
0.15272565186023712,
0.1882898062467575,
-0.046411141753196716,
0.009412861429154873,
-0.003981425892561674,
-0.03944254666566849,
0.08624671399593353,
-0.13161218166351318,
0.011872886680066586,
0.05986909195780754,
0.03507256507873535,
0.11040382087230682,
0.007498769089579582,
-0.16379500925540924,
0.049965519458055496,
0.05649278685450554,
0.0036398221272975206,
-0.06809484958648682,
-0.013886128552258015,
-0.02295999974012375,
-0.03991737216711044,
-0.02671949565410614,
0.14544308185577393,
-0.06307436525821686,
-0.0357862189412117,
-0.03372768685221672,
0.06541716307401657,
-0.06742409616708755,
0.1045355573296547,
0.1259186565876007,
0.03161719813942909,
-0.016234740614891052,
0.13209134340286255,
0.05426309257745743,
0.02225366421043873,
0.09040767699480057,
0.14005146920681,
-0.07975068688392639,
-0.05268443375825882,
-0.09349088370800018,
0.1510353833436966,
-0.022433307021856308,
-0.06779564917087555,
0.05062258988618851,
-0.056245241314172745,
-0.02076498419046402,
0.2282765507698059,
-0.01625058613717556,
-0.07287333160638809,
-0.024529611691832542,
0.011234003119170666,
-0.0013669832842424512,
0.10998545587062836,
0.08937621116638184,
-0.01762501895427704,
0.061922285705804825,
0.040072839707136154,
0.04460323974490166,
0.09222575277090073,
-0.055976174771785736,
-0.04932596534490585,
-0.14225710928440094,
0.00789661519229412,
-0.19697695970535278,
0.03802371770143509,
-0.07439681142568588,
-0.04747086763381958,
-0.07008331269025803,
-0.060864631086587906,
-0.047222014516592026,
0.007058762013912201,
-0.04824366047978401,
0.009332142770290375,
-0.04368831589818001,
0.07209563255310059,
-0.0715254545211792,
-0.06769125163555145,
0.07974950224161148,
-0.04122725501656532,
0.04003208875656128,
0.030278988182544708,
-0.016677269712090492,
0.05936344712972641,
-0.03795434534549713,
0.0396990105509758,
-0.07410822063684464,
0.008334342390298843,
0.04457014054059982,
-0.14112906157970428,
-0.03312677890062332,
-0.04185516759753227,
0.07452988624572754,
-0.020192906260490417,
0.11195509880781174,
-0.0484558530151844,
0.010344362817704678,
-0.01656302437186241,
-0.040224917232990265,
-0.04380374774336815,
0.10531599819660187,
0.021604469045996666,
0.06638529896736145,
0.02242821268737316,
-0.05772916600108147,
0.027970770373940468,
-0.06365583837032318,
0.042523372918367386,
0.005638942122459412,
-0.019005194306373596,
0.09545322507619858,
-0.045023635029792786,
0.03179685398936272,
-0.060629796236753464,
0.14407096803188324,
0.009115448221564293,
-0.05028439685702324,
-0.006814828608185053,
-0.13443750143051147,
-0.05467207357287407,
0.01868693344295025,
0.13213010132312775,
0.032182831317186356,
0.007391491439193487,
-0.009558704681694508,
0.04973916336894035,
-0.022076163440942764,
0.13686959445476532,
0.05445465072989464,
0.1706451177597046,
0.12567925453186035,
0.11571815609931946,
0.027538252994418144,
-0.060133591294288635,
0.021051237359642982,
-0.08530329167842865,
0.01541551761329174,
0.041463423520326614,
-0.012070742435753345,
0.1523629128932953,
0.1735348254442215,
-0.14718881249427795,
0.11718133836984634,
0.04478511959314346,
-0.12169342488050461,
-0.11213936656713486,
-0.11086654663085938,
-0.048628177493810654,
0.05865035578608513,
0.008268983103334904,
-0.15556928515434265,
0.021451273933053017,
0.10214658826589584,
0.057869039475917816,
0.015769843012094498,
0.11955305933952332,
-0.08613753318786621,
-0.10095161199569702,
0.11512475460767746,
0.01780284009873867,
0.06610259413719177,
-0.012960127554833889,
0.0010804126504808664,
-0.01966756395995617,
0.05734729766845703,
-0.0043714772909879684,
0.04857639595866203,
-0.015949208289384842,
0.05707835406064987,
0.0327070876955986,
-0.057821884751319885,
-0.044459566473960876,
-0.000335683929733932,
0.06582434475421906,
0.16850826144218445,
0.04341708868741989,
-0.07510862499475479,
0.005484189838171005,
0.04953298345208168,
-0.020459406077861786,
-0.07772889733314514,
-0.11307305097579956,
0.1267770528793335,
0.0168318971991539,
0.032378073781728745,
-0.019368445500731468,
-0.09172983467578888,
-0.06645580381155014,
0.20834197103977203,
0.20814506709575653,
-0.024843700230121613,
-0.0030248486436903477,
-0.01538400910794735,
0.015149995684623718,
-0.010128210298717022,
0.11631056666374207,
0.01840214431285858,
0.2502271831035614,
-0.050036732107400894,
0.045982006937265396,
-0.013984567485749722,
-0.037012979388237,
-0.11955763399600983,
0.10946185141801834,
0.02895617112517357,
-0.030174806714057922,
-0.036391958594322205,
0.04784464091062546,
-0.10194485634565353,
-0.23290155827999115,
-0.039535511285066605,
-0.06416996568441391,
-0.10759793221950531,
-0.06288498640060425,
-0.09556485712528229,
0.08253864198923111,
0.07137347757816315,
0.03213539347052574,
0.023198075592517853,
0.12124983221292496,
0.06924843788146973,
-0.04578091576695442,
-0.04882947355508804,
0.12681466341018677,
0.00611463189125061,
0.20768818259239197,
0.028922012075781822,
0.04600648581981659,
0.0844397246837616,
0.008449799381196499,
-0.027965229004621506,
0.04299024119973183,
0.03175128251314163,
0.04058348014950752,
-0.020512690767645836,
0.1496874839067459,
-0.038105081766843796,
-0.04281933233141899,
0.026471564546227455,
0.04322340711951256,
0.058210670948028564,
0.044671181589365005,
-0.08197534084320068,
-0.07676556706428528,
0.08325795084238052,
-0.1506706327199936,
0.1176098883152008,
0.12376011908054352,
-0.029269680380821228,
-0.05261620134115219,
-0.07555120438337326,
0.022059306502342224,
-0.02615160308778286,
-0.0011789861600846052,
-0.06510015577077866,
-0.1518237292766571,
-0.01836802251636982,
-0.035099707543849945,
0.05839464068412781,
-0.3648112714290619,
0.03560066223144531,
-0.047773975878953934,
0.02577081508934498,
0.0034438874572515488,
0.10586974024772644,
0.023627473041415215,
0.025106489658355713,
-0.011700042523443699,
-0.1259453296661377,
-0.016378235071897507,
0.09517397731542587,
-0.16225042939186096,
-0.04355253279209137
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9005
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.108 | 1.0 | 235 | 0.9801 | 0.5610 |
| 0.9592 | 2.0 | 470 | 0.9005 | 0.5 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]} | text-classification | Krassy/xlm-roberta-base-finetuned-marc-en | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-marc-en
==================================
This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9005
* Mae: 0.5
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
67,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] | [
-0.09092789888381958,
0.08008227497339249,
-0.0020140453707426786,
0.11630697548389435,
0.18312716484069824,
0.042973749339580536,
0.15040470659732819,
0.11954569816589355,
-0.09022784978151321,
-0.0003494977136142552,
0.11352355778217316,
0.17042438685894012,
0.007949714548885822,
0.1317906379699707,
-0.06562875211238861,
-0.25790008902549744,
-0.012251557782292366,
0.05035068839788437,
-0.04488401114940643,
0.1443592607975006,
0.10154645889997482,
-0.1380293369293213,
0.09442190825939178,
-0.0014341471251100302,
-0.19770415127277374,
-0.006765956524759531,
0.029228247702121735,
-0.06890206784009933,
0.13384534418582916,
0.03764583170413971,
0.13645893335342407,
0.008102459833025932,
0.07276447862386703,
-0.19063866138458252,
0.020796533674001694,
0.040146905928850174,
0.00358709879219532,
0.0915832370519638,
0.030548246577382088,
-0.01468250248581171,
0.1342829167842865,
-0.060973599553108215,
0.07154899835586548,
0.018368558958172798,
-0.11795462667942047,
-0.2320529818534851,
-0.08308214694261551,
0.035912688821554184,
0.056772612035274506,
0.09991798549890518,
-0.010324102826416492,
0.15634198486804962,
-0.07674280554056168,
0.10339420288801193,
0.23605166375637054,
-0.2893300950527191,
-0.07612571865320206,
0.032290682196617126,
0.043305903673172,
0.08403892815113068,
-0.10349797457456589,
-0.023395158350467682,
0.05919168144464493,
0.05649252235889435,
0.12055753171443939,
-0.0452197901904583,
-0.0962030366063118,
0.01583736389875412,
-0.1441667675971985,
-0.02332693338394165,
0.2023565173149109,
0.03447432816028595,
-0.0476268008351326,
-0.051082272082567215,
-0.032434288412332535,
-0.15748977661132812,
-0.03979404643177986,
-0.0009673985186964273,
0.050246383994817734,
-0.06319781392812729,
-0.08705104142427444,
-0.013781961984932423,
-0.11613631248474121,
-0.05173107236623764,
-0.06630995124578476,
0.1457367241382599,
0.04109196364879608,
0.01682303659617901,
-0.03500403091311455,
0.10437536239624023,
0.021311579272150993,
-0.10318823158740997,
0.012504742480814457,
0.007507571950554848,
-0.010289235971868038,
-0.047606464475393295,
-0.05751515179872513,
-0.07956288009881973,
0.002544892020523548,
0.11920338124036789,
-0.04774501919746399,
0.03242870792746544,
0.03772571310400963,
0.057246528565883636,
-0.07498431205749512,
0.19655898213386536,
-0.028955459594726562,
-0.005452427081763744,
-0.004732458386570215,
0.04949004575610161,
0.015602247789502144,
-0.010551849380135536,
-0.12953022122383118,
0.007022026460617781,
0.08074092119932175,
0.013663754798471928,
-0.07587581127882004,
0.06431995332241058,
-0.06985332071781158,
-0.04672382026910782,
-0.007498918566852808,
-0.07484535127878189,
0.031198130920529366,
-0.008710284717381,
-0.06582239270210266,
-0.02350885048508644,
0.023388126865029335,
0.017721518874168396,
-0.011746599338948727,
0.13322429358959198,
-0.08970562368631363,
0.0364038459956646,
-0.09379757940769196,
-0.10690733790397644,
0.021213319152593613,
-0.07686057686805725,
0.0376054085791111,
-0.10856878012418747,
-0.16822496056556702,
-0.03304174169898033,
0.0522976890206337,
-0.018100610002875328,
-0.060430899262428284,
-0.03577180206775665,
-0.06308238208293915,
0.01012183167040348,
-0.014289181679487228,
0.1470746546983719,
-0.07050348073244095,
0.11098764836788177,
0.03432513028383255,
0.05846457928419113,
-0.04605408012866974,
0.04961748793721199,
-0.09303298592567444,
-0.008509560488164425,
-0.15352317690849304,
0.03393903747200966,
-0.04447499290108681,
0.058807726949453354,
-0.07169647514820099,
-0.11825202405452728,
0.013603618368506432,
0.019700555130839348,
0.04256633669137955,
0.07442475855350494,
-0.1713005006313324,
-0.07580258697271347,
0.14970633387565613,
-0.06509901583194733,
-0.12265316396951675,
0.11653491109609604,
-0.08050192892551422,
0.06815876066684723,
0.07918455451726913,
0.16007547080516815,
0.07368943095207214,
-0.07665113359689713,
0.02364281751215458,
-0.009748673066496849,
0.030511032789945602,
-0.06656751781702042,
0.07645123451948166,
0.023808009922504425,
-0.011088239029049873,
0.031931594014167786,
-0.03572938218712807,
0.036782167851924896,
-0.09431610256433487,
-0.08854455500841141,
-0.03681464493274689,
-0.09542662650346756,
0.05960068479180336,
0.07206001877784729,
0.07265763729810715,
-0.11765731126070023,
-0.07257198542356491,
0.07150136679410934,
0.0861012265086174,
-0.055003076791763306,
0.018849531188607216,
-0.05219917744398117,
0.06374433636665344,
-0.034731317311525345,
-0.022515803575515747,
-0.17951369285583496,
-0.029770378023386,
0.014603286981582642,
0.005661679431796074,
0.032073505222797394,
0.040834296494722366,
0.05372710898518562,
0.04150041192770004,
-0.07131427526473999,
-0.011015200987458229,
-0.050375696271657944,
-0.00942130945622921,
-0.1230582743883133,
-0.19584792852401733,
-0.018969720229506493,
-0.023339437320828438,
0.11454646289348602,
-0.224257692694664,
0.03413281589746475,
-0.04092243313789368,
0.05761338770389557,
0.041867028921842575,
-0.010956901125609875,
-0.02053735964000225,
0.0860079899430275,
-0.03713130205869675,
-0.0327489897608757,
0.07592474669218063,
0.012195399962365627,
-0.10368473827838898,
-0.007822113111615181,
-0.09257585555315018,
0.19031088054180145,
0.1289455145597458,
-0.09699749946594238,
-0.0888260006904602,
0.010719056241214275,
-0.054551877081394196,
-0.03350850194692612,
-0.08110085129737854,
0.03831710293889046,
0.1832561194896698,
-0.00408615218475461,
0.1422782838344574,
-0.08589011430740356,
-0.04746617004275322,
0.027460463345050812,
-0.04416185989975929,
0.026127975434064865,
0.14056192338466644,
0.12522448599338531,
-0.0920635238289833,
0.1394202560186386,
0.14817063510417938,
-0.07915978133678436,
0.1658279448747635,
-0.03801234811544418,
-0.059139613062143326,
-0.024806562811136246,
-0.03590410575270653,
-0.011826027184724808,
0.1085469201207161,
-0.12760300934314728,
0.00472189811989665,
0.03235438093543053,
0.009446932934224606,
0.01708807982504368,
-0.23087909817695618,
-0.04802200570702553,
0.035222526639699936,
-0.040130965411663055,
-0.011457022279500961,
0.006225543096661568,
0.01636500284075737,
0.11100597679615021,
-0.00038215177482925355,
-0.061102356761693954,
0.04150799661874771,
0.007206903304904699,
-0.09109006822109222,
0.21807080507278442,
-0.0752849280834198,
-0.18252205848693848,
-0.13199250400066376,
-0.0493457093834877,
-0.04442271217703819,
-0.00279906764626503,
0.06433742493391037,
-0.07138606905937195,
-0.02895044907927513,
-0.06548784673213959,
0.00514746131375432,
-0.006640486419200897,
0.016602864488959312,
-0.018567554652690887,
0.023830769583582878,
0.03936237096786499,
-0.10331819206476212,
-0.012889090925455093,
-0.061911795288324356,
-0.040967509150505066,
0.053883109241724014,
0.04405555874109268,
0.10898144543170929,
0.14961715042591095,
-0.025291262194514275,
-0.003893762594088912,
-0.03315175324678421,
0.21485087275505066,
-0.08689753711223602,
-0.04712153226137161,
0.13125620782375336,
-0.009326517581939697,
0.03263324499130249,
0.1212800070643425,
0.0720895454287529,
-0.09237991273403168,
0.017520809546113014,
0.02917098067700863,
-0.03997639939188957,
-0.27003076672554016,
-0.03821174427866936,
-0.053288307040929794,
0.0005041555850766599,
0.07316083461046219,
0.026278546079993248,
0.005705300718545914,
0.06592023372650146,
0.04250522330403328,
0.0648341029882431,
-0.02982121892273426,
0.06391338258981705,
0.1108853667974472,
0.03844940662384033,
0.13148561120033264,
-0.05558411031961441,
-0.06147214397788048,
0.05758168175816536,
-0.00863972119987011,
0.24782785773277283,
0.011279144324362278,
0.1309511810541153,
0.07623305916786194,
0.12350870668888092,
0.017918558791279793,
0.05768585205078125,
0.018591217696666718,
-0.03858204931020737,
-0.019616344943642616,
-0.025811797007918358,
-0.029816756024956703,
0.0286216102540493,
-0.04727308079600334,
0.048704832792282104,
-0.13749583065509796,
-0.01498402375727892,
0.06358642131090164,
0.23906491696834564,
0.016769928857684135,
-0.30908310413360596,
-0.10424860566854477,
0.010606772266328335,
-0.05240930989384651,
-0.009383879601955414,
0.026137301698327065,
0.10281414538621902,
-0.12598705291748047,
0.03643062710762024,
-0.08053163439035416,
0.09221653640270233,
-0.0863085463643074,
0.04050378501415253,
0.0738224908709526,
0.0681130588054657,
-0.003933573141694069,
0.07893651723861694,
-0.307219922542572,
0.2819614112377167,
-0.005618869327008724,
0.060745105147361755,
-0.06372545659542084,
-0.025851668789982796,
0.023402828723192215,
0.05463678762316704,
0.06036457046866417,
-0.005185297690331936,
-0.05821243301033974,
-0.17296744883060455,
-0.029245417565107346,
0.025523608550429344,
0.07566779851913452,
-0.01468990370631218,
0.08854345232248306,
-0.0285579115152359,
0.004089497961103916,
0.05787508934736252,
-0.027434229850769043,
-0.05153360217809677,
-0.09460210800170898,
-0.004334294702857733,
0.020693570375442505,
-0.05909181386232376,
-0.06367843598127365,
-0.13336031138896942,
-0.08024092018604279,
0.13815522193908691,
-0.014427115209400654,
-0.04591428115963936,
-0.09696020931005478,
0.07496039569377899,
0.06935662031173706,
-0.0799306333065033,
0.03762155771255493,
0.014699560590088367,
0.0846717432141304,
0.024481261149048805,
-0.047440964728593826,
0.09554848819971085,
-0.05173030123114586,
-0.1872195154428482,
-0.0632166862487793,
0.11352117359638214,
0.028094131499528885,
0.06719598174095154,
-0.023858340457081795,
0.0004107730055693537,
-0.04823746904730797,
-0.08825484663248062,
0.02258949913084507,
0.007237046025693417,
0.08538832515478134,
0.04420587047934532,
-0.06016400828957558,
0.003088439116254449,
-0.0743371769785881,
-0.05789945647120476,
0.20305874943733215,
0.20633313059806824,
-0.09303376823663712,
0.032080233097076416,
0.01414012722671032,
-0.08177021145820618,
-0.17220793664455414,
0.03629900887608528,
0.07108122855424881,
0.012489903718233109,
0.05826587229967117,
-0.15110467374324799,
0.11386826634407043,
0.09753286093473434,
-0.008590045385062695,
0.13361698389053345,
-0.323248952627182,
-0.13557180762290955,
0.09210297465324402,
0.15564033389091492,
0.12722596526145935,
-0.13530485332012177,
-0.012024758383631706,
-0.029694128781557083,
-0.12655147910118103,
0.13825254142284393,
-0.08200353384017944,
0.14067378640174866,
-0.03298668563365936,
0.10618506371974945,
0.0052995807491242886,
-0.05460384488105774,
0.11506109684705734,
0.01607188954949379,
0.10979824513196945,
-0.05073171481490135,
-0.046968698501586914,
0.018168210983276367,
-0.03173650801181793,
0.017488637939095497,
-0.07388205081224442,
0.019537346437573433,
-0.09553373605012894,
-0.037904515862464905,
-0.07616972178220749,
0.03510139882564545,
-0.04053482040762901,
-0.05432239547371864,
-0.04073890298604965,
0.035612355917692184,
0.02205091342329979,
-0.017490994185209274,
0.14471615850925446,
0.005916844122111797,
0.14710642397403717,
0.06948163360357285,
0.09639938920736313,
-0.05343913659453392,
-0.09279846400022507,
-0.03582580387592316,
-0.021688245236873627,
0.049793485552072525,
-0.15473158657550812,
0.02326696179807186,
0.14285890758037567,
0.012413830496370792,
0.15901656448841095,
0.07501823455095291,
-0.028941627591848373,
0.015591477043926716,
0.06824849545955658,
-0.15109407901763916,
-0.0993746891617775,
-0.015658222138881683,
-0.09098188579082489,
-0.11272766441106796,
0.04547811672091484,
0.11424396187067032,
-0.06779132783412933,
-0.027168378233909607,
-0.013252581469714642,
0.009434499777853489,
-0.04961276799440384,
0.19228704273700714,
0.0712907612323761,
0.049355633556842804,
-0.10086462646722794,
0.08726470172405243,
0.05299781262874603,
-0.07277260720729828,
0.009131514467298985,
0.07398980855941772,
-0.0851946696639061,
-0.06054844334721565,
0.06302937865257263,
0.1840636432170868,
-0.06436847895383835,
-0.05052271485328674,
-0.14428043365478516,
-0.12239868193864822,
0.08020304143428802,
0.15456198155879974,
0.1154261901974678,
0.01174027007073164,
-0.04472504183650017,
-0.009678967297077179,
-0.10332822054624557,
0.10373563319444656,
0.06035935878753662,
0.06799294799566269,
-0.15564770996570587,
0.11893093585968018,
0.0298626646399498,
0.0544048435986042,
-0.021874960511922836,
0.03503105044364929,
-0.11320466548204422,
0.016281502321362495,
-0.11635188013315201,
-0.004599275998771191,
-0.01955498568713665,
0.0156586654484272,
0.00008569054625695571,
-0.056630246341228485,
-0.06948243826627731,
0.011811119504272938,
-0.12271115183830261,
-0.015396937727928162,
0.041357602924108505,
0.07619098573923111,
-0.08720040321350098,
-0.03770965710282326,
0.024497678503394127,
-0.04467649757862091,
0.07077261805534363,
0.04765259474515915,
0.00999519880861044,
0.0638277679681778,
-0.1326751559972763,
0.03493008390069008,
0.05847730115056038,
0.016229216009378433,
0.048695411533117294,
-0.1218823567032814,
0.00844301376491785,
0.004147431813180447,
0.07234194129705429,
0.02527628093957901,
0.06878162175416946,
-0.1595860719680786,
-0.003925286699086428,
-0.011753080412745476,
-0.08088759332895279,
-0.0604778528213501,
0.02060185931622982,
0.06034849211573601,
0.033461686223745346,
0.21250495314598083,
-0.08307280391454697,
0.04318675398826599,
-0.19975832104682922,
0.00521842809394002,
-0.01949070766568184,
-0.1242818534374237,
-0.12428144365549088,
-0.0736192986369133,
0.05655497685074806,
-0.0671464130282402,
0.1680191457271576,
0.04778936877846718,
0.05581874027848244,
0.02484714426100254,
-0.020287757739424706,
-0.0074821035377681255,
0.016732243821024895,
0.17049984633922577,
0.007073113229125738,
-0.04048845171928406,
0.0606084018945694,
0.047959793359041214,
0.1063975840806961,
0.10674457252025604,
0.20010076463222504,
0.1684790700674057,
0.009575174190104008,
0.08692093193531036,
0.03743763640522957,
-0.03279959410429001,
-0.13300663232803345,
0.03713468834757805,
-0.025708554312586784,
0.11290872097015381,
-0.026694100350141525,
0.20042958855628967,
0.07072245329618454,
-0.16473351418972015,
0.04714856669306755,
-0.05892984941601753,
-0.08779802173376083,
-0.11389470845460892,
-0.055804088711738586,
-0.09887007623910904,
-0.1443217545747757,
0.005623009521514177,
-0.130331888794899,
-0.001939242472872138,
0.09170602262020111,
0.007379705086350441,
-0.04041507467627525,
0.11972035467624664,
0.02042819932103157,
0.011828257702291012,
0.08732693642377853,
0.013573730364441872,
-0.03270769864320755,
-0.10997237265110016,
-0.04921284690499306,
-0.03101533092558384,
-0.025611599907279015,
0.023357538506388664,
-0.05341451242566109,
-0.06802772730588913,
0.024218278005719185,
-0.026913153007626534,
-0.10152031481266022,
0.014489524997770786,
0.02225584164261818,
0.07951844483613968,
0.03816826641559601,
0.015252734534442425,
0.008539740927517414,
-0.0018916655099019408,
0.2537987232208252,
-0.06090321019291878,
-0.059095606207847595,
-0.12073633074760437,
0.23759934306144714,
0.04082411155104637,
-0.027152735739946365,
0.0369359627366066,
-0.0620994009077549,
0.004789397120475769,
0.250545471906662,
0.23370525240898132,
-0.07233811914920807,
-0.008881565183401108,
0.016480514779686928,
-0.005681920796632767,
-0.014903892762959003,
0.12409383058547974,
0.11327847838401794,
0.043661732226610184,
-0.07554518431425095,
-0.03618474677205086,
-0.053929403424263,
0.002410672837868333,
-0.017594728618860245,
0.06780397146940231,
0.05220600590109825,
0.005234327167272568,
-0.041317231953144073,
0.0750744640827179,
-0.08238773792982101,
-0.11706630140542984,
0.04748406261205673,
-0.2140689343214035,
-0.17265373468399048,
-0.01564285345375538,
0.09141164273023605,
-0.0005080309347249568,
0.06623675674200058,
-0.025556398555636406,
-0.014778113923966885,
0.07295584678649902,
-0.016154099255800247,
-0.1069135069847107,
-0.08071832358837128,
0.09760671108961105,
-0.1033845841884613,
0.18947070837020874,
-0.05197722837328911,
0.05551624298095703,
0.12156101316213608,
0.06087696552276611,
-0.06552910804748535,
0.07936710119247437,
0.036825064569711685,
-0.040335942059755325,
0.04746859520673752,
0.10013407468795776,
-0.03197331726551056,
0.07261445373296738,
0.05393337458372116,
-0.12573927640914917,
0.016867447644472122,
-0.0939512848854065,
-0.04653635248541832,
-0.056750234216451645,
-0.011542480438947678,
-0.07443743944168091,
0.12872548401355743,
0.23667973279953003,
-0.03721931204199791,
-0.007397593930363655,
-0.05932502821087837,
0.02578439563512802,
0.06336025893688202,
0.041056301444768906,
-0.047882936894893646,
-0.22828209400177002,
0.009885349310934544,
0.07289337366819382,
-0.015281859785318375,
-0.26788604259490967,
-0.070579893887043,
0.0017346341628581285,
-0.07060904800891876,
-0.07644132524728775,
0.08083239942789078,
0.07705751806497574,
0.044927142560482025,
-0.06221795082092285,
-0.06259375810623169,
-0.06772700697183609,
0.1547669768333435,
-0.15244202315807343,
-0.0954475924372673
] |
null | null | transformers |
# Santa Chatbot | {"tags": ["conversational"]} | text-generation | KringleClaus/Dialog-santa | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Santa Chatbot | [
"# Santa Chatbot"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Santa Chatbot"
] | [
51,
4
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Santa Chatbot"
] | [
-0.012259941548109055,
0.07977107167243958,
-0.006621682085096836,
0.01863689348101616,
0.16133733093738556,
-0.016494013369083405,
0.14296498894691467,
0.11367103457450867,
0.02092578448355198,
-0.021149469539523125,
0.12511102855205536,
0.19477219879627228,
0.010573107749223709,
0.10755295306444168,
-0.09732618182897568,
-0.23816044628620148,
0.09120289236307144,
0.0026547613088041544,
-0.015721801668405533,
0.12486521899700165,
0.048573050647974014,
-0.05240132287144661,
0.07806521654129028,
-0.053763121366500854,
-0.1414121389389038,
0.006925131659954786,
0.05444387346506119,
-0.16379813849925995,
0.09764375537633896,
0.06910263746976852,
0.07671558111906052,
0.0335305854678154,
-0.06896050274372101,
-0.0688287615776062,
0.03472054377198219,
-0.0046377466060221195,
-0.050169870257377625,
0.04195869714021683,
-0.003735876642167568,
-0.11313918232917786,
0.13046711683273315,
0.0955287516117096,
0.02974695898592472,
0.08404262363910675,
-0.1744813621044159,
0.0012229817220941186,
0.00670578982681036,
0.035101424902677536,
0.09823540598154068,
0.11681335419416428,
-0.024149689823389053,
0.11385179311037064,
-0.0983293280005455,
0.07871240377426147,
0.11396714299917221,
-0.26482489705085754,
-0.04760856181383133,
0.09721392393112183,
0.061536699533462524,
0.12117014080286026,
-0.02750842459499836,
0.06133062392473221,
0.02760993503034115,
0.00655994052067399,
-0.02796538732945919,
-0.06479526311159134,
-0.139020174741745,
0.021639971062541008,
-0.08336353302001953,
-0.05028131976723671,
0.24265187978744507,
-0.03711412847042084,
0.07009980827569962,
-0.03783496096730232,
-0.1022186130285263,
-0.06760159134864807,
-0.04072809964418411,
-0.017257079482078552,
-0.06896720826625824,
0.04915853217244148,
-0.045828960835933685,
-0.07281408458948135,
-0.12145330756902695,
-0.023053007200360298,
-0.13669510185718536,
0.11988591402769089,
0.022934259846806526,
0.05492677539587021,
-0.2647354304790497,
0.06815053522586823,
0.11161182820796967,
-0.10241822898387909,
0.030555622652173042,
-0.08915065228939056,
0.030398935079574585,
0.05129745230078697,
-0.04223169386386871,
-0.08269553631544113,
0.08457522839307785,
0.13626709580421448,
-0.04076268896460533,
0.05451198294758797,
-0.04106221720576286,
0.06023355945944786,
0.056364890187978745,
0.1008133515715599,
0.05560215562582016,
-0.0405401811003685,
0.04370339214801788,
-0.10572788864374161,
0.04841633513569832,
-0.10485170036554337,
-0.18277452886104584,
0.003397597698494792,
0.020690279081463814,
0.11140042543411255,
0.06056012213230133,
0.08601964265108109,
-0.005970514379441738,
-0.06855088472366333,
0.0807487741112709,
-0.03504747897386551,
0.002281150547787547,
0.02370569296181202,
-0.006636383477598429,
0.09174054116010666,
-0.03339224308729172,
0.0183185376226902,
-0.09447930008172989,
0.026458773761987686,
-0.05497954413294792,
-0.006548719946295023,
-0.07068587839603424,
0.007245247717946768,
0.022321667522192,
-0.0571322925388813,
-0.024183591827750206,
-0.1881033331155777,
-0.10967597365379333,
-0.007337147369980812,
-0.0378241129219532,
-0.07825737446546555,
-0.0840492993593216,
-0.10971591621637344,
-0.0033829975873231888,
0.02760659158229828,
-0.07455310225486755,
-0.045261748135089874,
-0.0594823881983757,
0.11044640094041824,
-0.07024930417537689,
0.1005716547369957,
-0.13991543650627136,
0.03572828322649002,
-0.0978027731180191,
-0.022802021354436874,
-0.14603468775749207,
0.11418856680393219,
-0.024588655680418015,
0.16625277698040009,
0.0061086141504347324,
-0.00022398465080186725,
-0.08491691946983337,
0.050789907574653625,
-0.06789659708738327,
0.25298744440078735,
-0.07925351709127426,
-0.10216481238603592,
0.3134576380252838,
-0.07765837013721466,
-0.13677442073822021,
0.10061469674110413,
0.00026540382532402873,
0.04018218070268631,
0.12107378244400024,
0.2285807877779007,
-0.09234588593244553,
0.03952370584011078,
0.08771558851003647,
0.0189085453748703,
-0.09996405243873596,
-0.06008538231253624,
0.014251239597797394,
-0.007428172510117292,
-0.06444226950407028,
0.024239810183644295,
0.12094539403915405,
0.07261010259389877,
-0.02543523907661438,
-0.04605042561888695,
0.015896616503596306,
-0.022504674270749092,
0.03786852955818176,
-0.006106545217335224,
0.13799521327018738,
-0.05185561999678612,
-0.022797944024205208,
-0.07687202841043472,
-0.024509813636541367,
0.005905569531023502,
0.02593856304883957,
-0.10792319476604462,
0.08994542807340622,
0.05702108517289162,
0.07832396775484085,
-0.12196993082761765,
-0.08397361636161804,
-0.016659241169691086,
0.16754300892353058,
0.07738097012042999,
0.03417057543992996,
0.07322915643453598,
-0.06198247894644737,
0.0013905243249610066,
0.016096720471978188,
0.1470569372177124,
-0.02662637270987034,
-0.05253369361162186,
-0.09012706577777863,
0.08429437130689621,
-0.027963487431406975,
0.16095398366451263,
-0.029332565143704414,
0.03923880308866501,
0.06921873241662979,
0.12309406697750092,
-0.0068525280803442,
-0.0008531666244380176,
0.0027922329027205706,
-0.012524816207587719,
-0.06574289500713348,
-0.018448535352945328,
0.09766419976949692,
0.01660991460084915,
-0.1162644773721695,
0.22855228185653687,
-0.14678741991519928,
0.106806181371212,
0.17046938836574554,
-0.21796882152557373,
-0.02214776538312435,
-0.04740980267524719,
-0.039756014943122864,
0.02262040600180626,
0.03699252009391785,
-0.0640806034207344,
0.21726615726947784,
-0.01134126354008913,
0.18381373584270477,
-0.02732689678668976,
-0.04834490269422531,
-0.015408162027597427,
-0.035920608788728714,
0.00573382992297411,
0.09688186645507812,
0.13487456738948822,
-0.1220364198088646,
0.16969034075737,
0.10174255073070526,
0.06434696167707443,
0.21961289644241333,
0.01871264912188053,
0.041886962950229645,
0.07038387656211853,
-0.001257918425835669,
-0.015282646752893925,
-0.07092519849538803,
-0.26653411984443665,
-0.04866648092865944,
0.049435559660196304,
0.022819215431809425,
0.09409702569246292,
-0.09003818035125732,
-0.04243850335478783,
-0.024961378425359726,
0.013323557563126087,
0.03671902418136597,
0.07639975100755692,
0.05725964158773422,
0.13322213292121887,
0.020687812939286232,
-0.06441159546375275,
0.09118039160966873,
0.02410219796001911,
-0.07935386896133423,
0.1550886034965515,
-0.12083456665277481,
-0.39243465662002563,
-0.1430388242006302,
-0.1134485974907875,
-0.047436513006687164,
0.08084524422883987,
0.11862179636955261,
-0.14419633150100708,
0.010354770347476006,
0.00962827168405056,
0.08708903938531876,
-0.04863978177309036,
0.0005292755085974932,
-0.046466730535030365,
0.030394045636057854,
-0.10129910707473755,
-0.07087118178606033,
-0.03711371123790741,
-0.023559069260954857,
-0.08894149214029312,
0.14731824398040771,
-0.1092577800154686,
0.07517903298139572,
0.24022619426250458,
0.05767844244837761,
0.07445280253887177,
-0.026935836300253868,
0.18929994106292725,
-0.12388187646865845,
0.018455373123288155,
0.18472522497177124,
0.01639617048203945,
0.038975413888692856,
0.12705980241298676,
0.0032868008129298687,
-0.11259403824806213,
0.028148021548986435,
-0.04789932444691658,
-0.11175715178251266,
-0.24231067299842834,
-0.13467055559158325,
-0.09207327663898468,
0.12273610383272171,
0.028241218999028206,
0.06405116617679596,
0.19528676569461823,
0.0968036875128746,
-0.040043026208877563,
0.015405447222292423,
0.01788359507918358,
0.09681586921215057,
0.16971156001091003,
-0.055996835231781006,
0.16112765669822693,
-0.028896817937493324,
-0.16172467172145844,
0.08769376575946808,
-0.015221163630485535,
0.08078496158123016,
0.052191413938999176,
0.040148571133613586,
0.0216294527053833,
0.06987971067428589,
0.12741203606128693,
-0.005016075912863016,
0.06765619665384293,
-0.02832198329269886,
-0.056776076555252075,
-0.03799000382423401,
-0.13597753643989563,
0.0537574365735054,
0.02322990633547306,
-0.1562218815088272,
-0.030245844274759293,
-0.1074332594871521,
0.06505003571510315,
0.1348610520362854,
-0.000551849661860615,
-0.17480358481407166,
-0.03668995574116707,
0.11113470792770386,
0.003937880974262953,
-0.09613892436027527,
0.10587254166603088,
0.05621446669101715,
-0.1555059403181076,
0.03453239053487778,
-0.019919807091355324,
0.11931044608354568,
-0.07713235914707184,
0.09951070696115494,
-0.1333625167608261,
-0.08718375116586685,
0.029376402497291565,
0.09856125712394714,
-0.24192087352275848,
0.1663794070482254,
-0.02500317618250847,
-0.07655159384012222,
-0.11088617891073227,
-0.01907477341592312,
-0.013142497278749943,
0.07979561388492584,
0.07830860465765,
0.022466646507382393,
-0.030497079715132713,
-0.061410173773765564,
-0.06637512892484665,
0.029176898300647736,
0.07884779572486877,
-0.08793984353542328,
-0.026270413771271706,
-0.01492947805672884,
-0.03598938137292862,
-0.06599678099155426,
-0.07374721765518188,
0.07398424297571182,
-0.18677891790866852,
0.06559682637453079,
0.13627032935619354,
0.14216327667236328,
0.011039848439395428,
-0.009335766546428204,
-0.005210439208894968,
0.20591826736927032,
0.00838449690490961,
-0.07241781055927277,
-0.08640575408935547,
-0.06894314289093018,
0.001412806916050613,
-0.05566691607236862,
0.0202114749699831,
-0.05082693696022034,
0.036397144198417664,
-0.0401141494512558,
-0.16361278295516968,
0.1322663575410843,
-0.11633136868476868,
-0.050290998071432114,
-0.04679558798670769,
0.2202809900045395,
-0.013248823583126068,
0.02306983806192875,
0.009424464777112007,
-0.008390432223677635,
-0.08314895629882812,
-0.10355863720178604,
-0.005867445841431618,
0.08679844439029694,
-0.007088055834174156,
0.05524970591068268,
-0.032428521662950516,
-0.10297644138336182,
-0.06621238589286804,
-0.04324701055884361,
0.271253377199173,
0.10802870988845825,
-0.05334842950105667,
0.2094825804233551,
0.11600447446107864,
-0.0238751582801342,
-0.2651008367538452,
-0.11036231368780136,
-0.1057090163230896,
-0.064480260014534,
-0.06245635449886322,
-0.18216221034526825,
0.0434662364423275,
0.0022367623168975115,
-0.031550683081150055,
0.09884800016880035,
-0.3275788724422455,
-0.07535148411989212,
0.09605299681425095,
0.003580742282792926,
0.4230046570301056,
-0.1377483308315277,
-0.13974358141422272,
-0.03995475918054581,
-0.1329437792301178,
0.18313950300216675,
-0.04950159043073654,
0.09449659287929535,
0.011656983755528927,
0.15542945265769958,
0.06251174211502075,
-0.015058131888508797,
0.06694633513689041,
-0.005033544730395079,
-0.06630943715572357,
-0.09769392013549805,
-0.06103191152215004,
0.005839782766997814,
-0.0018539585871621966,
-0.011502685956656933,
-0.03817383199930191,
0.0060256849974393845,
-0.09062906354665756,
-0.026915015652775764,
-0.09322396665811539,
0.0263944361358881,
0.02585086226463318,
-0.050181806087493896,
-0.00018617472960613668,
-0.06754506379365921,
0.01530951727181673,
0.028383024036884308,
0.22730037569999695,
-0.0857892706990242,
0.22794665396213531,
0.1079837828874588,
0.07291179150342941,
-0.19395849108695984,
0.020026925951242447,
-0.12020482867956161,
-0.053463201969861984,
0.07757148146629333,
-0.09820093214511871,
0.0293371994048357,
0.09268549084663391,
-0.039330750703811646,
0.1058802530169487,
0.07652686536312103,
0.014100938104093075,
0.009978674352169037,
0.12573878467082977,
-0.2558716833591461,
-0.07569491118192673,
-0.07340385019779205,
0.14154212176799774,
0.12865875661373138,
0.11774348467588425,
0.21388153731822968,
0.010986138135194778,
-0.06439319252967834,
-0.0002893753699027002,
0.031126927584409714,
0.03206351771950722,
0.05045584589242935,
-0.050361793488264084,
0.021602628752589226,
-0.17237143218517303,
0.020077232271432877,
0.07198521494865417,
-0.1908053308725357,
0.05963217094540596,
0.2178274542093277,
-0.10744184255599976,
-0.11015020310878754,
-0.10317937284708023,
0.07099148631095886,
-0.15612824261188507,
-0.020049698650836945,
-0.09309631586074829,
-0.12333251535892487,
0.0632951408624649,
0.083100326359272,
0.006118555087596178,
0.07399162650108337,
-0.032266609370708466,
-0.007275017444044352,
0.0208104457706213,
-0.052617397159338,
-0.012520388700067997,
-0.004120809957385063,
-0.06586281955242157,
0.06221059337258339,
0.004603951703757048,
0.08415119349956512,
-0.09071870893239975,
-0.10395447164773941,
-0.18135787546634674,
0.040880389511585236,
-0.06127448007464409,
-0.0649041011929512,
-0.08003988116979599,
-0.06283680349588394,
-0.015913350507616997,
-0.03480289876461029,
-0.047375451773405075,
-0.040240854024887085,
-0.11786562949419022,
0.027902167290449142,
-0.061917368322610855,
0.02075560949742794,
-0.08319126069545746,
0.026564447209239006,
0.07070447504520416,
-0.03511906415224075,
0.13688130676746368,
0.16500742733478546,
-0.11430389434099197,
0.0645107701420784,
-0.1473664492368698,
-0.0447193905711174,
0.11251240223646164,
0.022871753200888634,
0.079750657081604,
0.14207510650157928,
-0.0016571402084082365,
0.07081521302461624,
0.03873462229967117,
0.06709545105695724,
-0.005552958697080612,
-0.14126750826835632,
0.07312577962875366,
0.040850624442100525,
-0.1809636503458023,
-0.029143573716282845,
-0.04390198737382889,
0.023713544011116028,
-0.006024449598044157,
0.07756442576646805,
-0.09059150516986847,
0.10614648461341858,
-0.026238510385155678,
0.022407133132219315,
0.020002838224172592,
-0.13624288141727448,
-0.09034255892038345,
-0.07520559430122375,
0.034816257655620575,
0.012321359477937222,
0.13526366651058197,
0.04244757071137428,
0.06867655366659164,
0.045634347945451736,
0.08598882704973221,
0.06639322638511658,
-0.00007089063001330942,
0.08842868357896805,
0.10799127072095871,
-0.06300240010023117,
-0.059585846960544586,
0.06907716393470764,
0.04706638678908348,
0.013158516958355904,
0.1308252215385437,
-0.014311051927506924,
0.02854095585644245,
0.07699432969093323,
-0.0024851353373378515,
0.06265813857316971,
-0.06488566845655441,
-0.06615917384624481,
-0.06837113201618195,
0.050560202449560165,
-0.06044726073741913,
0.11241381615400314,
0.08881308883428574,
0.014308408834040165,
0.018895842134952545,
-0.05641304701566696,
-0.018420392647385597,
-0.13129250705242157,
-0.09361536055803299,
-0.06367281824350357,
-0.17804208397865295,
0.0006704216939397156,
-0.07541689276695251,
0.04178067296743393,
-0.019317809492349625,
0.05828051269054413,
-0.08893030881881714,
0.1198326051235199,
0.04754403233528137,
-0.06154294312000275,
0.05182267725467682,
0.006816925015300512,
0.06921853870153427,
-0.04075007513165474,
-0.015598414465785027,
-0.07471129298210144,
0.07964636385440826,
0.00011533448559930548,
0.0633603036403656,
-0.015876369550824165,
-0.025300951674580574,
-0.096507228910923,
-0.0852624773979187,
-0.030005507171154022,
0.03048200160264969,
-0.023959649726748466,
0.11835615336894989,
0.03124607540667057,
-0.000724206562153995,
0.030469825491309166,
0.31671035289764404,
-0.0775957703590393,
-0.029421871528029442,
-0.05727595090866089,
0.17278923094272614,
0.012840834446251392,
0.0709548220038414,
-0.04376288875937462,
-0.01448594219982624,
-0.13225644826889038,
0.32334935665130615,
0.2755983769893646,
-0.08358882367610931,
0.009322705678641796,
-0.035949163138866425,
0.053968653082847595,
0.09866853803396225,
0.1257326602935791,
0.10472305864095688,
0.33299630880355835,
-0.039267025887966156,
-0.025595324113965034,
0.017266152426600456,
-0.013955134898424149,
-0.1112571582198143,
0.05749320238828659,
-0.007329032756388187,
-0.05374067276716232,
-0.00939260981976986,
0.09400328248739243,
-0.2814321219921112,
0.04280791059136391,
-0.13114680349826813,
-0.2656038999557495,
-0.07066699117422104,
-0.021861055865883827,
0.1775585412979126,
0.0445721410214901,
0.13704414665699005,
0.036915771663188934,
-0.09481184929609299,
0.06562454998493195,
0.0196161400526762,
-0.2173439860343933,
-0.04144122824072838,
0.07733636349439621,
-0.17146243155002594,
0.059620004147291183,
-0.054969582706689835,
0.013101000338792801,
0.08331558853387833,
0.04720546305179596,
-0.02036168798804283,
0.0345383919775486,
0.0018835642840713263,
-0.07382334768772125,
0.014213517308235168,
0.06779646873474121,
0.0077948784455657005,
-0.03620980679988861,
0.06999193876981735,
-0.20146110653877258,
0.007813402451574802,
0.019163616001605988,
0.03786379471421242,
-0.02484086900949478,
0.06151251122355461,
-0.0602835975587368,
0.04514492303133011,
0.07615654915571213,
-0.026580745354294777,
-0.018763206899166107,
-0.03546649217605591,
-0.02532600797712803,
-0.0450592041015625,
-0.08924346417188644,
-0.10270682722330093,
-0.20229999721050262,
-0.13283059000968933,
0.023602239787578583,
0.03925656899809837,
-0.2526022493839264,
0.02797376736998558,
-0.1195632815361023,
0.08244742453098297,
-0.15099647641181946,
0.07664145529270172,
0.060328662395477295,
0.0399329848587513,
0.011136253364384174,
0.0388030931353569,
0.0556088387966156,
0.0898914635181427,
-0.07168600708246231,
-0.05249305069446564
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-plot
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "gpt2-plot", "results": []}]} | text-generation | KrishParikh/gpt2_imdb_movie_plots | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# gpt2-plot
This model is a fine-tuned version of gpt2-medium on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0
- Datasets 1.15.1
- Tokenizers 0.10.3
| [
"# gpt2-plot\n\nThis model is a fine-tuned version of gpt2-medium on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 2.8856",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.9.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# gpt2-plot\n\nThis model is a fine-tuned version of gpt2-medium on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 2.8856",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.9.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
54,
46,
6,
12,
8,
3,
103,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# gpt2-plot\n\nThis model is a fine-tuned version of gpt2-medium on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 2.8856## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.9.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
-0.07326725870370865,
0.06898326426744461,
-0.0024745820555835962,
0.08035685867071152,
0.1675088107585907,
0.05478870868682861,
0.09334734827280045,
0.13687211275100708,
-0.12370673567056656,
0.07226753979921341,
0.06750698387622833,
0.10924278944730759,
0.05090852081775665,
0.14974157512187958,
-0.0426289401948452,
-0.2389238178730011,
0.02351089008152485,
-0.0008811213774606586,
-0.025833869352936745,
0.09543947875499725,
0.08190985769033432,
-0.10703589022159576,
0.05447512865066528,
0.01137948501855135,
-0.19691798090934753,
0.015457255765795708,
0.000261020875768736,
-0.047454264014959335,
0.09303471446037292,
0.016042746603488922,
0.09979826956987381,
-0.004031361546367407,
0.10744507610797882,
-0.1994219720363617,
-0.0027111119125038385,
0.09571760892868042,
0.03523655980825424,
0.06919834762811661,
0.06913900375366211,
0.006965316366404295,
0.15854614973068237,
-0.13859908282756805,
0.09245206415653229,
0.017601553350687027,
-0.0761433020234108,
-0.1980980783700943,
-0.09774380177259445,
0.02845507673919201,
0.07399801909923553,
0.09842158854007721,
-0.0048761796206235886,
0.1589476317167282,
-0.09561489522457123,
0.06820791959762573,
0.21913190186023712,
-0.27324703335762024,
-0.05784451961517334,
0.052657920867204666,
0.020303890109062195,
0.05063410848379135,
-0.0762346163392067,
-0.01031076442450285,
0.03538091108202934,
0.057913653552532196,
0.0894845575094223,
-0.010611189529299736,
-0.0864143818616867,
-0.017545586451888084,
-0.1408909261226654,
-0.014833317138254642,
0.11869089305400848,
0.015434247441589832,
-0.03403383493423462,
-0.08364240825176239,
-0.0577993243932724,
-0.081438347697258,
-0.0138580072671175,
-0.04586777836084366,
0.039907056838274,
-0.02879529446363449,
-0.051910676062107086,
-0.0454137958586216,
-0.06482470780611038,
-0.05690761283040047,
-0.04830250144004822,
0.13503392040729523,
0.06105085089802742,
0.019973544403910637,
-0.03170567378401756,
0.1103799119591713,
-0.03938622772693634,
-0.09573520720005035,
-0.009339401498436928,
-0.003220065264031291,
-0.057940807193517685,
-0.05341231822967529,
-0.0651780515909195,
-0.07701264321804047,
0.00810991507023573,
0.12304862588644028,
-0.08635418117046356,
0.08395296335220337,
-0.006563897710293531,
0.006573451682925224,
-0.01771984063088894,
0.10767941921949387,
-0.03251756727695465,
-0.009950877167284489,
0.013663144782185555,
0.06976950168609619,
0.02339881844818592,
-0.017249055206775665,
-0.0700920820236206,
-0.013079178519546986,
0.09731880575418472,
0.041819244623184204,
-0.05317775160074234,
0.042249392718076706,
-0.05329328775405884,
-0.018335364758968353,
-0.0466291569173336,
-0.12319155782461166,
0.05007289722561836,
-0.020406106486916542,
-0.08524853736162186,
0.028460731729865074,
0.03051871620118618,
-0.0012707248097285628,
-0.043514542281627655,
0.13673453032970428,
-0.07679873704910278,
0.03469700366258621,
-0.10361742973327637,
-0.0897388756275177,
0.010428497567772865,
-0.03566143289208412,
-0.03465067222714424,
-0.06705708801746368,
-0.1879209578037262,
-0.04533659666776657,
0.04227122664451599,
-0.04992615804076195,
-0.0148940933868289,
-0.0614660307765007,
-0.037057872861623764,
0.028936386108398438,
-0.018741020932793617,
0.14056602120399475,
-0.05290387570858002,
0.08017778396606445,
0.007984195835888386,
0.04235246032476425,
-0.007519299630075693,
0.04039410501718521,
-0.07413074374198914,
0.005601313430815935,
-0.1478038728237152,
0.08321582525968552,
-0.059764258563518524,
-0.004802464507520199,
-0.09786699712276459,
-0.10327162593603134,
0.007518353872001171,
-0.019200151786208153,
0.09200138598680496,
0.10569282621145248,
-0.18363994359970093,
-0.04992176219820976,
0.15197023749351501,
-0.09185917675495148,
-0.03975324332714081,
0.08533481508493423,
-0.05619824677705765,
0.024062946438789368,
0.07618401199579239,
0.16592605412006378,
0.03932863473892212,
-0.10456260293722153,
-0.029822595417499542,
-0.03333212435245514,
0.03378599137067795,
0.021778810769319534,
0.035196833312511444,
-0.012486128136515617,
-0.005305774509906769,
0.02444857731461525,
-0.01951494999229908,
0.018375877290964127,
-0.10848096758127213,
-0.07041001319885254,
-0.06809771806001663,
-0.06643886864185333,
0.01799333095550537,
0.026149500161409378,
0.06461363285779953,
-0.07721355557441711,
-0.1030472069978714,
0.13165809214115143,
0.11649924516677856,
-0.06630481034517288,
0.033641550689935684,
-0.06151270121335983,
0.05591515451669693,
-0.04713708907365799,
-0.015784434974193573,
-0.21980927884578705,
-0.09786338359117508,
0.03276793286204338,
-0.06358275562524796,
0.03995896130800247,
-0.008401840925216675,
0.05227995291352272,
0.0640857070684433,
-0.04458323121070862,
0.0057280720211565495,
-0.07160088419914246,
-0.01078755035996437,
-0.11752451211214066,
-0.19531793892383575,
-0.01808355003595352,
-0.013951027765870094,
0.10637162625789642,
-0.19873486459255219,
0.0016919135814532638,
-0.03852805122733116,
0.1430753767490387,
0.009263794869184494,
-0.062115464359521866,
-0.02613738179206848,
0.06932178884744644,
-0.015106567181646824,
-0.07846133410930634,
0.059548262506723404,
0.0016996489139273763,
-0.0772809088230133,
-0.08362685889005661,
-0.14424507319927216,
0.00937369279563427,
0.09264776110649109,
-0.023436283692717552,
-0.10904719680547714,
-0.012225176207721233,
-0.05868673324584961,
-0.043278828263282776,
-0.11079118400812149,
0.03441018983721733,
0.2027321308851242,
-0.0037639890797436237,
0.13506588339805603,
-0.046907033771276474,
-0.04500339552760124,
0.0006471458473242819,
0.006218919064849615,
0.010645234026014805,
0.0702798068523407,
0.11226903647184372,
-0.07123282551765442,
0.08769067376852036,
0.07800500839948654,
-0.07180383801460266,
0.12557053565979004,
-0.02651885524392128,
-0.08491922169923782,
-0.022557217627763748,
-0.004338895436376333,
-0.014164501801133156,
0.06953352689743042,
-0.08774856477975845,
0.014273340813815594,
0.027988731861114502,
0.05543952062726021,
0.04693058133125305,
-0.18938513100147247,
0.007875515148043633,
0.01022305153310299,
-0.03266417980194092,
-0.0012220764765515924,
-0.0035796340089291334,
0.03615572676062584,
0.10955975949764252,
0.025917120277881622,
0.010563146322965622,
0.01807110384106636,
-0.006434285547584295,
-0.07812592387199402,
0.17496265470981598,
-0.13470987975597382,
-0.14661623537540436,
-0.0605010986328125,
0.022553902119398117,
-0.06711987406015396,
-0.03519324213266373,
0.045738544315099716,
-0.0996367335319519,
-0.05840431898832321,
-0.07299213856458664,
0.026814371347427368,
-0.051530152559280396,
0.017205454409122467,
0.038595229387283325,
-0.01140438299626112,
0.06081197038292885,
-0.12716363370418549,
-0.009420557878911495,
-0.05330493301153183,
-0.1029195785522461,
0.030662672594189644,
0.06719626486301422,
0.06968504190444946,
0.12063325196504593,
-0.010861754417419434,
0.0286590326577425,
-0.04479529708623886,
0.23591305315494537,
-0.05772436410188675,
-0.037161268293857574,
0.10323861986398697,
0.025762159377336502,
0.05723179131746292,
0.0903930813074112,
0.03684011101722717,
-0.11630750447511673,
0.03249295800924301,
0.07032963633537292,
-0.01662362739443779,
-0.22977374494075775,
-0.05411776527762413,
-0.0438157320022583,
-0.10076837241649628,
0.07873570173978806,
0.04047008976340294,
-0.019329799339175224,
0.03975973278284073,
0.006245277356356382,
0.07838103920221329,
-0.04463113099336624,
0.08301090449094772,
0.14320795238018036,
0.056294430047273636,
0.11182306706905365,
-0.03239184617996216,
-0.01985856518149376,
0.08212970197200775,
-0.036043912172317505,
0.307572603225708,
-0.026875348761677742,
0.024547073990106583,
0.05263470858335495,
0.1311865746974945,
-0.012903350405395031,
0.020198093727231026,
0.00907910242676735,
-0.004054166376590729,
-0.002768337493762374,
-0.05789825692772865,
-0.042413339018821716,
0.005985090043395758,
-0.03180535137653351,
0.045348912477493286,
-0.12379136681556702,
0.0018966313218697906,
0.042805541306734085,
0.22752216458320618,
0.025665875524282455,
-0.26841622591018677,
-0.06378168612718582,
0.00016899888578336686,
-0.033533673733472824,
-0.0491865798830986,
-0.002945252228528261,
0.07505235821008682,
-0.13179552555084229,
0.07803267985582352,
-0.066023088991642,
0.0874597355723381,
-0.06146879866719246,
-0.0006642467342317104,
0.03622199594974518,
0.1581132709980011,
-0.009241931140422821,
0.06510192155838013,
-0.2626231610774994,
0.2076309323310852,
0.022784417495131493,
0.12703172862529755,
-0.06296773999929428,
0.02844216115772724,
0.02719084359705448,
0.046527016907930374,
0.060524117201566696,
-0.002448544604703784,
-0.0894148126244545,
-0.15472684800624847,
-0.055340684950351715,
0.04763973876833916,
0.13164180517196655,
0.016914941370487213,
0.07819527387619019,
-0.04230418801307678,
0.028298543766140938,
0.04865528270602226,
-0.05673536658287048,
-0.19877059757709503,
-0.11059344559907913,
0.028623884543776512,
0.05116580054163933,
-0.04753034934401512,
-0.06121758744120598,
-0.12157823145389557,
-0.03608771786093712,
0.19655652344226837,
0.02639409899711609,
-0.044948529452085495,
-0.13458941876888275,
0.11648215353488922,
0.10769571363925934,
-0.05082917585968971,
0.028526635840535164,
0.007665324490517378,
0.07256894558668137,
0.040694937109947205,
-0.10305646061897278,
0.07406342774629593,
-0.05300355702638626,
-0.1653829962015152,
-0.05646464228630066,
0.0986136868596077,
0.0711522027850151,
0.05261591076850891,
-0.021394377574324608,
0.039668433368206024,
0.0034136578906327486,
-0.10421843081712723,
0.017479369416832924,
0.12970006465911865,
0.09626152366399765,
0.10009706765413284,
-0.07938297092914581,
-0.008391286246478558,
-0.02158629707992077,
-0.045570120215415955,
0.14580699801445007,
0.23556679487228394,
-0.0746849998831749,
0.08848949521780014,
0.031211277469992638,
-0.1016930565237999,
-0.15250353515148163,
0.09170858561992645,
0.11875960975885391,
0.005315645597875118,
0.04202442988753319,
-0.20037002861499786,
0.10595828294754028,
0.14171350002288818,
-0.01151771005243063,
0.06718114763498306,
-0.36780962347984314,
-0.1302718073129654,
0.04293607920408249,
0.1377304196357727,
0.1262027621269226,
-0.13920779526233673,
-0.020000841468572617,
-0.03446447104215622,
-0.12010247260332108,
0.1339869648218155,
-0.08002176135778427,
0.13664914667606354,
-0.023942066356539726,
0.09925001859664917,
0.021997075527906418,
-0.03775624558329582,
0.12792924046516418,
0.012034407816827297,
0.08466752618551254,
-0.06105147674679756,
0.05740875005722046,
0.033574048429727554,
-0.05177706107497215,
0.03434232249855995,
-0.02274991385638714,
0.049888964742422104,
-0.11450318247079849,
-0.025584599003195763,
-0.07190335541963577,
0.06285513192415237,
-0.03157423436641693,
-0.06393010169267654,
-0.0628417581319809,
0.041062090545892715,
0.06647627055644989,
-0.035807158797979355,
0.05401547998189926,
0.01074247993528843,
0.1229814812541008,
0.005113381892442703,
0.07323183119297028,
-0.03476223349571228,
-0.09159810841083527,
0.010260228998959064,
-0.015695471316576004,
0.05658521503210068,
-0.12598571181297302,
0.015492934733629227,
0.14340278506278992,
0.017474576830863953,
0.1382160633802414,
0.07056145370006561,
-0.05483870953321457,
0.02919570542871952,
0.05031154304742813,
-0.1336948275566101,
-0.12123768031597137,
0.021532302722334862,
-0.03858557716012001,
-0.08911486715078354,
0.032722700387239456,
0.10370834171772003,
-0.05872292444109917,
-0.017904972657561302,
-0.015617853961884975,
0.014634259045124054,
-0.03093070723116398,
0.20330165326595306,
0.005767129361629486,
0.02422141842544079,
-0.09021154046058655,
0.12955349683761597,
0.05818919092416763,
-0.08329848200082779,
0.06439799815416336,
0.08918566256761551,
-0.08848236501216888,
-0.012765093706548214,
0.09013170748949051,
0.19968681037425995,
-0.05343194678425789,
-0.034824494272470474,
-0.08622602373361588,
-0.07746658474206924,
0.05935455486178398,
0.09616193175315857,
0.058783721178770065,
-0.010832195170223713,
-0.04614460468292236,
0.03293510153889656,
-0.14818139374256134,
0.051294147968292236,
0.04662935063242912,
0.06498012691736221,
-0.12087632715702057,
0.15603919327259064,
0.028652019798755646,
0.02751728519797325,
-0.025351915508508682,
0.0087045356631279,
-0.11420247703790665,
-0.011313317343592644,
-0.10451749712228775,
-0.02057074010372162,
-0.03408670425415039,
-0.0044658067636191845,
0.00507391057908535,
-0.03526611253619194,
-0.04858973249793053,
0.04747917503118515,
-0.07433677464723587,
-0.06049839407205582,
0.007601037621498108,
0.03801858425140381,
-0.12410016357898712,
-0.006600490305572748,
-0.007479188963770866,
-0.07154566794633865,
0.07354754954576492,
0.06655647605657578,
0.023325657472014427,
0.045666828751564026,
-0.15603075921535492,
-0.026747263967990875,
0.041844483464956284,
0.006367855705320835,
0.06364653259515762,
-0.08426408469676971,
0.0035864838864654303,
-0.0035477939527481794,
0.07764393836259842,
0.031398411840200424,
0.08404962718486786,
-0.1283939629793167,
-0.024448418989777565,
-0.06865187734365463,
-0.04862450435757637,
-0.054857149720191956,
0.03025212325155735,
0.08215925842523575,
0.05731907859444618,
0.16741904616355896,
-0.09980316460132599,
0.04366679489612579,
-0.18722692131996155,
-0.0404227152466774,
-0.011272512376308441,
-0.04168456047773361,
-0.048220906406641006,
-0.03851800784468651,
0.09158678352832794,
-0.045021649450063705,
0.1459227055311203,
0.011192724108695984,
0.08610228449106216,
0.03589233383536339,
-0.04146414250135422,
-0.04418445751070976,
-0.010547693818807602,
0.16934366524219513,
0.07386834919452667,
-0.02168945223093033,
0.08709681779146194,
0.02745882235467434,
0.07222025096416473,
0.08024124056100845,
0.24792428314685822,
0.12348638474941254,
-0.01530957967042923,
0.06364481151103973,
0.01959114335477352,
-0.1082371398806572,
-0.15430302917957306,
0.09182822704315186,
-0.04176667705178261,
0.12658460438251495,
-0.05098787322640419,
0.1626322716474533,
0.049130879342556,
-0.14274978637695312,
0.058716777712106705,
-0.06219129264354706,
-0.09323851019144058,
-0.13953645527362823,
-0.025326142087578773,
-0.0843331515789032,
-0.15397432446479797,
0.02127266116440296,
-0.11277922242879868,
0.06209622323513031,
0.08660246431827545,
0.02692829631268978,
0.011818175204098225,
0.12161541730165482,
-0.037068769335746765,
0.009899518452584743,
0.05006994679570198,
0.0007762378081679344,
-0.010617554187774658,
-0.07285045087337494,
-0.06963302195072174,
0.016424959525465965,
-0.002904882188886404,
0.08737392723560333,
-0.022776121273636818,
-0.030427370220422745,
0.02998342365026474,
-0.028013424947857857,
-0.06619381904602051,
0.025617465376853943,
0.024089301005005836,
0.04361765459179878,
0.05048952251672745,
0.04345281049609184,
-0.01233972329646349,
-0.04150905832648277,
0.26869598031044006,
-0.06623989343643188,
-0.0903109684586525,
-0.11899233609437943,
0.2486773431301117,
0.04403889924287796,
-0.02708767168223858,
0.04534025862812996,
-0.10675372183322906,
-0.019032441079616547,
0.16323839128017426,
0.14583399891853333,
-0.05702973157167435,
-0.022980203852057457,
-0.008324328809976578,
-0.02286496013402939,
-0.03810421749949455,
0.1457526683807373,
0.11122501641511917,
0.06983261555433273,
-0.05587305501103401,
-0.008396748453378677,
-0.03561614826321602,
-0.0044204615987837315,
-0.08096224814653397,
0.033851202577352524,
0.022299299016594887,
0.01095718052238226,
-0.023982781916856766,
0.0626937672495842,
0.005079258233308792,
-0.13476650416851044,
0.04481090232729912,
-0.15538839995861053,
-0.17190176248550415,
-0.004469342529773712,
0.08407650142908096,
-0.03502857685089111,
0.04662251099944115,
-0.020779738202691078,
-0.0033082596492022276,
0.11729571223258972,
-0.026611272245645523,
-0.0635540634393692,
-0.13371148705482483,
0.07380665838718414,
-0.07240385562181473,
0.20608578622341156,
0.005356363486498594,
0.09288637340068817,
0.10706432908773422,
0.05006307736039162,
-0.10996441543102264,
0.06999101489782333,
0.04032393917441368,
-0.08357466012239456,
0.0317632332444191,
0.15735460817813873,
-0.052784740924835205,
0.06264784932136536,
0.03682699427008629,
-0.10672720521688461,
0.004490234889090061,
-0.06351204961538315,
-0.026336893439292908,
-0.06405914574861526,
-0.02032686583697796,
-0.07918231189250946,
0.1453085094690323,
0.20381969213485718,
-0.014404673129320145,
0.01987404003739357,
-0.0957036092877388,
0.03153602033853531,
0.03507810831069946,
0.14049947261810303,
-0.053055357187986374,
-0.2371230572462082,
0.036000438034534454,
0.06924166530370712,
0.015715988352894783,
-0.21703454852104187,
-0.10015539079904556,
0.020740298554301262,
-0.07054337114095688,
-0.08926687389612198,
0.10870396345853806,
0.045001935213804245,
0.038345448672771454,
-0.04926580935716629,
-0.16888558864593506,
-0.039389025419950485,
0.15318340063095093,
-0.14008450508117676,
-0.061361271888017654
] |
null | null | null | ---
tags:
- conversational
--- | {} | null | KrishnaChandra4/DialoGPT-small-Rick | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| ---
tags:
- conversational
--- | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
# Harry Potter DialoGPTModel | {"tags": ["conversational"]} | text-generation | KrispyIChris/DialoGPT-small-harrypotter | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPTModel | [
"# Harry Potter DialoGPTModel"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPTModel"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPTModel"
] | [
0.002982487203553319,
0.0844564363360405,
-0.007493393030017614,
0.08440520614385605,
0.12133529037237167,
0.05407043546438217,
0.16494351625442505,
0.13125015795230865,
0.014546149410307407,
-0.0339486226439476,
0.1128958910703659,
0.2294483631849289,
-0.0032617421820759773,
0.024154292419552803,
-0.051850948482751846,
-0.2859004735946655,
0.040396373718976974,
0.015735797584056854,
-0.06279190629720688,
0.11596427112817764,
0.08761563152074814,
-0.05480024591088295,
0.0874251201748848,
-0.024044714868068695,
-0.14996612071990967,
-0.030329646542668343,
0.034102704375982285,
-0.1190984845161438,
0.16061556339263916,
0.05212295427918434,
0.034259699285030365,
-0.016035856679081917,
-0.08338692784309387,
-0.14633971452713013,
0.03814002498984337,
-0.016581712290644646,
-0.015684129670262337,
0.05577646940946579,
0.030979780480265617,
-0.07892749458551407,
0.15964534878730774,
0.16190999746322632,
0.0817384347319603,
0.05165718495845795,
-0.15208974480628967,
-0.06185206025838852,
-0.01799493096768856,
0.0616636648774147,
-0.03311678767204285,
0.08949705213308334,
-0.012774071656167507,
0.13115762174129486,
-0.03476104885339737,
0.09540604799985886,
0.17754869163036346,
-0.4029126763343811,
-0.03548979014158249,
0.07309754192829132,
0.05654347315430641,
0.12935571372509003,
-0.11258948594331741,
0.0327070988714695,
-0.007414875086396933,
0.016176680102944374,
-0.024037543684244156,
-0.09260951727628708,
-0.08993559330701828,
0.03324000537395477,
-0.11745964735746384,
-0.003611182328313589,
0.23264926671981812,
-0.1084531918168068,
0.0345885343849659,
-0.07336831837892532,
-0.06899431347846985,
0.0402689203619957,
-0.04381314292550087,
-0.0693998634815216,
-0.05663224309682846,
0.0540677085518837,
-0.001481599290855229,
-0.06936047226190567,
-0.09052705764770508,
0.011265695095062256,
-0.13441124558448792,
0.1736554503440857,
0.054017141461372375,
0.04251210018992424,
-0.1923053115606308,
0.07134168595075607,
0.04958568513393402,
-0.04607109725475311,
0.0028988169506192207,
-0.10967525839805603,
0.047296520322561264,
0.0038224568124860525,
-0.032200634479522705,
-0.03831269219517708,
0.050728753209114075,
0.14316914975643158,
-0.028509655967354774,
0.04104243218898773,
-0.012636690400540829,
0.06953229010105133,
0.07475985586643219,
0.015927385538816452,
0.04113655164837837,
-0.08134101331233978,
0.034581705927848816,
-0.09910649061203003,
0.017473673447966576,
-0.058330558240413666,
-0.16314689815044403,
-0.07556170225143433,
0.045847564935684204,
0.02862362004816532,
0.04747661575675011,
0.07207643240690231,
-0.008992580696940422,
-0.04580894112586975,
0.04022187739610672,
-0.0036740321666002274,
-0.009239127859473228,
-0.008875694125890732,
-0.01030698698014021,
0.1820022612810135,
0.022522956132888794,
0.000989828840829432,
-0.1267649382352829,
0.10594004392623901,
-0.08455810695886612,
0.012877797707915306,
0.029603485018014908,
-0.03666071221232414,
0.009491845034062862,
0.017332522198557854,
0.007925039157271385,
-0.1315901279449463,
-0.08573738485574722,
-0.00046596405445598066,
-0.017954044044017792,
-0.026768451556563377,
-0.09788564592599869,
-0.06357300281524658,
-0.00545869953930378,
0.04755524918437004,
-0.009716319851577282,
-0.009484203532338142,
-0.04275204986333847,
0.11696459352970123,
-0.04393377900123596,
0.09998602420091629,
-0.097916379570961,
0.05814611539244652,
-0.09039080888032913,
-0.06604306399822235,
-0.1328192949295044,
0.03541850671172142,
0.00038926894194446504,
0.07948188483715057,
0.02228340320289135,
-0.03982023522257805,
-0.007469809148460627,
0.045843977481126785,
-0.08208952844142914,
0.17944379150867462,
-0.04211803525686264,
-0.13247612118721008,
0.24808141589164734,
-0.10161212831735611,
-0.1850128322839737,
0.1262475699186325,
-0.012686065398156643,
0.06206252798438072,
0.12168198078870773,
0.20606383681297302,
-0.0006824428564868867,
-0.017280710861086845,
0.057202912867069244,
0.060162413865327835,
-0.0921139195561409,
0.050298936665058136,
0.025901922956109047,
-0.019133787602186203,
-0.07054979354143143,
0.058354854583740234,
0.06603151559829712,
-0.008565880358219147,
-0.022215094417333603,
-0.012635299004614353,
-0.018673021346330643,
-0.014676515012979507,
0.1482085883617401,
-0.007776185404509306,
0.11647818982601166,
-0.08815867453813553,
-0.026076754555106163,
-0.015002808533608913,
0.027296075597405434,
-0.022948067635297775,
0.08604729175567627,
-0.03484778851270676,
0.1138160452246666,
0.10895382612943649,
0.04881618171930313,
-0.1309216320514679,
-0.008665869943797588,
-0.019027210772037506,
0.17722737789154053,
0.0967208594083786,
0.04038168489933014,
0.06388572603464127,
-0.0021623005159199238,
-0.07008547335863113,
0.04265716299414635,
0.1259695440530777,
-0.0378849171102047,
-0.10951502621173859,
-0.1659085750579834,
0.057092856615781784,
-0.04147796332836151,
0.10195942223072052,
-0.10423186421394348,
0.027053579688072205,
-0.02001119777560234,
0.08722355216741562,
-0.011649400927126408,
0.006328183691948652,
-0.0070884693413972855,
-0.005484602879732847,
-0.08440378308296204,
-0.009686519391834736,
0.08442426472902298,
-0.014361383393406868,
-0.05975329130887985,
0.15263597667217255,
-0.16651614010334015,
0.1664247214794159,
0.21752779185771942,
-0.308824747800827,
-0.011368355713784695,
-0.14943543076515198,
-0.021202493458986282,
0.01781250163912773,
0.08418838679790497,
0.020461587235331535,
0.16489462554454803,
-0.009690825827419758,
0.1631801277399063,
-0.05058704689145088,
-0.08311043679714203,
-0.07071717828512192,
-0.05216282978653908,
-0.0009987193625420332,
0.08179011195898056,
0.04293036088347435,
-0.1134621724486351,
0.14901690185070038,
0.13438084721565247,
0.06104889512062073,
0.14434799551963806,
0.0975065678358078,
-0.002700108801946044,
0.07766386866569519,
-0.034253641963005066,
-0.026513660326600075,
-0.09005672484636307,
-0.30420613288879395,
-0.050885409116744995,
0.09061534702777863,
0.005180506967008114,
0.08446384966373444,
-0.09082283824682236,
-0.03557492420077324,
-0.0035997231025248766,
0.011234804056584835,
0.030936619266867638,
0.08433031290769577,
0.029120376333594322,
0.1547737568616867,
0.0027103947941213846,
0.0010638925014063716,
0.07061686366796494,
0.02227872982621193,
-0.09149441868066788,
0.16090503334999084,
-0.187648206949234,
-0.2782437205314636,
-0.07304753363132477,
-0.21985426545143127,
-0.019981013610959053,
0.048099782317876816,
0.0943765863776207,
-0.12724632024765015,
-0.010531684383749962,
0.00562648382037878,
0.047122858464717865,
-0.2385970652103424,
-0.007304987404495478,
-0.1343383938074112,
0.05401350185275078,
-0.18877314031124115,
-0.09939691424369812,
-0.02232026308774948,
-0.004331190604716539,
-0.06692814081907272,
0.15234924852848053,
-0.11654343456029892,
0.0038599027320742607,
0.21898610889911652,
0.022465568035840988,
0.0328022725880146,
-0.054694417864084244,
0.19212545454502106,
-0.0961117222905159,
-0.032375212758779526,
0.11641436815261841,
-0.04970636963844299,
0.055088866502046585,
0.04981391504406929,
-0.008360245265066624,
-0.08544382452964783,
0.01916617900133133,
-0.05815449357032776,
-0.030461011454463005,
-0.2879016697406769,
-0.09005062282085419,
-0.10037326067686081,
0.1193075180053711,
0.03728837892413139,
0.06833820790052414,
0.16700305044651031,
0.040412258356809616,
-0.03002893552184105,
-0.027216939255595207,
0.10803183913230896,
0.1294792741537094,
0.23402199149131775,
-0.055440064519643784,
0.09562893211841583,
-0.00023377887555398047,
-0.0590476430952549,
0.07218528538942337,
0.0560607984662056,
0.060827262699604034,
0.029894670471549034,
0.037355802953243256,
-0.031017223373055458,
0.12214650213718414,
0.11340659111738205,
0.044459179043769836,
0.04935762286186218,
0.004067151807248592,
-0.048543769866228104,
-0.008295002393424511,
-0.07824769616127014,
0.05523486062884331,
0.06220897287130356,
-0.13122417032718658,
-0.06901482492685318,
-0.012153557501733303,
0.07501231133937836,
-0.010008567944169044,
0.04214625805616379,
-0.11748289316892624,
-0.039714936167001724,
0.07531467080116272,
-0.06308075785636902,
-0.15116466581821442,
0.11153922975063324,
-0.020646996796131134,
-0.20354816317558289,
0.06472616642713547,
0.003359777620062232,
0.08558813482522964,
-0.06841524690389633,
0.0523718036711216,
-0.12861762940883636,
-0.13370190560817719,
-0.01353028230369091,
0.08035819977521896,
-0.35593658685684204,
0.12379082292318344,
-0.0016493272269144654,
-0.029412783682346344,
-0.06639652699232101,
-0.023048456758260727,
0.005533312913030386,
0.11778968572616577,
0.08031781017780304,
0.012453021481633186,
0.08464556187391281,
0.0016248609172180295,
0.05822036415338516,
-0.008407726883888245,
0.12098714709281921,
0.015892891213297844,
-0.005287657026201487,
-0.04963625967502594,
0.005172225181013346,
-0.06277067214250565,
-0.07109567523002625,
0.07653029263019562,
-0.2204476147890091,
0.10589057952165604,
-0.03486716374754906,
0.07866477221250534,
0.038937173783779144,
-0.011968743987381458,
-0.09167157858610153,
0.21224050223827362,
-0.03838101401925087,
-0.11295603215694427,
-0.08349104225635529,
-0.03988269716501236,
0.06780662387609482,
-0.02345593087375164,
0.024235671386122704,
-0.05069785192608833,
0.03606528043746948,
-0.1385267972946167,
-0.153340145945549,
0.0892120823264122,
-0.03952546417713165,
-0.10352281481027603,
-0.023060087114572525,
0.2027931809425354,
-0.012415970675647259,
0.07839010655879974,
0.009398164227604866,
0.01807449758052826,
-0.1678156703710556,
-0.03903138265013695,
0.05120277404785156,
-0.012819330208003521,
0.020165644586086273,
0.048214301466941833,
0.0022096808534115553,
0.05233965441584587,
-0.11063341051340103,
-0.025277914479374886,
0.33862656354904175,
0.17826630175113678,
-0.006444456055760384,
0.1510804295539856,
0.09120450913906097,
-0.08990529924631119,
-0.18721435964107513,
-0.10318935662508011,
-0.1272655725479126,
-0.09539110213518143,
-0.10243512690067291,
-0.17025986313819885,
0.0901261419057846,
-0.010577963665127754,
0.036565106362104416,
0.18287000060081482,
-0.2582412660121918,
-0.10680469125509262,
0.11524806916713715,
0.016494113951921463,
0.3386557400226593,
-0.14097487926483154,
-0.06238264590501785,
-0.06250675767660141,
-0.17178411781787872,
0.08836913853883743,
-0.0321463979780674,
0.1148417592048645,
-0.07565675675868988,
0.19109322130680084,
0.011737366206943989,
0.011640836484730244,
0.09184692800045013,
0.04054538160562515,
-0.05345849320292473,
-0.08007487654685974,
-0.10990268737077713,
0.021694127470254898,
0.03603013604879379,
-0.014101355336606503,
-0.002409361768513918,
0.00709535600617528,
-0.11427091807126999,
-0.034153975546360016,
-0.07743310183286667,
0.01966112293303013,
-0.01108265109360218,
-0.038637675344944,
-0.0522315613925457,
-0.02698325924575329,
-0.03677111119031906,
0.025746235623955727,
0.1655040830373764,
-0.0720416009426117,
0.21582433581352234,
0.03434890881180763,
0.1443571299314499,
-0.13148249685764313,
-0.05643083527684212,
-0.04146222025156021,
-0.057217083871364594,
0.06178627163171768,
-0.07816483080387115,
-0.013131307438015938,
0.12384237349033356,
-0.009048111736774445,
0.04273136332631111,
0.11941643059253693,
0.021226515993475914,
0.018055936321616173,
0.044597212225198746,
-0.26633113622665405,
-0.05699607729911804,
-0.02770889177918434,
-0.0035065284464508295,
0.05836006999015808,
0.05807343125343323,
0.19605328142642975,
-0.014737704768776894,
-0.10196343809366226,
0.01801101677119732,
0.027832264080643654,
-0.025841867551207542,
0.10421433299779892,
0.028572283685207367,
-0.005567864049226046,
-0.15798655152320862,
0.08191457390785217,
0.008413606323301792,
-0.10698968917131424,
0.030396820977330208,
0.2321971356868744,
-0.11481320858001709,
-0.11041523516178131,
-0.08093854039907455,
0.06002017855644226,
-0.09183075278997421,
0.021433044224977493,
-0.004318637307733297,
-0.12922576069831848,
0.0640779584646225,
0.10319945216178894,
0.03663306310772896,
0.06755461543798447,
-0.09171972423791885,
-0.011573188938200474,
-0.0361277237534523,
-0.009886259213089943,
0.015154141932725906,
0.03822258487343788,
-0.06053540110588074,
0.17430369555950165,
-0.06488145887851715,
0.09666697680950165,
-0.06589503586292267,
-0.10347060859203339,
-0.14249560236930847,
0.03248399868607521,
-0.05442206934094429,
-0.07316743582487106,
-0.12328264117240906,
-0.05287665128707886,
-0.003309239400550723,
-0.03169460967183113,
0.009056505747139454,
-0.06911830604076385,
-0.1100786030292511,
0.006996117066591978,
-0.004570325370877981,
-0.0026664568576961756,
-0.07765737175941467,
0.022729864344000816,
0.07629404962062836,
-0.03529339283704758,
0.1619264781475067,
0.22357667982578278,
-0.1278698444366455,
0.11822541058063507,
-0.1054450273513794,
-0.1146668866276741,
0.055844616144895554,
0.0104099465534091,
0.030850164592266083,
0.07737917453050613,
-0.03797246888279915,
0.000614544958807528,
0.042748305946588516,
0.0845518633723259,
0.11003732681274414,
-0.0854010060429573,
0.03201961889863014,
-0.053418006747961044,
-0.16723212599754333,
-0.02035335823893547,
-0.04593927040696144,
0.0802222266793251,
-0.028753407299518585,
0.11468997597694397,
-0.05969836935400963,
0.08301124721765518,
-0.06888546794652939,
0.047491904348134995,
0.023262182250618935,
-0.14769208431243896,
-0.01512021105736494,
-0.05428485572338104,
0.04341840744018555,
-0.00570332957431674,
0.1869979202747345,
-0.0386633574962616,
-0.0015649241395294666,
0.04427210986614227,
0.055038049817085266,
-0.03823054954409599,
-0.0004704003222286701,
0.1882857382297516,
0.1255311220884323,
-0.09797685593366623,
-0.018902789801359177,
0.06400711089372635,
0.06352747976779938,
0.06168230623006821,
0.11786065250635147,
0.004146424122154713,
0.037864554673433304,
0.0655207559466362,
-0.060804832726716995,
0.07182464003562927,
-0.07217489928007126,
-0.11382899433374405,
0.06027817726135254,
0.011205843649804592,
-0.054758381098508835,
0.20154285430908203,
0.19705559313297272,
-0.028350524604320526,
0.010784772224724293,
-0.01378804724663496,
-0.09523211419582367,
-0.14962197840213776,
-0.03421506658196449,
-0.06683104485273361,
-0.12419110536575317,
-0.0017355524469166994,
-0.1500975638628006,
0.03446120396256447,
-0.018685389310121536,
0.08105380833148956,
-0.06763056665658951,
-0.006543930619955063,
0.12870381772518158,
-0.10382650792598724,
0.0733574703335762,
-0.022129101678729057,
0.07568397372961044,
-0.0333014614880085,
-0.019365759566426277,
-0.10197252780199051,
-0.002881895750761032,
0.020364709198474884,
0.08156046271324158,
-0.10096751153469086,
0.02313058264553547,
-0.14186374843120575,
-0.0966726541519165,
-0.020093124359846115,
0.09499701112508774,
-0.04925210773944855,
0.15717019140720367,
0.02340259589254856,
-0.05070153996348381,
0.0019636903889477253,
0.25588876008987427,
-0.08058923482894897,
-0.06755434721708298,
-0.013213781639933586,
0.2032424360513687,
0.048957642167806625,
0.06171724200248718,
0.0020828533452004194,
0.02565826289355755,
-0.06208743155002594,
0.28569650650024414,
0.33488211035728455,
-0.11798133701086044,
0.00001219293426402146,
0.03737756237387657,
0.051189523190259933,
0.14682643115520477,
0.085280641913414,
0.1181064248085022,
0.26780498027801514,
-0.08798232674598694,
0.005408228375017643,
-0.04876265674829483,
-0.0031331966165453196,
-0.10121822357177734,
0.047785088419914246,
0.0709281638264656,
-0.08374308049678802,
-0.016397517174482346,
0.06668034940958023,
-0.2714754045009613,
0.10766535252332687,
-0.1270752251148224,
-0.1720745861530304,
-0.05000896751880646,
-0.00824446976184845,
0.025636890903115273,
0.01697588711977005,
0.09754027426242828,
0.043409328907728195,
-0.08807780593633652,
0.07478131353855133,
0.02825464867055416,
-0.24515379965305328,
-0.022882981225848198,
0.14008113741874695,
-0.08702218532562256,
0.0013733473606407642,
-0.028679566457867622,
0.042398255318403244,
0.05820801109075546,
0.09508058428764343,
-0.035944800823926926,
-0.07878372073173523,
-0.0010857203742489219,
-0.01900409534573555,
0.003422722453251481,
0.0719546526670456,
0.06518567353487015,
-0.08091051876544952,
0.11567501723766327,
-0.05712833255529404,
0.059024907648563385,
0.05110368877649307,
-0.016209933906793594,
0.01194787584245205,
0.018341388553380966,
-0.0706145390868187,
0.0451875776052475,
0.1226925179362297,
-0.018730368465185165,
-0.006998102646321058,
-0.042419735342264175,
-0.08994142711162567,
-0.006333800498396158,
-0.05343787744641304,
-0.10976868122816086,
-0.1731039434671402,
-0.12782539427280426,
0.04020356014370918,
-0.026440488174557686,
-0.20403145253658295,
0.010699586011469364,
-0.10401536524295807,
0.04647589474916458,
-0.1623229682445526,
0.09580578655004501,
0.06180202215909958,
-0.0032767532393336296,
0.006588983349502087,
0.045799873769283295,
0.053895313292741776,
0.1549101173877716,
-0.15831753611564636,
-0.03008434735238552
] |
null | null | transformers | # Buro discord bot | {"tags": ["conversational"]} | text-generation | Kryptone/Burobot | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Buro discord bot | [
"# Buro discord bot"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Buro discord bot"
] | [
51,
5
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Buro discord bot"
] | [
-0.008651046082377434,
-0.0011596530675888062,
-0.007684007287025452,
0.0002576589467935264,
0.1534540206193924,
0.0018657036125659943,
0.1377098262310028,
0.10766588896512985,
0.08761406689882278,
0.01253537181764841,
0.11505118012428284,
0.19045016169548035,
0.009272663854062557,
0.15150976181030273,
-0.10078081488609314,
-0.20517118275165558,
0.0778145119547844,
0.013513700105249882,
0.039077695459127426,
0.12272211909294128,
0.07188211381435394,
-0.056387726217508316,
0.08444365113973618,
-0.02989869937300682,
-0.18828445672988892,
0.02542373724281788,
0.05469432845711708,
-0.10659543424844742,
0.09369141608476639,
0.06392907351255417,
0.08723219484090805,
0.02068793959915638,
-0.09106295555830002,
-0.09268568456172943,
0.05995685234665871,
0.024657579138875008,
-0.061049532145261765,
0.06616751104593277,
-0.0061031230725348,
-0.10162779688835144,
0.16486318409442902,
0.10080017894506454,
-0.01107230968773365,
0.09532654285430908,
-0.16055549681186676,
-0.012058215215802193,
-0.0493919663131237,
0.06128471717238426,
0.06106429174542427,
0.09565425664186478,
-0.052653718739748,
0.12965518236160278,
-0.09687341004610062,
0.10386679321527481,
0.09089160710573196,
-0.3249014616012573,
-0.025935815647244453,
0.07342494279146194,
0.05535668507218361,
0.0746074691414833,
-0.0630628913640976,
0.048733875155448914,
0.01798969879746437,
0.02474309131503105,
-0.07269959151744843,
-0.05695974454283714,
-0.0981040969491005,
-0.0024158016312867403,
-0.061072416603565216,
-0.053194042295217514,
0.20372645556926727,
-0.0173894464969635,
0.04837446287274361,
-0.042372237890958786,
-0.10115744173526764,
-0.016074899584054947,
-0.04250594228506088,
0.033009644597768784,
-0.10779277980327606,
0.07322704046964645,
0.009389156475663185,
-0.10459880530834198,
-0.11254920810461044,
-0.028811868280172348,
-0.1565263867378235,
0.17172184586524963,
0.034865569323301315,
0.06046376749873161,
-0.22094233334064484,
0.0748075470328331,
0.08055584877729416,
-0.09671325981616974,
0.024421336129307747,
-0.09458563476800919,
0.007718141656368971,
0.02134384773671627,
-0.048583872616291046,
-0.0707511454820633,
0.10766568779945374,
0.1933283656835556,
-0.08083890378475189,
0.0267513208091259,
-0.06330283731222153,
0.08724618703126907,
0.0414620079100132,
0.048705365508794785,
-0.0019973949529230595,
-0.003119671018794179,
0.08707915991544724,
-0.08870702236890793,
0.03133722394704819,
-0.05217485874891281,
-0.16812685132026672,
-0.024787122383713722,
0.004848914686590433,
0.0838494598865509,
0.0815020501613617,
0.11333159357309341,
-0.04282468929886818,
-0.014683651737868786,
0.09379110485315323,
-0.03559819608926773,
0.011752869933843613,
0.03820723667740822,
-0.01074209250509739,
0.052267663180828094,
0.030754290521144867,
0.007280645426362753,
-0.12936043739318848,
0.034073226153850555,
-0.07851743698120117,
-0.009958560578525066,
-0.02681931108236313,
-0.057370591908693314,
0.034711964428424835,
-0.06055126711726189,
-0.0172367412596941,
-0.15374913811683655,
-0.12705561518669128,
0.009726328775286674,
-0.05314308777451515,
-0.053755734115839005,
-0.08440104126930237,
-0.05564224720001221,
-0.01773441955447197,
0.029186002910137177,
-0.053185854107141495,
-0.040368396788835526,
-0.041424255818128586,
0.09307695925235748,
-0.03297046944499016,
0.11271609365940094,
-0.1432969719171524,
0.047747474163770676,
-0.10294365882873535,
-0.03084174543619156,
-0.16535082459449768,
0.08938420563936234,
-0.03544831648468971,
0.13490237295627594,
-0.037095554172992706,
0.00933005753904581,
-0.13506020605564117,
0.04217882826924324,
-0.02507898025214672,
0.23456904292106628,
-0.034218136221170425,
-0.12259767949581146,
0.33479902148246765,
-0.07678905874490738,
-0.1218734085559845,
0.12877726554870605,
0.017689306288957596,
0.00639757513999939,
0.13478393852710724,
0.13855892419815063,
-0.09305410087108612,
-0.027056967839598656,
0.0063044000416994095,
0.08591482788324356,
-0.13747112452983856,
-0.0014366249088197947,
-0.0028313687071204185,
-0.024161286652088165,
-0.09535641968250275,
0.02260119654238224,
0.19631807506084442,
0.11382747441530228,
-0.04660315811634064,
-0.024110574275255203,
-0.015614289790391922,
-0.011497571133077145,
0.06783847510814667,
-0.01778430864214897,
0.10022946447134018,
-0.05050983652472496,
-0.07471568137407303,
-0.08975826948881149,
0.011602752842009068,
0.01670486107468605,
0.02760438807308674,
-0.09532821178436279,
0.12615996599197388,
0.012715225107967854,
0.09007333219051361,
-0.16589702665805817,
-0.07655250281095505,
-0.013138974085450172,
0.15188820660114288,
0.08025309443473816,
0.06825006008148193,
0.05707317963242531,
-0.06652186810970306,
-0.008313641883432865,
0.0076409755274653435,
0.1282086819410324,
-0.03307129442691803,
-0.06879258155822754,
-0.10480771213769913,
0.07731222361326218,
-0.061390794813632965,
0.12792913615703583,
-0.06875503808259964,
0.030647823587059975,
0.06345920264720917,
0.1433238387107849,
-0.0011251961113885045,
0.026160208508372307,
0.025485742837190628,
-0.005323334597051144,
-0.05892486870288849,
0.007841759361326694,
0.07618559896945953,
-0.00611924147233367,
-0.09505071491003036,
0.18307024240493774,
-0.11226734519004822,
0.09842979162931442,
0.2050928771495819,
-0.18768329918384552,
-0.013834967277944088,
-0.04382016509771347,
-0.05194374546408653,
0.02281879633665085,
0.08304413408041,
-0.06405994296073914,
0.1429886668920517,
0.011849288828670979,
0.16834388673305511,
-0.03785780444741249,
-0.032074104994535446,
-0.006035950966179371,
-0.04484992474317551,
0.0025284101720899343,
0.07140609622001648,
0.12607648968696594,
-0.1560388058423996,
0.15910588204860687,
0.12196823954582214,
0.04430018365383148,
0.1983596384525299,
0.03739558160305023,
0.014781051315367222,
0.05839468911290169,
0.0008083915454335511,
-0.040576085448265076,
-0.06482568383216858,
-0.2414589524269104,
-0.008390842005610466,
0.05235004425048828,
-0.003515607211738825,
0.11553619801998138,
-0.08474225550889969,
-0.03142542764544487,
-0.04957769438624382,
-0.0023557699751108885,
-0.019464921206235886,
0.12787243723869324,
0.06602830439805984,
0.15409526228904724,
0.005752452649176121,
-0.020232975482940674,
0.062073495239019394,
0.021932637318968773,
-0.08276522904634476,
0.14971129596233368,
-0.1471412032842636,
-0.36255568265914917,
-0.0967937707901001,
-0.11317981034517288,
-0.04437362402677536,
0.04876833036541939,
0.11903950572013855,
-0.15975327789783478,
-0.014628645032644272,
0.02987591363489628,
0.14644864201545715,
-0.0018446057802066207,
0.016279548406600952,
0.008938225917518139,
0.012603627517819405,
-0.07999948412179947,
-0.09624984860420227,
-0.05630122497677803,
-0.05802763253450394,
-0.0923248827457428,
0.12852458655834198,
-0.09358856827020645,
0.05363994464278221,
0.17413924634456635,
0.06095636636018753,
0.04836448282003403,
-0.03284652158617973,
0.23313121497631073,
-0.10787317156791687,
0.027767686173319817,
0.20098568499088287,
-0.0332358181476593,
0.0534273236989975,
0.12050256878137589,
-0.017832009121775627,
-0.0996631309390068,
0.04121638089418411,
-0.012142041698098183,
-0.064821258187294,
-0.2207154631614685,
-0.1409163475036621,
-0.12426889687776566,
0.07862229645252228,
0.027203084900975227,
0.0711817592382431,
0.14988072216510773,
0.046471890062093735,
-0.06940610706806183,
-0.0006616006139665842,
0.05593464896082878,
0.07668736577033997,
0.1970091462135315,
-0.07309867441654205,
0.1305028349161148,
-0.049696046859025955,
-0.10738097131252289,
0.09403524547815323,
0.0222750473767519,
0.0815863087773323,
0.05436763912439346,
0.06346175819635391,
0.03486697003245354,
0.029158897697925568,
0.12987342476844788,
0.04968960955739021,
-0.0057929763570427895,
-0.04154469445347786,
-0.02323446236550808,
-0.01580159179866314,
-0.08024268597364426,
0.025313695892691612,
0.060954831540584564,
-0.14323195815086365,
-0.02794291265308857,
-0.0938229188323021,
0.11794371902942657,
0.08680889755487442,
0.06872018426656723,
-0.17042773962020874,
-0.08112673461437225,
0.06992372870445251,
-0.035871174186468124,
-0.1050691157579422,
0.049155157059431076,
0.033877190202474594,
-0.12669263780117035,
0.04259065166115761,
-0.025924038141965866,
0.13012592494487762,
-0.033348970115184784,
0.07875341922044754,
-0.13859032094478607,
-0.010886062867939472,
0.012802108190953732,
0.07338517159223557,
-0.2650756537914276,
0.14209328591823578,
-0.010017587803304195,
-0.036973610520362854,
-0.10713627934455872,
0.0032063345424830914,
0.009230115450918674,
0.06466035544872284,
0.0704754963517189,
0.00461164303123951,
0.01770620420575142,
-0.07858745008707047,
-0.04523279890418053,
0.035416971892118454,
0.06892868876457214,
-0.039025887846946716,
-0.021529411897063255,
-0.02234729938209057,
-0.020002257078886032,
-0.019530201330780983,
-0.10311654210090637,
-0.03924085944890976,
-0.1712474822998047,
0.06727687269449234,
0.08394498378038406,
0.05610169470310211,
0.008612530305981636,
0.006417589262127876,
0.007718161679804325,
0.21365998685359955,
-0.04118161275982857,
-0.08326472342014313,
-0.08485160768032074,
0.05297880992293358,
0.013308537192642689,
-0.07855191826820374,
0.023154208436608315,
-0.08888258785009384,
0.027018064633011818,
-0.09507039934396744,
-0.17550282180309296,
0.11646132171154022,
-0.09366782009601593,
-0.06452317535877228,
-0.017314918339252472,
0.17934642732143402,
0.0058343494310975075,
-0.0007525409455411136,
0.03442096710205078,
-0.010035112500190735,
-0.09485317766666412,
-0.0943215861916542,
0.03351050987839699,
0.0076559167355299,
0.0512310266494751,
0.08546168357133865,
-0.0379844531416893,
-0.09635868668556213,
-0.06412524729967117,
0.0016972768353298306,
0.3054688274860382,
0.15732094645500183,
-0.04003698378801346,
0.17125342786312103,
0.1163080632686615,
-0.035124313086271286,
-0.30290716886520386,
-0.10554216802120209,
-0.09953863173723221,
-0.03614087402820587,
-0.09720810502767563,
-0.1993274688720703,
0.06337038427591324,
-0.025553587824106216,
-0.014749571681022644,
0.14713872969150543,
-0.25778383016586304,
-0.08993574231863022,
0.1717989444732666,
-0.04501692205667496,
0.38762804865837097,
-0.09052704274654388,
-0.0952303558588028,
-0.04409899562597275,
-0.10363388061523438,
0.15491850674152374,
-0.02306269481778145,
0.09234106540679932,
-0.008579394780099392,
0.1304890364408493,
0.04425228387117386,
-0.012715276330709457,
0.07911793142557144,
0.003647747216746211,
-0.04675827547907829,
-0.1121169701218605,
-0.0661671981215477,
0.02483181469142437,
0.03102848306298256,
0.01985456421971321,
-0.09296459704637527,
0.009478315711021423,
-0.09590867161750793,
-0.04062121734023094,
-0.1213638111948967,
0.08412211388349533,
0.02650647982954979,
-0.014984192326664925,
-0.024503234773874283,
-0.04213670641183853,
-0.03965742141008377,
0.04723870009183884,
0.17562958598136902,
-0.07522069662809372,
0.20843839645385742,
0.11856862157583237,
0.08811204135417938,
-0.1445154994726181,
0.062288057059049606,
-0.013003969565033913,
-0.05933524668216705,
0.09000703692436218,
-0.08752189576625824,
0.04041140154004097,
0.07963798940181732,
-0.0476452000439167,
0.10457180440425873,
0.07881960272789001,
-0.03179990500211716,
0.02496296353638172,
0.12820662558078766,
-0.25795337557792664,
-0.08218400180339813,
-0.027891535311937332,
-0.0018409371841698885,
0.07652142643928528,
0.05871719494462013,
0.1942778378725052,
0.03240007907152176,
-0.0716283768415451,
0.004613346420228481,
0.048975396901369095,
-0.05862703174352646,
0.05174678936600685,
-0.01639527641236782,
0.014817197807133198,
-0.16078904271125793,
0.049298420548439026,
0.028253670781850815,
-0.1548752784729004,
0.049163658171892166,
0.1801372617483139,
-0.12713629007339478,
-0.126951664686203,
-0.13268312811851501,
0.09394380450248718,
-0.04823414236307144,
0.01440152432769537,
-0.0646638423204422,
-0.13325780630111694,
0.09393195807933807,
0.13566167652606964,
0.025909602642059326,
0.08958820253610611,
-0.040784917771816254,
-0.0044025033712387085,
-0.024806620553135872,
-0.004369957372546196,
0.018749844282865524,
-0.01835559494793415,
-0.030839145183563232,
0.037546493113040924,
-0.004361225292086601,
0.12008892744779587,
-0.08316843956708908,
-0.0839153453707695,
-0.19844678044319153,
0.007389918435364962,
-0.15142564475536346,
-0.08846180140972137,
-0.09731226414442062,
-0.05208142474293709,
-0.020732879638671875,
-0.06930776685476303,
-0.04982762411236763,
-0.04155188426375389,
-0.1185019314289093,
0.01588723063468933,
-0.032862015068531036,
0.04073100909590721,
-0.11883196979761124,
0.03609483689069748,
0.08197422325611115,
-0.031241530552506447,
0.19465836882591248,
0.19994546473026276,
-0.10134375840425491,
0.09165730327367783,
-0.14668092131614685,
-0.08498261868953705,
0.12045469135046005,
0.013998654671013355,
0.05666583403944969,
0.09893325716257095,
0.03748868778347969,
0.047711364924907684,
0.04327039420604706,
0.05776305869221687,
0.09141261875629425,
-0.10488522797822952,
0.0552692674100399,
0.0018097569700330496,
-0.11392755061388016,
-0.051314402371644974,
-0.029883364215493202,
0.05430104210972786,
0.03228387236595154,
0.10594768822193146,
-0.05987146124243736,
0.07344962656497955,
-0.08780089765787125,
0.03554574400186539,
-0.00003934726191801019,
-0.1481143832206726,
-0.005579064134508371,
-0.07595892250537872,
0.054087523370981216,
0.015884721651673317,
0.1586316078901291,
0.018483150750398636,
-0.0395851768553257,
0.05610189959406853,
0.11207377165555954,
-0.041798897087574005,
0.0153425931930542,
0.06610582768917084,
0.0840691402554512,
-0.062789186835289,
-0.10773418098688126,
0.022989189252257347,
0.035712990909814835,
-0.02053815871477127,
0.17126837372779846,
0.019889477640390396,
0.07171487808227539,
0.054331231862306595,
0.03632575646042824,
0.013372497633099556,
-0.07608116418123245,
-0.06703266501426697,
-0.12897449731826782,
0.039683375507593155,
-0.056128788739442825,
0.08264940232038498,
0.13768306374549866,
0.0068480512127280235,
0.007816942408680916,
-0.02326950617134571,
-0.038091763854026794,
-0.15363289415836334,
-0.14730095863342285,
-0.06006190553307533,
-0.13666114211082458,
0.02579617314040661,
-0.09207642078399658,
0.044182565063238144,
-0.037449710071086884,
0.052863460034132004,
-0.06719660758972168,
0.13100174069404602,
0.0574459545314312,
-0.09935302287340164,
0.0559740848839283,
-0.030104178935289383,
0.024639319628477097,
0.005579038523137569,
-0.012332496233284473,
-0.060640014708042145,
0.04683608189225197,
0.02167857065796852,
0.0823311135172844,
-0.06848315894603729,
0.04368548467755318,
-0.1397906392812729,
-0.09257682412862778,
-0.04029863700270653,
0.08694452792406082,
-0.0463838130235672,
0.1590539962053299,
0.045327261090278625,
0.005774385761469603,
0.028557296842336655,
0.24286101758480072,
-0.04913463443517685,
-0.04590637609362602,
-0.09171878546476364,
0.18498753011226654,
-0.004562400281429291,
0.07772426307201385,
-0.04329376667737961,
-0.007670000195503235,
-0.11288145184516907,
0.3181878328323364,
0.3171883821487427,
-0.09361495822668076,
0.030695941299200058,
-0.020727435126900673,
0.05020403861999512,
0.08707284927368164,
0.1186084970831871,
0.13191835582256317,
0.29930469393730164,
-0.0456736795604229,
0.011719855479896069,
-0.009779122658073902,
-0.02788175456225872,
-0.08674677461385727,
0.03956413269042969,
0.014842221513390541,
-0.04141588881611824,
-0.02291143126785755,
0.09448166191577911,
-0.24177533388137817,
0.008948841132223606,
-0.11446642875671387,
-0.20197518169879913,
-0.06553695350885391,
-0.004329416435211897,
0.10301582515239716,
0.03169461339712143,
0.12342961132526398,
-0.005276931449770927,
-0.11404146254062653,
0.09136543422937393,
-0.003952340688556433,
-0.16422078013420105,
-0.06578610837459564,
0.09224192053079605,
-0.14610601961612701,
-0.0030529845971614122,
-0.051012732088565826,
0.03634621202945709,
0.09896937757730484,
0.039495762437582016,
-0.04309331625699997,
0.017728488892316818,
-0.008931710384786129,
-0.031971655786037445,
-0.006257845554500818,
0.08360903710126877,
0.013869871385395527,
-0.02872595749795437,
0.08038675785064697,
-0.16146720945835114,
0.034650638699531555,
-0.07184155285358429,
-0.028729593381285667,
-0.011940895579755306,
0.07247389107942581,
-0.0669875219464302,
0.05519295483827591,
0.09746436029672623,
-0.03794417530298233,
0.006281858775764704,
-0.021914178505539894,
-0.03032025881111622,
-0.021793117746710777,
-0.05925052613019943,
-0.13316789269447327,
-0.17245911061763763,
-0.07618308812379837,
0.08121608197689056,
0.027718544006347656,
-0.18336895108222961,
0.030341530218720436,
-0.14345094561576843,
0.08298849314451218,
-0.15454962849617004,
0.10564320534467697,
0.06585747748613358,
0.01250807847827673,
0.004095116630196571,
-0.07084722816944122,
0.051789283752441406,
0.09377206861972809,
-0.09904849529266357,
-0.06636861711740494
] |
null | null | transformers | # Rin chatbot | {"tags": ["conversational"]} | text-generation | Kryptone/RinAI | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Rin chatbot | [
"# Rin chatbot"
] | [
"TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rin chatbot"
] | [
56,
4
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rin chatbot"
] | [
0.006142971105873585,
-0.019630378112196922,
-0.006452640052884817,
0.008783400990068913,
0.11724495887756348,
-0.023702548816800117,
0.13311120867729187,
0.11298202723264694,
0.004570331424474716,
-0.012894895859062672,
0.11594650149345398,
0.20103687047958374,
-0.002848111093044281,
0.12486910074949265,
-0.08349351584911346,
-0.21547584235668182,
0.11818759143352509,
0.00603135209530592,
0.11678226292133331,
0.12929823994636536,
0.08593714982271194,
-0.06519867479801178,
0.07224354147911072,
-0.019787762314081192,
-0.1169854998588562,
-0.027898579835891724,
0.05366237461566925,
-0.12423381209373474,
0.12847843766212463,
0.019549967721104622,
0.11563586443662643,
0.05804342031478882,
-0.05620751157402992,
-0.1445349156856537,
0.04312112182378769,
0.027320105582475662,
-0.045112814754247665,
0.04983682185411453,
0.02307724766433239,
-0.06420285254716873,
0.09102556109428406,
0.09894868731498718,
-0.014652527868747711,
0.07630355656147003,
-0.13956515491008759,
0.008862802758812904,
-0.03223820775747299,
0.03274703770875931,
0.08202868700027466,
0.11662949621677399,
-0.030443908646702766,
0.20636741816997528,
-0.07805363833904266,
0.1235017254948616,
0.14712859690189362,
-0.34970858693122864,
-0.017757296562194824,
0.0962725356221199,
0.06562318652868271,
0.09242170304059982,
-0.05983325093984604,
0.03609190136194229,
0.025593500584363937,
0.0038068206049501896,
-0.02399122342467308,
-0.04595549404621124,
-0.16578271985054016,
-0.01892145350575447,
-0.08008891344070435,
-0.04402422159910202,
0.1760808825492859,
-0.030101228505373,
0.048822686076164246,
-0.060382597148418427,
-0.12358981370925903,
-0.05603548884391785,
-0.03647520765662193,
-0.021088510751724243,
-0.08525297790765762,
0.05141390487551689,
-0.021203719079494476,
-0.06453713029623032,
-0.1309337615966797,
-0.028497695922851562,
-0.14397981762886047,
0.14663659036159515,
0.05003475397825241,
0.04212097451090813,
-0.19995921850204468,
0.060025230050086975,
0.08008928596973419,
-0.10303640365600586,
-0.0017365943640470505,
-0.1145860031247139,
0.03482997789978981,
0.01263577863574028,
-0.0034362829755991697,
-0.08285631239414215,
0.14361965656280518,
0.09261129796504974,
-0.15107646584510803,
0.0446491464972496,
-0.07809857279062271,
0.05801747739315033,
0.031077422201633453,
0.026266150176525116,
0.014291748404502869,
0.05979643762111664,
0.06432697921991348,
-0.09118892252445221,
0.03432019427418709,
-0.06308618187904358,
-0.12563838064670563,
0.02943764254450798,
0.08573606610298157,
0.08984452486038208,
-0.00041753356344997883,
0.12667042016983032,
-0.016596071422100067,
0.005880390293896198,
0.09973481297492981,
-0.0427345335483551,
-0.03215312212705612,
0.05179314315319061,
0.004914367571473122,
0.04839986562728882,
-0.007139585912227631,
0.023858819156885147,
-0.12180881947278976,
0.004989298991858959,
-0.05131657421588898,
-0.02625207044184208,
-0.03868715465068817,
-0.06175365298986435,
0.02126247063279152,
-0.029274389147758484,
-0.018011275678873062,
-0.20643378794193268,
-0.12409763038158417,
0.009106447920203209,
-0.016806719824671745,
-0.03141217678785324,
-0.041100963950157166,
-0.07130922377109528,
-0.028797872364521027,
0.021745802834630013,
-0.0664558932185173,
-0.08674032986164093,
-0.05753654986619949,
0.09992986917495728,
-0.06244721636176109,
0.09543056786060333,
-0.09441672265529633,
0.04162080958485603,
-0.13434337079524994,
-0.033692099153995514,
-0.06192581355571747,
0.05941750109195709,
-0.04003039374947548,
0.14354979991912842,
-0.011150157079100609,
-0.007282541133463383,
-0.09695036709308624,
0.029488548636436462,
-0.02990085817873478,
0.2252618372440338,
-0.05309559404850006,
-0.07640587538480759,
0.3448050022125244,
-0.13307985663414001,
-0.15362560749053955,
0.13840222358703613,
0.011787772178649902,
0.023417988792061806,
0.12934201955795288,
0.23454993963241577,
-0.012849909253418446,
-0.03060993179678917,
0.02484135888516903,
0.07777973264455795,
-0.13204532861709595,
-0.029125992208719254,
-0.022878598421812057,
0.02144000306725502,
-0.07816937565803528,
0.031371138989925385,
0.16771842539310455,
0.07642368227243423,
-0.07430561631917953,
-0.03886450082063675,
-0.030092500150203705,
-0.022902056574821472,
0.05937165394425392,
0.00405877735465765,
0.09451185166835785,
-0.09099989384412766,
-0.042630843818187714,
-0.10604545474052429,
0.03415776044130325,
-0.017932187765836716,
0.015320311300456524,
-0.1175854429602623,
0.06473860144615173,
0.06327038258314133,
0.07057498395442963,
-0.10559915006160736,
-0.139027401804924,
-0.0014291852712631226,
0.13249610364437103,
0.013885493390262127,
0.06382018327713013,
0.07689625024795532,
-0.016529593616724014,
0.02338031679391861,
-0.031705230474472046,
0.17074009776115417,
-0.009453348815441132,
-0.04594763368368149,
-0.08196277171373367,
0.08455916494131088,
-0.0743168517947197,
0.06155649200081825,
-0.0739331766963005,
0.02351672202348709,
0.04268244281411171,
0.12792551517486572,
0.017266714945435524,
0.0219478290528059,
0.008767597377300262,
-0.005258869845420122,
-0.07341192662715912,
-0.009297443553805351,
0.0951794907450676,
0.016687653958797455,
-0.04997234791517258,
0.22057367861270905,
-0.15608102083206177,
0.15156790614128113,
0.17861023545265198,
-0.19247910380363464,
0.003511822782456875,
-0.036474134773015976,
-0.051893748342990875,
0.013844067230820656,
0.0527564138174057,
-0.032398100942373276,
0.11267954111099243,
-0.006979310419410467,
0.1697554886341095,
-0.0499550886452198,
-0.024944839999079704,
0.007306491024792194,
-0.07140913605690002,
-0.015102662146091461,
0.1010381355881691,
0.026508819311857224,
-0.17936283349990845,
0.15846788883209229,
0.07676153630018234,
0.044983431696891785,
0.20013487339019775,
0.00428285077214241,
0.014627042226493359,
0.08446372300386429,
0.07610516995191574,
-0.018471255898475647,
-0.0700468197464943,
-0.21097221970558167,
-0.014583013951778412,
0.06392118334770203,
0.038656480610370636,
0.09622439742088318,
-0.08900183439254761,
-0.04067307338118553,
-0.03336768224835396,
-0.031769268214702606,
0.06114896759390831,
0.08942143619060516,
0.050627194344997406,
0.15322819352149963,
-0.03504018113017082,
-0.09652842581272125,
0.0739017203450203,
-0.0040787686593830585,
-0.08847827464342117,
0.18254564702510834,
-0.10976157337427139,
-0.3897331953048706,
-0.08620668202638626,
-0.15788201987743378,
-0.049124300479888916,
0.04625479876995087,
0.12751193344593048,
-0.17101749777793884,
-0.015257004648447037,
-0.035207320004701614,
0.03420843183994293,
-0.012734388001263142,
0.010057417675852776,
-0.02383485622704029,
0.026787858456373215,
-0.07353648543357849,
-0.12031787633895874,
-0.04106246680021286,
-0.05259792134165764,
-0.13160014152526855,
0.18894429504871368,
-0.09439817070960999,
0.04947377368807793,
0.19431188702583313,
0.004901639185845852,
0.05035175383090973,
-0.03241606801748276,
0.1765143871307373,
-0.06927765905857086,
0.01574023626744747,
0.1955936998128891,
-0.017173651605844498,
0.0725855901837349,
0.14929941296577454,
-0.02169955149292946,
-0.08854161947965622,
0.06719048321247101,
-0.035358067601919174,
-0.0878782570362091,
-0.2701648771762848,
-0.14917941391468048,
-0.06989846378564835,
0.11979126930236816,
-0.002796200569719076,
0.07673021405935287,
0.1883447915315628,
0.058718856424093246,
-0.05387464910745621,
-0.08393733203411102,
0.06970164179801941,
0.07740060985088348,
0.1485995054244995,
-0.05992625653743744,
0.14599530398845673,
-0.034231774508953094,
-0.140056312084198,
0.06355459988117218,
0.0204760879278183,
0.11383520066738129,
0.03834062069654465,
0.094586580991745,
0.024555617943406105,
0.12460878491401672,
0.14313486218452454,
0.08295559883117676,
-0.0031868540681898594,
-0.05483260750770569,
-0.0050038062036037445,
-0.02820601500570774,
-0.07685475796461105,
0.0060536302626132965,
-0.049901485443115234,
-0.11598537117242813,
-0.01760450005531311,
-0.0004306389018893242,
0.10802842676639557,
0.08823356032371521,
0.07088418304920197,
-0.20538392663002014,
-0.0447986014187336,
0.07036960870027542,
-0.020311756059527397,
-0.10216476023197174,
0.11189291626214981,
0.07084878534078598,
-0.10316804051399231,
-0.0023377034813165665,
-0.03404197096824646,
0.09955528378486633,
-0.09084136039018631,
0.08961411565542221,
-0.11641256511211395,
-0.034962039440870285,
0.0020009949803352356,
0.10356450825929642,
-0.25300371646881104,
0.18781426548957825,
-0.02942800335586071,
-0.0018694332102313638,
-0.08609406650066376,
-0.02205132693052292,
-0.009317846968770027,
0.08725889772176743,
0.1360829919576645,
-0.00807377602905035,
-0.05478590354323387,
-0.038960475474596024,
-0.06636758148670197,
0.04022125527262688,
0.09211114048957825,
0.030112706124782562,
-0.020201032981276512,
-0.03804634511470795,
-0.012600311078131199,
-0.026333047077059746,
-0.10437742620706558,
-0.052760303020477295,
-0.1407090425491333,
0.051508814096450806,
0.11889912933111191,
0.11257555335760117,
-0.0013948003761470318,
-0.010140429250895977,
-0.08761399984359741,
0.2533620595932007,
0.03786690905690193,
-0.08864690363407135,
-0.0801999568939209,
-0.06370310485363007,
-0.0005055302754044533,
-0.07983420789241791,
0.014272920787334442,
-0.07832667976617813,
0.05977846682071686,
-0.08416829258203506,
-0.17230425775051117,
0.09782934188842773,
-0.11779700964689255,
-0.05587412416934967,
-0.02186945453286171,
0.21220262348651886,
0.011862872168421745,
-0.01553989015519619,
0.0545930340886116,
-0.010696344077587128,
-0.08763045072555542,
-0.09577476233243942,
0.019046079367399216,
-0.019229911267757416,
-0.003999523352831602,
0.0036035431548953056,
-0.06184133142232895,
-0.12404053658246994,
-0.0875411257147789,
-0.014428623020648956,
0.3194872736930847,
0.157966747879982,
-0.04186498746275902,
0.16177651286125183,
0.19928988814353943,
-0.025363273918628693,
-0.31675150990486145,
-0.14621345698833466,
-0.1312481164932251,
-0.07783335447311401,
-0.08501382172107697,
-0.1328468918800354,
0.056121859699487686,
0.011545744724571705,
-0.032891981303691864,
0.09744267910718918,
-0.26199251413345337,
-0.07133666425943375,
0.16452975571155548,
0.03668515384197235,
0.38965487480163574,
-0.1279260516166687,
-0.0902252048254013,
-0.030776116997003555,
-0.1377495974302292,
0.15556034445762634,
-0.10958010703325272,
0.08718955516815186,
0.006864807568490505,
0.11811115592718124,
0.04549390822649002,
-0.041885215789079666,
0.03629546985030174,
-0.01589425466954708,
-0.01641666889190674,
-0.12492026388645172,
-0.02386660873889923,
0.022995995357632637,
0.013534164056181908,
0.04898516833782196,
-0.04896736145019531,
0.04463190585374832,
-0.06002744287252426,
-0.02276884950697422,
-0.10710809379816055,
0.057019419968128204,
0.025142092257738113,
-0.07183367758989334,
-0.016558032482862473,
-0.035492051392793655,
0.004712079651653767,
0.05045812949538231,
0.23609647154808044,
-0.05786825716495514,
0.22385530173778534,
0.16625511646270752,
0.08366566896438599,
-0.1895403116941452,
0.08243080228567123,
-0.041011661291122437,
-0.06317399442195892,
0.08266609162092209,
-0.060406237840652466,
0.05392230302095413,
0.09314792603254318,
-0.03977404534816742,
0.07473001629114151,
0.08323093503713608,
-0.02897174470126629,
0.018922384828329086,
0.117583267390728,
-0.28334641456604004,
-0.11803080141544342,
-0.033029526472091675,
0.11320555955171585,
0.1040160208940506,
0.1552446484565735,
0.21003477275371552,
-0.012743936851620674,
-0.03570576757192612,
-0.020827654749155045,
0.04420981928706169,
-0.021086541935801506,
0.048839546740055084,
-0.019393328577280045,
0.02504233457148075,
-0.15035638213157654,
0.04136718064546585,
0.02170257642865181,
-0.12646466493606567,
0.02906709350645542,
0.18417759239673615,
-0.15776260197162628,
-0.15119469165802002,
-0.07636657357215881,
0.06698542088270187,
-0.02491014450788498,
-0.03188220411539078,
-0.04807078838348389,
-0.14564426243305206,
0.04651965945959091,
0.11442691832780838,
0.031098438426852226,
0.0866013914346695,
0.002295619808137417,
-0.019972916692495346,
-0.060304708778858185,
0.011363837867975235,
-0.016330115497112274,
0.0006056558340787888,
-0.09505967050790787,
0.030667457729578018,
-0.020011816173791885,
0.10108421742916107,
-0.08958318084478378,
-0.09412799775600433,
-0.18343210220336914,
0.02786853350698948,
-0.05669177323579788,
-0.0576850064098835,
-0.11043380200862885,
-0.04688316211104393,
-0.017810015007853508,
-0.03414441645145416,
-0.03013993799686432,
-0.0288693867623806,
-0.08583910763263702,
0.028888534754514694,
-0.027658754959702492,
0.01295615453273058,
-0.11063025146722794,
0.02148243598639965,
0.05249780789017677,
-0.027806241065263748,
0.17315609753131866,
0.149999737739563,
-0.11448690295219421,
0.10339199006557465,
-0.2418988049030304,
-0.06720320880413055,
0.1180310845375061,
0.003470335155725479,
0.04863449186086655,
0.07865765690803528,
-0.0014635261613875628,
0.0872572660446167,
0.02235787734389305,
0.045424893498420715,
0.026449862867593765,
-0.11058565974235535,
0.08378097414970398,
-0.016812171787023544,
-0.13048219680786133,
-0.038393598049879074,
-0.062419869005680084,
0.049237675964832306,
-0.0061262501403689384,
0.13076502084732056,
-0.07888302206993103,
0.08552154153585434,
-0.07327976077795029,
0.02967081218957901,
0.049530189484357834,
-0.17048031091690063,
-0.039754703640937805,
-0.04726904630661011,
0.026244256645441055,
-0.0065676504746079445,
0.12435628473758698,
0.01480069849640131,
-0.051902830600738525,
0.05325278639793396,
0.0012490227818489075,
-0.03506804257631302,
0.01862940937280655,
0.1432611495256424,
0.07714831084012985,
-0.06855649501085281,
-0.08155235648155212,
-0.006199363619089127,
0.02451419085264206,
-0.028669914230704308,
0.1352100968360901,
0.0657116174697876,
0.02606031484901905,
0.06013445928692818,
0.024134276434779167,
0.030318167060613632,
-0.10007784515619278,
-0.11091290414333344,
-0.09712640941143036,
0.029863663017749786,
-0.024702806025743484,
0.10920576751232147,
0.21675442159175873,
0.023561980575323105,
-0.003474632278084755,
-0.05132925510406494,
-0.05276016891002655,
-0.1531803011894226,
-0.1285342574119568,
-0.10651877522468567,
-0.1474519968032837,
0.031858332455158234,
-0.10663845390081406,
0.03698897361755371,
0.05520167201757431,
0.07937446981668472,
-0.05135885626077652,
0.1311653107404709,
0.09992989152669907,
-0.05847758799791336,
0.041433125734329224,
-0.02999912202358246,
0.03634883463382721,
0.008969073183834553,
-0.03128324821591377,
-0.07190632075071335,
0.033919405192136765,
0.004011000972241163,
0.08032390475273132,
-0.010700106620788574,
0.037086814641952515,
-0.125364288687706,
-0.09251817315816879,
-0.03339196741580963,
0.0767555758357048,
-0.04292720556259155,
0.1259864717721939,
0.03527187556028366,
-0.026927921921014786,
0.043893903493881226,
0.2443574219942093,
-0.046957314014434814,
-0.09827999770641327,
-0.06106969714164734,
0.18872496485710144,
0.02385088801383972,
0.10530321300029755,
-0.03344789147377014,
0.0013056457974016666,
-0.09283584356307983,
0.3396540880203247,
0.3051314651966095,
-0.04359781742095947,
0.02849162183701992,
-0.05081982910633087,
0.03936474770307541,
0.04889901727437973,
0.11317010968923569,
0.14674217998981476,
0.29368412494659424,
-0.059779759496450424,
0.011820097453892231,
-0.01749926619231701,
-0.01163586787879467,
-0.12329917401075363,
0.03483698517084122,
0.009194758720695972,
-0.021538546308875084,
-0.06021152436733246,
0.0770019143819809,
-0.2539635896682739,
0.06224319338798523,
-0.13150665163993835,
-0.1668550968170166,
-0.04254424571990967,
0.009271195158362389,
0.17034506797790527,
0.005919677205383778,
0.12152650952339172,
-0.011758837848901749,
-0.08507832139730453,
0.035790059715509415,
0.007735959254205227,
-0.16418571770191193,
-0.009567338041961193,
0.04556526243686676,
-0.09602490067481995,
0.09189970046281815,
-0.02227892354130745,
0.047547049820423126,
0.07823672145605087,
0.0017647822387516499,
-0.06172354519367218,
0.09010904282331467,
-0.003502750303596258,
-0.079610675573349,
0.0025342032313346863,
0.059423163533210754,
0.015246163122355938,
-0.013886871747672558,
0.06414644420146942,
-0.2300824522972107,
0.01630469411611557,
0.020356975495815277,
-0.00932057574391365,
-0.009840528480708599,
0.06759212911128998,
-0.03501357138156891,
0.05368819832801819,
0.07766305655241013,
-0.025323228910565376,
0.026595205068588257,
-0.03362874314188957,
-0.013943534344434738,
-0.050635673105716705,
-0.09369990229606628,
-0.07248789072036743,
-0.2078252136707306,
-0.09722425788640976,
0.09694428741931915,
0.0218849778175354,
-0.22735634446144104,
0.026110002771019936,
-0.12699876725673676,
0.05873238295316696,
-0.1720246821641922,
0.07900404930114746,
0.11975906789302826,
0.02083059772849083,
0.0140864048153162,
0.05248144268989563,
0.05474978685379028,
0.09649107605218887,
-0.05620603263378143,
-0.08992710709571838
] |
null | null | transformers |
# MoniKA unstable | {"tags": ["conversational"]} | text-generation | Kryptone/monikAI-Unstable | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# MoniKA unstable | [
"# MoniKA unstable"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# MoniKA unstable"
] | [
51,
5
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# MoniKA unstable"
] | [
-0.004439213778823614,
0.04141445830464363,
-0.0075696613639593124,
0.030884189531207085,
0.16090209782123566,
0.002354155760258436,
0.08485491573810577,
0.14088574051856995,
0.012852106243371964,
0.020145243033766747,
0.18591372668743134,
0.19188909232616425,
-0.014896105043590069,
0.06237206980586052,
-0.10820487886667252,
-0.2439010739326477,
0.08779759705066681,
0.009889939799904823,
0.02148446999490261,
0.11118113249540329,
0.0779329165816307,
-0.04663749784231186,
0.11008375138044357,
-0.009717211127281189,
-0.1031070426106453,
-0.013614719733595848,
0.0454801470041275,
-0.08598171919584274,
0.08895201981067657,
0.09382390975952148,
0.023660825565457344,
0.042620085179805756,
-0.10617930442094803,
-0.14492419362068176,
0.049146708101034164,
0.02452414482831955,
-0.05134659633040428,
0.04524127021431923,
0.044692493975162506,
-0.0789579525589943,
0.05541340634226799,
0.06387995928525925,
-0.040586866438388824,
0.0514569990336895,
-0.15119028091430664,
0.04150543361902237,
-0.06056533008813858,
-0.006610500626266003,
0.0461740642786026,
0.0965552031993866,
-0.03911197930574417,
0.16778652369976044,
-0.1039385050535202,
0.08809249103069305,
0.1893446296453476,
-0.35568851232528687,
-0.0003347103775013238,
0.07650972902774811,
0.06647113710641861,
0.04426633194088936,
-0.0399034358561039,
0.05358922854065895,
0.04069879278540611,
0.001772899879142642,
-0.05542304366827011,
-0.06776604801416397,
-0.08855342864990234,
0.008728229440748692,
-0.09298180043697357,
-0.010702797211706638,
0.22781731188297272,
-0.028658846393227577,
0.061723675578832626,
-0.05246548354625702,
-0.0959772914648056,
0.028483925387263298,
-0.002687529195100069,
0.010200315155088902,
-0.08619656413793564,
0.06919459253549576,
0.07428736984729767,
-0.05355139449238777,
-0.10308460891246796,
-0.005851855967193842,
-0.17693708837032318,
0.16683441400527954,
0.022125622257590294,
0.04728109762072563,
-0.18280218541622162,
0.08432400226593018,
-0.058345019817352295,
-0.09036622196435928,
0.0073678866028785706,
-0.109796442091465,
0.03197508305311203,
0.027446430176496506,
-0.08487199246883392,
-0.06973317265510559,
0.07418695837259293,
0.07712628692388535,
-0.012709769420325756,
0.031994808465242386,
0.015036298893392086,
0.07908735424280167,
0.06915081292390823,
0.057153962552547455,
-0.07340370118618011,
-0.026409609243273735,
0.04327793046832085,
-0.044002845883369446,
0.020630212500691414,
-0.08385574072599411,
-0.1339099258184433,
-0.054316844791173935,
0.022233569994568825,
0.06492853909730911,
0.06105102226138115,
0.1271892488002777,
-0.036372110247612,
-0.04157811030745506,
0.005733487196266651,
-0.03035914897918701,
-0.034510549157857895,
0.019114132970571518,
-0.016075003892183304,
0.15816645324230194,
0.019672749564051628,
0.018110061064362526,
-0.11044131219387054,
0.05168499797582626,
-0.07954240590333939,
-0.033086761832237244,
-0.03346782922744751,
-0.042901333421468735,
0.021750064566731453,
-0.021917814388871193,
-0.014425128698348999,
-0.12465063482522964,
-0.11426321417093277,
0.01390113215893507,
-0.04856939986348152,
-0.0696711540222168,
-0.07876419275999069,
-0.04222554713487625,
-0.05309297889471054,
0.08031491190195084,
-0.06535749137401581,
-0.020214887335896492,
-0.04217349365353584,
0.08023886382579803,
-0.018505427986383438,
0.07646988332271576,
-0.09181074798107147,
0.053144924342632294,
-0.09623643755912781,
0.013639896176755428,
-0.05061161145567894,
0.057806335389614105,
-0.003580003511160612,
0.050375040620565414,
-0.012522636912763119,
-0.005604192148894072,
-0.06249803677201271,
0.047992121428251266,
-0.019270261749625206,
0.27083536982536316,
-0.07557918131351471,
-0.06757854670286179,
0.25866490602493286,
-0.050206270068883896,
-0.16507233679294586,
0.12343765050172806,
0.017644353210926056,
-0.004120962228626013,
0.07784908264875412,
0.12047403305768967,
-0.0634133368730545,
-0.006936640944331884,
0.04537159204483032,
0.0742022693157196,
-0.11823789030313492,
0.010983969084918499,
0.025881141424179077,
-0.03573184832930565,
-0.12921592593193054,
0.042303416877985,
0.052340906113386154,
0.06055482104420662,
-0.05268057808279991,
-0.026047121733427048,
-0.03598225861787796,
0.0007645378354936838,
0.07279050350189209,
-0.005869058892130852,
0.05464983358979225,
-0.05205186828970909,
-0.05368496850132942,
-0.028132228180766106,
0.008480379357933998,
-0.005589327774941921,
0.02689618244767189,
-0.04765225946903229,
0.13328467309474945,
0.0016835707938298583,
0.06124540790915489,
-0.13756945729255676,
-0.11585915833711624,
-0.026015067473053932,
0.12794765830039978,
0.020563244819641113,
0.06708117574453354,
0.07820332795381546,
-0.05382151901721954,
-0.0034322948195040226,
0.041176848113536835,
0.17592333257198334,
-0.003384515643119812,
-0.06985793262720108,
-0.11363481730222702,
0.11944019049406052,
-0.06573724001646042,
0.08274190127849579,
-0.08522531390190125,
-0.005320624448359013,
0.038806602358818054,
0.10216958075761795,
-0.016150254756212234,
0.00781125808134675,
0.027406295761466026,
-0.020600730553269386,
-0.07633443176746368,
0.008505650795996189,
0.08927759528160095,
0.013684785924851894,
-0.06928648799657822,
0.23816338181495667,
-0.2071397602558136,
0.14872589707374573,
0.17950321733951569,
-0.1865745186805725,
0.002080722013488412,
-0.12083210796117783,
-0.01632249541580677,
-0.003673974657431245,
0.09942267835140228,
-0.013257176615297794,
0.10447372496128082,
0.003765612607821822,
0.17839285731315613,
-0.04103679209947586,
0.0049698553048074245,
-0.0029105576686561108,
-0.0606708899140358,
-0.04353345185518265,
0.10412443429231644,
0.10432904213666916,
-0.06479346007108688,
0.14313752949237823,
0.15379451215267181,
0.009862883947789669,
0.17678983509540558,
0.04076308384537697,
-0.01830371282994747,
0.03348429128527641,
0.012894412502646446,
-0.010839694179594517,
-0.06267960369586945,
-0.19911356270313263,
-0.03660557419061661,
0.09034619480371475,
0.01041245274245739,
0.07140813767910004,
-0.08360469341278076,
-0.06814658641815186,
-0.026488369330763817,
0.008557689376175404,
0.05332404747605324,
0.12965019047260284,
0.05931711569428444,
0.13331963121891022,
0.03193835914134979,
-0.028359515592455864,
0.0631345734000206,
0.00980441551655531,
-0.08088330924510956,
0.20760183036327362,
-0.13688836991786957,
-0.34281623363494873,
-0.12143853306770325,
-0.1466418355703354,
-0.09310420602560043,
0.025620359927415848,
0.08257181197404861,
-0.12311089783906937,
-0.03030823916196823,
-0.024710170924663544,
0.11467645317316055,
-0.09580288082361221,
0.0082665691152215,
-0.04936632141470909,
0.0017865075496956706,
-0.1003202274441719,
-0.07668568938970566,
-0.05183117091655731,
-0.021287651732563972,
-0.033705808222293854,
0.11125616729259491,
-0.08794529736042023,
0.06122255325317383,
0.20256172120571136,
0.06635822355747223,
0.03826867416501045,
-0.025336500257253647,
0.20853352546691895,
-0.11103693395853043,
-0.008942866697907448,
0.21121780574321747,
-0.03155343607068062,
0.09044668078422546,
0.12898221611976624,
-0.024878112599253654,
-0.05039123818278313,
0.030704950913786888,
0.004403394181281328,
-0.050769202411174774,
-0.22141586244106293,
-0.14819680154323578,
-0.09611732512712479,
0.09311302751302719,
-0.008716954849660397,
0.0432543084025383,
0.13920791447162628,
0.07704497873783112,
-0.05956343188881874,
-0.0827716663479805,
-0.002074836753308773,
0.08140920102596283,
0.2271283119916916,
-0.04961663857102394,
0.15399211645126343,
-0.02336771972477436,
-0.12486878782510757,
0.09931125491857529,
0.030330952256917953,
0.09310267865657806,
0.030069172382354736,
0.08953382819890976,
0.04233093932271004,
0.1056472435593605,
0.0954265370965004,
0.015813658013939857,
0.027416471391916275,
-0.054787613451480865,
-0.03995971754193306,
-0.04872579500079155,
-0.031719472259283066,
0.05005880445241928,
0.0331677570939064,
-0.1072419136762619,
-0.10239926725625992,
-0.046776529401540756,
0.07654456794261932,
0.07621815800666809,
0.07099319249391556,
-0.19059759378433228,
-0.017552848905324936,
0.06171777471899986,
-0.005642618518322706,
-0.11747094988822937,
0.07818714529275894,
-0.03049285151064396,
-0.1655038744211197,
0.01708146743476391,
-0.059555064886808395,
0.11176323890686035,
-0.07255394011735916,
0.06798864901065826,
-0.10827280580997467,
-0.026959070935845375,
-0.0001073951498256065,
0.12966759502887726,
-0.2733711004257202,
0.18578195571899414,
0.0005191240343265235,
-0.07225160300731659,
-0.10406115651130676,
-0.04238968715071678,
0.02629598043859005,
0.06561112403869629,
0.11212210357189178,
-0.014789709821343422,
0.055969975888729095,
-0.047974325716495514,
0.008120184764266014,
-0.0019668664317578077,
0.11619769036769867,
0.056680940091609955,
0.012614971026778221,
-0.0643077939748764,
0.02147754840552807,
-0.007149837911128998,
-0.04457440227270126,
-0.027511360123753548,
-0.16506005823612213,
0.1245637834072113,
0.09005243331193924,
-0.005564381834119558,
0.01655855029821396,
-0.05572575703263283,
-0.06487064063549042,
0.25587740540504456,
-0.03152424842119217,
-0.05863169580698013,
-0.08172159641981125,
-0.10067887604236603,
0.07396402955055237,
-0.08154550939798355,
0.024677550420165062,
-0.11602342873811722,
0.055653683841228485,
-0.04291820898652077,
-0.1994483321905136,
0.12404666095972061,
-0.10236700624227524,
-0.06005294248461723,
-0.04145052284002304,
0.17697098851203918,
-0.023698091506958008,
-0.009728970006108284,
0.013596197590231895,
0.009372600354254246,
-0.13183048367500305,
-0.09235341101884842,
0.025630759075284004,
0.016410157084465027,
0.03590626269578934,
0.04483531415462494,
-0.018013745546340942,
0.05704653635621071,
-0.07264447212219238,
-0.017377587035298347,
0.2759658694267273,
0.22190865874290466,
-0.0425029993057251,
0.17432253062725067,
0.10746315121650696,
-0.0444306842982769,
-0.30177780985832214,
-0.10984505712985992,
-0.09979389607906342,
-0.050502415746450424,
-0.03270728513598442,
-0.11501234024763107,
0.06480797380208969,
0.015228054486215115,
-0.010302657261490822,
0.12929317355155945,
-0.30596673488616943,
-0.07952843606472015,
0.1821553260087967,
-0.006964740343391895,
0.4457966089248657,
-0.16986776888370514,
-0.10159853100776672,
-0.04651729762554169,
-0.15675853192806244,
0.15254081785678864,
-0.02634013071656227,
0.12219740450382233,
-0.0508602075278759,
0.13497380912303925,
0.035925574600696564,
-0.020186133682727814,
0.12209935486316681,
-0.038654256612062454,
-0.04740409180521965,
-0.13281871378421783,
-0.11373147368431091,
-0.012050352059304714,
-0.02367333322763443,
0.032611116766929626,
-0.08909796178340912,
0.04347623139619827,
-0.15324251353740692,
-0.04239717870950699,
-0.11399780213832855,
0.070447638630867,
0.017275720834732056,
-0.03816875442862511,
-0.038785677403211594,
-0.019170569255948067,
-0.005588470958173275,
0.025815850123763084,
0.18867912888526917,
-0.06472654640674591,
0.10522205382585526,
0.15576998889446259,
0.11252277344465256,
-0.13029947876930237,
-0.013547485694289207,
-0.03157768025994301,
-0.06509038060903549,
0.06625410914421082,
-0.08101050555706024,
0.015177705325186253,
0.09989210963249207,
-0.02348368614912033,
0.07114968448877335,
0.08558853715658188,
-0.046220436692237854,
0.0020477962680161,
0.10200642049312592,
-0.2941800653934479,
-0.05281083658337593,
-0.06297364085912704,
0.018150661140680313,
0.0765911415219307,
0.042696475982666016,
0.18546037375926971,
0.017495177686214447,
-0.01565363258123398,
0.010796473361551762,
0.022640516981482506,
-0.010411974042654037,
0.06464206427335739,
0.006683645769953728,
0.016005724668502808,
-0.12682294845581055,
0.11071334779262543,
-0.001077040797099471,
-0.11893057823181152,
0.056922610849142075,
0.1611168533563614,
-0.09587148576974869,
-0.11302309483289719,
-0.04033369943499565,
0.03737695515155792,
-0.1615542620420456,
0.0053823767229914665,
-0.07534541189670563,
-0.12183667719364166,
0.06116703525185585,
0.17031650245189667,
0.05488808453083038,
0.0665721744298935,
-0.04312799125909805,
-0.06235295906662941,
-0.04582546651363373,
0.00490323593840003,
0.07583680003881454,
-0.0034189666621387005,
-0.08824703842401505,
0.018184272572398186,
-0.023292191326618195,
0.1422574371099472,
-0.0962681844830513,
-0.10329639911651611,
-0.15572912991046906,
0.0036511297803372145,
-0.1453690230846405,
-0.08485075831413269,
-0.0748274177312851,
-0.053537897765636444,
-0.0054352967999875546,
-0.017489416524767876,
-0.04304758086800575,
-0.0506741926074028,
-0.06783207505941391,
0.017245454713702202,
-0.030083339661359787,
0.03729588910937309,
-0.09430640190839767,
-0.022737525403499603,
0.07705273479223251,
-0.014399959705770016,
0.1190546378493309,
0.1558036208152771,
-0.08948791772127151,
0.07195190340280533,
-0.15992531180381775,
-0.06918670237064362,
0.07544922083616257,
0.004957164172083139,
0.03796719014644623,
0.0049089412204921246,
0.0012385310837998986,
0.03328784927725792,
0.04464828222990036,
0.04402308911085129,
0.040936581790447235,
-0.0993170440196991,
0.001385470270179212,
0.013498703949153423,
-0.13350576162338257,
-0.049610793590545654,
-0.013172700069844723,
0.038282155990600586,
0.006501554977148771,
0.0980978012084961,
-0.053765181452035904,
0.08988892287015915,
-0.027569957077503204,
0.027996422722935677,
0.0007215316290967166,
-0.1433156579732895,
-0.0024254608433693647,
-0.029553281143307686,
0.05171091854572296,
0.01202760823071003,
0.2398158609867096,
-0.02377244457602501,
-0.028203457593917847,
0.034992169588804245,
0.004830127116292715,
0.05773641914129257,
-0.005668377969413996,
0.15863126516342163,
0.10133787989616394,
-0.06108424812555313,
-0.11603433638811111,
0.07425763458013535,
0.020141836255788803,
0.03725592419505119,
0.1563796103000641,
0.020396649837493896,
0.022248856723308563,
0.0900956243276596,
0.0003865877806674689,
0.010760094970464706,
-0.022253982722759247,
-0.12241695821285248,
-0.03802089765667915,
0.05498121306300163,
-0.0278429314494133,
0.1418021023273468,
0.17886032164096832,
0.02517625503242016,
0.02132382057607174,
-0.07835813611745834,
-0.06143410876393318,
-0.1781492382287979,
-0.1607285887002945,
-0.08136989921331406,
-0.105946384370327,
0.011360288597643375,
-0.13190893828868866,
0.044292252510786057,
0.12261407822370529,
0.08496501296758652,
-0.08296500146389008,
0.10521362721920013,
0.05273290351033211,
-0.09792841225862503,
0.08286698162555695,
-0.01839907094836235,
0.0733739584684372,
0.013568544760346413,
0.00021796276269014925,
-0.04221571236848831,
-0.02271195687353611,
-0.025597667321562767,
0.08957468718290329,
-0.04832376539707184,
0.012063433416187763,
-0.11820371448993683,
-0.12510864436626434,
-0.031117426231503487,
0.11425291001796722,
-0.0003665397525765002,
0.20984268188476562,
0.0248679481446743,
-0.020048053935170174,
0.002598443068563938,
0.20972514152526855,
-0.03241850063204765,
0.05178457871079445,
-0.03785533830523491,
0.21256782114505768,
-0.0015713612083345652,
0.10385241359472275,
-0.03067799285054207,
-0.000834076083265245,
-0.11700212955474854,
0.37953805923461914,
0.23352941870689392,
-0.16447138786315918,
0.011610602959990501,
0.03227128088474274,
0.052591364830732346,
0.11210118979215622,
0.1414208710193634,
0.10116246342658997,
0.25763827562332153,
-0.057851970195770264,
-0.025437409058213234,
-0.031080404296517372,
-0.0012353559723123908,
-0.10852737724781036,
0.07639399915933609,
0.03978903219103813,
-0.03727882355451584,
-0.039172038435935974,
0.08904754370450974,
-0.19017596542835236,
0.12095049768686295,
-0.1504959762096405,
-0.16855977475643158,
-0.10073259472846985,
-0.011557960882782936,
0.03994133323431015,
0.01270996406674385,
0.1061399057507515,
-0.019195055589079857,
-0.07292234897613525,
0.053205788135528564,
0.030646124854683876,
-0.17209762334823608,
-0.03491271287202835,
0.04867205768823624,
-0.06490735709667206,
0.0555153414607048,
-0.023839382454752922,
0.04323209077119827,
0.08685370534658432,
0.03292268142104149,
-0.055642660707235336,
0.009862342849373817,
0.040469828993082047,
-0.06851334869861603,
0.01641163043677807,
0.06733594089746475,
0.023452218621969223,
-0.05088277533650398,
0.1096116229891777,
-0.10893023759126663,
0.06307049095630646,
0.012727717868983746,
-0.047990720719099045,
-0.0126690324395895,
0.08693286031484604,
-0.07074770331382751,
0.05935923382639885,
0.12576211988925934,
-0.02977471426129341,
-0.024125345051288605,
-0.04941438511013985,
-0.03344525396823883,
-0.023225275799632072,
-0.08073636144399643,
-0.09462592005729675,
-0.08519597351551056,
-0.04882585257291794,
0.05839581415057182,
0.023332150653004646,
-0.2774181067943573,
0.007021099328994751,
-0.12827058136463165,
0.0530049093067646,
-0.10836251080036163,
0.09800103306770325,
0.024911103770136833,
0.0003306642174720764,
-0.02854100801050663,
-0.01157094445079565,
0.04851045086979866,
0.0995788499712944,
-0.10959327965974808,
-0.09414388239383698
] |
null | null | transformers | # Monika Discord Chatbot | {"tags": ["conversational"]} | text-generation | Kryptone/monikAI | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Monika Discord Chatbot | [
"# Monika Discord Chatbot"
] | [
"TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Monika Discord Chatbot"
] | [
56,
6
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Monika Discord Chatbot"
] | [
-0.02693250961601734,
0.013581004925072193,
-0.006679086480289698,
-0.00260078813880682,
0.14395806193351746,
-0.038028594106435776,
0.16902388632297516,
0.10429990291595459,
-0.00230411090888083,
-0.0033700140193104744,
0.09945899248123169,
0.19944219291210175,
-0.007855609990656376,
0.15871356427669525,
-0.10418186336755753,
-0.20412875711917877,
0.11004778742790222,
0.028760965913534164,
0.06675923615694046,
0.11967707425355911,
0.08546924591064453,
-0.06625043600797653,
0.07615070790052414,
-0.01701314188539982,
-0.1265600174665451,
-0.027639292180538177,
0.057593561708927155,
-0.11988271772861481,
0.08906743675470352,
0.03249942138791084,
0.08006463944911957,
0.04457126185297966,
-0.09143815189599991,
-0.09366148710250854,
0.04789838567376137,
0.014599520713090897,
-0.04744347184896469,
0.04050244018435478,
-0.006922994274646044,
-0.06543073058128357,
0.08041638880968094,
0.060530733317136765,
0.015785181894898415,
0.06344068050384521,
-0.13106922805309296,
-0.0071693058125674725,
-0.040337566286325455,
0.025327561423182487,
0.11669628322124481,
0.11540525406599045,
-0.04233797267079353,
0.2185804843902588,
-0.042634494602680206,
0.10909425467252731,
0.16163305938243866,
-0.3361153304576874,
-0.01613745093345642,
0.06520689278841019,
0.07305024564266205,
0.07339376211166382,
-0.04474440962076187,
0.05844540148973465,
0.020981239154934883,
0.004887856543064117,
-0.00010621277033351362,
-0.06548383831977844,
-0.07223766297101974,
-0.0501941479742527,
-0.10416582971811295,
-0.02263728342950344,
0.2374352663755417,
-0.026905512437224388,
0.057668693363666534,
-0.09618847072124481,
-0.1209268569946289,
-0.0025926344096660614,
-0.0686037465929985,
-0.014111218973994255,
-0.09297145903110504,
0.04104049503803253,
0.006034396588802338,
-0.058993853628635406,
-0.10874058306217194,
-0.007634463720023632,
-0.13843365013599396,
0.15107089281082153,
0.03167901188135147,
0.03600190579891205,
-0.2265309989452362,
0.03923444822430611,
0.04137125983834267,
-0.11537841707468033,
0.03680627420544624,
-0.09441244602203369,
0.04783067852258682,
0.016511332243680954,
0.0069398595951497555,
-0.12432518601417542,
0.13514328002929688,
0.1234949603676796,
-0.09733875095844269,
0.061788443475961685,
-0.04547847434878349,
0.06654783338308334,
0.05220493674278259,
0.026424089446663857,
-0.008883439004421234,
-0.012510256841778755,
0.08756906539201736,
-0.04420884698629379,
0.05241529643535614,
-0.06893273442983627,
-0.12076815217733383,
0.019494740292429924,
0.10222644358873367,
0.10089392215013504,
0.042055532336235046,
0.12743335962295532,
-0.025072205811738968,
-0.004263676702976227,
0.15986847877502441,
-0.0456605926156044,
-0.022972336038947105,
0.03354371339082718,
0.02542203664779663,
0.06368694454431534,
0.007553292438387871,
0.02883068658411503,
-0.10280581563711166,
-0.0027912738732993603,
-0.06497947871685028,
-0.02387324534356594,
-0.033957965672016144,
-0.047424137592315674,
0.0243258997797966,
-0.002462720964103937,
-0.01879308931529522,
-0.21720480918884277,
-0.10045144706964493,
0.016831375658512115,
-0.030760079622268677,
-0.02357029914855957,
-0.05699875205755234,
-0.07028533518314362,
-0.04466481879353523,
0.04108494520187378,
-0.06402581930160522,
-0.07973215728998184,
-0.052803412079811096,
0.09384750574827194,
-0.05651536211371422,
0.08612343668937683,
-0.11506649106740952,
0.024144943803548813,
-0.09862589091062546,
-0.016660518944263458,
-0.1422923356294632,
0.05458706244826317,
-0.04235350713133812,
0.12354599684476852,
-0.012982085347175598,
0.017287714406847954,
-0.07482719421386719,
0.02831568755209446,
-0.014177724719047546,
0.23570026457309723,
-0.07425069063901901,
-0.07883583009243011,
0.2983098030090332,
-0.13931523263454437,
-0.15488292276859283,
0.12364684045314789,
0.015502050518989563,
0.015072537586092949,
0.12255007028579712,
0.20345206558704376,
0.0007441145717166364,
-0.052640680223703384,
0.02249292843043804,
0.053585778921842575,
-0.1386691927909851,
-0.01824912801384926,
0.002051132032647729,
-0.016600757837295532,
-0.0810684859752655,
0.030876124277710915,
0.1406533420085907,
0.08398916572332382,
-0.06823886185884476,
-0.025675281882286072,
-0.018418828025460243,
-0.042156267911195755,
0.09058818221092224,
-0.010677329264581203,
0.07716110348701477,
-0.09143807739019394,
-0.0367259681224823,
-0.041937269270420074,
0.03384650498628616,
-0.018947817385196686,
0.015761731192469597,
-0.12211984395980835,
0.11792027205228806,
0.0093700485303998,
0.0737411305308342,
-0.13026493787765503,
-0.14253149926662445,
-0.006298980209976435,
0.14058934152126312,
0.01774107664823532,
0.03529512509703636,
0.08583300560712814,
-0.023458207026124,
0.003692059777677059,
-0.015479660592973232,
0.1703198105096817,
0.0007276679389178753,
-0.056041065603494644,
-0.0860266461968422,
0.09190022945404053,
-0.06725724786520004,
0.1009630560874939,
-0.05305171757936478,
0.033772051334381104,
0.07122459262609482,
0.11921416968107224,
0.02628108486533165,
0.0031368331983685493,
0.02833838015794754,
-0.019857104867696762,
-0.04497573897242546,
-0.001956579275429249,
0.0976123958826065,
0.028756581246852875,
-0.04713248088955879,
0.2175908237695694,
-0.18987399339675903,
0.17988379299640656,
0.1883467733860016,
-0.16846612095832825,
-0.0004979236400686204,
-0.022530697286128998,
-0.032962340861558914,
0.010868125595152378,
0.055682286620140076,
-0.06150108948349953,
0.10280274599790573,
-0.0069113606587052345,
0.17257378995418549,
-0.052408840507268906,
-0.02892913669347763,
0.017975348979234695,
-0.07347013801336288,
-0.03780760243535042,
0.07136943191289902,
0.051968030631542206,
-0.13461992144584656,
0.14556469023227692,
0.11399057507514954,
0.06373938918113708,
0.23597390949726105,
0.005656498484313488,
0.04157215356826782,
0.05134672299027443,
0.03808877617120743,
-0.01664849929511547,
-0.04877888038754463,
-0.2213689237833023,
-0.020510297268629074,
0.06210856884717941,
0.048428960144519806,
0.09451983124017715,
-0.0730261355638504,
-0.033749472349882126,
-0.04397338628768921,
-0.0057680075988173485,
0.06488732993602753,
0.1213468611240387,
0.045377202332019806,
0.14881503582000732,
-0.030737100169062614,
-0.04496388882398605,
0.05606004223227501,
0.007308719679713249,
-0.09327207505702972,
0.16328978538513184,
-0.13367410004138947,
-0.3822277784347534,
-0.08832694590091705,
-0.07520197331905365,
-0.07034658640623093,
0.044712189584970474,
0.11997183412313461,
-0.128175288438797,
-0.01917174458503723,
-0.028872929513454437,
0.05958867073059082,
0.03195889666676521,
0.01849837228655815,
0.024980710819363594,
0.006321440916508436,
-0.05598565936088562,
-0.11906616389751434,
-0.05182413384318352,
-0.03426980599761009,
-0.08394862711429596,
0.14822514355182648,
-0.08483479171991348,
0.0649559423327446,
0.19552353024482727,
0.021571869030594826,
0.04551127925515175,
-0.020434796810150146,
0.20790840685367584,
-0.08363316208124161,
0.028236011043190956,
0.20356790721416473,
-0.012368462048470974,
0.06587416678667068,
0.1255270391702652,
-0.02008032612502575,
-0.0939500704407692,
0.051165055483579636,
-0.020676981657743454,
-0.07533605396747589,
-0.19855082035064697,
-0.16532118618488312,
-0.06811558455228806,
0.11633439362049103,
-0.01566517911851406,
0.05583669990301132,
0.12066932022571564,
0.05717557668685913,
-0.046842060983181,
-0.09881158918142319,
0.11473015695810318,
0.07343530654907227,
0.10806261003017426,
-0.05922903120517731,
0.1570737212896347,
-0.03324116766452789,
-0.1269989311695099,
0.07826600223779678,
-0.0272749662399292,
0.09474954754114151,
0.03972030058503151,
0.03309879079461098,
0.04610634967684746,
0.06240135431289673,
0.13521426916122437,
0.0764845609664917,
-0.0028336080722510815,
-0.05407876521348953,
-0.01229866873472929,
-0.04725589603185654,
-0.06308048218488693,
-0.022141382098197937,
-0.00593391340225935,
-0.1075735092163086,
-0.07281489670276642,
-0.019401878118515015,
0.13176512718200684,
0.05092371627688408,
0.05784082040190697,
-0.153450146317482,
-0.03347186744213104,
0.07229042798280716,
-0.014565750025212765,
-0.09964629262685776,
0.09844577312469482,
0.05308206379413605,
-0.12052930891513824,
0.016380099579691887,
-0.023865558207035065,
0.1013273075222969,
-0.09474509954452515,
0.06380520015954971,
-0.13569000363349915,
-0.03714369237422943,
-0.004184203688055277,
0.07693685591220856,
-0.25662779808044434,
0.1570441573858261,
-0.015635719522833824,
0.0006549353711307049,
-0.09633021056652069,
-0.025157418102025986,
-0.003951957914978266,
0.11656522750854492,
0.101265549659729,
0.003577501978725195,
-0.013851054012775421,
-0.019572582095861435,
-0.07401720434427261,
0.020958511158823967,
0.07827827334403992,
0.00960066169500351,
-0.027718832716345787,
-0.03602932393550873,
-0.024165786802768707,
-0.021784614771604538,
-0.12121891230344772,
-0.05793135613203049,
-0.1399853229522705,
0.0631195604801178,
0.12915322184562683,
0.07305938005447388,
-0.01144549623131752,
-0.021326709538698196,
-0.07527045160531998,
0.19447483122348785,
0.03700394928455353,
-0.10838441550731659,
-0.0698922798037529,
-0.10632407665252686,
0.007557966746389866,
-0.08033619821071625,
0.04580418020486832,
-0.06440028548240662,
0.08850707858800888,
-0.08782235532999039,
-0.17372895777225494,
0.09613069891929626,
-0.11781003326177597,
-0.058719452470541,
-0.013385160826146603,
0.22764545679092407,
0.014021113514900208,
-0.035554949194192886,
0.04358464479446411,
-0.008720343932509422,
-0.059739429503679276,
-0.09377596527338028,
-0.00011846028064610437,
0.04758375883102417,
0.04235982149839401,
0.023652715608477592,
-0.06089789792895317,
-0.1896015852689743,
-0.07087576389312744,
-0.02089092880487442,
0.27884602546691895,
0.21617552638053894,
-0.03272125497460365,
0.12818552553653717,
0.18530188500881195,
-0.007352587766945362,
-0.3275865912437439,
-0.11853086203336716,
-0.10324198752641678,
-0.08778280764818192,
-0.06711120903491974,
-0.08687154948711395,
0.039673902094364166,
-0.009715831838548183,
-0.03462585434317589,
0.10122111439704895,
-0.299106627702713,
-0.09308740496635437,
0.1570056527853012,
0.029516976326704025,
0.4151981472969055,
-0.14457285404205322,
-0.08660581707954407,
-0.04273127764463425,
-0.191073939204216,
0.18339282274246216,
-0.10741487145423889,
0.07622137665748596,
0.02702203206717968,
0.08236107230186462,
0.04266304522752762,
-0.0475991927087307,
0.06096324697136879,
0.0010721051366999745,
-0.005276213865727186,
-0.12521454691886902,
-0.07905010133981705,
0.0495527908205986,
0.006945525761693716,
0.07168161869049072,
-0.06045043095946312,
0.029276257380843163,
-0.06826958060264587,
-0.014275050722062588,
-0.11599620431661606,
0.05642545968294144,
0.021114420145750046,
-0.04652644321322441,
-0.01520460844039917,
-0.038215912878513336,
-0.009464327245950699,
0.04313621670007706,
0.21572831273078918,
-0.061417073011398315,
0.15971502661705017,
0.1301000565290451,
0.08347728103399277,
-0.22321723401546478,
0.05036463588476181,
-0.043572116643190384,
-0.07869605720043182,
0.07971841841936111,
-0.04473356902599335,
0.06288473308086395,
0.06176197901368141,
-0.04670173302292824,
0.09039971232414246,
0.06661267578601837,
-0.029797540977597237,
0.019505515694618225,
0.11941120773553848,
-0.2957735061645508,
-0.09417691826820374,
-0.040159452706575394,
0.12043734639883041,
0.12080857902765274,
0.14744603633880615,
0.20317651331424713,
0.023732932284474373,
-0.04643833637237549,
-0.011579158715903759,
0.04171868786215782,
-0.04359118267893791,
0.07094065099954605,
-0.017753014340996742,
0.02513420395553112,
-0.14288969337940216,
0.058551572263240814,
0.002010430907830596,
-0.12521496415138245,
0.05952280014753342,
0.15613196790218353,
-0.1640460342168808,
-0.14957180619239807,
-0.05803845450282097,
0.1412283480167389,
-0.012564295902848244,
-0.02308986335992813,
-0.06616838276386261,
-0.11626886576414108,
0.03410809114575386,
0.14419294893741608,
0.04226378723978996,
0.06822434812784195,
0.011077373288571835,
-0.012961354106664658,
-0.07215377688407898,
0.010286256670951843,
0.03593478724360466,
-0.0026397169567644596,
-0.08821053802967072,
0.04101637005805969,
-0.011377200484275818,
0.08248994499444962,
-0.0927153155207634,
-0.0730646625161171,
-0.18570581078529358,
0.01564435474574566,
-0.033280402421951294,
-0.07502858340740204,
-0.12421778589487076,
-0.05061725899577141,
-0.024840684607625008,
-0.03617631644010544,
-0.029177362099289894,
-0.03213348239660263,
-0.06540286540985107,
0.02014121599495411,
-0.02085825614631176,
-0.007889959961175919,
-0.11274970322847366,
0.002197982044890523,
0.060166630893945694,
-0.029135392978787422,
0.16686822474002838,
0.148505300283432,
-0.09248223155736923,
0.0874025896191597,
-0.1468050628900528,
-0.07542158663272858,
0.1141558364033699,
-0.01090920064598322,
0.04538976028561592,
0.0478549487888813,
0.007075681816786528,
0.07881346344947815,
0.06148139014840126,
0.06034268066287041,
0.09216022491455078,
-0.10342196375131607,
0.07404226064682007,
0.0018264526734128594,
-0.12269963324069977,
-0.043493423610925674,
-0.04393777251243591,
0.05252248793840408,
0.0034092168789356947,
0.142296701669693,
-0.07633330672979355,
0.06276703625917435,
-0.04908808693289757,
0.025812014937400818,
0.040287818759679794,
-0.18954861164093018,
0.021963154897093773,
-0.03472762927412987,
0.03089011088013649,
-0.02664809860289097,
0.12481186538934708,
0.0171428844332695,
-0.046359430998563766,
0.05250149965286255,
0.034572165459394455,
-0.006266727577894926,
0.02941860631108284,
0.1247006207704544,
0.03698773309588432,
-0.06638574600219727,
-0.1055738627910614,
0.045877039432525635,
0.04818499833345413,
-0.036524076014757156,
0.12291431427001953,
0.03084971383213997,
-0.016228459775447845,
0.05151384696364403,
0.008289527148008347,
0.03637180104851723,
-0.11181372404098511,
-0.12611150741577148,
-0.10767752677202225,
0.03191029280424118,
-0.03512987121939659,
0.10807132720947266,
0.19051435589790344,
0.0061745354905724525,
0.007624870166182518,
-0.04337935149669647,
-0.05428028106689453,
-0.14434659481048584,
-0.12393616139888763,
-0.09531435370445251,
-0.13502377271652222,
0.013360170647501945,
-0.10381337255239487,
0.014257204718887806,
0.0032523139379918575,
0.05766250565648079,
-0.06140357628464699,
0.17566043138504028,
0.03709149733185768,
-0.0588989332318306,
0.06013501062989235,
-0.03165954351425171,
0.00811776239424944,
0.00162252108566463,
-0.01276466902345419,
-0.062132880091667175,
0.02271532267332077,
-0.011843017302453518,
0.07993756979703903,
-0.06517153233289719,
0.030615998432040215,
-0.11020384728908539,
-0.10546889156103134,
-0.0366394929587841,
0.058535948395729065,
-0.032294102013111115,
0.13575227558612823,
0.0370335690677166,
-0.022297820076346397,
0.04092446714639664,
0.22516950964927673,
-0.031081007793545723,
-0.11485075950622559,
-0.0792887732386589,
0.13580673933029175,
0.008359473198652267,
0.1153574138879776,
-0.04184819385409355,
-0.0043699368834495544,
-0.09741153568029404,
0.3392350971698761,
0.2882838249206543,
-0.06129635497927666,
0.045888751745224,
-0.03747645020484924,
0.03986189886927605,
0.033684588968753815,
0.12387041747570038,
0.12758731842041016,
0.27468159794807434,
-0.0343557670712471,
-0.007853502407670021,
-0.032308828085660934,
-0.00979228038340807,
-0.12374048680067062,
0.04360102117061615,
-0.0064132194966077805,
-0.01639513112604618,
-0.020587516948580742,
0.06299365311861038,
-0.19197459518909454,
0.054505445063114166,
-0.18052265048027039,
-0.1917072832584381,
-0.04696395993232727,
0.005598042160272598,
0.13635319471359253,
-0.0007639711839146912,
0.11504291743040085,
0.006273794453591108,
-0.07488082349300385,
0.06386033445596695,
0.01561590563505888,
-0.12634363770484924,
-0.049100298434495926,
0.02874843031167984,
-0.11131148040294647,
0.07849141955375671,
-0.023266276344656944,
0.0374094657599926,
0.09080685675144196,
-0.000822070986032486,
-0.04717397689819336,
0.09787093102931976,
0.0016696288948878646,
-0.024810928851366043,
-0.00002925054832303431,
0.07619138062000275,
-0.005592444445937872,
0.007124763447791338,
0.06029745563864708,
-0.17767558991909027,
0.015916232019662857,
-0.05175928771495819,
-0.012810922227799892,
-0.011340482160449028,
0.09779326617717743,
-0.05746598541736603,
0.06430304050445557,
0.024430131539702415,
-0.019163981080055237,
0.023511206731200218,
-0.016214929521083832,
0.014945394359529018,
-0.03565237671136856,
-0.05929962545633316,
-0.09498386085033417,
-0.22461862862110138,
-0.0779857188463211,
0.0777079164981842,
0.03850866109132767,
-0.23156750202178955,
0.025319023057818413,
-0.15438252687454224,
0.05005544051527977,
-0.1608252376317978,
0.07995186746120453,
0.08660850673913956,
0.008548013865947723,
-0.0008894697530195117,
0.0051030358299613,
0.04586944729089737,
0.128196120262146,
-0.09090672433376312,
-0.08003901690244675
] |
null | null | transformers | ## mDialBART: A Cross-Lingual Dialogue Summarization Model
This model is introduced by [*ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*](https://arxiv.org/abs/2202.05599). | {"license": "cc-by-nc-sa-4.0"} | text2text-generation | Krystalan/mdialbart_de | [
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"arxiv:2202.05599",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2202.05599"
] | [] | TAGS
#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
| ## mDialBART: A Cross-Lingual Dialogue Summarization Model
This model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*. | [
"## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
"TAGS\n#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
60,
50
] | [
"passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
-0.07598317414522171,
0.02547883428633213,
-0.004057748708873987,
0.023839054629206657,
0.12284856289625168,
-0.020067540928721428,
0.11222780495882034,
0.08689266443252563,
0.04308090731501579,
-0.048218388110399246,
0.09274120628833771,
0.1894376128911972,
0.019811106845736504,
0.10109211504459381,
-0.10075441002845764,
-0.2659720182418823,
0.04475492238998413,
0.027423404157161713,
0.014320459216833115,
0.12192869931459427,
0.1649480015039444,
-0.023466134443879128,
0.07318443059921265,
0.005554357077926397,
-0.13500230014324188,
0.05245981737971306,
0.0036436072550714016,
-0.12446790188550949,
0.1310516893863678,
0.05995410308241844,
0.01940913498401642,
0.04999661073088646,
-0.018787028267979622,
-0.13992969691753387,
0.03939622640609741,
-0.07614440470933914,
-0.026637811213731766,
0.0254324022680521,
-0.018586384132504463,
-0.08232343941926956,
0.17381830513477325,
0.03379356116056442,
0.04207325726747513,
0.06846735626459122,
-0.10126296430826187,
-0.04915900155901909,
-0.002090219408273697,
-0.01652398705482483,
0.10015766322612762,
0.061973851174116135,
-0.023365776985883713,
0.15074732899665833,
-0.10225488990545273,
0.09868425130844116,
-0.03768133372068405,
-0.369829922914505,
-0.020103536546230316,
0.17712947726249695,
0.07279008626937866,
0.03970503807067871,
-0.04202859848737717,
0.07708911597728729,
-0.0039034641813486814,
0.028298966586589813,
-0.0511743389070034,
-0.1111716479063034,
-0.04945157468318939,
-0.004044767934828997,
-0.08447566628456116,
0.020713992416858673,
0.3244488835334778,
-0.035763368010520935,
0.010871350765228271,
-0.08413053303956985,
-0.028780914843082428,
0.08625778555870056,
-0.06570018082857132,
-0.053694263100624084,
-0.05124039947986603,
0.06463378667831421,
-0.024206774309277534,
-0.023804211989045143,
-0.08629298955202103,
-0.008170679211616516,
-0.19273771345615387,
0.1507110744714737,
0.024681709706783295,
0.04914119094610214,
-0.1355430632829666,
0.02733975276350975,
0.004809732083231211,
-0.08948948979377747,
-0.0007873380091041327,
-0.09722591191530228,
-0.006263291463255882,
0.022679530084133148,
-0.03933793678879738,
-0.06328519433736801,
0.08394009619951248,
0.1093321442604065,
0.0640159398317337,
0.04207322746515274,
-0.049856219440698624,
0.05880872532725334,
0.02610582672059536,
0.08689696341753006,
0.0015964350895956159,
-0.10594569891691208,
0.048143547028303146,
-0.07542495429515839,
0.020079266279935837,
-0.015408876352012157,
-0.1906886249780655,
-0.03886273503303528,
-0.05013194680213928,
0.10045820474624634,
0.01010996475815773,
0.12655013799667358,
-0.0023605069145560265,
-0.04619636759161949,
0.07306989282369614,
-0.055315207690000534,
0.02251378446817398,
0.020973121747374535,
-0.03973718732595444,
0.07960829883813858,
0.047097284346818924,
0.04511692747473717,
-0.09274996072053909,
0.054351113736629486,
-0.010980281047523022,
0.010655771009624004,
-0.04080245643854141,
-0.06657367944717407,
0.025384457781910896,
0.04125435650348663,
0.004485590383410454,
-0.17707312107086182,
-0.09206079691648483,
-0.007242172956466675,
0.006808905862271786,
-0.05190018191933632,
-0.07577032595872879,
-0.12819966673851013,
0.0343003012239933,
0.04933510348200798,
-0.06723511219024658,
-0.009136627428233624,
-0.05565701052546501,
0.043113429099321365,
0.012082588858902454,
0.1011613979935646,
-0.19263063371181488,
0.05283460393548012,
-0.08536763489246368,
-0.011762212961912155,
-0.02595074288547039,
0.10919379442930222,
-0.027426976710557938,
0.049282316118478775,
-0.05024747923016548,
-0.00843877624720335,
-0.1310071349143982,
0.06225460395216942,
-0.010185686871409416,
0.19731707870960236,
-0.1986265480518341,
-0.05720047280192375,
0.2167230099439621,
-0.06562469154596329,
-0.15405231714248657,
0.12723128497600555,
-0.015041481703519821,
0.1212226152420044,
0.12698663771152496,
0.21342328190803528,
-0.06997618079185486,
-0.054956138134002686,
0.060441214591264725,
0.10270332545042038,
-0.08535750210285187,
-0.07444613426923752,
0.06051075831055641,
0.008068960160017014,
-0.06429632008075714,
0.06146862730383873,
0.09935782849788666,
0.07266304641962051,
-0.03677317872643471,
-0.02923981286585331,
0.001774714095517993,
-0.013330015353858471,
0.04078520089387894,
-0.0220626387745142,
0.052941977977752686,
-0.0825003832578659,
0.0019734911620616913,
0.04998175799846649,
0.0443175807595253,
-0.029426319524645805,
0.04185394197702408,
-0.10433460026979446,
0.01690658926963806,
-0.03241750970482826,
0.053849369287490845,
-0.11816070228815079,
0.014494790695607662,
-0.025586016476154327,
0.17947126924991608,
0.10739659518003464,
0.05878312885761261,
0.014925289899110794,
-0.061869386583566666,
-0.029923249036073685,
0.08260999619960785,
0.20285454392433167,
0.025292716920375824,
-0.05304768681526184,
-0.11833437532186508,
0.06917751580476761,
-0.04642506316304207,
0.0857587531208992,
-0.07128509134054184,
-0.006308016367256641,
0.005762139800935984,
0.12208930402994156,
-0.051501527428627014,
0.07240386307239532,
0.02559632621705532,
0.06519411504268646,
-0.024994919076561928,
0.04685555025935173,
0.11991894990205765,
0.036632128059864044,
-0.10927689075469971,
0.2917020618915558,
-0.16265855729579926,
0.1554640680551529,
0.1838228851556778,
-0.1675766408443451,
0.0277249813079834,
-0.1299443542957306,
0.0016919703921303153,
-0.029167015105485916,
0.08691862225532532,
0.006914790719747543,
0.20521260797977448,
-0.00973094254732132,
0.19027814269065857,
-0.0641680508852005,
0.018737249076366425,
-0.043676503002643585,
-0.07075194269418716,
-0.019895635545253754,
0.10636793076992035,
0.07533123344182968,
-0.23029808700084686,
0.12577155232429504,
0.14030052721500397,
0.042321499437093735,
0.16352039575576782,
0.02667667530477047,
0.04280880093574524,
-0.017703944817185402,
-0.011022624559700489,
-0.04249638691544533,
-0.018014615401625633,
-0.244032621383667,
-0.051322609186172485,
0.06409551203250885,
0.05108070746064186,
0.10748866200447083,
-0.06462991237640381,
-0.00682153319939971,
0.013170991092920303,
-0.00586627796292305,
-0.012833068147301674,
0.11061251163482666,
0.02241297997534275,
0.10570105910301208,
0.004133930429816246,
-0.08698764443397522,
0.055377256125211716,
-0.012944024056196213,
-0.10358742624521255,
0.1594339907169342,
-0.16621309518814087,
-0.3594929873943329,
-0.13215593993663788,
-0.18121284246444702,
-0.08011165261268616,
0.021844370290637016,
0.08158877491950989,
-0.03931979835033417,
-0.030334623530507088,
0.016531378030776978,
0.03825297951698303,
-0.09506053477525711,
-0.04202890768647194,
-0.04647008329629898,
0.03299660235643387,
-0.08968766778707504,
-0.14174598455429077,
-0.05010543763637543,
-0.005622828844934702,
-0.009667092934250832,
0.06039005145430565,
-0.16639956831932068,
0.07702477276325226,
0.15788531303405762,
0.004701342433691025,
0.05595220625400543,
-0.0625373125076294,
0.1452217400074005,
-0.050534963607788086,
-0.05188323184847832,
0.1263381689786911,
-0.06670501083135605,
0.0024947046767920256,
0.2011534720659256,
0.020014887675642967,
-0.06948872655630112,
0.02416832745075226,
-0.09349595755338669,
-0.06926083564758301,
-0.1802239567041397,
-0.16227659583091736,
-0.11980826407670975,
0.05582820251584053,
-0.04365147650241852,
0.04278804361820221,
0.040151823312044144,
0.022395743057131767,
-0.005709495395421982,
-0.05224577337503433,
0.05306805297732353,
0.10911224782466888,
0.31652605533599854,
-0.0979146733880043,
0.1530618518590927,
-0.03978739678859711,
-0.09689894318580627,
0.06654452532529831,
0.10101291537284851,
-0.014943321235477924,
0.1050243228673935,
0.096305251121521,
0.03601847216486931,
0.0844009518623352,
0.142586812376976,
0.06085741147398949,
0.016338132321834564,
-0.023888660594820976,
-0.024593278765678406,
-0.051308415830135345,
-0.07915839552879333,
0.047352299094200134,
0.0834263488650322,
-0.06570219248533249,
-0.013838205486536026,
-0.03229181095957756,
0.07222893089056015,
0.04679606854915619,
0.04033494368195534,
-0.17218320071697235,
-0.031603582203388214,
0.028587372973561287,
-0.02244444750249386,
-0.09528721123933792,
0.10016908496618271,
-0.017284344881772995,
-0.09829580038785934,
0.06459696590900421,
0.01718127354979515,
0.11583420634269714,
-0.050272077322006226,
0.04900379478931427,
-0.135126993060112,
-0.07883315533399582,
0.016403714194893837,
0.09968023747205734,
-0.3469075858592987,
0.18146049976348877,
0.016873139888048172,
-0.04533037543296814,
-0.06520545482635498,
-0.028220780193805695,
0.004182814154773951,
0.14566679298877716,
0.07396049052476883,
-0.022052129730582237,
-0.09196891635656357,
-0.01105815451592207,
-0.06139149144291878,
0.048505641520023346,
0.08944563567638397,
0.05556158348917961,
-0.02921084128320217,
-0.030133618041872978,
-0.02277417853474617,
-0.004397975280880928,
0.005395596381276846,
-0.055670589208602905,
-0.1940106451511383,
0.06098741665482521,
0.15402495861053467,
0.04425971210002899,
0.02333177998661995,
-0.026056133210659027,
-0.04858382046222687,
0.241781085729599,
-0.019733527675271034,
-0.06544177979230881,
-0.10156112164258957,
-0.053300224244594574,
0.07928979396820068,
-0.05500928685069084,
0.04003419354557991,
-0.0686497688293457,
0.0045083980076014996,
-0.06365682929754257,
-0.14953626692295074,
0.12119544297456741,
-0.0908036008477211,
0.044488295912742615,
-0.011564377695322037,
0.20621395111083984,
-0.07049062848091125,
0.024394122883677483,
0.0749489963054657,
0.007188812829554081,
-0.07627701014280319,
-0.041958555579185486,
-0.07021082192659378,
0.035183049738407135,
0.01289122924208641,
0.03990545496344566,
-0.06882409751415253,
-0.14332860708236694,
-0.03652006760239601,
-0.0688747763633728,
0.2930346131324768,
0.10100062191486359,
-0.06828311085700989,
0.15963582694530487,
0.17620177567005157,
-0.0821998193860054,
-0.25793030858039856,
-0.12449964880943298,
-0.04923964664340019,
0.024745739996433258,
-0.09952942281961441,
-0.07229649275541306,
0.03548892214894295,
-0.0363275371491909,
-0.034586623311042786,
0.0492127351462841,
-0.2537078857421875,
-0.11804942786693573,
0.1741734743118286,
-0.04000125825405121,
0.33986592292785645,
-0.08745677769184113,
-0.09118986874818802,
-0.09714024513959885,
-0.18237994611263275,
0.13753566145896912,
0.08013159781694412,
0.07652420550584793,
-0.012560886330902576,
0.12748387455940247,
0.023043766617774963,
0.010236501693725586,
0.10396294295787811,
0.0007332931854762137,
-0.05034909024834633,
-0.08865852653980255,
-0.08786454051733017,
-0.05311769247055054,
0.025221068412065506,
0.0787089392542839,
-0.09853868186473846,
0.008496943861246109,
-0.10981308668851852,
-0.07169603556394577,
-0.04846331104636192,
0.033141810446977615,
-0.0034189512953162193,
-0.038178954273462296,
0.0026713283732533455,
-0.05468497425317764,
-0.03589616343379021,
-0.008377645164728165,
0.12808911502361298,
-0.14608736336231232,
0.0913844183087349,
0.1846643090248108,
0.19199685752391815,
-0.18920576572418213,
0.03874605521559715,
-0.019328707829117775,
-0.07541320472955704,
0.05247250199317932,
-0.06859332323074341,
0.030440451577305794,
0.12121650576591492,
-0.031781747937202454,
0.09937793016433716,
0.05211414396762848,
0.01646062359213829,
0.006797071546316147,
0.107792928814888,
-0.10956273972988129,
-0.04969191178679466,
-0.03399655967950821,
0.08462950587272644,
0.08979501575231552,
0.0525253489613533,
0.19442589581012726,
-0.03296644985675812,
-0.03152107447385788,
-0.002101574558764696,
0.005333164241164923,
-0.062391553074121475,
0.05684145539999008,
0.03607829287648201,
0.013723361305892467,
-0.13171698153018951,
0.08178119361400604,
0.03408045694231987,
-0.16702231764793396,
-0.0066893938928842545,
0.16265533864498138,
-0.10837025195360184,
-0.11291297525167465,
-0.1083005964756012,
0.12679456174373627,
-0.13199687004089355,
-0.09614038467407227,
-0.021297216415405273,
-0.1557185798883438,
0.033295173197984695,
0.14815747737884521,
0.06530974805355072,
0.05160966515541077,
-0.09937861561775208,
-0.07118842750787735,
-0.000839563668705523,
0.06256216764450073,
0.024983735755085945,
-0.006676694843918085,
-0.014051412232220173,
0.029995011165738106,
-0.03149811550974846,
0.07784049212932587,
-0.06974483281373978,
-0.07890994101762772,
-0.13326232135295868,
0.06278520077466965,
-0.18144339323043823,
-0.008511013351380825,
-0.11492612957954407,
-0.02369699627161026,
0.015356582589447498,
-0.06250205636024475,
-0.05509338527917862,
-0.026858819648623466,
-0.09924978762865067,
0.030523940920829773,
-0.0463404580950737,
0.06133275106549263,
-0.05526452884078026,
-0.02648497372865677,
0.046644583344459534,
0.009367800317704678,
0.1162506639957428,
0.14901335537433624,
-0.13748647272586823,
0.0599641427397728,
-0.1450832635164261,
-0.05308202654123306,
0.1164722889661789,
0.05196686089038849,
0.06254719197750092,
-0.0055974628776311874,
0.01041235588490963,
0.13881953060626984,
0.05539978668093681,
0.03981872648000717,
0.12528090178966522,
-0.09438483417034149,
-0.01816415973007679,
-0.06313876062631607,
-0.10603127628564835,
0.008401568047702312,
-0.042411625385284424,
0.0638245940208435,
0.11254990845918655,
0.0913061797618866,
-0.08193906396627426,
0.038566868752241135,
-0.04813671484589577,
0.02471477910876274,
-0.019850771874189377,
-0.13741648197174072,
-0.0514761246740818,
-0.09465217590332031,
0.048585209995508194,
0.0047350297681987286,
0.21480251848697662,
0.04097189009189606,
-0.026314597576856613,
0.030818043276667595,
0.016152817755937576,
0.008035708218812943,
0.01467365026473999,
0.19194334745407104,
0.07629402726888657,
0.004744838923215866,
-0.029316125437617302,
0.08266887068748474,
0.0021116379648447037,
0.053078263998031616,
-0.0006748579326085746,
0.095753014087677,
0.08006018400192261,
0.11500902473926544,
0.0650968849658966,
0.027084991335868835,
-0.01567074842751026,
-0.12443410605192184,
-0.046528372913599014,
0.03284977376461029,
-0.08700520545244217,
0.10656145215034485,
0.1313023418188095,
-0.04483867809176445,
0.02205595001578331,
-0.04015485942363739,
-0.06816283613443375,
-0.1646282970905304,
-0.1517917662858963,
-0.09966132044792175,
-0.1041707694530487,
-0.012772182933986187,
-0.11098845303058624,
0.015734611079096794,
0.023247333243489265,
0.08724644780158997,
-0.05409787967801094,
0.020021045580506325,
-0.06869229674339294,
-0.12580272555351257,
0.059452157467603683,
-0.04623588174581528,
0.08521615713834763,
-0.04454316943883896,
0.0456087626516819,
-0.07749294489622116,
0.008235921151936054,
0.013963746838271618,
0.040298741310834885,
-0.004514677450060844,
-0.02562674507498741,
-0.09633781015872955,
-0.02876361832022667,
-0.054873161017894745,
0.07229223847389221,
0.046548113226890564,
0.18683533370494843,
0.038605209439992905,
-0.05039219185709953,
0.03182058781385422,
0.2143675982952118,
-0.0473775640130043,
-0.1657324880361557,
-0.08606043457984924,
0.22084975242614746,
-0.014787162654101849,
0.09260972589254379,
-0.04354004189372063,
0.02473350241780281,
-0.07506145536899567,
0.26292094588279724,
0.33156201243400574,
-0.08421214669942856,
-0.010145801119506359,
-0.003828934160992503,
0.05281354486942291,
0.08025388419628143,
0.0969652384519577,
0.12426409870386124,
0.2725130319595337,
-0.03420668840408325,
-0.032902710139751434,
-0.05967456474900246,
-0.021246761083602905,
-0.07233951985836029,
0.05531042441725731,
-0.00830203015357256,
-0.0911158099770546,
0.007250075228512287,
0.11969190835952759,
-0.1381668597459793,
0.08250442892313004,
-0.15209358930587769,
-0.19343718886375427,
-0.07215133309364319,
-0.027096863836050034,
0.05070410296320915,
0.03125261887907982,
0.029656948521733284,
-0.029092412441968918,
-0.04487721994519234,
0.05377377197146416,
-0.006341145373880863,
-0.178911030292511,
-0.011325846426188946,
0.06993861496448517,
-0.08970605581998825,
-0.0617041140794754,
-0.01654527522623539,
0.12655627727508545,
0.07567975670099258,
0.11911167949438095,
-0.012992553412914276,
0.061001237481832504,
0.015751564875245094,
0.015089845284819603,
0.08639582246541977,
0.0007189077441580594,
0.005494802724570036,
0.060793787240982056,
0.03521765395998955,
-0.1390916109085083,
0.07827972620725632,
-0.02561713568866253,
-0.0707322508096695,
-0.05789507180452347,
0.08641262352466583,
-0.07477445900440216,
0.08886431157588959,
0.08685684204101562,
-0.01166702900081873,
-0.027672618627548218,
-0.010064071975648403,
-0.0262466911226511,
-0.017368609085679054,
-0.08195361495018005,
-0.08767644315958023,
-0.15487460792064667,
-0.06732455641031265,
0.02929040417075157,
0.001040381146594882,
-0.18051691353321075,
-0.016577668488025665,
-0.1065363883972168,
0.03124433197081089,
-0.06792359054088593,
0.09662104398012161,
0.03588365390896797,
0.015788180753588676,
-0.010237928479909897,
-0.1448957920074463,
0.07599819451570511,
0.07591762393712997,
-0.12489128857851028,
-0.1009644865989685
] |
null | null | transformers | ## mDialBART: A Cross-Lingual Dialogue Summarization Model
This model is introduced by [*ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*](https://arxiv.org/abs/2202.05599). | {"license": "cc-by-nc-sa-4.0"} | text2text-generation | Krystalan/mdialbart_zh | [
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"arxiv:2202.05599",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2202.05599"
] | [] | TAGS
#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
| ## mDialBART: A Cross-Lingual Dialogue Summarization Model
This model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*. | [
"## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
"TAGS\n#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
60,
50
] | [
"passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #arxiv-2202.05599 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n## mDialBART: A Cross-Lingual Dialogue Summarization Model\r\nThis model is introduced by *ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*."
] | [
-0.07598317414522171,
0.02547883428633213,
-0.004057748708873987,
0.023839054629206657,
0.12284856289625168,
-0.020067540928721428,
0.11222780495882034,
0.08689266443252563,
0.04308090731501579,
-0.048218388110399246,
0.09274120628833771,
0.1894376128911972,
0.019811106845736504,
0.10109211504459381,
-0.10075441002845764,
-0.2659720182418823,
0.04475492238998413,
0.027423404157161713,
0.014320459216833115,
0.12192869931459427,
0.1649480015039444,
-0.023466134443879128,
0.07318443059921265,
0.005554357077926397,
-0.13500230014324188,
0.05245981737971306,
0.0036436072550714016,
-0.12446790188550949,
0.1310516893863678,
0.05995410308241844,
0.01940913498401642,
0.04999661073088646,
-0.018787028267979622,
-0.13992969691753387,
0.03939622640609741,
-0.07614440470933914,
-0.026637811213731766,
0.0254324022680521,
-0.018586384132504463,
-0.08232343941926956,
0.17381830513477325,
0.03379356116056442,
0.04207325726747513,
0.06846735626459122,
-0.10126296430826187,
-0.04915900155901909,
-0.002090219408273697,
-0.01652398705482483,
0.10015766322612762,
0.061973851174116135,
-0.023365776985883713,
0.15074732899665833,
-0.10225488990545273,
0.09868425130844116,
-0.03768133372068405,
-0.369829922914505,
-0.020103536546230316,
0.17712947726249695,
0.07279008626937866,
0.03970503807067871,
-0.04202859848737717,
0.07708911597728729,
-0.0039034641813486814,
0.028298966586589813,
-0.0511743389070034,
-0.1111716479063034,
-0.04945157468318939,
-0.004044767934828997,
-0.08447566628456116,
0.020713992416858673,
0.3244488835334778,
-0.035763368010520935,
0.010871350765228271,
-0.08413053303956985,
-0.028780914843082428,
0.08625778555870056,
-0.06570018082857132,
-0.053694263100624084,
-0.05124039947986603,
0.06463378667831421,
-0.024206774309277534,
-0.023804211989045143,
-0.08629298955202103,
-0.008170679211616516,
-0.19273771345615387,
0.1507110744714737,
0.024681709706783295,
0.04914119094610214,
-0.1355430632829666,
0.02733975276350975,
0.004809732083231211,
-0.08948948979377747,
-0.0007873380091041327,
-0.09722591191530228,
-0.006263291463255882,
0.022679530084133148,
-0.03933793678879738,
-0.06328519433736801,
0.08394009619951248,
0.1093321442604065,
0.0640159398317337,
0.04207322746515274,
-0.049856219440698624,
0.05880872532725334,
0.02610582672059536,
0.08689696341753006,
0.0015964350895956159,
-0.10594569891691208,
0.048143547028303146,
-0.07542495429515839,
0.020079266279935837,
-0.015408876352012157,
-0.1906886249780655,
-0.03886273503303528,
-0.05013194680213928,
0.10045820474624634,
0.01010996475815773,
0.12655013799667358,
-0.0023605069145560265,
-0.04619636759161949,
0.07306989282369614,
-0.055315207690000534,
0.02251378446817398,
0.020973121747374535,
-0.03973718732595444,
0.07960829883813858,
0.047097284346818924,
0.04511692747473717,
-0.09274996072053909,
0.054351113736629486,
-0.010980281047523022,
0.010655771009624004,
-0.04080245643854141,
-0.06657367944717407,
0.025384457781910896,
0.04125435650348663,
0.004485590383410454,
-0.17707312107086182,
-0.09206079691648483,
-0.007242172956466675,
0.006808905862271786,
-0.05190018191933632,
-0.07577032595872879,
-0.12819966673851013,
0.0343003012239933,
0.04933510348200798,
-0.06723511219024658,
-0.009136627428233624,
-0.05565701052546501,
0.043113429099321365,
0.012082588858902454,
0.1011613979935646,
-0.19263063371181488,
0.05283460393548012,
-0.08536763489246368,
-0.011762212961912155,
-0.02595074288547039,
0.10919379442930222,
-0.027426976710557938,
0.049282316118478775,
-0.05024747923016548,
-0.00843877624720335,
-0.1310071349143982,
0.06225460395216942,
-0.010185686871409416,
0.19731707870960236,
-0.1986265480518341,
-0.05720047280192375,
0.2167230099439621,
-0.06562469154596329,
-0.15405231714248657,
0.12723128497600555,
-0.015041481703519821,
0.1212226152420044,
0.12698663771152496,
0.21342328190803528,
-0.06997618079185486,
-0.054956138134002686,
0.060441214591264725,
0.10270332545042038,
-0.08535750210285187,
-0.07444613426923752,
0.06051075831055641,
0.008068960160017014,
-0.06429632008075714,
0.06146862730383873,
0.09935782849788666,
0.07266304641962051,
-0.03677317872643471,
-0.02923981286585331,
0.001774714095517993,
-0.013330015353858471,
0.04078520089387894,
-0.0220626387745142,
0.052941977977752686,
-0.0825003832578659,
0.0019734911620616913,
0.04998175799846649,
0.0443175807595253,
-0.029426319524645805,
0.04185394197702408,
-0.10433460026979446,
0.01690658926963806,
-0.03241750970482826,
0.053849369287490845,
-0.11816070228815079,
0.014494790695607662,
-0.025586016476154327,
0.17947126924991608,
0.10739659518003464,
0.05878312885761261,
0.014925289899110794,
-0.061869386583566666,
-0.029923249036073685,
0.08260999619960785,
0.20285454392433167,
0.025292716920375824,
-0.05304768681526184,
-0.11833437532186508,
0.06917751580476761,
-0.04642506316304207,
0.0857587531208992,
-0.07128509134054184,
-0.006308016367256641,
0.005762139800935984,
0.12208930402994156,
-0.051501527428627014,
0.07240386307239532,
0.02559632621705532,
0.06519411504268646,
-0.024994919076561928,
0.04685555025935173,
0.11991894990205765,
0.036632128059864044,
-0.10927689075469971,
0.2917020618915558,
-0.16265855729579926,
0.1554640680551529,
0.1838228851556778,
-0.1675766408443451,
0.0277249813079834,
-0.1299443542957306,
0.0016919703921303153,
-0.029167015105485916,
0.08691862225532532,
0.006914790719747543,
0.20521260797977448,
-0.00973094254732132,
0.19027814269065857,
-0.0641680508852005,
0.018737249076366425,
-0.043676503002643585,
-0.07075194269418716,
-0.019895635545253754,
0.10636793076992035,
0.07533123344182968,
-0.23029808700084686,
0.12577155232429504,
0.14030052721500397,
0.042321499437093735,
0.16352039575576782,
0.02667667530477047,
0.04280880093574524,
-0.017703944817185402,
-0.011022624559700489,
-0.04249638691544533,
-0.018014615401625633,
-0.244032621383667,
-0.051322609186172485,
0.06409551203250885,
0.05108070746064186,
0.10748866200447083,
-0.06462991237640381,
-0.00682153319939971,
0.013170991092920303,
-0.00586627796292305,
-0.012833068147301674,
0.11061251163482666,
0.02241297997534275,
0.10570105910301208,
0.004133930429816246,
-0.08698764443397522,
0.055377256125211716,
-0.012944024056196213,
-0.10358742624521255,
0.1594339907169342,
-0.16621309518814087,
-0.3594929873943329,
-0.13215593993663788,
-0.18121284246444702,
-0.08011165261268616,
0.021844370290637016,
0.08158877491950989,
-0.03931979835033417,
-0.030334623530507088,
0.016531378030776978,
0.03825297951698303,
-0.09506053477525711,
-0.04202890768647194,
-0.04647008329629898,
0.03299660235643387,
-0.08968766778707504,
-0.14174598455429077,
-0.05010543763637543,
-0.005622828844934702,
-0.009667092934250832,
0.06039005145430565,
-0.16639956831932068,
0.07702477276325226,
0.15788531303405762,
0.004701342433691025,
0.05595220625400543,
-0.0625373125076294,
0.1452217400074005,
-0.050534963607788086,
-0.05188323184847832,
0.1263381689786911,
-0.06670501083135605,
0.0024947046767920256,
0.2011534720659256,
0.020014887675642967,
-0.06948872655630112,
0.02416832745075226,
-0.09349595755338669,
-0.06926083564758301,
-0.1802239567041397,
-0.16227659583091736,
-0.11980826407670975,
0.05582820251584053,
-0.04365147650241852,
0.04278804361820221,
0.040151823312044144,
0.022395743057131767,
-0.005709495395421982,
-0.05224577337503433,
0.05306805297732353,
0.10911224782466888,
0.31652605533599854,
-0.0979146733880043,
0.1530618518590927,
-0.03978739678859711,
-0.09689894318580627,
0.06654452532529831,
0.10101291537284851,
-0.014943321235477924,
0.1050243228673935,
0.096305251121521,
0.03601847216486931,
0.0844009518623352,
0.142586812376976,
0.06085741147398949,
0.016338132321834564,
-0.023888660594820976,
-0.024593278765678406,
-0.051308415830135345,
-0.07915839552879333,
0.047352299094200134,
0.0834263488650322,
-0.06570219248533249,
-0.013838205486536026,
-0.03229181095957756,
0.07222893089056015,
0.04679606854915619,
0.04033494368195534,
-0.17218320071697235,
-0.031603582203388214,
0.028587372973561287,
-0.02244444750249386,
-0.09528721123933792,
0.10016908496618271,
-0.017284344881772995,
-0.09829580038785934,
0.06459696590900421,
0.01718127354979515,
0.11583420634269714,
-0.050272077322006226,
0.04900379478931427,
-0.135126993060112,
-0.07883315533399582,
0.016403714194893837,
0.09968023747205734,
-0.3469075858592987,
0.18146049976348877,
0.016873139888048172,
-0.04533037543296814,
-0.06520545482635498,
-0.028220780193805695,
0.004182814154773951,
0.14566679298877716,
0.07396049052476883,
-0.022052129730582237,
-0.09196891635656357,
-0.01105815451592207,
-0.06139149144291878,
0.048505641520023346,
0.08944563567638397,
0.05556158348917961,
-0.02921084128320217,
-0.030133618041872978,
-0.02277417853474617,
-0.004397975280880928,
0.005395596381276846,
-0.055670589208602905,
-0.1940106451511383,
0.06098741665482521,
0.15402495861053467,
0.04425971210002899,
0.02333177998661995,
-0.026056133210659027,
-0.04858382046222687,
0.241781085729599,
-0.019733527675271034,
-0.06544177979230881,
-0.10156112164258957,
-0.053300224244594574,
0.07928979396820068,
-0.05500928685069084,
0.04003419354557991,
-0.0686497688293457,
0.0045083980076014996,
-0.06365682929754257,
-0.14953626692295074,
0.12119544297456741,
-0.0908036008477211,
0.044488295912742615,
-0.011564377695322037,
0.20621395111083984,
-0.07049062848091125,
0.024394122883677483,
0.0749489963054657,
0.007188812829554081,
-0.07627701014280319,
-0.041958555579185486,
-0.07021082192659378,
0.035183049738407135,
0.01289122924208641,
0.03990545496344566,
-0.06882409751415253,
-0.14332860708236694,
-0.03652006760239601,
-0.0688747763633728,
0.2930346131324768,
0.10100062191486359,
-0.06828311085700989,
0.15963582694530487,
0.17620177567005157,
-0.0821998193860054,
-0.25793030858039856,
-0.12449964880943298,
-0.04923964664340019,
0.024745739996433258,
-0.09952942281961441,
-0.07229649275541306,
0.03548892214894295,
-0.0363275371491909,
-0.034586623311042786,
0.0492127351462841,
-0.2537078857421875,
-0.11804942786693573,
0.1741734743118286,
-0.04000125825405121,
0.33986592292785645,
-0.08745677769184113,
-0.09118986874818802,
-0.09714024513959885,
-0.18237994611263275,
0.13753566145896912,
0.08013159781694412,
0.07652420550584793,
-0.012560886330902576,
0.12748387455940247,
0.023043766617774963,
0.010236501693725586,
0.10396294295787811,
0.0007332931854762137,
-0.05034909024834633,
-0.08865852653980255,
-0.08786454051733017,
-0.05311769247055054,
0.025221068412065506,
0.0787089392542839,
-0.09853868186473846,
0.008496943861246109,
-0.10981308668851852,
-0.07169603556394577,
-0.04846331104636192,
0.033141810446977615,
-0.0034189512953162193,
-0.038178954273462296,
0.0026713283732533455,
-0.05468497425317764,
-0.03589616343379021,
-0.008377645164728165,
0.12808911502361298,
-0.14608736336231232,
0.0913844183087349,
0.1846643090248108,
0.19199685752391815,
-0.18920576572418213,
0.03874605521559715,
-0.019328707829117775,
-0.07541320472955704,
0.05247250199317932,
-0.06859332323074341,
0.030440451577305794,
0.12121650576591492,
-0.031781747937202454,
0.09937793016433716,
0.05211414396762848,
0.01646062359213829,
0.006797071546316147,
0.107792928814888,
-0.10956273972988129,
-0.04969191178679466,
-0.03399655967950821,
0.08462950587272644,
0.08979501575231552,
0.0525253489613533,
0.19442589581012726,
-0.03296644985675812,
-0.03152107447385788,
-0.002101574558764696,
0.005333164241164923,
-0.062391553074121475,
0.05684145539999008,
0.03607829287648201,
0.013723361305892467,
-0.13171698153018951,
0.08178119361400604,
0.03408045694231987,
-0.16702231764793396,
-0.0066893938928842545,
0.16265533864498138,
-0.10837025195360184,
-0.11291297525167465,
-0.1083005964756012,
0.12679456174373627,
-0.13199687004089355,
-0.09614038467407227,
-0.021297216415405273,
-0.1557185798883438,
0.033295173197984695,
0.14815747737884521,
0.06530974805355072,
0.05160966515541077,
-0.09937861561775208,
-0.07118842750787735,
-0.000839563668705523,
0.06256216764450073,
0.024983735755085945,
-0.006676694843918085,
-0.014051412232220173,
0.029995011165738106,
-0.03149811550974846,
0.07784049212932587,
-0.06974483281373978,
-0.07890994101762772,
-0.13326232135295868,
0.06278520077466965,
-0.18144339323043823,
-0.008511013351380825,
-0.11492612957954407,
-0.02369699627161026,
0.015356582589447498,
-0.06250205636024475,
-0.05509338527917862,
-0.026858819648623466,
-0.09924978762865067,
0.030523940920829773,
-0.0463404580950737,
0.06133275106549263,
-0.05526452884078026,
-0.02648497372865677,
0.046644583344459534,
0.009367800317704678,
0.1162506639957428,
0.14901335537433624,
-0.13748647272586823,
0.0599641427397728,
-0.1450832635164261,
-0.05308202654123306,
0.1164722889661789,
0.05196686089038849,
0.06254719197750092,
-0.0055974628776311874,
0.01041235588490963,
0.13881953060626984,
0.05539978668093681,
0.03981872648000717,
0.12528090178966522,
-0.09438483417034149,
-0.01816415973007679,
-0.06313876062631607,
-0.10603127628564835,
0.008401568047702312,
-0.042411625385284424,
0.0638245940208435,
0.11254990845918655,
0.0913061797618866,
-0.08193906396627426,
0.038566868752241135,
-0.04813671484589577,
0.02471477910876274,
-0.019850771874189377,
-0.13741648197174072,
-0.0514761246740818,
-0.09465217590332031,
0.048585209995508194,
0.0047350297681987286,
0.21480251848697662,
0.04097189009189606,
-0.026314597576856613,
0.030818043276667595,
0.016152817755937576,
0.008035708218812943,
0.01467365026473999,
0.19194334745407104,
0.07629402726888657,
0.004744838923215866,
-0.029316125437617302,
0.08266887068748474,
0.0021116379648447037,
0.053078263998031616,
-0.0006748579326085746,
0.095753014087677,
0.08006018400192261,
0.11500902473926544,
0.0650968849658966,
0.027084991335868835,
-0.01567074842751026,
-0.12443410605192184,
-0.046528372913599014,
0.03284977376461029,
-0.08700520545244217,
0.10656145215034485,
0.1313023418188095,
-0.04483867809176445,
0.02205595001578331,
-0.04015485942363739,
-0.06816283613443375,
-0.1646282970905304,
-0.1517917662858963,
-0.09966132044792175,
-0.1041707694530487,
-0.012772182933986187,
-0.11098845303058624,
0.015734611079096794,
0.023247333243489265,
0.08724644780158997,
-0.05409787967801094,
0.020021045580506325,
-0.06869229674339294,
-0.12580272555351257,
0.059452157467603683,
-0.04623588174581528,
0.08521615713834763,
-0.04454316943883896,
0.0456087626516819,
-0.07749294489622116,
0.008235921151936054,
0.013963746838271618,
0.040298741310834885,
-0.004514677450060844,
-0.02562674507498741,
-0.09633781015872955,
-0.02876361832022667,
-0.054873161017894745,
0.07229223847389221,
0.046548113226890564,
0.18683533370494843,
0.038605209439992905,
-0.05039219185709953,
0.03182058781385422,
0.2143675982952118,
-0.0473775640130043,
-0.1657324880361557,
-0.08606043457984924,
0.22084975242614746,
-0.014787162654101849,
0.09260972589254379,
-0.04354004189372063,
0.02473350241780281,
-0.07506145536899567,
0.26292094588279724,
0.33156201243400574,
-0.08421214669942856,
-0.010145801119506359,
-0.003828934160992503,
0.05281354486942291,
0.08025388419628143,
0.0969652384519577,
0.12426409870386124,
0.2725130319595337,
-0.03420668840408325,
-0.032902710139751434,
-0.05967456474900246,
-0.021246761083602905,
-0.07233951985836029,
0.05531042441725731,
-0.00830203015357256,
-0.0911158099770546,
0.007250075228512287,
0.11969190835952759,
-0.1381668597459793,
0.08250442892313004,
-0.15209358930587769,
-0.19343718886375427,
-0.07215133309364319,
-0.027096863836050034,
0.05070410296320915,
0.03125261887907982,
0.029656948521733284,
-0.029092412441968918,
-0.04487721994519234,
0.05377377197146416,
-0.006341145373880863,
-0.178911030292511,
-0.011325846426188946,
0.06993861496448517,
-0.08970605581998825,
-0.0617041140794754,
-0.01654527522623539,
0.12655627727508545,
0.07567975670099258,
0.11911167949438095,
-0.012992553412914276,
0.061001237481832504,
0.015751564875245094,
0.015089845284819603,
0.08639582246541977,
0.0007189077441580594,
0.005494802724570036,
0.060793787240982056,
0.03521765395998955,
-0.1390916109085083,
0.07827972620725632,
-0.02561713568866253,
-0.0707322508096695,
-0.05789507180452347,
0.08641262352466583,
-0.07477445900440216,
0.08886431157588959,
0.08685684204101562,
-0.01166702900081873,
-0.027672618627548218,
-0.010064071975648403,
-0.0262466911226511,
-0.017368609085679054,
-0.08195361495018005,
-0.08767644315958023,
-0.15487460792064667,
-0.06732455641031265,
0.02929040417075157,
0.001040381146594882,
-0.18051691353321075,
-0.016577668488025665,
-0.1065363883972168,
0.03124433197081089,
-0.06792359054088593,
0.09662104398012161,
0.03588365390896797,
0.015788180753588676,
-0.010237928479909897,
-0.1448957920074463,
0.07599819451570511,
0.07591762393712997,
-0.12489128857851028,
-0.1009644865989685
] |
null | null | transformers |
# Rick Sanchez DialoGPT Model | {"tags": ["conversational"]} | text-generation | Kshaunish/DialoGPT-small-rick | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick Sanchez DialoGPT Model | [
"# Rick Sanchez DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick Sanchez DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick Sanchez DialoGPT Model"
] | [
-0.05704520270228386,
0.1080707237124443,
-0.005703833419829607,
0.024355918169021606,
0.1347416192293167,
-0.009864812716841698,
0.13915762305259705,
0.13641619682312012,
-0.014821183867752552,
-0.025234131142497063,
0.13788719475269318,
0.23441068828105927,
-0.0040086545050144196,
0.0579121895134449,
-0.09891517460346222,
-0.29657089710235596,
0.032161157578229904,
0.05994465947151184,
-0.0033263780642300844,
0.11953802406787872,
0.0843273475766182,
-0.043882302939891815,
0.08131924271583557,
0.0018995096907019615,
-0.14373421669006348,
0.011346335522830486,
0.04636937007308006,
-0.13702289760112762,
0.11601521074771881,
0.08168332278728485,
0.03479677438735962,
0.06183161959052086,
-0.03211790323257446,
-0.10245182365179062,
0.03838932886719704,
-0.008999419398605824,
-0.03427799046039581,
0.06022527068853378,
0.031745243817567825,
-0.1152564138174057,
0.09468080848455429,
0.0923495814204216,
-0.005728692281991243,
0.049891795963048935,
-0.17913517355918884,
-0.010704654268920422,
-0.021677182987332344,
0.055929314345121384,
0.08334671705961227,
0.09012723714113235,
-0.03841714933514595,
0.09080751240253448,
-0.04324564337730408,
0.07660475373268127,
0.08530165255069733,
-0.28937292098999023,
-0.030906030908226967,
0.06582700461149216,
0.05632982775568962,
0.06222769245505333,
-0.012348905205726624,
0.10370101034641266,
0.04712950810790062,
-0.014536825940012932,
-0.020318668335676193,
-0.09295357018709183,
-0.08654087781906128,
0.01945175603032112,
-0.06887777894735336,
-0.00602162629365921,
0.2560831606388092,
-0.030627258121967316,
0.0731891319155693,
-0.08859450370073318,
-0.10249431431293488,
0.004030927084386349,
-0.03497277945280075,
-0.05301825329661369,
-0.08995666354894638,
0.0700719803571701,
-0.003147976705804467,
-0.07389466464519501,
-0.1290099322795868,
-0.021585101261734962,
-0.1774103045463562,
0.19141581654548645,
0.030293408781290054,
0.023750921711325645,
-0.2208036631345749,
0.08902101963758469,
0.045917924493551254,
-0.11613845080137253,
0.04777151718735695,
-0.0842585563659668,
0.027763593941926956,
0.03184368088841438,
-0.015087970532476902,
-0.059821996837854385,
0.06819985806941986,
0.09782791137695312,
0.01923726685345173,
0.009750176221132278,
-0.024553336203098297,
0.05652669072151184,
0.04215332120656967,
0.09357214719057083,
-0.002894732868298888,
-0.0361810103058815,
0.015707144513726234,
-0.09473340213298798,
0.013285800814628601,
-0.06974472850561142,
-0.20285023748874664,
-0.01343308761715889,
0.030690573155879974,
0.06404593586921692,
0.0605037696659565,
0.11637318879365921,
-0.016192488372325897,
-0.07014694064855576,
0.04394420608878136,
-0.011219148524105549,
-0.02391223981976509,
0.008600763976573944,
0.005595726426690817,
0.1813707947731018,
0.011592349968850613,
0.04672492668032646,
-0.08541523665189743,
0.0021381767001003027,
-0.04958593100309372,
-0.03829700127243996,
-0.02637419104576111,
-0.043410710990428925,
0.004262345843017101,
-0.01814153417944908,
0.01607448235154152,
-0.16901227831840515,
-0.1370115429162979,
-0.022032571956515312,
-0.023941930383443832,
-0.05494401231408119,
-0.10453005880117416,
-0.1106305792927742,
0.010454395785927773,
0.0411594994366169,
-0.07347700744867325,
-0.006038041319698095,
-0.05349244922399521,
0.10734197497367859,
-0.0012300090165808797,
0.07703675329685211,
-0.07842288166284561,
0.07365122437477112,
-0.06573385000228882,
-0.025447865948081017,
-0.10093135386705399,
0.13386206328868866,
0.00915649812668562,
0.06603219360113144,
-0.046941112726926804,
-0.007621072698384523,
-0.10842157155275345,
0.08102882653474808,
-0.06603449583053589,
0.25178468227386475,
-0.10469595342874527,
-0.11071616411209106,
0.2805403769016266,
-0.03361968696117401,
-0.1264788806438446,
0.10199446976184845,
-0.01158563606441021,
0.11561296135187149,
0.15402540564537048,
0.2052226960659027,
0.02928532473742962,
-0.02268681675195694,
0.10423996299505234,
0.1035756841301918,
-0.057625655084848404,
-0.03801124170422554,
0.041060492396354675,
-0.03943869471549988,
-0.08562899380922318,
0.029806632548570633,
0.017141755670309067,
0.06328166276216507,
-0.04716106131672859,
-0.014570656232535839,
0.02421940304338932,
0.004092389717698097,
0.07496705651283264,
-0.024279450997710228,
0.13514691591262817,
-0.023218633607029915,
-0.0656837597489357,
-0.06177486851811409,
0.01964477449655533,
-0.04003036767244339,
0.020440705120563507,
-0.08908485621213913,
0.06243852525949478,
-0.03572830185294151,
0.057841621339321136,
-0.13513502478599548,
-0.06440334767103195,
-0.052385009825229645,
0.2330688089132309,
0.06854398548603058,
0.08484960347414017,
0.04045721888542175,
-0.06823423504829407,
-0.0003254515759181231,
0.0230836383998394,
0.19774475693702698,
-0.012182417325675488,
-0.07111652195453644,
-0.1060645654797554,
0.09369703382253647,
-0.06330309808254242,
0.08606080710887909,
-0.059275124222040176,
0.007605451624840498,
-0.026874825358390808,
0.06961184740066528,
-0.0269512627273798,
0.040469661355018616,
0.0006163049256429076,
-0.023647982627153397,
-0.07465367019176483,
-0.0149429552257061,
0.10460925847291946,
0.010055731050670147,
-0.10779253393411636,
0.2434917390346527,
-0.19769670069217682,
0.11526761204004288,
0.16096965968608856,
-0.22217433154582977,
-0.008169818669557571,
-0.11098682880401611,
-0.011975600384175777,
0.010464251041412354,
0.03273862600326538,
-0.04017077758908272,
0.22867226600646973,
-0.010608958080410957,
0.1853235810995102,
-0.052233923226594925,
-0.01996525749564171,
-0.027332648634910583,
-0.06422537565231323,
0.019287196919322014,
0.10971896350383759,
0.12856750190258026,
-0.161560520529747,
0.1724557876586914,
0.06672785431146622,
0.08213970810174942,
0.16275310516357422,
0.023765239864587784,
0.018852105364203453,
0.055699001997709274,
0.014213238842785358,
-0.01790653169155121,
-0.06882723420858383,
-0.18352845311164856,
-0.02486453764140606,
0.06696174293756485,
0.03141540661454201,
0.11100433766841888,
-0.11560750752687454,
-0.04409283027052879,
0.01155218854546547,
-0.007257997989654541,
0.04618756100535393,
0.12712539732456207,
-0.003129301592707634,
0.12465701252222061,
-0.008397440426051617,
-0.08989791572093964,
0.06356243789196014,
0.025369787588715553,
-0.09814108163118362,
0.182835653424263,
-0.1034003496170044,
-0.32152217626571655,
-0.1001197025179863,
-0.18328212201595306,
-0.03920574113726616,
0.07533707469701767,
0.11137884855270386,
-0.13466644287109375,
0.003127885051071644,
0.03510995954275131,
0.09001503139734268,
-0.10122435539960861,
-0.0034966380335390568,
-0.012268266640603542,
-0.018193284049630165,
-0.13420377671718597,
-0.08291704952716827,
-0.06102906912565231,
-0.04295424371957779,
-0.03346853703260422,
0.10250663757324219,
-0.17059698700904846,
0.0539877749979496,
0.26917001605033875,
0.09507580101490021,
0.05430034175515175,
-0.04344318434596062,
0.1592034101486206,
-0.10573985427618027,
0.012773060239851475,
0.22541004419326782,
-0.028745699673891068,
0.05365750566124916,
0.0892547219991684,
-0.01033081579953432,
-0.0708671286702156,
0.020250815898180008,
-0.02718094177544117,
-0.0714477151632309,
-0.2280162125825882,
-0.13114430010318756,
-0.10388115793466568,
0.05737285315990448,
0.06432957202196121,
0.0326518714427948,
0.1693384051322937,
0.10345755517482758,
-0.042771194130182266,
0.014231901615858078,
0.04525286331772804,
0.08099555969238281,
0.24561424553394318,
-0.07478486001491547,
0.13777120411396027,
-0.020003067329525948,
-0.17604942619800568,
0.06821287423372269,
0.08701446652412415,
0.07066261768341064,
0.0939561203122139,
0.13011965155601501,
0.02880261279642582,
0.03623313829302788,
0.09038466960191727,
0.045518048107624054,
0.022583454847335815,
-0.03737230971455574,
-0.06662941724061966,
-0.044609375298023224,
-0.041899174451828,
0.021367410197854042,
0.03182210028171539,
-0.14257657527923584,
-0.05327456444501877,
0.004599247593432665,
0.04934147000312805,
0.04460717737674713,
0.04937165975570679,
-0.1958761215209961,
-0.01135042030364275,
0.08069007098674774,
0.0008143498562276363,
-0.08933985978364944,
0.0729956179857254,
-0.010731075890362263,
-0.11471421271562576,
0.046170588582754135,
-0.02729932591319084,
0.12909768521785736,
-0.07558268308639526,
0.08029930293560028,
-0.14030702412128448,
-0.06785701215267181,
0.011536509729921818,
0.11896203458309174,
-0.2636930048465729,
0.20840856432914734,
-0.008380764164030552,
-0.049465201795101166,
-0.1043824851512909,
-0.009141412563621998,
0.0023304640781134367,
0.0944279134273529,
0.1368221640586853,
-0.028159884735941887,
-0.02392721176147461,
0.024199169129133224,
-0.06698837131261826,
0.03141431510448456,
0.08238276839256287,
-0.08262956887483597,
0.0013082197401672602,
-0.04166802391409874,
0.0039241621270775795,
0.009456396102905273,
-0.06101514399051666,
0.01121380366384983,
-0.195927694439888,
0.0798632875084877,
0.05245203897356987,
0.06079527735710144,
0.04320540651679039,
-0.030458878725767136,
-0.12451554834842682,
0.21634705364704132,
-0.01915883459150791,
-0.09401129186153412,
-0.09610380977392197,
-0.02037319913506508,
0.01868581213057041,
-0.08247993141412735,
-0.029365237802267075,
-0.05376124754548073,
0.03249189257621765,
-0.0736650601029396,
-0.1903923898935318,
0.12846902012825012,
-0.11052907258272171,
-0.028645969927310944,
-0.05812210589647293,
0.2216455489397049,
-0.030725445598363876,
0.015262283384799957,
0.059073857963085175,
-0.026270287111401558,
-0.09585471451282501,
-0.09591566771268845,
-0.007837353274226189,
0.022675657644867897,
0.027353649958968163,
-0.013003773055970669,
-0.04600683972239494,
-0.03253196179866791,
-0.07994730770587921,
-0.018432755023241043,
0.3114815652370453,
0.10657966881990433,
-0.053566571325063705,
0.1609998643398285,
0.08925200253725052,
-0.07996044307947159,
-0.24130167067050934,
-0.11830049753189087,
-0.06823843717575073,
-0.04297657683491707,
-0.04875720292329788,
-0.17909106612205505,
0.07042492181062698,
-0.01572689227759838,
-0.0246592964977026,
0.0796264261007309,
-0.34351006150245667,
-0.09367087483406067,
0.17016243934631348,
-0.044724494218826294,
0.4543110132217407,
-0.1197502538561821,
-0.10162397474050522,
-0.06263615190982819,
-0.1313125193119049,
0.18072150647640228,
-0.0014751619892194867,
0.10033301264047623,
0.004829281009733677,
0.16866052150726318,
0.05691388249397278,
0.007217222824692726,
0.091414675116539,
0.01798011176288128,
-0.0663527175784111,
-0.07840543240308762,
-0.10491379350423813,
-0.03505389019846916,
0.005603624042123556,
-0.0021735846530646086,
-0.070311039686203,
0.020419610664248466,
-0.15853211283683777,
-0.06377539038658142,
-0.08453743904829025,
0.02356107160449028,
0.030920391902327538,
-0.05867331475019455,
0.013508422300219536,
-0.06677638739347458,
0.018330350518226624,
-0.001379468129016459,
0.19494818150997162,
-0.11257137358188629,
0.17101415991783142,
0.04597465693950653,
0.1332368403673172,
-0.08957637846469879,
-0.0664193332195282,
-0.09592875093221664,
-0.04850716516375542,
0.07897713780403137,
-0.12196645140647888,
0.028588851913809776,
0.10687820613384247,
-0.026256760582327843,
0.08356694877147675,
0.0898364707827568,
-0.007075367029756308,
0.034319691359996796,
0.09755269438028336,
-0.21034450829029083,
-0.08239499479532242,
-0.0750756561756134,
0.03635190799832344,
0.08414819836616516,
0.09669569879770279,
0.19893206655979156,
0.012653730809688568,
-0.042145922780036926,
0.017787763848900795,
0.012123693712055683,
-0.02111114002764225,
0.07857295125722885,
0.018965713679790497,
0.005439399741590023,
-0.1433452069759369,
0.052979227155447006,
0.010302988812327385,
-0.08479844033718109,
0.010003048926591873,
0.1269667148590088,
-0.0933220237493515,
-0.11143316328525543,
-0.03672108054161072,
0.14701539278030396,
-0.17777521908283234,
-0.0062329513020813465,
-0.0675484910607338,
-0.13784073293209076,
0.0540735125541687,
0.08879818022251129,
0.04015353322029114,
0.03582773730158806,
-0.09314056485891342,
-0.023970693349838257,
-0.027464643120765686,
-0.025517743080854416,
0.06011157110333443,
-0.016900639981031418,
-0.06295756995677948,
0.07077009975910187,
-0.024854036048054695,
0.11451400071382523,
-0.08354704827070236,
-0.08851433545351028,
-0.16065533459186554,
0.05232835188508034,
-0.0971856415271759,
-0.051306720823049545,
-0.09556061774492264,
-0.050184283405542374,
-0.01728140190243721,
-0.018070710822939873,
-0.02822391875088215,
-0.04367216303944588,
-0.10629069805145264,
0.04816720634698868,
-0.03879733756184578,
0.02260771207511425,
-0.06238244101405144,
0.02379411831498146,
0.03523104265332222,
-0.015178869478404522,
0.1198926493525505,
0.12207183241844177,
-0.09698602557182312,
0.09035449475049973,
-0.16394847631454468,
-0.06776027381420135,
0.11319122463464737,
0.01993078552186489,
0.060301147401332855,
0.06648512184619904,
0.011058407835662365,
0.06193515285849571,
0.047181855887174606,
0.04019154608249664,
0.0011482342379167676,
-0.0998595729470253,
0.05959494039416313,
-0.025470629334449768,
-0.11498484015464783,
-0.05095286667346954,
0.004914015997201204,
0.01974906586110592,
0.04762796312570572,
0.09024947136640549,
-0.07045641541481018,
0.10133861005306244,
-0.0719725638628006,
0.042781490832567215,
0.013207492418587208,
-0.1567831039428711,
-0.009022838436067104,
-0.07855422794818878,
0.051177605986595154,
0.018598362803459167,
0.16054493188858032,
0.01182752288877964,
0.026072200387716293,
0.010315481573343277,
0.07682152092456818,
0.04349011927843094,
-0.014741134829819202,
0.21185405552387238,
0.10036209225654602,
-0.025498010218143463,
-0.09448950737714767,
0.10583885759115219,
0.05347297713160515,
0.04882397875189781,
0.13073812425136566,
0.00329616479575634,
-0.014263730496168137,
0.08692904561758041,
0.002064551692456007,
0.02444906160235405,
-0.11166326701641083,
-0.12022344022989273,
-0.034913238137960434,
0.03916458785533905,
-0.018694007769227028,
0.07413183152675629,
0.13662488758563995,
-0.011044695042073727,
0.01868942379951477,
-0.006493001710623503,
-0.044404536485672,
-0.19629815220832825,
-0.21793615818023682,
-0.07676366716623306,
-0.13648608326911926,
-0.0023855564650148153,
-0.11510718613862991,
0.041815925389528275,
0.008664922788739204,
0.07993809133768082,
-0.08146228641271591,
0.05119030550122261,
0.06000566482543945,
-0.1558382213115692,
0.07134677469730377,
-0.023100191727280617,
0.1049720048904419,
-0.07798602432012558,
0.0240509994328022,
-0.06541567295789719,
0.07175038009881973,
0.01739879511296749,
0.029955588281154633,
-0.01989707536995411,
0.008211890235543251,
-0.12742145359516144,
-0.08334774523973465,
-0.06036959961056709,
0.06557390093803406,
0.020560268312692642,
0.1673227995634079,
0.009943484328687191,
-0.023078134283423424,
0.028660951182246208,
0.24841417372226715,
-0.0622759610414505,
-0.06388328224420547,
-0.06632015854120255,
0.20368391275405884,
-0.019206369295716286,
0.09927452355623245,
-0.04167409613728523,
0.010532806627452374,
-0.07129248231649399,
0.3616236448287964,
0.2931338846683502,
-0.10953228175640106,
0.007534074131399393,
-0.023572852835059166,
0.042554765939712524,
0.11510708183050156,
0.1042989119887352,
0.07050987333059311,
0.29585832357406616,
-0.05323539301753044,
-0.035456158220767975,
-0.00002445635254844092,
0.0010794458212330937,
-0.06095365062355995,
0.08202893286943436,
0.03708086162805557,
-0.050908174365758896,
-0.00022808888752479106,
0.14211015403270721,
-0.2293669879436493,
0.05093219503760338,
-0.1549203097820282,
-0.17726412415504456,
-0.08134126663208008,
-0.008463856764137745,
0.11377648264169693,
0.03384561836719513,
0.10970432311296463,
-0.004765030462294817,
-0.0765727236866951,
0.0467694029211998,
0.03101363778114319,
-0.19725514948368073,
0.009119519963860512,
0.06916453689336777,
-0.02850601077079773,
-0.030441200360655785,
-0.02334762178361416,
0.06269988417625427,
0.07391422241926193,
0.05389029160141945,
-0.01931828074157238,
0.03749391436576843,
-0.00035577634116634727,
-0.041961804032325745,
0.07208401709794998,
-0.0301519688218832,
0.008827175945043564,
-0.0679439827799797,
0.08395512402057648,
-0.18772968649864197,
0.04201417416334152,
0.018391063436865807,
-0.04758477583527565,
-0.04135806858539581,
0.04440581426024437,
-0.07019207626581192,
0.08052141219377518,
0.07222563028335571,
-0.01630892977118492,
-0.02569187991321087,
-0.013696021400392056,
-0.005180103238672018,
0.000036183802876621485,
-0.011484390124678612,
-0.10217433422803879,
-0.1737447828054428,
-0.13257969915866852,
0.06753268837928772,
0.018290087580680847,
-0.20535635948181152,
0.03693879395723343,
-0.12776882946491241,
0.02865419164299965,
-0.10825670510530472,
0.07439035177230835,
0.07718028128147125,
0.02790611796081066,
-0.0036239037290215492,
-0.022755812853574753,
0.03530992195010185,
0.0841168612241745,
-0.12845547497272491,
-0.06076517328619957
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7758
- Matthews Correlation: 0.5259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.1926 | 1.0 | 535 | 0.7758 | 0.5259 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5258663312307151, "name": "Matthews Correlation"}]}]}]} | text-classification | Kumicho/distilbert-base-uncased-finetuned-cola | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7758
* Matthews Correlation: 0.5259
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
67,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10268792510032654,
0.09171325713396072,
-0.0023221306037157774,
0.12301786988973618,
0.16441099345684052,
0.029856594279408455,
0.11730504035949707,
0.13061223924160004,
-0.08683054894208908,
0.025624705478549004,
0.12714701890945435,
0.16246934235095978,
0.020305797457695007,
0.12033914029598236,
-0.05309867858886719,
-0.2652416229248047,
-0.008983554318547249,
0.05028131976723671,
-0.04160180687904358,
0.13427434861660004,
0.09335430711507797,
-0.12229432165622711,
0.09101910144090652,
0.013196950778365135,
-0.19356651604175568,
0.0011363528901711106,
-0.0008726883679628372,
-0.05309240520000458,
0.1443612277507782,
0.024517681449651718,
0.12032981961965561,
0.0006955800345167518,
0.08234599977731705,
-0.19543924927711487,
0.009738175198435783,
0.04657024145126343,
0.0017747824313119054,
0.09103667736053467,
0.0438443161547184,
-0.002944682724773884,
0.1254020482301712,
-0.08793903142213821,
0.05189647898077965,
0.02198915183544159,
-0.1161123514175415,
-0.2127218097448349,
-0.08090817928314209,
0.04086527228355408,
0.0819745734333992,
0.10885081440210342,
-0.007085690274834633,
0.12136076390743256,
-0.07714059203863144,
0.09451984614133835,
0.23032715916633606,
-0.2959885001182556,
-0.06571014970541,
0.03576565161347389,
0.012079395353794098,
0.03790704905986786,
-0.10134738683700562,
-0.037734419107437134,
0.049427829682826996,
0.054281800985336304,
0.12654449045658112,
-0.030267508700489998,
-0.10965216159820557,
0.002030808012932539,
-0.13845069706439972,
-0.03484964743256569,
0.16309534013271332,
0.0407305471599102,
-0.03128957003355026,
-0.05940816551446915,
-0.05764475092291832,
-0.15049326419830322,
-0.03877270594239235,
-0.009386979043483734,
0.046163611114025116,
-0.02310911938548088,
-0.04253948852419853,
-0.0048610451631248,
-0.10993504524230957,
-0.05801575258374214,
-0.07706371694803238,
0.11369479447603226,
0.037038229405879974,
0.009817244485020638,
-0.031008368358016014,
0.10940086841583252,
-0.005121226888149977,
-0.12572088837623596,
0.015120821073651314,
0.023490041494369507,
0.016477003693580627,
-0.040430109947919846,
-0.05364837497472763,
-0.06316528469324112,
0.007972249761223793,
0.12733598053455353,
-0.060242652893066406,
0.04596351832151413,
0.046635888516902924,
0.04787508398294449,
-0.09104592353105545,
0.1903141885995865,
-0.031327150762081146,
-0.019457362592220306,
0.00903993472456932,
0.04103640094399452,
0.02016683667898178,
-0.009617462754249573,
-0.12455769628286362,
0.0059703015722334385,
0.08958271890878677,
0.007992474362254143,
-0.06431598961353302,
0.07670965790748596,
-0.05436406657099724,
-0.021599572151899338,
0.005235247313976288,
-0.09285872429609299,
0.02587580494582653,
-0.0020935111679136753,
-0.06964313983917236,
-0.022965170443058014,
0.03518664091825485,
0.015008226037025452,
-0.024891993030905724,
0.1109515056014061,
-0.08555015921592712,
0.03076767735183239,
-0.09225145727396011,
-0.10576775670051575,
0.020716363564133644,
-0.10410583764314651,
0.025262825191020966,
-0.09500588476657867,
-0.18294797837734222,
-0.01688278466463089,
0.06295653432607651,
-0.0265776626765728,
-0.05963791534304619,
-0.05565214529633522,
-0.06981837749481201,
0.015449301339685917,
-0.01049527246505022,
0.11694548279047012,
-0.06404989957809448,
0.08935374021530151,
0.025204235687851906,
0.06318265199661255,
-0.04157518595457077,
0.05643661692738533,
-0.10277725011110306,
0.017887039110064507,
-0.1594666838645935,
0.04075753688812256,
-0.046382080763578415,
0.07657317817211151,
-0.08439560979604721,
-0.10704506933689117,
0.004636735655367374,
-0.004557583015412092,
0.06616795808076859,
0.09420749545097351,
-0.17916806042194366,
-0.07375693321228027,
0.16278962790966034,
-0.07326802611351013,
-0.12600040435791016,
0.11918047815561295,
-0.06006256863474846,
0.05469847097992897,
0.05626360699534416,
0.1785699725151062,
0.07170796394348145,
-0.079885333776474,
-0.0037120177876204252,
0.02229989692568779,
0.045756831765174866,
-0.07039852440357208,
0.06704962253570557,
0.00908407848328352,
0.02374403364956379,
0.03574540093541145,
-0.02215571515262127,
0.059843648225069046,
-0.08479294925928116,
-0.0952533483505249,
-0.043750643730163574,
-0.07916863262653351,
0.03335078805685043,
0.07606636732816696,
0.07079340517520905,
-0.09709054231643677,
-0.08236195892095566,
0.04417651891708374,
0.07772798091173172,
-0.057961564511060715,
0.02996475249528885,
-0.05507953092455864,
0.07531341165304184,
-0.029010606929659843,
-0.022422580048441887,
-0.18116910755634308,
-0.030480844900012016,
0.005997149273753166,
0.005022753030061722,
0.01249273307621479,
0.020314160734415054,
0.06175028160214424,
0.054164767265319824,
-0.0492086187005043,
-0.016240136697888374,
-0.021712731570005417,
-0.0014201058074831963,
-0.12917503714561462,
-0.19022952020168304,
-0.03163370490074158,
-0.02482869289815426,
0.14184001088142395,
-0.2059403508901596,
0.046497892588377,
-0.009694990701973438,
0.07098258286714554,
0.009223131462931633,
-0.0059255738742649555,
-0.038282789289951324,
0.06982425600290298,
-0.046296633780002594,
-0.05185675248503685,
0.08022046089172363,
0.020911017432808876,
-0.09080849587917328,
-0.0419907309114933,
-0.09468314796686172,
0.1539384424686432,
0.12962135672569275,
-0.10768210142850876,
-0.07967425137758255,
-0.016946300864219666,
-0.069715715944767,
-0.03222735971212387,
-0.04705381020903587,
0.03073064796626568,
0.19490881264209747,
-0.004815890919417143,
0.15087240934371948,
-0.06943533569574356,
-0.04912343993782997,
0.022200588136911392,
-0.03695790097117424,
0.013320405967533588,
0.12888342142105103,
0.13058878481388092,
-0.06972993910312653,
0.15223073959350586,
0.1438080370426178,
-0.08399723470211029,
0.1383623331785202,
-0.04052259400486946,
-0.06481923162937164,
-0.016530059278011322,
-0.027365753427147865,
-0.00949507113546133,
0.09789574891328812,
-0.15384645760059357,
-0.0018477850826457143,
0.03258054330945015,
0.02073468267917633,
0.025741396471858025,
-0.22253195941448212,
-0.0389149971306324,
0.03605806827545166,
-0.04063424840569496,
-0.010723715648055077,
-0.007949534803628922,
0.005950573366135359,
0.10011165589094162,
0.005106900352984667,
-0.08427014201879501,
0.04220043867826462,
0.004375075455754995,
-0.0869060605764389,
0.21626943349838257,
-0.07911776751279831,
-0.17325204610824585,
-0.12602739036083221,
-0.07890568673610687,
-0.04338439181447029,
0.0004474144661799073,
0.07169225066900253,
-0.09041638672351837,
-0.03329038992524147,
-0.07465596497058868,
0.01689874567091465,
0.003945439588278532,
0.026879167184233665,
0.012659941799938679,
0.004759724251925945,
0.0640169009566307,
-0.10626804828643799,
-0.02068733423948288,
-0.05637158825993538,
-0.03817354515194893,
0.045604635030031204,
0.027873437851667404,
0.10896294564008713,
0.1493505835533142,
-0.015095149166882038,
0.01644357666373253,
-0.03177556023001671,
0.2357558161020279,
-0.05989854782819748,
-0.01906554214656353,
0.14071087539196014,
-0.009820720180869102,
0.05302649736404419,
0.12072446197271347,
0.06903108954429626,
-0.08074817806482315,
0.0055721597746014595,
0.032604433596134186,
-0.03894276171922684,
-0.22954964637756348,
-0.054318688809871674,
-0.05841156095266342,
0.007443663664162159,
0.09365153312683105,
0.026966813951730728,
0.02615094557404518,
0.07249575853347778,
0.041992057114839554,
0.07815437018871307,
-0.04019233211874962,
0.0601746141910553,
0.12742921710014343,
0.03571063280105591,
0.1255071610212326,
-0.04838777706027031,
-0.06254000961780548,
0.04223005473613739,
-0.012892140075564384,
0.22477194666862488,
0.0034973465371876955,
0.13005784153938293,
0.061340223997831345,
0.1598772406578064,
-0.006451892666518688,
0.08030951768159866,
-0.012721098959445953,
-0.04072568938136101,
-0.015471561811864376,
-0.03684487193822861,
-0.03829760104417801,
0.0279270950704813,
-0.07384908944368362,
0.06001707538962364,
-0.12331386655569077,
0.020566977560520172,
0.06047607213258743,
0.25690263509750366,
0.037680286914110184,
-0.3229924440383911,
-0.10050198435783386,
0.0035897279158234596,
-0.03605717793107033,
-0.025158097967505455,
0.029632680118083954,
0.0890975072979927,
-0.09737428277730942,
0.03435250744223595,
-0.07409262657165527,
0.0979691669344902,
-0.04841834679245949,
0.049679119139909744,
0.08191151171922684,
0.08279284089803696,
0.012528324499726295,
0.09356751292943954,
-0.28990644216537476,
0.27736371755599976,
-0.00029075160273350775,
0.06132075935602188,
-0.08160548657178879,
0.010492106899619102,
0.0374147929251194,
0.061303600668907166,
0.09122656285762787,
-0.011362800374627113,
-0.04677154868841171,
-0.17708314955234528,
-0.06661643087863922,
0.027133790776133537,
0.06413689255714417,
-0.03050908073782921,
0.08772587031126022,
-0.030750738456845284,
0.00790044479072094,
0.06966795772314072,
0.0068904017098248005,
-0.044030506163835526,
-0.10837982594966888,
-0.00781545601785183,
0.02369951456785202,
-0.06672061234712601,
-0.060148924589157104,
-0.11693458259105682,
-0.1223401352763176,
0.16878089308738708,
-0.027034390717744827,
-0.042579103261232376,
-0.10948578268289566,
0.0859634131193161,
0.05636031553149223,
-0.09118146449327469,
0.04207496717572212,
0.0018496831180527806,
0.0812612995505333,
0.020028039813041687,
-0.07488503307104111,
0.10427346080541611,
-0.07660142332315445,
-0.15270443260669708,
-0.06459544599056244,
0.10833465307950974,
0.02949918434023857,
0.06506970524787903,
-0.009303157217800617,
0.009683559648692608,
-0.04863587021827698,
-0.08967369794845581,
0.019295502454042435,
-0.0009399944101460278,
0.08701591938734055,
0.009353674948215485,
-0.07113070785999298,
0.014439335092902184,
-0.060111548751592636,
-0.03237835317850113,
0.20891731977462769,
0.2130640298128128,
-0.10239950567483902,
0.026546958833932877,
0.017907068133354187,
-0.07309968024492264,
-0.19935952126979828,
0.02974836714565754,
0.05873492732644081,
0.00806994829326868,
0.0348525270819664,
-0.1764524132013321,
0.14014746248722076,
0.10300131887197495,
-0.01326054148375988,
0.10223805904388428,
-0.3115808367729187,
-0.1226457729935646,
0.13339322805404663,
0.13098087906837463,
0.11082698404788971,
-0.12886376678943634,
-0.019633732736110687,
-0.020615609362721443,
-0.1412370502948761,
0.11046188324689865,
-0.08310992270708084,
0.11737742274999619,
-0.03546569496393204,
0.08436769992113113,
0.002677472773939371,
-0.060164906084537506,
0.11393781006336212,
0.031241463497281075,
0.0912243127822876,
-0.06319382786750793,
-0.03700985759496689,
0.029039354994893074,
-0.048425160348415375,
0.040848422795534134,
-0.09400536864995956,
0.029591649770736694,
-0.11106379330158234,
-0.028227955102920532,
-0.0657699927687645,
0.04425319284200668,
-0.0420091412961483,
-0.06426247209310532,
-0.0374818816781044,
0.023319225758314133,
0.0551844984292984,
-0.00805984903126955,
0.13511668145656586,
0.025270825251936913,
0.14248666167259216,
0.10056082904338837,
0.07677395641803741,
-0.07831165939569473,
-0.074836365878582,
-0.02434045635163784,
-0.011821233667433262,
0.046805426478385925,
-0.14289574325084686,
0.024001576006412506,
0.15377460420131683,
0.01931980811059475,
0.14682191610336304,
0.0849182978272438,
-0.018828699365258217,
0.0018256396288052201,
0.05973947048187256,
-0.16592007875442505,
-0.08842833340167999,
-0.012695582583546638,
-0.06208337843418121,
-0.11937285214662552,
0.04335092380642891,
0.0909981057047844,
-0.06654050201177597,
-0.008905692026019096,
-0.006480848882347345,
0.016757400706410408,
-0.05074942857027054,
0.17783643305301666,
0.057767074555158615,
0.046831339597702026,
-0.09908773005008698,
0.06818939745426178,
0.04580625519156456,
-0.07647090405225754,
0.010419285856187344,
0.07918262481689453,
-0.08613467216491699,
-0.055532537400722504,
0.06927856057882309,
0.18641690909862518,
-0.04682977870106697,
-0.04777536913752556,
-0.14069680869579315,
-0.12671712040901184,
0.08460453897714615,
0.1412380337715149,
0.11802041530609131,
0.010968569666147232,
-0.06557102501392365,
0.0003009965003002435,
-0.11296085268259048,
0.10016417503356934,
0.04902542755007744,
0.06242939084768295,
-0.14470027387142181,
0.13658177852630615,
0.014507120475172997,
0.055472809821367264,
-0.01918814331293106,
0.02655184082686901,
-0.09875882416963577,
0.008927439339458942,
-0.1014624834060669,
-0.009473809041082859,
-0.03985060006380081,
0.009742156602442265,
-0.004492059350013733,
-0.04549047723412514,
-0.058036502450704575,
0.01399962417781353,
-0.10717169940471649,
-0.02220839634537697,
0.026408884674310684,
0.06590119004249573,
-0.10583490878343582,
-0.03694977983832359,
0.025500478222966194,
-0.0632033497095108,
0.07589594274759293,
0.048482708632946014,
0.01407556515187025,
0.04753032326698303,
-0.13083381950855255,
0.018692752346396446,
0.07678602635860443,
0.02637999877333641,
0.06511631608009338,
-0.10155532509088516,
-0.006596894934773445,
0.0002107301988871768,
0.03632938861846924,
0.021016623824834824,
0.07390554994344711,
-0.14239470660686493,
0.004606306087225676,
-0.019450070336461067,
-0.08252177387475967,
-0.0677749514579773,
0.027537764981389046,
0.09003006666898727,
0.016921060159802437,
0.19968460500240326,
-0.0771600604057312,
0.04973793402314186,
-0.21312636137008667,
0.0065868026576936245,
-0.0076893228106200695,
-0.10751073062419891,
-0.09797889739274979,
-0.06879746913909912,
0.05585325136780739,
-0.05787083879113197,
0.15179063379764557,
0.04580112174153328,
0.020397908985614777,
0.027551209554076195,
-0.014349192380905151,
0.013751053251326084,
0.012356852181255817,
0.18970906734466553,
0.02383936010301113,
-0.03954765200614929,
0.05971614643931389,
0.0421709381043911,
0.10528876632452011,
0.11909449845552444,
0.20505715906620026,
0.14315210282802582,
0.0018559590680524707,
0.09843698889017105,
0.03603963181376457,
-0.05434166640043259,
-0.16478009521961212,
0.04403814300894737,
-0.040196873247623444,
0.10979991406202316,
-0.017762083560228348,
0.211384579539299,
0.06716939061880112,
-0.1713184416294098,
0.04924320802092552,
-0.056788213551044464,
-0.08617442846298218,
-0.1135736033320427,
-0.06000453606247902,
-0.0802929624915123,
-0.12918056547641754,
-0.00026628252817317843,
-0.11794138699769974,
-0.00016343854076694697,
0.11843251436948776,
0.0060310582630336285,
-0.02667487971484661,
0.15912139415740967,
0.009528796188533306,
0.025777729228138924,
0.06022609397768974,
0.009510179050266743,
-0.035484444350004196,
-0.12277504056692123,
-0.05307123064994812,
-0.01605657860636711,
-0.014990138821303844,
0.03372883424162865,
-0.05813458189368248,
-0.036556050181388855,
0.03086124174296856,
-0.021186495199799538,
-0.09239570796489716,
0.003682550974190235,
0.016593696549534798,
0.05785262957215309,
0.04928174987435341,
0.009670689702033997,
0.019689224660396576,
-0.00577035965397954,
0.1989700049161911,
-0.07289595156908035,
-0.06427853554487228,
-0.10859333723783493,
0.23796983063220978,
0.0398954339325428,
-0.022261131554841995,
0.0314299575984478,
-0.06622790545225143,
0.003845133353024721,
0.24927949905395508,
0.2113882452249527,
-0.07407601177692413,
-0.006564795505255461,
0.013127312064170837,
-0.007011475041508675,
-0.017355740070343018,
0.0983474999666214,
0.14842283725738525,
0.059348542243242264,
-0.09378360956907272,
-0.05172107368707657,
-0.06023947522044182,
-0.017304256558418274,
-0.040908560156822205,
0.07413174957036972,
0.04749947041273117,
0.008298125118017197,
-0.03456489369273186,
0.05342324450612068,
-0.07115357369184494,
-0.09047992527484894,
0.055853188037872314,
-0.21764299273490906,
-0.1636342853307724,
-0.008977983146905899,
0.09656186401844025,
0.004129030741751194,
0.06329038739204407,
-0.027513369917869568,
-0.006471578497439623,
0.09270733594894409,
-0.019284112378954887,
-0.09771336615085602,
-0.06221778318285942,
0.08465838432312012,
-0.11849779635667801,
0.22224511206150055,
-0.04623301699757576,
0.0529005229473114,
0.12718962132930756,
0.0702592059969902,
-0.07379306852817535,
0.06352662295103073,
0.038706354796886444,
-0.03725210577249527,
0.028282610699534416,
0.07469496876001358,
-0.035581834614276886,
0.05571472644805908,
0.04788976535201073,
-0.14310455322265625,
0.018331829458475113,
-0.04983013868331909,
-0.06271368265151978,
-0.04727093130350113,
-0.023640362545847893,
-0.060663267970085144,
0.13184291124343872,
0.2182825356721878,
-0.02768615074455738,
-0.010605731047689915,
-0.07019904255867004,
0.011021789163351059,
0.0505312941968441,
0.021542450413107872,
-0.05688074231147766,
-0.21300263702869415,
0.019331319257616997,
0.04901940003037453,
-0.018214605748653412,
-0.24756605923175812,
-0.10108418017625809,
0.0053166416473686695,
-0.07351307570934296,
-0.09714377671480179,
0.07216733694076538,
0.08649773895740509,
0.052479274570941925,
-0.05956782028079033,
-0.03947962448000908,
-0.07342267036437988,
0.1479388326406479,
-0.13898134231567383,
-0.09298091381788254
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# librispeech-100h-supervised
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Wer: 0.0345
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.8277 | 0.42 | 500 | 2.9071 | 1.0 |
| 2.0261 | 0.84 | 1000 | 0.3060 | 0.2496 |
| 0.2181 | 1.26 | 1500 | 0.1172 | 0.0873 |
| 0.1255 | 1.68 | 2000 | 0.0894 | 0.0637 |
| 0.0971 | 2.1 | 2500 | 0.0821 | 0.0560 |
| 0.078 | 2.52 | 3000 | 0.0751 | 0.0500 |
| 0.0706 | 2.94 | 3500 | 0.0721 | 0.0456 |
| 0.0609 | 3.36 | 4000 | 0.0755 | 0.0464 |
| 0.0572 | 3.78 | 4500 | 0.0705 | 0.0431 |
| 0.0528 | 4.2 | 5000 | 0.0715 | 0.0423 |
| 0.0481 | 4.62 | 5500 | 0.0691 | 0.0403 |
| 0.0471 | 5.04 | 6000 | 0.0743 | 0.0401 |
| 0.0412 | 5.46 | 6500 | 0.0757 | 0.0399 |
| 0.0416 | 5.88 | 7000 | 0.0688 | 0.0378 |
| 0.0391 | 6.3 | 7500 | 0.0704 | 0.0383 |
| 0.0367 | 6.72 | 8000 | 0.0742 | 0.0387 |
| 0.0349 | 7.14 | 8500 | 0.0732 | 0.0388 |
| 0.033 | 7.56 | 9000 | 0.0719 | 0.0374 |
| 0.0327 | 7.98 | 9500 | 0.0750 | 0.0369 |
| 0.0292 | 8.4 | 10000 | 0.0734 | 0.0368 |
| 0.0303 | 8.82 | 10500 | 0.0733 | 0.0365 |
| 0.0283 | 9.24 | 11000 | 0.0766 | 0.0357 |
| 0.0269 | 9.66 | 11500 | 0.0761 | 0.0350 |
| 0.0268 | 10.08 | 12000 | 0.0802 | 0.0359 |
| 0.0245 | 10.42 | 12500 | 0.0758 | 0.0354 |
| 0.023 | 10.84 | 13000 | 0.0775 | 0.0349 |
| 0.0186 | 11.26 | 13500 | 0.0817 | 0.0355 |
| 0.0176 | 11.68 | 14000 | 0.0853 | 0.0354 |
| 0.0163 | 12.1 | 14500 | 0.0880 | 0.0347 |
| 0.0156 | 12.52 | 15000 | 0.0864 | 0.0357 |
| 0.0141 | 12.94 | 15500 | 0.0897 | 0.0355 |
| 0.0134 | 13.36 | 16000 | 0.0915 | 0.0349 |
| 0.013 | 13.78 | 16500 | 0.0928 | 0.0350 |
| 0.0097 | 13.42 | 17000 | 0.0955 | 0.0345 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "librispeech-100h-supervised", "results": []}]} | automatic-speech-recognition | Kuray107/librispeech-100h-supervised | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| librispeech-100h-supervised
===========================
This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0955
* Wer: 0.0345
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 24
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 15
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.14.1
* Pytorch 1.10.2
* Datasets 1.18.2
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
52,
130,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
-0.10553088784217834,
0.08206993341445923,
-0.0020277095027267933,
0.08092176914215088,
0.14161889255046844,
0.000826831441372633,
0.08917318284511566,
0.13615185022354126,
-0.07676438987255096,
0.03652845695614815,
0.10859178751707077,
0.1466297209262848,
0.03636385127902031,
0.11375657469034195,
-0.04056837782263756,
-0.2903250753879547,
0.0163093414157629,
0.015876200050115585,
-0.04299234226346016,
0.133601114153862,
0.10084431618452072,
-0.12352306395769119,
0.05227193608880043,
0.014006765559315681,
-0.15045607089996338,
0.011849867179989815,
0.003315206617116928,
-0.08245079964399338,
0.15058468282222748,
0.012105644680559635,
0.07038772851228714,
0.013134092092514038,
0.09856972843408585,
-0.25503742694854736,
0.0036234725266695023,
0.039869409054517746,
0.047794539481401443,
0.06093695014715195,
0.0658896192908287,
-0.008251335471868515,
0.11148376762866974,
-0.09722874313592911,
0.059587303549051285,
0.03817927837371826,
-0.1038426011800766,
-0.30361658334732056,
-0.06796962022781372,
0.03103037364780903,
0.0806136354804039,
0.11414249986410141,
-0.0182535070925951,
0.10313431918621063,
-0.08294592797756195,
0.101375512778759,
0.2595708966255188,
-0.28174805641174316,
-0.04349947348237038,
-0.03897317871451378,
0.03014582395553589,
0.05778608098626137,
-0.11172211170196533,
-0.01910172402858734,
0.02303086221218109,
0.0508061945438385,
0.11391513049602509,
-0.023524651303887367,
-0.12547287344932556,
0.014624044299125671,
-0.14968667924404144,
-0.03813589736819267,
0.1302647739648819,
0.04606638476252556,
-0.034586794674396515,
-0.07765933871269226,
-0.042897630482912064,
-0.14349474012851715,
-0.05481404438614845,
-0.014640502631664276,
0.04800922051072121,
-0.03653336688876152,
-0.08612646907567978,
-0.018282033503055573,
-0.08400152623653412,
-0.08877116441726685,
-0.035148754715919495,
0.16812926530838013,
0.04779190570116043,
-0.008432744070887566,
-0.012229404412209988,
0.08553577214479446,
-0.0032067419961094856,
-0.12326738238334656,
-0.0005643149488605559,
0.042741719633340836,
-0.02569035068154335,
-0.006597375031560659,
-0.07397876679897308,
-0.0019359751604497433,
0.027154605835676193,
0.12339206784963608,
-0.08056098967790604,
0.06968425959348679,
0.011911267414689064,
0.02904263511300087,
-0.11832983791828156,
0.20813271403312683,
-0.06435280293226242,
-0.02339339070022106,
-0.01472533494234085,
0.04100189730525017,
0.0039484756998717785,
-0.01286186184734106,
-0.09820278733968735,
-0.005810605362057686,
0.11883404105901718,
0.038838859647512436,
-0.05913812294602394,
0.06217984855175018,
-0.038786064833402634,
-0.016615571454167366,
-0.0454581081867218,
-0.11282645165920258,
0.02959701046347618,
0.02493206225335598,
-0.08791708201169968,
-0.0019216040382161736,
0.022221140563488007,
0.03178689256310463,
-0.048001307994127274,
0.07881136238574982,
-0.05624229088425636,
0.041659172624349594,
-0.06525745987892151,
-0.11127007007598877,
0.013682503253221512,
-0.05835937708616257,
0.01905270665884018,
-0.10376915335655212,
-0.15645378828048706,
-0.0184938907623291,
0.04198842495679855,
-0.03425687178969383,
-0.03702373802661896,
-0.08545286953449249,
-0.07248237729072571,
0.024581577628850937,
-0.04211937263607979,
0.14003172516822815,
-0.06849166750907898,
0.11025895923376083,
0.030279289931058884,
0.07006479799747467,
-0.02558443509042263,
0.07461150735616684,
-0.0835786685347557,
0.0038301474414765835,
-0.1407930850982666,
0.08184102922677994,
-0.0770825520157814,
0.04536065086722374,
-0.12486516684293747,
-0.12124913930892944,
0.030121363699436188,
0.0018236929317936301,
0.089839868247509,
0.10265355557203293,
-0.17346273362636566,
-0.08281130343675613,
0.17411395907402039,
-0.062451258301734924,
-0.082915298640728,
0.1224701926112175,
-0.035633385181427,
0.02521388605237007,
0.07199493795633316,
0.24807481467723846,
0.04794738441705704,
-0.1086307018995285,
0.04777476564049721,
-0.007525499910116196,
0.06359826773405075,
-0.02289505861699581,
0.07295408844947815,
-0.03299089893698692,
0.008251279592514038,
0.032422326505184174,
-0.04370403662323952,
0.07814082503318787,
-0.09685337543487549,
-0.08707642555236816,
-0.03706429898738861,
-0.1027785986661911,
0.034554459154605865,
0.0422695018351078,
0.06081688031554222,
-0.10004930943250656,
-0.08654802292585373,
0.0425078347325325,
0.09642599523067474,
-0.0946003869175911,
0.053496330976486206,
-0.07427962869405746,
0.04458354040980339,
0.005238301120698452,
-0.014847418293356895,
-0.18263548612594604,
0.040332943201065063,
0.020221425220370293,
-0.02603653073310852,
0.043143130838871,
-0.035710956901311874,
0.07332801818847656,
0.037936240434646606,
-0.04482623189687729,
-0.04360918700695038,
-0.017853470519185066,
0.014379641972482204,
-0.09094688296318054,
-0.20298364758491516,
-0.03141925856471062,
-0.013782776892185211,
0.1245032474398613,
-0.17219474911689758,
0.01623464561998844,
-0.014988522976636887,
0.07520796358585358,
0.0012972595868632197,
-0.016652362421154976,
-0.018097523599863052,
0.08610977232456207,
-0.008872218430042267,
-0.052041225135326385,
0.06901100277900696,
0.005975775420665741,
-0.09490923583507538,
0.022037867456674576,
-0.10165408253669739,
0.11213591694831848,
0.1363801807165146,
-0.0899888277053833,
-0.06468658894300461,
0.005763544235378504,
-0.048627886921167374,
-0.039509113878011703,
-0.021920563653111458,
0.025771742686629295,
0.2132217139005661,
-0.00827049370855093,
0.13555985689163208,
-0.07743243128061295,
-0.027512459084391594,
0.021858735010027885,
-0.027364442124962807,
0.015186662785708904,
0.1352662742137909,
0.07470885664224625,
-0.045787058770656586,
0.11450224369764328,
0.12214471399784088,
-0.09178754687309265,
0.11557494848966599,
-0.050695158541202545,
-0.08645329624414444,
-0.011994626373052597,
-0.010580416768789291,
-0.015320148319005966,
0.08801741898059845,
-0.16170194745063782,
-0.014779990538954735,
0.02739664912223816,
0.032721664756536484,
0.02836531214416027,
-0.2245466560125351,
-0.01525868196040392,
0.028008613735437393,
-0.08414804935455322,
-0.03862709924578667,
-0.004376914352178574,
0.01178745273500681,
0.09930511564016342,
0.0067444732412695885,
-0.10625973343849182,
0.010695121251046658,
-0.014113695360720158,
-0.08487481623888016,
0.1911897510290146,
-0.11931373924016953,
-0.17832887172698975,
-0.1059269979596138,
-0.07666905224323273,
-0.034471288323402405,
0.005198680330067873,
0.07725926488637924,
-0.09947407245635986,
-0.027467668056488037,
-0.06161048263311386,
0.03695124760270119,
-0.04315074533224106,
0.03387530893087387,
0.004799337591975927,
-0.004735163412988186,
0.0749959796667099,
-0.10949048399925232,
-0.01015099324285984,
-0.048257797956466675,
-0.029637450352311134,
0.03740493208169937,
0.044777072966098785,
0.10409239679574966,
0.16346071660518646,
0.006629235111176968,
0.02514028549194336,
-0.04144716262817383,
0.21422003209590912,
-0.0660610944032669,
-0.045140236616134644,
0.13833436369895935,
0.005243188235908747,
0.04277603328227997,
0.12251260876655579,
0.049444977194070816,
-0.1003943383693695,
0.0038285052869468927,
0.013155261054635048,
-0.021400591358542442,
-0.21494019031524658,
-0.05700971931219101,
-0.04677502065896988,
-0.025803769007325172,
0.0977548286318779,
0.020923525094985962,
0.016460243612527847,
0.019315719604492188,
0.03934624418616295,
0.0070502739399671555,
-0.004022778943181038,
0.05768706277012825,
0.15168683230876923,
0.01996026560664177,
0.11694866418838501,
-0.01758941076695919,
-0.05027240887284279,
0.028396334499120712,
-0.014851750805974007,
0.2236953228712082,
0.017569148913025856,
0.13131147623062134,
0.052423760294914246,
0.18970799446105957,
0.0002625793858896941,
0.07194209098815918,
0.016191979870200157,
-0.014879757538437843,
-0.000898500788025558,
-0.05258321017026901,
-0.04598531499505043,
0.03150097653269768,
0.030261332169175148,
0.026979003101587296,
-0.1279228776693344,
-0.049297407269477844,
0.039129942655563354,
0.32955238223075867,
0.04900411143898964,
-0.2982959449291229,
-0.09079847484827042,
-0.00441182404756546,
-0.08310523629188538,
-0.026872925460338593,
0.04832792282104492,
0.08592057973146439,
-0.0993409976363182,
0.03926540166139603,
-0.042795080691576004,
0.09216917306184769,
-0.03580188378691673,
0.0449833869934082,
0.04079916328191757,
0.07412530481815338,
0.022383010014891624,
0.07244385778903961,
-0.3208465278148651,
0.2936236560344696,
-0.007281390950083733,
0.07355708628892899,
-0.06274975091218948,
-0.0022614868357777596,
0.0318075530230999,
0.006792886182665825,
0.08921035379171371,
-0.01524475309997797,
-0.07242380082607269,
-0.19311018288135529,
-0.05605538934469223,
0.03322773426771164,
0.12790901958942413,
-0.01151229627430439,
0.10113411396741867,
-0.033115487545728683,
-0.008713984861969948,
0.07647670060396194,
-0.05353594198822975,
-0.10171640664339066,
-0.08076943457126617,
-0.011024815030395985,
0.08382520824670792,
0.044596124440431595,
-0.06663685292005539,
-0.10002892464399338,
-0.11690865457057953,
0.12292782217264175,
-0.04703135788440704,
-0.025058459490537643,
-0.1067034900188446,
0.0569319911301136,
0.1267467439174652,
-0.07942837476730347,
0.053045306354761124,
0.027157997712492943,
0.07152964919805527,
0.033973779529333115,
-0.06322591751813889,
0.11546964943408966,
-0.07793526351451874,
-0.1698521077632904,
-0.03361884877085686,
0.1438828855752945,
0.038945019245147705,
0.06923508644104004,
-0.0051332213915884495,
0.02571999467909336,
-0.04879871755838394,
-0.07879486680030823,
0.03339711204171181,
0.0314340814948082,
0.02080795355141163,
0.04674118384718895,
-0.05218040943145752,
-0.014568188227713108,
-0.09889621287584305,
-0.04132212698459625,
0.21004603803157806,
0.23426498472690582,
-0.09176433086395264,
0.06490088999271393,
0.0762147530913353,
-0.05332943797111511,
-0.18070922791957855,
-0.00034988726838491857,
0.07955371588468552,
0.003089028876274824,
0.010308077558875084,
-0.19559524953365326,
0.08036256581544876,
0.06882713735103607,
-0.019991006702184677,
0.07627076655626297,
-0.3195800185203552,
-0.1431674063205719,
0.15021668374538422,
0.11856400966644287,
0.07535386085510254,
-0.13140390813350677,
-0.03808179497718811,
-0.028594503179192543,
-0.09397169947624207,
0.08886381983757019,
-0.052406370639801025,
0.1416141837835312,
-0.01700044795870781,
0.10701100528240204,
0.01372228842228651,
-0.04887136444449425,
0.12039493769407272,
0.02362653985619545,
0.06604775786399841,
-0.04217075929045677,
0.016336044296622276,
-0.009726488962769508,
-0.0318811871111393,
0.04104836657643318,
-0.0657087042927742,
0.03967074304819107,
-0.08434148877859116,
-0.0349300317466259,
-0.10076357424259186,
0.036284592002630234,
-0.007183533627539873,
-0.058990418910980225,
-0.018535399809479713,
0.022402040660381317,
0.06363432854413986,
-0.005067969672381878,
0.09907638281583786,
-0.035076986998319626,
0.1252250373363495,
0.11321616172790527,
0.07641636580228806,
-0.053152721375226974,
-0.059584423899650574,
-0.013152103871107101,
-0.02782466821372509,
0.0555538684129715,
-0.10830038040876389,
0.030105359852313995,
0.13837812840938568,
0.03978767246007919,
0.1459140032529831,
0.06818912923336029,
-0.047107696533203125,
0.010229836218059063,
0.041336532682180405,
-0.13064728677272797,
-0.11863282322883606,
-0.00908876396715641,
-0.02249029651284218,
-0.07175739854574203,
0.04070314019918442,
0.10737546533346176,
-0.06504698097705841,
-0.010390068404376507,
-0.019689369946718216,
0.020632803440093994,
-0.0767974704504013,
0.21864159405231476,
0.06342902034521103,
0.04933321475982666,
-0.12071671336889267,
0.08774181455373764,
0.04394137114286423,
-0.11450913548469543,
0.03840864822268486,
0.07826407998800278,
-0.08185693621635437,
-0.041218724101781845,
0.049032680690288544,
0.10696114599704742,
-0.045515283942222595,
-0.07710488885641098,
-0.1139397919178009,
-0.1444767713546753,
0.09946122020483017,
0.14793547987937927,
0.07714938372373581,
0.013395744375884533,
-0.06156549230217934,
0.013430154882371426,
-0.10315641015768051,
0.07469799369573593,
0.04706075042486191,
0.03945568948984146,
-0.133077010512352,
0.1638820767402649,
0.01787351444363594,
0.051575325429439545,
-0.016856292262673378,
-0.0007420397596433759,
-0.10037500411272049,
0.04623207449913025,
-0.13770531117916107,
-0.018878832459449768,
-0.04143596813082695,
0.009949618950486183,
0.01018659770488739,
-0.07535775750875473,
-0.052635930478572845,
0.035941969603300095,
-0.12398619204759598,
-0.031437892466783524,
0.006110951770097017,
0.055309951305389404,
-0.12469126284122467,
-0.04240134358406067,
0.027112003415822983,
-0.0744357779622078,
0.08875978738069534,
0.09283924102783203,
-0.020204097032546997,
0.0820629745721817,
-0.14634639024734497,
-0.026985343545675278,
0.06361562758684158,
0.010505400598049164,
0.03894874453544617,
-0.13227374851703644,
-0.016480199992656708,
0.009456338360905647,
0.05983460322022438,
0.015022052451968193,
0.08635704964399338,
-0.12934106588363647,
-0.014195142313838005,
-0.034904032945632935,
-0.0630882978439331,
-0.06407450139522552,
0.023169947788119316,
0.07644622772932053,
0.042812637984752655,
0.17155104875564575,
-0.09503573924303055,
0.046190470457077026,
-0.1819300353527069,
0.006964157335460186,
-0.044529058039188385,
-0.10176042467355728,
-0.09307895600795746,
-0.05514761433005333,
0.08474240452051163,
-0.05202537775039673,
0.13224421441555023,
-0.014498485252261162,
0.06970872730016708,
0.02038704603910446,
-0.06770789623260498,
-0.016817856580018997,
0.037535183131694794,
0.2539669871330261,
0.03911585733294487,
-0.030849862843751907,
0.07630635052919388,
0.04357313737273216,
0.09058607369661331,
0.1574762910604477,
0.1600523740053177,
0.19455862045288086,
0.03914059326052666,
0.10053640604019165,
0.05986195430159569,
-0.0787903293967247,
-0.14629311859607697,
0.05967693030834198,
-0.034591615200042725,
0.1121935248374939,
-0.03225564956665039,
0.26925191283226013,
0.0649779886007309,
-0.17728686332702637,
0.0663086548447609,
-0.04292343556880951,
-0.0871884897351265,
-0.11755312234163284,
-0.026099495589733124,
-0.08452258259057999,
-0.17815570533275604,
0.003277730429545045,
-0.10394391417503357,
0.05864068493247032,
0.08061420172452927,
0.03201623260974884,
-0.003611314110457897,
0.13415735960006714,
0.01635536551475525,
-0.015155070461332798,
0.09359322488307953,
-0.006884533911943436,
-0.04431420937180519,
-0.09728644043207169,
-0.08443655073642731,
0.034511663019657135,
-0.012480471283197403,
0.0463113859295845,
-0.040736157447099686,
-0.1135990172624588,
0.030389409512281418,
-0.04418480768799782,
-0.088966965675354,
0.019297637045383453,
0.015561061911284924,
0.079173743724823,
0.07094316184520721,
0.03548746928572655,
-0.03333244472742081,
-0.0008499464020133018,
0.2523207664489746,
-0.10526078194379807,
-0.12621274590492249,
-0.09723547846078873,
0.28046715259552,
0.040864914655685425,
0.000467521051177755,
0.01421551126986742,
-0.06571246683597565,
-0.02004471980035305,
0.2448999434709549,
0.1759062260389328,
-0.06868643313646317,
-0.0019839738961309195,
-0.0030830809846520424,
-0.00591669324785471,
-0.03796548396348953,
0.08955397456884384,
0.16423794627189636,
0.05381140857934952,
-0.07892829179763794,
-0.0313325859606266,
-0.05225911736488342,
-0.028280379250645638,
-0.06497450917959213,
0.08040300756692886,
0.009168727323412895,
-0.028292808681726456,
-0.037481121718883514,
0.08475805073976517,
-0.09431011974811554,
-0.12246070802211761,
0.008901671506464481,
-0.1930249184370041,
-0.15507245063781738,
-0.01701345294713974,
0.07488106936216354,
0.04202607274055481,
0.03298087790608406,
-0.020266374573111534,
0.006993506569415331,
0.08164972066879272,
-0.0021035124082118273,
-0.07634525746107101,
-0.08217256516218185,
0.09381406009197235,
-0.10416385531425476,
0.1689530462026596,
-0.038115084171295166,
0.07456984370946884,
0.10768985003232956,
0.09661995619535446,
-0.06241534650325775,
0.10279685258865356,
0.04981061816215515,
-0.10772111266851425,
0.05185616388916969,
0.1408834159374237,
-0.03807961195707321,
0.10217494517564774,
0.033682093024253845,
-0.1331491321325302,
0.02784714475274086,
-0.046903982758522034,
-0.06218486279249191,
-0.05034952983260155,
-0.04607110843062401,
-0.054365649819374084,
0.11784843355417252,
0.1781609058380127,
-0.05502436310052872,
0.006066072266548872,
-0.06966913491487503,
0.004281152039766312,
0.0325738750398159,
0.03704548627138138,
-0.06728362292051315,
-0.25491806864738464,
0.00981833878904581,
0.02207472175359726,
0.007052149157971144,
-0.23746074736118317,
-0.08793007582426071,
0.016176234930753708,
-0.06202239170670509,
-0.06677460670471191,
0.10431604087352753,
0.06844400614500046,
0.03240634873509407,
-0.041494932025671005,
-0.1002834141254425,
-0.036446504294872284,
0.1913425177335739,
-0.17576277256011963,
-0.07146763801574707
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# timit-5percent-supervised
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6615
- Wer: 0.2788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 5.3773 | 33.33 | 500 | 2.9693 | 1.0 |
| 1.4746 | 66.67 | 1000 | 0.5050 | 0.3359 |
| 0.1067 | 100.0 | 1500 | 0.5981 | 0.3054 |
| 0.0388 | 133.33 | 2000 | 0.6192 | 0.2712 |
| 0.0244 | 166.67 | 2500 | 0.6392 | 0.2776 |
| 0.018 | 200.0 | 3000 | 0.6615 | 0.2788 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "timit-5percent-supervised", "results": []}]} | automatic-speech-recognition | Kuray107/timit-5percent-supervised | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| timit-5percent-supervised
=========================
This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6615
* Wer: 0.2788
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 200
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.14.1
* Pytorch 1.10.2
* Datasets 1.18.2
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
52,
130,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
-0.1059035137295723,
0.08152707666158676,
-0.0020484516862779856,
0.08230812102556229,
0.14154686033725739,
0.0013507022522389889,
0.08719955384731293,
0.13689211010932922,
-0.0746772289276123,
0.03607890009880066,
0.10807221382856369,
0.14629633724689484,
0.03775489330291748,
0.11566281318664551,
-0.04088596999645233,
-0.2914266288280487,
0.015889540314674377,
0.016140848398208618,
-0.043850600719451904,
0.1334955096244812,
0.10148526728153229,
-0.12376032769680023,
0.05325053259730339,
0.013144117780029774,
-0.15105155110359192,
0.010855638422071934,
0.003476653713732958,
-0.08236351609230042,
0.15076720714569092,
0.011437206529080868,
0.07088753581047058,
0.013917050324380398,
0.10017682611942291,
-0.25513955950737,
0.0033036598470062017,
0.03966596722602844,
0.04893862083554268,
0.060975078493356705,
0.06608951091766357,
-0.008638818748295307,
0.1134352833032608,
-0.09630176424980164,
0.059716176241636276,
0.03766220808029175,
-0.10380610823631287,
-0.30302345752716064,
-0.0686647891998291,
0.02944367378950119,
0.08158516138792038,
0.11261636763811111,
-0.017650406807661057,
0.1007358655333519,
-0.08176442235708237,
0.10088539868593216,
0.2582099139690399,
-0.28271520137786865,
-0.04371771588921547,
-0.03748729079961777,
0.0308554545044899,
0.057787999510765076,
-0.1101665124297142,
-0.018392696976661682,
0.02308475412428379,
0.051982488483190536,
0.11401167511940002,
-0.02363261952996254,
-0.12761834263801575,
0.01487045455724001,
-0.15035215020179749,
-0.03854871541261673,
0.13388276100158691,
0.04545117914676666,
-0.036264486610889435,
-0.07659343630075455,
-0.04248127341270447,
-0.1454472839832306,
-0.05443093925714493,
-0.01605515368282795,
0.047797903418540955,
-0.03577815741300583,
-0.08753395080566406,
-0.01920466683804989,
-0.08422258496284485,
-0.08896149694919586,
-0.036331627517938614,
0.16664913296699524,
0.04729127883911133,
-0.007029285654425621,
-0.01212226040661335,
0.08742378652095795,
-0.0027005611918866634,
-0.12315244227647781,
0.00015746700228191912,
0.04190879315137863,
-0.025118660181760788,
-0.007120046764612198,
-0.0739079937338829,
-0.004097023047506809,
0.027323435992002487,
0.12109322845935822,
-0.07859353721141815,
0.07014229148626328,
0.012612549588084221,
0.030274566262960434,
-0.1181110292673111,
0.2097480595111847,
-0.06301949918270111,
-0.024475758895277977,
-0.014827245846390724,
0.041625574231147766,
0.0036650830879807472,
-0.013310011476278305,
-0.09864838421344757,
-0.006001921836286783,
0.11936286091804504,
0.039119474589824677,
-0.05956906080245972,
0.062202125787734985,
-0.04006142541766167,
-0.016381848603487015,
-0.048549260944128036,
-0.11360827833414078,
0.03038305975496769,
0.02344588190317154,
-0.08755180984735489,
-0.00006828388723079115,
0.022749371826648712,
0.03142920881509781,
-0.047970663756132126,
0.07982347905635834,
-0.0548505000770092,
0.04166731983423233,
-0.06602329760789871,
-0.10978760570287704,
0.012768632732331753,
-0.05586550384759903,
0.017334360629320145,
-0.10475460439920425,
-0.15485915541648865,
-0.0174616277217865,
0.04395376518368721,
-0.03457646816968918,
-0.03708561137318611,
-0.08589555323123932,
-0.07163503021001816,
0.024239160120487213,
-0.042511504143476486,
0.14014528691768646,
-0.06887850165367126,
0.11142714321613312,
0.028544409200549126,
0.07205326110124588,
-0.023632919415831566,
0.07384762167930603,
-0.08321715891361237,
0.00470384256914258,
-0.14156019687652588,
0.0816490650177002,
-0.0757048949599266,
0.043154820799827576,
-0.12431742250919342,
-0.12081962823867798,
0.028632061555981636,
0.0023398585617542267,
0.08942121267318726,
0.10346657782793045,
-0.17883528769016266,
-0.08172471076250076,
0.1737283170223236,
-0.062474511563777924,
-0.08331384509801865,
0.12417925894260406,
-0.035649847239255905,
0.026128174737095833,
0.07213690876960754,
0.24750567972660065,
0.045801058411598206,
-0.10942000895738602,
0.04776488617062569,
-0.007833135314285755,
0.062253013253211975,
-0.021892162039875984,
0.07161439210176468,
-0.034291770309209824,
0.0070603713393211365,
0.03268264979124069,
-0.04334999620914459,
0.07600772380828857,
-0.096872478723526,
-0.08785144239664078,
-0.03774724900722504,
-0.10284899175167084,
0.03587056323885918,
0.04063616693019867,
0.05967133492231369,
-0.10030537098646164,
-0.08730717748403549,
0.03901141881942749,
0.09594584256410599,
-0.09423056244850159,
0.05469517037272453,
-0.0748060792684555,
0.04421168565750122,
0.006124984938651323,
-0.014939333312213421,
-0.18218563497066498,
0.04164605960249901,
0.02074366994202137,
-0.024634847417473793,
0.04216776788234711,
-0.035102806985378265,
0.07329712808132172,
0.03832964226603508,
-0.045259397476911545,
-0.04335854947566986,
-0.017835941165685654,
0.01532648503780365,
-0.09175191819667816,
-0.2016908824443817,
-0.03243863582611084,
-0.013065624982118607,
0.12406966090202332,
-0.17173492908477783,
0.01587119698524475,
-0.012668529525399208,
0.07508449256420135,
0.0020973028149455786,
-0.015743881464004517,
-0.01934320479631424,
0.08615803718566895,
-0.009444326162338257,
-0.05241108313202858,
0.06818288564682007,
0.005713758058845997,
-0.0965559110045433,
0.018963927403092384,
-0.10011990368366241,
0.11115038394927979,
0.136612206697464,
-0.08976022154092789,
-0.0653960108757019,
0.0060209846124053,
-0.048610493540763855,
-0.039024412631988525,
-0.023501524701714516,
0.024831321090459824,
0.21241998672485352,
-0.007028848864138126,
0.13437482714653015,
-0.07616309076547623,
-0.027063366025686264,
0.020222032442688942,
-0.028893882408738136,
0.01519160345196724,
0.1334673911333084,
0.07464106380939484,
-0.0442296601831913,
0.11314689368009567,
0.12294229120016098,
-0.09350388497114182,
0.11323199421167374,
-0.0498541034758091,
-0.08530987799167633,
-0.012039760127663612,
-0.009089047089219093,
-0.013898538425564766,
0.08841726928949356,
-0.15990270674228668,
-0.013660489581525326,
0.027735989540815353,
0.032974936068058014,
0.02786487527191639,
-0.22436486184597015,
-0.015217090956866741,
0.027560574933886528,
-0.08502031862735748,
-0.03540613502264023,
-0.004657388664782047,
0.012119166553020477,
0.10028702020645142,
0.0068440246395766735,
-0.10660070180892944,
0.011972999200224876,
-0.01426616869866848,
-0.08432283252477646,
0.1910935789346695,
-0.11937923729419708,
-0.17820367217063904,
-0.10581930726766586,
-0.07514286041259766,
-0.03489664942026138,
0.006691828370094299,
0.07644268870353699,
-0.09992184489965439,
-0.028192047029733658,
-0.06296181678771973,
0.03685074672102928,
-0.04144981503486633,
0.03375573828816414,
0.0034973209258168936,
-0.004161079879850149,
0.07512369751930237,
-0.10939104855060577,
-0.011537098325788975,
-0.04821925237774849,
-0.03153924271464348,
0.0387735590338707,
0.045428674668073654,
0.10484364628791809,
0.16553229093551636,
0.006097546312958002,
0.026329241693019867,
-0.0402032732963562,
0.21219052374362946,
-0.06527929753065109,
-0.04287794232368469,
0.13823029398918152,
0.005252534989267588,
0.043612170964479446,
0.12317385524511337,
0.0493951141834259,
-0.1016743928194046,
0.005517960526049137,
0.011683114804327488,
-0.022584792226552963,
-0.21336515247821808,
-0.05745537951588631,
-0.04725903645157814,
-0.02559807151556015,
0.09819193184375763,
0.021148882806301117,
0.014317418448626995,
0.02051999419927597,
0.03995274752378464,
0.006946368608623743,
-0.0034310074988752604,
0.05755914747714996,
0.14916865527629852,
0.019697614014148712,
0.11728488653898239,
-0.016813751310110092,
-0.05161209776997566,
0.02880161441862583,
-0.013745684176683426,
0.22608324885368347,
0.016882972791790962,
0.12990301847457886,
0.05275313928723335,
0.19044846296310425,
0.0006449137581512332,
0.07332940399646759,
0.01642032340168953,
-0.013537966646254063,
-0.0016247816383838654,
-0.052844274789094925,
-0.047449737787246704,
0.030942652374505997,
0.0310821570456028,
0.02777654118835926,
-0.12842699885368347,
-0.047936584800481796,
0.039516545832157135,
0.3273632228374481,
0.0484049990773201,
-0.29795122146606445,
-0.08884955942630768,
-0.0019230208126828074,
-0.08103762567043304,
-0.027522385120391846,
0.04834391176700592,
0.08722122758626938,
-0.10165825486183167,
0.038226161152124405,
-0.043007444590330124,
0.09141051769256592,
-0.037470921874046326,
0.04454841464757919,
0.04007735103368759,
0.07498420774936676,
0.022015411406755447,
0.07193604856729507,
-0.3222941756248474,
0.2923034429550171,
-0.007877890020608902,
0.07488386332988739,
-0.06382347643375397,
-0.002028384944424033,
0.030978089198470116,
0.006244378164410591,
0.08957893401384354,
-0.015194397419691086,
-0.07637328654527664,
-0.19424322247505188,
-0.05522896349430084,
0.03299715369939804,
0.12719479203224182,
-0.012017056345939636,
0.100758396089077,
-0.03276726230978966,
-0.008093885146081448,
0.07500515878200531,
-0.05074547976255417,
-0.1018790602684021,
-0.08180712163448334,
-0.01208110898733139,
0.08234432339668274,
0.04596654325723648,
-0.06704363971948624,
-0.09886398911476135,
-0.11299821734428406,
0.12444702535867691,
-0.04787334427237511,
-0.02663613110780716,
-0.10641361027956009,
0.05509565770626068,
0.12777714431285858,
-0.07933928072452545,
0.05175701156258583,
0.028521059080958366,
0.07267126441001892,
0.03305643051862717,
-0.06334235519170761,
0.11485869437456131,
-0.0776829943060875,
-0.17048658430576324,
-0.03437262028455734,
0.1450609713792801,
0.03952498733997345,
0.0693189725279808,
-0.004397202283143997,
0.0262309517711401,
-0.04757921025156975,
-0.0791376382112503,
0.033534955233335495,
0.03284136578440666,
0.021869396790862083,
0.0472683310508728,
-0.053810570389032364,
-0.01275835745036602,
-0.09846123307943344,
-0.04153108224272728,
0.20948584377765656,
0.23301634192466736,
-0.09156693518161774,
0.06593326479196548,
0.07536311447620392,
-0.05349644646048546,
-0.18172435462474823,
-0.0011550801573321223,
0.07875210046768188,
0.0030979225412011147,
0.011556033045053482,
-0.1942913830280304,
0.08240944147109985,
0.06977871805429459,
-0.02041452005505562,
0.07902028411626816,
-0.3209608495235443,
-0.14374257624149323,
0.15061582624912262,
0.11878123879432678,
0.07462497055530548,
-0.13213667273521423,
-0.0376964770257473,
-0.030597271397709846,
-0.09578858315944672,
0.08935454487800598,
-0.0527421273291111,
0.14208947122097015,
-0.01723613031208515,
0.10944334417581558,
0.01454706396907568,
-0.04789046198129654,
0.12162644416093826,
0.025274362415075302,
0.06565461307764053,
-0.04294712096452713,
0.014588423073291779,
-0.011996153742074966,
-0.03239123895764351,
0.041883084923028946,
-0.06679368019104004,
0.038043852895498276,
-0.0842600017786026,
-0.03471998870372772,
-0.09969460219144821,
0.037344083189964294,
-0.0076218657195568085,
-0.06017529219388962,
-0.019586335867643356,
0.022509196773171425,
0.06335041671991348,
-0.0049741496331989765,
0.09721790999174118,
-0.03434954583644867,
0.12395642697811127,
0.11457488685846329,
0.07822182029485703,
-0.05504284426569939,
-0.06027347967028618,
-0.011673356406390667,
-0.02827124111354351,
0.055569376796483994,
-0.10557933151721954,
0.030665798112750053,
0.13870678842067719,
0.03831810504198074,
0.14599154889583588,
0.06920275837182999,
-0.047477781772613525,
0.010117351077497005,
0.04176178202033043,
-0.13060927391052246,
-0.11797120422124863,
-0.007935063913464546,
-0.020738527178764343,
-0.07295747846364975,
0.040332913398742676,
0.10601763427257538,
-0.0642586350440979,
-0.010187914595007896,
-0.020139643922448158,
0.02219526842236519,
-0.07751190662384033,
0.21905601024627686,
0.06366167962551117,
0.04954388737678528,
-0.11985541880130768,
0.08863899856805801,
0.04428188502788544,
-0.11337064951658249,
0.038865793496370316,
0.07679995149374008,
-0.08216473460197449,
-0.04058285430073738,
0.04923268407583237,
0.10817079991102219,
-0.04473317414522171,
-0.07622738182544708,
-0.11252985894680023,
-0.14701421558856964,
0.09810863435268402,
0.1425684690475464,
0.07700344175100327,
0.014543267898261547,
-0.06240985170006752,
0.012184657156467438,
-0.1038123145699501,
0.07433495670557022,
0.050988201051950455,
0.0395783931016922,
-0.1318165361881256,
0.1648232638835907,
0.016113141551613808,
0.052687738090753555,
-0.01703953929245472,
-0.00034555938327685,
-0.10011225938796997,
0.04690400883555412,
-0.13703560829162598,
-0.01792159676551819,
-0.040575698018074036,
0.009507043287158012,
0.010244154371321201,
-0.07526401430368423,
-0.05218550190329552,
0.03560372814536095,
-0.12393847852945328,
-0.031723201274871826,
0.0057449620217084885,
0.05396946147084236,
-0.12377360463142395,
-0.043037667870521545,
0.028208697214722633,
-0.07587217539548874,
0.08812311291694641,
0.09193138033151627,
-0.02069433592259884,
0.08245129883289337,
-0.14645369350910187,
-0.02748798206448555,
0.06269070506095886,
0.011297405697405338,
0.03950317203998566,
-0.13225796818733215,
-0.01683730073273182,
0.00936401728540659,
0.05980588495731354,
0.015663156285881996,
0.08723390847444534,
-0.12995128333568573,
-0.013273986987769604,
-0.03617662936449051,
-0.06262803822755814,
-0.06431043893098831,
0.02442082390189171,
0.07843799889087677,
0.044928159564733505,
0.1734975129365921,
-0.09635894745588303,
0.045502420514822006,
-0.18240243196487427,
0.007260804530233145,
-0.04384325072169304,
-0.10071683675050735,
-0.09247700124979019,
-0.05476269870996475,
0.08545269072055817,
-0.05234351009130478,
0.1306549459695816,
-0.014350167475640774,
0.06830902397632599,
0.020125970244407654,
-0.06901594996452332,
-0.01634952798485756,
0.0374823696911335,
0.25379258394241333,
0.03888630494475365,
-0.0313492976129055,
0.07499981671571732,
0.04232092574238777,
0.0907195582985878,
0.15732744336128235,
0.16234324872493744,
0.19239497184753418,
0.036970045417547226,
0.10092107951641083,
0.05740438401699066,
-0.07807343453168869,
-0.14486061036586761,
0.05950241535902023,
-0.03378510847687721,
0.11113060265779495,
-0.031248146668076515,
0.2698151171207428,
0.06430456787347794,
-0.17868533730506897,
0.06592412292957306,
-0.04342721402645111,
-0.0883735790848732,
-0.11854539066553116,
-0.02848738245666027,
-0.08506836742162704,
-0.17709022760391235,
0.002837967360392213,
-0.104009710252285,
0.05878816917538643,
0.0808965191245079,
0.032059792429208755,
-0.0038397700991481543,
0.13249485194683075,
0.014274589717388153,
-0.013755589723587036,
0.09309788793325424,
-0.006904947571456432,
-0.043807923793792725,
-0.0939110666513443,
-0.08548446744680405,
0.03213959187269211,
-0.011378830298781395,
0.04729272425174713,
-0.03973966836929321,
-0.11415131390094757,
0.02950729802250862,
-0.044078826904296875,
-0.0886378064751625,
0.01827198825776577,
0.014830345287919044,
0.07937595248222351,
0.0706552267074585,
0.03673155978322029,
-0.0341826006770134,
-0.0009337118244729936,
0.25165650248527527,
-0.10484117269515991,
-0.12745226919651031,
-0.09662910550832748,
0.2792957127094269,
0.042549312114715576,
0.0005033569759689271,
0.014148347079753876,
-0.06646601855754852,
-0.021911315619945526,
0.2433679848909378,
0.17651665210723877,
-0.0703127309679985,
-0.0028782289009541273,
-0.004771662410348654,
-0.0059021650813519955,
-0.038056254386901855,
0.09079261869192123,
0.16405370831489563,
0.05505368113517761,
-0.07944881170988083,
-0.028877973556518555,
-0.05217420682311058,
-0.02781914360821247,
-0.06822974234819412,
0.08217941969633102,
0.008775383234024048,
-0.027240736410021782,
-0.038182616233825684,
0.08480960875749588,
-0.09485876560211182,
-0.12310691922903061,
0.008399423211812973,
-0.19254170358181,
-0.15521138906478882,
-0.01563170552253723,
0.07378949224948883,
0.04124394431710243,
0.0342303030192852,
-0.021460317075252533,
0.0073476615361869335,
0.08209482580423355,
-0.002028421498835087,
-0.07642273604869843,
-0.07991266995668411,
0.09407497197389603,
-0.10517612844705582,
0.17041979730129242,
-0.03714596852660179,
0.07440101355314255,
0.1071540117263794,
0.09629536420106888,
-0.0618908517062664,
0.10495162755250931,
0.04936841130256653,
-0.10668438673019409,
0.0536079928278923,
0.1396472156047821,
-0.039064932614564896,
0.10048417747020721,
0.03445402905344963,
-0.13177666068077087,
0.027082055807113647,
-0.046495482325553894,
-0.06084783002734184,
-0.05083238705992699,
-0.04622581601142883,
-0.05548213794827461,
0.11767463386058807,
0.17820776998996735,
-0.05546833202242851,
0.006890489254146814,
-0.07014398276805878,
0.0052357567474246025,
0.032791268080472946,
0.036852966994047165,
-0.06706400960683823,
-0.2536827325820923,
0.009041979908943176,
0.02266334742307663,
0.004856987856328487,
-0.23640599846839905,
-0.08858722448348999,
0.015255932696163654,
-0.06144958361983299,
-0.06737368553876877,
0.10550711303949356,
0.06897937506437302,
0.03305896371603012,
-0.04154651612043381,
-0.0967303216457367,
-0.0374315083026886,
0.19243109226226807,
-0.17653489112854004,
-0.07080326974391937
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# timit-supervised
This model is a fine-tuned version of [Experiments/single_dataset/timit-supervised/checkpoint-3500](https://huggingface.co/Experiments/single_dataset/timit-supervised/checkpoint-3500) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1272
- Wer: 0.0532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0554 | 1.77 | 500 | 0.1310 | 0.0697 |
| 0.0509 | 3.53 | 1000 | 0.1497 | 0.0710 |
| 0.038 | 5.3 | 1500 | 0.1190 | 0.0659 |
| 0.0328 | 7.07 | 2000 | 0.0926 | 0.0596 |
| 0.0247 | 8.83 | 2500 | 0.0873 | 0.0570 |
| 0.0229 | 10.6 | 3000 | 0.0890 | 0.0532 |
| 0.0183 | 12.37 | 3500 | 0.0969 | 0.0532 |
| 0.0326 | 14.13 | 4000 | 0.0809 | 0.0469 |
| 0.03 | 15.9 | 4500 | 0.0758 | 0.0444 |
| 0.0264 | 17.67 | 5000 | 0.0973 | 0.0520 |
| 0.0244 | 19.43 | 5500 | 0.1272 | 0.0532 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "timit-supervised", "results": []}]} | automatic-speech-recognition | Kuray107/timit-supervised | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us
| timit-supervised
================
This model is a fine-tuned version of Experiments/single\_dataset/timit-supervised/checkpoint-3500 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1272
* Wer: 0.0532
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 20
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.14.1
* Pytorch 1.10.2
* Datasets 1.18.2
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
44,
130,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
-0.09660647809505463,
0.02673228830099106,
-0.002839424414560199,
0.07798907905817032,
0.16082334518432617,
0.007652658503502607,
0.0774121880531311,
0.11811628937721252,
-0.08703488111495972,
0.046734221279621124,
0.09856030344963074,
0.14585424959659576,
0.025971291586756706,
0.08599165827035904,
-0.04941147565841675,
-0.30150657892227173,
0.000537724350579083,
0.02321699634194374,
-0.030525807291269302,
0.13757027685642242,
0.08935325592756271,
-0.14861366152763367,
0.041460633277893066,
-0.0033829312305897474,
-0.16726933419704437,
0.02006041631102562,
0.0066812667064368725,
-0.07840774953365326,
0.14967264235019684,
-0.0011190443765372038,
0.10840921103954315,
0.021637801080942154,
0.10564957559108734,
-0.2423967570066452,
0.009325316175818443,
0.0437859483063221,
0.04848230630159378,
0.0528024360537529,
0.05944422259926796,
-0.04456041380763054,
0.13281936943531036,
-0.10381819307804108,
0.06662969291210175,
0.026798317208886147,
-0.13031676411628723,
-0.27938178181648254,
-0.059327706694602966,
0.005334888584911823,
0.0747150257229805,
0.11770448088645935,
-0.028693970292806625,
0.12081035226583481,
-0.117479108273983,
0.10824801027774811,
0.2749175429344177,
-0.26471519470214844,
-0.05455505847930908,
-0.03931261971592903,
0.022252146154642105,
0.059907376766204834,
-0.1201825886964798,
-0.011107075959444046,
0.0313967727124691,
0.05664566159248352,
0.10287418961524963,
-0.021069291979074478,
-0.1322052776813507,
0.024623431265354156,
-0.15284015238285065,
-0.01606801152229309,
0.07473468780517578,
0.02934454008936882,
-0.028248369693756104,
-0.06386309862136841,
-0.045408058911561966,
-0.1640610247850418,
-0.058042436838150024,
-0.028708528727293015,
0.04976161941885948,
-0.05681309849023819,
-0.09536229074001312,
0.008131477050483227,
-0.08196190744638443,
-0.08661933988332748,
-0.03993014246225357,
0.20857670903205872,
0.04421012103557587,
-0.00958111323416233,
-0.029468288645148277,
0.08730810880661011,
-0.017856501042842865,
-0.12172732502222061,
0.010798011906445026,
0.04288340359926224,
-0.04608637094497681,
-0.026064913719892502,
-0.07375101000070572,
-0.04104755446314812,
0.00036029660259373486,
0.10015019029378891,
-0.08042136579751968,
0.07822173088788986,
-0.0012246060650795698,
0.022954018786549568,
-0.10161217302083969,
0.20147304236888885,
-0.06516694277524948,
-0.01349027268588543,
-0.030079253017902374,
0.04043329507112503,
-0.012046228162944317,
-0.016624690964818,
-0.08645379543304443,
-0.004673264920711517,
0.10201317071914673,
0.02993924356997013,
-0.0913086012005806,
0.051737260073423386,
-0.04214311018586159,
-0.005522225983440876,
-0.07853858917951584,
-0.1136414185166359,
0.039890144020318985,
0.03444572910666466,
-0.09264353662729263,
0.029061010107398033,
0.011508412659168243,
0.03278748318552971,
-0.04682285711169243,
0.11701855063438416,
-0.05589591711759567,
0.0623108334839344,
-0.07081128656864166,
-0.12883278727531433,
0.003927115350961685,
-0.07141176611185074,
0.01908225752413273,
-0.0866246446967125,
-0.12111248821020126,
-0.015619608573615551,
0.03345026820898056,
-0.046079061925411224,
-0.008586508221924305,
-0.09908249974250793,
-0.07421644777059555,
0.020092252641916275,
-0.029614364728331566,
0.15834228694438934,
-0.06257843971252441,
0.11379653960466385,
0.04486436769366264,
0.08396798372268677,
-0.012776275165379047,
0.07189072668552399,
-0.0770236998796463,
-0.007035229355096817,
-0.18267866969108582,
0.09766235202550888,
-0.06877452880144119,
0.02595527283847332,
-0.0994720309972763,
-0.1361965835094452,
0.016761519014835358,
0.008905927650630474,
0.10048571974039078,
0.11076033115386963,
-0.18648603558540344,
-0.09707402437925339,
0.1968269944190979,
-0.06159543991088867,
-0.052787311375141144,
0.12685629725456238,
-0.054784130305051804,
0.0172077976167202,
0.08171553164720535,
0.24212536215782166,
0.01046611275523901,
-0.11249590665102005,
0.05089568719267845,
-0.03864459693431854,
0.05577576160430908,
0.012445520609617233,
0.052836839109659195,
-0.021147089079022408,
0.025669677183032036,
0.019409725442528725,
-0.0071030776016414165,
0.06169399619102478,
-0.11632474511861801,
-0.0813639685511589,
-0.02637171372771263,
-0.09619464725255966,
0.05656525865197182,
0.054521434009075165,
0.061619050800800323,
-0.11451973021030426,
-0.09057091921567917,
0.04604021832346916,
0.07474038749933243,
-0.08901435136795044,
0.06263039261102676,
-0.082881398499012,
0.03299432992935181,
0.015893053263425827,
-0.027049891650676727,
-0.19354413449764252,
0.05409472435712814,
0.01394503004848957,
0.02474360167980194,
0.03783335164189339,
-0.03149767592549324,
0.08805744349956512,
0.04801412299275398,
-0.05647817626595497,
-0.028686223551630974,
-0.0319535955786705,
0.009996358305215836,
-0.10875584930181503,
-0.2134150117635727,
-0.0258779413998127,
-0.018599359318614006,
0.11218424886465073,
-0.19588467478752136,
0.011310053989291191,
0.003148778574541211,
0.08120625466108322,
0.004031251650303602,
-0.02533150464296341,
-0.024113819003105164,
0.09997536987066269,
-0.0012589952675625682,
-0.04142753779888153,
0.06808285415172577,
-0.016445588320493698,
-0.09222948551177979,
-0.0008193482062779367,
-0.11947641521692276,
0.09234490990638733,
0.13689175248146057,
-0.12267688661813736,
-0.08859243988990784,
0.007648861035704613,
-0.052826542407274246,
-0.02981382980942726,
-0.03463065251708031,
0.0395556315779686,
0.25503575801849365,
-0.0009744355920702219,
0.1332133561372757,
-0.07257580757141113,
-0.02856554463505745,
0.025442078709602356,
-0.017943892627954483,
0.034455619752407074,
0.1535607874393463,
0.07829082012176514,
-0.032290346920490265,
0.0976458489894867,
0.09027095139026642,
-0.08901146799325943,
0.1250283420085907,
-0.03296520560979843,
-0.09155567735433578,
-0.011000081896781921,
-0.023793799802660942,
-0.01725168153643608,
0.09590397775173187,
-0.18407754600048065,
-0.024685416370630264,
0.011188757605850697,
0.02770136669278145,
0.026102939620614052,
-0.23234716057777405,
-0.029345806688070297,
0.03535545989871025,
-0.06618392467498779,
-0.05132351443171501,
-0.00586036778986454,
0.03082306869328022,
0.1162765622138977,
0.002034723525866866,
-0.08658800274133682,
-0.0031966876704245806,
-0.01911749131977558,
-0.08108486235141754,
0.19569255411624908,
-0.10026214271783829,
-0.14449644088745117,
-0.06496627628803253,
-0.09445194900035858,
-0.015246115624904633,
0.004641943145543337,
0.06625083833932877,
-0.13236168026924133,
-0.013864034786820412,
-0.0531836599111557,
0.05101420357823372,
-0.04710308089852333,
0.040957558900117874,
0.00434835022315383,
-0.010114733129739761,
0.050004225224256516,
-0.10441356152296066,
-0.012243335135281086,
-0.07804382592439651,
-0.04514014720916748,
0.05564485862851143,
0.060926929116249084,
0.10006622225046158,
0.1798168569803238,
-0.010178354568779469,
0.030560262501239777,
-0.04804256558418274,
0.2053048312664032,
-0.07627929747104645,
-0.056177299469709396,
0.10416465252637863,
-0.01712692156434059,
0.033934567123651505,
0.10832316428422928,
0.0564848817884922,
-0.10810229182243347,
0.0022283014841377735,
0.03123248927295208,
-0.03459066152572632,
-0.2239527702331543,
-0.05002636834979057,
-0.0404411144554615,
-0.0386611707508564,
0.07435698062181473,
0.005289300810545683,
0.0040742140263319016,
0.01221785880625248,
0.05091164633631706,
-0.008597239851951599,
-0.007601475343108177,
0.04298996552824974,
0.1129598617553711,
0.0200476236641407,
0.11744096875190735,
-0.01397215761244297,
-0.07461530715227127,
0.014816471375524998,
-0.04507351294159889,
0.2280169129371643,
0.015071402303874493,
0.0933670699596405,
0.052428364753723145,
0.16467425227165222,
0.0019805640913546085,
0.07937319576740265,
0.012924237176775932,
-0.040963537991046906,
0.0037552400026470423,
-0.05003424733877182,
-0.04018108546733856,
0.023344721645116806,
0.03814390301704407,
0.04143250733613968,
-0.14961892366409302,
-0.04079076647758484,
0.04742683097720146,
0.3026949167251587,
0.051303185522556305,
-0.2821226716041565,
-0.07641468197107315,
-0.00868667010217905,
-0.07442767918109894,
-0.006328456103801727,
0.046157218515872955,
0.10150826722383499,
-0.09793054312467575,
0.04115976765751839,
-0.03716714680194855,
0.08857939392328262,
-0.03054894506931305,
0.05082178860902786,
0.01576315425336361,
0.08238129317760468,
0.0017657045973464847,
0.057390931993722916,
-0.3319258987903595,
0.30637475848197937,
-0.003642156021669507,
0.08638971298933029,
-0.06834464520215988,
-0.0217216145247221,
0.021128615364432335,
-0.008042032830417156,
0.08425647765398026,
-0.01569567620754242,
-0.055275820195674896,
-0.2028127908706665,
-0.04252496734261513,
0.03531339764595032,
0.16102951765060425,
0.00029892133898101747,
0.11656736582517624,
-0.009523148648440838,
-0.002406819723546505,
0.0828029066324234,
-0.04958757758140564,
-0.09773421287536621,
-0.06571387499570847,
-0.023221472278237343,
0.06178121268749237,
0.01371983252465725,
-0.05195429548621178,
-0.11545304208993912,
-0.12007521837949753,
0.10814318060874939,
-0.03758034110069275,
-0.015942996367812157,
-0.11107756197452545,
0.07757677137851715,
0.1146702915430069,
-0.07265976816415787,
0.033846694976091385,
0.044943470507860184,
0.060601335018873215,
0.02923019975423813,
-0.04454488679766655,
0.1239275261759758,
-0.0677759125828743,
-0.1714472770690918,
-0.040709707885980606,
0.15433615446090698,
0.07387832552194595,
0.08217219263315201,
-0.018627578392624855,
0.027475493028759956,
-0.02078472636640072,
-0.07531961053609848,
0.058212947100400925,
0.015711087733507156,
0.019567467272281647,
0.06657888740301132,
-0.04701975733041763,
-0.0016503988299518824,
-0.10639983415603638,
-0.02128450572490692,
0.21721401810646057,
0.250770628452301,
-0.0826471671462059,
0.0647045150399208,
0.053256094455718994,
-0.0594073086977005,
-0.17459313571453094,
0.042301736772060394,
0.08507086336612701,
0.015660740435123444,
0.010423787869513035,
-0.19707897305488586,
0.09069900214672089,
0.0701470896601677,
0.005885663442313671,
0.07710165530443192,
-0.3189971148967743,
-0.14151903986930847,
0.13534632325172424,
0.12810786068439484,
0.10860609263181686,
-0.12368910759687424,
-0.014244738966226578,
-0.01742856204509735,
-0.09935261309146881,
0.0875680223107338,
-0.07909799367189407,
0.14334119856357574,
-0.014163432642817497,
0.1209249347448349,
0.021308792755007744,
-0.05240816995501518,
0.10231252759695053,
0.030025029554963112,
0.07762037217617035,
-0.03956471011042595,
-0.014239621348679066,
-0.003271970199421048,
-0.016070634126663208,
0.005636847577989101,
-0.037174053490161896,
0.020311618223786354,
-0.08274450153112411,
-0.035554561764001846,
-0.1144852340221405,
0.030512915924191475,
-0.017026031389832497,
-0.06371576339006424,
-0.01405508816242218,
0.018121395260095596,
0.068806491792202,
-0.0014108833856880665,
0.08516684919595718,
-0.05461827665567398,
0.14920790493488312,
0.08367910236120224,
0.1077142283320427,
-0.061210960149765015,
-0.03276357799768448,
0.002371779875829816,
-0.013138985261321068,
0.04826976731419563,
-0.0987376868724823,
0.02668612077832222,
0.15516208112239838,
0.052768733352422714,
0.1394151896238327,
0.08422548323869705,
-0.047539208084344864,
0.019785456359386444,
0.03653373941779137,
-0.13299192488193512,
-0.11208520829677582,
0.00118635396938771,
-0.0458977110683918,
-0.06229965388774872,
0.038906048983335495,
0.09720158576965332,
-0.06522884219884872,
-0.01328340731561184,
-0.023296594619750977,
0.009728800505399704,
-0.08492949604988098,
0.2226896435022354,
0.05668233335018158,
0.05129045248031616,
-0.12209542840719223,
0.07220476120710373,
0.029932603240013123,
-0.1248665377497673,
0.04923994094133377,
0.09955468028783798,
-0.07019218057394028,
-0.02918245643377304,
0.0491396002471447,
0.144989475607872,
-0.02558078058063984,
-0.0482974611222744,
-0.11977648735046387,
-0.14752307534217834,
0.0974152535200119,
0.19060355424880981,
0.075517937541008,
-0.0005787679110653698,
-0.06989627331495285,
0.03231525793671608,
-0.13673298060894012,
0.06405197083950043,
0.05257261544466019,
0.03348242864012718,
-0.10765953361988068,
0.21381132304668427,
0.018065206706523895,
0.04393737390637398,
-0.023964958265423775,
-0.004249780438840389,
-0.1129661574959755,
0.06739839166402817,
-0.13807272911071777,
-0.038858696818351746,
-0.025747567415237427,
-0.0038943190593272448,
0.00039129311335273087,
-0.0778423547744751,
-0.0591164194047451,
0.0226038359105587,
-0.12825420498847961,
-0.013069097883999348,
0.01720963418483734,
0.029641814529895782,
-0.1156410202383995,
-0.04242320731282234,
0.024512015283107758,
-0.07074162364006042,
0.08254086971282959,
0.11195427179336548,
-0.029690740630030632,
0.09186356514692307,
-0.17491042613983154,
-0.03400808200240135,
0.061139315366744995,
-0.005193684715777636,
0.05621935799717903,
-0.11183162033557892,
-0.014912479557096958,
-0.005300869699567556,
0.08259204775094986,
0.027265995740890503,
0.0836133062839508,
-0.11619170755147934,
0.0022291389759629965,
-0.028653547167778015,
-0.08465363830327988,
-0.057624977082014084,
0.02397126518189907,
0.06473848223686218,
0.0379205085337162,
0.1562381237745285,
-0.09909942001104355,
0.07299749553203583,
-0.18910068273544312,
-0.003031229367479682,
-0.03877653554081917,
-0.08487661182880402,
-0.0827215164899826,
-0.05195474997162819,
0.09939492493867874,
-0.06400933861732483,
0.13388973474502563,
-0.004249121528118849,
0.07195689529180527,
0.021986857056617737,
-0.09303867816925049,
-0.027223242446780205,
0.04514458402991295,
0.23921065032482147,
0.05302315577864647,
-0.05110850930213928,
0.07790584862232208,
0.051816366612911224,
0.10170098394155502,
0.17233315110206604,
0.20104408264160156,
0.20272846519947052,
0.047817982733249664,
0.09547851979732513,
0.055014096200466156,
-0.08189025521278381,
-0.1353909820318222,
0.04853571206331253,
-0.03916098177433014,
0.08754277229309082,
-0.032097894698381424,
0.26754656434059143,
0.058567170053720474,
-0.15811125934123993,
0.07605887949466705,
-0.054914601147174835,
-0.09955563396215439,
-0.12442648410797119,
0.005189602728933096,
-0.08062777668237686,
-0.16556908190250397,
0.01276974193751812,
-0.11480148881673813,
0.062455348670482635,
0.08531121909618378,
0.04698294401168823,
-0.0015417542308568954,
0.15985985100269318,
0.025341102853417397,
0.008195921778678894,
0.10727667063474655,
0.005023039877414703,
-0.030861416831612587,
-0.08378226310014725,
-0.07686527073383331,
0.035725001245737076,
-0.022510571405291557,
0.043680571019649506,
-0.04386947676539421,
-0.12630799412727356,
0.02141053043305874,
-0.03840578347444534,
-0.10125887393951416,
0.026967158541083336,
0.017922375351190567,
0.09171928465366364,
0.05296528339385986,
0.0280766524374485,
-0.03022289089858532,
-0.018941888585686684,
0.23906798660755157,
-0.09684673696756363,
-0.11827228218317032,
-0.0864020586013794,
0.30380281805992126,
0.06003635376691818,
0.017115600407123566,
0.0068587977439165115,
-0.06691993772983551,
-0.01716422848403454,
0.2388642579317093,
0.17134183645248413,
-0.0813467875123024,
0.004193579312413931,
0.00027740513905882835,
-0.0016836250433698297,
-0.021687299013137817,
0.08411342650651932,
0.16581842303276062,
0.05079638585448265,
-0.08901327103376389,
-0.03677314519882202,
-0.0628071203827858,
-0.037413790822029114,
-0.04446087032556534,
0.08061084896326065,
0.040586747229099274,
-0.015187687240540981,
-0.051626306027173996,
0.08323860168457031,
-0.10728366672992706,
-0.12162080407142639,
0.021374275907874107,
-0.22413086891174316,
-0.15828578174114227,
-0.015388699248433113,
0.06589079648256302,
0.04571383446455002,
0.049420956522226334,
-0.015013112686574459,
-0.01166060846298933,
0.07403260469436646,
0.004179399460554123,
-0.06695537269115448,
-0.07307663559913635,
0.09017176181077957,
-0.12862756848335266,
0.14988474547863007,
-0.04592201113700867,
0.07956376671791077,
0.10961967706680298,
0.10409662127494812,
-0.03536955639719963,
0.0981920063495636,
0.044797610491514206,
-0.12348100543022156,
0.026985792443156242,
0.1736164093017578,
-0.04568540304899216,
0.0771789699792862,
0.040593113750219345,
-0.16307276487350464,
0.03911636024713516,
-0.06542354822158813,
-0.07373444736003876,
-0.03844151273369789,
-0.04441595822572708,
-0.04972553625702858,
0.10353726893663406,
0.20816348493099213,
-0.03919479623436928,
0.0247774850577116,
-0.07823973149061203,
-0.0035362488124519587,
0.03043644316494465,
0.061317041516304016,
-0.08151032030582428,
-0.2801133394241333,
0.013710920698940754,
0.051991675049066544,
-0.010610409080982208,
-0.2532569169998169,
-0.07991621643304825,
0.02430761232972145,
-0.0692000463604927,
-0.0682341605424881,
0.09777051210403442,
0.06569206714630127,
0.05142842233181,
-0.04404091462492943,
-0.11376215517520905,
-0.026515165343880653,
0.21297933161258698,
-0.17035332322120667,
-0.0673958882689476
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wsj0-full-supervised
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0623
- Wer: 0.0343
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.517 | 0.86 | 500 | 2.9475 | 1.0 |
| 2.2387 | 1.72 | 1000 | 0.4004 | 0.3498 |
| 0.3081 | 2.57 | 1500 | 0.1362 | 0.1159 |
| 0.1744 | 3.43 | 2000 | 0.1125 | 0.0929 |
| 0.1285 | 4.29 | 2500 | 0.0894 | 0.0727 |
| 0.1015 | 5.15 | 3000 | 0.0852 | 0.0642 |
| 0.0811 | 6.0 | 3500 | 0.0789 | 0.0614 |
| 0.0748 | 6.86 | 4000 | 0.0746 | 0.0529 |
| 0.0639 | 7.72 | 4500 | 0.0714 | 0.0481 |
| 0.0606 | 8.58 | 5000 | 0.0698 | 0.0489 |
| 0.0525 | 9.43 | 5500 | 0.0747 | 0.0464 |
| 0.0489 | 10.29 | 6000 | 0.0594 | 0.0396 |
| 0.0419 | 11.15 | 6500 | 0.0600 | 0.0359 |
| 0.0414 | 12.01 | 7000 | 0.0612 | 0.0412 |
| 0.0383 | 12.86 | 7500 | 0.0676 | 0.0392 |
| 0.0352 | 13.72 | 8000 | 0.0626 | 0.0388 |
| 0.034 | 14.58 | 8500 | 0.0699 | 0.0372 |
| 0.0309 | 15.44 | 9000 | 0.0807 | 0.0420 |
| 0.0295 | 16.3 | 9500 | 0.0796 | 0.0396 |
| 0.0273 | 17.15 | 10000 | 0.0716 | 0.0376 |
| 0.0271 | 18.01 | 10500 | 0.0657 | 0.0384 |
| 0.0251 | 18.87 | 11000 | 0.0585 | 0.0351 |
| 0.024 | 19.73 | 11500 | 0.0557 | 0.0347 |
| 0.0252 | 20.58 | 12000 | 0.0609 | 0.0327 |
| 0.0231 | 21.44 | 12500 | 0.0720 | 0.0368 |
| 0.0202 | 22.3 | 13000 | 0.0625 | 0.0343 |
| 0.0195 | 23.16 | 13500 | 0.0635 | 0.0372 |
| 0.0201 | 24.01 | 14000 | 0.0582 | 0.0335 |
| 0.0183 | 24.87 | 14500 | 0.0562 | 0.0343 |
| 0.0183 | 25.73 | 15000 | 0.0629 | 0.0335 |
| 0.0175 | 26.59 | 15500 | 0.0593 | 0.0323 |
| 0.017 | 27.44 | 16000 | 0.0631 | 0.0339 |
| 0.0162 | 28.3 | 16500 | 0.0597 | 0.0335 |
| 0.0169 | 29.16 | 17000 | 0.0623 | 0.0343 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wsj0-full-supervised", "results": []}]} | automatic-speech-recognition | Kuray107/wsj0-full-supervised | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| wsj0-full-supervised
====================
This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0623
* Wer: 0.0343
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 12
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.14.1
* Pytorch 1.10.2
* Datasets 1.18.2
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
52,
130,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3"
] | [
-0.10493966937065125,
0.0813390389084816,
-0.0020075615029782057,
0.08138123899698257,
0.1416037380695343,
0.0006799044203944504,
0.08935436606407166,
0.13611850142478943,
-0.07574563473463058,
0.03592045605182648,
0.10779771953821182,
0.14781230688095093,
0.036608196794986725,
0.11471804976463318,
-0.040702927857637405,
-0.29248011112213135,
0.01596970111131668,
0.015463526360690594,
-0.04136141762137413,
0.13416561484336853,
0.10128186643123627,
-0.12360052764415741,
0.05300741642713547,
0.013155209831893444,
-0.14932234585285187,
0.01143478974699974,
0.0022980221547186375,
-0.08257870376110077,
0.1504804939031601,
0.010992854833602905,
0.07090223580598831,
0.012969868257641792,
0.10041647404432297,
-0.2569790780544281,
0.0037216932978481054,
0.03959427401423454,
0.048089124262332916,
0.06013873592019081,
0.06560207903385162,
-0.008988731540739536,
0.11375780403614044,
-0.09766016900539398,
0.059752464294433594,
0.03756967559456825,
-0.10400531440973282,
-0.30186817049980164,
-0.06858447194099426,
0.030038820579648018,
0.08140356093645096,
0.11366111785173416,
-0.017907001078128815,
0.10319975018501282,
-0.0832860916852951,
0.10142272710800171,
0.2607685625553131,
-0.28264349699020386,
-0.04340898618102074,
-0.03751229867339134,
0.03149578720331192,
0.05798902362585068,
-0.1113375797867775,
-0.01955742947757244,
0.022524015977978706,
0.05129962041974068,
0.1131543517112732,
-0.02363009937107563,
-0.12457595020532608,
0.015015698038041592,
-0.15090322494506836,
-0.03864705190062523,
0.13181447982788086,
0.04610200226306915,
-0.03538474068045616,
-0.07781058549880981,
-0.04255885258316994,
-0.14423108100891113,
-0.0547775961458683,
-0.014300853945314884,
0.047301117330789566,
-0.03637871518731117,
-0.08711855113506317,
-0.017682742327451706,
-0.08385049551725388,
-0.08892136067152023,
-0.03456110134720802,
0.16769567131996155,
0.048149630427360535,
-0.00797316338866949,
-0.012807700783014297,
0.08796367049217224,
-0.002496369183063507,
-0.12367327511310577,
-0.00022412303951568902,
0.041880324482917786,
-0.025698233395814896,
-0.00695996917784214,
-0.07323220372200012,
-0.0025801784358918667,
0.02709992043673992,
0.12316953390836716,
-0.07863029837608337,
0.06975925713777542,
0.012235046364367008,
0.029487062245607376,
-0.11755862087011337,
0.20889915525913239,
-0.06280151754617691,
-0.026386212557554245,
-0.01611928828060627,
0.04176587611436844,
0.004569936078041792,
-0.012569746933877468,
-0.09814539551734924,
-0.005482271313667297,
0.11799196898937225,
0.03944315016269684,
-0.05945950374007225,
0.06240752339363098,
-0.03946497663855553,
-0.016804836690425873,
-0.046042684465646744,
-0.11314462870359421,
0.02949555777013302,
0.02458471618592739,
-0.08852004259824753,
0.00026489945594221354,
0.021707745268940926,
0.03198105841875076,
-0.04812866449356079,
0.07947172224521637,
-0.05490263178944588,
0.041758257895708084,
-0.06590533256530762,
-0.11069398373365402,
0.01365362387150526,
-0.05701768398284912,
0.01838115230202675,
-0.10311097651720047,
-0.15790235996246338,
-0.0188346765935421,
0.04317833483219147,
-0.03345789015293121,
-0.03645453229546547,
-0.08603575825691223,
-0.07169760018587112,
0.02379971742630005,
-0.04262194409966469,
0.13973553478717804,
-0.06915546953678131,
0.11143221706151962,
0.028790514916181564,
0.07084103673696518,
-0.02577437087893486,
0.07379739731550217,
-0.08372024446725845,
0.0036445113364607096,
-0.1413348764181137,
0.08152557164430618,
-0.07616046816110611,
0.04506683722138405,
-0.12478256970643997,
-0.1218942329287529,
0.029594963416457176,
0.001650249701924622,
0.08918661624193192,
0.10303747653961182,
-0.17624615132808685,
-0.0818205252289772,
0.17444159090518951,
-0.06198837608098984,
-0.08303987234830856,
0.12252118438482285,
-0.03620387613773346,
0.02645476721227169,
0.07222671061754227,
0.24693816900253296,
0.047085266560316086,
-0.10894375294446945,
0.0465741865336895,
-0.008259573951363564,
0.06352031230926514,
-0.02236889861524105,
0.07260414212942123,
-0.03405999764800072,
0.009830949828028679,
0.0324927419424057,
-0.04431638494133949,
0.07677583396434784,
-0.096445731818676,
-0.08717809617519379,
-0.03684098646044731,
-0.10330037772655487,
0.03456978127360344,
0.041663702577352524,
0.06010257825255394,
-0.09981818497180939,
-0.0869002565741539,
0.04179636016488075,
0.09657653421163559,
-0.09462232142686844,
0.05460565164685249,
-0.0743919163942337,
0.043239425867795944,
0.006148327607661486,
-0.015435468405485153,
-0.18367093801498413,
0.03919573873281479,
0.020632559433579445,
-0.025467684492468834,
0.042467743158340454,
-0.036077868193387985,
0.0737004429101944,
0.037021931260824203,
-0.04457998648285866,
-0.04396973177790642,
-0.01838948391377926,
0.01408358383923769,
-0.09049452841281891,
-0.2017335742712021,
-0.03217150643467903,
-0.014248193241655827,
0.1232682466506958,
-0.17033624649047852,
0.016229545697569847,
-0.014566102996468544,
0.07525349408388138,
0.0016419888706877828,
-0.017055200412869453,
-0.0189310722053051,
0.08667794615030289,
-0.009606841951608658,
-0.052420370280742645,
0.06921865791082382,
0.005285677965730429,
-0.09584051370620728,
0.019887562841176987,
-0.10231555253267288,
0.10896949470043182,
0.13623379170894623,
-0.08942748606204987,
-0.0644773542881012,
0.004688296467065811,
-0.04896199330687523,
-0.03929060325026512,
-0.022713778540492058,
0.026318268850445747,
0.21256527304649353,
-0.0069475010968744755,
0.13409098982810974,
-0.07661256194114685,
-0.027791423723101616,
0.020112866535782814,
-0.027801282703876495,
0.01579550839960575,
0.13378068804740906,
0.07523898780345917,
-0.0459553524851799,
0.1130218431353569,
0.12284918129444122,
-0.0921902284026146,
0.11532635986804962,
-0.05051198601722717,
-0.08608869463205338,
-0.012230200693011284,
-0.009842203930020332,
-0.014677037484943867,
0.0884213000535965,
-0.16004596650600433,
-0.014068754389882088,
0.02761141024529934,
0.03299546614289284,
0.02802380919456482,
-0.22431392967700958,
-0.015681566670536995,
0.027355432510375977,
-0.08466802537441254,
-0.03839317709207535,
-0.00370297790504992,
0.012063791044056416,
0.09932245314121246,
0.006916171871125698,
-0.10644707083702087,
0.010644274763762951,
-0.01504609826952219,
-0.08448288589715958,
0.19136004149913788,
-0.11869223415851593,
-0.17608483135700226,
-0.1055072546005249,
-0.07890511304140091,
-0.034735631197690964,
0.005608123727142811,
0.0770675465464592,
-0.09955030679702759,
-0.027657965198159218,
-0.062128275632858276,
0.03598662093281746,
-0.04032482951879501,
0.03395189344882965,
0.004453333094716072,
-0.004866380710154772,
0.07416088879108429,
-0.10959555208683014,
-0.011079604737460613,
-0.04831407964229584,
-0.029834207147359848,
0.0377819649875164,
0.04425179585814476,
0.1042039692401886,
0.1648920625448227,
0.007112800609320402,
0.02636878564953804,
-0.04109620675444603,
0.2128855139017105,
-0.06615755707025528,
-0.04413606971502304,
0.13915206491947174,
0.004715675488114357,
0.04354004189372063,
0.12295491248369217,
0.0495663620531559,
-0.10096019506454468,
0.005704834591597319,
0.01324777863919735,
-0.022659089416265488,
-0.21459868550300598,
-0.05736858770251274,
-0.04668011888861656,
-0.025746336206793785,
0.09777451306581497,
0.021446889266371727,
0.014686505310237408,
0.019797157496213913,
0.03955630213022232,
0.006149102468043566,
-0.003639834700152278,
0.05815904960036278,
0.14880269765853882,
0.020213069394230843,
0.11648187786340714,
-0.017638666555285454,
-0.05133410543203354,
0.027825912460684776,
-0.013268968090415001,
0.22386260330677032,
0.01672527566552162,
0.13018107414245605,
0.052962593734264374,
0.1887262463569641,
-0.0001517821365268901,
0.07223599404096603,
0.01613353006541729,
-0.014167898334562778,
-0.00091053411597386,
-0.0529714897274971,
-0.04595397040247917,
0.03143344819545746,
0.03062586858868599,
0.027826229110360146,
-0.12754318118095398,
-0.04856959730386734,
0.03959937021136284,
0.32803788781166077,
0.04949910193681717,
-0.29790428280830383,
-0.08924518525600433,
-0.0032942809630185366,
-0.08196206390857697,
-0.026481064036488533,
0.048947833478450775,
0.08436234295368195,
-0.10050928592681885,
0.039846695959568024,
-0.04327276349067688,
0.09168583154678345,
-0.03682022914290428,
0.04522798955440521,
0.04141689091920853,
0.07334625720977783,
0.022156549617648125,
0.071853406727314,
-0.32167160511016846,
0.2918665409088135,
-0.008140371181070805,
0.07411365956068039,
-0.0631277859210968,
-0.0022137160412967205,
0.03165636956691742,
0.00642104959115386,
0.08967991173267365,
-0.015664706006646156,
-0.07201132923364639,
-0.19135382771492004,
-0.05675370618700981,
0.033270880579948425,
0.12811212241649628,
-0.011227085255086422,
0.10249166190624237,
-0.03318309411406517,
-0.007897450588643551,
0.07534845173358917,
-0.053543105721473694,
-0.10182243585586548,
-0.08110704272985458,
-0.011334933340549469,
0.08261276036500931,
0.04559240862727165,
-0.06739717721939087,
-0.09921471029520035,
-0.11578073352575302,
0.12372016906738281,
-0.04599222540855408,
-0.02541561797261238,
-0.10637976229190826,
0.054941561073064804,
0.12702661752700806,
-0.07943735271692276,
0.05190179869532585,
0.028024032711982727,
0.0712893158197403,
0.034151557832956314,
-0.06218019500374794,
0.11473037302494049,
-0.0771733820438385,
-0.1693318784236908,
-0.03355863690376282,
0.14437620341777802,
0.039470117539167404,
0.06947541981935501,
-0.004913492128252983,
0.025454387068748474,
-0.04844537377357483,
-0.07960421591997147,
0.03246130421757698,
0.032718732953071594,
0.021593330428004265,
0.04849887266755104,
-0.05296111851930618,
-0.012965543195605278,
-0.0982983261346817,
-0.04125100001692772,
0.21093761920928955,
0.2340722680091858,
-0.09103167802095413,
0.06578220427036285,
0.07471191883087158,
-0.052923060953617096,
-0.18144002556800842,
-0.0012242450611665845,
0.07885374873876572,
0.003054609289392829,
0.012124809436500072,
-0.19463235139846802,
0.08054467290639877,
0.06805180013179779,
-0.02006104402244091,
0.07533130049705505,
-0.3217855393886566,
-0.1431434601545334,
0.15110430121421814,
0.11892252415418625,
0.07285846024751663,
-0.131866917014122,
-0.037744347006082535,
-0.029811324551701546,
-0.09589844197034836,
0.08959367126226425,
-0.05323217436671257,
0.14216241240501404,
-0.016996638849377632,
0.10895943641662598,
0.014034458436071873,
-0.04901143163442612,
0.12070128321647644,
0.025116026401519775,
0.06565491855144501,
-0.04286331310868263,
0.014997263438999653,
-0.010155265219509602,
-0.03270411491394043,
0.04132973775267601,
-0.06668185442686081,
0.03808734565973282,
-0.08565904200077057,
-0.03461330011487007,
-0.10087945312261581,
0.03669453784823418,
-0.007612545508891344,
-0.060114774852991104,
-0.019119642674922943,
0.022781677544116974,
0.06443709880113602,
-0.004403877072036266,
0.0998106449842453,
-0.03539252653717995,
0.12403921782970428,
0.11218099296092987,
0.07810982316732407,
-0.050937652587890625,
-0.06019802764058113,
-0.013419887982308865,
-0.02755453996360302,
0.05476200580596924,
-0.10852596908807755,
0.03018873743712902,
0.13821253180503845,
0.03918860852718353,
0.14615927636623383,
0.06862816959619522,
-0.04684003069996834,
0.010286137461662292,
0.04175058379769325,
-0.13021130859851837,
-0.11702387034893036,
-0.007461312226951122,
-0.022023439407348633,
-0.07304158806800842,
0.04127790033817291,
0.10660155117511749,
-0.06334511190652847,
-0.009978439658880234,
-0.019531618803739548,
0.021044645458459854,
-0.07747683674097061,
0.21851979196071625,
0.06389982998371124,
0.04923465847969055,
-0.12016280740499496,
0.08801054954528809,
0.04309127852320671,
-0.11304610222578049,
0.03850569948554039,
0.07815948128700256,
-0.08217443525791168,
-0.0406922772526741,
0.04978908598423004,
0.10730410367250443,
-0.047023724764585495,
-0.07633549720048904,
-0.11490257829427719,
-0.14433051645755768,
0.09880667179822922,
0.14568249881267548,
0.0768970176577568,
0.0135317612439394,
-0.06266062706708908,
0.012972865253686905,
-0.10371944308280945,
0.07432200014591217,
0.048521917313337326,
0.03933258354663849,
-0.13260571658611298,
0.1636660397052765,
0.016284728422760963,
0.05187026783823967,
-0.01640278659760952,
-0.0006599184707738459,
-0.10012602061033249,
0.047004081308841705,
-0.1389760673046112,
-0.019806938245892525,
-0.041208092123270035,
0.009734118357300758,
0.009803208522498608,
-0.07464385777711868,
-0.05205982178449631,
0.035694923251867294,
-0.1242208182811737,
-0.03227053955197334,
0.0058090947568416595,
0.05505897104740143,
-0.12452763319015503,
-0.041783034801483154,
0.027305087074637413,
-0.07426825910806656,
0.08870203793048859,
0.0921507328748703,
-0.020453350618481636,
0.08251656591892242,
-0.14609579741954803,
-0.027117164805531502,
0.06359093636274338,
0.010572025552392006,
0.038884639739990234,
-0.13131684064865112,
-0.01717139407992363,
0.008783725090324879,
0.05996290221810341,
0.01588044874370098,
0.08667177706956863,
-0.12939222157001495,
-0.013048248365521431,
-0.03545393794775009,
-0.06237805634737015,
-0.06400441378355026,
0.023833028972148895,
0.0763467475771904,
0.044297002255916595,
0.1721026450395584,
-0.09485945850610733,
0.046366143971681595,
-0.18148285150527954,
0.007139427587389946,
-0.04386930167675018,
-0.10022716969251633,
-0.09264350682497025,
-0.05528810992836952,
0.08444565534591675,
-0.0516149178147316,
0.13178515434265137,
-0.014814297668635845,
0.06851547211408615,
0.02016395889222622,
-0.06731540709733963,
-0.015555203892290592,
0.03683215007185936,
0.25478431582450867,
0.03881572559475899,
-0.030938562005758286,
0.07637147605419159,
0.042827874422073364,
0.0901816114783287,
0.1565595269203186,
0.16163262724876404,
0.19396580755710602,
0.03979070857167244,
0.10042732208967209,
0.05856149643659592,
-0.07854409515857697,
-0.14557121694087982,
0.058709874749183655,
-0.033246394246816635,
0.11141028255224228,
-0.03182219713926315,
0.26981663703918457,
0.06390057504177094,
-0.1778537929058075,
0.06560040265321732,
-0.04235566779971123,
-0.0878184512257576,
-0.11815973371267319,
-0.02669491246342659,
-0.08402577042579651,
-0.1773207038640976,
0.0034554768353700638,
-0.10400325804948807,
0.058751340955495834,
0.08130801469087601,
0.03202396631240845,
-0.0032399483025074005,
0.13450433313846588,
0.013847590424120426,
-0.014809474349021912,
0.093037910759449,
-0.006920274347066879,
-0.043640974909067154,
-0.09560269117355347,
-0.08405846357345581,
0.0328286848962307,
-0.013411151245236397,
0.04665715992450714,
-0.04045923054218292,
-0.1138605996966362,
0.030348720028996468,
-0.04383763298392296,
-0.08831534534692764,
0.018857821822166443,
0.015841837972402573,
0.07967917621135712,
0.07242190092802048,
0.036442503333091736,
-0.03307068347930908,
-0.0008616580162197351,
0.2520926594734192,
-0.10570762306451797,
-0.1278390735387802,
-0.09709878265857697,
0.2800677418708801,
0.04233686253428459,
0.0002712291607167572,
0.013609941117465496,
-0.066288523375988,
-0.02060963213443756,
0.24256475269794464,
0.1763346791267395,
-0.0703386664390564,
-0.0018385422881692648,
-0.0033380487002432346,
-0.005912282504141331,
-0.03835572302341461,
0.08927375078201294,
0.16485904157161713,
0.05525321140885353,
-0.07874341309070587,
-0.03010028786957264,
-0.051593977957963943,
-0.028633100911974907,
-0.06581707298755646,
0.0804935097694397,
0.009907101280987263,
-0.028155768290162086,
-0.03800179064273834,
0.08525889366865158,
-0.09560325741767883,
-0.12164413183927536,
0.008403930813074112,
-0.19293686747550964,
-0.15553350746631622,
-0.01582149602472782,
0.0749862864613533,
0.04190906882286072,
0.03359493985772133,
-0.021027803421020508,
0.0068540447391569614,
0.08267718553543091,
-0.0018522002501413226,
-0.07647306472063065,
-0.08040029555559158,
0.09397725760936737,
-0.10529306530952454,
0.16909795999526978,
-0.03760216385126114,
0.07472165673971176,
0.1078273355960846,
0.09532734751701355,
-0.06239334121346474,
0.10418820381164551,
0.04974668473005295,
-0.10773473232984543,
0.0518687479197979,
0.14015519618988037,
-0.038972556591033936,
0.10184940695762634,
0.0337015725672245,
-0.13187533617019653,
0.028096824884414673,
-0.04469085857272148,
-0.061432864516973495,
-0.05133599787950516,
-0.04634716361761093,
-0.054904770106077194,
0.11859188973903656,
0.17850179970264435,
-0.05528480187058449,
0.007461500354111195,
-0.06970515102148056,
0.00523660983890295,
0.03272905573248863,
0.03678598254919052,
-0.06776710599660873,
-0.253328412771225,
0.009306994266808033,
0.021735869348049164,
0.005806004162877798,
-0.23738057911396027,
-0.08805045485496521,
0.016339562833309174,
-0.0619894377887249,
-0.06760420650243759,
0.10475700348615646,
0.06829410791397095,
0.03250791132450104,
-0.04128411412239075,
-0.09746753424406052,
-0.03717793896794319,
0.1916116625070572,
-0.17672033607959747,
-0.07220331579446793
] |
null | null | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | Kush/DialoGPT-small-harrypotter | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model | [
"# Harry Potter DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] | [
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null | transformers | This is **KOREAN** Bert Masked LM pretrained model adapted in **BEAUTY** domain. (BertForMaskedLM)
About 60,000 reviews were used.
It was fine-tuned based on _beomi/kcbert-base_ model weights.
Enjoy! | {} | feature-extraction | Kyoungmin/beauty-base-KLCP | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us
| This is KOREAN Bert Masked LM pretrained model adapted in BEAUTY domain. (BertForMaskedLM)
About 60,000 reviews were used.
It was fine-tuned based on _beomi/kcbert-base_ model weights.
Enjoy! | [] | [
"TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n"
] | [
29
] | [
"passage: TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n"
] | [
-0.0680389553308487,
-0.01353863999247551,
-0.009260591119527817,
0.003671469632536173,
0.13468711078166962,
0.03987877443432808,
-0.0037161505315452814,
0.08307137340307236,
0.06908576935529709,
-0.009869525209069252,
0.10839105397462845,
0.22950756549835205,
-0.03434249758720398,
0.027836797758936882,
-0.06780551373958588,
-0.2686935067176819,
0.08416040241718292,
0.1071663498878479,
-0.04096720367670059,
0.08816211670637131,
0.04718845710158348,
-0.10185960680246353,
0.059242263436317444,
-0.017401615157723427,
-0.13960762321949005,
0.0563788041472435,
0.027032675221562386,
-0.08215486258268356,
0.11170924454927444,
0.02429274097084999,
0.171868696808815,
0.00669759139418602,
-0.10259579122066498,
-0.1729365438222885,
0.024251695722341537,
-0.016173768788576126,
-0.06165656819939613,
0.030105262994766235,
0.07771246135234833,
-0.10020971298217773,
0.020183663815259933,
0.09852731972932816,
0.01621491089463234,
0.024930456653237343,
-0.16311487555503845,
-0.17609833180904388,
-0.05667632818222046,
0.04488549754023552,
0.011052189394831657,
0.0923970639705658,
0.017688613384962082,
0.13918437063694,
-0.16459354758262634,
0.0862865000963211,
0.20043151080608368,
-0.2896837890148163,
0.005618520081043243,
0.0522591732442379,
0.113655686378479,
0.001720004715025425,
-0.01478634774684906,
0.03469560667872429,
-0.004047111142426729,
0.02000080794095993,
-0.006694010924547911,
-0.09492320567369461,
-0.04227415472269058,
0.06858084350824356,
-0.10082858055830002,
-0.0836600661277771,
0.20075856149196625,
-0.01962403394281864,
0.051189083606004715,
0.03468365967273712,
-0.10027022659778595,
-0.05228475481271744,
-0.027127007022500038,
-0.0054167937487363815,
-0.017817793413996696,
0.05698308348655701,
0.01829976961016655,
-0.01984529010951519,
-0.10944897681474686,
0.021823197603225708,
-0.20916391909122467,
0.2347520887851715,
0.014309053309261799,
0.08769264817237854,
-0.20601022243499756,
0.05224275588989258,
-0.09036950021982193,
-0.09105360507965088,
0.021519731730222702,
-0.08566883206367493,
0.041528768837451935,
0.002083035884425044,
-0.07495059072971344,
0.017543062567710876,
0.047651853412389755,
0.14729511737823486,
-0.014067264273762703,
0.025938095524907112,
0.0008498468669131398,
0.1009284183382988,
0.030102098360657692,
0.13388332724571228,
0.011944600380957127,
-0.02840438298881054,
0.01732935756444931,
-0.1329825222492218,
-0.036133281886577606,
-0.051770441234111786,
-0.12022732943296432,
-0.047808099538087845,
0.045948151499032974,
0.08258914202451706,
0.022342177107930183,
0.005320239346474409,
-0.08945681154727936,
-0.015853654593229294,
0.059366438537836075,
-0.07202005386352539,
0.0043303403072059155,
-0.000528825621586293,
0.03741177171468735,
0.18082594871520996,
-0.029030190780758858,
-0.03096860460937023,
-0.04084136709570885,
0.09087810665369034,
-0.08448517322540283,
0.014714745804667473,
-0.05083002150058746,
-0.062201209366321564,
0.03654183819890022,
-0.16100244224071503,
0.057043030858039856,
-0.14560800790786743,
-0.09376321732997894,
0.039873939007520676,
0.05335168540477753,
-0.002770928665995598,
0.03388800472021103,
0.0009603195358067751,
-0.018828926607966423,
-0.007003897335380316,
-0.06842755526304245,
-0.08064226061105728,
-0.06478630751371384,
0.09923757612705231,
0.00029352123965509236,
0.04672098159790039,
-0.12116226553916931,
0.08672743290662766,
-0.09672944992780685,
0.03750492259860039,
-0.16180843114852905,
-0.008461673744022846,
-0.02150292508304119,
0.16466088593006134,
-0.005621116608381271,
-0.07621955871582031,
-0.11902043223381042,
0.047062430530786514,
-0.035698723047971725,
0.14959093928337097,
-0.05622879043221474,
-0.13087990880012512,
0.20922459661960602,
-0.11588329821825027,
-0.1731778234243393,
0.05696214735507965,
-0.008520878851413727,
-0.015484592877328396,
0.06328354775905609,
0.20762446522712708,
0.0946868285536766,
-0.044678352773189545,
0.08127391338348389,
0.1397486925125122,
-0.11663860827684402,
-0.14153334498405457,
0.027016308158636093,
-0.042085859924554825,
-0.07503706961870193,
0.041700031608343124,
0.011108353734016418,
0.09523002058267593,
-0.0771002322435379,
-0.030855905264616013,
-0.01680048368871212,
-0.01671411283314228,
0.08776957541704178,
0.055555809289216995,
0.10667075961828232,
-0.03498975560069084,
0.011802191846072674,
0.03473251312971115,
-0.014134183526039124,
0.0038637330289930105,
0.04732990637421608,
-0.060643456876277924,
0.1918257176876068,
-0.07546142488718033,
0.003813444171100855,
-0.2566893398761749,
-0.06994711607694626,
0.00528657017275691,
0.06658254563808441,
-0.04811577871441841,
0.15633022785186768,
0.09267178922891617,
-0.07167497277259827,
0.016395436599850655,
-0.03712666034698486,
0.08581963181495667,
0.02451246976852417,
-0.033985935151576996,
-0.04179177060723305,
-0.011763811111450195,
-0.07896506786346436,
-0.09305226802825928,
-0.010189443826675415,
-0.01599530130624771,
0.09464821219444275,
0.10299675166606903,
0.01377725787460804,
0.03143538534641266,
-0.06555043905973434,
0.06333392858505249,
-0.022575706243515015,
0.018025120720267296,
0.09356045722961426,
-0.021321585401892662,
-0.06097353622317314,
0.13765394687652588,
-0.094614177942276,
0.3545747399330139,
0.19013811647891998,
-0.3164325952529907,
0.018932169303297997,
-0.04782366380095482,
-0.00977459829300642,
0.036739129573106766,
0.09889727830886841,
-0.029969865456223488,
0.09724640101194382,
0.027196763083338737,
0.13298392295837402,
-0.030379584059119225,
-0.03850182890892029,
0.0005746455863118172,
-0.02981492318212986,
-0.05865705385804176,
0.07086624205112457,
0.07261653989553452,
-0.15486454963684082,
0.16527150571346283,
0.26989927887916565,
0.03292781859636307,
0.12406831979751587,
-0.0661960020661354,
-0.0376574881374836,
0.019656166434288025,
0.009992681443691254,
-0.040347639471292496,
0.046730417758226395,
-0.2736447751522064,
-0.052413634955883026,
0.0692915990948677,
0.02405851148068905,
0.0952937975525856,
-0.12900009751319885,
-0.04021916538476944,
0.03706459701061249,
0.014877407811582088,
-0.08638262748718262,
0.0609026663005352,
0.05720122531056404,
0.05891529843211174,
0.019035693258047104,
-0.06259000301361084,
0.10445338487625122,
0.00871498417109251,
-0.04073162376880646,
0.17662526667118073,
-0.123042032122612,
-0.2620071768760681,
-0.12311730533838272,
-0.15138909220695496,
0.015030097216367722,
0.01922003924846649,
0.08840186893939972,
-0.06919815391302109,
-0.031516414135694504,
0.06873156130313873,
0.03529629856348038,
-0.14966927468776703,
0.029128234833478928,
-0.07160747051239014,
0.03280840069055557,
-0.07802597433328629,
-0.0789455845952034,
-0.06994608044624329,
-0.06953756511211395,
-0.009727881290018559,
0.09203583002090454,
-0.1189604178071022,
0.10165828466415405,
0.13272233307361603,
0.0363771878182888,
0.08464014530181885,
-0.008833634667098522,
0.1828852891921997,
-0.05849464610219002,
-0.0809895321726799,
0.21144624054431915,
-0.04404043033719063,
0.0901838093996048,
0.09279557317495346,
0.039735835045576096,
-0.06724223494529724,
-0.04217485338449478,
-0.06174955144524574,
-0.10350338369607925,
-0.18064221739768982,
-0.09564316272735596,
-0.14665037393569946,
0.014125813730061054,
0.01768936589360237,
0.03677418455481529,
0.08474641293287277,
0.06241949275135994,
0.0594039149582386,
-0.04961218684911728,
-0.04142293706536293,
0.02869315631687641,
0.21291007101535797,
-0.022173935547471046,
0.09922134131193161,
-0.0371907539665699,
-0.0987340658903122,
0.07145325094461441,
0.03712000325322151,
0.24907712638378143,
0.10089749097824097,
0.035659585148096085,
0.0526948980987072,
0.17874057590961456,
0.13417154550552368,
0.17221486568450928,
-0.020648453384637833,
-0.02667684480547905,
-0.01199409831315279,
0.002160619245842099,
-0.05968237295746803,
0.013288183137774467,
0.17365947365760803,
-0.1238851547241211,
-0.08988935500383377,
-0.2173749804496765,
0.07477087527513504,
0.06237781420350075,
0.031422216445207596,
-0.18417076766490936,
0.003690242301672697,
0.0649406686425209,
-0.00521667068824172,
-0.04713871702551842,
0.07263871282339096,
-0.017426704987883568,
-0.11952719837427139,
0.034282006323337555,
-0.05946141108870506,
0.10967221111059189,
-0.012345034629106522,
0.07638204097747803,
-0.026442036032676697,
-0.12944473326206207,
0.06673547625541687,
0.07164321839809418,
-0.19538965821266174,
0.2909071147441864,
-0.012455099262297153,
-0.06202757731080055,
-0.04829925298690796,
0.005193088203668594,
0.012985559180378914,
0.160504549741745,
0.1260947436094284,
0.022533811628818512,
-0.0578787624835968,
-0.1674206554889679,
0.04693714529275894,
0.028735041618347168,
0.13825884461402893,
-0.05239944905042648,
-0.014248479157686234,
-0.02063719928264618,
-0.011673306114971638,
-0.020329756662249565,
0.05532294511795044,
0.08330490440130234,
-0.14671963453292847,
0.052545733749866486,
-0.06558147072792053,
0.0409327894449234,
-0.012272844091057777,
-0.00765871349722147,
-0.047818366438150406,
0.14944994449615479,
-0.0652761161327362,
-0.048871852457523346,
-0.1053028553724289,
-0.10936398059129715,
0.12579044699668884,
-0.0932580903172493,
0.09765078127384186,
-0.06662343442440033,
-0.03391622006893158,
-0.06140284985303879,
-0.20473268628120422,
0.1305530071258545,
-0.09915255755186081,
0.04976314306259155,
-0.038567788898944855,
0.181097149848938,
-0.060539573431015015,
0.005303262732923031,
0.026644282042980194,
0.01667754538357258,
-0.11381230503320694,
-0.08549114316701889,
-0.015935804694890976,
-0.016310077160596848,
0.0518048033118248,
0.06849704682826996,
-0.062081992626190186,
0.04358658939599991,
0.00031327479518949986,
0.06365568935871124,
0.24294216930866241,
0.14630047976970673,
-0.051170576363801956,
0.11532986164093018,
0.14450006186962128,
-0.031972140073776245,
-0.27944883704185486,
-0.06474616378545761,
-0.13329371809959412,
-0.03996938094496727,
-0.0014406027039512992,
-0.13789600133895874,
0.14261819422245026,
0.044858112931251526,
-0.006724648643285036,
0.11656755954027176,
-0.24167363345623016,
-0.05383818969130516,
0.16473250091075897,
0.01709013618528843,
0.44809144735336304,
-0.11115505546331406,
-0.09658455848693848,
0.012760866433382034,
-0.2474503070116043,
0.10122992098331451,
0.014938225969672203,
0.0646388828754425,
-0.02196873165667057,
0.05254409834742546,
0.0362543947994709,
-0.0707058236002922,
0.1153612732887268,
0.036213282495737076,
0.044825151562690735,
-0.05749816447496414,
-0.12735342979431152,
0.05762515589594841,
-0.0197214987128973,
-0.0027702997904270887,
0.06281710416078568,
0.01907024346292019,
-0.15264934301376343,
-0.028649672865867615,
-0.1261925846338272,
0.07312501221895218,
0.036964092403650284,
-0.035512425005435944,
0.003519417019560933,
-0.027797704562544823,
-0.003173819277435541,
0.024623822420835495,
0.2571793794631958,
-0.02694554440677166,
0.12917625904083252,
0.020508399233222008,
0.05970452353358269,
-0.2093375027179718,
-0.1727571189403534,
-0.06916570663452148,
-0.04265722632408142,
0.09737759083509445,
-0.03340640291571617,
0.05482974648475647,
0.14861060678958893,
-0.01582632027566433,
0.028938481584191322,
0.1354859471321106,
0.012413929216563702,
-0.017079832032322884,
0.12271753698587418,
-0.1915288269519806,
-0.02804369106888771,
-0.03969001770019531,
-0.08020538836717606,
0.08018501847982407,
0.07493545114994049,
0.09324722737073898,
0.06881885975599289,
-0.012770483270287514,
-0.0276129599660635,
-0.03462065011262894,
-0.07952789962291718,
0.0472898855805397,
0.03613487631082535,
0.03859974071383476,
-0.13946987688541412,
0.03557739406824112,
-0.016765620559453964,
-0.2670823633670807,
-0.05293544381856918,
0.07872454822063446,
-0.11887070536613464,
-0.10548925399780273,
-0.08829343318939209,
0.11399594694375992,
-0.1680411845445633,
-0.027427881956100464,
-0.03792887181043625,
-0.12483807653188705,
0.07226365804672241,
0.21823963522911072,
0.10136004537343979,
0.1148689016699791,
-0.045093145221471786,
0.0007684463635087013,
0.024442041292786598,
-0.0601712167263031,
0.01604810729622841,
0.016433462500572205,
-0.0998239740729332,
-0.0008209992665797472,
-0.020151354372501373,
0.15397760272026062,
-0.0796075239777565,
-0.06533236801624298,
-0.15189164876937866,
0.07058283686637878,
-0.0721585750579834,
-0.08680808544158936,
-0.1218729019165039,
-0.05743737146258354,
0.024261746555566788,
-0.05391566827893257,
-0.03601766377687454,
-0.021656449884176254,
-0.14623980224132538,
0.04485916718840599,
0.010332317091524601,
-0.005168382078409195,
-0.06595148891210556,
-0.030757123604416847,
0.11516020447015762,
-0.06426966190338135,
0.07983355224132538,
0.19698777794837952,
-0.06767240911722183,
0.13421446084976196,
-0.12187573313713074,
-0.17356571555137634,
0.10550028830766678,
0.028678571805357933,
0.08807408809661865,
0.07333525270223618,
0.031008796766400337,
0.07151902467012405,
-0.0006563866045325994,
0.03527871519327164,
-0.026205046102404594,
-0.13518503308296204,
-0.022110003978013992,
0.008841688744723797,
-0.18046444654464722,
-0.03447321802377701,
-0.07454892992973328,
0.15258778631687164,
0.02735028602182865,
0.11539342999458313,
0.016432136297225952,
0.10955704003572464,
-0.04023033380508423,
-0.0037069369573146105,
0.006354177836328745,
-0.1867031753063202,
0.027574164792895317,
-0.07603352516889572,
0.009099473245441914,
0.004562267567962408,
0.26294976472854614,
-0.016851287335157394,
0.06874511390924454,
0.019947905093431473,
0.0317598320543766,
0.06296208500862122,
0.029733985662460327,
0.2593200206756592,
0.1191045418381691,
-0.04764638841152191,
-0.09192530065774918,
0.09628601372241974,
0.0015705273253843188,
0.0005639182054437697,
0.12658140063285828,
0.12427230179309845,
0.03164798021316528,
0.10732870548963547,
0.03856581449508667,
0.04636436328291893,
-0.1138598844408989,
-0.24980735778808594,
0.006955720484256744,
0.07651596516370773,
0.030513912439346313,
0.09611864387989044,
0.11702555418014526,
-0.040339987725019455,
0.09750796854496002,
-0.006009524688124657,
-0.03278311714529991,
-0.1306307315826416,
-0.048490166664123535,
-0.05248153209686279,
-0.1226581484079361,
0.010182006284594536,
-0.07812222838401794,
0.0005351413274183869,
0.15948551893234253,
0.02424205094575882,
-0.019147196784615517,
0.14117267727851868,
0.03290129452943802,
-0.05950130149722099,
0.0636630430817604,
-0.017126450315117836,
0.0027530856896191835,
0.04465898126363754,
-0.016934748739004135,
-0.11656554788351059,
-0.08354712277650833,
-0.050883643329143524,
0.024923330172896385,
-0.09700026363134384,
0.004247597418725491,
-0.11320921033620834,
-0.11535467207431793,
-0.04546694457530975,
0.048496924340724945,
-0.07876671850681305,
0.1265949159860611,
-0.016160227358341217,
0.0028664041310548782,
0.009360520169138908,
0.15711569786071777,
-0.07741065323352814,
-0.012710070237517357,
-0.020163269713521004,
0.21036958694458008,
0.0989537462592125,
0.10912171006202698,
-0.0009331207838840783,
0.015002057887613773,
-0.05219440162181854,
0.29989543557167053,
0.2444397360086441,
-0.028167791664600372,
0.04460100829601288,
0.0873914435505867,
0.038083989173173904,
0.0968138724565506,
0.09690817445516586,
0.10102183371782303,
0.3200364112854004,
-0.07682528346776962,
-0.045907747000455856,
-0.03448496013879776,
-0.00849792081862688,
-0.09551121294498444,
0.035898253321647644,
0.07948186993598938,
-0.06152723729610443,
-0.07321841269731522,
0.10746033489704132,
-0.16515599191188812,
0.11578583717346191,
0.11013679206371307,
-0.20921821892261505,
-0.049416057765483856,
-0.07384659349918365,
0.17109091579914093,
-0.0024887267500162125,
0.1266387403011322,
-0.04354546591639519,
-0.13439299166202545,
0.06285285204648972,
0.048469748347997665,
-0.2756679356098175,
-0.0980004072189331,
0.11060073226690292,
0.024665147066116333,
0.007802571170032024,
-0.02169145829975605,
-0.004367694724351168,
0.06355959177017212,
0.09860705584287643,
-0.0003893781395163387,
0.02548590861260891,
0.03634477034211159,
-0.10912884771823883,
-0.08365445584058762,
0.008976423181593418,
0.008719995617866516,
-0.08448972553014755,
0.023103585466742516,
-0.19627802073955536,
0.044169794768095016,
-0.0157186109572649,
-0.044235143810510635,
0.003991053905338049,
-0.029606744647026062,
-0.059212785214185715,
0.03327903896570206,
0.08572027087211609,
0.023666096851229668,
-0.03819211944937706,
-0.05403012037277222,
0.0019490038976073265,
0.07524687796831131,
-0.06805311143398285,
-0.173606276512146,
-0.04840735346078873,
-0.08657971769571304,
0.0992082953453064,
-0.05511601269245148,
-0.0752784013748169,
-0.04562166705727577,
-0.03257971256971359,
0.06480588763952255,
-0.12087775766849518,
0.04490482062101364,
0.03911556303501129,
0.041156258434057236,
0.0160878524184227,
-0.035335659980773926,
0.044597625732421875,
0.07137373089790344,
-0.11931539326906204,
-0.07447930425405502
] |
null | null | transformers | **Second** BertForMaskedLM pretrained model in **KOREAN Beauty** domain.
About 120,000 reviews were used.
It was trained based on _beomi/kcbert-base_ .
Check out _Kyoungmin/beauty-base-KLCP_ for smaller model !! | {} | fill-mask | Kyoungmin/beauty-base-KLCP2 | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| Second BertForMaskedLM pretrained model in KOREAN Beauty domain.
About 120,000 reviews were used.
It was trained based on _beomi/kcbert-base_ .
Check out _Kyoungmin/beauty-base-KLCP_ for smaller model !! | [] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
36
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.06357412785291672,
0.00690077617764473,
-0.008467365056276321,
0.020235946401953697,
0.12968459725379944,
0.03302915394306183,
0.09807441383600235,
0.07729126513004303,
0.10806342214345932,
-0.009440856985747814,
0.15823203325271606,
0.20325462520122528,
-0.03393663093447685,
0.18361465632915497,
-0.065280981361866,
-0.2617916762828827,
0.06820162385702133,
0.06229938939213753,
-0.06546879559755325,
0.11254725605249405,
0.05687131732702255,
-0.0869792252779007,
0.07119062542915344,
-0.02728140354156494,
-0.10962541401386261,
0.04230697825551033,
0.05219662934541702,
-0.10162917524576187,
0.12035926431417465,
0.021910926327109337,
0.2123224288225174,
0.016079774126410484,
-0.07168376445770264,
-0.09227655827999115,
0.046415410935878754,
-0.0007212258642539382,
-0.07019324600696564,
0.04336128383874893,
0.01872076466679573,
-0.07103253155946732,
-0.03834306448698044,
0.05254431441426277,
0.027913549914956093,
0.0400172658264637,
-0.146876260638237,
-0.1195456013083458,
-0.012633946724236012,
0.03010692074894905,
0.04268079623579979,
0.060200124979019165,
0.019220897927880287,
0.21056215465068817,
-0.12365733087062836,
0.10502377897500992,
0.15344665944576263,
-0.3129054605960846,
0.002867099829018116,
0.06838289648294449,
0.07103738188743591,
-0.04424971342086792,
-0.023489616811275482,
0.05856989696621895,
0.01071459986269474,
0.022148624062538147,
0.044038139283657074,
-0.07715853303670883,
-0.044328734278678894,
0.01152737345546484,
-0.0813736543059349,
-0.059741389006376266,
0.16159793734550476,
-0.04301191866397858,
0.04482201114296913,
0.012044340372085571,
-0.13646052777767181,
-0.04112602770328522,
-0.0220506452023983,
-0.0066766394302248955,
-0.034124407917261124,
0.043702688068151474,
-0.030891025438904762,
-0.01450628973543644,
-0.11146465688943863,
0.02620311640202999,
-0.2388714849948883,
0.25444263219833374,
0.025913868099451065,
0.06962989270687103,
-0.19036757946014404,
0.04825044423341751,
-0.032656311988830566,
-0.12202991545200348,
0.05392675846815109,
-0.09348990768194199,
0.023280160501599312,
-0.004289025440812111,
-0.06674729287624359,
-0.024281397461891174,
0.07810400426387787,
0.19070357084274292,
0.07175330817699432,
0.038729287683963776,
0.022616418078541756,
0.10197576135396957,
0.015252627432346344,
0.0927167534828186,
0.02304348163306713,
-0.03693375736474991,
0.058425456285476685,
-0.11234977096319199,
0.02645397186279297,
-0.06413000077009201,
-0.13045111298561096,
-0.03655298054218292,
0.026817962527275085,
0.07910523563623428,
0.039121128618717194,
0.05921967700123787,
-0.09775126725435257,
-0.00039136706618592143,
0.10266957432031631,
-0.07596733421087265,
0.011552278883755207,
-0.012669426389038563,
0.05071375519037247,
0.10554905235767365,
0.019699934870004654,
-0.013951314613223076,
-0.02595921792089939,
0.12606576085090637,
-0.07414942234754562,
-0.0338914580643177,
-0.057671189308166504,
-0.0717587098479271,
0.04045988991856575,
-0.12276265770196915,
0.03537328913807869,
-0.18295785784721375,
-0.12786880135536194,
0.05937539413571358,
0.05743318796157837,
0.0075002796947956085,
-0.02198064886033535,
0.027785688638687134,
0.0016502209473401308,
0.014095489867031574,
-0.051991820335388184,
-0.05198881775140762,
-0.03936923295259476,
0.10392222553491592,
0.01174288708716631,
0.12164439260959625,
-0.12003052234649658,
0.04834338277578354,
-0.08534543961286545,
0.014317753724753857,
-0.15386703610420227,
-0.04163011908531189,
-0.028065448626875877,
0.1477208137512207,
-0.0017313070129603148,
-0.044967345893383026,
-0.1107422336935997,
0.03536098450422287,
-0.008266955614089966,
0.174587219953537,
-0.0640043392777443,
-0.13445088267326355,
0.238468199968338,
-0.10142715275287628,
-0.15124346315860748,
0.08353633433580399,
0.00263609504327178,
-0.00937309768050909,
0.05675121024250984,
0.109283447265625,
0.03876260668039322,
-0.14184610545635223,
0.0926179513335228,
0.11292947828769684,
-0.13638317584991455,
-0.12760622799396515,
0.022435644641518593,
-0.00732642924413085,
-0.12322323024272919,
0.04600539803504944,
0.07860185950994492,
0.1112794280052185,
-0.07251705229282379,
-0.04695776477456093,
-0.01390511728823185,
-0.03809646517038345,
0.1488271951675415,
0.03689313679933548,
0.09978006780147552,
-0.07845763862133026,
-0.02166028693318367,
-0.028704503551125526,
-0.008114258758723736,
0.06035853177309036,
0.038866739720106125,
-0.08729325234889984,
0.1360790729522705,
-0.0566742941737175,
0.010620499961078167,
-0.180439755320549,
-0.12009736150503159,
-0.0016330704092979431,
0.05382363870739937,
-0.027322817593812943,
0.12601551413536072,
0.11395162343978882,
-0.03539265692234039,
-0.007137839682400227,
-0.03099343180656433,
0.09945479035377502,
0.025088751688599586,
-0.03798593953251839,
-0.0885278731584549,
0.007986658252775669,
-0.08452948927879333,
-0.014333197847008705,
0.01457307767122984,
0.002566321985796094,
0.00016168280853889883,
0.13817834854125977,
-0.0010485704988241196,
0.03795786574482918,
-0.05177360028028488,
0.04081299155950546,
-0.034957047551870346,
0.01450793631374836,
0.09004251658916473,
-0.000576441758312285,
-0.06362977623939514,
0.15637962520122528,
-0.14581918716430664,
0.35973721742630005,
0.19387078285217285,
-0.3088320195674896,
-0.016066158190369606,
0.01958218589425087,
-0.01481733750551939,
-0.0028315566014498472,
0.056414127349853516,
-0.015269504860043526,
0.04143389314413071,
0.014644528739154339,
0.15166911482810974,
-0.015120322816073895,
-0.02077334001660347,
0.027502890676259995,
-0.0772947371006012,
-0.04431246966123581,
0.03279697522521019,
0.09859511256217957,
-0.13104848563671112,
0.17962734401226044,
0.2618531882762909,
0.004645867273211479,
0.13293692469596863,
0.01004520058631897,
-0.0017370838904753327,
0.012384308502078056,
-0.03448771312832832,
-0.02204137109220028,
0.036397550255060196,
-0.19078975915908813,
-0.037138842046260834,
0.07815047353506088,
-0.030133357271552086,
0.05545393377542496,
-0.11835511028766632,
-0.03323771432042122,
0.029111113399267197,
0.05119411274790764,
-0.07707978785037994,
0.12659992277622223,
0.04097466543316841,
0.0710253193974495,
0.0037192106246948242,
-0.07951492071151733,
0.11071927845478058,
0.007798798382282257,
-0.038606591522693634,
0.15219268202781677,
-0.13388566672801971,
-0.3540363311767578,
-0.1352192908525467,
-0.186979740858078,
0.010174541734158993,
0.04617423936724663,
0.07225015014410019,
-0.08286191523075104,
-0.05899273604154587,
0.09581182152032852,
-0.003480511251837015,
-0.02892324887216091,
0.06940968334674835,
-0.06169416382908821,
0.011217288672924042,
-0.027349013835191727,
-0.06347832828760147,
-0.07560451328754425,
-0.028934668749570847,
-0.02698061801493168,
0.15005719661712646,
-0.09269136935472488,
0.08664495497941971,
0.13057461380958557,
0.0057759047485888,
0.07016542553901672,
-0.0002483248827047646,
0.18727800250053406,
-0.06556744873523712,
-0.005412220023572445,
0.18072476983070374,
-0.05880381539463997,
0.1026553139090538,
0.1556575745344162,
0.020712751895189285,
-0.05158966779708862,
0.00875561498105526,
-0.05700365826487541,
-0.11636948585510254,
-0.1564129889011383,
-0.11075278371572495,
-0.13123051822185516,
-0.011434734798967838,
0.05559059977531433,
0.04917698726058006,
0.13644592463970184,
0.08514466881752014,
0.03654884546995163,
-0.018586870282888412,
-0.06805557757616043,
0.0498523935675621,
0.17366138100624084,
-0.030056441202759743,
0.1334504783153534,
-0.036830224096775055,
-0.14371523261070251,
0.059510327875614166,
0.0252390094101429,
0.12022719532251358,
0.10808205604553223,
-0.004712763242423534,
0.03895212337374687,
0.16281089186668396,
0.1563887745141983,
0.16660696268081665,
0.025009524077177048,
-0.057338543236255646,
-0.004954719450324774,
-0.009356440976262093,
-0.058457158505916595,
0.02018333598971367,
0.15226905047893524,
-0.1055486798286438,
-0.051534514874219894,
-0.145093634724617,
0.05207017809152603,
0.09619975835084915,
0.06738487631082535,
-0.22444024682044983,
0.012990519404411316,
0.06385935842990875,
0.007989094592630863,
-0.06883342564105988,
0.03757710009813309,
-0.02228686586022377,
-0.13463854789733887,
0.06749572604894638,
-0.05030853673815727,
0.09488040208816528,
0.03667333722114563,
0.07960424572229385,
-0.03426273167133331,
-0.06298200786113739,
0.04128245636820793,
0.0669965147972107,
-0.2517971694469452,
0.2858309745788574,
-0.008294520899653435,
-0.051533956080675125,
-0.08108772337436676,
-0.009787647053599358,
0.04465258866548538,
0.12031106650829315,
0.0992002934217453,
0.032960955053567886,
-0.021231580525636673,
-0.15835201740264893,
-0.012746589258313179,
0.028594577684998512,
0.10843918472528458,
-0.02854795753955841,
-0.016072293743491173,
-0.02141297422349453,
-0.054353177547454834,
-0.007548002991825342,
0.09288700670003891,
0.00021381601982284337,
-0.13055965304374695,
0.0781245231628418,
0.056197553873062134,
0.0030072317458689213,
-0.010090996511280537,
-0.05736343935132027,
-0.11168934404850006,
0.18835410475730896,
-0.02566578984260559,
-0.054508499801158905,
-0.10566588491201401,
-0.11198879778385162,
0.09742310643196106,
-0.10951992124319077,
0.1106313019990921,
-0.09603893011808395,
0.004723524209111929,
-0.09463068842887878,
-0.18368598818778992,
0.1582668572664261,
-0.1269671618938446,
-0.006225429475307465,
-0.07936962693929672,
0.15473303198814392,
-0.0639534443616867,
0.02866891399025917,
0.003773587988689542,
0.028899380937218666,
-0.10591752827167511,
-0.05296826362609863,
0.030782422050833702,
-0.05678727477788925,
0.04187817499041557,
0.044521696865558624,
-0.06555546075105667,
-0.01695936545729637,
0.019335398450493813,
0.04292288422584534,
0.23622342944145203,
0.2353804111480713,
-0.052708715200424194,
0.1417168378829956,
0.1806049793958664,
-0.028383145108819008,
-0.3410240709781647,
-0.11411335319280624,
-0.13666872680187225,
-0.003915437962859869,
0.007809142116457224,
-0.1327342689037323,
0.09345895051956177,
-0.032195452600717545,
-0.04637759178876877,
0.12031539529561996,
-0.15053622424602509,
-0.09246959537267685,
0.2436363250017166,
0.008315314538776875,
0.4863871932029724,
-0.09246446192264557,
-0.06652036309242249,
-0.03995967283844948,
-0.14584210515022278,
0.05183078721165657,
0.024809755384922028,
0.08875752240419388,
-0.015901152044534683,
0.08785346150398254,
0.03374331444501877,
-0.09186475723981857,
0.09677482396364212,
-0.03436388820409775,
0.01234909426420927,
-0.10329624265432358,
-0.09800854325294495,
0.06808411329984665,
-0.01401363592594862,
-0.01322801224887371,
0.015540778636932373,
0.007425607182085514,
-0.04579975828528404,
-0.020523425191640854,
-0.10680554807186127,
0.10987795889377594,
0.03320621699094772,
-0.062224309891462326,
0.03879779577255249,
-0.017917169257998466,
-0.009515928104519844,
0.0034782900474965572,
0.1910327970981598,
-0.008325624279677868,
0.17571797966957092,
0.08782124519348145,
0.0300945732742548,
-0.16413554549217224,
-0.0698731392621994,
-0.050175994634628296,
-0.0846821516752243,
0.08663877099752426,
0.008863678202033043,
0.05756894871592522,
0.11674199998378754,
-0.021469993516802788,
0.040903765708208084,
0.11679863929748535,
0.013281558640301228,
-0.03635825589299202,
0.15106870234012604,
-0.2260168492794037,
0.040877439081668854,
-0.024700431153178215,
-0.002281648339703679,
0.06495176255702972,
0.0602131113409996,
0.08886897563934326,
0.04362958297133446,
-0.03604341670870781,
-0.0080631198361516,
-0.011103777214884758,
-0.059563565999269485,
0.05411487817764282,
0.060502372682094574,
0.05677267909049988,
-0.13078919053077698,
0.0061960369348526,
-0.020739618688821793,
-0.2086004763841629,
-0.016145547851920128,
0.07876262068748474,
-0.12113361060619354,
-0.10942773520946503,
0.0038382872007787228,
0.09838655591011047,
-0.08085829019546509,
-0.03981052711606026,
-0.06243035942316055,
-0.11349830776453018,
0.05747007206082344,
0.2176428735256195,
0.1169067993760109,
0.0780315026640892,
-0.01989174261689186,
-0.01007353700697422,
-0.002601395593956113,
-0.015962328761816025,
0.02512223646044731,
0.033555783331394196,
-0.08247660100460052,
0.01702079549431801,
-0.008670814335346222,
0.16094514727592468,
-0.11036427319049835,
-0.05973701551556587,
-0.1687975972890854,
0.04017099365592003,
-0.06963387876749039,
-0.10318976640701294,
-0.09188957512378693,
-0.07771022617816925,
0.01973199099302292,
-0.07843679189682007,
-0.04138858988881111,
-0.03797203674912453,
-0.1261909008026123,
0.025888055562973022,
0.036669645458459854,
-0.015996644273400307,
-0.06865283101797104,
-0.044388484209775925,
0.13997533917427063,
-0.050470441579818726,
0.06897341459989548,
0.14721760153770447,
-0.08223868906497955,
0.08987827599048615,
-0.11864562332630157,
-0.14169776439666748,
0.09844960272312164,
0.024490095674991608,
0.09209379553794861,
0.06073470786213875,
0.01991713047027588,
0.054184310138225555,
0.03840716555714607,
0.039452992379665375,
0.08403609693050385,
-0.11287132650613785,
0.06809459626674652,
0.011329096741974354,
-0.1869479864835739,
-0.02397647127509117,
-0.09611000120639801,
0.07828033715486526,
0.0018079385627061129,
0.11844782531261444,
-0.0382930189371109,
0.10906048864126205,
-0.0436384454369545,
0.014289634302258492,
-0.02247670851647854,
-0.16372942924499512,
-0.004627579357475042,
-0.048289380967617035,
0.012862684205174446,
-0.013447915203869343,
0.23876222968101501,
-0.024661000818014145,
0.024913061410188675,
0.03820062428712845,
0.0719211995601654,
-0.003087579505518079,
0.0022083136718720198,
0.15241484344005585,
0.09013786166906357,
-0.05284610390663147,
-0.0749572142958641,
0.09104806929826736,
0.019679788500070572,
-0.05150250345468521,
0.13582676649093628,
0.06253648549318314,
0.04935529828071594,
0.09676174819469452,
0.00193702126853168,
0.04410434886813164,
-0.13451460003852844,
-0.2456214725971222,
-0.04142381623387337,
0.06802476942539215,
0.022965481504797935,
0.02864265814423561,
0.12449731677770615,
-0.011933309026062489,
0.057093679904937744,
-0.02881103754043579,
-0.022149965167045593,
-0.1927638053894043,
-0.12258896976709366,
-0.08218653500080109,
-0.07139991223812103,
0.023771436884999275,
-0.02313394285738468,
-0.020754177123308182,
0.09821733087301254,
0.034732282161712646,
-0.026418423280119896,
0.15178021788597107,
-0.003468479262664914,
-0.011058829724788666,
0.016801699995994568,
-0.01001247763633728,
0.0172751322388649,
0.032349079847335815,
-0.03294634073972702,
-0.16857078671455383,
0.004473234061151743,
-0.05259554460644722,
0.0047274017706513405,
-0.08785852044820786,
0.02359730750322342,
-0.09015554189682007,
-0.13330627977848053,
-0.07091958820819855,
0.0264219231903553,
-0.04996372386813164,
0.09263461828231812,
-0.013066912069916725,
0.05031539872288704,
0.0013845227658748627,
0.1200626865029335,
-0.07606708258390427,
-0.09816689789295197,
-0.04547613114118576,
0.1901932656764984,
0.041288163512945175,
0.0920717865228653,
-0.015353480353951454,
0.030952494591474533,
-0.11943032592535019,
0.34167152643203735,
0.314802885055542,
-0.049354273825883865,
0.0750916451215744,
0.054602526128292084,
0.03442682698369026,
0.07451198995113373,
0.1279372125864029,
0.0763775110244751,
0.2879911959171295,
-0.09316780418157578,
-0.04345858469605446,
-0.044293951243162155,
-0.03673816844820976,
-0.1208759993314743,
0.01128399558365345,
0.03953966125845909,
-0.03837299346923828,
-0.0634862631559372,
0.07261399179697037,
-0.17381651699543,
0.12662146985530853,
0.057949863374233246,
-0.21046149730682373,
-0.04841303452849388,
-0.027771536260843277,
0.17428803443908691,
0.017816947773098946,
0.1136963814496994,
-0.03833884000778198,
-0.08398560434579849,
0.062350668013095856,
0.022619010880589485,
-0.20338550209999084,
-0.06756751984357834,
0.10970646142959595,
-0.012227135710418224,
0.05940033122897148,
-0.017002668231725693,
0.031783878803253174,
0.0780811533331871,
0.07013798505067825,
-0.014899644069373608,
0.02075999788939953,
0.023412270471453667,
-0.10955478996038437,
-0.07060349732637405,
0.01478694099932909,
-0.0013840675819665194,
-0.11833599954843521,
0.02185012586414814,
-0.16461415588855743,
0.04151973873376846,
-0.09669603407382965,
-0.027114197611808777,
-0.0026749002281576395,
0.05793723464012146,
-0.04355005547404289,
0.04500356316566467,
0.06464733183383942,
0.018565697595477104,
-0.0383153110742569,
-0.05022261664271355,
-0.011393008753657341,
0.0629846602678299,
-0.11954975128173828,
-0.17594216763973236,
-0.08240210264921188,
-0.07172682136297226,
0.04485165327787399,
-0.010793168097734451,
-0.13988232612609863,
-0.04391428083181381,
-0.10527841746807098,
0.032555706799030304,
-0.15290100872516632,
0.04201599210500717,
0.04696520045399666,
0.04337937757372856,
0.017507996410131454,
-0.04434172064065933,
0.04486740753054619,
0.049446675926446915,
-0.155558243393898,
-0.09162718802690506
] |
null | null | null | No use | {} | null | Kyoungmin/beauty-word2vec | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| No use | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers | This is practice model for kcbert-base with Korean petition data! | {} | fill-mask | Kyoungmin/kcbert-base-petition | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| This is practice model for kcbert-base with Korean petition data! | [] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
36
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.06357412785291672,
0.00690077617764473,
-0.008467365056276321,
0.020235946401953697,
0.12968459725379944,
0.03302915394306183,
0.09807441383600235,
0.07729126513004303,
0.10806342214345932,
-0.009440856985747814,
0.15823203325271606,
0.20325462520122528,
-0.03393663093447685,
0.18361465632915497,
-0.065280981361866,
-0.2617916762828827,
0.06820162385702133,
0.06229938939213753,
-0.06546879559755325,
0.11254725605249405,
0.05687131732702255,
-0.0869792252779007,
0.07119062542915344,
-0.02728140354156494,
-0.10962541401386261,
0.04230697825551033,
0.05219662934541702,
-0.10162917524576187,
0.12035926431417465,
0.021910926327109337,
0.2123224288225174,
0.016079774126410484,
-0.07168376445770264,
-0.09227655827999115,
0.046415410935878754,
-0.0007212258642539382,
-0.07019324600696564,
0.04336128383874893,
0.01872076466679573,
-0.07103253155946732,
-0.03834306448698044,
0.05254431441426277,
0.027913549914956093,
0.0400172658264637,
-0.146876260638237,
-0.1195456013083458,
-0.012633946724236012,
0.03010692074894905,
0.04268079623579979,
0.060200124979019165,
0.019220897927880287,
0.21056215465068817,
-0.12365733087062836,
0.10502377897500992,
0.15344665944576263,
-0.3129054605960846,
0.002867099829018116,
0.06838289648294449,
0.07103738188743591,
-0.04424971342086792,
-0.023489616811275482,
0.05856989696621895,
0.01071459986269474,
0.022148624062538147,
0.044038139283657074,
-0.07715853303670883,
-0.044328734278678894,
0.01152737345546484,
-0.0813736543059349,
-0.059741389006376266,
0.16159793734550476,
-0.04301191866397858,
0.04482201114296913,
0.012044340372085571,
-0.13646052777767181,
-0.04112602770328522,
-0.0220506452023983,
-0.0066766394302248955,
-0.034124407917261124,
0.043702688068151474,
-0.030891025438904762,
-0.01450628973543644,
-0.11146465688943863,
0.02620311640202999,
-0.2388714849948883,
0.25444263219833374,
0.025913868099451065,
0.06962989270687103,
-0.19036757946014404,
0.04825044423341751,
-0.032656311988830566,
-0.12202991545200348,
0.05392675846815109,
-0.09348990768194199,
0.023280160501599312,
-0.004289025440812111,
-0.06674729287624359,
-0.024281397461891174,
0.07810400426387787,
0.19070357084274292,
0.07175330817699432,
0.038729287683963776,
0.022616418078541756,
0.10197576135396957,
0.015252627432346344,
0.0927167534828186,
0.02304348163306713,
-0.03693375736474991,
0.058425456285476685,
-0.11234977096319199,
0.02645397186279297,
-0.06413000077009201,
-0.13045111298561096,
-0.03655298054218292,
0.026817962527275085,
0.07910523563623428,
0.039121128618717194,
0.05921967700123787,
-0.09775126725435257,
-0.00039136706618592143,
0.10266957432031631,
-0.07596733421087265,
0.011552278883755207,
-0.012669426389038563,
0.05071375519037247,
0.10554905235767365,
0.019699934870004654,
-0.013951314613223076,
-0.02595921792089939,
0.12606576085090637,
-0.07414942234754562,
-0.0338914580643177,
-0.057671189308166504,
-0.0717587098479271,
0.04045988991856575,
-0.12276265770196915,
0.03537328913807869,
-0.18295785784721375,
-0.12786880135536194,
0.05937539413571358,
0.05743318796157837,
0.0075002796947956085,
-0.02198064886033535,
0.027785688638687134,
0.0016502209473401308,
0.014095489867031574,
-0.051991820335388184,
-0.05198881775140762,
-0.03936923295259476,
0.10392222553491592,
0.01174288708716631,
0.12164439260959625,
-0.12003052234649658,
0.04834338277578354,
-0.08534543961286545,
0.014317753724753857,
-0.15386703610420227,
-0.04163011908531189,
-0.028065448626875877,
0.1477208137512207,
-0.0017313070129603148,
-0.044967345893383026,
-0.1107422336935997,
0.03536098450422287,
-0.008266955614089966,
0.174587219953537,
-0.0640043392777443,
-0.13445088267326355,
0.238468199968338,
-0.10142715275287628,
-0.15124346315860748,
0.08353633433580399,
0.00263609504327178,
-0.00937309768050909,
0.05675121024250984,
0.109283447265625,
0.03876260668039322,
-0.14184610545635223,
0.0926179513335228,
0.11292947828769684,
-0.13638317584991455,
-0.12760622799396515,
0.022435644641518593,
-0.00732642924413085,
-0.12322323024272919,
0.04600539803504944,
0.07860185950994492,
0.1112794280052185,
-0.07251705229282379,
-0.04695776477456093,
-0.01390511728823185,
-0.03809646517038345,
0.1488271951675415,
0.03689313679933548,
0.09978006780147552,
-0.07845763862133026,
-0.02166028693318367,
-0.028704503551125526,
-0.008114258758723736,
0.06035853177309036,
0.038866739720106125,
-0.08729325234889984,
0.1360790729522705,
-0.0566742941737175,
0.010620499961078167,
-0.180439755320549,
-0.12009736150503159,
-0.0016330704092979431,
0.05382363870739937,
-0.027322817593812943,
0.12601551413536072,
0.11395162343978882,
-0.03539265692234039,
-0.007137839682400227,
-0.03099343180656433,
0.09945479035377502,
0.025088751688599586,
-0.03798593953251839,
-0.0885278731584549,
0.007986658252775669,
-0.08452948927879333,
-0.014333197847008705,
0.01457307767122984,
0.002566321985796094,
0.00016168280853889883,
0.13817834854125977,
-0.0010485704988241196,
0.03795786574482918,
-0.05177360028028488,
0.04081299155950546,
-0.034957047551870346,
0.01450793631374836,
0.09004251658916473,
-0.000576441758312285,
-0.06362977623939514,
0.15637962520122528,
-0.14581918716430664,
0.35973721742630005,
0.19387078285217285,
-0.3088320195674896,
-0.016066158190369606,
0.01958218589425087,
-0.01481733750551939,
-0.0028315566014498472,
0.056414127349853516,
-0.015269504860043526,
0.04143389314413071,
0.014644528739154339,
0.15166911482810974,
-0.015120322816073895,
-0.02077334001660347,
0.027502890676259995,
-0.0772947371006012,
-0.04431246966123581,
0.03279697522521019,
0.09859511256217957,
-0.13104848563671112,
0.17962734401226044,
0.2618531882762909,
0.004645867273211479,
0.13293692469596863,
0.01004520058631897,
-0.0017370838904753327,
0.012384308502078056,
-0.03448771312832832,
-0.02204137109220028,
0.036397550255060196,
-0.19078975915908813,
-0.037138842046260834,
0.07815047353506088,
-0.030133357271552086,
0.05545393377542496,
-0.11835511028766632,
-0.03323771432042122,
0.029111113399267197,
0.05119411274790764,
-0.07707978785037994,
0.12659992277622223,
0.04097466543316841,
0.0710253193974495,
0.0037192106246948242,
-0.07951492071151733,
0.11071927845478058,
0.007798798382282257,
-0.038606591522693634,
0.15219268202781677,
-0.13388566672801971,
-0.3540363311767578,
-0.1352192908525467,
-0.186979740858078,
0.010174541734158993,
0.04617423936724663,
0.07225015014410019,
-0.08286191523075104,
-0.05899273604154587,
0.09581182152032852,
-0.003480511251837015,
-0.02892324887216091,
0.06940968334674835,
-0.06169416382908821,
0.011217288672924042,
-0.027349013835191727,
-0.06347832828760147,
-0.07560451328754425,
-0.028934668749570847,
-0.02698061801493168,
0.15005719661712646,
-0.09269136935472488,
0.08664495497941971,
0.13057461380958557,
0.0057759047485888,
0.07016542553901672,
-0.0002483248827047646,
0.18727800250053406,
-0.06556744873523712,
-0.005412220023572445,
0.18072476983070374,
-0.05880381539463997,
0.1026553139090538,
0.1556575745344162,
0.020712751895189285,
-0.05158966779708862,
0.00875561498105526,
-0.05700365826487541,
-0.11636948585510254,
-0.1564129889011383,
-0.11075278371572495,
-0.13123051822185516,
-0.011434734798967838,
0.05559059977531433,
0.04917698726058006,
0.13644592463970184,
0.08514466881752014,
0.03654884546995163,
-0.018586870282888412,
-0.06805557757616043,
0.0498523935675621,
0.17366138100624084,
-0.030056441202759743,
0.1334504783153534,
-0.036830224096775055,
-0.14371523261070251,
0.059510327875614166,
0.0252390094101429,
0.12022719532251358,
0.10808205604553223,
-0.004712763242423534,
0.03895212337374687,
0.16281089186668396,
0.1563887745141983,
0.16660696268081665,
0.025009524077177048,
-0.057338543236255646,
-0.004954719450324774,
-0.009356440976262093,
-0.058457158505916595,
0.02018333598971367,
0.15226905047893524,
-0.1055486798286438,
-0.051534514874219894,
-0.145093634724617,
0.05207017809152603,
0.09619975835084915,
0.06738487631082535,
-0.22444024682044983,
0.012990519404411316,
0.06385935842990875,
0.007989094592630863,
-0.06883342564105988,
0.03757710009813309,
-0.02228686586022377,
-0.13463854789733887,
0.06749572604894638,
-0.05030853673815727,
0.09488040208816528,
0.03667333722114563,
0.07960424572229385,
-0.03426273167133331,
-0.06298200786113739,
0.04128245636820793,
0.0669965147972107,
-0.2517971694469452,
0.2858309745788574,
-0.008294520899653435,
-0.051533956080675125,
-0.08108772337436676,
-0.009787647053599358,
0.04465258866548538,
0.12031106650829315,
0.0992002934217453,
0.032960955053567886,
-0.021231580525636673,
-0.15835201740264893,
-0.012746589258313179,
0.028594577684998512,
0.10843918472528458,
-0.02854795753955841,
-0.016072293743491173,
-0.02141297422349453,
-0.054353177547454834,
-0.007548002991825342,
0.09288700670003891,
0.00021381601982284337,
-0.13055965304374695,
0.0781245231628418,
0.056197553873062134,
0.0030072317458689213,
-0.010090996511280537,
-0.05736343935132027,
-0.11168934404850006,
0.18835410475730896,
-0.02566578984260559,
-0.054508499801158905,
-0.10566588491201401,
-0.11198879778385162,
0.09742310643196106,
-0.10951992124319077,
0.1106313019990921,
-0.09603893011808395,
0.004723524209111929,
-0.09463068842887878,
-0.18368598818778992,
0.1582668572664261,
-0.1269671618938446,
-0.006225429475307465,
-0.07936962693929672,
0.15473303198814392,
-0.0639534443616867,
0.02866891399025917,
0.003773587988689542,
0.028899380937218666,
-0.10591752827167511,
-0.05296826362609863,
0.030782422050833702,
-0.05678727477788925,
0.04187817499041557,
0.044521696865558624,
-0.06555546075105667,
-0.01695936545729637,
0.019335398450493813,
0.04292288422584534,
0.23622342944145203,
0.2353804111480713,
-0.052708715200424194,
0.1417168378829956,
0.1806049793958664,
-0.028383145108819008,
-0.3410240709781647,
-0.11411335319280624,
-0.13666872680187225,
-0.003915437962859869,
0.007809142116457224,
-0.1327342689037323,
0.09345895051956177,
-0.032195452600717545,
-0.04637759178876877,
0.12031539529561996,
-0.15053622424602509,
-0.09246959537267685,
0.2436363250017166,
0.008315314538776875,
0.4863871932029724,
-0.09246446192264557,
-0.06652036309242249,
-0.03995967283844948,
-0.14584210515022278,
0.05183078721165657,
0.024809755384922028,
0.08875752240419388,
-0.015901152044534683,
0.08785346150398254,
0.03374331444501877,
-0.09186475723981857,
0.09677482396364212,
-0.03436388820409775,
0.01234909426420927,
-0.10329624265432358,
-0.09800854325294495,
0.06808411329984665,
-0.01401363592594862,
-0.01322801224887371,
0.015540778636932373,
0.007425607182085514,
-0.04579975828528404,
-0.020523425191640854,
-0.10680554807186127,
0.10987795889377594,
0.03320621699094772,
-0.062224309891462326,
0.03879779577255249,
-0.017917169257998466,
-0.009515928104519844,
0.0034782900474965572,
0.1910327970981598,
-0.008325624279677868,
0.17571797966957092,
0.08782124519348145,
0.0300945732742548,
-0.16413554549217224,
-0.0698731392621994,
-0.050175994634628296,
-0.0846821516752243,
0.08663877099752426,
0.008863678202033043,
0.05756894871592522,
0.11674199998378754,
-0.021469993516802788,
0.040903765708208084,
0.11679863929748535,
0.013281558640301228,
-0.03635825589299202,
0.15106870234012604,
-0.2260168492794037,
0.040877439081668854,
-0.024700431153178215,
-0.002281648339703679,
0.06495176255702972,
0.0602131113409996,
0.08886897563934326,
0.04362958297133446,
-0.03604341670870781,
-0.0080631198361516,
-0.011103777214884758,
-0.059563565999269485,
0.05411487817764282,
0.060502372682094574,
0.05677267909049988,
-0.13078919053077698,
0.0061960369348526,
-0.020739618688821793,
-0.2086004763841629,
-0.016145547851920128,
0.07876262068748474,
-0.12113361060619354,
-0.10942773520946503,
0.0038382872007787228,
0.09838655591011047,
-0.08085829019546509,
-0.03981052711606026,
-0.06243035942316055,
-0.11349830776453018,
0.05747007206082344,
0.2176428735256195,
0.1169067993760109,
0.0780315026640892,
-0.01989174261689186,
-0.01007353700697422,
-0.002601395593956113,
-0.015962328761816025,
0.02512223646044731,
0.033555783331394196,
-0.08247660100460052,
0.01702079549431801,
-0.008670814335346222,
0.16094514727592468,
-0.11036427319049835,
-0.05973701551556587,
-0.1687975972890854,
0.04017099365592003,
-0.06963387876749039,
-0.10318976640701294,
-0.09188957512378693,
-0.07771022617816925,
0.01973199099302292,
-0.07843679189682007,
-0.04138858988881111,
-0.03797203674912453,
-0.1261909008026123,
0.025888055562973022,
0.036669645458459854,
-0.015996644273400307,
-0.06865283101797104,
-0.044388484209775925,
0.13997533917427063,
-0.050470441579818726,
0.06897341459989548,
0.14721760153770447,
-0.08223868906497955,
0.08987827599048615,
-0.11864562332630157,
-0.14169776439666748,
0.09844960272312164,
0.024490095674991608,
0.09209379553794861,
0.06073470786213875,
0.01991713047027588,
0.054184310138225555,
0.03840716555714607,
0.039452992379665375,
0.08403609693050385,
-0.11287132650613785,
0.06809459626674652,
0.011329096741974354,
-0.1869479864835739,
-0.02397647127509117,
-0.09611000120639801,
0.07828033715486526,
0.0018079385627061129,
0.11844782531261444,
-0.0382930189371109,
0.10906048864126205,
-0.0436384454369545,
0.014289634302258492,
-0.02247670851647854,
-0.16372942924499512,
-0.004627579357475042,
-0.048289380967617035,
0.012862684205174446,
-0.013447915203869343,
0.23876222968101501,
-0.024661000818014145,
0.024913061410188675,
0.03820062428712845,
0.0719211995601654,
-0.003087579505518079,
0.0022083136718720198,
0.15241484344005585,
0.09013786166906357,
-0.05284610390663147,
-0.0749572142958641,
0.09104806929826736,
0.019679788500070572,
-0.05150250345468521,
0.13582676649093628,
0.06253648549318314,
0.04935529828071594,
0.09676174819469452,
0.00193702126853168,
0.04410434886813164,
-0.13451460003852844,
-0.2456214725971222,
-0.04142381623387337,
0.06802476942539215,
0.022965481504797935,
0.02864265814423561,
0.12449731677770615,
-0.011933309026062489,
0.057093679904937744,
-0.02881103754043579,
-0.022149965167045593,
-0.1927638053894043,
-0.12258896976709366,
-0.08218653500080109,
-0.07139991223812103,
0.023771436884999275,
-0.02313394285738468,
-0.020754177123308182,
0.09821733087301254,
0.034732282161712646,
-0.026418423280119896,
0.15178021788597107,
-0.003468479262664914,
-0.011058829724788666,
0.016801699995994568,
-0.01001247763633728,
0.0172751322388649,
0.032349079847335815,
-0.03294634073972702,
-0.16857078671455383,
0.004473234061151743,
-0.05259554460644722,
0.0047274017706513405,
-0.08785852044820786,
0.02359730750322342,
-0.09015554189682007,
-0.13330627977848053,
-0.07091958820819855,
0.0264219231903553,
-0.04996372386813164,
0.09263461828231812,
-0.013066912069916725,
0.05031539872288704,
0.0013845227658748627,
0.1200626865029335,
-0.07606708258390427,
-0.09816689789295197,
-0.04547613114118576,
0.1901932656764984,
0.041288163512945175,
0.0920717865228653,
-0.015353480353951454,
0.030952494591474533,
-0.11943032592535019,
0.34167152643203735,
0.314802885055542,
-0.049354273825883865,
0.0750916451215744,
0.054602526128292084,
0.03442682698369026,
0.07451198995113373,
0.1279372125864029,
0.0763775110244751,
0.2879911959171295,
-0.09316780418157578,
-0.04345858469605446,
-0.044293951243162155,
-0.03673816844820976,
-0.1208759993314743,
0.01128399558365345,
0.03953966125845909,
-0.03837299346923828,
-0.0634862631559372,
0.07261399179697037,
-0.17381651699543,
0.12662146985530853,
0.057949863374233246,
-0.21046149730682373,
-0.04841303452849388,
-0.027771536260843277,
0.17428803443908691,
0.017816947773098946,
0.1136963814496994,
-0.03833884000778198,
-0.08398560434579849,
0.062350668013095856,
0.022619010880589485,
-0.20338550209999084,
-0.06756751984357834,
0.10970646142959595,
-0.012227135710418224,
0.05940033122897148,
-0.017002668231725693,
0.031783878803253174,
0.0780811533331871,
0.07013798505067825,
-0.014899644069373608,
0.02075999788939953,
0.023412270471453667,
-0.10955478996038437,
-0.07060349732637405,
0.01478694099932909,
-0.0013840675819665194,
-0.11833599954843521,
0.02185012586414814,
-0.16461415588855743,
0.04151973873376846,
-0.09669603407382965,
-0.027114197611808777,
-0.0026749002281576395,
0.05793723464012146,
-0.04355005547404289,
0.04500356316566467,
0.06464733183383942,
0.018565697595477104,
-0.0383153110742569,
-0.05022261664271355,
-0.011393008753657341,
0.0629846602678299,
-0.11954975128173828,
-0.17594216763973236,
-0.08240210264921188,
-0.07172682136297226,
0.04485165327787399,
-0.010793168097734451,
-0.13988232612609863,
-0.04391428083181381,
-0.10527841746807098,
0.032555706799030304,
-0.15290100872516632,
0.04201599210500717,
0.04696520045399666,
0.04337937757372856,
0.017507996410131454,
-0.04434172064065933,
0.04486740753054619,
0.049446675926446915,
-0.155558243393898,
-0.09162718802690506
] |
null | null | transformers |
#VADER DialogGPT Model | {"tags": ["conversational"]} | text-generation | LARACHNIDE/DialogGPT-small-sw | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#VADER DialogGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Roberta Large Fine Tuned on RACE
## Model description
This model follows the implementation by Allen AI team about [Aristo Roberta V7 Model](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) given in [ARC Challenge](https://leaderboard.allenai.org/arc/submissions/public)
#### How to use
```python
import datasets
from transformers import RobertaTokenizer
from transformers import RobertaForMultipleChoice
tokenizer = RobertaTokenizer.from_pretrained(
"LIAMF-USP/aristo-roberta")
model = RobertaForMultipleChoice.from_pretrained(
"LIAMF-USP/aristo-roberta")
dataset = datasets.load_dataset(
"arc",,
split=["train", "validation", "test"],
)
training_examples = dataset[0]
evaluation_examples = dataset[1]
test_examples = dataset[2]
example=training_examples[0]
example_id = example["example_id"]
question = example["question"]
label_example = example["answer"]
options = example["options"]
if label_example in ["A", "B", "C", "D", "E"]:
label_map = {label: i for i, label in enumerate(
["A", "B", "C", "D", "E"])}
elif label_example in ["1", "2", "3", "4", "5"]:
label_map = {label: i for i, label in enumerate(
["1", "2", "3", "4", "5"])}
else:
print(f"{label_example} not found")
while len(options) < 5:
empty_option = {}
empty_option['option_context'] = ''
empty_option['option_text'] = ''
options.append(empty_option)
choices_inputs = []
for ending_idx, option in enumerate(options):
ending = option["option_text"]
context = option["option_context"]
if question.find("_") != -1:
# fill in the banks questions
question_option = question.replace("_", ending)
else:
question_option = question + " " + ending
inputs = tokenizer(
context,
question_option,
add_special_tokens=True,
max_length=MAX_SEQ_LENGTH,
padding="max_length",
truncation=True,
return_overflowing_tokens=False,
)
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
logging.warning(f"Question: {example_id} with option {ending_idx} was truncated")
choices_inputs.append(inputs)
label = label_map[label_example]
input_ids = [x["input_ids"] for x in choices_inputs]
attention_mask = (
[x["attention_mask"] for x in choices_inputs]
# as the senteces follow the same structure, just one of them is
# necessary to check
if "attention_mask" in choices_inputs[0]
else None
)
example_encoded = {
"example_id": example_id,
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"label": label
}
output = model(**example_encoded)
```
## Training data
the Training data was the same as proposed [here](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0)
The only diferrence was the hypeparameters of RACE fine tuned model, which were reported [here](https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race#eval-results)
## Training procedure
It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following:
| Hyperparameter | Value |
|:----:|:----:|
| adam_beta1 | 0.9 |
| adam_beta2 | 0.98 |
| adam_epsilon | 1.000e-8 |
| eval_batch_size | 16 |
| train_batch_size | 4 |
| fp16 | True |
| gradient_accumulation_steps | 4 |
| learning_rate | 0.00001 |
| warmup_steps | 0.06 |
| max_length | 256 |
| epochs | 4 |
The other parameters were the default ones from [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) and [Trainer Arguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments)
## Eval results:
| Dataset Acc | Challenge Test |
|:----:|:----:|
| | 65.358 |
**The model was trained with a TITAN RTX**
| {"language": "english", "license": "mit", "datasets": ["race", "ai2_arc", "openbookqa"], "metrics": ["accuracy"]} | multiple-choice | LIAMF-USP/aristo-roberta | [
"transformers",
"pytorch",
"tf",
"jax",
"roberta",
"multiple-choice",
"dataset:race",
"dataset:ai2_arc",
"dataset:openbookqa",
"license:mit",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"english"
] | TAGS
#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #dataset-ai2_arc #dataset-openbookqa #license-mit #endpoints_compatible #region-us
| Roberta Large Fine Tuned on RACE
================================
Model description
-----------------
This model follows the implementation by Allen AI team about Aristo Roberta V7 Model given in ARC Challenge
#### How to use
Training data
-------------
the Training data was the same as proposed here
The only diferrence was the hypeparameters of RACE fine tuned model, which were reported here
Training procedure
------------------
It was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:
The other parameters were the default ones from Trainer and Trainer Arguments
Eval results:
-------------
The model was trained with a TITAN RTX
| [
"#### How to use\n\n\nTraining data\n-------------\n\n\nthe Training data was the same as proposed here\n\n\nThe only diferrence was the hypeparameters of RACE fine tuned model, which were reported here\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nThe other parameters were the default ones from Trainer and Trainer Arguments\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a TITAN RTX"
] | [
"TAGS\n#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #dataset-ai2_arc #dataset-openbookqa #license-mit #endpoints_compatible #region-us \n",
"#### How to use\n\n\nTraining data\n-------------\n\n\nthe Training data was the same as proposed here\n\n\nThe only diferrence was the hypeparameters of RACE fine tuned model, which were reported here\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nThe other parameters were the default ones from Trainer and Trainer Arguments\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a TITAN RTX"
] | [
62,
118
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #dataset-ai2_arc #dataset-openbookqa #license-mit #endpoints_compatible #region-us \n#### How to use\n\n\nTraining data\n-------------\n\n\nthe Training data was the same as proposed here\n\n\nThe only diferrence was the hypeparameters of RACE fine tuned model, which were reported here\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nThe other parameters were the default ones from Trainer and Trainer Arguments\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a TITAN RTX"
] | [
-0.04546017572283745,
-0.06552868336439133,
0.00014968065079301596,
0.09395647794008255,
0.1831059604883194,
0.07015346735715866,
0.11832275241613388,
0.09029147773981094,
-0.07669966667890549,
-0.05457764491438866,
0.0758553221821785,
0.1465529501438141,
0.029141711071133614,
0.10111284255981445,
-0.050385236740112305,
-0.20654243230819702,
-0.012584987096488476,
0.03257669880986214,
-0.05997525155544281,
0.1053549274802208,
0.12015276402235031,
-0.15152323246002197,
0.08585906773805618,
0.0033564071636646986,
-0.22848626971244812,
0.06025606766343117,
0.034782133996486664,
-0.05404379218816757,
0.1415870636701584,
0.026288772001862526,
0.16862468421459198,
0.07009933143854141,
0.14132484793663025,
-0.1959073692560196,
0.027949070557951927,
0.0626569613814354,
0.023272350430488586,
0.05217540264129639,
-0.030644375830888748,
-0.005338482558727264,
0.1047913059592247,
0.023336749523878098,
0.10235116630792618,
0.00663768220692873,
-0.12301240116357803,
-0.22028924524784088,
-0.0735214427113533,
-0.022589558735489845,
0.06004496291279793,
0.10226747393608093,
0.0034732867497950792,
0.1782451570034027,
-0.1592285931110382,
0.06332901865243912,
0.20189331471920013,
-0.18518400192260742,
-0.0286130178719759,
0.10031528770923615,
-0.01191742904484272,
0.024120265617966652,
-0.09462888538837433,
-0.03136669844388962,
0.05231756716966629,
0.06687873601913452,
0.11639044433832169,
-0.06044455245137215,
-0.20246107876300812,
0.047272276133298874,
-0.12464938312768936,
0.013449343852698803,
0.10113029927015305,
-0.002436405513435602,
-0.0034283786080777645,
0.01669641025364399,
-0.05467184633016586,
-0.05541153624653816,
0.002812668913975358,
-0.07673075795173645,
0.03175989165902138,
-0.049765292555093765,
-0.009261504746973515,
-0.004722916521131992,
-0.1118490919470787,
-0.09481136500835419,
-0.10765328258275986,
0.1404232531785965,
0.0584498792886734,
0.047965437173843384,
-0.11591245979070663,
0.15170316398143768,
-0.03653695434331894,
-0.11052775382995605,
0.041521791368722916,
-0.07188396155834198,
-0.08775127679109573,
-0.04960230737924576,
-0.05721728131175041,
-0.13168606162071228,
0.040079694241285324,
0.02599640190601349,
-0.07305295020341873,
0.022235238924622536,
0.057486213743686676,
0.005061902571469545,
-0.0022104287054389715,
0.12486303597688675,
-0.13229183852672577,
-0.02329985238611698,
0.04479553923010826,
0.008635466918349266,
-0.028544770553708076,
-0.016320617869496346,
-0.11851298063993454,
0.04250984266400337,
0.07534079253673553,
0.01303063053637743,
-0.06212954595685005,
0.05531822517514229,
-0.06119260564446449,
-0.05733424797654152,
-0.026324398815631866,
-0.1271519511938095,
-0.021762782707810402,
-0.04025603458285332,
-0.06961668282747269,
-0.04396335408091545,
0.040909379720687866,
0.01855309307575226,
0.006963320542126894,
0.12290233373641968,
-0.07742948830127716,
0.056303251534700394,
-0.12047816067934036,
-0.1546778529882431,
-0.03786752372980118,
-0.06188708916306496,
0.01956857554614544,
-0.05417543277144432,
-0.20123259723186493,
-0.038603879511356354,
0.052907876670360565,
-0.022900091484189034,
0.012126544490456581,
-0.019010324031114578,
0.0077714561484754086,
-0.012266463600099087,
0.00026981206610798836,
0.07371964305639267,
-0.058382127434015274,
0.07478149980306625,
-0.009456752799451351,
0.0898023247718811,
-0.10936888307332993,
0.04953223839402199,
-0.1150108203291893,
-0.03330672159790993,
-0.24484758079051971,
0.061582714319229126,
-0.02886059321463108,
0.07350142300128937,
-0.008048667572438717,
-0.10350807011127472,
-0.001799105666577816,
-0.014858257956802845,
0.06965640932321548,
0.08078562468290329,
-0.2576119303703308,
-0.04158167541027069,
0.1278853863477707,
-0.12205882370471954,
-0.0947563573718071,
0.0667954832315445,
-0.14728116989135742,
0.13694800436496735,
0.08301861584186554,
0.19491592049598694,
0.04694020375609398,
-0.11866345256567001,
0.11462237685918808,
-0.0376988984644413,
-0.05706193298101425,
0.05521610379219055,
-0.0001621605915715918,
0.018007466569542885,
0.0348258912563324,
0.019959362223744392,
-0.00723319360986352,
0.032953761518001556,
-0.12062371522188187,
-0.08080311119556427,
0.0031217094510793686,
-0.06852111965417862,
0.015640955418348312,
0.09853047132492065,
0.09314436465501785,
-0.046718619763851166,
0.005750739481300116,
0.13925881683826447,
0.0745113343000412,
-0.07420679926872253,
0.024876732379198074,
-0.059283576905727386,
0.006558068562299013,
-0.003162100212648511,
-0.03403722122311592,
-0.18152321875095367,
-0.03299367055296898,
-0.02928856387734413,
0.07396014034748077,
0.02758384309709072,
0.17817826569080353,
0.045711565762758255,
0.004652069881558418,
-0.07350873947143555,
0.054553255438804626,
-0.00874321348965168,
0.05553165078163147,
-0.09481082856655121,
-0.2346150130033493,
-0.005410774145275354,
-0.03435193747282028,
0.15636609494686127,
-0.17350523173809052,
0.02610933594405651,
-0.029070375487208366,
0.0903925970196724,
0.003427112940698862,
-0.010794039815664291,
0.004158584401011467,
0.07665107399225235,
-0.012465497478842735,
-0.05220480635762215,
0.05150338262319565,
0.0021145916543900967,
-0.055446162819862366,
-0.03328438103199005,
-0.09105568379163742,
0.06695325672626495,
0.12857745587825775,
-0.18963448703289032,
-0.0950356125831604,
0.034109268337488174,
-0.0450410321354866,
-0.021691318601369858,
-0.057148855179548264,
0.04483691602945328,
0.16068989038467407,
-0.03990064933896065,
0.11863738298416138,
-0.052391331642866135,
-0.04062087461352348,
0.012900245375931263,
-0.01753024198114872,
0.09306672215461731,
0.04755733907222748,
0.09819003939628601,
-0.14546656608581543,
0.0703873336315155,
0.0795249491930008,
-0.00030609755776822567,
0.15167273581027985,
0.00569276325404644,
-0.0544205904006958,
-0.0008546948665753007,
-0.05610954388976097,
-0.05439538136124611,
0.1419745534658432,
-0.10771912336349487,
0.013698809780180454,
0.018043167889118195,
0.03127908334136009,
0.02404044196009636,
-0.20245392620563507,
-0.04538990557193756,
0.03806304186582565,
-0.01690766029059887,
-0.11663318425416946,
-0.03297357261180878,
0.0226917527616024,
0.10396893322467804,
-0.030528798699378967,
-0.06383197009563446,
0.04680982977151871,
-0.020399780943989754,
-0.08335953950881958,
0.19608421623706818,
-0.10311621427536011,
-0.07697184383869171,
0.03325458616018295,
-0.04586810991168022,
-0.011326486244797707,
0.004762375261634588,
0.06611292064189911,
-0.07804825156927109,
-0.031622447073459625,
-0.0018151324475184083,
0.03857649490237236,
0.01449449174106121,
0.008951169438660145,
0.021403642371296883,
-0.03489580377936363,
0.0248558446764946,
-0.14330117404460907,
-0.019565219059586525,
-0.10570120066404343,
-0.05990167707204819,
0.0928490087389946,
0.003558678552508354,
0.13025955855846405,
0.15258756279945374,
-0.049680449068546295,
0.022188562899827957,
-0.05089595913887024,
0.24033419787883759,
-0.053555671125650406,
-0.009845903143286705,
0.07361558079719543,
-0.015102740377187729,
0.027416367083787918,
0.14519502222537994,
0.06636516749858856,
-0.09708274155855179,
0.007206730078905821,
0.050095509737730026,
-0.0810576006770134,
-0.21260692179203033,
-0.039240315556526184,
-0.035786088556051254,
-0.1506197601556778,
0.004411785397678614,
0.0019350508227944374,
0.022723807021975517,
0.03284834697842598,
0.05305589362978935,
0.03682255372405052,
0.013454643078148365,
0.012121105566620827,
0.12682028114795685,
0.050844527781009674,
0.13937164843082428,
-0.04550379887223244,
-0.036866627633571625,
0.07407058775424957,
-0.09650291502475739,
0.2788025140762329,
-0.07974261045455933,
-0.04962477087974548,
0.14563344419002533,
0.0786472037434578,
-0.004009227268397808,
0.11692420393228531,
-0.025013292208313942,
-0.07147783786058426,
-0.019139695912599564,
-0.010618179105222225,
-0.014204703271389008,
-0.0015272009186446667,
-0.10875031352043152,
0.005650245118886232,
-0.11989392340183258,
0.03660771995782852,
0.06643862277269363,
0.1917870193719864,
0.02359115518629551,
-0.21056759357452393,
-0.028005558997392654,
-0.04885978624224663,
0.01067826896905899,
-0.010944223962724209,
0.01032205019146204,
0.10382098704576492,
-0.1108127161860466,
0.07680763304233551,
-0.006453363690525293,
0.06940913945436478,
-0.005056164693087339,
0.03709547221660614,
0.03853177651762962,
0.05869884043931961,
-0.03731393441557884,
0.07517790049314499,
-0.35235628485679626,
0.253266304731369,
0.02380434237420559,
0.07687724381685257,
-0.06674887984991074,
-0.03264113515615463,
0.025726353749632835,
0.1660034954547882,
0.05960298702120781,
0.0008848037687130272,
0.05512712895870209,
-0.18369659781455994,
0.06703430414199829,
0.056926265358924866,
0.04145968332886696,
0.030988192185759544,
0.05728830024600029,
0.016695110127329826,
0.03471844270825386,
0.06879669427871704,
0.050794534385204315,
-0.1146901473402977,
-0.09584011137485504,
-0.0032732239924371243,
0.0256127268075943,
-0.05558064579963684,
-0.04354960471391678,
-0.09811793267726898,
-0.13196691870689392,
0.0433790348470211,
0.051450349390506744,
-0.08527182042598724,
-0.11335740238428116,
0.12366165965795517,
0.0648551657795906,
-0.05862803012132645,
0.010452382266521454,
0.0287807434797287,
-0.02954343892633915,
0.053881578147411346,
-0.09766947478055954,
0.0879037082195282,
-0.079889677464962,
-0.10379378497600555,
-0.03072924166917801,
0.01194244995713234,
0.08097969740629196,
0.0792798399925232,
0.03805216774344444,
-0.00542013393715024,
-0.02948772720992565,
-0.12338979542255402,
-0.028491033241152763,
0.05855170637369156,
0.06998369842767715,
0.010650871321558952,
-0.06237924471497536,
0.019858788698911667,
-0.016671156510710716,
-0.011508975178003311,
0.17485713958740234,
0.18100765347480774,
-0.11430258303880692,
0.11364306509494781,
0.10724736005067825,
-0.11360253393650055,
-0.22289897501468658,
0.1034184917807579,
0.034696064889431,
-0.015251897275447845,
0.1084839254617691,
-0.1449539214372635,
0.14220772683620453,
0.07490570843219757,
0.03029758855700493,
0.01838211715221405,
-0.21069398522377014,
-0.1244906559586525,
0.09249353408813477,
0.10306715965270996,
0.2867504060268402,
-0.10965047031641006,
0.01545790210366249,
-0.05880310758948326,
-0.2567121982574463,
0.09698088467121124,
-0.15746144950389862,
0.07903462648391724,
-0.012980325147509575,
0.04733112081885338,
-0.008108534850180149,
-0.049632709473371506,
0.09591075778007507,
0.038068968802690506,
0.17209303379058838,
-0.07576539367437363,
-0.011643704026937485,
0.17210102081298828,
-0.00151588034350425,
0.0038747673388570547,
0.0765305683016777,
0.022314004600048065,
-0.04760763421654701,
-0.03835374489426613,
-0.13996672630310059,
0.005125230643898249,
-0.013971244916319847,
-0.11651648581027985,
-0.03701989725232124,
0.010298127308487892,
0.09199018776416779,
-0.07453091442584991,
-0.03173988312482834,
-0.07147138565778732,
0.12757152318954468,
-0.01705082505941391,
0.10155428946018219,
-0.16076436638832092,
0.041611842811107635,
0.011088954284787178,
-0.0008166261250153184,
0.05013209953904152,
-0.10756850987672806,
0.06781835108995438,
0.11643870174884796,
0.025036605075001717,
0.12840454280376434,
0.08962281793355942,
-0.03096248209476471,
0.04122432321310043,
0.050539351999759674,
-0.12364082783460617,
-0.06430250406265259,
0.021594807505607605,
-0.09838812053203583,
-0.047680340707302094,
0.08396418392658234,
0.05057474225759506,
-0.025628169998526573,
-0.02839689701795578,
-0.018019121140241623,
-0.023492546752095222,
-0.054813530296087265,
0.21001698076725006,
0.06668839603662491,
0.05595066770911217,
-0.15316733717918396,
0.029612088575959206,
0.03604874759912491,
-0.012937327846884727,
-0.0000653799797873944,
-0.0015115219866856933,
-0.13487082719802856,
-0.007811830844730139,
0.033445727080106735,
0.2474697381258011,
-0.11059694737195969,
-0.0525548979640007,
-0.1715484857559204,
-0.0758177861571312,
-0.01157150324434042,
0.18877412378787994,
0.12829731404781342,
0.02633892372250557,
0.02851061522960663,
-0.0176553875207901,
-0.15192922949790955,
0.05593612417578697,
-0.008241361938416958,
0.04229607433080673,
-0.1162833571434021,
0.18544292449951172,
0.013576698489487171,
0.07023897767066956,
-0.05881095305085182,
-0.007303191814571619,
-0.09512872993946075,
0.04720413312315941,
-0.1531466841697693,
-0.07541581988334656,
-0.032172948122024536,
-0.01623597741127014,
0.029076488688588142,
-0.05360909178853035,
-0.035422731190919876,
0.05655524879693985,
-0.11999955028295517,
0.026772718876600266,
0.035955384373664856,
0.01105065830051899,
-0.12133503705263138,
-0.06277335435152054,
-0.024332359433174133,
0.010685876943171024,
0.09200038760900497,
0.04090219363570213,
-0.022118978202342987,
0.029022764414548874,
-0.1778080314397812,
-0.07749626785516739,
0.007221168372780085,
-0.011382319033145905,
0.10464318096637726,
-0.05919601768255234,
0.013737178407609463,
0.025969861075282097,
0.01993981935083866,
0.04926859214901924,
0.03541816771030426,
-0.09642968326807022,
0.019530687481164932,
-0.03209956735372543,
-0.06238393113017082,
-0.01239986252039671,
0.01877583935856819,
0.06893925368785858,
0.09241390228271484,
0.16748777031898499,
-0.05521739646792412,
0.06101790815591812,
-0.1663162261247635,
-0.06113205850124359,
-0.006246547214686871,
-0.006251246202737093,
-0.07592948526144028,
-0.07119978219270706,
0.0704800933599472,
-0.029698200523853302,
0.21758370101451874,
0.0676373839378357,
0.09956659376621246,
0.02650434337556362,
0.01060766912996769,
0.0029725241474807262,
-0.030733412131667137,
0.16261076927185059,
-0.018909139558672905,
-0.019359378144145012,
0.05237603187561035,
0.11160866171121597,
0.028340915217995644,
0.14174219965934753,
0.21869568526744843,
0.1255485564470291,
0.023649221286177635,
-0.0045126741752028465,
-0.023282542824745178,
-0.05185567960143089,
-0.05325758829712868,
-0.01937905326485634,
-0.023314261808991432,
0.04539811983704567,
-0.050949081778526306,
0.06377796828746796,
0.07730021327733994,
-0.1086045652627945,
0.05681007355451584,
-0.07806067168712616,
-0.10545381158590317,
-0.1384657919406891,
0.024936238303780556,
-0.06142207235097885,
-0.16663628816604614,
0.0038876025937497616,
-0.09621503949165344,
0.041867148131132126,
0.14198395609855652,
0.04287286847829819,
0.004967257846146822,
0.1679910123348236,
-0.010806825011968613,
0.0083504943177104,
-0.003492314601317048,
-0.01786014996469021,
-0.03694169595837593,
-0.08041457086801529,
-0.009782487526535988,
-0.0036305345129221678,
-0.025143085047602654,
-0.012557005509734154,
-0.07867173850536346,
-0.03457547724246979,
-0.011793035082519054,
-0.04290430620312691,
-0.07912294566631317,
0.02752283774316311,
0.03940412029623985,
0.102806456387043,
0.10068764537572861,
0.011583712883293629,
0.02431642822921276,
-0.01557469367980957,
0.26844143867492676,
-0.06146886572241783,
-0.19956932961940765,
-0.15157537162303925,
0.27751466631889343,
0.10983336716890335,
-0.0034767375327646732,
0.03870810195803642,
-0.08089832961559296,
0.05910444259643555,
0.23410983383655548,
0.20477299392223358,
-0.08397731930017471,
0.022122925147414207,
-0.020176256075501442,
-0.0067071495577692986,
-0.05187626928091049,
0.10204752534627914,
0.060058578848838806,
0.029597360640764236,
-0.10073994845151901,
-0.022337382659316063,
-0.08674492686986923,
-0.023828579112887383,
-0.04024938493967056,
0.00479591591283679,
0.08479398488998413,
-0.006733897607773542,
-0.017552904784679413,
0.06583108752965927,
0.042011164128780365,
-0.13603267073631287,
0.10149921476840973,
-0.16218522191047668,
-0.10113358497619629,
-0.033382512629032135,
0.05331509932875633,
-0.027735160663723946,
0.03321998938918114,
-0.03126136213541031,
0.02398570440709591,
0.1483437716960907,
0.012506636790931225,
-0.09418372809886932,
-0.14377322793006897,
0.1723373532295227,
-0.029851388186216354,
0.10228786617517471,
-0.0796380266547203,
0.14553695917129517,
0.08086349070072174,
0.06800617277622223,
-0.053563665598630905,
0.11376422643661499,
0.024106403812766075,
-0.06977228820323944,
-0.025516588240861893,
0.04068738594651222,
-0.032137490808963776,
-0.01351415365934372,
-0.01059325598180294,
-0.13953648507595062,
0.04039815813302994,
-0.12736867368221283,
-0.09712184965610504,
-0.053289953619241714,
-0.012466262094676495,
-0.02826373465359211,
0.11976707726716995,
0.16651245951652527,
-0.009171213954687119,
0.05253565311431885,
-0.09777641296386719,
0.00585701409727335,
0.04536122828722,
0.05269941687583923,
-0.11816549301147461,
-0.1903313547372818,
0.06428730487823486,
0.040518056601285934,
-0.027503041550517082,
-0.1567380428314209,
-0.039527107030153275,
0.043246399611234665,
-0.10861854255199432,
-0.048166390508413315,
0.10344897955656052,
0.06302181631326675,
0.08676761388778687,
-0.027534259483218193,
-0.060677479952573776,
-0.08008363842964172,
0.12883718311786652,
-0.16553311049938202,
-0.08404569327831268
] |
null | null | transformers |
# Roberta Large Fine Tuned on RACE
## Model description
This model is a fine-tuned model of Roberta-large applied on RACE
#### How to use
```python
import datasets
from transformers import RobertaTokenizer
from transformers import RobertaForMultipleChoice
tokenizer = RobertaTokenizer.from_pretrained(
"LIAMF-USP/roberta-large-finetuned-race")
model = RobertaForMultipleChoice.from_pretrained(
"LIAMF-USP/roberta-large-finetuned-race")
dataset = datasets.load_dataset(
"race",
"all",
split=["train", "validation", "test"],
)training_examples = dataset[0]
evaluation_examples = dataset[1]
test_examples = dataset[2]
example=training_examples[0]
example_id = example["example_id"]
question = example["question"]
context = example["article"]
options = example["options"]
label_example = example["answer"]
label_map = {label: i
for i, label in enumerate(["A", "B", "C", "D"])}
choices_inputs = []
for ending_idx, (_, ending) in enumerate(
zip(context, options)):
if question.find("_") != -1:
# fill in the banks questions
question_option = question.replace("_", ending)
else:
question_option = question + " " + ending
inputs = tokenizer(
context,
question_option,
add_special_tokens=True,
max_length=MAX_SEQ_LENGTH,
padding="max_length",
truncation=True,
return_overflowing_tokens=False,
)
label = label_map[label_example]
input_ids = [x["input_ids"] for x in choices_inputs]
attention_mask = (
[x["attention_mask"] for x in choices_inputs]
# as the senteces follow the same structure,
#just one of them is necessary to check
if "attention_mask" in choices_inputs[0]
else None
)
example_encoded = {
"example_id": example_id,
"input_ids": input_ids,
"attention_mask": attention_mask,
"label": label,
}
output = model(**example_encoded)
```
## Training data
The initial model was [roberta large model](https://huggingface.co/roberta-large) which was then fine-tuned on [RACE dataset](https://www.cs.cmu.edu/~glai1/data/race/)
## Training procedure
It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following:
| Hyperparameter | Value |
|:----:|:----:|
| adam_beta1 | 0.9 |
| adam_beta2 | 0.98 |
| adam_epsilon | 1.000e-8 |
| eval_batch_size | 32 |
| train_batch_size | 1 |
| fp16 | True |
| gradient_accumulation_steps | 16 |
| learning_rate | 0.00001 |
| warmup_steps | 1000 |
| max_length | 512 |
| epochs | 4 |
## Eval results:
| Dataset Acc | Eval | All Test |High School Test |Middle School Test |
|:----:|:----:|:----:|:----:|:----:|
| | 85.2 | 84.9|83.5|88.0|
**The model was trained with a Tesla V100-PCIE-16GB** | {"language": "english", "license": "mit", "datasets": ["race"], "metrics": ["accuracy"]} | multiple-choice | LIAMF-USP/roberta-large-finetuned-race | [
"transformers",
"pytorch",
"tf",
"jax",
"roberta",
"multiple-choice",
"dataset:race",
"license:mit",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"english"
] | TAGS
#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #license-mit #endpoints_compatible #region-us
| Roberta Large Fine Tuned on RACE
================================
Model description
-----------------
This model is a fine-tuned model of Roberta-large applied on RACE
#### How to use
Training data
-------------
The initial model was roberta large model which was then fine-tuned on RACE dataset
Training procedure
------------------
It was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:
Eval results:
-------------
The model was trained with a Tesla V100-PCIE-16GB
| [
"#### How to use\n\n\nTraining data\n-------------\n\n\nThe initial model was roberta large model which was then fine-tuned on RACE dataset\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a Tesla V100-PCIE-16GB"
] | [
"TAGS\n#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #license-mit #endpoints_compatible #region-us \n",
"#### How to use\n\n\nTraining data\n-------------\n\n\nThe initial model was roberta large model which was then fine-tuned on RACE dataset\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a Tesla V100-PCIE-16GB"
] | [
46,
93
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #roberta #multiple-choice #dataset-race #license-mit #endpoints_compatible #region-us \n#### How to use\n\n\nTraining data\n-------------\n\n\nThe initial model was roberta large model which was then fine-tuned on RACE dataset\n\n\nTraining procedure\n------------------\n\n\nIt was necessary to preprocess the data with a method that is exemplified for a single instance in the *How to use* section. The used hyperparameters were the following:\n\n\n\nEval results:\n-------------\n\n\n\nThe model was trained with a Tesla V100-PCIE-16GB"
] | [
-0.06710539013147354,
-0.009023544378578663,
0.002274091122671962,
0.07663954794406891,
0.20846028625965118,
0.0829377993941307,
0.12794657051563263,
0.07788128405809402,
-0.06513556838035583,
-0.040943924337625504,
0.14056989550590515,
0.1287326216697693,
0.00201393011957407,
0.1500282734632492,
0.0006865131435915828,
-0.201226606965065,
-0.03505618870258331,
0.03103332221508026,
-0.051405224949121475,
0.11916010826826096,
0.11125510931015015,
-0.15677446126937866,
0.10400041192770004,
-0.03289538994431496,
-0.21466033160686493,
0.04226894676685333,
-0.008742254227399826,
-0.04151596128940582,
0.13291938602924347,
-0.012269492261111736,
0.14029653370380402,
0.04253411293029785,
0.16238871216773987,
-0.08428612351417542,
0.02050076238811016,
-0.0043799434788525105,
0.0014697150327265263,
0.08188842236995697,
0.01546174194663763,
-0.01505446620285511,
0.1583096832036972,
0.04271791875362396,
0.06787047535181046,
-0.006985635031014681,
-0.11155366152524948,
-0.16494762897491455,
-0.04603831470012665,
-0.02160917967557907,
0.07492497563362122,
0.09043003618717194,
-0.015730377286672592,
0.1855083853006363,
-0.1173739954829216,
0.06604219973087311,
0.09701121598482132,
-0.20973633229732513,
-0.053876038640737534,
0.16433784365653992,
0.0615154467523098,
0.005848207511007786,
-0.05200456827878952,
-0.012310533784329891,
0.08022446930408478,
0.05909246951341629,
0.07376133650541306,
-0.060275379568338394,
-0.10213267058134079,
0.021331096068024635,
-0.14213775098323822,
-0.012151620350778103,
0.17685699462890625,
0.016523810103535652,
-0.024505071341991425,
0.06977702677249908,
-0.026520049199461937,
-0.1145554780960083,
0.002628321060910821,
-0.024848323315382004,
-0.009515633806586266,
-0.04124202951788902,
-0.13371729850769043,
-0.05376702547073364,
-0.08054980635643005,
-0.08596103638410568,
-0.09509645402431488,
0.16299289464950562,
0.034601643681526184,
0.05837223678827286,
-0.08700526505708694,
0.15014168620109558,
-0.06245546415448189,
-0.06136035919189453,
0.08095967769622803,
-0.0547013133764267,
-0.05944942310452461,
-0.07963041961193085,
-0.009195266291499138,
0.01702974922955036,
0.03464258834719658,
0.12285720556974411,
0.05827753618359566,
-0.019414158537983894,
0.1218319982290268,
0.02910093404352665,
0.004476056434214115,
0.12078626453876495,
-0.1457841694355011,
-0.09114900231361389,
0.03684735298156738,
-0.05560955032706261,
-0.014628707431256771,
0.01063084788620472,
-0.13711082935333252,
-0.0054444316774606705,
0.07238638401031494,
0.04129185527563095,
-0.05145031586289406,
0.05927485227584839,
-0.017799098044633865,
-0.0291579756885767,
-0.11791115999221802,
-0.07618415355682373,
-0.018969496712088585,
-0.059306398034095764,
-0.05448490008711815,
-0.08322004228830338,
0.014446062035858631,
0.0026777414605021477,
0.0321219302713871,
0.12550003826618195,
-0.07322028279304504,
-0.033842332661151886,
-0.17891758680343628,
-0.13571017980575562,
-0.05741359293460846,
-0.10084722191095352,
0.06572885811328888,
-0.0938417837023735,
-0.30089113116264343,
-0.00011036154319299385,
0.05882353335618973,
-0.05821025371551514,
-0.04965992644429207,
-0.02250232733786106,
-0.013073614798486233,
-0.017650077119469643,
-0.017896132543683052,
0.19779114425182343,
-0.059903763234615326,
0.06820430606603622,
-0.013568726368248463,
0.08268935978412628,
-0.07996685057878494,
0.04454895481467247,
-0.08151722699403763,
0.006512846332043409,
-0.19100026786327362,
0.022194646298885345,
-0.021330486983060837,
0.07537107914686203,
-0.06357366591691971,
-0.09108623117208481,
-0.025840161368250847,
0.007357757538557053,
0.08297029137611389,
0.10538341104984283,
-0.20207414031028748,
-0.00988511648029089,
0.08374883979558945,
-0.09475888311862946,
-0.10199214518070221,
0.09744340181350708,
-0.1087443083524704,
0.19186687469482422,
0.06539718061685562,
0.17756740748882294,
0.029894698411226273,
-0.06963750720024109,
0.06269444525241852,
0.0617925189435482,
-0.07752374559640884,
-0.08336836844682693,
0.0815400779247284,
0.023653309792280197,
-0.12995319068431854,
-0.013145992532372475,
0.03878823667764664,
0.07796237617731094,
-0.17961902916431427,
-0.041051339358091354,
0.012145265936851501,
-0.08621062338352203,
-0.045661941170692444,
0.0483664944767952,
0.07297271490097046,
-0.06738954782485962,
-0.021906383335590363,
0.006312329322099686,
0.14104337990283966,
-0.04196665808558464,
-0.033319439738988876,
-0.09767519682645798,
0.06970662623643875,
-0.058629751205444336,
-0.04579359292984009,
-0.14395779371261597,
0.023389756679534912,
-0.037715569138526917,
0.16006727516651154,
-0.0027581362519413233,
0.12144581973552704,
0.0539853610098362,
0.016785230487585068,
-0.04366135969758034,
0.03921084478497505,
0.05466322973370552,
0.015172996558248997,
-0.11349840462207794,
-0.18030181527137756,
-0.028647683560848236,
-0.04856644943356514,
0.14742694795131683,
-0.13536320626735687,
0.0036636274307966232,
-0.09113955497741699,
0.0623537078499794,
-0.0074376207776367664,
0.006813618820160627,
-0.000323243293678388,
0.04552469030022621,
-0.045935142785310745,
-0.06865732371807098,
0.021385999396443367,
0.03426795080304146,
-0.06346192955970764,
-0.044258005917072296,
-0.08150240033864975,
0.10094694793224335,
0.15757770836353302,
-0.15667791664600372,
-0.13450223207473755,
0.08017949759960175,
-0.0312526561319828,
0.009952071122825146,
-0.07104629278182983,
0.01749572530388832,
0.058444950729608536,
-0.06958053261041641,
0.11011648923158646,
-0.03470604121685028,
-0.007844369858503342,
0.0032178708352148533,
-0.02103183977305889,
0.08787603676319122,
0.1259181797504425,
0.24669204652309418,
-0.15433195233345032,
0.0718943327665329,
0.034676291048526764,
-0.09446734189987183,
0.11596163362264633,
0.010719497688114643,
-0.06746906787157059,
-0.016747118905186653,
-0.08930091559886932,
-0.023326214402914047,
0.1555229127407074,
-0.1467282474040985,
0.045745473355054855,
0.04827359318733215,
-0.032041534781455994,
0.03788486495614052,
-0.14163078367710114,
-0.06278117001056671,
0.013115925714373589,
-0.003075292566791177,
-0.019234417006373405,
-0.0015769466990604997,
-0.018251555040478706,
0.09774252027273178,
-0.006575953681021929,
-0.14361120760440826,
0.06865701824426651,
0.006457153242081404,
-0.09737779200077057,
0.18613287806510925,
-0.006965314038097858,
-0.007127726916223764,
-0.03773050755262375,
-0.058920666575431824,
0.10211341083049774,
0.039082761853933334,
0.051185812801122665,
-0.04021717607975006,
-0.03817237168550491,
-0.024296166375279427,
0.08486734330654144,
-0.07476770132780075,
0.06887555867433548,
0.008468447253108025,
-0.005661669187247753,
-0.01726551167666912,
-0.0827130451798439,
0.012684093788266182,
-0.08389634639024734,
-0.08445074409246445,
0.0961233526468277,
-0.021848225966095924,
0.13603585958480835,
0.1365215927362442,
-0.07689616084098816,
0.033160362392663956,
-0.05029543489217758,
0.2829919457435608,
-0.09499688446521759,
-0.03392244130373001,
0.09871093183755875,
0.005033382214605808,
-0.024659089744091034,
0.13760940730571747,
0.035794105380773544,
-0.07473991811275482,
0.026980482041835785,
0.012205781415104866,
-0.09731734544038773,
-0.2289767563343048,
-0.037315696477890015,
-0.009817972779273987,
-0.025480231270194054,
0.031903225928545,
0.0017014435725286603,
-0.05892890319228172,
0.15000225603580475,
0.03198802098631859,
0.07247494161128998,
-0.06672311574220657,
0.054127879440784454,
0.05315694957971573,
0.02453111857175827,
0.12343621253967285,
-0.059132590889930725,
-0.09023876488208771,
0.07491303235292435,
-0.13727618753910065,
0.30013567209243774,
-0.0115172378718853,
-0.03952997550368309,
0.0763954296708107,
0.08395201712846756,
0.002854879479855299,
0.1329338699579239,
0.015236572362482548,
-0.02708757109940052,
-0.05300475284457207,
0.008862365037202835,
0.0004876658204011619,
-0.030232008546590805,
-0.050206080079078674,
0.03843369334936142,
-0.08427334576845169,
0.10918313264846802,
0.02366476133465767,
0.12454527616500854,
0.047266554087400436,
-0.275119423866272,
-0.05110436677932739,
-0.02289874665439129,
-0.0036316285841166973,
-0.02903437428176403,
0.053283192217350006,
0.10079187899827957,
-0.09087584912776947,
0.006002407055348158,
-0.008491630665957928,
0.06933339685201645,
-0.06457214057445526,
0.04832465574145317,
0.07197299599647522,
0.06126898154616356,
-0.060456909239292145,
0.11680296063423157,
-0.3495534658432007,
0.2832172214984894,
0.012426763772964478,
0.08149289339780807,
-0.049858853220939636,
-0.053883038461208344,
0.0013247457100078464,
0.08054997026920319,
0.10724464803934097,
-0.04029856249690056,
0.03489154577255249,
-0.12928368151187897,
-0.030006855726242065,
0.039361778646707535,
0.01776118203997612,
-0.03794955089688301,
0.0866643562912941,
0.011808637529611588,
0.017576104030013084,
0.04377402737736702,
-0.013605787418782711,
-0.1361805647611618,
-0.061534229665994644,
-0.05819698050618172,
0.004762865602970123,
-0.09235682338476181,
-0.010220563970506191,
-0.08959753811359406,
-0.07169335335493088,
0.06153334677219391,
0.05721001699566841,
-0.06341709196567535,
-0.10341005772352219,
0.14029906690120697,
0.08466263115406036,
-0.04935081675648689,
0.01029791496694088,
0.03777438774704933,
-0.031477563083171844,
0.02362571656703949,
-0.03643268346786499,
0.08123024553060532,
-0.12050112336874008,
-0.08842895179986954,
-0.02879955805838108,
-0.010386105626821518,
0.050700895488262177,
0.10142557322978973,
0.02178805321455002,
-0.015613771043717861,
-0.06878933310508728,
-0.12757515907287598,
0.03336777165532112,
-0.06530887633562088,
0.04670005664229393,
0.028475414961576462,
-0.020019713789224625,
0.044918276369571686,
0.008977735415101051,
-0.06880483031272888,
0.17189833521842957,
0.20081999897956848,
-0.09931234270334244,
0.0005498903337866068,
0.08711837232112885,
-0.1050192266702652,
-0.27306610345840454,
0.07749315351247787,
0.006661609746515751,
0.02578543871641159,
0.07384683191776276,
-0.17546382546424866,
0.1255907118320465,
0.04672006517648697,
0.004776324611157179,
-0.005593259818851948,
-0.22380004823207855,
-0.11268023401498795,
0.1588142216205597,
0.11425387859344482,
0.29954269528388977,
-0.10241267830133438,
-0.007018498610705137,
-0.06320477277040482,
-0.09378741681575775,
0.09070219099521637,
-0.15486177802085876,
0.110659658908844,
0.003717700019478798,
0.09518253803253174,
0.00023533044441137463,
-0.05954306200146675,
0.10188261419534683,
0.04341530799865723,
0.1323067992925644,
-0.06634398549795151,
-0.06486444920301437,
0.10363256186246872,
0.007797467056661844,
0.007825249806046486,
0.0722469612956047,
0.02702942118048668,
-0.08391039818525314,
-0.07073119282722473,
-0.060489192605018616,
0.04639732465147972,
-0.011252252385020256,
-0.13125663995742798,
-0.042634181678295135,
0.033917319029569626,
0.0020843297243118286,
-0.0580517016351223,
-0.029455117881298065,
-0.010114124976098537,
0.014067701064050198,
-0.07829510420560837,
0.14939993619918823,
-0.010916920378804207,
0.034080833196640015,
0.05945239216089249,
-0.03515808656811714,
0.04414065554738045,
-0.06812717020511627,
-0.004623808898031712,
0.09295987337827682,
0.010649149306118488,
0.10667188465595245,
0.09250934422016144,
-0.04841563478112221,
0.031026819720864296,
0.0779818519949913,
-0.1517295390367508,
-0.0570865161716938,
0.0032186934258788824,
-0.05767716094851494,
-0.03646376356482506,
0.022687003016471863,
0.06370194256305695,
-0.07121127843856812,
-0.01530544739216566,
-0.047945890575647354,
-0.029326818883419037,
-0.06098001077771187,
0.18089529871940613,
0.11630932986736298,
0.060661476105451584,
-0.11821188032627106,
0.00772494962438941,
0.05784779042005539,
0.04159725829958916,
-0.011196587234735489,
0.013950761407613754,
-0.10959862917661667,
-0.02096393331885338,
0.019421562552452087,
0.3153073787689209,
-0.15802019834518433,
-0.06428501009941101,
-0.13265922665596008,
-0.052403755486011505,
0.051169510930776596,
0.10981081426143646,
0.12374509871006012,
0.0010332969250157475,
0.02318255975842476,
0.00790288858115673,
-0.19137811660766602,
0.07667561620473862,
0.021783053874969482,
0.015081607736647129,
-0.11951961368322372,
0.16953407227993011,
-0.013459079898893833,
0.07504137605428696,
-0.07005716115236282,
0.023403510451316833,
-0.11822786927223206,
0.06458623707294464,
-0.08670925348997116,
-0.019447674974799156,
-0.04737422987818718,
-0.031263209879398346,
0.04772067442536354,
-0.034929294139146805,
-0.09374869614839554,
-0.0006575986626558006,
-0.10730115324258804,
0.032415151596069336,
0.04243851825594902,
0.004508462268859148,
-0.025163261219859123,
-0.039377886801958084,
-0.01915678195655346,
0.010604209266602993,
0.09771063178777695,
0.04164307564496994,
0.042232051491737366,
-0.052484214305877686,
-0.15862251818180084,
-0.03690877929329872,
-0.02023128606379032,
-0.006245195399969816,
0.08691329509019852,
-0.05146278068423271,
0.03807763382792473,
-0.008251369930803776,
0.021245252341032028,
0.04323830455541611,
-0.013166874647140503,
-0.10132712870836258,
0.0792863517999649,
-0.007769700605422258,
-0.04395555332303047,
-0.02668358013033867,
0.05788770318031311,
0.01996908150613308,
0.07419265061616898,
0.134950652718544,
-0.04767734557390213,
0.04157453030347824,
-0.14172089099884033,
-0.012200846336781979,
-0.047503288835287094,
0.02241857349872589,
-0.16174644231796265,
-0.06661158800125122,
0.08124075829982758,
-0.016444552689790726,
0.19845359027385712,
0.18094760179519653,
0.00457637757062912,
0.008996796794235706,
-0.018552597612142563,
0.07071831077337265,
-0.052785567939281464,
0.20464879274368286,
0.002796698594465852,
0.030812310054898262,
0.061532601714134216,
0.12048815935850143,
0.08374776691198349,
0.12771213054656982,
0.1707480400800705,
0.10863810777664185,
0.044624026864767075,
0.021562712267041206,
-0.05230049043893814,
-0.11618433147668839,
-0.03820645436644554,
0.0035311542451381683,
0.010441655293107033,
0.03731253370642662,
-0.020504295825958252,
0.07343917340040207,
0.051428429782390594,
-0.07520654797554016,
-0.00650153961032629,
-0.06216711923480034,
-0.06590389460325241,
-0.16177397966384888,
0.013461030088365078,
-0.08007129281759262,
-0.09700439870357513,
0.045086443424224854,
-0.11255533993244171,
-0.041384849697351456,
0.22445043921470642,
0.05448843911290169,
-0.021994933485984802,
0.0532548613846302,
-0.03877998888492584,
0.034106526523828506,
-0.020729295909404755,
-0.012511084787547588,
-0.01705985702574253,
-0.16160617768764496,
-0.055050406605005264,
-0.05987554043531418,
-0.024063050746917725,
-0.012520241551101208,
-0.08010680228471756,
-0.04609031602740288,
0.02607639878988266,
-0.003047834848985076,
-0.0430392362177372,
-0.0025859372690320015,
0.02468162775039673,
0.15115398168563843,
0.09093959629535675,
-0.021354470402002335,
0.029115336015820503,
-0.005451091565191746,
0.2751542329788208,
-0.036868173629045486,
-0.13060277700424194,
-0.10960046201944351,
0.1996828019618988,
0.032740648835897446,
0.020924290642142296,
0.013123651035130024,
-0.07762633264064789,
0.0628998652100563,
0.313247948884964,
0.27033501863479614,
-0.08669667690992355,
-0.041928235441446304,
0.007466746494174004,
-0.024685220792889595,
-0.025649430230259895,
0.08994659036397934,
0.08598680794239044,
-0.01169573049992323,
-0.14249776303768158,
-0.034903816878795624,
-0.11753910779953003,
0.0030245929956436157,
-0.0486915297806263,
0.004569679033011198,
0.07028789073228836,
0.015194886364042759,
-0.0026766182854771614,
0.08787386864423752,
-0.06738032400608063,
-0.1826634407043457,
0.06394288688898087,
-0.10034919530153275,
-0.1096498966217041,
-0.00908636674284935,
0.045247990638017654,
0.04916709288954735,
0.05737033858895302,
-0.09840196371078491,
0.008184599690139294,
-0.01437147706747055,
0.016787897795438766,
-0.15358716249465942,
-0.12224005162715912,
0.1495673805475235,
0.020074203610420227,
0.20116914808750153,
-0.09682019799947739,
0.14713460206985474,
0.10827668756246567,
-0.006363973021507263,
-0.11319535225629807,
0.06206556409597397,
0.04525528848171234,
-0.013499435037374496,
0.0369335412979126,
0.030048280954360962,
-0.056534674018621445,
0.06280127912759781,
-0.0397564098238945,
-0.1335105448961258,
0.00576689001172781,
-0.09004741162061691,
-0.05812535434961319,
-0.08684136718511581,
-0.015372192487120628,
-0.06711547076702118,
0.12872448563575745,
0.1397395133972168,
-0.05514628440141678,
0.01152731105685234,
-0.06967821717262268,
0.04427945986390114,
0.039163608103990555,
0.03471045941114426,
-0.054036155343055725,
-0.1770550012588501,
-0.014484228566288948,
0.048288870602846146,
-0.007570229936391115,
-0.2132752537727356,
0.009961334988474846,
-0.012906578369438648,
-0.09177222102880478,
-0.1037614643573761,
0.07234787940979004,
0.0860484316945076,
0.05829351022839546,
-0.04758378118276596,
0.004172788001596928,
-0.09138250350952148,
0.08471381664276123,
-0.16376616060733795,
-0.10974578559398651
] |
null | null | null | git lfs install
git clone https://huggingface.co/LPM/AI_1 | {} | null | LPM/AI_1 | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| git lfs install
git clone URL | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
# Rick DioloGPT Model
| {"tags": ["conversational"]} | text-generation | LactoseLegend/DialoGPT-small-Rick | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick DioloGPT Model
| [
"# Rick DioloGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick DioloGPT Model"
] | [
51,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick DioloGPT Model"
] | [
-0.0383782722055912,
0.05289384350180626,
-0.0062245880253612995,
0.03184846416115761,
0.14321854710578918,
0.010280178859829903,
0.15601825714111328,
0.12929728627204895,
0.00653641764074564,
-0.039344534277915955,
0.1483750194311142,
0.2340240478515625,
0.0018733566394075751,
0.059313029050827026,
-0.09234122186899185,
-0.3241214156150818,
0.04113999009132385,
0.052574362605810165,
-0.06273462623357773,
0.09635945409536362,
0.11406707763671875,
-0.05634015426039696,
0.09206922352313995,
-0.02149694599211216,
-0.1404784470796585,
-0.007190382108092308,
0.012141011655330658,
-0.10704705119132996,
0.10329753160476685,
0.07153984904289246,
0.04978306218981743,
0.06319566071033478,
-0.019505267962813377,
-0.0904340147972107,
0.04458559677004814,
0.014972098171710968,
-0.03281455114483833,
0.07297766953706741,
0.03296980634331703,
-0.11566110700368881,
0.06397587060928345,
0.0908934623003006,
-0.012399066239595413,
0.036102838814258575,
-0.16128915548324585,
0.00559408450499177,
-0.015565650537610054,
0.0025635461788624525,
0.07782691717147827,
0.10945901274681091,
-0.016445156186819077,
0.06819894909858704,
-0.07969780266284943,
0.09888555109500885,
0.15323254466056824,
-0.2345130741596222,
-0.029250025749206543,
0.13712799549102783,
0.042285848408937454,
0.03577439859509468,
-0.03076225519180298,
0.07249501347541809,
0.03676551207900047,
0.007381425704807043,
-0.015503015369176865,
-0.0765954777598381,
-0.05420420691370964,
0.028962725773453712,
-0.07836150377988815,
0.013357558287680149,
0.28121060132980347,
-0.0437341183423996,
0.06357544660568237,
-0.04704708606004715,
-0.09182499349117279,
0.014147858135402203,
-0.032970182597637177,
-0.03640729933977127,
-0.08382813632488251,
0.06904395669698715,
0.006777771282941103,
-0.09240984171628952,
-0.11734265089035034,
-0.01674560457468033,
-0.1765311360359192,
0.19903530180454254,
0.020144008100032806,
0.02197268046438694,
-0.21970297396183014,
0.09375700354576111,
-0.005034041125327349,
-0.09279606491327286,
0.008124573156237602,
-0.11473863571882248,
0.044614147394895554,
0.009847266599535942,
-0.04046841710805893,
-0.028058651834726334,
0.06967005878686905,
0.13451111316680908,
0.03840060532093048,
-0.002105501014739275,
0.00016315377433784306,
0.04713885858654976,
0.051540669053792953,
0.06936714053153992,
-0.03261822089552879,
-0.007595385424792767,
0.02424374595284462,
-0.08436831086874008,
-0.02019106224179268,
-0.06068022921681404,
-0.19785578548908234,
0.008944480679929256,
0.013639780692756176,
0.05229667201638222,
0.04710783064365387,
0.11976791173219681,
-0.04731469973921776,
-0.05711199343204498,
0.044710468500852585,
-0.03340056166052818,
-0.012982189655303955,
0.005067598540335894,
-0.017786700278520584,
0.169562429189682,
-0.001044543576426804,
0.0369044654071331,
-0.09309640526771545,
0.04640718549489975,
-0.04819180443882942,
-0.020037468522787094,
-0.0526522733271122,
-0.06556123495101929,
-0.008601678535342216,
-0.059938397258520126,
0.03706921264529228,
-0.14713509380817413,
-0.1916937381029129,
-0.008943101391196251,
-0.003950744401663542,
-0.06614386290311813,
-0.0818266049027443,
-0.10862578451633453,
-0.04068513959646225,
0.03349042311310768,
-0.05965792387723923,
0.02104933001101017,
-0.04389011487364769,
0.09024899452924728,
-0.04862666130065918,
0.0951148048043251,
-0.12990111112594604,
0.09084199368953705,
-0.0803290382027626,
-0.031341273337602615,
-0.053935013711452484,
0.12850670516490936,
0.020154865458607674,
0.08332732319831848,
-0.021291913464665413,
-0.01982889510691166,
-0.11631302535533905,
0.08474024385213852,
-0.03334607556462288,
0.2504723370075226,
-0.15204718708992004,
-0.10129610449075699,
0.19917906820774078,
-0.0313991941511631,
-0.13454914093017578,
0.09750429540872574,
-0.016681639477610588,
0.1297401785850525,
0.1266767680644989,
0.16047996282577515,
0.04299723729491234,
0.0016469095135107636,
0.07438010722398758,
0.11918795853853226,
-0.0915413498878479,
-0.0020924557466059923,
0.011678457260131836,
0.00239418912678957,
-0.05435178801417351,
0.036139924079179764,
0.06029744818806648,
0.03360625356435776,
-0.06272973120212555,
-0.02064450830221176,
0.004321717657148838,
-0.004172488581389189,
0.06784781068563461,
-0.014898179098963737,
0.10760696232318878,
-0.03596058115363121,
-0.04059675708413124,
-0.029909828677773476,
0.030887268483638763,
-0.05238236486911774,
0.014760986901819706,
-0.06296814978122711,
0.07730614393949509,
-0.004040825180709362,
0.07081004232168198,
-0.1764274388551712,
-0.0795554369688034,
-0.048583634197711945,
0.18289341032505035,
0.06048641353845596,
0.14257627725601196,
0.055480074137449265,
-0.053168587386608124,
0.013041344471275806,
0.0049347965978085995,
0.1929846853017807,
-0.013574698008596897,
-0.07977964729070663,
-0.10589037835597992,
0.08831282705068588,
-0.07906468957662582,
0.02295970916748047,
-0.054771557450294495,
0.027536258101463318,
0.0349736288189888,
0.09246525913476944,
-0.022136477753520012,
0.06866966187953949,
-0.014520401135087013,
-0.01778269372880459,
-0.09186021238565445,
-0.02102237194776535,
0.0889381617307663,
-0.018831491470336914,
-0.09000970423221588,
0.2003439962863922,
-0.1401652842760086,
0.1115192323923111,
0.18378205597400665,
-0.2550002932548523,
0.00750851072371006,
-0.058063942939043045,
-0.03202606365084648,
0.024732233956456184,
0.02580786868929863,
-0.05844488367438316,
0.18825028836727142,
-0.0038745286874473095,
0.1580961048603058,
-0.038586486130952835,
-0.032504163682460785,
-0.0144325727596879,
-0.05012061446905136,
-0.00396256148815155,
0.10707215219736099,
0.12382205575704575,
-0.10032510757446289,
0.18734362721443176,
0.13482442498207092,
0.04610909894108772,
0.13630716502666473,
0.027789540588855743,
0.012823285534977913,
0.07166775315999985,
-0.014000741764903069,
-0.036063723266124725,
-0.05773473531007767,
-0.164437398314476,
-0.018810179084539413,
0.0683828815817833,
0.0331815667450428,
0.10031457990407944,
-0.102023646235466,
-0.04719413444399834,
-0.0030153868719935417,
-0.011668069288134575,
0.02745211496949196,
0.11393769830465317,
0.019798103719949722,
0.13120730221271515,
-0.017734715715050697,
-0.07464050501585007,
0.07720790058374405,
0.023053564131259918,
-0.06861075758934021,
0.18911153078079224,
-0.11673552542924881,
-0.34776386618614197,
-0.08953738957643509,
-0.16514436900615692,
-0.05998348444700241,
0.0645456314086914,
0.09379654377698898,
-0.14728383719921112,
-0.02283693663775921,
0.015222013927996159,
0.0915309265255928,
-0.10563234239816666,
0.023645799607038498,
-0.044585879892110825,
0.006452648900449276,
-0.13133122026920319,
-0.10567646473646164,
-0.05754460021853447,
-0.044602200388908386,
-0.03681626170873642,
0.14553989470005035,
-0.15247760713100433,
0.03388550132513046,
0.20840679109096527,
0.06669937819242477,
0.04831957444548607,
-0.024120377376675606,
0.18117286264896393,
-0.10260184109210968,
0.03405793383717537,
0.21680422127246857,
-0.011968079023063183,
0.06683225929737091,
0.12800100445747375,
-0.00015711905143689364,
-0.09605318307876587,
0.027408339083194733,
-0.00429929094389081,
-0.07229281216859818,
-0.23108291625976562,
-0.11750511080026627,
-0.11390034109354019,
0.07476671785116196,
0.0653654932975769,
0.03653278574347496,
0.1843085139989853,
0.09147494286298752,
-0.05247656628489494,
0.03126056492328644,
0.05642199516296387,
0.0824974849820137,
0.2046969085931778,
-0.06583284586668015,
0.15098795294761658,
-0.017572972923517227,
-0.1675518900156021,
0.08930050581693649,
0.053457293659448624,
0.13506080210208893,
0.04871823266148567,
0.08207865804433823,
-0.0011868647998198867,
0.004947243258357048,
0.1021156907081604,
0.11087726801633835,
0.011288427747786045,
-0.032231420278549194,
-0.060825854539871216,
-0.03470352292060852,
0.001237821183167398,
0.06494144350290298,
0.02118220366537571,
-0.15208616852760315,
-0.02363070659339428,
-0.00877952016890049,
0.0698850154876709,
0.04686065763235092,
0.11844247579574585,
-0.21649089455604553,
-0.006904626730829477,
0.08219525218009949,
0.02569403126835823,
-0.11521055549383163,
0.07520325481891632,
-0.031212221831083298,
-0.10005518794059753,
0.04492352530360222,
-0.029759909957647324,
0.12976305186748505,
-0.05817731097340584,
0.0815097764134407,
-0.09759178757667542,
-0.011700859293341637,
-0.000571492942981422,
0.11377516388893127,
-0.38729041814804077,
0.17157675325870514,
-0.003060194430872798,
-0.02502918429672718,
-0.11129116266965866,
0.002120547229424119,
0.023106686770915985,
0.1066925972700119,
0.11039967834949493,
-0.024517158046364784,
0.0408044196665287,
-0.0028075927402824163,
-0.057875193655490875,
0.02827274613082409,
0.10671345889568329,
-0.0918692871928215,
-0.016797445714473724,
-0.031850554049015045,
0.0055759684182703495,
0.004344080109149218,
-0.12293869256973267,
0.0068074543960392475,
-0.18057702481746674,
0.10566157102584839,
0.03377757966518402,
0.1078401654958725,
0.03850246220827103,
-0.027529316022992134,
-0.09695365279912949,
0.21455118060112,
-0.05267184600234032,
-0.10672987252473831,
-0.11158566921949387,
0.028247741982340813,
0.04220498725771904,
-0.05444379895925522,
-0.0245797298848629,
-0.06459729373455048,
0.04384666308760643,
-0.0632740780711174,
-0.2137189507484436,
0.10091566294431686,
-0.10337786376476288,
-0.049627598375082016,
-0.04521627724170685,
0.19667284190654755,
-0.024251868948340416,
0.0012081695022061467,
0.046176448464393616,
-0.011244475841522217,
-0.12636663019657135,
-0.10241685062646866,
0.017210721969604492,
0.024198289960622787,
0.0691092237830162,
0.029900070279836655,
-0.051850251853466034,
0.028773438185453415,
-0.08434908837080002,
0.0001536191994091496,
0.2517783045768738,
0.11580459773540497,
-0.050322648137807846,
0.15154573321342468,
0.05601707100868225,
-0.06471572816371918,
-0.31378334760665894,
-0.08761217445135117,
-0.07573461532592773,
-0.039726246148347855,
-0.0632060319185257,
-0.2066311091184616,
0.09390297532081604,
-0.023699168115854263,
0.0012325969291850924,
0.10320936888456345,
-0.2491704672574997,
-0.09954645484685898,
0.17439910769462585,
-0.04587040841579437,
0.42335882782936096,
-0.11166320741176605,
-0.05943737551569939,
-0.07050200551748276,
-0.10175378620624542,
0.1969587206840515,
0.008486742153763771,
0.08887278288602829,
-0.009899984113872051,
0.1752062886953354,
0.06545363366603851,
0.004819852765649557,
0.09521110355854034,
0.040151964873075485,
-0.028227929025888443,
-0.09385684877634048,
-0.10466666519641876,
0.000735939247533679,
0.010908415541052818,
0.02065591886639595,
-0.05991578474640846,
0.04180196300148964,
-0.11703016608953476,
-0.050730086863040924,
-0.07118584215641022,
0.04902582988142967,
0.020418565720319748,
-0.0757429227232933,
-0.019030451774597168,
-0.03917863219976425,
-0.008789156563580036,
0.011893893592059612,
0.2066190540790558,
-0.07987567037343979,
0.10008476674556732,
0.009094197303056717,
0.15294238924980164,
-0.13908304274082184,
-0.019713684916496277,
-0.050744328647851944,
-0.04426873102784157,
0.08604563772678375,
-0.15697401762008667,
0.038920897990465164,
0.1176709234714508,
-0.043666090816259384,
0.08815699070692062,
0.1284715235233307,
-0.003712060861289501,
0.006516116205602884,
0.08349545300006866,
-0.23128312826156616,
-0.07034464925527573,
-0.07654640078544617,
0.01608963869512081,
0.07297049462795258,
0.1284109205007553,
0.20005188882350922,
0.0026869047433137894,
-0.027574950829148293,
0.019869975745677948,
0.03212733566761017,
-0.022278234362602234,
0.07593292742967606,
0.008262019604444504,
0.022576773539185524,
-0.15269123017787933,
0.04297774285078049,
-0.008155137300491333,
-0.09135400503873825,
0.012083805166184902,
0.10439764708280563,
-0.10223741084337234,
-0.1316365748643875,
-0.023209640756249428,
0.1147124394774437,
-0.12996791303157806,
0.0008098589023575187,
-0.04610712453722954,
-0.1538877636194229,
0.07274192571640015,
0.08352302014827728,
0.05772899463772774,
0.06885312497615814,
-0.08880052715539932,
-0.025232462212443352,
-0.06395288556814194,
-0.005818902514874935,
0.03176666796207428,
0.002991426270455122,
-0.06887012720108032,
0.04130476340651512,
-0.05231059342622757,
0.12805922329425812,
-0.09110566228628159,
-0.08514785766601562,
-0.14427664875984192,
0.02503262646496296,
-0.10914237052202225,
-0.0890042707324028,
-0.09768083691596985,
-0.04279506579041481,
-0.0012438095873221755,
-0.03456033021211624,
-0.018788354471325874,
-0.04210636392235756,
-0.09896103292703629,
0.03654853627085686,
-0.041598547250032425,
0.0028458458837121725,
-0.061814628541469574,
-0.007760925684124231,
0.027445979416370392,
-0.04524024948477745,
0.1260736882686615,
0.1354150027036667,
-0.09302737563848495,
0.06366176158189774,
-0.13004349172115326,
-0.07105690240859985,
0.09424389898777008,
0.04341772571206093,
0.053499046713113785,
0.0719166249036789,
-0.004660669714212418,
0.05749911442399025,
0.037021003663539886,
0.030355090275406837,
0.009030661545693874,
-0.07340174168348312,
0.10195756703615189,
-0.059709332883358,
-0.10514276474714279,
-0.05616581067442894,
0.0008749067783355713,
0.03976232185959816,
0.08178253471851349,
0.12909521162509918,
-0.04316607862710953,
0.10466212779283524,
-0.06405820697546005,
0.042134132236242294,
0.009270568378269672,
-0.17986951768398285,
0.01101345382630825,
-0.10308603197336197,
0.056210990995168686,
0.0013863787753507495,
0.18168070912361145,
0.03386588767170906,
0.0017730548279359937,
0.016442960128188133,
0.08079994469881058,
0.03757861256599426,
0.02370552159845829,
0.1683148443698883,
0.11105868965387344,
-0.03638055920600891,
-0.13532957434654236,
0.10604289174079895,
0.07059735059738159,
0.10313357412815094,
0.1375703513622284,
-0.017276611179113388,
-0.0417446568608284,
0.07702776789665222,
-0.006565871182829142,
-0.003044465323910117,
-0.06941600888967514,
-0.07831408828496933,
-0.022625494748353958,
0.026564162224531174,
-0.014444728381931782,
0.05997763201594353,
0.12597598135471344,
-0.008828280493617058,
0.007112764287739992,
-0.024575060233473778,
-0.06770174950361252,
-0.1796891838312149,
-0.18223139643669128,
-0.0862373411655426,
-0.1303289383649826,
-0.015432187356054783,
-0.14266502857208252,
0.03836224228143692,
0.021706316620111465,
0.08523354679346085,
-0.055472224950790405,
0.04107590392231941,
0.04687371477484703,
-0.10470109432935715,
0.07637692242860794,
-0.04076157137751579,
0.07303505390882492,
-0.03252248838543892,
-0.01624695397913456,
-0.09185855835676193,
0.037023384124040604,
-0.006542825140058994,
0.04329405725002289,
-0.013732667081058025,
0.008420480415225029,
-0.12333961576223373,
-0.09557212889194489,
-0.060218535363674164,
0.0595051534473896,
-0.04413238540291786,
0.16438283026218414,
0.01689707115292549,
-0.04175209626555443,
0.04836486279964447,
0.20942072570323944,
-0.0590536929666996,
-0.06164074316620827,
-0.07736889272928238,
0.18621250987052917,
0.001685043447650969,
0.10167715698480606,
-0.033551719039678574,
0.008210895583033562,
-0.08527085185050964,
0.34327664971351624,
0.3156569004058838,
-0.10939550399780273,
0.0030804763082414865,
-0.01226933766156435,
0.04005761444568634,
0.11562232673168182,
0.0956990197300911,
0.09501758217811584,
0.2629525065422058,
-0.07206377387046814,
-0.04693446308374405,
-0.003793068928644061,
-0.00950479693710804,
-0.07313796132802963,
0.07163245230913162,
0.046791739761829376,
-0.0692908987402916,
-0.012698303908109665,
0.10410967469215393,
-0.21906329691410065,
0.09804394096136093,
-0.0959717407822609,
-0.17307691276073456,
-0.06942777335643768,
-0.005230392329394817,
0.052377596497535706,
0.002520935144275427,
0.10327544808387756,
-0.03618110343813896,
-0.0780114084482193,
0.08114801347255707,
0.012421311810612679,
-0.20841151475906372,
0.027823667973279953,
0.06717056781053543,
-0.056656934320926666,
-0.06792812049388885,
-0.023696426302194595,
0.0643196627497673,
0.07849547266960144,
0.04408101737499237,
-0.03445570915937424,
0.03728870302438736,
-0.0064858971163630486,
-0.03654470294713974,
0.06017585098743439,
0.009409194812178612,
-0.0016897589666768909,
-0.10179629176855087,
0.08948762714862823,
-0.18981271982192993,
0.025164365768432617,
0.02681407891213894,
-0.08119522035121918,
-0.014104632660746574,
0.03171205148100853,
-0.07616258412599564,
0.07013116031885147,
0.08119776844978333,
-0.01751277968287468,
-0.01520485058426857,
-0.03093186765909195,
-0.015809083357453346,
-0.026266079396009445,
-0.061947859823703766,
-0.10696625709533691,
-0.1544269323348999,
-0.12204459309577942,
0.058412499725818634,
0.0017712862463667989,
-0.17286208271980286,
0.03179476037621498,
-0.12387792021036148,
0.03642291575670242,
-0.11572396010160446,
0.07325135916471481,
0.07436353713274002,
0.020982855930924416,
-0.01607861928641796,
0.030920343473553658,
0.022393714636564255,
0.09202968329191208,
-0.10333199799060822,
-0.08188658952713013
] |
null | null | transformers | ### Model information
* Fine tuning dataset: https://www.kaggle.com/seungguini/bts-youtube-comments
* Base model: GPT2 Small
* Epoch: 5
* API page: [Ainize](https://ainize.ai/teachable-ainize/gpt2-train?branch=train/cv695m9g40av0cdabuqp)
* Demo page: [End-point](https://kubecon-tabtab-ainize-team.endpoint.ainize.ai/?modelUrl=https://train-cv695m9g40av0cdabuqp-gpt2-train-teachable-ainize.endpoint.ainize.ai/predictions/gpt-2-en-small-finetune)
### ===Teachable NLP=== ###
To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free.
* Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp)
* Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
| {} | text-generation | Laeyoung/BTS-comments-generator | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| ### Model information
* Fine tuning dataset: URL
* Base model: GPT2 Small
* Epoch: 5
* API page: Ainize
* Demo page: End-point
### ===Teachable NLP=== ###
To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free.
* Teachable NLP: Teachable NLP
* Tutorial: Tutorial
| [
"### Model information\n* Fine tuning dataset: URL\n* Base model: GPT2 Small\n* Epoch: 5\n* API page: Ainize\n* Demo page: End-point",
"### ===Teachable NLP=== ###\nTo train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free.\n* Teachable NLP: Teachable NLP\n* Tutorial: Tutorial"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Model information\n* Fine tuning dataset: URL\n* Base model: GPT2 Small\n* Epoch: 5\n* API page: Ainize\n* Demo page: End-point",
"### ===Teachable NLP=== ###\nTo train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free.\n* Teachable NLP: Teachable NLP\n* Tutorial: Tutorial"
] | [
47,
38,
59
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Model information\n* Fine tuning dataset: URL\n* Base model: GPT2 Small\n* Epoch: 5\n* API page: Ainize\n* Demo page: End-point### ===Teachable NLP=== ###\nTo train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free.\n* Teachable NLP: Teachable NLP\n* Tutorial: Tutorial"
] | [
-0.11126219481229782,
0.1672384887933731,
-0.00027646805392578244,
0.11468120664358139,
0.10823307186365128,
0.054870884865522385,
0.11244017630815506,
0.1527682989835739,
0.04135240241885185,
-0.03072027675807476,
0.15360863506793976,
0.14949728548526764,
0.028769217431545258,
0.17423294484615326,
0.056306034326553345,
-0.3232382833957672,
-0.018070826306939125,
0.07731754332780838,
0.044706132262945175,
0.10068491101264954,
0.09957338124513626,
-0.027209589257836342,
0.11025430262088776,
0.027448303997516632,
-0.12387679517269135,
-0.03618944436311722,
0.024801960214972496,
-0.10613513737916946,
0.13663314282894135,
0.04625793173909187,
-0.0013786207418888807,
-0.004018306732177734,
0.04606980085372925,
-0.14232730865478516,
0.026112699881196022,
0.017402805387973785,
-0.01746494509279728,
0.11595132946968079,
0.05448706075549126,
0.01188625954091549,
0.26928192377090454,
-0.0061164735816419125,
0.0004046376561746001,
0.04467092826962471,
-0.11784609407186508,
-0.1434960812330246,
-0.014031684026122093,
0.09624970704317093,
0.11650295555591583,
0.07225663959980011,
0.0098330182954669,
0.1299467235803604,
-0.11008495092391968,
0.05405552685260773,
0.08981559425592422,
-0.2928621470928192,
-0.045250054448843,
0.11751297116279602,
-0.06295878440141678,
-0.024735331535339355,
-0.000015920344594633207,
0.06205723062157631,
0.02793889492750168,
0.04055413976311684,
0.022723419591784477,
-0.02456616796553135,
-0.07188765704631805,
0.012367327697575092,
-0.12732844054698944,
-0.05686875432729721,
0.2204567790031433,
-0.022109894081950188,
-0.0035143462009727955,
-0.0910012349486351,
-0.05076206475496292,
-0.00813959538936615,
-0.05055389925837517,
-0.02064473368227482,
-0.04229561612010002,
0.06872443109750748,
0.0108167864382267,
-0.14268910884857178,
-0.0978173092007637,
-0.11185378581285477,
-0.04902828857302666,
0.059414565563201904,
0.03943326696753502,
0.046381209045648575,
-0.08307765424251556,
0.17842203378677368,
-0.12548677623271942,
-0.028696514666080475,
-0.026627294719219208,
-0.0960700735449791,
0.05908463895320892,
-0.013865623623132706,
-0.022619057446718216,
0.06807693839073181,
0.031561654061079025,
0.16358037292957306,
0.013719790615141392,
-0.005256892181932926,
0.09168649464845657,
0.05663606896996498,
-0.022699842229485512,
0.05504920706152916,
-0.059463825076818466,
-0.08092381060123444,
0.128542959690094,
-0.0681670680642128,
0.059054821729660034,
-0.02449159324169159,
-0.1294531375169754,
-0.03992205113172531,
-0.004449915140867233,
0.07977619022130966,
0.06332959234714508,
0.06197863817214966,
-0.04674902558326721,
-0.0458533950150013,
0.13561637699604034,
-0.04574194550514221,
0.011389825493097305,
-0.010182158090174198,
-0.0184665285050869,
0.02942800149321556,
0.06080625578761101,
-0.0035255765542387962,
-0.09269038587808609,
-0.13595739006996155,
-0.06597006320953369,
-0.03778066858649254,
-0.07361456006765366,
0.027595270425081253,
0.022060733288526535,
0.0037736885715276003,
0.04100140184164047,
-0.14890938997268677,
-0.3061181604862213,
0.06543739140033722,
0.05479168891906738,
-0.05047236755490303,
-0.10852959752082825,
-0.05879722163081169,
0.020077671855688095,
0.00035991211188957095,
-0.03514959290623665,
0.06494083255529404,
-0.05860908702015877,
0.03882477432489395,
0.06934811174869537,
0.09879686683416367,
-0.09135058522224426,
0.01636369340121746,
-0.08718851208686829,
0.011305179446935654,
-0.05751756951212883,
0.10762899369001389,
-0.019881393760442734,
0.000030178018278093077,
-0.059098418802022934,
-0.050787098705768585,
-0.04127153754234314,
0.025080211460590363,
0.05396414175629616,
0.1575995832681656,
-0.09139231592416763,
-0.06858719885349274,
0.1988258957862854,
-0.0749254822731018,
-0.12426070123910904,
0.13698919117450714,
0.0006797339301556349,
0.12076302617788315,
0.1289142221212387,
0.12774083018302917,
0.1260683536529541,
-0.017912644892930984,
0.027085600420832634,
0.12486287951469421,
-0.07049991190433502,
-0.18392187356948853,
0.049533601850271225,
0.07864504307508469,
-0.19806312024593353,
0.07722407579421997,
-0.03599409759044647,
0.11128409951925278,
-0.05285009741783142,
-0.07727240025997162,
-0.05060209706425667,
-0.09519977122545242,
0.07028824090957642,
0.042563583701848984,
0.0966113731265068,
-0.03549942374229431,
-0.11667560040950775,
-0.013658768497407436,
0.14174334704875946,
-0.044988591223955154,
-0.000475490465760231,
-0.10108664631843567,
0.1496453583240509,
-0.11183196306228638,
0.016189003363251686,
-0.10829100012779236,
-0.06692364066839218,
-0.02883864752948284,
0.07032604515552521,
0.07155783474445343,
0.05936615541577339,
0.05900606885552406,
0.07186037302017212,
-0.027890026569366455,
0.0268248300999403,
0.028601938858628273,
-0.007273148745298386,
-0.08692347258329391,
-0.05074051395058632,
-0.003371251281350851,
-0.026473641395568848,
0.05463291332125664,
-0.17053207755088806,
0.012755532748997211,
-0.011690490879118443,
0.04493586719036102,
-0.012753075920045376,
0.009904243983328342,
0.024667888879776,
0.009326616302132607,
-0.02800861932337284,
-0.04947064816951752,
0.11610986292362213,
0.026009418070316315,
-0.019508851692080498,
-0.009121205657720566,
-0.05693448707461357,
0.046622149646282196,
0.134939044713974,
-0.1294299066066742,
-0.03503699600696564,
0.005245090927928686,
-0.05599391087889671,
0.02266450971364975,
-0.0305381640791893,
0.050480637699365616,
0.18443699181079865,
-0.025509824976325035,
0.09767986834049225,
-0.04124625399708748,
-0.01663903333246708,
-0.008251617662608624,
-0.0736127570271492,
0.03374539688229561,
0.08630678057670593,
0.207910418510437,
-0.0464688241481781,
0.09123872220516205,
0.07224839925765991,
-0.029135597869753838,
0.1388346254825592,
0.06491643190383911,
-0.07045171409845352,
0.01809360645711422,
-0.04564480111002922,
0.008247830905020237,
0.055285707116127014,
-0.13104313611984253,
0.003877494717016816,
0.06416188925504684,
-0.0025541444774717093,
0.11919981986284256,
-0.1826592981815338,
-0.02691911719739437,
-0.0016315894899889827,
-0.05432992801070213,
0.02599279396235943,
0.038030631840229034,
-0.07332367449998856,
0.09382765740156174,
0.0004358055884949863,
-0.014065745286643505,
0.08450078964233398,
0.053066834807395935,
-0.09050523489713669,
0.16192883253097534,
-0.03590606153011322,
-0.30290934443473816,
-0.12050127983093262,
-0.005343794822692871,
-0.042345985770225525,
0.06709704548120499,
0.042915452271699905,
-0.08629397302865982,
-0.05089549720287323,
-0.03835874795913696,
0.003799889702349901,
0.04190671816468239,
-0.02242131344974041,
0.00044544320553541183,
0.04304726421833038,
-0.03636777028441429,
-0.11423806101083755,
-0.020007982850074768,
-0.00019045088265556842,
-0.12164091318845749,
0.08181088417768478,
-0.08549588918685913,
0.007327086292207241,
0.1959839016199112,
0.03898137807846069,
0.046878423541784286,
-0.00794998463243246,
0.22609896957874298,
-0.06511693447828293,
0.0510927252471447,
0.22350850701332092,
0.07175630331039429,
0.01513317134231329,
-0.005797123070806265,
0.030248962342739105,
-0.13148954510688782,
0.025509098544716835,
-0.03377693146467209,
-0.09671774506568909,
-0.16748961806297302,
-0.14017029106616974,
-0.09269627928733826,
0.07914899289608002,
0.06320705264806747,
0.05972754582762718,
0.026138337329030037,
0.12813907861709595,
0.01799117773771286,
0.10765073448419571,
-0.05393393710255623,
0.059594567865133286,
0.19310712814331055,
-0.046239808201789856,
0.07762257754802704,
-0.11059138178825378,
-0.054819464683532715,
0.13603827357292175,
0.08936602622270584,
0.0797143429517746,
-0.03820781037211418,
0.1039133071899414,
0.005145196802914143,
0.12469381093978882,
0.08822812885046005,
0.07564789801836014,
-0.014275859110057354,
-0.023771774023771286,
-0.02918103337287903,
-0.012190724723041058,
-0.13270224630832672,
0.061825837939977646,
-0.0023926927242428064,
-0.11777491122484207,
-0.074611134827137,
0.040816739201545715,
0.037081278860569,
0.04834111034870148,
0.11602620780467987,
-0.3200952112674713,
-0.11117861419916153,
0.04474501684308052,
-0.009564158506691456,
-0.07306542992591858,
0.0730222687125206,
-0.0057977973483502865,
-0.11627683788537979,
-0.014751863665878773,
-0.008782905526459217,
0.09027672559022903,
-0.15372149646282196,
-0.004590905737131834,
-0.015910141170024872,
0.07852785289287567,
0.0318925566971302,
0.16397708654403687,
-0.1893208920955658,
0.15313836932182312,
0.0016040635528042912,
0.07863235473632812,
-0.12264404445886612,
0.007333522662520409,
0.05516435578465462,
0.08248873054981232,
0.1334129124879837,
0.0064452229999005795,
-0.0843890979886055,
-0.11606460064649582,
-0.15787732601165771,
0.058253802359104156,
-0.04246369004249573,
-0.017186395823955536,
-0.0073020197451114655,
-0.03461477532982826,
-0.0017947558080777526,
-0.0036981210578233004,
-0.08974998444318771,
-0.1227431669831276,
-0.14454834163188934,
0.04403192549943924,
0.06033669039607048,
-0.004875915590673685,
-0.03093184530735016,
-0.0646318644285202,
-0.05216141417622566,
0.24891798198223114,
0.039650995284318924,
-0.11714884638786316,
-0.11962851881980896,
0.020195264369249344,
0.048980627208948135,
-0.08941548317670822,
0.03643421083688736,
0.017868656665086746,
0.09530185163021088,
0.0011555325472727418,
-0.12519264221191406,
0.0745980367064476,
-0.10748016089200974,
-0.08018016070127487,
0.014576185494661331,
0.10466225445270538,
0.01825612224638462,
0.02711363323032856,
0.060467179864645004,
-0.003951734397560358,
-0.05522602051496506,
-0.13738764822483063,
0.015403893776237965,
0.09974344074726105,
-0.02521386556327343,
-0.03460680693387985,
-0.022590726613998413,
0.0932026356458664,
0.017425887286663055,
-0.008159782737493515,
0.26615920662879944,
0.19023342430591583,
-0.06235282123088837,
0.11455719918012619,
0.10561218112707138,
-0.05939684063196182,
-0.2905523478984833,
-0.03471716493368149,
-0.06367567181587219,
-0.00835285522043705,
-0.034425392746925354,
-0.2529045641422272,
0.13839274644851685,
0.009715934284031391,
-0.04381033778190613,
0.12309013307094574,
-0.23597237467765808,
-0.08421433717012405,
0.17725332081317902,
0.08819348365068436,
0.19941624999046326,
-0.050602320581674576,
-0.02370178885757923,
-0.040397532284259796,
-0.11307167261838913,
0.2175895720720291,
-0.0823555663228035,
0.12391151487827301,
-0.0637865737080574,
0.12049713730812073,
0.014881941489875317,
-0.0474383682012558,
0.096932552754879,
-0.050878558307886124,
-0.011951955035328865,
-0.08347810804843903,
0.07643202692270279,
0.029590846970677376,
-0.03584520146250725,
0.11040748655796051,
0.009872199036180973,
0.056738417595624924,
-0.1492893397808075,
-0.11027047783136368,
-0.049857065081596375,
0.05800439789891243,
0.035567495971918106,
-0.12332995235919952,
-0.007660900708287954,
0.020567024126648903,
-0.0412767119705677,
0.020768435671925545,
-0.028395993635058403,
0.013898208737373352,
-0.009297898970544338,
0.02735183946788311,
0.14499257504940033,
-0.12581846117973328,
-0.049142178148031235,
-0.039582159370183945,
-0.041217196732759476,
0.04484735429286957,
-0.18568633496761322,
0.0202754158526659,
0.07207754254341125,
-0.008835531771183014,
0.03406524658203125,
0.0692247524857521,
-0.02372477948665619,
0.0386238731443882,
0.09339099377393723,
-0.1629442423582077,
-0.0865815281867981,
-0.0953923687338829,
-0.06403382867574692,
0.010716792196035385,
0.05244660750031471,
0.1164567619562149,
-0.08617743849754333,
-0.04802780598402023,
-0.022121218964457512,
0.025300512090325356,
-0.09550460427999496,
0.07482154667377472,
0.08845243602991104,
-0.011249515227973461,
-0.08509737998247147,
0.05805354192852974,
0.005757725331932306,
-0.03482763096690178,
0.050697870552539825,
0.1071961373090744,
-0.0942595973610878,
-0.1488437056541443,
-0.015088995918631554,
0.07310209423303604,
-0.12575028836727142,
-0.08058860898017883,
-0.055433910340070724,
-0.016555503010749817,
0.07411479949951172,
-0.1338786780834198,
0.07546902447938919,
0.013065666891634464,
-0.08119901269674301,
0.010550172999501228,
-0.1122697964310646,
0.023874761536717415,
0.016015661880373955,
0.023839188739657402,
-0.11034341156482697,
0.09310891479253769,
-0.008429724723100662,
0.10035117715597153,
-0.07261208444833755,
-0.04058793932199478,
-0.11076699942350388,
0.04516379535198212,
-0.16959746181964874,
-0.01464429497718811,
-0.13551674783229828,
0.0262198094278574,
-0.021331213414669037,
0.006461902521550655,
-0.056989993900060654,
0.0363863967359066,
-0.1080644279718399,
0.03513438254594803,
-0.03765161707997322,
0.035893864929676056,
-0.05759025737643242,
0.06101326644420624,
0.06039848551154137,
-0.02432340756058693,
0.12832413613796234,
-0.021090585738420486,
-0.010993577539920807,
0.0932980552315712,
-0.14308589696884155,
0.0036800410598516464,
0.02008822001516819,
0.03029658831655979,
0.02216128073632717,
-0.08388902992010117,
0.07742299139499664,
0.0613403245806694,
0.03530773147940636,
0.012150248512625694,
0.07665707170963287,
-0.08667226880788803,
0.01171534601598978,
-0.030740143731236458,
-0.09201383590698242,
-0.03829087316989899,
0.015685871243476868,
0.014573773369193077,
0.02973167598247528,
0.06703739613294601,
-0.06521542370319366,
0.03001422993838787,
-0.11725401133298874,
0.010931585915386677,
-0.02877470850944519,
-0.04827403277158737,
-0.025252439081668854,
-0.060856156051158905,
0.05767223984003067,
0.01697388105094433,
0.2539931833744049,
0.0314008928835392,
-0.044013552367687225,
-0.03391319513320923,
0.006036412436515093,
0.0999867394566536,
-0.01847369596362114,
0.26146194338798523,
0.07608785480260849,
0.02437855675816536,
-0.025845155119895935,
0.1135503277182579,
0.06837876886129379,
0.10065603256225586,
0.1673438847064972,
-0.03253769129514694,
-0.03169141709804535,
0.10441175103187561,
-0.04351343587040901,
-0.029626762494444847,
-0.1696862131357193,
-0.029652511700987816,
-0.04414692521095276,
0.06504110991954803,
-0.06320197880268097,
-0.006951951887458563,
0.11775045096874237,
-0.08645898103713989,
-0.0002658699522726238,
-0.008008456788957119,
-0.09095978736877441,
-0.1710881143808365,
-0.2663053572177887,
-0.07598361372947693,
-0.15169104933738708,
0.0188737865537405,
-0.09135789424180984,
-0.06749359518289566,
0.049436140805482864,
0.039248500019311905,
-0.07854338735342026,
0.10210024565458298,
-0.0044259303249418736,
0.023825867101550102,
0.02336546964943409,
-0.036903951317071915,
-0.013578631915152073,
-0.070221908390522,
-0.02103142812848091,
-0.10254240781068802,
0.018936801701784134,
0.06316827982664108,
-0.006952517665922642,
-0.08039987832307816,
0.05699155107140541,
-0.01095260214060545,
-0.02229302190244198,
-0.09973987936973572,
0.03208351880311966,
0.018624750897288322,
0.08332172781229019,
0.006120368838310242,
-0.057169362902641296,
0.05110711604356766,
0.19731025397777557,
-0.044408854097127914,
-0.11859232187271118,
-0.12465792149305344,
0.29650118947029114,
-0.06414689868688583,
-0.004917017184197903,
0.002722375327721238,
-0.01919052004814148,
0.03021598607301712,
0.33217740058898926,
0.271797776222229,
-0.05922467261552811,
-0.010326234623789787,
0.009336576797068119,
0.0012755385832861066,
-0.021535424515604973,
0.2094324231147766,
0.04688240587711334,
0.22679169476032257,
-0.11281011998653412,
-0.09690859168767929,
-0.02026333287358284,
-0.04147354140877724,
-0.07326308637857437,
0.07488060742616653,
0.03568801283836365,
-0.009773802943527699,
-0.027696315199136734,
0.09057153761386871,
-0.21179360151290894,
0.14569862186908722,
-0.046292345970869064,
-0.04578731954097748,
-0.12508301436901093,
0.03355029970407486,
-0.014494884759187698,
-0.01213514432311058,
0.08460335433483124,
-0.04112602025270462,
0.014626109041273594,
0.08593149483203888,
0.002116754185408354,
-0.21333611011505127,
0.01412292756140232,
0.08129528909921646,
0.12241405993700027,
0.22677843272686005,
-0.030645737424492836,
0.08107168972492218,
0.10118769854307175,
-0.02319456823170185,
-0.17532113194465637,
0.0682336762547493,
-0.014687489718198776,
-0.02736392617225647,
0.06629740446805954,
0.0004761137824971229,
-0.035733580589294434,
-0.05800668150186539,
0.04326628893613815,
-0.05187300220131874,
0.002848927164450288,
0.03684888035058975,
0.03519052639603615,
-0.06858556717634201,
-0.009954981505870819,
-0.10317377001047134,
0.13397812843322754,
0.06471087783575058,
-0.05356000363826752,
-0.05529586598277092,
-0.09059809148311615,
0.12377716600894928,
-0.014504938386380672,
0.005925366189330816,
-0.031099949032068253,
-0.14684069156646729,
-0.06370751559734344,
0.054682862013578415,
0.00116640143096447,
-0.18035370111465454,
-0.04515591263771057,
-0.07745131105184555,
-0.027826642617583275,
-0.12178419530391693,
0.11898317188024521,
0.13118204474449158,
0.024442033842206,
-0.02633070945739746,
-0.00034637018688954413,
-0.06898942589759827,
0.028343454003334045,
-0.11627410352230072,
-0.12367085367441177
] |
null | null | transformers |
#Witcher1 Geralt DialoGPT small model | {"tags": ["conversational"]} | text-generation | Laezor/DialoGPT-small-witcher1 | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Witcher1 Geralt DialoGPT small model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
#Yakuza 0 DialoGPT Model | {"tags": ["conversational"]} | text-generation | Laezor/DialoGPT-small-yakuza_0 | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Yakuza 0 DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Dialogue From Persona 3 | {"tags": ["conversational"]} | text-generation | LaiJY/DialoGPTChatbot | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Dialogue From Persona 3 | [
"# Dialogue From Persona 3"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Dialogue From Persona 3"
] | [
51,
6
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Dialogue From Persona 3"
] | [
0.012617929838597775,
0.042243342846632004,
-0.006674338132143021,
0.053903643041849136,
0.2079065442085266,
-0.015483269467949867,
0.1700855940580368,
0.11821796745061874,
-0.014437859877943993,
-0.04675286263227463,
0.12520478665828705,
0.14723025262355804,
0.026775863021612167,
0.11647925525903702,
-0.03399042785167694,
-0.2457248717546463,
0.08590982854366302,
-0.034774068742990494,
0.08538255095481873,
0.12902164459228516,
0.10399632155895233,
-0.028110980987548828,
0.105950266122818,
0.015732966363430023,
-0.1264851689338684,
0.026960741728544235,
0.029315799474716187,
-0.1034102812409401,
0.1460762619972229,
-0.0010887448443099856,
0.03359587490558624,
-0.0013248880859464407,
-0.0442701019346714,
-0.17625392973423004,
0.03646596893668175,
-0.027833152562379837,
-0.02309543639421463,
0.016173532232642174,
0.049545492976903915,
-0.0740012377500534,
0.09766276925802231,
0.13325093686580658,
0.036292560398578644,
0.09353607147932053,
-0.17602649331092834,
-0.037816375494003296,
-0.057649679481983185,
0.07225918024778366,
0.11132015287876129,
0.1289430558681488,
-0.05119878053665161,
0.04861733317375183,
-0.10112124681472778,
0.07953403145074844,
0.10599828511476517,
-0.26598677039146423,
-0.02949291653931141,
0.0018613925203680992,
0.0005536724347621202,
0.05857101082801819,
-0.009167294017970562,
0.050201863050460815,
-0.044469863176345825,
0.025738423690199852,
-0.05791525915265083,
-0.06242348626255989,
-0.06070239841938019,
0.016648711636662483,
-0.06418908387422562,
-0.03219021484255791,
0.29663780331611633,
-0.005076331086456776,
0.051942359656095505,
-0.09460446983575821,
-0.036856479942798615,
-0.02913619391620159,
-0.011434619314968586,
-0.04414686560630798,
-0.09075207263231277,
0.03521278128027916,
-0.046666666865348816,
-0.11529593914747238,
-0.12205915153026581,
-0.019255710765719414,
-0.13069464266300201,
0.13123103976249695,
0.03656060993671417,
0.055861104279756546,
-0.18621493875980377,
0.04792657867074013,
0.02398299053311348,
-0.05487946420907974,
-0.012737845070660114,
-0.10330793261528015,
0.02802336774766445,
0.027280017733573914,
-0.029085621237754822,
-0.015703968703746796,
0.08976609259843826,
0.09013098478317261,
-0.014597981236875057,
0.019881460815668106,
-0.04336056113243103,
0.05133770778775215,
0.09488622844219208,
0.0875110998749733,
0.026904109865427017,
-0.024159254506230354,
0.04032464325428009,
-0.08129368722438812,
0.035235460847616196,
-0.07025613635778427,
-0.1786586195230484,
0.036464668810367584,
0.047562383115291595,
0.10935920476913452,
0.01634223945438862,
0.14111030101776123,
-0.03819847106933594,
-0.020762188360095024,
0.06886773556470871,
-0.009307300671935081,
-0.034395091235637665,
0.04660526663064957,
-0.04756757989525795,
0.14282384514808655,
-0.01722845807671547,
0.014600463211536407,
-0.1312997192144394,
0.006828865967690945,
-0.025634169578552246,
0.0015762061811983585,
-0.02095716819167137,
-0.024523429572582245,
0.02443903312087059,
0.012049776501953602,
-0.015982050448656082,
-0.1766093522310257,
-0.13115976750850677,
0.0020368006080389023,
-0.007419644854962826,
-0.06951189786195755,
-0.11082227528095245,
-0.1025514230132103,
0.01005540881305933,
0.009560874663293362,
-0.09475007653236389,
-0.09387767314910889,
-0.04584342613816261,
0.06753189116716385,
0.04148853197693825,
0.11820036172866821,
-0.10323421657085419,
0.0990639179944992,
-0.062438905239105225,
-0.02244371734559536,
-0.08477738499641418,
0.046883709728717804,
0.013257480226457119,
0.051364123821258545,
0.013238578103482723,
-0.03854144737124443,
-0.022763850167393684,
0.039922088384628296,
-0.06335631012916565,
0.23822161555290222,
-0.012172495946288109,
-0.069928377866745,
0.28856173157691956,
-0.03723687306046486,
-0.15706868469715118,
0.15842576324939728,
0.007665285374969244,
0.018309885635972023,
0.1308515965938568,
0.23258262872695923,
-0.12269438803195953,
-0.09318754822015762,
0.12088426947593689,
0.09137376397848129,
-0.09375037252902985,
0.01638318970799446,
0.05937877297401428,
-0.049644507467746735,
-0.030960258096456528,
0.03186620771884918,
0.08885807543992996,
0.09064040333032608,
-0.036741387099027634,
-0.03303199261426926,
0.04392855614423752,
-0.030126119032502174,
0.07813730090856552,
-0.03563949093222618,
0.048481736332178116,
-0.08578744530677795,
-0.03850382938981056,
-0.04728495329618454,
0.018450748175382614,
-0.03850916773080826,
0.032073911279439926,
-0.06899506598711014,
0.13921229541301727,
0.03364405781030655,
0.03877010568976402,
-0.0893688052892685,
-0.08850231766700745,
-0.05501025915145874,
0.18855832517147064,
0.046431947499513626,
0.13414189219474792,
0.047594424337148666,
-0.030861591920256615,
-0.021235469728708267,
-0.003518355078995228,
0.08612744510173798,
-0.019064607098698616,
-0.0009208754054270685,
-0.0710582435131073,
0.039213988929986954,
-0.0466327890753746,
0.17382881045341492,
0.058063529431819916,
-0.000579721643589437,
-0.004024381749331951,
0.06370134651660919,
-0.014238307252526283,
0.013781926594674587,
0.013825483620166779,
0.004405926447361708,
-0.018588796257972717,
-0.011574594303965569,
0.10520157217979431,
-0.0017154236556962132,
-0.03491564095020294,
0.23453575372695923,
-0.20828306674957275,
0.18006041646003723,
0.16167479753494263,
-0.2810332775115967,
0.007639626041054726,
-0.08858317881822586,
-0.03870881721377373,
0.03277548775076866,
0.019924726337194443,
-0.05020979419350624,
0.21554701030254364,
-0.01553351804614067,
0.18034832179546356,
-0.024949446320533752,
-0.006850613281130791,
-0.06788890063762665,
-0.07063186168670654,
-0.025078101083636284,
0.031134378165006638,
0.06617795675992966,
-0.09908433258533478,
0.18056835234165192,
0.08275891095399857,
0.08679787069559097,
0.18574513494968414,
0.08082441240549088,
0.026623288169503212,
0.050576671957969666,
0.010722841136157513,
-0.08391532301902771,
-0.057066354900598526,
-0.3440936803817749,
-0.05781404301524162,
0.04543641209602356,
0.05982381850481033,
0.09998177736997604,
-0.07243554294109344,
-0.04865751788020134,
0.004924421198666096,
-0.04135516285896301,
0.017341170459985733,
0.11072400212287903,
0.04867599532008171,
0.13969413936138153,
0.07691381871700287,
-0.005507335532456636,
0.09469736367464066,
0.009030884131789207,
-0.11471416801214218,
0.1301974058151245,
-0.17006750404834747,
-0.44845569133758545,
-0.09284641593694687,
-0.24080967903137207,
-0.09582538902759552,
0.056361123919487,
0.11806394159793854,
-0.1489139199256897,
-0.0025606106501072645,
0.012853378430008888,
0.13315466046333313,
-0.11988715082406998,
-0.06113484501838684,
-0.002692322712391615,
-0.011308321729302406,
-0.1009480357170105,
-0.09041144698858261,
-0.06474826484918594,
0.0031982234213501215,
-0.08687729388475418,
0.08250399678945541,
-0.08853404223918915,
0.054503295570611954,
0.1410294771194458,
0.04882034659385681,
0.08059452474117279,
-0.06677772104740143,
0.24788767099380493,
-0.08260653167963028,
-0.032609790563583374,
0.2765617370605469,
-0.03457145765423775,
0.05228323116898537,
0.13660721480846405,
-0.03248681128025055,
-0.06380018591880798,
0.04861080273985863,
-0.040222570300102234,
-0.05502882972359657,
-0.1642373949289322,
-0.11953099817037582,
-0.11048628389835358,
0.12800413370132446,
-0.013154557906091213,
0.05151038616895676,
0.17526012659072876,
0.022153981029987335,
-0.04493530094623566,
-0.09071944653987885,
0.058977868407964706,
0.0991523340344429,
0.2822939455509186,
-0.12157024443149567,
0.12290109694004059,
0.005790515802800655,
-0.12670283019542694,
0.06729163974523544,
0.0902293249964714,
0.01365352887660265,
0.06117325276136398,
0.010288224555552006,
0.033928338438272476,
0.07556863874197006,
0.05005519837141037,
0.004851337522268295,
0.07075837254524231,
-0.04117603227496147,
-0.040329355746507645,
-0.009597424417734146,
-0.11643293499946594,
0.017600592225790024,
0.1494823843240738,
-0.12187708914279938,
-0.09458265453577042,
-0.01463648583739996,
0.09522779285907745,
0.07258934527635574,
0.06498727947473526,
-0.10958632826805115,
-0.045085497200489044,
0.06711868941783905,
-0.05024018883705139,
-0.11848700791597366,
0.09973574429750443,
0.014612630940973759,
-0.19881758093833923,
0.028813034296035767,
0.01242088433355093,
0.10243473201990128,
-0.11821368336677551,
0.10412940382957458,
-0.08148379623889923,
-0.09255968779325485,
0.05303297936916351,
0.10923250019550323,
-0.27622365951538086,
0.20082664489746094,
-0.015992561355233192,
-0.03305676579475403,
-0.13390660285949707,
-0.021791746839880943,
-0.00137084920424968,
0.0257073026150465,
0.10880541056394577,
-0.0019521703943610191,
0.028690842911601067,
-0.026163067668676376,
-0.010068797506392002,
0.04592290148139,
0.09878368675708771,
0.023047666996717453,
-0.04623959958553314,
-0.07288701832294464,
-0.010519454255700111,
-0.08584748208522797,
0.03445185348391533,
-0.022174203768372536,
-0.19875049591064453,
0.07162284851074219,
0.051704756915569305,
0.10028929263353348,
0.021349575370550156,
0.030916821211576462,
-0.1088922917842865,
0.24107402563095093,
0.09865126013755798,
-0.08692315220832825,
-0.11709215492010117,
-0.024480246007442474,
-0.03680874779820442,
-0.04526262357831001,
0.010888537392020226,
-0.09547610580921173,
0.054181765764951706,
-0.059775520116090775,
-0.14395402371883392,
0.07279564440250397,
-0.11301322281360626,
-0.032507218420505524,
-0.00052982522174716,
0.19892095029354095,
0.0007710432400926948,
0.024662522599101067,
0.04088250920176506,
-0.03410578891634941,
-0.10071344673633575,
-0.0516531728208065,
0.06124549359083176,
-0.03635931760072708,
-0.03099687211215496,
0.036815568804740906,
0.016108300536870956,
-0.05690791830420494,
-0.10165664553642273,
-0.04621129482984543,
0.3626714050769806,
0.17515158653259277,
-0.0003082884068135172,
0.1964147537946701,
0.12467101216316223,
-0.018386468291282654,
-0.2763737142086029,
-0.12432484328746796,
-0.12978683412075043,
-0.051568128168582916,
-0.050964273512363434,
-0.16826480627059937,
0.013723179697990417,
-0.026137402281165123,
-0.0020237204153090715,
0.055663444101810455,
-0.2723500728607178,
-0.05939515680074692,
0.1553855687379837,
0.040061794221401215,
0.3522055745124817,
-0.06811543554067612,
-0.06060494855046272,
-0.04919932037591934,
-0.17300845682621002,
0.05777006223797798,
0.009707799181342125,
0.12335068732500076,
-0.011155658401548862,
0.24828632175922394,
0.03205258399248123,
0.011968572624027729,
0.08782575279474258,
-0.050845175981521606,
-0.0692465752363205,
-0.12353593856096268,
-0.08447199314832687,
-0.05597010627388954,
-0.00608863215893507,
0.04038109630346298,
-0.05357736721634865,
-0.019592678174376488,
-0.10635696351528168,
-0.04511314630508423,
-0.12874482572078705,
-0.00470208004117012,
0.020489493384957314,
-0.05962380766868591,
-0.000009823284926824272,
-0.04363154619932175,
0.023816393688321114,
0.06356627494096756,
0.11451762169599533,
-0.11666137725114822,
0.20270179212093353,
0.022885780781507492,
0.10548900067806244,
-0.10927323997020721,
-0.00546039454638958,
-0.08983253687620163,
-0.07119497656822205,
0.022897513583302498,
-0.0342421680688858,
0.03950748220086098,
0.061983536928892136,
-0.06793177127838135,
0.12126198410987854,
0.08333239704370499,
0.009942016564309597,
0.0416681170463562,
0.08009316772222519,
-0.2552468478679657,
-0.05717765912413597,
-0.05546722933650017,
0.06451186537742615,
0.07654877752065659,
0.08703181892633438,
0.22051465511322021,
0.025287557393312454,
-0.08052051812410355,
-0.01871493272483349,
0.06127069517970085,
-0.06688812375068665,
0.007192995864897966,
-0.031039275228977203,
0.02391611598432064,
-0.14831185340881348,
0.08467388153076172,
-0.03882329910993576,
-0.13105136156082153,
0.06303570419549942,
0.195271834731102,
-0.08677505701780319,
-0.1330474317073822,
-0.10484466701745987,
0.07310193032026291,
-0.030822832137346268,
-0.0333060696721077,
-0.06347403675317764,
-0.14947840571403503,
0.06784658133983612,
0.10938918590545654,
0.03177343308925629,
0.036551572382450104,
-0.05605737119913101,
-0.008236238732933998,
-0.01826031506061554,
-0.009428043849766254,
-0.028248611837625504,
-0.0588776059448719,
-0.05063293129205704,
0.02585514634847641,
-0.0447750948369503,
0.16135992109775543,
-0.06616341322660446,
-0.15331701934337616,
-0.18821333348751068,
0.037599798291921616,
-0.11166352033615112,
-0.16702789068222046,
-0.13204102218151093,
-0.05275741592049599,
0.032635726034641266,
-0.008383795619010925,
-0.043233029544353485,
-0.030018821358680725,
-0.11316000670194626,
0.011868521571159363,
-0.020162507891654968,
0.0020831511355936527,
-0.08271357417106628,
0.04097004234790802,
0.05292528495192528,
-0.027339307591319084,
0.1933744251728058,
0.18086150288581848,
-0.1388876885175705,
0.06792307645082474,
-0.18965275585651398,
-0.1155572310090065,
0.10208078473806381,
0.00849454291164875,
0.07815580815076828,
0.02622092328965664,
-0.003002515062689781,
0.0712251365184784,
0.04431068152189255,
0.06291789561510086,
0.12365803867578506,
-0.07905210554599762,
0.07088203728199005,
-0.0171743743121624,
-0.12589649856090546,
-0.035896677523851395,
-0.023738251999020576,
0.07357650250196457,
-0.0336872860789299,
0.06295234709978104,
-0.09092281013727188,
0.13450700044631958,
-0.00407590065151453,
0.06104111298918724,
0.04168687015771866,
-0.11025972664356232,
-0.06899004429578781,
-0.0928531214594841,
0.04537837207317352,
0.012382865883409977,
0.22522170841693878,
0.022360164672136307,
0.02023332193493843,
0.05604518577456474,
0.08062411099672318,
0.021997490897774696,
-0.023214148357510567,
0.03085346147418022,
0.037695035338401794,
-0.10902464389801025,
-0.01144234649837017,
0.06276922672986984,
0.004086179658770561,
-0.00587993860244751,
0.1673690676689148,
-0.004949359688907862,
0.0369853600859642,
0.08444495499134064,
0.008374745957553387,
0.023578276857733727,
-0.07467058300971985,
-0.2618282735347748,
-0.031600456684827805,
0.02476392313838005,
-0.0871642604470253,
0.1344693899154663,
0.08819672465324402,
-0.005903115961700678,
-0.0012579902540892363,
-0.06280035525560379,
-0.057796671986579895,
-0.15179257094860077,
-0.11351475864648819,
-0.0417536124587059,
-0.13824917376041412,
0.02789635770022869,
-0.12184232473373413,
0.03582591563463211,
0.046579476445913315,
0.07475890219211578,
-0.10112281143665314,
0.11086023598909378,
0.02897648699581623,
-0.10579923540353775,
0.05195503681898117,
-0.03841915354132652,
0.08963445574045181,
-0.012748354114592075,
0.011945578269660473,
-0.09508750587701797,
0.03664598986506462,
0.06924737989902496,
0.07521503418684006,
-0.08813054114580154,
-0.013404150493443012,
-0.1426575630903244,
-0.09645417332649231,
-0.042680080980062485,
0.05336755886673927,
-0.052311934530735016,
0.301702082157135,
0.0009064241894520819,
-0.01068380381911993,
0.02261272817850113,
0.19173747301101685,
-0.07749509066343307,
-0.05391913652420044,
-0.09637241065502167,
0.2083730399608612,
-0.006303159054368734,
0.06280829012393951,
-0.03872479498386383,
0.014619861729443073,
-0.12398988753557205,
0.39146244525909424,
0.34037119150161743,
-0.09238208830356598,
-0.004826139193028212,
-0.0035425375681370497,
0.056333187967538834,
0.06608136743307114,
0.08103993535041809,
0.12634135782718658,
0.21030084788799286,
-0.08155691623687744,
0.028696712106466293,
0.0014322873903438449,
-0.033143579959869385,
-0.07060272246599197,
0.01041276566684246,
0.0668492242693901,
-0.021972211077809334,
-0.023388978093862534,
0.10754913091659546,
-0.29359298944473267,
0.12676863372325897,
-0.11029143631458282,
-0.16453343629837036,
-0.08620962500572205,
0.014869746752083302,
0.12929704785346985,
0.040052380412817,
0.15146373212337494,
0.022972021251916885,
-0.07429434359073639,
0.16629058122634888,
0.029824694618582726,
-0.19270718097686768,
-0.05214983969926834,
0.11661878228187561,
-0.0906100869178772,
0.0034040133468806744,
-0.03367193788290024,
0.04441508650779724,
0.09284962713718414,
0.05329678952693939,
-0.005861314479261637,
0.051552239805459976,
0.018074780702590942,
-0.07076527178287506,
-0.026393340900540352,
0.1182827278971672,
0.010387207381427288,
-0.012535316869616508,
0.0520264096558094,
-0.16956859827041626,
0.03760650381445885,
0.04761173948645592,
0.0068779331631958485,
-0.0014895930653437972,
0.06785017251968384,
-0.06887190788984299,
0.041608378291130066,
0.07554738968610764,
-0.010366925969719887,
-0.04380561783909798,
-0.024956559762358665,
-0.03663142770528793,
-0.010702391155064106,
-0.11364387720823288,
-0.11874470859766006,
-0.1585996299982071,
-0.13326390087604523,
0.01619086228311062,
-0.016452781856060028,
-0.2301810383796692,
0.023128626868128777,
-0.10811267048120499,
0.06103276461362839,
-0.12209855765104294,
0.09059715270996094,
0.010136092081665993,
0.04713929444551468,
0.02087588422000408,
0.04111156240105629,
0.06620313227176666,
0.12427263706922531,
-0.11874529719352722,
-0.04970725625753403
] |
null | null | transformers | ### marianmt-th-zh_cn
* source languages: th
* target languages: zh_cn
* dataset:
* model: transformer-align
* pre-processing: normalization + SentencePiece
* test set scores: 15.53
## Training
Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-th-zh_cn](https://wandb.ai/cstorm125/marianmt-th-zh_cn).
```
export WANDB_PROJECT=marianmt-th-zh_cn
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\
\\\\t--output_dir ../models/marianmt-th-zh_cn \\\\\\\\
\\\\t--source_lang th --target_lang zh \\\\\\\\
\\\\t--metric_tokenize zh --fp16
```
## Usage
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()
src_text = [
'ฉันรักคุณ',
'ฉันอยากกินข้าว',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])
> ['我爱你', '我想吃饭。']
```
## Requirements
```
transformers==4.6.0
torch==1.8.0
``` | {"tags": ["translation", "torch==1.8.0"], "widget": [{"text": "Inference Unavailable"}]} | translation | Lalita/marianmt-th-zh_cn | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"torch==1.8.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #region-us
| ### marianmt-th-zh_cn
* source languages: th
* target languages: zh_cn
* dataset:
* model: transformer-align
* pre-processing: normalization + SentencePiece
* test set scores: 15.53
## Training
Training scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.
## Usage
## Requirements
| [
"### marianmt-th-zh_cn\n* source languages: th\n* target languages: zh_cn\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: 15.53",
"## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.",
"## Usage",
"## Requirements"
] | [
"TAGS\n#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### marianmt-th-zh_cn\n* source languages: th\n* target languages: zh_cn\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: 15.53",
"## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.",
"## Usage",
"## Requirements"
] | [
49,
59,
41,
3,
5
] | [
"passage: TAGS\n#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #region-us \n### marianmt-th-zh_cn\n* source languages: th\n* target languages: zh_cn\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: 15.53## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.## Usage## Requirements"
] | [
-0.1703682392835617,
-0.02685677632689476,
-0.002550427569076419,
0.03366928547620773,
0.07883351296186447,
-0.006040086969733238,
0.01652260310947895,
0.08494075387716293,
-0.01910596340894699,
0.010608150623738766,
0.12127390503883362,
0.079892598092556,
0.005332618486136198,
0.03464304655790329,
-0.06900426745414734,
-0.1897774040699005,
0.015118826180696487,
0.051298629492521286,
-0.15089881420135498,
0.1307326704263687,
0.12330179661512375,
-0.049487434327602386,
0.08488230407238007,
0.02577752247452736,
-0.021541692316532135,
0.023938270285725594,
-0.013141847215592861,
-0.1087677851319313,
0.13003715872764587,
0.05229038745164871,
0.09046721458435059,
0.11272121965885162,
0.06741687655448914,
-0.20100829005241394,
0.02477131225168705,
-0.017295686528086662,
-0.012899109162390232,
0.02738598734140396,
0.08246763050556183,
-0.044683702290058136,
0.24865460395812988,
-0.1311773806810379,
-0.02997370809316635,
0.07780611515045166,
-0.05841776356101036,
-0.08836796134710312,
-0.06604668498039246,
0.013179551810026169,
0.02926885522902012,
0.13928993046283722,
-0.012762670405209064,
0.18293632566928864,
-0.15986895561218262,
0.10209761559963226,
0.21773263812065125,
-0.24787724018096924,
-0.04918105527758598,
0.08615043014287949,
0.11937454342842102,
-0.01686873286962509,
-0.0031001120805740356,
0.09754624962806702,
0.09172483533620834,
0.006257480941712856,
-0.0754256546497345,
-0.09049927443265915,
0.030895985662937164,
0.05328047648072243,
-0.17262950539588928,
-0.008652696385979652,
0.2536357641220093,
-0.0005623651086352766,
-0.03316165506839752,
-0.004564945120364428,
-0.03523118421435356,
-0.01306735910475254,
-0.022875472903251648,
-0.0013211522018536925,
-0.06908050924539566,
-0.03779437765479088,
-0.03177093714475632,
-0.03245849162340164,
-0.0997488871216774,
-0.08718456327915192,
-0.02036513201892376,
0.1664416790008545,
0.07028873264789581,
-0.009118529036641121,
-0.10995921492576599,
0.11029838770627975,
0.12079025059938431,
-0.1300337314605713,
-0.05118048936128616,
-0.06652515381574631,
-0.02960571087896824,
-0.013467262499034405,
-0.03646836802363396,
-0.10292179137468338,
0.12214940786361694,
0.08678346127271652,
-0.021354764699935913,
0.10559789091348648,
0.0195841733366251,
0.020878324285149574,
-0.05278197303414345,
0.11482373625040054,
-0.05539191514253616,
-0.07280337065458298,
0.04096643626689911,
-0.011463701725006104,
-0.03264732286334038,
-0.027490274980664253,
-0.08484221249818802,
-0.1242602989077568,
0.06863400340080261,
0.11894265562295914,
-0.04465366154909134,
0.06928981840610504,
0.025400949642062187,
-0.031651899218559265,
-0.028014929965138435,
-0.09427191317081451,
-0.044533077627420425,
0.06275711208581924,
-0.055821046233177185,
0.0756210908293724,
0.04099506139755249,
0.0012799437390640378,
-0.07941663265228271,
0.03612459450960159,
-0.03372842073440552,
-0.009292916394770145,
-0.0536157488822937,
-0.05359312519431114,
0.04710117354989052,
0.050526607781648636,
-0.0012627915712073445,
-0.15686456859111786,
-0.1297580599784851,
-0.019662531092762947,
0.029426617547869682,
-0.020796149969100952,
0.02522556111216545,
-0.08570501953363419,
-0.05555166304111481,
0.025044146925210953,
-0.005186998285353184,
0.11530440300703049,
-0.07681836187839508,
0.08548875898122787,
0.04879160597920418,
0.006005098111927509,
-0.0038924808613955975,
-0.00816934835165739,
-0.046768952161073685,
0.04081537202000618,
0.0403866246342659,
0.06797195971012115,
-0.08179020881652832,
0.0688105896115303,
-0.11383674293756485,
-0.16323597729206085,
-0.01337333396077156,
0.05528061464428902,
0.05034203082323074,
0.18568436801433563,
-0.16932623088359833,
0.0019271267810836434,
0.18333739042282104,
-0.03694223612546921,
-0.10736316442489624,
0.10117536783218384,
-0.06660950183868408,
0.06301968544721603,
0.054257217794656754,
0.12135059386491776,
0.08355771750211716,
-0.1268250048160553,
0.1122942790389061,
0.01111454889178276,
0.015359930694103241,
-0.009226505644619465,
0.0739157572388649,
0.009573513641953468,
-0.1776994913816452,
0.03170038014650345,
-0.10110660642385483,
0.04630248621106148,
-0.07595180720090866,
-0.08717070519924164,
-0.01718042977154255,
-0.05672268196940422,
0.08503895252943039,
0.021069923415780067,
0.09655588120222092,
-0.09940711408853531,
-0.06495952606201172,
-0.09422583132982254,
0.1264287233352661,
-0.058765608817338943,
0.03897803649306297,
-0.09763610363006592,
0.09512268006801605,
0.07076507806777954,
0.015010891482234001,
-0.12266978621482849,
0.04989040270447731,
-0.016018439084291458,
0.03774610534310341,
0.09510745853185654,
0.07252875715494156,
0.03373407572507858,
0.04693550616502762,
-0.044195566326379776,
-0.009187785908579826,
0.00962515827268362,
0.009415972977876663,
-0.03137486055493355,
-0.1682252138853073,
0.004259772598743439,
-0.008243969641625881,
0.15527087450027466,
-0.27823787927627563,
0.007037504576146603,
0.1154182106256485,
0.06586390733718872,
-0.07183486223220825,
0.06930836290121078,
0.013657813891768456,
0.0424974299967289,
-0.04514433071017265,
0.0041623106226325035,
0.06403987854719162,
-0.017709558829665184,
-0.1419355720281601,
0.07496467232704163,
-0.039221201092004776,
-0.019013291224837303,
0.06195434182882309,
-0.14253993332386017,
-0.022275127470493317,
-0.028469951823353767,
-0.01085667684674263,
-0.006990998983383179,
0.016393624246120453,
-0.0015933190006762743,
0.14017432928085327,
-0.018497375771403313,
0.14091750979423523,
-0.11040490865707397,
-0.019275963306427002,
-0.008144861087203026,
-0.08143303543329239,
0.022316964343190193,
0.18583334982395172,
0.041295126080513,
-0.21539552509784698,
0.017052019014954567,
0.05237572267651558,
-0.10636789351701736,
0.24490737915039062,
-0.033132463693618774,
-0.030563093721866608,
0.01075271051377058,
0.04761311784386635,
0.004554525949060917,
0.0803685188293457,
-0.12251464277505875,
0.0012448510387912393,
0.048231091350317,
0.037538640201091766,
0.08408495038747787,
-0.15418951213359833,
-0.03224513307213783,
0.020757652819156647,
-0.04668921232223511,
-0.05366231128573418,
0.11838153749704361,
0.0037909778766334057,
0.08578699082136154,
-0.036208122968673706,
-0.09374519437551498,
-0.004953446332365274,
-0.034402087330818176,
-0.15423819422721863,
0.2395961582660675,
-0.06660613417625427,
-0.16237851977348328,
-0.15344887971878052,
0.01113344356417656,
-0.09081542491912842,
-0.037158895283937454,
0.061898715794086456,
-0.10941814631223679,
-0.006180323660373688,
-0.016641467809677124,
0.046429067850112915,
-0.07930343598127365,
-0.03320911154150963,
-0.048908088356256485,
0.06526770442724228,
-0.0490361787378788,
-0.1271386444568634,
-0.023004846647381783,
-0.0406615287065506,
-0.06537947058677673,
0.06565895676612854,
-0.13931484520435333,
0.13198760151863098,
0.1523074060678482,
0.0036155886482447386,
0.06342976540327072,
-0.03431008383631706,
0.10781694203615189,
-0.09405148774385452,
-0.009646647609770298,
0.189115971326828,
0.025246189907193184,
0.009266848675906658,
0.042975086718797684,
0.008897863328456879,
-0.05074286460876465,
0.012666949070990086,
-0.03629079461097717,
-0.0685405507683754,
-0.2937472462654114,
-0.15802666544914246,
-0.1059267446398735,
-0.023157527670264244,
0.011014373041689396,
0.02809048257768154,
0.13402485847473145,
0.05477023124694824,
-0.018531564623117447,
-0.0642143189907074,
0.01419178768992424,
0.06278926879167557,
0.11957065016031265,
0.04626873508095741,
0.07910866290330887,
-0.0621626079082489,
-0.07276955246925354,
0.03418691083788872,
-0.033604104071855545,
0.2379903793334961,
0.0009732863982208073,
0.11544544249773026,
0.07840978354215622,
0.16990379989147186,
0.05665074288845062,
0.08432777971029282,
0.05016546696424484,
-0.020027734339237213,
0.01686197705566883,
-0.07353075593709946,
0.0016421335749328136,
0.03402339667081833,
-0.024395465850830078,
-0.050863370299339294,
-0.11259736120700836,
0.019984913989901543,
0.06400839239358902,
0.12352211028337479,
0.018928516656160355,
-0.1593540757894516,
-0.02303040772676468,
0.0031578645575791597,
0.029959900304675102,
-0.04734424129128456,
0.07872951775789261,
0.025136129930615425,
-0.1482744961977005,
0.11333274841308594,
-0.042831383645534515,
0.12154122442007065,
0.03975055739283562,
0.02429373748600483,
-0.07897685468196869,
0.027950799092650414,
0.004847490228712559,
0.18562135100364685,
-0.329041451215744,
0.2982175350189209,
0.000654419360216707,
0.0677383616566658,
-0.12203490734100342,
-0.05927396938204765,
0.035426899790763855,
0.12423936277627945,
0.1220102459192276,
0.016086822375655174,
-0.15671351552009583,
-0.07333636283874512,
-0.010683420114219189,
0.03171022608876228,
0.10011208802461624,
0.0411512516438961,
0.07144887000322342,
-0.0001660009875195101,
-0.029152724891901016,
-0.0004810178361367434,
0.042811937630176544,
-0.1970435529947281,
-0.07724758237600327,
0.04093925282359123,
-0.0005334736779332161,
-0.09872577339410782,
-0.09583086520433426,
-0.08054598420858383,
-0.03720260411500931,
0.05978319048881531,
-0.05273615941405296,
-0.019963011145591736,
-0.10419020056724548,
-0.019235899671912193,
0.11203396320343018,
-0.11224987357854843,
0.007299497257918119,
0.0018944096518680453,
0.009617493487894535,
-0.04545678198337555,
-0.07332315295934677,
0.06342488527297974,
-0.09310281276702881,
-0.13225995004177094,
-0.01578458771109581,
0.19927842915058136,
0.040054019540548325,
0.08199630677700043,
0.04716023430228233,
-0.033576954156160355,
-0.02498994767665863,
-0.12043212354183197,
-0.10151135176420212,
-0.0696563869714737,
-0.011022796854376793,
0.015929603949189186,
-0.09304644912481308,
-0.03549423813819885,
-0.0994468405842781,
-0.1344677358865738,
0.23851990699768066,
0.1986699402332306,
-0.06028932332992554,
0.027613231912255287,
0.0746203288435936,
-0.06490601599216461,
-0.2740068733692169,
0.024243555963039398,
0.008856605738401413,
0.06449692696332932,
-0.08339138329029083,
-0.13312740623950958,
0.030808286741375923,
-0.010946580208837986,
-0.0019605131819844246,
0.09047569334506989,
-0.30000999569892883,
-0.15192736685276031,
0.1557573527097702,
0.052507854998111725,
0.18886950612068176,
-0.08535107225179672,
-0.04328392818570137,
-0.09787227213382721,
-0.14431394636631012,
0.030784305185079575,
-0.1573721319437027,
0.09544354677200317,
-0.009429520927369595,
0.02607177011668682,
0.02662426047027111,
-0.053283389657735825,
0.1565198451280594,
0.03595910593867302,
0.005156920291483402,
-0.0477660670876503,
-0.0504889041185379,
0.036410991102457047,
-0.004812932573258877,
0.07133278250694275,
-0.09119223803281784,
0.057180311530828476,
-0.12464804947376251,
-0.039064276963472366,
-0.09721709787845612,
0.09653809666633606,
-0.03626909479498863,
-0.029872749000787735,
-0.08813822269439697,
0.02545723132789135,
0.056789591908454895,
-0.008782553486526012,
0.11192149668931961,
-0.09920542687177658,
-0.008332429453730583,
0.06071406602859497,
0.19575977325439453,
-0.045834992080926895,
0.1065380647778511,
-0.0014993021031841636,
-0.005038675852119923,
0.08307798206806183,
-0.11058464646339417,
0.029028862714767456,
0.15033608675003052,
0.043484535068273544,
0.05524764955043793,
0.03570794314146042,
-0.08052363246679306,
-0.03169012442231178,
0.09489873051643372,
-0.09926196187734604,
-0.06718220561742783,
-0.1385570466518402,
0.041558846831321716,
0.04432608559727669,
0.05061576887965202,
0.14267867803573608,
-0.04382248595356941,
-0.0047088200226426125,
-0.03358641639351845,
-0.053198691457509995,
-0.08914025872945786,
0.20606708526611328,
0.10218243300914764,
0.08187970519065857,
-0.08896605670452118,
0.02161618508398533,
0.004758868832141161,
0.05585245415568352,
0.019761566072702408,
0.1678069680929184,
-0.12306953221559525,
-0.11466263234615326,
0.053820330649614334,
0.2233511507511139,
-0.13413108885288239,
-0.10979179292917252,
-0.13833008706569672,
-0.12357611954212189,
0.01744326390326023,
0.21849052608013153,
0.09849899262189865,
-0.051985036581754684,
-0.04960634559392929,
-0.07398121803998947,
-0.03996843099594116,
0.03308119624853134,
0.13587890565395355,
0.026923490688204765,
-0.06515049189329147,
0.14183515310287476,
-0.009428607299923897,
0.14070062339305878,
-0.06235324963927269,
-0.020799333229660988,
-0.08566576987504959,
0.09985488653182983,
-0.22894254326820374,
0.005013549700379372,
-0.04360445961356163,
-0.02225106582045555,
-0.03014715202152729,
-0.05926312878727913,
-0.0517578125,
0.05348319560289383,
-0.09814368188381195,
0.03205388784408569,
-0.07688353955745697,
0.06944362074136734,
-0.0034496698062866926,
-0.01886225864291191,
0.052929338067770004,
-0.07907761633396149,
0.021575406193733215,
0.06858412176370621,
-0.06215769052505493,
0.1687905490398407,
-0.17119337618350983,
-0.0007310631335712969,
0.0024399827234447002,
0.0632704645395279,
0.021795351058244705,
-0.07180880755186081,
0.02577798254787922,
0.038909561932086945,
0.09440914541482925,
0.01813853345811367,
-0.0543602854013443,
-0.06107477843761444,
-0.06207197904586792,
-0.06276596337556839,
-0.09267733991146088,
-0.021750792860984802,
0.06304937601089478,
0.034402791410684586,
0.0703381821513176,
0.09145112335681915,
-0.0814078152179718,
0.061667099595069885,
-0.07642365992069244,
-0.015354380011558533,
-0.0008578384295105934,
-0.08123382180929184,
-0.0548369437456131,
-0.0873609185218811,
0.09206841886043549,
-0.030178742483258247,
0.10407443344593048,
-0.06200559064745903,
0.015821855515241623,
-0.013433458283543587,
0.04883771389722824,
0.07650726288557053,
0.02088429406285286,
0.22856052219867706,
0.022750195115804672,
0.039833880960941315,
-0.029315149411559105,
0.017964981496334076,
0.023590385913848877,
0.14680682122707367,
0.17714010179042816,
0.14884193241596222,
0.02961966209113598,
0.11024163663387299,
-0.0027735840994864702,
0.014146871864795685,
0.01717446930706501,
-0.06027550250291824,
0.021673645824193954,
0.007437253370881081,
-0.02571781352162361,
0.10724473744630814,
0.19081011414527893,
-0.15018615126609802,
0.03004949353635311,
-0.05495186522603035,
-0.10550466179847717,
-0.133192241191864,
-0.18476605415344238,
-0.10212664306163788,
-0.06657607853412628,
0.021437369287014008,
-0.08027917891740799,
-0.030452091246843338,
0.016164371743798256,
0.08846407383680344,
-0.041891586035490036,
0.1949540674686432,
0.03132326900959015,
-0.1083359345793724,
0.0994381308555603,
-0.04748639464378357,
0.041043221950531006,
0.06118320673704147,
-0.009510907344520092,
0.0024550752714276314,
-0.10528043657541275,
0.014834771864116192,
0.0027040194254368544,
-0.09214116632938385,
0.012451250106096268,
-0.03688153997063637,
-0.07061747461557388,
-0.013841431587934494,
0.014797231182456017,
0.11804144829511642,
0.20278102159500122,
0.04109015315771103,
-0.021685337647795677,
0.011638838797807693,
0.11455332487821579,
-0.002387331798672676,
-0.19657181203365326,
-0.10177402943372726,
0.1887170970439911,
0.08680818229913712,
0.01624934747815132,
0.03362687677145004,
-0.008397560566663742,
0.043329231441020966,
0.30079352855682373,
0.22427694499492645,
-0.06566107273101807,
0.000674657232593745,
0.006723523139953613,
0.027058247476816177,
0.02167792245745659,
0.08820211887359619,
0.05206068605184555,
0.15497545897960663,
-0.07229755073785782,
-0.08302119374275208,
-0.07051979750394821,
-0.0202767476439476,
-0.10223408788442612,
0.13700786232948303,
0.06731502711772919,
-0.0957542210817337,
-0.0048237512819468975,
0.1370995193719864,
-0.09761641919612885,
-0.00014793290756642818,
-0.041648980230093,
-0.11041515320539474,
-0.11313388496637344,
-0.04070326313376427,
0.013227351941168308,
0.03092343360185623,
0.04687018692493439,
-0.0658131018280983,
-0.028718532994389534,
-0.03168530389666557,
0.03645497187972069,
-0.0986042469739914,
-0.04870259016752243,
0.13556048274040222,
-0.023658715188503265,
0.12557488679885864,
-0.017918678000569344,
0.16019730269908905,
0.12013597041368484,
0.04638731852173805,
-0.00910242274403572,
0.1286407858133316,
0.07769724726676941,
-0.039024122059345245,
0.05225308984518051,
0.08012375980615616,
-0.03466382622718811,
-0.0010344835463911295,
0.02931259572505951,
-0.1217866837978363,
0.06774646788835526,
0.08076141774654388,
0.015409594401717186,
-0.08962040394544601,
0.10058664530515671,
-0.10551279038190842,
0.11081404983997345,
0.12650194764137268,
-0.038218092173337936,
0.005134014878422022,
-0.09533282369375229,
0.053037188947200775,
0.017863651737570763,
-0.00915999710559845,
-0.04136316105723381,
-0.17781545221805573,
-0.04496566951274872,
-0.08124514669179916,
0.015322593972086906,
-0.18380498886108398,
-0.031079042702913284,
-0.07390891015529633,
-0.04062919691205025,
-0.04299426078796387,
0.14240816235542297,
0.08464708924293518,
0.012279676273465157,
0.026286479085683823,
-0.12183678150177002,
-0.008894451893866062,
0.08589179068803787,
-0.1926230937242508,
-0.0799684152007103
] |
null | null | transformers | ### marianmt-zh_cn-th
* source languages: zh_cn
* target languages: th
* dataset:
* model: transformer-align
* pre-processing: normalization + SentencePiece
* test set scores: syllable: 15.95, word: 8.43
## Training
Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-zh_cn-th](https://wandb.ai/cstorm125/marianmt-zh_cn-th).
```
export WANDB_PROJECT=marianmt-zh_cn-th
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--output_dir ../models/marianmt-zh_cn-th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--source_lang zh --target_lang th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--metric_tokenize th_syllable --fp16
```
## Usage
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()
src_text = [
'我爱你',
'我想吃米饭',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])
> ['ผมรักคุณนะ', 'ฉันอยากกินข้าว']
```
## Requirements
```
transformers==4.6.0
torch==1.8.0
``` | {"tags": ["translation", "torch==1.8.0"], "widget": [{"text": "Inference Unavailable"}]} | translation | Lalita/marianmt-zh_cn-th | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"torch==1.8.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
| ### marianmt-zh_cn-th
* source languages: zh_cn
* target languages: th
* dataset:
* model: transformer-align
* pre-processing: normalization + SentencePiece
* test set scores: syllable: 15.95, word: 8.43
## Training
Training scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-zh_cn-th.
## Usage
## Requirements
| [
"### marianmt-zh_cn-th \n* source languages: zh_cn\n* target languages: th\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: syllable: 15.95, word: 8.43",
"## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-zh_cn-th.",
"## Usage",
"## Requirements"
] | [
"TAGS\n#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### marianmt-zh_cn-th \n* source languages: zh_cn\n* target languages: th\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: syllable: 15.95, word: 8.43",
"## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-zh_cn-th.",
"## Usage",
"## Requirements"
] | [
53,
68,
41,
3,
5
] | [
"passage: TAGS\n#transformers #pytorch #marian #text2text-generation #translation #torch==1.8.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### marianmt-zh_cn-th \n* source languages: zh_cn\n* target languages: th\n* dataset: \n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* test set scores: syllable: 15.95, word: 8.43## Training\n\nTraining scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-zh_cn-th.## Usage## Requirements"
] | [
-0.16845141351222992,
-0.024671055376529694,
-0.0024483688175678253,
0.0401645191013813,
0.06582078337669373,
-0.015319491736590862,
0.022640138864517212,
0.07960847020149231,
-0.03694074600934982,
0.025519685819745064,
0.11331777274608612,
0.07427515834569931,
-0.014807414263486862,
0.05255471169948578,
-0.060313742607831955,
-0.19630247354507446,
0.044643335044384,
0.05129189044237137,
-0.14927253127098083,
0.1425548791885376,
0.10996883362531662,
-0.06248518452048302,
0.06787271797657013,
0.031024103984236717,
-0.05852850526571274,
0.02120189368724823,
-0.03387067839503288,
-0.12035632878541946,
0.14788636565208435,
0.04075280576944351,
0.1094275638461113,
0.10940832644701004,
0.04874107241630554,
-0.13355305790901184,
0.02950545959174633,
-0.0050025624223053455,
-0.005081641487777233,
0.034556400030851364,
0.07127845287322998,
-0.04738421365618706,
0.2550376057624817,
-0.09348021447658539,
-0.023144608363509178,
0.06057959049940109,
-0.06710517406463623,
-0.14073699712753296,
-0.06511944532394409,
-0.018476087599992752,
0.019038904458284378,
0.12140701711177826,
-0.022216366603970528,
0.1899370700120926,
-0.17088381946086884,
0.10408193618059158,
0.25133252143859863,
-0.26621973514556885,
-0.04872061312198639,
0.08809271454811096,
0.12809067964553833,
-0.013677542097866535,
-0.004902406595647335,
0.09296905249357224,
0.07516226172447205,
0.011285771615803242,
-0.015634750947356224,
-0.09183865040540695,
-0.0017588213086128235,
0.038693930953741074,
-0.17934463918209076,
-0.011997072957456112,
0.22196294367313385,
-0.01561911404132843,
-0.028686199337244034,
-0.011898922733962536,
-0.06272916495800018,
-0.02412315458059311,
-0.020914580672979355,
-0.009352365508675575,
-0.05471045896410942,
-0.04780660569667816,
-0.046108875423669815,
-0.03417208790779114,
-0.09657608717679977,
-0.07706277072429657,
-0.049696117639541626,
0.2059210240840912,
0.06010354682803154,
-0.012209542095661163,
-0.09251768887042999,
0.11982246488332748,
0.10572588443756104,
-0.1207757517695427,
-0.058826811611652374,
-0.06181374937295914,
-0.04077058285474777,
0.014212694950401783,
-0.06911811977624893,
-0.09351322799921036,
0.08836434036493301,
0.08795136958360672,
-0.013394590467214584,
0.08766919374465942,
0.026044683530926704,
0.029947469010949135,
-0.06844860315322876,
0.14991149306297302,
-0.05966167524456978,
-0.0641404315829277,
0.029887730255723,
-0.004371306858956814,
-0.035986073315143585,
-0.04107671603560448,
-0.09335646033287048,
-0.12927423417568207,
0.07809287309646606,
0.08906952291727066,
-0.015989528968930244,
0.0788775384426117,
0.027944855391979218,
-0.024784190580248833,
-0.02346143126487732,
-0.1049330085515976,
-0.03393654525279999,
0.059627965092659,
-0.035260409116744995,
0.08181852847337723,
0.0633261501789093,
-0.006791647989302874,
-0.0740504264831543,
0.032145846635103226,
-0.04127037152647972,
-0.002400421304628253,
-0.06521893292665482,
-0.08347377926111221,
0.03949582204222679,
0.007910890504717827,
-0.017083032056689262,
-0.17083188891410828,
-0.10771388560533524,
-0.01834428869187832,
0.02744072861969471,
-0.008266297169029713,
0.024883868172764778,
-0.08192086964845657,
-0.07435759156942368,
0.03583236783742905,
-0.015951475128531456,
0.07609914243221283,
-0.061893388628959656,
0.08995316922664642,
0.029456336051225662,
0.045728620141744614,
-0.01640094816684723,
0.014048301614820957,
-0.06595221906900406,
0.045622970908880234,
-0.015085559338331223,
0.08166096359491348,
-0.06850127875804901,
0.05234072729945183,
-0.10818000882863998,
-0.17231635749340057,
-0.02865561842918396,
0.06756378710269928,
0.053879786282777786,
0.18727178871631622,
-0.1776505708694458,
-0.02371746301651001,
0.1847342848777771,
-0.029676130041480064,
-0.09812682867050171,
0.12219221889972687,
-0.053768061101436615,
0.06093097850680351,
0.05329740419983864,
0.13912394642829895,
0.07191237807273865,
-0.10135764628648758,
0.0884990394115448,
0.010585423558950424,
0.022977938875555992,
-0.01702345348894596,
0.0721871629357338,
0.0032995191868394613,
-0.13332408666610718,
0.02948356606066227,
-0.11522422730922699,
0.04151178523898125,
-0.0700511634349823,
-0.08310036361217499,
-0.02625191956758499,
-0.055989012122154236,
0.11680131405591965,
0.01413416862487793,
0.10091254860162735,
-0.09048815071582794,
-0.07801926881074905,
-0.04664058983325958,
0.11012119054794312,
-0.07694101333618164,
0.05707462131977081,
-0.08883695304393768,
0.1013834998011589,
0.06576947122812271,
0.024388160556554794,
-0.14890606701374054,
0.0365687757730484,
-0.022658905014395714,
0.0278127770870924,
0.08206799626350403,
0.09772568941116333,
0.04057628661394119,
0.0322335809469223,
-0.03173733130097389,
-0.00942772626876831,
-0.01002441719174385,
0.006165081635117531,
-0.0343564935028553,
-0.12724563479423523,
-0.017271528020501137,
-0.01727273501455784,
0.12562091648578644,
-0.22320473194122314,
0.019707322120666504,
0.09185395389795303,
0.06357079744338989,
-0.06510919332504272,
0.048126596957445145,
-0.0029267072677612305,
0.0548742301762104,
-0.04854722321033478,
0.0029401415959000587,
0.059306517243385315,
-0.023891165852546692,
-0.1336599886417389,
0.10341265797615051,
-0.062227342277765274,
0.043752770870923996,
0.07970055192708969,
-0.1406237781047821,
-0.014581828378140926,
-0.0104628074914217,
-0.004396173171699047,
-0.004953868221491575,
0.03505116328597069,
-0.025943785905838013,
0.13463741540908813,
-0.01969141699373722,
0.14467832446098328,
-0.11416418105363846,
-0.012773142196238041,
-0.0178531501442194,
-0.06952078640460968,
0.016718914732336998,
0.19181658327579498,
0.01962684839963913,
-0.14966195821762085,
0.02582322619855404,
0.10519871115684509,
-0.12478109449148178,
0.21813219785690308,
-0.03214354068040848,
-0.03942343592643738,
0.009011016227304935,
0.013827264308929443,
0.00037478067679330707,
0.06092345342040062,
-0.12712562084197998,
-0.022165857255458832,
0.05183776468038559,
0.04110502079129219,
0.07007265836000443,
-0.14433962106704712,
-0.0365079864859581,
0.02636631764471531,
-0.03296220675110817,
-0.06599171459674835,
0.13768532872200012,
0.018758919090032578,
0.08595386147499084,
-0.03445541858673096,
-0.11524941772222519,
-0.019718315452337265,
-0.026804223656654358,
-0.12950816750526428,
0.2531816363334656,
-0.07872208952903748,
-0.2033149152994156,
-0.14818903803825378,
0.00034990516724064946,
-0.07459903508424759,
-0.028258685022592545,
0.08146954327821732,
-0.10070941597223282,
-0.010675888508558273,
-0.02758917212486267,
0.08268006145954132,
-0.07622115314006805,
-0.011332200840115547,
-0.02769441157579422,
0.0257585272192955,
-0.035198841243982315,
-0.13829143345355988,
-0.01706148497760296,
-0.03472911939024925,
-0.07149140536785126,
0.08810838311910629,
-0.11076077073812485,
0.13359393179416656,
0.16638614237308502,
-0.0069958800449967384,
0.04941317439079285,
-0.030513841658830643,
0.14211991429328918,
-0.10313908755779266,
-0.005205762106925249,
0.19802533090114594,
0.013805347494781017,
0.015086882747709751,
0.035560242831707,
0.018996626138687134,
-0.03845173120498657,
0.009168258868157864,
-0.035841431468725204,
-0.09711103141307831,
-0.2655239999294281,
-0.1449059247970581,
-0.10461132973432541,
-0.004746842663735151,
0.003536126110702753,
0.027012836188077927,
0.10990333557128906,
0.04575974494218826,
-0.014806750230491161,
-0.05603999271988869,
0.0027640380430966616,
0.05507589504122734,
0.16271807253360748,
0.040158383548259735,
0.10672692954540253,
-0.059612393379211426,
-0.07714851945638657,
0.013142521493136883,
-0.03408290818333626,
0.2439223676919937,
0.00037695138598792255,
0.10461483895778656,
0.0819779634475708,
0.16579404473304749,
0.061951614916324615,
0.09382367879152298,
0.04131348431110382,
-0.010971860960125923,
0.008635472506284714,
-0.07512474805116653,
0.01136614941060543,
0.03917828947305679,
-0.019445886835455894,
-0.0574108324944973,
-0.09873905032873154,
-0.016211360692977905,
0.05625205487012863,
0.12065411359071732,
0.03291124850511551,
-0.1848568171262741,
-0.021430276334285736,
-0.0006613668520003557,
0.019885390996932983,
-0.033953554928302765,
0.07050355523824692,
0.029515055939555168,
-0.14320547878742218,
0.08047814667224884,
-0.05254945904016495,
0.120646171271801,
0.03828687593340874,
0.036526333540678024,
-0.07130745053291321,
0.02366058900952339,
0.007032507099211216,
0.15076321363449097,
-0.32126253843307495,
0.29702043533325195,
0.00007707719487370923,
0.034392546862363815,
-0.09319433569908142,
-0.05585138499736786,
0.0354435071349144,
0.11931965500116348,
0.08546271175146103,
0.009934917092323303,
-0.09819576144218445,
-0.0857604369521141,
-0.021096976473927498,
0.035059407353401184,
0.09235435724258423,
0.03642227500677109,
0.08464314043521881,
0.007400343660265207,
-0.027046704664826393,
0.0066425078548491,
0.07302083820104599,
-0.16604530811309814,
-0.0742330253124237,
0.05501263961195946,
0.012489356100559235,
-0.08088300377130508,
-0.09872455149888992,
-0.10343138873577118,
-0.10150749981403351,
0.05393722653388977,
-0.01637953333556652,
-0.01637394167482853,
-0.09830620139837265,
-0.04556279256939888,
0.13761480152606964,
-0.11490121483802795,
0.047942981123924255,
0.006101084407418966,
-0.008832872845232487,
-0.03976460546255112,
-0.09477787464857101,
0.07519446313381195,
-0.09424882382154465,
-0.12651364505290985,
0.001038032816722989,
0.1738557368516922,
0.043841734528541565,
0.07613275200128555,
0.03902085870504379,
-0.008111054077744484,
-0.05144580453634262,
-0.11180935800075531,
-0.08415073156356812,
-0.03669264167547226,
-0.016260458156466484,
0.011422766372561455,
-0.06216380372643471,
-0.02173289656639099,
-0.07385243475437164,
-0.09434361755847931,
0.21282435953617096,
0.19994130730628967,
-0.08515565097332001,
0.03640560805797577,
0.06732477992773056,
-0.0465952605009079,
-0.2929648160934448,
0.0227588452398777,
0.010444988496601582,
0.08840987086296082,
-0.047572508454322815,
-0.14395058155059814,
0.010964032262563705,
-0.012419968843460083,
-0.01310588140040636,
0.09443961083889008,
-0.33639922738075256,
-0.1570751667022705,
0.18531112372875214,
0.023226024582982063,
0.21418382227420807,
-0.07804181426763535,
-0.03310522437095642,
-0.06919261813163757,
-0.17328038811683655,
0.013921504840254784,
-0.15625789761543274,
0.09756578505039215,
-0.009296379052102566,
0.03635368496179581,
0.03000352904200554,
-0.04957978054881096,
0.15893657505512238,
0.025094754993915558,
0.008400129154324532,
-0.04807223379611969,
-0.04351167008280754,
0.017124539241194725,
-0.02303794026374817,
0.07152801752090454,
-0.08988233655691147,
0.05586104094982147,
-0.10206606984138489,
-0.03294818848371506,
-0.10370860993862152,
0.11139087378978729,
-0.029584992676973343,
-0.017260873690247536,
-0.1073264330625534,
0.006075779441744089,
0.04178204759955406,
-0.004636688623577356,
0.11067124456167221,
-0.08565491437911987,
0.01782991550862789,
0.0894564539194107,
0.18708206713199615,
-0.05070756748318672,
0.07600618898868561,
0.009521101601421833,
-0.006073979195207357,
0.09269330650568008,
-0.1162245124578476,
0.024687422439455986,
0.14832265675067902,
0.042598072439432144,
0.04418718069791794,
0.052793312817811966,
-0.08582510054111481,
-0.020795399323105812,
0.09218139201402664,
-0.08601071685552597,
-0.07885169237852097,
-0.1189434677362442,
0.0035908170975744724,
0.0297558456659317,
0.08297252655029297,
0.1430695354938507,
-0.06204766780138016,
-0.008068299852311611,
-0.0178515687584877,
-0.05886172130703926,
-0.07148555666208267,
0.194765105843544,
0.09258588403463364,
0.08286397159099579,
-0.09065224975347519,
0.020545687526464462,
0.009878572076559067,
0.04305446520447731,
0.005951093975454569,
0.1447841227054596,
-0.11253122985363007,
-0.11162781715393066,
0.03632558882236481,
0.14937050640583038,
-0.13986173272132874,
-0.07291712611913681,
-0.12690258026123047,
-0.12922924757003784,
0.023513618856668472,
0.22344790399074554,
0.10878603905439377,
-0.022642256692051888,
-0.06571272760629654,
-0.04524052515625954,
-0.008999649435281754,
0.04210684821009636,
0.12922075390815735,
0.046279292553663254,
-0.07891140878200531,
0.17065785825252533,
-0.01616816408932209,
0.14129428565502167,
-0.06167200580239296,
-0.027448933571577072,
-0.08766120672225952,
0.08777043968439102,
-0.20778556168079376,
-0.03462017700076103,
-0.048444073647260666,
-0.026856260374188423,
-0.03357045724987984,
-0.06269124895334244,
-0.04241211339831352,
0.04985886439681053,
-0.10823126137256622,
0.019020793959498405,
-0.07976879924535751,
0.062071289867162704,
-0.018757149577140808,
-0.010610148310661316,
0.05981290712952614,
-0.07797370851039886,
0.03705645725131035,
0.060416970402002335,
-0.06331449002027512,
0.16289252042770386,
-0.1250738650560379,
-0.003455812344327569,
0.0211469866335392,
0.06302790343761444,
0.029738787561655045,
-0.04001310467720032,
0.00892214011400938,
0.026961199939250946,
0.10197806358337402,
0.01786821149289608,
-0.06394404917955399,
-0.05748211219906807,
-0.05584149807691574,
-0.06492059677839279,
-0.08766654878854752,
-0.020225899294018745,
0.06298273056745529,
0.043627817183732986,
0.08920017629861832,
0.0901259183883667,
-0.0711078941822052,
0.05183705314993858,
-0.07979265600442886,
-0.017784254625439644,
-0.006920642219483852,
-0.09899204969406128,
-0.052415940910577774,
-0.10178916156291962,
0.09431629627943039,
-0.025059731677174568,
0.09409976750612259,
-0.03938193619251251,
-0.026022903621196747,
-0.020896418020129204,
0.04129486531019211,
0.06185951456427574,
0.019938252866268158,
0.22650915384292603,
0.039408642798662186,
0.03683733195066452,
-0.02375376783311367,
0.021207351237535477,
0.01785990409553051,
0.14759591221809387,
0.17032653093338013,
0.15224437415599823,
0.044611234217882156,
0.141178697347641,
0.00834929570555687,
0.012653345242142677,
-0.029497791081666946,
-0.10135488212108612,
0.01361936517059803,
0.04487735778093338,
-0.04493853077292442,
0.11993680894374847,
0.17684301733970642,
-0.12763714790344238,
0.054724834859371185,
-0.04549439251422882,
-0.08613026887178421,
-0.13920970261096954,
-0.15029150247573853,
-0.09734772145748138,
-0.09070786833763123,
-0.006285312585532665,
-0.07761900871992111,
-0.011736995540559292,
0.04992733523249626,
0.08153769373893738,
-0.030082859098911285,
0.21748849749565125,
0.04660162329673767,
-0.11621933430433273,
0.10809767246246338,
-0.05090147256851196,
0.04142551124095917,
0.056347258388996124,
-0.008412928320467472,
0.012491677887737751,
-0.06424834579229355,
0.017638452351093292,
-0.0052613490261137486,
-0.10041683912277222,
0.018913447856903076,
-0.05627890303730965,
-0.07291369885206223,
-0.01649186760187149,
0.034167420119047165,
0.11310874670743942,
0.17160335183143616,
0.04616951197385788,
-0.03787944093346596,
-0.00799570418894291,
0.1322665512561798,
-0.02195506915450096,
-0.1516100913286209,
-0.0923791453242302,
0.1856086403131485,
0.06676571816205978,
0.022218449041247368,
0.009603448212146759,
-0.02336842007935047,
0.014722002670168877,
0.2944642901420593,
0.2337312400341034,
-0.063679039478302,
0.005027709063142538,
0.011250860057771206,
0.023615270853042603,
0.02033519558608532,
0.11125195771455765,
0.0737314522266388,
0.1846691519021988,
-0.06056518480181694,
-0.09511855244636536,
-0.07583518326282501,
-0.026472045108675957,
-0.09706275165081024,
0.1133413016796112,
0.04915039613842964,
-0.09761045128107071,
-0.011100750416517258,
0.11709101498126984,
-0.08702181279659271,
-0.0068100858479738235,
-0.05919526517391205,
-0.11381684988737106,
-0.11724534630775452,
-0.038147542625665665,
0.011437444016337395,
0.024196969345211983,
0.05638452246785164,
-0.07405689358711243,
-0.018603118136525154,
0.006784682162106037,
0.020176300778985023,
-0.07550304383039474,
-0.05569702014327049,
0.14629532396793365,
-0.03538186103105545,
0.09648974239826202,
-0.02256772667169571,
0.14415711164474487,
0.10668174922466278,
0.0600687675178051,
-0.007313217036426067,
0.10795535892248154,
0.07275249063968658,
-0.05811712145805359,
0.04013844206929207,
0.07317189127206802,
-0.028768474236130714,
-0.013186251744627953,
0.03567056357860565,
-0.1271156519651413,
0.06682133674621582,
0.07920951396226883,
0.011964984238147736,
-0.08525867760181427,
0.06541359424591064,
-0.09516967833042145,
0.107268325984478,
0.14167048037052155,
-0.04383940249681473,
-0.003933820873498917,
-0.07187522202730179,
0.030002927407622337,
0.001903235213831067,
-0.017811831086874008,
-0.0550946369767189,
-0.18429531157016754,
-0.038564521819353104,
-0.09621229767799377,
-0.001768777729012072,
-0.1686716228723526,
-0.040783416479825974,
-0.06495495140552521,
-0.038898028433322906,
-0.036514949053525925,
0.1287635713815689,
0.07438468188047409,
-0.008252414874732494,
0.01758638769388199,
-0.09122654795646667,
-0.011117556132376194,
0.10455266386270523,
-0.1910749077796936,
-0.07040419429540634
] |
null | null | speechbrain |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Speaker Verification with ECAPA-TDNN embeddings on cnceleb
This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain.
The system can be used to extract speaker embeddings as well.
It is trained on cnceleb 1+ cnceleb2 training data.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance on cnceleb1-test set(Cleaned) is:
| Release | EER(%) | minDCF |
|:-------------:|:--------------:|:--------------:|
## Pipeline description
This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Compute your speaker embeddings
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb")
signal, fs =torchaudio.load('samples/audio_samples/example1.wav')
embeddings = classifier.encode_batch(signal)
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
### Perform Speaker Verification
```python
from speechbrain.pretrained import SpeakerRecognition
verification = SpeakerRecognition.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb", savedir="pretrained_models/spkrec-ecapa-cnceleb")
score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-cnceleb/example1.wav", "speechbrain/spkrec-ecapa-cnceleb/example2.flac")
```
The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/LanceaKing/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/CNCeleb/SpeakerRec
python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA-TDNN
```
@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
author = {Brecht Desplanques and
Jenthe Thienpondt and
Kris Demuynck},
editor = {Helen Meng and
Bo Xu and
Thomas Fang Zheng},
title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
in {TDNN} Based Speaker Verification},
booktitle = {Interspeech 2020},
pages = {3830--3834},
publisher = {{ISCA}},
year = {2020},
}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and Fran莽ois Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/ | {"language": "zh", "license": "apache-2.0", "tags": ["speechbrain", "embeddings", "Speaker", "Verification", "Identification", "pytorch", "ECAPA", "TDNN"], "datasets": ["cnceleb"], "metrics": ["EER"]} | null | LanceaKing/spkrec-ecapa-cnceleb | [
"speechbrain",
"embeddings",
"Speaker",
"Verification",
"Identification",
"pytorch",
"ECAPA",
"TDNN",
"zh",
"dataset:cnceleb",
"arxiv:2106.04624",
"license:apache-2.0",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2106.04624"
] | [
"zh"
] | TAGS
#speechbrain #embeddings #Speaker #Verification #Identification #pytorch #ECAPA #TDNN #zh #dataset-cnceleb #arxiv-2106.04624 #license-apache-2.0 #region-us
|
Speaker Verification with ECAPA-TDNN embeddings on cnceleb
==========================================================
This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain.
The system can be used to extract speaker embeddings as well.
It is trained on cnceleb 1+ cnceleb2 training data.
For a better experience, we encourage you to learn more about
SpeechBrain. The model performance on cnceleb1-test set(Cleaned) is:
Pipeline description
--------------------
This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings.
Install SpeechBrain
-------------------
First of all, please install SpeechBrain with the following command:
Please notice that we encourage you to read our tutorials and learn more about
SpeechBrain.
### Compute your speaker embeddings
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify\_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode\_batch* and *classify\_batch*.
### Perform Speaker Verification
The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.
### Inference on GPU
To perform inference on the GPU, add 'run\_opts={"device":"cuda"}' when calling the 'from\_hparams' method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
2. Install it:
3. Run Training:
You can find our training results (models, logs, etc) here.
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA-TDNN
Citing SpeechBrain
==================
Please, cite SpeechBrain if you use it for your research or business.
About SpeechBrain
=================
* Website: URL
* Code: URL
* HuggingFace: URL
| [
"### Compute your speaker embeddings\n\n\nThe system is trained with recordings sampled at 16kHz (single channel).\nThe code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify\\_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode\\_batch* and *classify\\_batch*.",
"### Perform Speaker Verification\n\n\nThe prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.",
"### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.",
"### Training\n\n\nThe model was trained with SpeechBrain (aa018540).\nTo train it from scratch follows these steps:\n\n\n1. Clone SpeechBrain:\n2. Install it:\n3. Run Training:\n\n\nYou can find our training results (models, logs, etc) here.",
"### Limitations\n\n\nThe SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.",
"#### Referencing ECAPA-TDNN\n\n\nCiting SpeechBrain\n==================\n\n\nPlease, cite SpeechBrain if you use it for your research or business.\n\n\nAbout SpeechBrain\n=================\n\n\n* Website: URL\n* Code: URL\n* HuggingFace: URL"
] | [
"TAGS\n#speechbrain #embeddings #Speaker #Verification #Identification #pytorch #ECAPA #TDNN #zh #dataset-cnceleb #arxiv-2106.04624 #license-apache-2.0 #region-us \n",
"### Compute your speaker embeddings\n\n\nThe system is trained with recordings sampled at 16kHz (single channel).\nThe code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify\\_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode\\_batch* and *classify\\_batch*.",
"### Perform Speaker Verification\n\n\nThe prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.",
"### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.",
"### Training\n\n\nThe model was trained with SpeechBrain (aa018540).\nTo train it from scratch follows these steps:\n\n\n1. Clone SpeechBrain:\n2. Install it:\n3. Run Training:\n\n\nYou can find our training results (models, logs, etc) here.",
"### Limitations\n\n\nThe SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.",
"#### Referencing ECAPA-TDNN\n\n\nCiting SpeechBrain\n==================\n\n\nPlease, cite SpeechBrain if you use it for your research or business.\n\n\nAbout SpeechBrain\n=================\n\n\n* Website: URL\n* Code: URL\n* HuggingFace: URL"
] | [
61,
101,
27,
48,
61,
31,
55
] | [
"passage: TAGS\n#speechbrain #embeddings #Speaker #Verification #Identification #pytorch #ECAPA #TDNN #zh #dataset-cnceleb #arxiv-2106.04624 #license-apache-2.0 #region-us \n### Compute your speaker embeddings\n\n\nThe system is trained with recordings sampled at 16kHz (single channel).\nThe code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify\\_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode\\_batch* and *classify\\_batch*.### Perform Speaker Verification\n\n\nThe prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.### Inference on GPU\n\n\nTo perform inference on the GPU, add 'run\\_opts={\"device\":\"cuda\"}' when calling the 'from\\_hparams' method.### Training\n\n\nThe model was trained with SpeechBrain (aa018540).\nTo train it from scratch follows these steps:\n\n\n1. Clone SpeechBrain:\n2. Install it:\n3. Run Training:\n\n\nYou can find our training results (models, logs, etc) here.### Limitations\n\n\nThe SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.#### Referencing ECAPA-TDNN\n\n\nCiting SpeechBrain\n==================\n\n\nPlease, cite SpeechBrain if you use it for your research or business.\n\n\nAbout SpeechBrain\n=================\n\n\n* Website: URL\n* Code: URL\n* HuggingFace: URL"
] | [
-0.07448374480009079,
0.14119593799114227,
-0.004831929225474596,
0.02763267420232296,
0.10468538850545883,
-0.01005761232227087,
0.07260843366384506,
0.12141237407922745,
0.05621637776494026,
0.12127505987882614,
0.025529062375426292,
0.06492604315280914,
0.07830947637557983,
0.1006941869854927,
0.04844871535897255,
-0.17264185845851898,
0.03896414861083031,
-0.08745627850294113,
0.06906148046255112,
0.05252493917942047,
0.09007849544286728,
-0.08388230949640274,
0.058541346341371536,
-0.01757129095494747,
-0.07747427374124527,
0.004785242956131697,
0.0007882529753260314,
-0.05552414432168007,
0.07021784037351608,
0.04766220971941948,
0.034591540694236755,
-0.010509769432246685,
0.068044513463974,
-0.25356969237327576,
0.017376890406012535,
0.06332012265920639,
0.012428328394889832,
0.040827829390764236,
0.05308373644948006,
-0.028493165969848633,
0.06629960238933563,
0.016944801434874535,
0.06304358690977097,
0.107524074614048,
-0.11472483724355698,
-0.09704980999231339,
-0.07594436407089233,
0.07706315070390701,
0.09781691431999207,
0.0777822807431221,
-0.04398873448371887,
0.07950858026742935,
-0.07323182374238968,
0.056792963296175,
0.13495372235774994,
-0.18436622619628906,
0.012887540273368359,
0.020699650049209595,
0.09604684263467789,
0.032312680035829544,
-0.10861920565366745,
-0.020051660016179085,
0.004134702030569315,
0.01510225236415863,
0.02728883922100067,
-0.013163313269615173,
0.02399403415620327,
-0.02361883781850338,
-0.12078949809074402,
-0.09511386603116989,
0.14170600473880768,
-0.0019243498099967837,
-0.055357348173856735,
-0.15737265348434448,
-0.002915097400546074,
-0.09584975242614746,
0.049687277525663376,
0.047993022948503494,
-0.01241393480449915,
-0.010305284522473812,
0.03489847853779793,
-0.08879566192626953,
-0.08892160654067993,
-0.08505091071128845,
0.035176102072000504,
0.08524014800786972,
0.050647180527448654,
-0.008204928599298,
0.027162780985236168,
0.13848884403705597,
-0.00967019610106945,
-0.07787618786096573,
-0.027063339948654175,
-0.005042391829192638,
-0.11539006233215332,
-0.009771277196705341,
-0.010286358185112476,
-0.023822320625185966,
0.03316836804151535,
0.1897021383047104,
-0.03407326340675354,
0.07194441556930542,
-0.020514102652668953,
0.049199704080820084,
0.02318311296403408,
0.14522023499011993,
-0.04695657268166542,
0.015460771508514881,
0.009297962300479412,
0.0526726059615612,
-0.004138091113418341,
-0.022570690140128136,
-0.04344277083873749,
0.0488559789955616,
0.015915215015411377,
0.09494394809007645,
0.0037005022168159485,
0.006736635696142912,
-0.062488485127687454,
-0.010502837598323822,
0.06637582927942276,
-0.14747610688209534,
0.036810729652643204,
0.10350745916366577,
-0.042361367493867874,
-0.10354945063591003,
0.09020700305700302,
0.021952122449874878,
-0.1429848074913025,
0.022686868906021118,
-0.045262452214956284,
0.01581382192671299,
-0.05897703394293785,
-0.0652356967329979,
0.020337961614131927,
-0.07080245763063431,
-0.04770510271191597,
-0.08530489355325699,
-0.009028389118611813,
-0.06228471174836159,
-0.004706312902271748,
-0.03695972263813019,
-0.0031151289585977793,
-0.10245086997747421,
-0.03528330847620964,
0.009439148008823395,
-0.01975359208881855,
-0.04990886524319649,
-0.040232423692941666,
0.03520917519927025,
0.020892983302474022,
0.023983633145689964,
0.026949338614940643,
0.05297721549868584,
-0.040743637830019,
0.027576828375458717,
-0.08747909218072891,
0.11638171225786209,
-0.05879059433937073,
0.009138369932770729,
-0.09911185503005981,
-0.018417900428175926,
-0.0065337796695530415,
0.04166654869914055,
0.07148132473230362,
0.10427561402320862,
-0.16895978152751923,
-0.042931776493787766,
0.19044090807437897,
-0.06882110238075256,
-0.05430753156542778,
0.11967442184686661,
-0.03620262071490288,
0.06034943833947182,
0.06735650449991226,
0.19665049016475677,
0.015931585803627968,
-0.20728377997875214,
-0.05974265933036804,
-0.10853729397058487,
-0.04608539864420891,
0.06151673197746277,
0.05595235154032707,
-0.12345155328512192,
0.12949852645397186,
0.0020370713900774717,
0.0116501459851861,
-0.013951764442026615,
0.011843587271869183,
-0.04884958267211914,
0.02093946747481823,
-0.014630705118179321,
-0.07296136766672134,
-0.0398380421102047,
-0.07739301770925522,
-0.025414248928427696,
-0.11828354746103287,
0.017455870285630226,
0.0933433398604393,
-0.1051301583647728,
0.0523846261203289,
-0.08754789084196091,
0.07647858560085297,
0.0024896857794374228,
0.0032767988741397858,
-0.09959468990564346,
0.018797533586621284,
0.06555071473121643,
-0.10531392693519592,
0.1604527235031128,
-0.07975424081087112,
0.012265446595847607,
0.06245732679963112,
0.028263024985790253,
-0.04472741484642029,
-0.023450041189789772,
0.01324146892875433,
-0.025057077407836914,
-0.1052764281630516,
-0.012840951792895794,
-0.03052760660648346,
0.18732850253582,
-0.17633795738220215,
0.015293147414922714,
0.07901167869567871,
0.14001327753067017,
0.0034403223544359207,
-0.07805388420820236,
0.03900224342942238,
-0.00011784792877733707,
-0.004219462629407644,
-0.03854135423898697,
0.006490191910415888,
0.011660408228635788,
-0.03319360688328743,
0.09373263269662857,
-0.22023068368434906,
-0.22997409105300903,
0.08823206275701523,
0.011595405638217926,
-0.06512409448623657,
-0.0582142136991024,
-0.034111518412828445,
-0.05536026135087013,
-0.03881065547466278,
-0.11654690653085709,
0.3031383454799652,
0.03907059505581856,
0.11684586852788925,
-0.07566951960325241,
-0.04264232888817787,
-0.016078559681773186,
-0.03889939561486244,
-0.018166309222579002,
0.06585856527090073,
0.08180951327085495,
-0.019573112949728966,
0.03723117709159851,
-0.04617157578468323,
-0.04258686304092407,
0.14536698162555695,
0.02572641335427761,
-0.09848720580339432,
-0.05678926780819893,
0.07340902835130692,
0.03230326622724533,
0.09313399344682693,
-0.05495644733309746,
-0.005413228180259466,
0.023087263107299805,
-0.003955519292503595,
0.05036352947354317,
-0.12431773543357849,
0.06673600524663925,
-0.0029508185107260942,
-0.05958079919219017,
-0.027004996314644814,
-0.010244720615446568,
-0.007475262973457575,
0.04998263716697693,
-0.0011838687350973487,
-0.009876751340925694,
-0.011102378368377686,
-0.059822190552949905,
-0.11233728379011154,
0.1118670329451561,
-0.13107363879680634,
-0.24210350215435028,
-0.2305818349123001,
-0.002732654334977269,
-0.013658374547958374,
0.03181369975209236,
0.059127677232027054,
-0.04516865313053131,
-0.06660359352827072,
-0.0876498743891716,
0.04863335192203522,
0.017352823168039322,
-0.09727881103754044,
-0.0968957170844078,
0.03422126546502113,
0.05179428681731224,
-0.13021451234817505,
-0.010386643931269646,
0.00852274801582098,
-0.041974931955337524,
0.006082470063120127,
0.08225194364786148,
0.012332163751125336,
0.13210107386112213,
0.056260064244270325,
0.020914604887366295,
-0.013832916505634785,
0.15447179973125458,
-0.09720508009195328,
0.033746492117643356,
0.025372354313731194,
-0.06457129120826721,
0.04399125650525093,
0.17664964497089386,
0.01934993453323841,
-0.08058042079210281,
0.028596287593245506,
0.010915604420006275,
-0.02330046147108078,
-0.23683993518352509,
-0.0712294802069664,
-0.04728540778160095,
-0.03115457482635975,
0.10388610512018204,
0.04925837740302086,
0.0679449662566185,
-0.03941364586353302,
-0.04684159532189369,
-0.04531899467110634,
0.07805988937616348,
0.08383544534444809,
0.08570810407400131,
-0.012884681113064289,
0.025288298726081848,
-0.025388823822140694,
-0.0014717761659994721,
0.03483599051833153,
0.0750383660197258,
0.16211390495300293,
-0.014334253966808319,
0.250582218170166,
0.07621664553880692,
0.05371105670928955,
0.0175396166741848,
0.06020721420645714,
-0.007721979171037674,
0.052078764885663986,
0.02620059810578823,
-0.09659695625305176,
-0.0299975648522377,
0.07325392216444016,
0.17438973486423492,
-0.03135979548096657,
-0.032890379428863525,
-0.0689459890127182,
0.04047246649861336,
0.17983174324035645,
0.08840634673833847,
-0.20298810303211212,
-0.026200488209724426,
0.011665013618767262,
-0.060748353600502014,
-0.06922414898872375,
0.020156020298600197,
0.13418112695217133,
-0.11548572778701782,
-0.030768444761633873,
0.04704245924949646,
0.07417352497577667,
-0.11045513302087784,
-0.038263656198978424,
-0.019837481901049614,
0.11602627485990524,
-0.010077252984046936,
0.05346059799194336,
-0.1480204463005066,
0.08890172839164734,
0.0008405717089772224,
0.09741712361574173,
-0.017211811617016792,
0.04274221137166023,
-0.006365628447383642,
-0.09840504080057144,
0.12455901503562927,
0.002087188884615898,
-0.03823769465088844,
-0.1288411170244217,
-0.15270398557186127,
-0.023037562146782875,
0.06752274930477142,
-0.04280535504221916,
0.07503607124090195,
-0.01358222495764494,
-0.03452666476368904,
-0.012074668891727924,
-0.16387444734573364,
-0.11357209831476212,
-0.1234554871916771,
0.036573510617017746,
0.05694010853767395,
0.06506925076246262,
-0.0390189029276371,
-0.016927285119891167,
-0.0015092641115188599,
0.1167188361287117,
-0.21876084804534912,
-0.07106419652700424,
-0.07134509831666946,
-0.06570560485124588,
0.14983868598937988,
-0.03979727253317833,
0.05891156196594238,
0.010704743675887585,
0.11358609050512314,
-0.012309235520660877,
0.008374013006687164,
0.06338135153055191,
-0.053731054067611694,
-0.1255870908498764,
-0.05615023896098137,
0.26481014490127563,
0.056198716163635254,
0.06035425886511803,
-0.0007139653898775578,
0.06666195392608643,
-0.03378314897418022,
-0.08640152215957642,
-0.005132132675498724,
0.13719557225704193,
-0.014582608826458454,
0.11619937419891357,
-0.10298377275466919,
-0.1049288883805275,
-0.14412172138690948,
-0.03931635990738869,
0.1524396687746048,
0.2390315979719162,
-0.06229846552014351,
0.13537481427192688,
0.1409475952386856,
-0.10616326332092285,
-0.1816297173500061,
-0.09686818718910217,
0.05640919506549835,
0.02912571094930172,
-0.03303755447268486,
-0.13512293994426727,
0.03960347920656204,
0.019257841631770134,
-0.010171644389629364,
0.08329997956752777,
-0.2220936268568039,
-0.13965381681919098,
0.07550961524248123,
0.007853055372834206,
-0.16518346965312958,
-0.06647107750177383,
-0.08275305479764938,
-0.024103552103042603,
-0.03192855045199394,
0.10164759308099747,
-0.05004827678203583,
0.1212233230471611,
0.04154376685619354,
0.040898967534303665,
0.03477564826607704,
-0.06601296365261078,
0.0888076201081276,
0.014900878071784973,
-0.03217210993170738,
-0.053066838532686234,
-0.05019570514559746,
-0.011513061821460724,
-0.06830447167158127,
0.14893050491809845,
-0.051836419850587845,
0.005602901801466942,
-0.11276798695325851,
-0.03919932246208191,
-0.05014747753739357,
0.05709294602274895,
-0.06423734128475189,
0.0039866832084953785,
-0.024989569559693336,
0.026146283373236656,
0.06381832808256149,
0.020843559876084328,
-0.03855682536959648,
-0.0937584862112999,
0.005591387394815683,
0.26204654574394226,
0.1015668734908104,
0.059284258633852005,
-0.1287199854850769,
0.020641980692744255,
-0.019269809126853943,
0.028995370492339134,
-0.056990861892700195,
0.04297272488474846,
0.10299692302942276,
0.00909050740301609,
0.1763887256383896,
0.013630625791847706,
-0.19422684609889984,
0.008474016562104225,
0.06246400997042656,
-0.10437628626823425,
-0.08918078988790512,
-0.0022007746156305075,
0.024279728531837463,
-0.03437754139304161,
-0.05194671079516411,
0.13703224062919617,
-0.034024905413389206,
-0.008625579997897148,
0.018772093579173088,
0.06358364969491959,
-0.08552321046590805,
0.15316110849380493,
0.06189173832535744,
0.0429171584546566,
-0.07514943927526474,
0.12938812375068665,
0.10907405614852905,
-0.04842136427760124,
0.052975475788116455,
0.15732714533805847,
-0.06302685290575027,
-0.054824307560920715,
-0.12585991621017456,
0.026602163910865784,
0.03493514284491539,
-0.0620662160217762,
-0.05087711289525032,
-0.024088194593787193,
0.01892605796456337,
0.07533197849988937,
0.0018802457489073277,
0.0304611474275589,
-0.01923089660704136,
0.019321605563163757,
-0.10393983870744705,
0.09199804067611694,
0.029981153085827827,
0.0038897886406630278,
-0.04346481338143349,
0.12757255136966705,
0.05836837366223335,
-0.0033899489790201187,
0.000023770766347297467,
-0.09086465835571289,
-0.11251774430274963,
0.051844507455825806,
0.02742970548570156,
0.04177376255393028,
-0.014125960879027843,
-0.016634225845336914,
0.032076578587293625,
-0.010535899549722672,
0.014305862598121166,
0.06933900713920593,
-0.054506123065948486,
-0.0646752417087555,
-0.04680110514163971,
0.10741645097732544,
-0.1538371443748474,
-0.030653206631541252,
0.06575004011392593,
-0.09891403466463089,
0.11122062802314758,
0.07266074419021606,
-0.06570590287446976,
0.03309765085577965,
-0.10529804229736328,
-0.03525851294398308,
0.007007865700870752,
0.024625390768051147,
0.00882249791175127,
-0.18605105578899384,
-0.0006864888709969819,
-0.018447408452630043,
-0.010356972925364971,
-0.04185686632990837,
0.07902546972036362,
-0.09145554155111313,
-0.006526874843984842,
0.016339300200343132,
-0.049220114946365356,
-0.042870163917541504,
0.03163691982626915,
0.011844820342957973,
0.062386661767959595,
0.10875114053487778,
-0.0623479038476944,
0.04714903235435486,
-0.0898202583193779,
0.01266524475067854,
-0.0029424617532640696,
-0.005159569904208183,
-0.01913483999669552,
-0.00564968166872859,
0.06373661011457443,
-0.03318590298295021,
0.11511792987585068,
-0.09306041151285172,
-0.018416279926896095,
0.03390556201338768,
-0.01839793659746647,
-0.09569164365530014,
0.06946434825658798,
0.058301761746406555,
-0.001812505885027349,
-0.024965522810816765,
-0.04034896567463875,
-0.05295266583561897,
0.014326684176921844,
-0.0461161732673645,
0.023129751905798912,
0.11205122619867325,
0.12205036729574203,
0.03851567581295967,
0.12532423436641693,
-0.08728516101837158,
-0.05173980072140694,
0.07751423865556717,
-0.05603717640042305,
0.011895637027919292,
-0.09821745753288269,
0.2134641408920288,
0.1235063448548317,
-0.12664242088794708,
0.07646141201257706,
-0.003889137879014015,
-0.09525728225708008,
-0.053288593888282776,
-0.09846293926239014,
-0.028303230181336403,
-0.022059613838791847,
0.008421087637543678,
-0.061848778277635574,
0.06198548153042793,
0.041790690273046494,
0.03824611380696297,
-0.0237679872661829,
0.1845470666885376,
-0.0058021992444992065,
-0.07970628142356873,
0.0018746419809758663,
0.003448088653385639,
0.02319473586976528,
-0.0020681212190538645,
0.026227867230772972,
0.044887613505125046,
0.010922499001026154,
0.0987452045083046,
0.06631467491388321,
0.021310999989509583,
0.03299057111144066,
-0.03624197095632553,
-0.04425601661205292,
0.03438866138458252,
0.0014376401668414474,
-0.04631056264042854,
0.12909622490406036,
0.1070711687207222,
-0.04532046243548393,
0.004674618598073721,
0.11137992143630981,
-0.05722509324550629,
-0.10482525825500488,
-0.13310560584068298,
0.16428443789482117,
0.051671937108039856,
0.01605663262307644,
-0.04055897891521454,
-0.13283783197402954,
-0.05020257458090782,
0.16098995506763458,
0.17542998492717743,
-0.048655956983566284,
0.008717953227460384,
0.003703502705320716,
0.01923091523349285,
-0.030156418681144714,
0.062247734516859055,
0.05350560322403908,
0.1779063493013382,
0.009784501977264881,
0.0857454314827919,
-0.003343188902363181,
-0.03653606027364731,
-0.05977476015686989,
0.012410417199134827,
-0.10283678025007248,
-0.010884396731853485,
-0.04607786238193512,
0.04741763696074486,
-0.08030619472265244,
-0.24727816879749298,
-0.10629122704267502,
-0.09540057182312012,
-0.07216677814722061,
0.00134256761521101,
0.001661272719502449,
0.013365809805691242,
0.030349427834153175,
0.02425398863852024,
-0.038592029362916946,
0.16317236423492432,
-0.0006236668559722602,
-0.0620843768119812,
-0.03363337367773056,
0.01027598138898611,
-0.17675717175006866,
0.22975724935531616,
-0.01659168116748333,
0.1186419129371643,
0.07269956916570663,
0.047384027391672134,
-0.05030851438641548,
0.11966393142938614,
0.050340935587882996,
-0.12218133360147476,
0.009144581854343414,
0.1960330456495285,
-0.0264617707580328,
0.11247573047876358,
0.008277613669633865,
-0.01026570051908493,
0.06780780851840973,
-0.07429290562868118,
0.026143893599510193,
-0.09859537333250046,
0.0435464046895504,
-0.07823624461889267,
0.13985341787338257,
0.10839758068323135,
-0.04881446436047554,
-0.00578603008762002,
-0.04826764389872551,
-0.017457375302910805,
0.024777628481388092,
0.0616307258605957,
-0.0001667933538556099,
-0.20978255569934845,
0.06711801886558533,
-0.05147934332489967,
0.05773815140128136,
-0.2773115634918213,
-0.058030735701322556,
-0.008989951573312283,
-0.03457052260637283,
-0.035199135541915894,
0.12857961654663086,
0.04829273745417595,
0.03483680263161659,
-0.05179565027356148,
-0.08678195625543594,
-0.0076531837694346905,
0.13151775300502777,
-0.1314931958913803,
-0.09864524751901627
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-starter
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the Langame/starter dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 66.67 | 200 | 3.6445 |
| No log | 133.33 | 400 | 4.5703 |
| 1.0101 | 200.0 | 600 | 5.2109 |
| 1.0101 | 266.67 | 800 | 5.5430 |
| 0.0681 | 333.33 | 1000 | 5.7227 |
| 0.0681 | 400.0 | 1200 | 5.8672 |
| 0.0681 | 466.67 | 1400 | 5.9961 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["Langame/starter"], "model-index": [{"name": "distilgpt2-starter", "results": []}]} | text-generation | Langame/distilgpt2-starter | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:Langame/starter",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #dataset-Langame/starter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| distilgpt2-starter
==================
This model is a fine-tuned version of distilgpt2 on the Langame/starter dataset.
It achieves the following results on the evaluation set:
* Loss: 6.0234
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 4
* eval\_batch\_size: 8
* seed: 42
* distributed\_type: multi-GPU
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 500.0
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.18.1
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 500.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #dataset-Langame/starter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 500.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0"
] | [
76,
138,
4,
36
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #dataset-Langame/starter #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 500.0### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0"
] | [
-0.14600770175457,
0.10540160536766052,
-0.0010599733795970678,
0.09151048213243484,
0.15002955496311188,
0.03450498729944229,
0.1090509220957756,
0.14784404635429382,
-0.11320243030786514,
0.09338072687387466,
0.11843830347061157,
0.10767969489097595,
0.07536106556653976,
0.14135527610778809,
0.007714359555393457,
-0.2833031117916107,
0.012836184352636337,
0.027056090533733368,
-0.14901791512966156,
0.11402302980422974,
0.09140151739120483,
-0.11581207066774368,
0.08090636879205704,
0.04176658019423485,
-0.17056825757026672,
-0.04286095127463341,
-0.014402341097593307,
-0.056785471737384796,
0.10166362673044205,
0.030470548197627068,
0.07195596396923065,
-0.016385996714234352,
0.07590609788894653,
-0.17488117516040802,
0.007441239431500435,
0.09852854162454605,
0.02868601121008396,
0.09801279753446579,
0.10384073108434677,
0.008669719099998474,
0.17690442502498627,
-0.05296502634882927,
0.04871855303645134,
0.07171338051557541,
-0.1043880432844162,
-0.31396129727363586,
-0.11935335397720337,
0.05911821499466896,
0.0874299630522728,
0.058021996170282364,
-0.017644958570599556,
0.08960908651351929,
-0.031595826148986816,
0.0630723387002945,
0.2269018143415451,
-0.29169002175331116,
-0.08988913148641586,
0.0630464032292366,
0.03909113258123398,
0.028713691979646683,
-0.10771507769823074,
0.0011709824902936816,
0.03546142578125,
0.04844493046402931,
0.09794172644615173,
0.02330859750509262,
0.04700707271695137,
0.023528728634119034,
-0.13600440323352814,
-0.04878915473818779,
0.14524081349372864,
0.06295310705900192,
-0.029624588787555695,
-0.09031453728675842,
-0.04982347413897514,
-0.214287668466568,
-0.029791321605443954,
0.0063691758550703526,
0.02243448793888092,
-0.04728773981332779,
-0.09911742806434631,
-0.014654276892542839,
-0.06526416540145874,
-0.11300184577703476,
-0.009178433567285538,
0.15422433614730835,
0.05701728165149689,
0.01928357593715191,
-0.012272273190319538,
0.14990650117397308,
0.013705763965845108,
-0.12986810505390167,
-0.038586582988500595,
0.008685370907187462,
-0.08609671890735626,
-0.00720371725037694,
-0.0352591872215271,
0.014061781577765942,
0.019717689603567123,
0.1558888703584671,
-0.0634973794221878,
0.046022724360227585,
0.04867476597428322,
0.02196464128792286,
-0.08588958531618118,
0.15674521028995514,
-0.08773736655712128,
-0.07720508426427841,
-0.009383195079863071,
0.09083183854818344,
0.031070493161678314,
-0.014509755186736584,
-0.09504074603319168,
0.017405593767762184,
0.09319744259119034,
0.02822447009384632,
-0.0059107509441673756,
0.04649372398853302,
-0.0627126470208168,
-0.042038463056087494,
0.09249315410852432,
-0.06960354745388031,
0.03142702579498291,
0.008732032030820847,
-0.1113099753856659,
0.003918634727597237,
-0.013062280602753162,
-0.0017515103099867702,
-0.003073458094149828,
0.06538493186235428,
-0.10708430409431458,
-0.033744703978300095,
-0.13388167321681976,
-0.08226612955331802,
0.042098164558410645,
-0.06478413939476013,
-0.016737792640924454,
-0.06707058846950531,
-0.18715111911296844,
-0.02325768768787384,
0.04387427493929863,
-0.06366806477308273,
-0.0694529339671135,
-0.03833553194999695,
-0.09706448763608932,
0.04444178193807602,
-0.00922008790075779,
0.16318447887897491,
-0.04986058548092842,
0.11198950558900833,
0.06509329378604889,
0.0696110799908638,
0.03626454994082451,
0.04190196469426155,
-0.04408439248800278,
0.04073058068752289,
-0.2066192477941513,
0.06204342097043991,
-0.08325521647930145,
0.05073811858892441,
-0.10387493669986725,
-0.12080477178096771,
0.010945402085781097,
-0.02007940039038658,
0.08612331748008728,
0.09199733287096024,
-0.13101981580257416,
-0.09946771711111069,
0.1563766449689865,
-0.08081763982772827,
-0.1469915807247162,
0.11609026789665222,
0.00046629784628748894,
-0.049411311745643616,
0.04130411520600319,
0.1126260757446289,
0.09290952235460281,
-0.08161751180887222,
-0.04651568830013275,
-0.018055591732263565,
0.07987645268440247,
-0.0363427959382534,
0.1271703541278839,
-0.015440907329320908,
0.037586890161037445,
0.03214956074953079,
-0.0523788146674633,
0.05218847095966339,
-0.11350223422050476,
-0.06512953341007233,
-0.05759039521217346,
-0.10957782715559006,
0.020351527258753777,
0.06554216891527176,
0.07135315239429474,
-0.09522853046655655,
-0.13711883127689362,
0.02396431565284729,
0.13840581476688385,
-0.07425922155380249,
0.01840658113360405,
-0.09359683096408844,
0.1327936202287674,
-0.07775205373764038,
0.00867815688252449,
-0.17419226467609406,
-0.08494380861520767,
0.0402337983250618,
-0.060619056224823,
-0.016858063638210297,
0.0033307895064353943,
0.06428680568933487,
0.08875902742147446,
-0.05960148200392723,
-0.042067937552928925,
-0.0820983499288559,
-0.0425255186855793,
-0.06824778765439987,
-0.21321722865104675,
-0.10137561708688736,
-0.01603350043296814,
0.13130046427249908,
-0.19713237881660461,
0.03091740794479847,
0.058483902364969254,
0.13685351610183716,
0.024923821911215782,
-0.0698728933930397,
-0.02200479432940483,
0.04716538265347481,
-0.056288644671440125,
-0.08567491173744202,
0.055945441126823425,
0.01409740000963211,
-0.08966334164142609,
-0.0424397848546505,
-0.09905768930912018,
0.12461703270673752,
0.1299460083246231,
-0.012248573824763298,
-0.06263547390699387,
-0.010459814220666885,
-0.08699828386306763,
-0.051045700907707214,
-0.019932758063077927,
-0.002765835728496313,
0.1182624101638794,
0.021892214193940163,
0.13798657059669495,
-0.08661037683486938,
-0.05819616839289665,
0.04942883178591728,
0.019629117101430893,
0.0005659670569002628,
0.10561373829841614,
0.08753015846014023,
-0.025083469226956367,
0.13787488639354706,
0.06448573619127274,
-0.046088557690382004,
0.15359318256378174,
-0.057217586785554886,
-0.09082160890102386,
-0.02833692543208599,
-0.0003773882635869086,
0.03169780224561691,
0.14135847985744476,
-0.15202587842941284,
-0.012544327415525913,
0.040275681763887405,
0.03213711827993393,
0.03705016151070595,
-0.19994458556175232,
0.0002396539639448747,
0.009773792698979378,
-0.06063677743077278,
-0.0010000664042308927,
0.021221857517957687,
-0.019037609919905663,
0.10782672464847565,
0.02576792798936367,
-0.003990093246102333,
0.029407892376184464,
0.004099419806152582,
-0.06601209193468094,
0.19487321376800537,
-0.11029248684644699,
-0.13537386059761047,
-0.15365418791770935,
-0.002556765452027321,
-0.1014559343457222,
0.018452808260917664,
0.019176416099071503,
-0.10402649641036987,
-0.0280348788946867,
-0.027855560183525085,
0.08875139057636261,
-0.04240764304995537,
0.02937532588839531,
0.034355394542217255,
0.019899802282452583,
0.06250462681055069,
-0.12153185158967972,
0.026319026947021484,
-0.005331624299287796,
-0.11087775230407715,
0.013570624403655529,
0.052174847573041916,
0.11749553680419922,
0.1587865948677063,
0.042560748755931854,
0.03634243831038475,
-0.031732041388750076,
0.1702909916639328,
-0.11212167888879776,
-0.004713019821792841,
0.1376287043094635,
0.06607484817504883,
0.03938567638397217,
0.04225268214941025,
0.05630529299378395,
-0.08687624335289001,
0.015570797957479954,
0.04811881110072136,
-0.03386847302317619,
-0.21931520104408264,
-0.03025020845234394,
-0.056782592087984085,
0.02571868523955345,
0.08967554569244385,
0.03484347090125084,
0.034433476626873016,
0.0696684867143631,
-0.020001715049147606,
0.07468239963054657,
-0.037649087607860565,
0.07986997067928314,
0.08064162731170654,
0.049633391201496124,
0.11808070540428162,
-0.048393286764621735,
0.004596319980919361,
0.07311151176691055,
0.025403039529919624,
0.24023324251174927,
-0.0541750006377697,
0.1822224259376526,
0.05721491947770119,
0.16291090846061707,
-0.007185543421655893,
0.06875862181186676,
0.006785132922232151,
-0.01984240673482418,
0.0023337670136243105,
-0.03620477393269539,
-0.035561904311180115,
0.022076373919844627,
-0.010120530612766743,
0.07421806454658508,
-0.12784713506698608,
0.02142634056508541,
0.05627265200018883,
0.30385926365852356,
0.057303451001644135,
-0.3271302580833435,
-0.13722269237041473,
0.014574099332094193,
-0.03664199262857437,
-0.06327719986438751,
0.03485091030597687,
0.11774437874555588,
-0.11076122522354126,
0.08070709556341171,
-0.08623944222927094,
0.08054332435131073,
-0.060820307582616806,
-0.0076969945803284645,
0.13493502140045166,
0.15738052129745483,
0.004123202990740538,
0.08486300706863403,
-0.2600562870502472,
0.23669633269309998,
0.000480556656839326,
0.08720545470714569,
-0.06926421821117401,
0.04396737739443779,
0.030636344105005264,
0.035992421209812164,
0.04182048887014389,
-0.013407866470515728,
-0.060887180268764496,
-0.16166280210018158,
-0.0682128518819809,
0.013931134715676308,
0.10641946643590927,
-0.07623349875211716,
0.11226465553045273,
-0.0322590097784996,
-0.007583558093756437,
0.031395819038152695,
-0.08982814848423004,
-0.07250754535198212,
-0.09453684091567993,
0.029125817120075226,
-0.006738526280969381,
0.029431672766804695,
-0.10352630913257599,
-0.1087101399898529,
-0.10222969949245453,
0.16937758028507233,
-0.08395624905824661,
-0.0462423637509346,
-0.12995345890522003,
0.12401490658521652,
0.1383083462715149,
-0.07025382667779922,
0.0541529655456543,
-0.03115776926279068,
0.13503479957580566,
0.03032492846250534,
-0.03651244565844536,
0.07988232374191284,
-0.07820102572441101,
-0.2603791058063507,
-0.03841318562626839,
0.1093214675784111,
0.03760266676545143,
0.05116668716073036,
-0.051344066858291626,
0.026212718337774277,
-0.027812130749225616,
-0.11507289856672287,
0.05569985881447792,
0.03322620317339897,
0.08133041858673096,
0.023916427046060562,
0.002394328825175762,
0.057895477861166,
-0.014950982294976711,
-0.04796168580651283,
0.09295974671840668,
0.26418429613113403,
-0.09831789880990982,
-0.0016217314405366778,
0.03199559077620506,
-0.041079021990299225,
-0.1549052745103836,
0.04112326353788376,
0.09949031472206116,
0.015526794828474522,
-0.03977889195084572,
-0.2356339544057846,
0.0840662345290184,
0.10463525354862213,
-0.04343297705054283,
0.18029189109802246,
-0.304386168718338,
-0.13115312159061432,
0.044925641268491745,
0.11610466986894608,
0.010904395952820778,
-0.18969015777111053,
-0.05961858481168747,
-0.0039095450192689896,
-0.1522974967956543,
0.11191371083259583,
-0.04278035834431648,
0.11622951179742813,
-0.045821450650691986,
0.0546155646443367,
-0.0007983482792042196,
-0.06732852756977081,
0.16575133800506592,
0.01279299333691597,
0.06089891865849495,
-0.02137538604438305,
0.06326024234294891,
0.1271626502275467,
-0.05699260160326958,
0.0007402226910926402,
-0.03560103848576546,
0.03913559019565582,
-0.13945986330509186,
-0.01848476193845272,
-0.09682804346084595,
0.034210849553346634,
-0.03892214223742485,
-0.03606093302369118,
-0.050151973962783813,
0.05936893820762634,
-0.009071674197912216,
-0.017165860161185265,
0.14155277609825134,
0.018042216077446938,
0.1607050895690918,
0.055483490228652954,
0.05582280084490776,
-0.04353754594922066,
-0.10141843557357788,
-0.014910194091498852,
-0.003881162963807583,
0.05379534512758255,
-0.16482922434806824,
-0.005700236186385155,
0.13061881065368652,
0.03966396674513817,
0.09860317409038544,
0.08736103028059006,
-0.08165299892425537,
0.06181290000677109,
0.07840780913829803,
-0.12232121080160141,
-0.11202247440814972,
-0.019926492124795914,
-0.028015047311782837,
-0.1255788654088974,
0.0875500813126564,
0.07889420539140701,
-0.03666101023554802,
-0.0092203039675951,
0.0099653834477067,
0.015521924942731857,
-0.04509417340159416,
0.19155527651309967,
0.055781375616788864,
0.08032412081956863,
-0.11347941309213638,
0.12451578676700592,
0.0225847028195858,
-0.12389224767684937,
0.005484326742589474,
0.072483129799366,
-0.07955528050661087,
-0.017762044444680214,
0.0004682163707911968,
0.09852577745914459,
-0.043825697153806686,
-0.07410578429698944,
-0.13500529527664185,
-0.11112388968467712,
0.10394102334976196,
0.06794095039367676,
0.07615196704864502,
0.04792629927396774,
-0.0355491116642952,
0.0537845753133297,
-0.12965065240859985,
0.09065968543291092,
0.05456256866455078,
0.07169096916913986,
-0.16364742815494537,
0.12731002271175385,
0.024186519905924797,
0.045888736844062805,
-0.011997567489743233,
0.013426093384623528,
-0.0943242758512497,
-0.003385172924026847,
-0.11779557168483734,
-0.0588492751121521,
-0.07367539405822754,
-0.005292146001011133,
-0.009354262612760067,
-0.05250070244073868,
-0.06653439998626709,
0.021026482805609703,
-0.11208553612232208,
-0.045290831476449966,
0.009933439083397388,
0.04740624129772186,
-0.1172364205121994,
0.010995813645422459,
0.029352916404604912,
-0.10901852697134018,
0.10502544790506363,
0.04345347732305527,
0.06199299544095993,
0.04447618126869202,
-0.05066324770450592,
0.040132418274879456,
0.010691525414586067,
-0.007146737538278103,
0.055687204003334045,
-0.10162815451622009,
0.021470807492733,
-0.03035464696586132,
0.04898471385240555,
0.007998522371053696,
0.04555780813097954,
-0.1261071264743805,
-0.006685505621135235,
-0.017715230584144592,
-0.02744247391819954,
-0.07269879430532455,
0.0670984610915184,
0.09710343927145004,
0.028653539717197418,
0.14217501878738403,
-0.046339306980371475,
0.011401504278182983,
-0.23544958233833313,
0.006131493486464024,
-0.017022252082824707,
-0.09363988041877747,
-0.07599613815546036,
-0.0013060328783467412,
0.08456841111183167,
-0.030292920768260956,
0.12524667382240295,
-0.04570053517818451,
0.07181036472320557,
0.023754073306918144,
-0.030394297093153,
0.028797568753361702,
0.03424915671348572,
0.18010596930980682,
0.04646226018667221,
0.011295673437416553,
0.08666456490755081,
0.062256164848804474,
0.07660000026226044,
0.06892123818397522,
0.1920309066772461,
0.07490839064121246,
-0.030600305646657944,
0.11741551756858826,
0.02745284140110016,
-0.12878385186195374,
-0.18318253755569458,
0.11781566590070724,
-0.07699202746152878,
0.12881360948085785,
-0.03627900034189224,
0.16885578632354736,
0.09739813953638077,
-0.18374356627464294,
0.030155934393405914,
-0.031637489795684814,
-0.07371266186237335,
-0.09821406751871109,
-0.06196562945842743,
-0.058423664420843124,
-0.21244843304157257,
0.02684592641890049,
-0.11764433234930038,
0.041750095784664154,
0.08041572570800781,
0.031241953372955322,
-0.00026731262914836407,
0.1372823566198349,
0.046050019562244415,
0.03566024824976921,
0.06563332676887512,
0.020535044372081757,
-0.02514004521071911,
-0.02815946377813816,
-0.11790360510349274,
-0.0015854963567107916,
-0.030892668291926384,
0.08445387333631516,
-0.05099479854106903,
-0.11277348548173904,
0.07474762201309204,
0.029390139505267143,
-0.08538160473108292,
0.01342412456870079,
0.010382531210780144,
0.048659663647413254,
0.07084381580352783,
-0.001656190725043416,
0.012350243516266346,
-0.033144399523735046,
0.22783230245113373,
-0.08477655798196793,
-0.030497223138809204,
-0.14185582101345062,
0.2383795529603958,
-0.002232579980045557,
-0.05694320797920227,
0.05092857405543327,
-0.08926384150981903,
-0.036736514419317245,
0.19128195941448212,
0.17020493745803833,
-0.028357187286019325,
-0.05528350546956062,
0.01954348012804985,
-0.0265367291867733,
-0.0404110811650753,
0.12190631031990051,
0.10566708445549011,
0.08270841091871262,
-0.07478000223636627,
-0.06273702532052994,
-0.040328193455934525,
-0.03289729356765747,
-0.00250457925722003,
0.07436271011829376,
0.014373082667589188,
-0.0020311598200351,
-0.022567566484212875,
0.06053762137889862,
-0.05796058103442192,
-0.12294244766235352,
0.08557424694299698,
-0.1518528163433075,
-0.17678794264793396,
-0.02323342114686966,
0.06243611127138138,
-0.02361965738236904,
0.0811200961470604,
0.004849497694522142,
-0.0067578996531665325,
0.12860719859600067,
-0.022204523906111717,
-0.0894157737493515,
-0.12448859959840775,
0.09889797866344452,
-0.07390017807483673,
0.22395795583724976,
-0.07301443070173264,
0.012910904362797737,
0.1506940871477127,
0.023190932348370552,
-0.1389162391424179,
0.008044291287660599,
0.04547164589166641,
-0.0863683894276619,
0.01550524216145277,
0.15103210508823395,
-0.010589869692921638,
0.07263157516717911,
0.014690890908241272,
-0.0915563702583313,
0.0065077305771410465,
-0.07370942831039429,
-0.03445212543010712,
-0.07355280220508575,
-0.005639754235744476,
-0.06037404015660286,
0.13802923262119293,
0.21428312361240387,
-0.05561616271734238,
-0.015078756026923656,
-0.06631816178560257,
0.050790637731552124,
0.028591817244887352,
0.12314271926879883,
-0.019216634333133698,
-0.28473976254463196,
0.01999029517173767,
0.03526836261153221,
-0.02480839379131794,
-0.24641838669776917,
-0.07038001716136932,
0.04160281643271446,
-0.06292849779129028,
-0.07394803315401077,
0.0923474058508873,
0.03721214085817337,
0.049026358872652054,
-0.060950424522161484,
-0.04265766218304634,
-0.08490681648254395,
0.15469178557395935,
-0.1791546493768692,
-0.08137284964323044
] |
null | null | transformers |
# Langame/gpt2-waiting
This fine-tuned model can generate funny waiting messages.
[Langame](https://langa.me) uses these within its platform 😛.
| {"language": ["en"], "license": "mit", "tags": ["text-generation"], "datasets": ["waiting-messages"], "widget": [{"text": "List of funny waiting messages:", "example_title": "Funny waiting messages"}]} | text-generation | Langame/gpt2-waiting | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"en",
"dataset:waiting-messages",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #en #dataset-waiting-messages #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Langame/gpt2-waiting
This fine-tuned model can generate funny waiting messages.
Langame uses these within its platform .
| [
"# Langame/gpt2-waiting\n\nThis fine-tuned model can generate funny waiting messages.\n\nLangame uses these within its platform ."
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #en #dataset-waiting-messages #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Langame/gpt2-waiting\n\nThis fine-tuned model can generate funny waiting messages.\n\nLangame uses these within its platform ."
] | [
68,
32
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #en #dataset-waiting-messages #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Langame/gpt2-waiting\n\nThis fine-tuned model can generate funny waiting messages.\n\nLangame uses these within its platform ."
] | [
0.019351540133357048,
-0.12698282301425934,
-0.004335806239396334,
0.11872994154691696,
0.06725062429904938,
0.014074686914682388,
0.1203240156173706,
0.11378604918718338,
-0.001944972202181816,
0.0017795078456401825,
0.14213912189006805,
0.11272820830345154,
0.04027380421757698,
0.0768156424164772,
-0.03129308670759201,
-0.21226361393928528,
0.004156091250479221,
0.04739929735660553,
0.14296016097068787,
0.10450593382120132,
0.1071338951587677,
0.017919816076755524,
0.13981731235980988,
0.047031231224536896,
-0.09913159161806107,
-0.005279717035591602,
0.008761823177337646,
-0.03339425101876259,
0.0739070326089859,
0.06443026661872864,
0.04446178674697876,
0.069183349609375,
-0.04075688123703003,
-0.013996144756674767,
0.03688722476363182,
-0.00015005699242465198,
-0.06335392594337463,
0.009161226451396942,
-0.03581654280424118,
-0.009532683528959751,
0.15964868664741516,
0.031151382252573967,
-0.04296816140413284,
0.0031668173614889383,
-0.15077637135982513,
0.05537844076752663,
-0.07214292138814926,
-0.012691255658864975,
0.019091587513685226,
0.07254647463560104,
-0.024854328483343124,
0.23317335546016693,
-0.11768539994955063,
0.05586516112089157,
0.2040003389120102,
-0.4471328854560852,
-0.02496878243982792,
0.11888626962900162,
0.17407554388046265,
0.053543802350759506,
-0.03468876704573631,
0.05396850407123566,
0.06428968161344528,
0.000749291735701263,
-0.01630307175219059,
-0.03956778720021248,
0.03921472281217575,
0.008057874627411366,
-0.1570870578289032,
-0.02369004487991333,
0.18346548080444336,
-0.055142685770988464,
0.015748493373394012,
-0.1421331763267517,
-0.04387788474559784,
-0.06794077903032303,
-0.056963443756103516,
0.01329742930829525,
-0.04318392276763916,
0.06467586010694504,
0.09073232114315033,
-0.05983229726552963,
-0.12906478345394135,
-0.09141029417514801,
-0.15762530267238617,
0.03433027118444443,
0.029117077589035034,
0.03633429855108261,
-0.240955650806427,
0.09830224514007568,
-0.10098050534725189,
-0.13032236695289612,
-0.03740493953227997,
-0.044429514557123184,
0.08500826358795166,
0.03007141500711441,
-0.052092887461185455,
-0.09117582440376282,
0.08442669361829758,
0.00857764296233654,
0.05865078419446945,
0.047729551792144775,
-0.06678259372711182,
0.10370557755231857,
0.009633534587919712,
0.05432823672890663,
-0.008740327320992947,
-0.03918864578008652,
0.007907649502158165,
-0.060203734785318375,
0.058437127619981766,
-0.039303239434957504,
-0.14779004454612732,
0.023239294067025185,
-0.0734330266714096,
0.04441722109913826,
0.01625411957502365,
0.14350877702236176,
-0.04031219705939293,
-0.011023147962987423,
0.08333646506071091,
-0.022768093273043633,
-0.014997891150414944,
0.01629953645169735,
-0.07814672589302063,
0.08490116894245148,
0.03586549684405327,
-0.004211229272186756,
-0.08837694674730301,
0.03427970036864281,
-0.06997334212064743,
-0.05765082687139511,
-0.07015612721443176,
-0.07149247080087662,
0.03205784410238266,
-0.07635141164064407,
-0.04846031218767166,
-0.10902769863605499,
-0.2576816976070404,
0.008337752893567085,
-0.007660007104277611,
-0.04372131824493408,
0.003112083999440074,
-0.04794313386082649,
-0.026002835482358932,
0.06483416259288788,
-0.06447986513376236,
0.06409498304128647,
-0.09672080725431442,
0.05520195513963699,
0.01705845817923546,
0.11972459405660629,
-0.12343063950538635,
0.017989398911595345,
-0.09828437864780426,
0.00012333662016317248,
-0.0589924119412899,
0.08544576913118362,
-0.024090636521577835,
0.03796980530023575,
-0.01174662634730339,
-0.03185174614191055,
-0.06908264756202698,
0.05063507333397865,
0.04042091220617294,
0.17893074452877045,
-0.1775154024362564,
-0.027908844873309135,
0.14255991578102112,
-0.13343890011310577,
-0.17916138470172882,
0.08154874294996262,
0.028933018445968628,
0.09979581087827682,
0.049170441925525665,
0.23037584125995636,
0.016820024698972702,
-0.11085137724876404,
0.027578014880418777,
0.018368778750300407,
-0.23465760052204132,
-0.006647671572864056,
0.003766586072742939,
0.09190484881401062,
-0.1394311785697937,
0.03987056016921997,
-0.07810521125793457,
0.023956863209605217,
-0.02243359014391899,
-0.051226578652858734,
-0.04973987862467766,
-0.0029674710240215063,
0.0635155439376831,
-0.01883266493678093,
0.06266443431377411,
-0.05202325060963631,
-0.04927302896976471,
0.03742644190788269,
0.03323715180158615,
0.0036794806364923716,
0.07705298811197281,
-0.1578269898891449,
0.08935452252626419,
0.14081795513629913,
0.04969485104084015,
-0.07488732039928436,
-0.1457054764032364,
-0.010369254276156425,
0.028914671391248703,
0.061517417430877686,
0.09981855750083923,
0.0634792223572731,
-0.01505650207400322,
0.05274095758795738,
0.02060527727007866,
0.13341787457466125,
-0.03063555434346199,
-0.09234513342380524,
-0.12979401648044586,
0.13027650117874146,
-0.013354594819247723,
-0.0023628720082342625,
-0.03602459654211998,
0.01401851698756218,
0.000593140721321106,
0.05628373473882675,
-0.026405198499560356,
0.02367170713841915,
0.01700730063021183,
-0.019940312951803207,
-0.046613696962594986,
-0.017832469195127487,
0.12648363411426544,
-0.017436016350984573,
-0.05991673842072487,
0.2585088014602661,
-0.13146013021469116,
0.1202361136674881,
0.1997363418340683,
-0.038406118750572205,
-0.007402786985039711,
-0.01900927908718586,
-0.03574252873659134,
-0.019749004393815994,
-0.0014077209634706378,
0.01714790053665638,
0.2138056755065918,
-0.037004198879003525,
0.1472034752368927,
-0.07016264647245407,
0.023936696350574493,
0.04059091955423355,
-0.052501074969768524,
-0.025887809693813324,
0.08146452158689499,
0.03000272996723652,
-0.050308842211961746,
0.08221615850925446,
0.04282378405332565,
0.01932598277926445,
0.18401019275188446,
0.022892309352755547,
0.003676395630463958,
-0.039996810257434845,
0.08471237868070602,
0.04017716273665428,
0.07786988466978073,
-0.23618623614311218,
-0.05932733044028282,
0.04955345019698143,
-0.0331454761326313,
0.11612112820148468,
-0.13836337625980377,
-0.07056115567684174,
-0.06765054166316986,
-0.03580610454082489,
-0.049243148416280746,
0.16447195410728455,
-0.04733641445636749,
0.09503388404846191,
0.00974739994853735,
-0.06661086529493332,
0.04143715649843216,
-0.018478062003850937,
-0.07338785380125046,
0.14158394932746887,
-0.07208596169948578,
-0.28388500213623047,
-0.12582486867904663,
-0.14945541322231293,
-0.10229812562465668,
0.04481164366006851,
0.11728240549564362,
-0.035087939351797104,
-0.03242276981472969,
-0.07228303700685501,
-0.026524147018790245,
0.04149693250656128,
0.05529284477233887,
-0.043017201125621796,
-0.055289797484874725,
-0.0030516390688717365,
-0.12270922213792801,
-0.023932237178087234,
-0.09338812530040741,
-0.023419218137860298,
0.10815088450908661,
-0.10790593177080154,
0.0896836519241333,
0.1364518105983734,
0.08585599809885025,
0.06800853461027145,
-0.05432111397385597,
0.168636292219162,
-0.069037064909935,
-0.013575232587754726,
0.16339534521102905,
0.06977016478776932,
0.10454633831977844,
0.060878004878759384,
0.007598176598548889,
-0.11942312121391296,
0.08691997081041336,
-0.0026090305764228106,
-0.11930002272129059,
-0.18150384724140167,
-0.11797312647104263,
-0.08901962637901306,
0.08057047426700592,
0.0007928631384856999,
0.07815368473529816,
0.09009142965078354,
0.08003127574920654,
0.0888427123427391,
0.036132924258708954,
-0.021298199892044067,
0.08908119797706604,
0.1693773865699768,
-0.00007803351036272943,
0.10326655954122543,
-0.06747771799564362,
-0.07262597978115082,
0.09864944964647293,
-0.011819317005574703,
0.04178563505411148,
-0.024380337446928024,
0.07239921391010284,
0.10465788841247559,
0.12928986549377441,
0.13763181865215302,
-0.037729378789663315,
-0.05560257285833359,
-0.10280204564332962,
-0.0046493057161569595,
-0.06999942660331726,
-0.0652519091963768,
0.036365192383527756,
-0.017332270741462708,
-0.07437869161367416,
-0.037798844277858734,
-0.040597714483737946,
0.037248965352773666,
0.10739721357822418,
0.07204136997461319,
-0.17305690050125122,
-0.006668333429843187,
0.05310879275202751,
0.02104373462498188,
-0.03704439103603363,
0.0906253308057785,
-0.02984144352376461,
-0.09838555753231049,
0.04463156685233116,
-0.019430309534072876,
0.11902504414319992,
0.013421351090073586,
0.06520330160856247,
-0.12986478209495544,
0.05060417205095291,
-0.022758223116397858,
0.07846350222826004,
-0.2528398334980011,
0.149799644947052,
-0.02713792584836483,
0.026329774409532547,
-0.06353630125522614,
-0.04764636978507042,
0.019483022391796112,
0.08017262816429138,
0.13016022741794586,
0.00005302388308336958,
0.012734384275972843,
0.004620834719389677,
-0.07041870802640915,
0.035360220819711685,
0.10211920738220215,
0.028380252420902252,
0.01506067719310522,
-0.001253404887393117,
0.031072646379470825,
-0.00035256260889582336,
-0.030268697068095207,
-0.01853783242404461,
-0.034608837217092514,
0.0948718786239624,
0.10014975816011429,
-0.02529596909880638,
0.020447304472327232,
-0.052022967487573624,
-0.15291236340999603,
0.22331005334854126,
-0.07099071145057678,
-0.08845594525337219,
-0.11039999127388,
-0.15485718846321106,
-0.001046548830345273,
-0.040870070457458496,
-0.055010341107845306,
-0.017444979399442673,
0.06167212873697281,
-0.01693267747759819,
-0.11403177678585052,
0.11143508553504944,
-0.07215539366006851,
-0.06556358188390732,
-0.06923587620258331,
0.1795983612537384,
0.05442853644490242,
-0.008865962736308575,
0.04133882001042366,
-0.04225432500243187,
-0.08107057213783264,
-0.13818533718585968,
-0.023241011425852776,
0.03151547908782959,
0.012249499559402466,
-0.006968269590288401,
-0.009356541559100151,
0.030460994690656662,
0.014475446194410324,
0.03636718541383743,
0.15385888516902924,
0.13595101237297058,
-0.03902208060026169,
0.2480095475912094,
0.10489002615213394,
-0.045095279812812805,
-0.3038782775402069,
-0.08845635503530502,
0.007371768821030855,
-0.03132165968418121,
-0.06239515542984009,
-0.04464338347315788,
0.06219376623630524,
-0.03431227058172226,
-0.039142906665802,
0.12217327207326889,
-0.37310558557510376,
-0.1451631635427475,
0.05053448677062988,
0.017705313861370087,
0.4694412052631378,
-0.13589458167552948,
-0.08236401528120041,
-0.011734263971447945,
-0.21966952085494995,
0.17532874643802643,
-0.08812402933835983,
0.15505215525627136,
-0.07317810505628586,
0.2006068229675293,
0.009781558997929096,
-0.03388335928320885,
0.07537505775690079,
0.024816544726490974,
-0.002125100465491414,
-0.12575024366378784,
0.034208994358778,
0.14155858755111694,
-0.021623525768518448,
0.15017715096473694,
-0.11228297650814056,
0.015794508159160614,
-0.19757793843746185,
-0.00918431207537651,
-0.06515219807624817,
0.11656856536865234,
0.029994772747159004,
-0.04060886427760124,
-0.09547703713178635,
-0.023494431748986244,
0.01494040247052908,
0.02957380935549736,
0.07369028031826019,
-0.03882620856165886,
0.019335050135850906,
0.09303312003612518,
0.10421499609947205,
-0.16168451309204102,
-0.13866449892520905,
0.018572349101305008,
-0.04278881847858429,
0.11609949171543121,
-0.1608738750219345,
-0.011948452331125736,
0.09527332335710526,
-0.03783077001571655,
0.060811035335063934,
0.08553741872310638,
-0.03413692116737366,
0.05462783947587013,
0.1316424459218979,
-0.18651935458183289,
-0.085789255797863,
-0.017684558406472206,
0.022538932040333748,
0.14735747873783112,
0.093699611723423,
0.14937365055084229,
-0.03940487280488014,
0.03310464322566986,
0.027148453518748283,
0.03050956316292286,
-0.05107855796813965,
0.04985170066356659,
-0.028233183547854424,
0.01285370159894228,
-0.15626858174800873,
0.013396085239946842,
-0.00822865217924118,
-0.04259336367249489,
0.04051421582698822,
0.15958990156650543,
-0.11670852452516556,
-0.11630947887897491,
-0.07741201668977737,
0.10786892473697662,
-0.15102209150791168,
-0.032688871026039124,
-0.004124290309846401,
-0.09162377566099167,
0.04536904767155647,
0.12295132130384445,
0.08265411853790283,
0.05655073747038841,
-0.0627538189291954,
-0.028422541916370392,
-0.048181358724832535,
-0.08574279397726059,
0.038198988884687424,
0.048712655901908875,
-0.0846647396683693,
0.07535787671804428,
0.07207365334033966,
0.11289417743682861,
-0.11025634407997131,
-0.07389514893293381,
-0.1724717617034912,
-0.009811121970415115,
-0.07568363845348358,
-0.00011711280967574567,
-0.09608747065067291,
-0.018373137339949608,
-0.027764825150370598,
-0.05164967104792595,
-0.1104707196354866,
0.01966065913438797,
-0.05107417330145836,
0.002746226964518428,
0.0022372391540557146,
0.035252537578344345,
-0.11031921207904816,
-0.0005078467656858265,
0.05990142002701759,
-0.0009170047123916447,
0.07693351060152054,
0.1317095309495926,
-0.05832329019904137,
0.05774398520588875,
-0.11881513893604279,
-0.023519109934568405,
0.01975676603615284,
0.03655477985739708,
0.02507360652089119,
-0.006050342693924904,
0.034189190715551376,
0.05749192461371422,
0.052419308573007584,
0.07196558266878128,
0.15708523988723755,
-0.12851008772850037,
0.09754996001720428,
0.0001551203749841079,
-0.01646275445818901,
-0.012175826355814934,
-0.020523909479379654,
0.10157514363527298,
0.10874304175376892,
0.1678050458431244,
-0.0644645020365715,
-0.026102274656295776,
-0.013474671170115471,
0.0013453037245199084,
0.02231752686202526,
-0.08558344095945358,
0.09843073785305023,
-0.06557618081569672,
-0.03577020391821861,
-0.005206495523452759,
0.22242066264152527,
0.04928606376051903,
-0.02698359824717045,
0.0387142114341259,
0.13461385667324066,
-0.02599487081170082,
-0.046014685183763504,
0.14687293767929077,
0.033472754061222076,
0.01938885822892189,
-0.04148618131875992,
0.07776810228824615,
-0.00056978571228683,
-0.03804468736052513,
0.17403411865234375,
-0.07111220806837082,
-0.035153429955244064,
0.10255832225084305,
0.047494105994701385,
0.07872700691223145,
-0.1963246613740921,
-0.055780842900276184,
-0.16991734504699707,
0.06776312738656998,
-0.05209875851869583,
0.08562882989645004,
0.10054115206003189,
0.020330090075731277,
0.003370794001966715,
-0.009322903119027615,
-0.042794231325387955,
-0.0709865391254425,
-0.11484464257955551,
-0.053345318883657455,
-0.10236124694347382,
0.017038444057106972,
-0.05843057855963707,
0.05748452618718147,
-0.037188585847616196,
0.06664470583200455,
-0.041199471801519394,
0.06941264867782593,
-0.09623385220766068,
-0.03888140246272087,
0.04019304737448692,
-0.027439415454864502,
0.015321054495871067,
-0.01608104631304741,
0.021428773179650307,
-0.06726430356502533,
-0.021967899054288864,
-0.05600737780332565,
0.05429957062005997,
0.09270739555358887,
0.002672750037163496,
-0.09004854410886765,
-0.01566738449037075,
-0.039144258946180344,
0.11466001719236374,
0.03563360869884491,
0.0323341004550457,
0.07236163318157196,
-0.02618456818163395,
-0.016770396381616592,
0.15419553220272064,
-0.013278418220579624,
-0.08937767893075943,
-0.07568319141864777,
0.22249716520309448,
-0.01578952558338642,
0.05300652235746384,
-0.0952058956027031,
0.024160994216799736,
-0.10571745038032532,
0.3605939745903015,
0.26881858706474304,
-0.1674879938364029,
0.015324383974075317,
-0.053891293704509735,
0.04000570625066757,
0.039691951125860214,
0.1529536098241806,
0.06605073809623718,
0.3083517253398895,
-0.004728841129690409,
-0.02206212282180786,
-0.1253594607114792,
0.01851363480091095,
-0.12186768651008606,
0.05670448765158653,
-0.0024246578104794025,
-0.06260997802019119,
-0.06999419629573822,
0.03624526783823967,
-0.18586990237236023,
0.03235483542084694,
-0.11605611443519592,
-0.1307104527950287,
-0.08795773237943649,
0.03620181605219841,
0.09849565476179123,
0.0041129509918391705,
0.1161804124712944,
-0.003909096121788025,
0.0245037954300642,
0.012406578287482262,
0.0044634598307311535,
-0.20472237467765808,
0.02563486434519291,
0.02705945447087288,
-0.10074683278799057,
0.14096829295158386,
-0.009456438943743706,
0.07184280455112457,
0.07031714171171188,
0.011274744756519794,
-0.0741872638463974,
0.11832831799983978,
0.007067812141031027,
-0.1368083357810974,
0.02373450994491577,
-0.00510406494140625,
-0.00455747963860631,
-0.14238053560256958,
0.03990403190255165,
-0.1046966016292572,
0.04288110509514809,
0.04927201569080353,
0.07661174982786179,
-0.0542573481798172,
0.01514246966689825,
-0.05688188225030899,
0.07423567771911621,
0.051517561078071594,
0.01714486815035343,
-0.011752212420105934,
-0.04244249314069748,
0.01781792938709259,
-0.0748625099658966,
-0.08742121607065201,
-0.05703231319785118,
-0.12131310254335403,
-0.061514344066381454,
0.04698170721530914,
-0.005665637087076902,
-0.20375850796699524,
-0.04717562347650528,
-0.11912444233894348,
0.025766514241695404,
-0.06586173176765442,
0.06539863348007202,
0.09688135981559753,
0.006839633919298649,
-0.007244204171001911,
-0.07536961138248444,
0.030707938596606255,
0.07176670432090759,
-0.04845353215932846,
-0.13694924116134644
] |
null | null | transformers | # Mengzi-BERT base fin model (Chinese)
Continue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
## Usage
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base-fin")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base-fin")
```
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0"} | fill-mask | Langboat/mengzi-bert-base-fin | [
"transformers",
"pytorch",
"safetensors",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"doi:10.57967/hf/0024",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #safetensors #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0024 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| # Mengzi-BERT base fin model (Chinese)
Continue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
## Usage
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [
"# Mengzi-BERT base fin model (Chinese)\nContinue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0024 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Mengzi-BERT base fin model (Chinese)\nContinue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
73,
85,
24
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0024 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Mengzi-BERT base fin model (Chinese)\nContinue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
-0.1262192577123642,
-0.04554925858974457,
-0.00041691126534715295,
-0.016231292858719826,
0.097392238676548,
-0.03387068957090378,
0.20809859037399292,
0.03487028926610947,
0.03790472075343132,
-0.036297962069511414,
0.06805088371038437,
-0.01943173073232174,
0.06885741651058197,
0.12755680084228516,
0.04948782920837402,
-0.3091466426849365,
0.05536080524325371,
0.0733737125992775,
0.014898335561156273,
0.1166817769408226,
0.1258753538131714,
-0.081882044672966,
0.09304176270961761,
0.12692226469516754,
-0.0003466989437583834,
-0.031680312007665634,
-0.042246587574481964,
-0.09025309234857559,
0.10463570058345795,
0.009899833239614964,
0.08557054400444031,
0.03178125619888306,
0.05989868938922882,
-0.03642740100622177,
0.0205994900316,
-0.05634208768606186,
-0.018350651487708092,
0.03756319731473923,
0.05001151189208031,
0.031410932540893555,
0.15418073534965515,
-0.013512694276869297,
-0.03740929812192917,
0.047925546765327454,
-0.0734955370426178,
-0.024884678423404694,
-0.05317617207765579,
0.06213248893618584,
0.1612984836101532,
0.13968873023986816,
-0.01499540638178587,
0.11324907094240189,
-0.12478664517402649,
0.03516419231891632,
0.14671124517917633,
-0.33181318640708923,
-0.01856175996363163,
0.08137354254722595,
0.03654024377465248,
-0.08800273388624191,
-0.04608781635761261,
0.01236176397651434,
0.048836227506399155,
-0.07103918492794037,
-0.01616692915558815,
-0.09267054498195648,
0.18294380605220795,
-0.057491470128297806,
-0.14310584962368011,
0.07179798185825348,
0.22372573614120483,
0.0394076369702816,
-0.09221407771110535,
-0.10554586350917816,
0.006886730901896954,
0.08182304352521896,
-0.06116168200969696,
-0.029809365049004555,
0.008574975654482841,
0.018955517560243607,
0.12829330563545227,
-0.05582011491060257,
-0.06394972652196884,
-0.08445222675800323,
-0.10012813657522202,
0.1849568486213684,
0.004278901498764753,
-0.02662045508623123,
-0.07768703252077103,
0.009429004974663258,
-0.11446205526590347,
-0.11113680899143219,
-0.009663153439760208,
-0.03066721372306347,
0.0028679014649242163,
0.018086973577737808,
0.02844826504588127,
-0.09040547162294388,
0.032760586589574814,
-0.022777114063501358,
0.03930441662669182,
0.05490463227033615,
0.02937248721718788,
0.07388488948345184,
-0.02717781625688076,
0.08015275746583939,
-0.08608530461788177,
-0.10109979659318924,
0.011867868714034557,
-0.0067290193401277065,
0.0390184260904789,
-0.04783517122268677,
-0.10279981046915054,
0.055747464299201965,
-0.04341418668627739,
0.0009558613528497517,
-0.04970521107316017,
0.06469538062810898,
-0.05446227639913559,
-0.02094571478664875,
0.0590716116130352,
-0.10843934863805771,
-0.060109250247478485,
0.008112886920571327,
-0.06791470944881439,
0.0021749516017735004,
-0.010630193166434765,
0.10115892440080643,
-0.03924405947327614,
0.1254313886165619,
-0.08003530651330948,
0.012213370762765408,
-0.07359243929386139,
-0.02501332201063633,
-0.024508533999323845,
-0.0508987195789814,
0.040199581533670425,
-0.11139126121997833,
-0.2272607982158661,
0.005844860803335905,
0.038911592215299606,
0.013162256218492985,
0.0036058113910257816,
-0.015241761691868305,
-0.033682480454444885,
-0.04888548702001572,
-0.026746340095996857,
0.09300815314054489,
-0.054309386759996414,
0.005948047619313002,
0.011608870700001717,
0.0002830421435646713,
-0.07898756116628647,
0.012867560610175133,
-0.13859465718269348,
0.044532984495162964,
-0.06445928663015366,
0.01856587454676628,
-0.026574155315756798,
0.1009632796049118,
-0.0424964465200901,
-0.023796724155545235,
-0.05366944149136543,
0.03413473814725876,
-0.001441371045075357,
0.1871061623096466,
-0.09253828972578049,
-0.06912858039140701,
0.08760415762662888,
-0.17712745070457458,
-0.06909596920013428,
0.09347432851791382,
-0.024612516164779663,
0.12063407152891159,
0.060476887971162796,
0.1795366108417511,
0.09411027282476425,
-0.09321326017379761,
0.041910670697689056,
0.005527812521904707,
-0.030507324263453484,
0.030042240396142006,
0.16820482909679413,
0.04411125183105469,
-0.1571802943944931,
0.029038136824965477,
-0.14512255787849426,
-0.017774533480405807,
-0.07465419918298721,
-0.1062455102801323,
0.00821470282971859,
-0.07815711200237274,
0.07858384400606155,
0.004980707075446844,
0.09936168789863586,
-0.04082575812935829,
-0.01114246342331171,
0.008845663629472256,
0.10862454771995544,
-0.009333791211247444,
-0.021852293983101845,
-0.1903371512889862,
0.07786216586828232,
0.05984674021601677,
-0.0002538858389016241,
-0.09830757230520248,
0.09634469449520111,
0.000058108391385758296,
-0.010640984401106834,
0.07000589370727539,
-0.007950781844556332,
0.029647739604115486,
0.09294108301401138,
-0.05113762989640236,
0.015295648016035557,
0.004176301881670952,
0.03721048682928085,
0.0021238133776932955,
-0.15502634644508362,
0.002794030588120222,
-0.017189722508192062,
0.17091205716133118,
-0.13153807818889618,
0.02746310643851757,
-0.016293995082378387,
0.0743098333477974,
-0.025514692068099976,
0.02707206830382347,
0.024327091872692108,
0.04703773185610771,
-0.013882367871701717,
0.03488391637802124,
0.07638154178857803,
0.07208191603422165,
-0.16317684948444366,
0.1060442104935646,
-0.04922851175069809,
0.13460904359817505,
0.144711434841156,
-0.0850071832537651,
-0.00031807698542252183,
-0.08078928291797638,
-0.05469856783747673,
-0.01554187573492527,
-0.04520634189248085,
0.022512326017022133,
0.19371247291564941,
-0.06567496806383133,
0.1010587066411972,
-0.07541392743587494,
0.07818859070539474,
0.008840366266667843,
-0.07723204791545868,
0.008249044418334961,
0.12022673338651657,
0.042170606553554535,
-0.13282249867916107,
0.10499903559684753,
0.07614624500274658,
-0.0008864122210070491,
0.16625677049160004,
-0.00963547546416521,
-0.054122865200042725,
-0.04049472138285637,
0.04041167348623276,
-0.015207037329673767,
0.15681882202625275,
-0.2447512149810791,
-0.06758646667003632,
0.056838586926460266,
-0.031244900077581406,
0.08358515053987503,
-0.1325259953737259,
-0.06022012233734131,
-0.0009028275962918997,
-0.02423913963139057,
-0.09314117580652237,
-0.007220387924462557,
-0.11046212911605835,
0.06763630360364914,
-0.04661666229367256,
-0.09577063471078873,
0.047087181359529495,
-0.01277228258550167,
-0.13813912868499756,
0.11418638378381729,
-0.004900701344013214,
-0.2640853524208069,
-0.10193689167499542,
-0.10325689613819122,
-0.0949779823422432,
0.03684820607304573,
0.0004364771593827754,
-0.05596231296658516,
-0.04619564116001129,
-0.054028429090976715,
-0.03941737115383148,
-0.0016727905021980405,
0.010990388691425323,
0.048993922770023346,
0.0272787194699049,
-0.007553887087851763,
-0.03185833618044853,
-0.040337491780519485,
-0.06577711552381516,
-0.022140594199299812,
0.033248186111450195,
-0.09329203516244888,
0.10994026064872742,
0.07418602705001831,
0.026887373998761177,
0.037177689373493195,
-0.021431157365441322,
0.09608229994773865,
-0.09850148111581802,
-0.02450619637966156,
0.2473600059747696,
-0.036436520516872406,
0.008185170590877533,
0.10074275732040405,
0.031215978786349297,
-0.01060926727950573,
0.03081759810447693,
-0.03260054811835289,
-0.09961801767349243,
-0.1472129076719284,
-0.11179999262094498,
-0.10847430676221848,
0.0018633105792105198,
-0.03233015537261963,
0.021362420171499252,
0.08878734707832336,
0.08003010600805283,
-0.0062060062773525715,
-0.050178419798612595,
0.023218993097543716,
0.04069484770298004,
-0.0740426778793335,
-0.002544067334383726,
0.10204245895147324,
-0.022163590416312218,
-0.0637984648346901,
0.0557471327483654,
-0.07012540847063065,
0.24367976188659668,
0.1017724946141243,
0.06965859234333038,
0.0967201516032219,
0.14379321038722992,
0.12565511465072632,
0.08857393264770508,
-0.04800352454185486,
-0.041146233677864075,
-0.04824013635516167,
-0.0998094230890274,
-0.012593735940754414,
0.09704247117042542,
-0.012189311906695366,
0.05511043220758438,
-0.07719182968139648,
0.07660353928804398,
0.058852195739746094,
0.12997138500213623,
0.023581387475132942,
-0.1320088654756546,
-0.04605090245604515,
0.024162055924534798,
0.015122951939702034,
0.002892147982493043,
0.0987037792801857,
-0.026459457352757454,
-0.12819772958755493,
0.09421352297067642,
0.013237379491329193,
0.12119504064321518,
0.023729490116238594,
0.026979148387908936,
-0.15248680114746094,
0.007382657844573259,
-0.018734952434897423,
0.1287265121936798,
-0.32084718346595764,
0.2858292758464813,
-0.016432803124189377,
0.10215674340724945,
-0.12434766441583633,
-0.047014184296131134,
0.09289639443159103,
0.12785063683986664,
0.22238577902317047,
0.015428128652274609,
0.03226145729422569,
-0.06362177431583405,
-0.18032409250736237,
0.020317671820521355,
0.043145276606082916,
-0.027948200702667236,
0.0033998603466898203,
0.022124655544757843,
-0.024664975702762604,
0.017564797773957253,
0.010968105867505074,
-0.16078557074069977,
-0.04095864295959473,
0.08124492317438126,
-0.015297086909413338,
0.006098517216742039,
-0.06658840924501419,
-0.0735999122262001,
-0.06218517944216728,
0.15300597250461578,
0.050557661801576614,
-0.05878673866391182,
-0.08233095705509186,
-0.07358305901288986,
-0.009900011122226715,
-0.04961583390831947,
0.009720630943775177,
0.024772148579359055,
0.09058952331542969,
-0.02371150255203247,
-0.00266817188821733,
0.0473812110722065,
-0.1345982849597931,
-0.08159823715686798,
-0.03655039146542549,
0.16101421415805817,
0.08500679582357407,
0.11159760504961014,
0.06573957949876785,
-0.04556505009531975,
0.020005088299512863,
-0.14976128935813904,
-0.037970349192619324,
-0.08950714766979218,
0.09313683211803436,
0.03506838157773018,
-0.11122789978981018,
-0.065139539539814,
-0.12429648637771606,
-0.133843332529068,
0.11092904955148697,
0.137563094496727,
-0.024618184193968773,
0.07862693071365356,
0.24922390282154083,
0.005432248581200838,
-0.23370228707790375,
-0.08477632701396942,
-0.01943160966038704,
0.09117463231086731,
-0.045645419508218765,
-0.10892050713300705,
0.10712195187807083,
0.03787868842482567,
-0.04234028607606888,
-0.03317497298121452,
-0.21640369296073914,
-0.13497525453567505,
0.21250009536743164,
0.043205562978982925,
0.17752733826637268,
-0.16085626184940338,
-0.07584666460752487,
-0.05687897652387619,
-0.011421715840697289,
0.1146467924118042,
-0.18944412469863892,
0.09542840719223022,
0.05383062735199928,
-0.09747779369354248,
-0.012601607479155064,
-0.06641051918268204,
0.16462092101573944,
0.031574979424476624,
-0.013024567626416683,
-0.05019807070493698,
-0.1244034469127655,
0.12900832295417786,
0.04200625419616699,
0.11105959862470627,
0.0530238039791584,
0.047151852399110794,
-0.12183698266744614,
-0.06935606896877289,
0.007699824403971434,
0.06582465767860413,
-0.023661885410547256,
-0.09432031959295273,
-0.06124639883637428,
0.1449519693851471,
0.026238609105348587,
0.038340914994478226,
0.09036824852228165,
-0.08401282131671906,
-0.13177339732646942,
0.05716991797089577,
0.1441587209701538,
-0.1908152550458908,
0.017607828602194786,
-0.0564115047454834,
-0.04548177495598793,
0.08730372041463852,
-0.047759756445884705,
-0.0011221288004890084,
0.07291459292173386,
0.04638336971402168,
0.14927563071250916,
0.042091671377420425,
-0.05192076787352562,
0.04015186056494713,
0.06798453629016876,
-0.12652048468589783,
-0.09716576337814331,
-0.1105443686246872,
0.06545671820640564,
0.06069440022110939,
0.06357327848672867,
0.04424034431576729,
-0.1080232486128807,
0.031005602329969406,
0.013584040105342865,
-0.0028412523679435253,
-0.09633343666791916,
0.10016686469316483,
0.012720314785838127,
0.025843480601906776,
-0.10725501924753189,
0.024549098685383797,
0.03543863818049431,
0.09110008925199509,
-0.04865654930472374,
-0.02543051913380623,
-0.14526161551475525,
-0.034095462411642075,
-0.21829727292060852,
0.1801893413066864,
0.04895876720547676,
-0.16998602449893951,
-0.1073872298002243,
-0.16945455968379974,
0.016170481219887733,
-0.006928096525371075,
0.11242455244064331,
-0.06357397139072418,
-0.053167734295129776,
-0.05102526769042015,
-0.0378604531288147,
0.004758798982948065,
0.12666690349578857,
-0.03738398849964142,
-0.09491151571273804,
0.14536522328853607,
0.08889490365982056,
0.11780152469873428,
-0.09267311543226242,
-0.037999872118234634,
-0.10076964646577835,
0.05827056244015694,
0.008515271358191967,
0.0542168915271759,
-0.14914394915103912,
-0.02757089212536812,
-0.0401887521147728,
-0.11456049233675003,
-0.10402900725603104,
0.02351916953921318,
-0.056329794228076935,
0.03985001891851425,
0.011838380247354507,
0.030852768570184708,
0.033870525658130646,
-0.016991818323731422,
0.09690945595502853,
-0.06374166160821915,
-0.020961027592420578,
0.10657971352338791,
-0.02125467173755169,
0.0460934154689312,
-0.11164344102144241,
0.00036678212927654386,
0.02897491306066513,
0.05952206626534462,
0.004573699086904526,
-0.11671655625104904,
-0.03362340107560158,
0.09231874346733093,
-0.015689436346292496,
0.009890828281641006,
0.06917367875576019,
-0.08804270625114441,
-0.07906349003314972,
-0.05345625430345535,
-0.08700019121170044,
-0.010441848076879978,
0.0016360305016860366,
0.12488804757595062,
0.06757912784814835,
0.16419480741024017,
-0.00791406724601984,
0.0691395029425621,
-0.08579235523939133,
0.036546025425195694,
-0.04312686249613762,
-0.05736977234482765,
0.007120607886463404,
-0.10816943645477295,
0.021398646757006645,
-0.016850151121616364,
0.2698186933994293,
-0.04309707134962082,
-0.003264534519985318,
0.0075479065999388695,
0.07641832530498505,
0.10657277703285217,
0.005606978200376034,
0.27055078744888306,
0.10853403061628342,
0.07600732892751694,
0.03582846000790596,
0.06102573499083519,
-0.016261756420135498,
0.09176190197467804,
0.1335151046514511,
0.0934453010559082,
0.050897017121315,
0.11960551887750626,
0.006577524822205305,
0.013818740844726562,
-0.07807835936546326,
0.00958897452801466,
-0.05484119430184364,
-0.030915452167391777,
0.011934739537537098,
0.18035803735256195,
0.2583313286304474,
-0.10665934532880783,
0.11691120266914368,
0.07117924094200134,
-0.11295655369758606,
-0.07689059525728226,
-0.14056649804115295,
-0.06942064315080643,
-0.02939128875732422,
-0.01785825379192829,
-0.06188585236668587,
-0.05964631959795952,
0.10828040540218353,
0.048171885311603546,
-0.016326265409588814,
0.21216177940368652,
-0.17360544204711914,
-0.01573757641017437,
0.061794307082891464,
-0.0598737932741642,
0.00986937340348959,
-0.10480407625436783,
-0.11157563328742981,
-0.013580814003944397,
-0.010975277982652187,
-0.011090162210166454,
-0.04405473545193672,
-0.017988886684179306,
0.022195935249328613,
0.04022723808884621,
-0.03197423741221428,
-0.027332166209816933,
-0.08019192516803741,
0.12101313471794128,
0.06820710748434067,
0.011727443896234035,
0.001371817896142602,
0.01464283186942339,
0.09402169287204742,
0.012981549836695194,
-0.1638067066669464,
-0.12550242245197296,
0.06803229451179504,
0.03722595423460007,
-0.0024059710558503866,
0.0031711431220173836,
-0.041319794952869415,
0.04521940276026726,
0.3578716814517975,
0.2589733898639679,
-0.10698532313108444,
-0.003018763614818454,
-0.0030553312972187996,
0.012120130471885204,
0.00012412364594638348,
0.020250564441084862,
0.029160652309656143,
0.2705991268157959,
-0.03099066950380802,
-0.004361039958894253,
-0.15467537939548492,
-0.03234667703509331,
-0.10419491678476334,
0.1159716248512268,
0.13466639816761017,
-0.05048653855919838,
-0.06823612749576569,
0.11018244922161102,
-0.038446128368377686,
-0.10046020895242691,
-0.08069460093975067,
-0.07409801334142685,
-0.10330333560705185,
0.006581305060535669,
-0.08524549752473831,
0.10828416049480438,
0.05597399175167084,
-0.02372395619750023,
0.06344468891620636,
-0.08796117454767227,
0.0841967761516571,
-0.03672565519809723,
-0.05315797030925751,
0.12773606181144714,
0.055689867585897446,
0.2590901255607605,
-0.006351675372570753,
0.07961199432611465,
0.06174540892243385,
0.010101135820150375,
0.01711467280983925,
0.12439871579408646,
0.025630295276641846,
-0.08510390669107437,
0.06605758517980576,
0.01128944382071495,
-0.03253394365310669,
-0.03193078190088272,
0.011045346036553383,
-0.08824323117733002,
0.10807117074728012,
0.016449686139822006,
-0.07268591225147247,
-0.04862263798713684,
0.12347196787595749,
-0.14132782816886902,
0.10521170496940613,
0.12182722985744476,
-0.0500161238014698,
-0.021328432485461235,
-0.03752842918038368,
0.12063220888376236,
0.004274817183613777,
-0.08061070740222931,
-0.018908919766545296,
-0.1989026814699173,
-0.01840740628540516,
-0.043572574853897095,
-0.022328201681375504,
-0.153192400932312,
-0.07389554381370544,
-0.0859733521938324,
-0.038590021431446075,
-0.058059461414813995,
-0.06332196295261383,
0.07466409355401993,
0.01080741360783577,
-0.043153487145900726,
-0.19912631809711456,
0.02585792727768421,
0.047484029084444046,
-0.12011383473873138,
-0.1223004087805748
] |
null | null | transformers |
# Mengzi-BERT base model (Chinese)
Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
[Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model](https://arxiv.org/abs/2110.06696)
## Usage
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")
```
## Scores on nine chinese tasks (without any data augmentation)
| Model | AFQMC | TNEWS | IFLYTEK | CMNLI | WSC | CSL | CMRC2018 | C3 | CHID |
|-|-|-|-|-|-|-|-|-|-|
|RoBERTa-wwm-ext| 74.30 | 57.51 | 60.80 | 80.70 | 67.20 | 80.67 | 77.59 | 67.06 | 83.78 |
|Mengzi-BERT-base| 74.58 | 57.97 | 60.68 | 82.12 | 87.50 | 85.40 | 78.54 | 71.70 | 84.16 |
RoBERTa-wwm-ext scores are from CLUE baseline
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0", "widget": [{"text": "\u751f\u6d3b\u7684\u771f\u8c1b\u662f[MASK]\u3002"}]} | fill-mask | Langboat/mengzi-bert-base | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"doi:10.57967/hf/0023",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0023 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
| Mengzi-BERT base model (Chinese)
================================
Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model
Usage
-----
Scores on nine chinese tasks (without any data augmentation)
------------------------------------------------------------
RoBERTa-wwm-ext scores are from CLUE baseline
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0023 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
72
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #doi-10.57967/hf/0023 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
-0.08080699294805527,
0.0836467370390892,
-0.0034558882471174,
0.04849725216627121,
0.01298558246344328,
0.0077733187936246395,
0.1090773269534111,
0.12037882953882217,
0.02723093144595623,
0.00007093266322044656,
0.18969109654426575,
0.14130696654319763,
0.007837998680770397,
0.08856277912855148,
-0.020539455115795135,
-0.14567773044109344,
0.08938095718622208,
0.03975678235292435,
-0.08528450131416321,
0.07520585507154465,
0.09921170771121979,
-0.048698630183935165,
0.06879241019487381,
0.02534259669482708,
-0.032526325434446335,
0.032585710287094116,
0.0420338474214077,
-0.06756820529699326,
0.13614380359649658,
0.04321266710758209,
0.08603652566671371,
0.06834186613559723,
0.02346222661435604,
-0.08494863659143448,
0.024253586307168007,
0.011932154186069965,
-0.08708108216524124,
0.06732990592718124,
-0.021774882450699806,
0.006687241140753031,
0.032687958329916,
0.02142532542347908,
-0.052189916372299194,
0.038199469447135925,
-0.06797579675912857,
-0.2757200002670288,
-0.11652002483606339,
0.1264892816543579,
0.007093297783285379,
0.10572796314954758,
0.0490921251475811,
0.18640588223934174,
-0.0706821084022522,
0.03981691971421242,
0.24822290241718292,
-0.37867870926856995,
0.004861149471253157,
0.08465728908777237,
0.0492386519908905,
-0.05577157065272331,
-0.022895580157637596,
0.04083547368645668,
0.0759541392326355,
-0.0008753605652600527,
0.0522768497467041,
-0.03686061128973961,
-0.03256247565150261,
0.04956090450286865,
-0.07574921101331711,
-0.09224977344274521,
0.25335225462913513,
0.03760247677564621,
0.03175725042819977,
0.06135651841759682,
-0.0950126051902771,
-0.019657013937830925,
0.00829491950571537,
0.05289561673998833,
0.018081296235322952,
0.0751238614320755,
0.06146254763007164,
-0.02829151414334774,
-0.1645636111497879,
-0.015132736414670944,
-0.20423974096775055,
0.12122482806444168,
0.01668642647564411,
0.1026579737663269,
-0.10733959823846817,
0.059269070625305176,
-0.014672433026134968,
-0.16163286566734314,
0.014093257486820221,
-0.04238739237189293,
0.11506106704473495,
0.07310055941343307,
-0.0658588856458664,
0.020558374002575874,
0.11536279320716858,
0.25123295187950134,
0.057684991508722305,
0.01964409463107586,
0.018405534327030182,
0.10186722129583359,
-0.05205908790230751,
0.08352472633123398,
-0.04678848013281822,
-0.03532981127500534,
0.08715924620628357,
-0.03217947483062744,
0.10556259006261826,
-0.0461282916367054,
-0.15988954901695251,
-0.07407951354980469,
0.007023077458143234,
0.06369036436080933,
0.07380949705839157,
0.03236055001616478,
-0.02502584084868431,
0.057968441396951675,
0.1597469300031662,
-0.050379496067762375,
0.001971001038327813,
-0.02018619142472744,
0.00898117944598198,
-0.018505066633224487,
0.0875021442770958,
0.009913529269397259,
0.01125802006572485,
0.07047434896230698,
-0.08614780753850937,
-0.024965917691588402,
-0.02644106186926365,
-0.03697861358523369,
0.08844850212335587,
-0.06894184648990631,
0.03499654307961464,
-0.19402889907360077,
-0.10050744563341141,
0.05511990934610367,
0.07016272842884064,
-0.0007243878208100796,
-0.06655457615852356,
0.09644375741481781,
-0.03914665803313255,
0.07522418349981308,
-0.05499028041958809,
0.05099437013268471,
-0.07782519608736038,
0.0712694525718689,
-0.033053766936063766,
0.08306976407766342,
-0.18441462516784668,
0.025326812639832497,
-0.08217406272888184,
0.0417972058057785,
0.0009728450677357614,
-0.12406597286462784,
-0.10502363741397858,
0.11419617384672165,
-0.04212973639369011,
-0.02367665246129036,
-0.039740193635225296,
-0.0007085141260176897,
0.04749605059623718,
0.07817639410495758,
-0.09868844598531723,
-0.03411189839243889,
0.12743709981441498,
-0.0989975854754448,
-0.17450465261936188,
0.05390409380197525,
0.03095288947224617,
-0.02101113460958004,
-0.03180018067359924,
0.13665257394313812,
0.017670074477791786,
-0.16837508976459503,
-0.0034907986409962177,
0.1320144683122635,
-0.09396770596504211,
-0.16841848194599152,
0.08021529763936996,
-0.022925278171896935,
-0.07870753109455109,
0.0359235480427742,
-0.009561850689351559,
0.10724632441997528,
0.015990503132343292,
-0.10325910151004791,
-0.07479675114154816,
-0.0858740583062172,
0.06359988451004028,
-0.0016116382321342826,
0.06673935055732727,
-0.05589387193322182,
-0.041681915521621704,
-0.10076022148132324,
0.0863761380314827,
0.09556937217712402,
0.04979899525642395,
-0.06686244159936905,
0.11167403310537338,
-0.027357541024684906,
0.00936507061123848,
-0.09490761905908585,
0.03346376493573189,
-0.03134189918637276,
-0.04704444855451584,
0.007581423036754131,
0.12103021889925003,
0.07115212082862854,
-0.05691879615187645,
-0.009268888272345066,
-0.032177798449993134,
0.04701751843094826,
0.08815218508243561,
-0.01796327717602253,
-0.13656917214393616,
-0.0012785273138433695,
-0.03064868599176407,
0.04586490988731384,
0.004623320419341326,
0.011911191046237946,
0.0016764592146500945,
0.10330214351415634,
-0.07143454998731613,
0.09645221382379532,
-0.03200593963265419,
-0.033462852239608765,
-0.032867152243852615,
0.006896646227687597,
0.08021309226751328,
0.04499289020895958,
-0.04030942916870117,
0.1676633059978485,
-0.07503378391265869,
0.30696097016334534,
0.20262427628040314,
-0.1413763165473938,
0.04446575418114662,
0.09971153736114502,
-0.03630242124199867,
-0.038114216178655624,
0.060301605612039566,
-0.03004656918346882,
-0.07717495411634445,
-0.03576204553246498,
0.11991582065820694,
-0.0604424923658371,
0.007324493955820799,
0.016836438328027725,
-0.09354759752750397,
-0.042724307626485825,
0.042510583996772766,
0.13690185546875,
-0.15563960373401642,
0.186799556016922,
0.3859831690788269,
-0.07727932929992676,
0.08731722086668015,
-0.03811364620923996,
-0.006910944357514381,
-0.03208143636584282,
-0.06801372766494751,
-0.046190012246370316,
0.157024547457695,
-0.09504043310880661,
0.011387576349079609,
0.09850912541151047,
0.004764215555042028,
0.04038063809275627,
-0.1498834639787674,
-0.04773680120706558,
0.01461369264870882,
0.013074981980025768,
-0.07433948665857315,
0.11832747608423233,
-0.027315804734826088,
0.0932328924536705,
0.0021068535279482603,
-0.13434922695159912,
0.08261000365018845,
0.01733173429965973,
-0.034696102142333984,
0.10248985141515732,
-0.16691097617149353,
-0.22033317387104034,
-0.12677085399627686,
-0.11953940242528915,
-0.05626925081014633,
-0.0023987097665667534,
0.10848390311002731,
-0.033002737909555435,
-0.06181028485298157,
0.005408474709838629,
-0.11351946741342545,
-0.027289152145385742,
0.026791302487254143,
-0.000722083612345159,
0.014122627675533295,
0.05469505488872528,
-0.13222794234752655,
-0.06688179075717926,
0.008756745606660843,
-0.0013767017517238855,
0.06593666225671768,
-0.008701876737177372,
0.09422936290502548,
0.07111624628305435,
0.028514491394162178,
0.031170537695288658,
0.012019556947052479,
0.15808051824569702,
-0.03208592161536217,
0.046275850385427475,
0.23198409378528595,
0.016742443665862083,
0.09412127733230591,
0.17180487513542175,
0.0291577335447073,
-0.020469186827540398,
-0.01605379208922386,
-0.05143462494015694,
-0.084010548889637,
-0.1574389487504959,
-0.096405528485775,
-0.11397401988506317,
-0.005692515522241592,
0.05526089668273926,
0.09009633213281631,
0.16774694621562958,
0.06122797355055809,
-0.008681724779307842,
0.006004640832543373,
-0.10126342624425888,
0.04278966784477234,
0.1896393597126007,
-0.03948087617754936,
0.10541238635778427,
-0.10597394406795502,
-0.03106704168021679,
0.08330143988132477,
0.06546443700790405,
0.06914787739515305,
0.10153975337743759,
0.010907359421253204,
0.07024640589952469,
0.2708941102027893,
0.05446220189332962,
0.10885264724493027,
0.03273893520236015,
-0.07367144525051117,
-0.038018736988306046,
-0.03004763275384903,
-0.011016440577805042,
0.07963194698095322,
0.019031740725040436,
-0.07321979105472565,
0.007495588157325983,
-0.13955752551555634,
0.025848722085356712,
0.14677202701568604,
0.07327446341514587,
-0.13790473341941833,
0.011612229980528355,
0.041858971118927,
0.011949680745601654,
-0.030278801918029785,
0.0343591645359993,
-0.05543878674507141,
-0.07697533071041107,
0.07729196548461914,
0.023330289870500565,
0.07329431176185608,
0.12112380564212799,
0.06176110357046127,
-0.08050009608268738,
-0.07194167375564575,
0.03941671922802925,
0.11108285188674927,
-0.28142014145851135,
0.2444816678762436,
-0.004865385126322508,
-0.05980270728468895,
-0.09291835874319077,
-0.001036649802699685,
0.09680553525686264,
0.12850017845630646,
0.06811731308698654,
0.05933208391070366,
-0.08732575923204422,
-0.03791489824652672,
-0.0379059799015522,
0.03609509393572807,
-0.011659386567771435,
0.018382390961050987,
-0.045121386647224426,
-0.04952402412891388,
-0.03689983859658241,
0.030417844653129578,
0.2648327648639679,
-0.04919242858886719,
-0.09697776287794113,
0.0984634980559349,
0.12162551283836365,
-0.02907273732125759,
-0.07841028273105621,
-0.04319524019956589,
-0.14977066218852997,
0.11745049804449081,
-0.04361814633011818,
-0.03241584450006485,
-0.06887615472078323,
-0.10841281712055206,
0.08493776619434357,
-0.0872398242354393,
0.0671715959906578,
-0.07032293826341629,
-0.01317974179983139,
-0.09628751128911972,
-0.16107690334320068,
0.11238637566566467,
-0.12638559937477112,
-0.0612727589905262,
-0.047502707690000534,
0.10063677281141281,
-0.11655260622501373,
0.061679407954216,
-0.0009791160700842738,
0.018297404050827026,
-0.14699110388755798,
-0.08548316359519958,
0.03535519912838936,
-0.051450591534376144,
0.06929883360862732,
-0.07424530386924744,
-0.02101520448923111,
-0.05533058941364288,
0.049512118101119995,
-0.05941193178296089,
0.17660391330718994,
0.25433099269866943,
-0.10871510952711105,
0.14069652557373047,
0.18616920709609985,
-0.011174862273037434,
-0.3086157441139221,
-0.19756543636322021,
-0.1491016149520874,
-0.03496529161930084,
-0.016903050243854523,
-0.0781693086028099,
0.0662253350019455,
0.046460606157779694,
-0.12567266821861267,
0.12216264009475708,
-0.15904732048511505,
-0.09064748138189316,
0.2298433631658554,
-0.05290895327925682,
0.37785133719444275,
-0.10656248778104782,
-0.031532857567071915,
-0.06917200237512589,
-0.1946258246898651,
0.06809943914413452,
-0.07837093621492386,
0.06761554628610611,
-0.04376738891005516,
0.0075322301127016544,
-0.021730100736021996,
-0.07718496769666672,
0.1537817418575287,
-0.06146690621972084,
0.031114445999264717,
-0.1286127120256424,
-0.06429185718297958,
0.1276348978281021,
-0.04486530274152756,
0.05035509914159775,
-0.16894879937171936,
0.017536094412207603,
-0.0442146360874176,
0.03368587791919708,
-0.12922368943691254,
0.10245098918676376,
-0.010265914723277092,
-0.05417543277144432,
-0.06724836677312851,
-0.008079325780272484,
0.012279532849788666,
-0.019688382744789124,
0.20974385738372803,
0.04654486104846001,
0.040513452142477036,
0.16565100848674774,
-0.0477188341319561,
-0.22444167733192444,
-0.06018601730465889,
-0.049419891089200974,
-0.08127782493829727,
0.10512753576040268,
-0.15634694695472717,
0.04939460754394531,
0.06746211647987366,
-0.016050025820732117,
0.04627266898751259,
0.05386451631784439,
-0.04102219641208649,
-0.05200430750846863,
0.14564652740955353,
-0.16550053656101227,
0.0501900389790535,
-0.004015451297163963,
0.1391746550798416,
0.059442371129989624,
0.040077850222587585,
0.10621117055416107,
-0.01589784026145935,
-0.015331770293414593,
0.029315942898392677,
0.018186869099736214,
-0.10373537987470627,
0.05199402943253517,
0.09984634071588516,
0.050418153405189514,
-0.10028567165136337,
0.06576639413833618,
-0.013582332991063595,
-0.07424379140138626,
0.009215676225721836,
0.041470158845186234,
-0.10735339671373367,
-0.12963835895061493,
-0.033828411251306534,
0.014426132664084435,
-0.10876432061195374,
-0.11973226815462112,
-0.06068601831793785,
-0.08306674659252167,
0.03538971021771431,
0.133245587348938,
0.11119451373815536,
0.028191441670060158,
0.01864440180361271,
-0.06672777980566025,
0.045089274644851685,
-0.013982330448925495,
-0.0636785626411438,
0.042332351207733154,
-0.10812365263700485,
-0.033181726932525635,
0.013522246852517128,
0.14086809754371643,
-0.053574588149785995,
0.01923934929072857,
-0.09781994670629501,
0.006086499430239201,
-0.15739849209785461,
-0.038811277598142624,
-0.09007129818201065,
-0.052652377635240555,
0.02477211318910122,
-0.11314256489276886,
-0.050432585179805756,
0.03662297502160072,
-0.13098911941051483,
-0.0512191466987133,
0.01802285946905613,
0.036431144922971725,
-0.09387054294347763,
-0.053751543164253235,
0.1048114076256752,
-0.005810588598251343,
0.05598277226090431,
0.10215272754430771,
-0.015554475598037243,
0.07320196181535721,
-0.0524638295173645,
-0.12364798784255981,
0.04757770150899887,
0.05112997442483902,
0.045390598475933075,
-0.015178419649600983,
-0.029182080179452896,
0.06858091801404953,
-0.004972407128661871,
0.007468151394277811,
0.044763535261154175,
-0.09989901632070541,
0.005425367038697004,
-0.024056440219283104,
-0.10129033774137497,
0.003712530480697751,
-0.11377079784870148,
0.1287900060415268,
0.024521958082914352,
0.1372888684272766,
0.00044224216253496706,
-0.00576752470806241,
-0.06936287134885788,
0.04213833808898926,
-0.06507281213998795,
-0.13986964523792267,
-0.06935558468103409,
-0.059631459414958954,
-0.04595458507537842,
-0.03936273977160454,
0.1802467554807663,
-0.030317435041069984,
-0.1111178919672966,
0.041519731283187866,
0.1187075823545456,
-0.01334500964730978,
-0.018112752586603165,
0.1925758719444275,
0.02629692852497101,
0.00029007415287196636,
-0.057871706783771515,
0.04634091258049011,
0.009940842166543007,
-0.022030990570783615,
0.05738365650177002,
0.08106347918510437,
0.17082715034484863,
0.07870372384786606,
0.0513986200094223,
-0.07318498194217682,
-0.14012889564037323,
-0.13424551486968994,
-0.023187877610325813,
0.06601817905902863,
0.0027079684659838676,
0.07901555299758911,
0.18415845930576324,
-0.0072369747795164585,
0.0011971615022048354,
-0.056964486837387085,
0.026244336739182472,
-0.11886048316955566,
-0.1474682092666626,
-0.05102216452360153,
-0.1030527800321579,
-0.011061077006161213,
0.024320894852280617,
0.01313480082899332,
0.13487447798252106,
0.02318028174340725,
-0.028778493404388428,
0.02974052168428898,
-0.03999319672584534,
-0.04199458286166191,
-0.030708545818924904,
0.007715072948485613,
-0.042754270136356354,
-0.022328969091176987,
-0.018051261082291603,
-0.06689920276403427,
-0.05060966685414314,
-0.03472065180540085,
-0.002071984810754657,
-0.011411614716053009,
0.02446986734867096,
-0.03776068612933159,
-0.06963405758142471,
-0.07464266568422318,
0.005768309347331524,
0.040169764310121536,
0.15481504797935486,
-0.0015198055189102888,
0.09011310338973999,
0.043761443346738815,
0.1251204013824463,
-0.07605145126581192,
-0.1639944314956665,
-0.05396053567528725,
0.12722492218017578,
0.004877820611000061,
0.03553911671042442,
-0.020771170035004616,
0.02890312299132347,
-0.06129906699061394,
0.27542054653167725,
0.2797866463661194,
-0.05107288062572479,
0.07048235088586807,
0.017203209921717644,
0.013833549804985523,
-0.014019561000168324,
0.04354060813784599,
0.12882617115974426,
0.17725345492362976,
-0.09981393069028854,
-0.03051389567553997,
-0.0906737893819809,
-0.009831144474446774,
-0.1400577872991562,
0.05844738706946373,
-0.020340695977211,
-0.10179079324007034,
-0.02366696298122406,
0.007843024097383022,
-0.033899445086717606,
0.053853701800107956,
0.033914964646101,
-0.14096854627132416,
-0.050851207226514816,
0.04485444352030754,
0.1875295639038086,
0.02781844697892666,
0.04296309873461723,
-0.061654649674892426,
-0.0025178336072713137,
0.0641450583934784,
-0.015282885171473026,
-0.16063913702964783,
-0.07237662374973297,
0.11666812747716904,
-0.03879965841770172,
0.19314824044704437,
-0.020034676417708397,
0.051112521439790726,
0.12135478109121323,
0.09105181694030762,
-0.11069650202989578,
0.10152699053287506,
0.0361679270863533,
-0.13888892531394958,
-0.06661096960306168,
-0.12291667610406876,
-0.0007240379927679896,
-0.07595445960760117,
0.021656200289726257,
-0.09397728741168976,
0.031566984951496124,
0.07537534087896347,
-0.006897372659295797,
-0.00975739024579525,
0.05657085031270981,
-0.05631811544299126,
0.08652085810899734,
0.0003314716159366071,
-0.037710513919591904,
-0.09917504340410233,
-0.04863694682717323,
-0.016840608790516853,
0.04395085573196411,
-0.1670282632112503,
-0.1069784164428711,
0.00018040444410871714,
0.02234518714249134,
-0.0315902940928936,
0.0016240245895460248,
-0.02498803101480007,
-0.07354892045259476,
-0.06385240703821182,
-0.021773695945739746,
-0.0774325355887413,
-0.00840967707335949,
0.07183276861906052,
0.0024153036065399647,
0.011454776860773563,
-0.0688076838850975,
-0.004913605283945799,
0.019562428817152977,
-0.13459521532058716,
-0.10298993438482285
] |
null | null | transformers |
# Mengzi-oscar-base-caption (Chinese Multi-modal Image Caption model)
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
Mengzi-oscar-base-caption is fine-tuned based on Chinese multi-modal pre-training model [Mengzi-Oscar](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md), on AIC-ICC Chinese image caption dataset.
## Usage
#### Installation
Check [INSTALL.md](https://github.com/microsoft/Oscar/blob/master/INSTALL.md) for installation instructions.
#### Pretrain & fine-tune
See the [Mengzi-Oscar.md](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md) for details.
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0"} | fill-mask | Langboat/mengzi-oscar-base-caption | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Mengzi-oscar-base-caption (Chinese Multi-modal Image Caption model)
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
Mengzi-oscar-base-caption is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on AIC-ICC Chinese image caption dataset.
## Usage
#### Installation
Check URL for installation instructions.
#### Pretrain & fine-tune
See the URL for details.
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [
"# Mengzi-oscar-base-caption (Chinese Multi-modal Image Caption model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-caption is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on AIC-ICC Chinese image caption dataset.",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Mengzi-oscar-base-caption (Chinese Multi-modal Image Caption model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-caption is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on AIC-ICC Chinese image caption dataset.",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
55,
87,
3,
9,
35
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Mengzi-oscar-base-caption (Chinese Multi-modal Image Caption model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-caption is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on AIC-ICC Chinese image caption dataset.## Usage#### Installation\nCheck URL for installation instructions.#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
-0.11879456788301468,
0.012948877178132534,
0.0002294066216563806,
0.014993290416896343,
0.11702204495668411,
-0.007872193120419979,
0.17551469802856445,
0.02474355511367321,
0.02232803776860237,
-0.0461704321205616,
0.019779570400714874,
0.02056344598531723,
0.08778271079063416,
0.028658391907811165,
0.0642780289053917,
-0.24632565677165985,
0.0021351678296923637,
0.12543421983718872,
0.014652605168521404,
0.0981302484869957,
0.12301512807607651,
-0.1263168603181839,
0.10518664866685867,
0.13479149341583252,
-0.047362927347421646,
0.041814208030700684,
-0.056407250463962555,
-0.09808242321014404,
0.09943994879722595,
-0.016666153445839882,
0.08738506585359573,
0.04885844141244888,
0.07256720215082169,
-0.010856936685740948,
0.015590834431350231,
-0.037040360271930695,
-0.011199536733329296,
0.03989909216761589,
0.12792108952999115,
0.005886456463485956,
0.15928833186626434,
0.0597035177052021,
-0.02757900580763817,
0.052893511950969696,
0.024526767432689667,
-0.09446874260902405,
-0.060581717640161514,
0.12026482820510864,
0.12349267303943634,
0.11814691871404648,
0.012938211672008038,
0.11651884764432907,
-0.08352023363113403,
0.03371606022119522,
0.14814458787441254,
-0.32005774974823,
-0.028570683673024178,
0.06637823581695557,
0.06111377477645874,
-0.07669737935066223,
-0.03324148431420326,
0.04863172397017479,
0.06984532624483109,
-0.04734688997268677,
0.0024277507327497005,
-0.0637691542506218,
0.06885141879320145,
-0.06491806358098984,
-0.0823427066206932,
0.037769217044115067,
0.2198317050933838,
0.037547968327999115,
-0.08628059923648834,
-0.06814249604940414,
0.038786616176366806,
0.012394646182656288,
-0.06298332661390305,
0.03954976052045822,
0.023133084177970886,
-0.02762938104569912,
0.03758850321173668,
-0.06040250137448311,
-0.1098054051399231,
-0.10058078914880753,
-0.06986922025680542,
0.140059232711792,
0.023544371128082275,
0.026598183438181877,
-0.04542548209428787,
0.08853752166032791,
-0.016147729009389877,
-0.13910982012748718,
-0.02014908753335476,
-0.01804691180586815,
0.013496795669198036,
0.021749302744865417,
0.01072415616363287,
-0.02893209643661976,
-0.003613628912717104,
0.12717266380786896,
0.14306709170341492,
0.05526985973119736,
0.045301418751478195,
0.07843571901321411,
-0.016110999509692192,
0.13066373765468597,
-0.06261620670557022,
-0.09132973104715347,
0.0344231016933918,
-0.0368184931576252,
0.08251985907554626,
-0.04365150257945061,
-0.14728033542633057,
-0.04106936603784561,
-0.00981881283223629,
-0.014735403470695019,
0.016516849398612976,
0.015945982187986374,
-0.07952842861413956,
-0.06108274683356285,
0.1373625546693802,
-0.06521733850240707,
-0.005547940265387297,
-0.02300744131207466,
-0.0735844150185585,
0.027734508737921715,
0.07019620388746262,
0.08366082608699799,
-0.002273204503580928,
0.13818685710430145,
-0.08625134080648422,
0.04823495075106621,
-0.07265102118253708,
0.021265897899866104,
-0.008962832391262054,
-0.12902593612670898,
0.04984858259558678,
-0.14550074934959412,
-0.13755172491073608,
0.037870656698942184,
0.058281656354665756,
-0.011669625528156757,
-0.014223924838006496,
0.07534994184970856,
0.0385577417910099,
-0.03968869894742966,
-0.0007272333023138344,
0.101956307888031,
-0.03753285855054855,
0.022732796147465706,
0.08189935982227325,
0.022821711376309395,
-0.08871111273765564,
0.03208927810192108,
-0.111850805580616,
0.03924800455570221,
-0.10547852516174316,
0.003028366481885314,
-0.03901812434196472,
0.12099819630384445,
-0.02503560669720173,
-0.04746735468506813,
-0.036495573818683624,
-0.029938291758298874,
0.0037231510505080223,
0.1597737818956375,
-0.04085162281990051,
-0.053420208394527435,
0.00657433969900012,
-0.17033866047859192,
-0.12528648972511292,
0.05835285037755966,
0.010492890141904354,
0.03330753743648529,
-0.01920454017817974,
0.04976058378815651,
0.07805609703063965,
-0.1524537056684494,
-0.02337127923965454,
0.03282734751701355,
-0.03912353515625,
-0.09238459169864655,
0.1608155369758606,
0.08472761511802673,
-0.10717634856700897,
-0.0001592346525285393,
-0.09820017963647842,
0.008800948038697243,
-0.05211999639868736,
-0.08928519487380981,
-0.02104341611266136,
-0.08211029320955276,
0.01247315388172865,
0.03626730665564537,
0.08456729352474213,
-0.003464826848357916,
-0.03118564933538437,
-0.0245794877409935,
0.10348725318908691,
0.01918277144432068,
-0.013991479761898518,
-0.14700911939144135,
0.12208470702171326,
-0.011453848332166672,
-0.06650442630052567,
-0.09900224953889847,
0.09634586423635483,
0.04732174053788185,
0.014542713761329651,
0.026737334206700325,
-0.07015170902013779,
0.015563169494271278,
0.07316336035728455,
-0.045208901166915894,
0.002678120508790016,
-0.006127353757619858,
0.028035761788487434,
0.014283600263297558,
-0.14055779576301575,
-0.037814557552337646,
0.0016748453490436077,
0.25945737957954407,
-0.1061023473739624,
0.0059615736827254295,
0.03189152851700783,
0.16279000043869019,
-0.04259518161416054,
0.02135435864329338,
0.010999028570950031,
0.00018773719784803689,
-0.06152798980474472,
-0.003106959629803896,
0.04683486744761467,
0.08158567547798157,
-0.15534842014312744,
0.12038055807352066,
-0.00045567104825749993,
0.0373164601624012,
0.1526782512664795,
-0.17180366814136505,
-0.026780257001519203,
-0.06964538246393204,
-0.02327689528465271,
-0.04747781902551651,
-0.035543326288461685,
0.017727471888065338,
0.17988987267017365,
-0.06645452976226807,
0.1375054270029068,
-0.05168167129158974,
0.03609180822968483,
0.008404769003391266,
-0.05042640492320061,
-0.04176497086882591,
0.0367337167263031,
0.17920826375484467,
-0.11498787254095078,
0.06394204497337341,
0.09512267261743546,
-0.11073590070009232,
0.1066865399479866,
0.01294058095663786,
-0.07367420196533203,
0.00016658833192195743,
-0.0387694276869297,
0.006193318869918585,
0.22391635179519653,
-0.20923110842704773,
-0.05155760422348976,
0.05473799630999565,
-0.09057743102312088,
0.07404790818691254,
-0.14431250095367432,
0.0032387732062488794,
0.04174906760454178,
0.01320513617247343,
-0.030303049832582474,
-0.03557427600026131,
-0.08036840707063675,
0.041384901851415634,
-0.033033885061740875,
-0.02979479543864727,
0.034323785454034805,
0.013942385092377663,
-0.11870470643043518,
0.11204606294631958,
0.01614328846335411,
-0.2314186841249466,
-0.14350764453411102,
-0.0974215492606163,
-0.017024647444486618,
0.03125451132655144,
0.004120682366192341,
-0.0339142382144928,
-0.06105879694223404,
-0.020431270822882652,
-0.12146004289388657,
-0.05333159118890762,
0.00035888003185391426,
0.011721162125468254,
0.043033353984355927,
0.025076521560549736,
-0.029256019741296768,
0.004165237303823233,
-0.022858740761876106,
-0.04301169887185097,
0.058810532093048096,
-0.05491991713643074,
0.11557585746049881,
0.053523968905210495,
-0.01878221519291401,
0.022412797436118126,
0.011283911764621735,
0.02445962280035019,
-0.12699317932128906,
0.01687147282063961,
0.27398186922073364,
0.026472071185708046,
0.01099406648427248,
0.09390532225370407,
0.026278026401996613,
0.015601173043251038,
0.00016027850506361574,
-0.03780480846762657,
-0.08803392946720123,
-0.1438557654619217,
-0.08410964906215668,
-0.08543890714645386,
-0.052017949521541595,
0.040842484682798386,
0.03830305486917496,
0.09662199765443802,
0.16118566691875458,
-0.009594705887138844,
0.014910101890563965,
-0.052267566323280334,
0.07686325907707214,
-0.024858802556991577,
0.0493856705725193,
0.1240551546216011,
-0.07238094508647919,
-0.02257675491273403,
0.08508414775133133,
-0.009100520983338356,
0.18816375732421875,
0.010423796251416206,
0.019993679597973824,
0.06645088642835617,
0.18104295432567596,
0.13252048194408417,
0.0476229302585125,
0.010466372594237328,
-0.04736287146806717,
-0.0029615480452775955,
-0.06584610044956207,
-0.027533594518899918,
0.086970753967762,
0.02790532074868679,
-0.011217870749533176,
-0.028577668592333794,
0.02286303974688053,
0.005852814298123121,
0.15417002141475677,
0.014057761989533901,
-0.20717304944992065,
-0.03254510462284088,
-0.004709276836365461,
0.02892375737428665,
-0.019741952419281006,
0.013376269489526749,
-0.007669341750442982,
-0.14418910443782806,
0.17792560160160065,
-0.018479812890291214,
0.12252533435821533,
-0.06695226579904556,
-0.023579079657793045,
0.0006582463392987847,
-0.0001096298365155235,
0.024537401273846626,
0.0840023085474968,
-0.25769829750061035,
0.14702168107032776,
0.006544538773596287,
0.01070026308298111,
-0.13296860456466675,
0.013438455760478973,
0.08870343118906021,
0.14778029918670654,
0.1375264674425125,
-0.003874862566590309,
0.050790391862392426,
-0.0773068368434906,
-0.14139291644096375,
0.0160097386687994,
0.021488066762685776,
-0.049195583909749985,
-0.010194110684096813,
0.011281030252575874,
-0.05082122981548309,
-0.04731281101703644,
0.02735031768679619,
-0.19997040927410126,
-0.10778464376926422,
0.07093116641044617,
0.0074671972543001175,
-0.043754905462265015,
-0.08567517250776291,
-0.09593464434146881,
-0.029075169935822487,
0.16035068035125732,
-0.03696431219577789,
-0.04482826590538025,
-0.091620072722435,
-0.030349893495440483,
0.035202573984861374,
-0.01481994055211544,
0.10676143318414688,
-0.02315647527575493,
0.09691832959651947,
-0.03539153188467026,
-0.031214570626616478,
0.03223744407296181,
-0.16928982734680176,
-0.031415119767189026,
-0.052955660969018936,
0.11540952324867249,
0.03103823773562908,
0.10059778392314911,
0.03446146473288536,
-0.036734141409397125,
-0.029040472581982613,
-0.10433673113584518,
-0.0527261421084404,
-0.06500844657421112,
0.09688346832990646,
0.045853231102228165,
-0.08232787251472473,
-0.1029280424118042,
-0.08353777229785919,
-0.12154027819633484,
0.060297612100839615,
0.07834751904010773,
-0.07886442542076111,
0.025077180936932564,
0.10964760184288025,
0.03083714470267296,
-0.2290397584438324,
-0.06049986928701401,
0.05302843451499939,
0.04886173829436302,
-0.001974020153284073,
-0.13972240686416626,
0.14849062263965607,
0.02284553088247776,
-0.07481180876493454,
0.06477699428796768,
-0.14273104071617126,
-0.11078956723213196,
0.1425224244594574,
0.06945524364709854,
0.06815704703330994,
-0.10453324764966965,
-0.08133015036582947,
-0.03279455751180649,
-0.15258704125881195,
0.05676048994064331,
-0.05095483735203743,
0.078714519739151,
0.0018642190843820572,
-0.11523865908384323,
-0.025001592934131622,
-0.07226099073886871,
0.16187363862991333,
-0.015810886397957802,
-0.019777726382017136,
-0.056451648473739624,
-0.031578660011291504,
0.06144776940345764,
0.032721683382987976,
0.06897275149822235,
0.014217677526175976,
0.039453405886888504,
-0.08685509115457535,
-0.039607152342796326,
0.03691086918115616,
0.10577905923128128,
-0.022196197882294655,
-0.05162985250353813,
-0.08868762105703354,
0.08765801042318344,
-0.07058097422122955,
0.023694254457950592,
0.09048711508512497,
-0.024546975269913673,
-0.13146629929542542,
0.09873253852128983,
0.14103460311889648,
-0.13543537259101868,
-0.03413890674710274,
-0.1229984313249588,
-0.03699728474020958,
0.11506227403879166,
-0.044750045984983444,
0.005865171551704407,
0.07977065443992615,
0.03152581304311752,
0.08516357094049454,
0.010167824104428291,
-0.05164288356900215,
0.03501923382282257,
0.13724453747272491,
-0.08414821326732635,
0.02532796934247017,
-0.125502809882164,
0.11795767396688461,
0.07354248315095901,
0.026050643995404243,
-0.004937830846756697,
-0.10565219074487686,
-0.01836015097796917,
0.028960922732949257,
-0.06844352930784225,
-0.07080055773258209,
0.0799604207277298,
0.026084160432219505,
0.03722558915615082,
-0.0821327492594719,
0.08788824826478958,
0.049219872802495956,
0.04120764136314392,
-0.07639570534229279,
0.012230133637785912,
-0.11165352165699005,
-0.03611621633172035,
-0.1789911389350891,
0.0935540571808815,
-0.06815048307180405,
-0.17339938879013062,
-0.11734616756439209,
-0.1031527891755104,
-0.003970937337726355,
-0.07405317574739456,
0.10527106374502182,
-0.04995027929544449,
-0.00824372936040163,
-0.04924537613987923,
-0.04533600062131882,
0.015096652321517467,
0.07954415678977966,
0.05240614339709282,
-0.17862387001514435,
0.014245055615901947,
0.12056399136781693,
0.12708261609077454,
-0.08302418887615204,
-0.015560354106128216,
0.004423267673701048,
0.021338898688554764,
-0.013270653784275055,
0.0626043900847435,
-0.1479169875383377,
-0.028902823105454445,
-0.028614168986678123,
-0.09388294070959091,
-0.08812931180000305,
0.046257127076387405,
-0.0468783937394619,
-0.00019183781114406884,
-0.006490938365459442,
0.03317331150174141,
0.035531122237443924,
0.0017919460078701377,
0.11035556346178055,
-0.07866552472114563,
0.033673714846372604,
0.09130234271287918,
0.0007208398310467601,
-0.02740451879799366,
-0.07508490234613419,
-0.0507848858833313,
0.01586003229022026,
0.09157195687294006,
-0.014833180233836174,
-0.06490233540534973,
0.008233455941081047,
0.07335175573825836,
-0.01604606769979,
-0.02994515933096409,
0.08182936906814575,
-0.11499898135662079,
-0.11278463155031204,
-0.07953955233097076,
-0.07593075931072235,
-0.03200695291161537,
0.05196176469326019,
0.13204550743103027,
0.0275393296033144,
0.10917875170707703,
-0.050087034702301025,
0.07244375348091125,
-0.08672843873500824,
0.04391626641154289,
-0.062168557196855545,
-0.05006207153201103,
-0.059927720576524734,
-0.09664188325405121,
0.006555274594575167,
-0.002130427397787571,
0.24501697719097137,
-0.03539634868502617,
-0.015453338623046875,
0.01326051913201809,
0.18348045647144318,
0.15607422590255737,
-0.029031943529844284,
0.2610980272293091,
0.09262358397245407,
0.08616238087415695,
0.055040109902620316,
0.08449981361627579,
0.023733660578727722,
0.12483212351799011,
0.07530340552330017,
0.11873770505189896,
-0.011216805316507816,
0.08226087689399719,
0.024559490382671356,
-0.0023083167616277933,
-0.1002839058637619,
0.03378559276461601,
-0.06793541461229324,
0.011244839057326317,
-0.021646324545145035,
0.07681004703044891,
0.21726572513580322,
-0.09411728382110596,
0.040728338062763214,
0.10996995866298676,
-0.04136858135461807,
-0.05757632106542587,
-0.11438929289579391,
-0.07283272594213486,
-0.08772772550582886,
0.02356782928109169,
0.015265053138136864,
-0.05112411081790924,
0.12131399661302567,
0.045217327773571014,
-0.04742711782455444,
0.23033012449741364,
-0.15053927898406982,
-0.03220592811703682,
0.05268825590610504,
0.008707474917173386,
-0.002479094546288252,
-0.055402688682079315,
-0.062277283519506454,
-0.026538826525211334,
0.015333770774304867,
0.010265651158988476,
-0.03623727336525917,
-0.007533298339694738,
0.08662168681621552,
0.1148194670677185,
-0.06383838504552841,
-0.023038379848003387,
-0.08285990357398987,
0.09017080068588257,
0.07177571207284927,
-0.048954881727695465,
0.08655073493719101,
-0.016613803803920746,
0.14519794285297394,
-0.016719095408916473,
-0.07240083813667297,
-0.08426134288311005,
0.042378976941108704,
-0.031716156750917435,
-0.06207598000764847,
0.024380967020988464,
-0.06585188210010529,
0.010244677774608135,
0.3060290515422821,
0.1692972481250763,
-0.05224749818444252,
-0.006047943606972694,
0.02595958113670349,
-0.009910947643220425,
0.01738092303276062,
0.0036052600480616093,
0.006352073047310114,
0.20282916724681854,
-0.044467389583587646,
-0.07871437072753906,
-0.15781699120998383,
-0.03054227866232395,
-0.08340661227703094,
0.09343364834785461,
0.09620210528373718,
-0.06251012533903122,
-0.06889325380325317,
0.07678700983524323,
-0.0025448815431445837,
-0.0365186482667923,
0.06103500723838806,
-0.0635906234383583,
-0.10965390503406525,
0.0062247770838439465,
0.03965349495410919,
0.09850745648145676,
0.005178491584956646,
-0.02548184059560299,
0.05077294632792473,
-0.05933024734258652,
0.057546813040971756,
-0.09339330345392227,
-0.05166248977184296,
0.11527661979198456,
-0.010441330261528492,
0.29319146275520325,
-0.048044588416814804,
0.08778925240039825,
0.07319549471139908,
0.058894723653793335,
-0.05232492834329605,
0.06392490863800049,
-0.00318201445043087,
-0.1296258270740509,
0.06544119864702225,
0.050008147954940796,
-0.017501600086688995,
-0.022429311648011208,
-0.023560939356684685,
-0.05131606012582779,
0.093350350856781,
-0.06277627497911453,
-0.015197846107184887,
-0.08982452750205994,
0.10410679131746292,
-0.11119598895311356,
0.1348848193883896,
0.06824420392513275,
-0.0683593824505806,
-0.07408525794744492,
-0.05325844883918762,
0.057093724608421326,
0.057907506823539734,
-0.031193623319268227,
-0.002909149508923292,
-0.15715394914150238,
-0.014016876928508282,
-0.1444750875234604,
-0.022466639056801796,
-0.08902236074209213,
-0.04287639260292053,
-0.05644197389483452,
-0.08308194577693939,
-0.08475221693515778,
-0.05376041680574417,
0.0647314116358757,
0.033511124551296234,
-0.040298499166965485,
-0.17051617801189423,
-0.011868041940033436,
0.0033676892053335905,
-0.15293335914611816,
-0.08864977210760117
] |
null | null | transformers | # Mengzi-oscar-base-retrieval (Chinese Image-text retrieval model)
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
Mengzi-oscar-base-retrieval is fine-tuned based on Chinese multi-modal pre-training model [Mengzi-Oscar](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md), on COCO-ir dataset.
## Usage
#### Installation
Check [INSTALL.md](https://github.com/microsoft/Oscar/blob/master/INSTALL.md) for installation instructions.
#### Pretrain & fine-tune
See the [Mengzi-Oscar.md](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md) for details.
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0"} | fill-mask | Langboat/mengzi-oscar-base-retrieval | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| # Mengzi-oscar-base-retrieval (Chinese Image-text retrieval model)
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
Mengzi-oscar-base-retrieval is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on COCO-ir dataset.
## Usage
#### Installation
Check URL for installation instructions.
#### Pretrain & fine-tune
See the URL for details.
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [
"# Mengzi-oscar-base-retrieval (Chinese Image-text retrieval model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-retrieval is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on COCO-ir dataset.",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Mengzi-oscar-base-retrieval (Chinese Image-text retrieval model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-retrieval is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on COCO-ir dataset.",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
55,
84,
3,
9,
35
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Mengzi-oscar-base-retrieval (Chinese Image-text retrieval model)\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese\n\nMengzi-oscar-base-retrieval is fine-tuned based on Chinese multi-modal pre-training model Mengzi-Oscar, on COCO-ir dataset.## Usage#### Installation\nCheck URL for installation instructions.#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
-0.10500948131084442,
0.04573431983590126,
0.0012912593083456159,
0.020850615575909615,
0.11630270630121231,
-0.031962618231773376,
0.1416032314300537,
0.05310845375061035,
0.01016328763216734,
-0.05274263396859169,
0.025768138468265533,
0.01819516532123089,
0.06871572881937027,
0.04728167504072189,
0.026223842054605484,
-0.2056545466184616,
0.008809768594801426,
0.11508139967918396,
0.03905218094587326,
0.1048974022269249,
0.11769668012857437,
-0.125966414809227,
0.11417954415082932,
0.10622595995664597,
-0.052223898470401764,
0.012907689437270164,
-0.05244296416640282,
-0.08745580911636353,
0.09006855636835098,
-0.0075867390260100365,
0.08234982192516327,
0.048437561839818954,
0.08227615058422089,
-0.01863507553935051,
0.01696608029305935,
-0.03977104648947716,
-0.004743510391563177,
0.030437735840678215,
0.1108635887503624,
0.00835216511040926,
0.095961794257164,
0.07277265191078186,
-0.038254108279943466,
0.04938344657421112,
0.022893641144037247,
-0.04605986922979355,
-0.09110609441995621,
0.07684771716594696,
0.1119469478726387,
0.16607318818569183,
0.0019326622132211924,
0.14271387457847595,
-0.08398578315973282,
0.025495920330286026,
0.17730502784252167,
-0.30594006180763245,
-0.02097322791814804,
0.057270780205726624,
0.09879268705844879,
-0.07877055555582047,
-0.0044441502541303635,
0.05972522124648094,
0.07959821075201035,
-0.059580739587545395,
-0.0023070916067808867,
-0.07716775685548782,
0.04671233147382736,
-0.08150073140859604,
-0.0774785652756691,
0.023345457389950752,
0.2212834358215332,
0.03748617693781853,
-0.08382789045572281,
-0.05624675378203392,
0.04413054138422012,
-0.007448579650372267,
-0.0583508275449276,
0.041292618960142136,
0.02079222910106182,
-0.024648165330290794,
0.008351064287126064,
-0.05986776575446129,
-0.11555813252925873,
-0.09133406728506088,
-0.08093856275081635,
0.105265773832798,
0.020146837458014488,
0.005929695907980204,
-0.037583306431770325,
0.08250493556261063,
-0.004136166535317898,
-0.13253334164619446,
-0.024563482031226158,
-0.010920971632003784,
0.0074423206970095634,
0.006637103855609894,
-0.0032649387139827013,
-0.009385687299072742,
0.01999184861779213,
0.1535714864730835,
0.1500960886478424,
0.017235031351447105,
0.021798718720674515,
0.089603491127491,
-0.025174347683787346,
0.1370304822921753,
-0.07936909794807434,
-0.11109516024589539,
0.04389588162302971,
-0.05670097470283508,
0.06486280262470245,
-0.05269120633602142,
-0.1447438895702362,
-0.02637651190161705,
0.01986577920615673,
0.004742366727441549,
0.05721372365951538,
0.031462252140045166,
-0.07295866310596466,
-0.054029449820518494,
0.09678112715482712,
-0.06413812935352325,
-0.013463493436574936,
-0.020564071834087372,
-0.07959099113941193,
-0.001757086138240993,
0.05159575119614601,
0.08220335841178894,
-0.01468753069639206,
0.11148218810558319,
-0.08235521614551544,
0.03675414249300957,
-0.05774097517132759,
-0.004534289240837097,
0.004330561030656099,
-0.16910657286643982,
0.06519578397274017,
-0.17769868671894073,
-0.1638321727514267,
0.00413874164223671,
0.03825678676366806,
-0.01051480881869793,
-0.018816955387592316,
0.049112170934677124,
0.023470748215913773,
-0.05647321417927742,
-0.028194747865200043,
0.10691381990909576,
-0.058127511292696,
0.033379726111888885,
0.03079359233379364,
0.0039841653779149055,
-0.09314269572496414,
0.040861185640096664,
-0.11299911886453629,
0.020107146352529526,
-0.07137411832809448,
0.007197242230176926,
-0.05012068897485733,
0.1524854302406311,
-0.049254920333623886,
-0.03881917893886566,
0.0028668963350355625,
-0.0333998017013073,
-0.017812084406614304,
0.13878647983074188,
-0.04023808240890503,
-0.03644684702157974,
-0.012184776365756989,
-0.16313615441322327,
-0.10329374670982361,
0.06959830224514008,
0.0009718834771774709,
0.05948631837964058,
-0.014244087971746922,
0.09551098942756653,
0.11639770120382309,
-0.1530616581439972,
-0.02022145874798298,
0.026358334347605705,
-0.05405425652861595,
-0.08337368816137314,
0.1503841131925583,
0.0878085196018219,
-0.10572205483913422,
0.0011744374642148614,
-0.13899728655815125,
0.022917255759239197,
-0.05403462424874306,
-0.09374713152647018,
-0.01997869461774826,
-0.09346231073141098,
-0.0011064558057114482,
0.011044112965464592,
0.12076110392808914,
0.002779773436486721,
-0.021671125665307045,
-0.052074775099754333,
0.10388661921024323,
-0.002707617823034525,
0.002346507739275694,
-0.14375992119312286,
0.14597199857234955,
0.04235309734940529,
-0.05659214407205582,
-0.10720226168632507,
0.11127298325300217,
0.06653199344873428,
0.01764262095093727,
0.019027797505259514,
-0.053225401788949966,
-0.007650971878319979,
0.054413262754678726,
-0.033688124269247055,
0.015525697730481625,
0.01201190147548914,
0.03584872558712959,
0.011712517589330673,
-0.10247142612934113,
-0.011695345863699913,
-0.0024865278974175453,
0.2580043077468872,
-0.07476319372653961,
-0.007248502224683762,
0.010863464325666428,
0.15277628600597382,
-0.04483351111412048,
0.028534220531582832,
-0.003815943142399192,
0.022646039724349976,
-0.05714136362075806,
-0.002163288416340947,
0.06022622436285019,
0.09312445670366287,
-0.1500956118106842,
0.14252109825611115,
-0.015811972320079803,
0.04157320782542229,
0.16704408824443817,
-0.14436213672161102,
-0.03488326072692871,
-0.0524112842977047,
-0.019616734236478806,
-0.04609154537320137,
-0.03846943750977516,
0.01924123615026474,
0.20933972299098969,
-0.06834308803081512,
0.13999995589256287,
-0.054049085825681686,
0.030721453949809074,
-0.0022725414019078016,
-0.04247157648205757,
-0.012238538824021816,
0.04994186758995056,
0.12972185015678406,
-0.13252492249011993,
0.07586503773927689,
0.050807684659957886,
-0.11263130605220795,
0.08212630450725555,
-0.00578532787039876,
-0.07195932418107986,
0.022196998819708824,
-0.033672768622636795,
0.014474102295935154,
0.17015163600444794,
-0.12492981553077698,
-0.0363120399415493,
0.06127835437655449,
-0.10305237025022507,
0.06395719945430756,
-0.13883283734321594,
-0.009694429114460945,
0.026741817593574524,
0.010170623660087585,
-0.02067376859486103,
-0.039991557598114014,
-0.07410524785518646,
0.03532357141375542,
-0.017854677513241768,
-0.058223724365234375,
0.025224026292562485,
0.0012739700032398105,
-0.11668933928012848,
0.12282013148069382,
-0.011268970556557178,
-0.2615969181060791,
-0.13901352882385254,
-0.07254040986299515,
0.013605492189526558,
0.037906959652900696,
0.03093620203435421,
-0.012164376676082611,
-0.05599759519100189,
-0.03745213523507118,
-0.13006220757961273,
-0.04186059162020683,
-0.0046211485750973225,
0.006293144542723894,
0.05603951960802078,
-0.0019490650156512856,
-0.02887224592268467,
-0.002035480923950672,
-0.020914757624268532,
-0.052508533000946045,
0.07255419343709946,
-0.0917980745434761,
0.12150085717439651,
0.042804598808288574,
-0.006407455541193485,
0.008017786778509617,
-0.01753501407802105,
-0.0042425040155649185,
-0.1316329538822174,
-0.016968192532658577,
0.26009249687194824,
0.008899879641830921,
-0.01080301683396101,
0.10422765463590622,
0.00369715946726501,
0.02140219509601593,
0.012894419021904469,
-0.05039818584918976,
-0.07578207552433014,
-0.15675640106201172,
-0.10935122519731522,
-0.06547307223081589,
-0.01118882279843092,
0.06552319973707199,
0.045425087213516235,
0.10527093708515167,
0.14908486604690552,
-0.008760699070990086,
-0.023297054693102837,
-0.01461992971599102,
0.0682385116815567,
-0.005870135501027107,
0.03711595758795738,
0.13134630024433136,
-0.05787995830178261,
-0.01601158082485199,
0.0842052698135376,
-0.006455139257013798,
0.23819997906684875,
0.032210823148489,
0.03798744082450867,
0.05431387573480606,
0.15656815469264984,
0.13476239144802094,
0.0425625741481781,
0.05467124655842781,
-0.02648169919848442,
-0.014907165430486202,
-0.04977891221642494,
-0.010363451205193996,
0.08921288698911667,
0.03759553283452988,
-0.034037359058856964,
-0.037217773497104645,
0.006428318563848734,
0.005240215454250574,
0.18056143820285797,
0.013923156075179577,
-0.21131743490695953,
-0.03940805047750473,
-0.013536079786717892,
0.01012240070849657,
0.013096352107822895,
0.028908738866448402,
-0.031421348452568054,
-0.1660296618938446,
0.13087496161460876,
-0.004489601589739323,
0.13765740394592285,
-0.08521493524312973,
-0.028577083721756935,
-0.00839173886924982,
-0.05319596454501152,
0.0370170883834362,
0.07227662205696106,
-0.2676050364971161,
0.18293417990207672,
-0.00046780408592894673,
0.027529696002602577,
-0.10597876459360123,
-0.0031890803948044777,
0.08061393350362778,
0.1321181058883667,
0.16850239038467407,
-0.007187278009951115,
0.06909234821796417,
-0.08143780380487442,
-0.18072667717933655,
0.029199834913015366,
0.0021019717678427696,
-0.05163024365901947,
-0.009647983126342297,
-0.006407660432159901,
-0.04346981272101402,
-0.04740983620285988,
0.005169312935322523,
-0.17448139190673828,
-0.09018296748399734,
0.05961814522743225,
-0.0026165072340518236,
0.0038377302698791027,
-0.08556922525167465,
-0.10402964800596237,
-0.058282703161239624,
0.1722540706396103,
-0.0376744382083416,
-0.030547555536031723,
-0.08930914103984833,
-0.017641739919781685,
0.029799891635775566,
-0.012348303571343422,
0.11771240085363388,
-0.010852765291929245,
0.06661264598369598,
-0.04743311554193497,
-0.04469085484743118,
0.018985651433467865,
-0.15123237669467926,
-0.045293841511011124,
-0.04245781525969505,
0.0920378565788269,
0.04787864908576012,
0.11755916476249695,
0.05898943170905113,
-0.027030931785702705,
-0.040723081678152084,
-0.09847047924995422,
-0.08550368249416351,
-0.01867174729704857,
0.1345798373222351,
0.04185311868786812,
-0.08381429314613342,
-0.10104717314243317,
-0.1173759177327156,
-0.12643152475357056,
0.0968523845076561,
0.08925942331552505,
-0.09567835927009583,
0.019077543169260025,
0.10534078627824783,
0.02048805169761181,
-0.27882498502731323,
-0.06772945821285248,
0.07045049965381622,
0.035656947642564774,
-0.04159753397107124,
-0.11717399209737778,
0.13652122020721436,
0.03897452354431152,
-0.0787261426448822,
0.022808384150266647,
-0.1456916481256485,
-0.12265821546316147,
0.1814788281917572,
0.04356803372502327,
0.11322986334562302,
-0.09710076451301575,
-0.07694319635629654,
-0.03217008337378502,
-0.1496639847755432,
0.09099264442920685,
-0.07008635252714157,
0.094145767390728,
0.01703309826552868,
-0.11159656196832657,
-0.03617356717586517,
-0.05826140567660332,
0.14798805117607117,
-0.006840102840214968,
-0.015369613654911518,
-0.04222972318530083,
-0.023758867755532265,
0.02473035454750061,
0.02440165914595127,
0.0663745105266571,
0.03267070651054382,
0.05724716559052467,
-0.062349364161491394,
-0.04699525237083435,
0.039329275488853455,
0.13307642936706543,
0.010040388442575932,
-0.05609746649861336,
-0.10997848212718964,
0.09190685302019119,
-0.0658416822552681,
0.021701829507946968,
0.09776990860700607,
-0.03392577916383743,
-0.12574003636837006,
0.08095958828926086,
0.11852309107780457,
-0.1254526674747467,
-0.00286245159804821,
-0.09929400682449341,
-0.06072450429201126,
0.11061255633831024,
-0.018246041610836983,
-0.013045589439570904,
0.1067960113286972,
0.01603975147008896,
0.09560272097587585,
0.010003505274653435,
-0.041379477828741074,
0.03608282655477524,
0.11219106614589691,
-0.09153439104557037,
0.018837329000234604,
-0.1091950535774231,
0.0586378276348114,
0.09717585891485214,
-0.009375077672302723,
0.027649689465761185,
-0.11928332597017288,
-0.0231236070394516,
0.03295935317873955,
-0.05579625815153122,
-0.05908243730664253,
0.11587382853031158,
0.001952368183992803,
0.03314058110117912,
-0.10039208829402924,
0.1157127320766449,
0.053656648844480515,
0.01461551059037447,
-0.06536553800106049,
0.0005594822578132153,
-0.13762414455413818,
-0.054869670420885086,
-0.17725999653339386,
0.08750618994235992,
-0.0861458107829094,
-0.16743317246437073,
-0.11153456568717957,
-0.09391113370656967,
0.01320105604827404,
-0.05148456245660782,
0.11635688692331314,
-0.02118055522441864,
0.00035826422390528023,
-0.05987226217985153,
-0.027219844982028008,
0.0145579157397151,
0.09802322089672089,
0.03644266724586487,
-0.15647125244140625,
0.018425144255161285,
0.11156269907951355,
0.1271706223487854,
-0.09154170751571655,
-0.002232058672234416,
-0.017154915258288383,
0.018552102148532867,
-0.00827854871749878,
0.08404248207807541,
-0.13923460245132446,
-0.03037731721997261,
-0.0296299047768116,
-0.10128114372491837,
-0.0835963562130928,
0.05097668990492821,
-0.04682357609272003,
-0.00701867463067174,
-0.016120513901114464,
0.03613065183162689,
0.0322890542447567,
-0.004047870170325041,
0.11589261144399643,
-0.05438581109046936,
0.04111379384994507,
0.10983923822641373,
0.008155289106070995,
-0.004462997894734144,
-0.09849470108747482,
-0.08252885937690735,
0.03997408226132393,
0.09668391942977905,
-0.010439077392220497,
-0.07130293548107147,
-0.00269333366304636,
0.08612579107284546,
-0.019086617976427078,
-0.02426309697329998,
0.08481491357088089,
-0.11408556997776031,
-0.11916062980890274,
-0.07518143951892853,
-0.03401577100157738,
-0.04195549711585045,
0.01747151091694832,
0.14742431044578552,
0.05168241634964943,
0.10151267051696777,
-0.05611918494105339,
0.08438669890165329,
-0.05199885368347168,
0.047955479472875595,
-0.07275821268558502,
-0.07698799669742584,
-0.058796755969524384,
-0.0958867222070694,
0.017647523432970047,
0.0033515198156237602,
0.23836800456047058,
-0.027811359614133835,
0.003491778625175357,
0.02056475169956684,
0.1700211763381958,
0.14410898089408875,
-0.016720831394195557,
0.282145231962204,
0.12168978899717331,
0.07688792794942856,
0.043323151767253876,
0.08866812288761139,
0.02309921197593212,
0.10111714154481888,
0.06413891911506653,
0.16152089834213257,
-0.006105340551584959,
0.08613239228725433,
0.020560065284371376,
-0.0317499116063118,
-0.07085093855857849,
0.04477535933256149,
-0.07860187441110611,
0.02515406906604767,
-0.02914552204310894,
0.09274807572364807,
0.20775550603866577,
-0.08460675179958344,
0.031657714396715164,
0.09650033712387085,
-0.03316489979624748,
-0.05791659280657768,
-0.09779052436351776,
-0.08949201554059982,
-0.08723936975002289,
0.011495992541313171,
0.003982861060649157,
-0.0633685365319252,
0.10220501571893692,
0.05513067543506622,
-0.052784744650125504,
0.18135903775691986,
-0.14890256524085999,
-0.05839018151164055,
0.06954412907361984,
-0.005030954256653786,
0.006397804711014032,
-0.07174297422170639,
-0.08046069741249084,
-0.0014709890820086002,
0.0397312268614769,
0.02232986129820347,
-0.03180024400353432,
0.014068827964365482,
0.1084362268447876,
0.08350933343172073,
-0.053243134170770645,
-0.026374055072665215,
-0.05289510637521744,
0.06897855550050735,
0.07450404018163681,
-0.03476037085056305,
0.08164004981517792,
0.015317631885409355,
0.1857265681028366,
-0.012189415283501148,
-0.09196340292692184,
-0.08661126345396042,
0.08672579377889633,
-0.009992770850658417,
-0.05458756908774376,
0.01641024835407734,
-0.04374649003148079,
-0.007257320452481508,
0.3355041742324829,
0.20838569104671478,
-0.038196418434381485,
0.01064214576035738,
0.020922107622027397,
-0.003299660747870803,
0.018538162112236023,
-0.005250731483101845,
0.018112823367118835,
0.18056811392307281,
-0.0521823987364769,
-0.08828377723693848,
-0.12949348986148834,
-0.03812453895807266,
-0.10720713436603546,
0.06771388649940491,
0.0829172283411026,
-0.06665003299713135,
-0.0653696060180664,
0.08169841021299362,
-0.024913208559155464,
-0.03550620377063751,
0.02184184268116951,
-0.06619445234537125,
-0.10733676701784134,
0.011323514394462109,
0.01621815748512745,
0.08264323323965073,
0.011447223834693432,
-0.020182279869914055,
0.06152135878801346,
-0.06866303086280823,
0.04570804536342621,
-0.10062003880739212,
-0.03595973178744316,
0.10021738708019257,
0.013914764858782291,
0.2623652219772339,
-0.06106908991932869,
0.07381667196750641,
0.06386847048997879,
0.0777028277516365,
-0.06481476873159409,
0.08606921881437302,
0.0013520782813429832,
-0.14711253345012665,
0.09656427800655365,
0.022586116567254066,
-0.037807632237672806,
-0.020098304376006126,
-0.010498791933059692,
-0.050394635647535324,
0.09450366348028183,
-0.09761177003383636,
-0.005344684701412916,
-0.0994938537478447,
0.07441819459199905,
-0.11810575425624847,
0.1333044320344925,
0.052334729582071304,
-0.07431569695472717,
-0.059857312589883804,
-0.055429354310035706,
0.042502354830503464,
0.06448327004909515,
-0.061501797288656235,
0.004550598561763763,
-0.17118361592292786,
-0.01649879664182663,
-0.12744855880737305,
-0.018405212089419365,
-0.06649945676326752,
-0.006503721699118614,
-0.09027304500341415,
-0.0761583000421524,
-0.058252863585948944,
-0.057856835424900055,
0.04076096788048744,
0.009048604406416416,
-0.036138374358415604,
-0.21220451593399048,
0.00823583547025919,
-0.012342406436800957,
-0.15068025887012482,
-0.10903671383857727
] |
null | null | transformers |
# Mengzi-oscar-base (Chinese Multi-modal pre-training model)
Mengzi-oscar is trained based on the Multi-modal pre-training model [Oscar](https://github.com/microsoft/Oscar), and is initialized using [Mengzi-Bert-Base](https://github.com/Langboat/Mengzi). 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
## Usage
#### Installation
Check [INSTALL.md](https://github.com/microsoft/Oscar/blob/master/INSTALL.md) for installation instructions.
#### Pretrain & fine-tune
See the [Mengzi-Oscar.md](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md) for details.
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0"} | fill-mask | Langboat/mengzi-oscar-base | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Mengzi-oscar-base (Chinese Multi-modal pre-training model)
Mengzi-oscar is trained based on the Multi-modal pre-training model Oscar, and is initialized using Mengzi-Bert-Base. 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
## Usage
#### Installation
Check URL for installation instructions.
#### Pretrain & fine-tune
See the URL for details.
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [
"# Mengzi-oscar-base (Chinese Multi-modal pre-training model)\nMengzi-oscar is trained based on the Multi-modal pre-training model Oscar, and is initialized using Mengzi-Bert-Base. 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Mengzi-oscar-base (Chinese Multi-modal pre-training model)\nMengzi-oscar is trained based on the Multi-modal pre-training model Oscar, and is initialized using Mengzi-Bert-Base. 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage",
"#### Installation\nCheck URL for installation instructions.",
"#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
55,
119,
3,
9,
35
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #zh #arxiv-2110.06696 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Mengzi-oscar-base (Chinese Multi-modal pre-training model)\nMengzi-oscar is trained based on the Multi-modal pre-training model Oscar, and is initialized using Mengzi-Bert-Base. 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.\n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese## Usage#### Installation\nCheck URL for installation instructions.#### Pretrain & fine-tune\nSee the URL for details.\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
-0.10729051381349564,
-0.021741321310400963,
-0.00008262952178483829,
0.0481339730322361,
0.09923245757818222,
-0.03542950749397278,
0.21360909938812256,
0.04909422621130943,
-0.015494218096137047,
-0.04878004640340805,
0.013138591311872005,
0.004750251304358244,
0.06468924880027771,
-0.0007702678558416665,
0.07009043544530869,
-0.2899010479450226,
0.007903700694441795,
0.13204200565814972,
-0.034741345793008804,
0.08960219472646713,
0.10990370810031891,
-0.13362239301204681,
0.1035536602139473,
0.10741148889064789,
-0.08759144693613052,
0.028922313824295998,
-0.05060384422540665,
-0.0758269652724266,
0.10724489390850067,
0.005355524830520153,
0.05481681972742081,
0.08892270922660828,
0.06652476638555527,
-0.011393554508686066,
0.008418213576078415,
-0.058592624962329865,
0.009894775226712227,
0.03918391093611717,
0.1533443182706833,
0.06161973997950554,
0.08485227078199387,
0.05276646837592125,
-0.029203902930021286,
0.07400910556316376,
-0.012623904272913933,
-0.13686992228031158,
-0.09092307090759277,
0.0945541188120842,
0.14289024472236633,
0.12946009635925293,
-0.009931721724569798,
0.10245329141616821,
-0.048239607363939285,
0.048523206263780594,
0.21622420847415924,
-0.3062802851200104,
-0.0315985381603241,
0.10082149505615234,
0.07457137107849121,
-0.07292695343494415,
-0.0052263387478888035,
0.057767603546381,
0.09428306668996811,
-0.05013884976506233,
0.016600580886006355,
-0.06743644922971725,
0.15408940613269806,
-0.1032978817820549,
-0.10642549395561218,
0.07766848802566528,
0.17142346501350403,
0.08668433129787445,
-0.09614156186580658,
-0.08917635679244995,
0.041101474314928055,
0.005734851583838463,
-0.03267427533864975,
0.042637139558792114,
0.02561267279088497,
-0.05861625075340271,
-0.02527664043009281,
-0.03221415355801582,
-0.09909026324748993,
-0.08339725434780121,
-0.07360014319419861,
0.07977220416069031,
0.029567815363407135,
0.030217722058296204,
-0.017892058938741684,
0.04824531078338623,
-0.07243543118238449,
-0.11867371946573257,
-0.004514800384640694,
-0.0369524322450161,
0.010117091238498688,
0.05825325846672058,
0.003735192818567157,
-0.12244002521038055,
-0.02298445627093315,
0.03931322693824768,
0.13135553896427155,
0.03139793872833252,
0.06309453397989273,
0.08228809386491776,
0.0007002591155469418,
0.10043143481016159,
-0.09195602685213089,
-0.06444776803255081,
-0.02743810974061489,
-0.03140246123075485,
0.0406392440199852,
-0.06171932443976402,
-0.13764704763889313,
-0.041889291256666183,
0.003494161879643798,
-0.034604400396347046,
0.019459933042526245,
0.028858814388513565,
-0.05715855211019516,
-0.08697838336229324,
0.10798008739948273,
-0.06302446871995926,
-0.016762854531407356,
-0.02677510492503643,
-0.10610257089138031,
0.0751955434679985,
0.04944160580635071,
0.09342068433761597,
0.003941803704947233,
0.14564014971256256,
-0.05510497838258743,
0.06125457584857941,
-0.0878823772072792,
-0.03009316511452198,
0.0012363966088742018,
-0.14642490446567535,
0.006815037224441767,
-0.1245269700884819,
-0.08118751645088196,
0.02595936693251133,
0.06161638721823692,
-0.007651189342141151,
-0.015343379229307175,
0.047156885266304016,
0.061609964817762375,
-0.06616700440645218,
-0.005404198542237282,
0.09506223350763321,
-0.01632305048406124,
0.034016143530607224,
0.07729754596948624,
0.052156344056129456,
-0.1350487470626831,
0.02724558673799038,
-0.07092355191707611,
0.05325625464320183,
-0.12410958111286163,
0.037791844457387924,
-0.013890634290874004,
0.11965852230787277,
-0.02402310073375702,
-0.10830690711736679,
0.004256285261362791,
-0.04316466301679611,
-0.015149541199207306,
0.10351504385471344,
-0.07906994968652725,
-0.0674770399928093,
-0.006732360925525427,
-0.16292157769203186,
-0.07271409779787064,
0.07792789489030838,
-0.008522828109562397,
0.0055342186242341995,
-0.0008799797506071627,
0.07755325734615326,
0.05910470336675644,
-0.11386726796627045,
-0.011492912657558918,
-0.02479270100593567,
0.004334502853453159,
-0.08137449622154236,
0.1984684318304062,
0.08581362664699554,
-0.06476075202226639,
-0.016701096668839455,
-0.06234228238463402,
0.0011200642911717296,
-0.08938585966825485,
-0.09625069797039032,
-0.002108327578753233,
-0.05646501109004021,
0.01340456958860159,
0.011737697757780552,
0.12473183125257492,
-0.031388700008392334,
-0.011423848569393158,
0.025132356211543083,
0.06897136569023132,
-0.038163408637046814,
-0.014697790145874023,
-0.12668903172016144,
0.10673828423023224,
0.010482661426067352,
-0.08065607398748398,
-0.0660528838634491,
0.09503376483917236,
0.060554441064596176,
-0.04744292423129082,
0.043981317430734634,
0.017800703644752502,
0.010302660055458546,
0.12502962350845337,
-0.07958323508501053,
0.05685604736208916,
-0.048241157084703445,
0.007020582444965839,
0.03024142049252987,
-0.11209168285131454,
-0.05858664959669113,
0.007983549498021603,
0.2227797508239746,
-0.08719519525766373,
0.0161668062210083,
0.017844803631305695,
0.13400235772132874,
-0.018045127391815186,
-0.019925981760025024,
0.015660425648093224,
0.02327890135347843,
-0.0439898744225502,
0.025512171909213066,
0.06674888730049133,
0.06803969293832779,
-0.17446087300777435,
0.11734271049499512,
-0.0048834714107215405,
0.017110783606767654,
0.13115158677101135,
-0.17189104855060577,
-0.03197173774242401,
-0.0824921503663063,
-0.05275830999016762,
-0.05031369999051094,
-0.0464080274105072,
0.026054810732603073,
0.14198507368564606,
-0.06038515269756317,
0.1364682912826538,
-0.06333871185779572,
0.049373503774404526,
0.01996263489127159,
-0.07000847905874252,
-0.037966322153806686,
0.04574268311262131,
0.15289118885993958,
-0.07003089040517807,
0.063210628926754,
0.05068207532167435,
-0.08682242780923843,
0.10923188924789429,
0.036977965384721756,
-0.07188230007886887,
-0.007824711501598358,
-0.04295443743467331,
0.0074347336776554585,
0.17894375324249268,
-0.1553298532962799,
-0.03662266209721565,
0.07328493893146515,
-0.07218385487794876,
0.0628398060798645,
-0.16386355459690094,
-0.03171763941645622,
0.04706325754523277,
-0.00495555717498064,
-0.026878293603658676,
-0.035786036401987076,
-0.08428581804037094,
0.0592169463634491,
-0.014688992872834206,
-0.028149381279945374,
0.012715881690382957,
-0.003454569261521101,
-0.14072571694850922,
0.08406566828489304,
0.047032710164785385,
-0.26823216676712036,
-0.1484614461660385,
-0.08774229884147644,
-0.06708775460720062,
0.034090105444192886,
0.012709204107522964,
-0.03552364930510521,
-0.0293845497071743,
-0.06026998534798622,
-0.0618366003036499,
-0.050876013934612274,
0.01578403450548649,
0.0778554156422615,
0.05760285630822182,
0.019476553425192833,
-0.022266319021582603,
-0.00770776579156518,
-0.0497308224439621,
-0.0522599034011364,
0.09240874648094177,
-0.07106707245111465,
0.12117553502321243,
0.0695851519703865,
-0.026813840493559837,
0.023000624030828476,
-0.002638225443661213,
0.04354330152273178,
-0.09238946437835693,
-0.0110058868303895,
0.2992074489593506,
0.02873080223798752,
0.027854973450303078,
0.11338772624731064,
0.05964279919862747,
0.01816328801214695,
0.007362688891589642,
-0.00215058377943933,
-0.10126901417970657,
-0.14486931264400482,
-0.04014894738793373,
-0.03875112906098366,
0.00005366659752326086,
0.02471349388360977,
0.032991547137498856,
0.07554111629724503,
0.15401649475097656,
-0.00831462163478136,
-0.05720290541648865,
-0.03089829720556736,
0.05844781920313835,
-0.025519102811813354,
0.05009758472442627,
0.16040171682834625,
-0.06609562784433365,
-0.037214018404483795,
0.07525838166475296,
-0.042786575853824615,
0.26326751708984375,
0.02552594244480133,
-0.03880913183093071,
0.08374257385730743,
0.13141044974327087,
0.13544096052646637,
0.036749523133039474,
0.005361814983189106,
-0.04240032285451889,
-0.042078617960214615,
-0.09010832011699677,
0.038087327033281326,
0.07276953011751175,
0.033395979553461075,
-0.0073357536457479,
-0.05963622406125069,
0.05336281284689903,
-0.010447747074067593,
0.22264635562896729,
0.06404968351125717,
-0.21899135410785675,
-0.03453350439667702,
-0.024909432977437973,
0.009530559182167053,
0.04764438048005104,
0.010170653462409973,
0.023939352482557297,
-0.14170905947685242,
0.1931108683347702,
-0.02367500029504299,
0.11268742382526398,
-0.08117350935935974,
-0.018504466861486435,
0.022359520196914673,
-0.04923531785607338,
0.026372911408543587,
0.08427955955266953,
-0.2734543979167938,
0.1815667450428009,
-0.03781803697347641,
-0.026065779849886894,
-0.11524145305156708,
-0.009501978754997253,
0.032909784466028214,
0.05801476910710335,
0.12600691616535187,
0.00214694207534194,
0.10441040247678757,
-0.0801086574792862,
-0.1897653192281723,
-0.007028353400528431,
0.03765213117003441,
-0.03132449463009834,
0.022728843614459038,
0.046615663915872574,
-0.04408501461148262,
-0.032239656895399094,
0.104824498295784,
-0.17232739925384521,
-0.05737234279513359,
0.07769273221492767,
-0.03620840609073639,
-0.07354031503200531,
-0.06412054598331451,
-0.14377062022686005,
-0.08811125159263611,
0.17668135464191437,
0.037420060485601425,
-0.030712340027093887,
-0.05694714933633804,
-0.04077303037047386,
0.010539642535150051,
-0.01227048970758915,
0.10208390653133392,
-0.02376837097108364,
0.08879946917295456,
-0.04358762502670288,
-0.017672397196292877,
0.04940301924943924,
-0.11704184859991074,
-0.061403144150972366,
-0.043254315853118896,
0.10979718714952469,
0.007644821424037218,
0.11448238790035248,
0.011968717910349369,
-0.03370256721973419,
0.024868646636605263,
-0.10772833228111267,
-0.024859171360731125,
-0.07589499652385712,
0.09624142944812775,
0.033146001398563385,
-0.05953776463866234,
-0.08306527137756348,
-0.13502319157123566,
-0.14357081055641174,
0.11417901515960693,
0.15437546372413635,
-0.10669764876365662,
0.002401194302365184,
0.09442494809627533,
0.049312837421894073,
-0.21934832632541656,
-0.026842107996344566,
0.10527008771896362,
0.012410136871039867,
-0.005505281966179609,
-0.11711222678422928,
0.07615745067596436,
0.1117287278175354,
-0.06036742404103279,
-0.009912468492984772,
-0.22381936013698578,
-0.14656978845596313,
0.044122714549303055,
0.12869513034820557,
0.12709027528762817,
-0.14431416988372803,
-0.0631520003080368,
-0.05006964132189751,
-0.1580158770084381,
0.09615228325128555,
0.03660609573125839,
0.11044354736804962,
-0.004697216674685478,
-0.16336356103420258,
-0.017468854784965515,
-0.09633774310350418,
0.15430475771427155,
0.01779869571328163,
-0.007751428056508303,
-0.07439027726650238,
-0.06935042887926102,
0.014721913263201714,
0.014645694755017757,
0.08515921235084534,
0.054378069937229156,
0.032685521990060806,
-0.06721106916666031,
-0.06184482201933861,
0.024365928024053574,
0.07003393024206161,
-0.01633581332862377,
-0.06417042762041092,
-0.0972142443060875,
0.10332407802343369,
-0.07108408212661743,
0.030028045177459717,
0.06443896144628525,
-0.06878899037837982,
-0.13603422045707703,
0.15634740889072418,
0.11172956228256226,
-0.11945049464702606,
-0.04822446033358574,
-0.12540794909000397,
-0.03833433985710144,
0.08694547414779663,
-0.04704210162162781,
-0.006404594052582979,
0.10914266109466553,
0.03289154917001724,
0.1255292445421219,
0.008423847146332264,
-0.04666140303015709,
0.053408458828926086,
0.13947993516921997,
-0.08254043012857437,
-0.07710467278957367,
-0.11754926294088364,
0.037060607224702835,
0.0723283588886261,
0.022974813356995583,
0.01437491923570633,
-0.09827248752117157,
0.006355562712997198,
0.032848380506038666,
-0.06538879871368408,
-0.07284537702798843,
0.12045270204544067,
0.0027534998953342438,
0.030976474285125732,
-0.07096884399652481,
0.10595616698265076,
0.07139813899993896,
0.022694002836942673,
-0.09583988785743713,
0.05829701945185661,
-0.08107781410217285,
0.006556399166584015,
-0.2045312076807022,
0.07024890929460526,
-0.08948388695716858,
-0.11181921511888504,
-0.129866361618042,
-0.11402162909507751,
0.013527077622711658,
-0.07128700613975525,
0.1054735779762268,
-0.04739491268992424,
0.02052289806306362,
-0.052304789423942566,
-0.03142233192920685,
-0.00031840623705647886,
0.11074410378932953,
0.06595882028341293,
-0.16580025851726532,
0.0612436980009079,
0.11533614248037338,
0.13069410622119904,
-0.07978624105453491,
-0.008390561677515507,
0.01279474887996912,
0.020244840532541275,
-0.032152771949768066,
0.035553522408008575,
-0.13386628031730652,
-0.04821838438510895,
-0.07082417607307434,
-0.09803559631109238,
-0.08222994953393936,
0.007172299548983574,
-0.0432220958173275,
-0.010453745722770691,
-0.011183124966919422,
0.01593494787812233,
0.04440256580710411,
-0.02627749741077423,
0.09143286943435669,
-0.06416808813810349,
0.03562917560338974,
0.07810712605714798,
-0.02129075676202774,
-0.06638762354850769,
-0.023358197882771492,
-0.06944335997104645,
0.035321127623319626,
0.07590536773204803,
-0.03677009046077728,
-0.0795997828245163,
-0.01914413645863533,
0.07282145321369171,
0.026140261441469193,
-0.02006690762937069,
0.049058448523283005,
-0.1404823511838913,
-0.1270172894001007,
-0.06287195533514023,
-0.0874064639210701,
-0.04157568886876106,
0.04620533064007759,
0.11746294051408768,
0.0787460133433342,
0.09746049344539642,
-0.04294755682349205,
0.11872240900993347,
-0.11626490950584412,
0.031134482473134995,
-0.049762919545173645,
-0.04386264085769653,
-0.020482687279582024,
-0.08149702847003937,
0.02429240010678768,
-0.010912532918155193,
0.232196643948555,
-0.024044036865234375,
-0.07827720791101456,
0.0008454889757558703,
0.12758466601371765,
0.17642343044281006,
-0.051176995038986206,
0.25889667868614197,
0.09157863259315491,
0.0939033254981041,
0.06268622726202011,
0.11228640377521515,
0.005904536694288254,
0.15662570297718048,
0.1331675946712494,
0.1583547294139862,
-0.015050755813717842,
0.059952232986688614,
0.0894816592335701,
0.04075641185045242,
-0.05614760145545006,
0.09367717802524567,
-0.03380885720252991,
0.03822620213031769,
-0.02076067589223385,
0.10197597742080688,
0.2273053526878357,
-0.12501414120197296,
0.08739755302667618,
0.1274997740983963,
-0.05932217091321945,
-0.054752327501773834,
-0.12575291097164154,
-0.09239248186349869,
-0.10827003419399261,
0.04268637299537659,
-0.014429704286158085,
-0.03268099203705788,
0.12374342232942581,
0.07436823099851608,
-0.03986417129635811,
0.2094777226448059,
-0.17994825541973114,
-0.027469772845506668,
0.05775028094649315,
-0.012625463306903839,
-0.006708174478262663,
-0.04861721768975258,
-0.07717932015657425,
0.021948523819446564,
0.07341703027486801,
0.02051684446632862,
-0.01610761694610119,
-0.00005586567203863524,
0.054528288543224335,
0.10577116906642914,
-0.07871318608522415,
-0.029925230890512466,
-0.08829966932535172,
0.1418653279542923,
0.08500495553016663,
-0.04957052692770958,
0.06431883573532104,
-0.01363205723464489,
0.10477682948112488,
-0.039775364100933075,
-0.0941302627325058,
-0.07279936224222183,
0.0680725947022438,
-0.072228342294693,
-0.037626348435878754,
0.024881986901164055,
-0.044454947113990784,
-0.0033248867839574814,
0.2807852327823639,
0.23741282522678375,
-0.03325004130601883,
-0.018344899639487267,
0.03185408189892769,
-0.013034086674451828,
0.01504119299352169,
-0.00848053302615881,
0.004071268253028393,
0.18591156601905823,
-0.04938090592622757,
-0.03418734297156334,
-0.16689518094062805,
0.001156024751253426,
-0.08649827539920807,
0.08294454962015152,
0.1186598613858223,
-0.022969337180256844,
-0.08959335833787918,
0.10516788810491562,
0.0458763986825943,
-0.010075703263282776,
0.020558662712574005,
-0.07219491899013519,
-0.11664199829101562,
0.041607391089200974,
-0.017807453870773315,
0.08146195113658905,
0.026833852753043175,
-0.027651049196720123,
0.08330150693655014,
-0.09773240983486176,
0.06710606068372726,
-0.0970357358455658,
-0.041315797716379166,
0.1262851506471634,
-0.005060521420091391,
0.23449236154556274,
-0.035924408584833145,
0.12036830186843872,
0.060795463621616364,
0.0646219253540039,
0.006351879797875881,
0.10762600600719452,
-0.0040415446273982525,
-0.10137399286031723,
0.03924144431948662,
0.07138365507125854,
-0.030856288969516754,
0.030373891815543175,
-0.010409696958959103,
-0.06346502900123596,
0.08069723099470139,
-0.06647966057062149,
-0.027640247717499733,
-0.07853633165359497,
0.1026018038392067,
-0.12363804876804352,
0.11805981397628784,
0.1311579793691635,
-0.07096417993307114,
-0.0645143985748291,
-0.043271660804748535,
0.014852801337838173,
0.062055207788944244,
-0.06891332566738129,
0.0015930113149806857,
-0.1920190006494522,
0.006351755931973457,
-0.15901657938957214,
-0.0029100968968123198,
-0.12035476416349411,
-0.06752282381057739,
-0.05230296403169632,
-0.08476138859987259,
-0.050645966082811356,
-0.0496346540749073,
0.05704602226614952,
0.02026296779513359,
-0.058234285563230515,
-0.2382287234067917,
-0.011438501998782158,
0.02746604010462761,
-0.15614257752895355,
-0.10510020703077316
] |
null | null | transformers |
# Mengzi-T5 model (Chinese)
Pretrained model on 300G Chinese corpus.
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("Langboat/mengzi-t5-base")
model = T5ForConditionalGeneration.from_pretrained("Langboat/mengzi-t5-base")
```
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["zh"], "license": "apache-2.0"} | text2text-generation | Langboat/mengzi-t5-base | [
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"zh",
"arxiv:2110.06696",
"doi:10.57967/hf/0025",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2110.06696"
] | [
"zh"
] | TAGS
#transformers #pytorch #safetensors #t5 #text2text-generation #zh #arxiv-2110.06696 #doi-10.57967/hf/0025 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
# Mengzi-T5 model (Chinese)
Pretrained model on 300G Chinese corpus.
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
## Usage
If you find the technical report or resource is useful, please cite the following technical report in your paper.
| [
"# Mengzi-T5 model (Chinese)\nPretrained model on 300G Chinese corpus. \n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
"TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #zh #arxiv-2110.06696 #doi-10.57967/hf/0025 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# Mengzi-T5 model (Chinese)\nPretrained model on 300G Chinese corpus. \n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese",
"## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
89,
41,
24
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #zh #arxiv-2110.06696 #doi-10.57967/hf/0025 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Mengzi-T5 model (Chinese)\nPretrained model on 300G Chinese corpus. \n\nMengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese## Usage\n\n\nIf you find the technical report or resource is useful, please cite the following technical report in your paper."
] | [
-0.0899946391582489,
-0.02263007126748562,
-0.0008720126934349537,
0.005423868075013161,
0.03389514610171318,
-0.05109924450516701,
0.2019197940826416,
0.08313016593456268,
-0.06022791564464569,
-0.06789372861385345,
0.07460576295852661,
0.038154855370521545,
0.03864383324980736,
0.045963723212480545,
-0.0035660327412188053,
-0.24935325980186462,
0.06936562806367874,
0.1353696882724762,
0.05393149331212044,
0.1512155830860138,
0.16194432973861694,
-0.1075986921787262,
0.10284893214702606,
0.08503814041614532,
0.024037610739469528,
-0.011926709674298763,
-0.06333637982606888,
-0.11008723080158234,
0.11614809185266495,
-0.009967471472918987,
0.07138143479824066,
0.11027491837739944,
0.04785384237766266,
-0.02435281313955784,
0.016483241692185402,
-0.031628768891096115,
-0.06142223998904228,
0.05950406938791275,
0.10223622620105743,
0.04341718554496765,
0.18456542491912842,
0.01411385927349329,
-0.09157067537307739,
0.03863314539194107,
-0.01638595573604107,
-0.07459834963083267,
-0.09515838325023651,
0.11163487285375595,
0.12588104605674744,
0.1115163266658783,
-0.01305677741765976,
0.18671272695064545,
-0.07252596318721771,
0.06615986675024033,
0.2492159903049469,
-0.3835262656211853,
-0.007522011641412973,
0.1453704982995987,
0.11576416343450546,
-0.00910419225692749,
-0.004159197676926851,
0.015627499669790268,
0.05787845700979233,
-0.06523124873638153,
0.05444417521357536,
-0.10161655396223068,
-0.02268121764063835,
-0.02081296779215336,
-0.10699470341205597,
0.04803629219532013,
0.3097066283226013,
0.001776466378942132,
-0.055386561900377274,
-0.10826484858989716,
-0.03848419710993767,
0.024513909593224525,
-0.01539349090307951,
-0.05741226673126221,
0.05066606402397156,
0.00828621257096529,
0.1070360615849495,
-0.06376568228006363,
-0.09994086623191833,
-0.06807322800159454,
-0.14299865067005157,
0.07701365649700165,
0.026461059227585793,
-0.012936936691403389,
-0.09080549329519272,
0.0678744837641716,
0.0055318558588624,
-0.11083546280860901,
-0.012455190531909466,
-0.05032997578382492,
0.06433984637260437,
0.021132318302989006,
0.029895899817347527,
-0.13287988305091858,
0.07613904029130936,
0.04000850394368172,
0.030552437528967857,
0.009984388947486877,
0.033553317189216614,
0.043932508677244186,
-0.008449140936136246,
0.024024277925491333,
-0.14241325855255127,
-0.10495380312204361,
0.0764756053686142,
-0.009138168767094612,
0.07272596657276154,
-0.02370584011077881,
-0.11315066367387772,
-0.029711753129959106,
0.06791004538536072,
0.036401357501745224,
0.01757027395069599,
0.07821964472532272,
0.0023800074122846127,
-0.046845223754644394,
0.1194683164358139,
-0.07108698785305023,
-0.063346728682518,
-0.01165950857102871,
-0.04565891623497009,
0.012931102886795998,
0.027467722073197365,
0.07027016580104828,
-0.08369559049606323,
0.06047065183520317,
-0.07514846324920654,
-0.004639188293367624,
-0.011158887296915054,
-0.04287480562925339,
0.007394609972834587,
-0.07430052757263184,
0.03165546432137489,
-0.15111152827739716,
-0.21395528316497803,
0.046389661729335785,
0.02783069759607315,
0.027216438204050064,
-0.02916359156370163,
0.025435615330934525,
-0.06810960173606873,
-0.07473666220903397,
-0.0529651865363121,
0.06769911199808121,
-0.05742325633764267,
0.03852511942386627,
0.006127684377133846,
-0.011833693832159042,
-0.14309895038604736,
0.01928822137415409,
-0.14923539757728577,
0.029109777882695198,
0.02977791614830494,
-0.006188670638948679,
0.02181951515376568,
0.08883004635572433,
-0.03316979855298996,
-0.03882438316941261,
-0.05082383006811142,
-0.03425244987010956,
0.007751294877380133,
0.1350448578596115,
-0.10263991355895996,
-0.018495989963412285,
0.08087624609470367,
-0.17774009704589844,
-0.19512364268302917,
0.09546776860952377,
-0.00008642898319521919,
0.09039332717657089,
0.04077492654323578,
0.16828542947769165,
0.08163844048976898,
-0.07053559273481369,
-0.02921779453754425,
0.048042796552181244,
-0.07564283907413483,
-0.07417052984237671,
0.13276319205760956,
0.07972035557031631,
-0.04558071494102478,
0.005097670946270227,
-0.07341510057449341,
-0.05402230843901634,
-0.054194409400224686,
-0.10200056433677673,
-0.05366143584251404,
-0.0766669362783432,
0.0675388053059578,
-0.012027169577777386,
0.09997790306806564,
-0.028323709964752197,
0.015051256865262985,
-0.016652654856443405,
0.07928907126188278,
-0.02788085676729679,
0.022917067632079124,
-0.11506741493940353,
0.07478863000869751,
0.06504498422145844,
0.02285761572420597,
-0.11214694380760193,
0.10258186608552933,
0.03918283432722092,
-0.026608265936374664,
0.0037236507050693035,
0.020353542640805244,
-0.01430142018944025,
0.04408537968993187,
-0.06354215741157532,
0.009931975044310093,
0.05510829761624336,
0.04372672736644745,
-0.02471105381846428,
-0.10029827803373337,
0.02991841547191143,
0.005043740849941969,
0.09910933673381805,
-0.11327898502349854,
0.017626143991947174,
0.020467719063162804,
0.07870318740606308,
-0.02478443831205368,
0.1006891280412674,
0.05485197529196739,
0.014702931977808475,
-0.09111673384904861,
0.030432121828198433,
0.05263078957796097,
0.060842182487249374,
-0.17143093049526215,
0.17503198981285095,
-0.06937560439109802,
0.25518864393234253,
0.18802522122859955,
-0.09221438318490982,
0.028198719024658203,
-0.08801107108592987,
-0.028710152953863144,
-0.028475280851125717,
-0.03720959648489952,
0.00873381644487381,
0.08502712100744247,
-0.06780188530683517,
0.13837002217769623,
-0.13141407072544098,
0.031729791313409805,
-0.012744244188070297,
-0.06694754958152771,
0.03627648204565048,
0.09245450049638748,
0.036912865936756134,
-0.15406057238578796,
0.10757322609424591,
0.1669786274433136,
-0.02267232909798622,
0.08695591986179352,
-0.015093043446540833,
-0.048259321600198746,
-0.0022690368350595236,
0.013260607607662678,
-0.021755915135145187,
0.13138745725154877,
-0.13092041015625,
-0.02479136921465397,
0.07833626121282578,
0.003020268166437745,
0.05788744240999222,
-0.12970131635665894,
-0.03170892968773842,
0.0015323236584663391,
-0.0563078410923481,
-0.04067512974143028,
0.003422345034778118,
-0.07861227542161942,
0.10908140242099762,
-0.09271300584077835,
-0.029541315510869026,
0.04225502535700798,
0.014398776926100254,
-0.13028661906719208,
0.12782008945941925,
-0.003197468351572752,
-0.287045419216156,
-0.01721896603703499,
-0.022700166329741478,
-0.06515873223543167,
0.03297751396894455,
0.06642099469900131,
-0.014620414935052395,
-0.052309636026620865,
-0.11040722578763962,
-0.08662034571170807,
-0.00895058736205101,
0.004066533409059048,
-0.033598292618989944,
0.08126749098300934,
-0.005629634018987417,
-0.08753932267427444,
0.003114811610430479,
-0.04019792005419731,
-0.05804935842752457,
0.09226515144109726,
-0.09566494077444077,
0.1420464962720871,
0.061951953917741776,
-0.006333434488624334,
0.01158732920885086,
-0.03014972433447838,
0.013129605911672115,
-0.06394443660974503,
0.039024416357278824,
0.2753784954547882,
0.02814682200551033,
0.020168427377939224,
0.09259995073080063,
0.013314337469637394,
0.00392077025026083,
0.03302357345819473,
-0.06522395461797714,
-0.07238426059484482,
-0.20287390053272247,
-0.08513680100440979,
-0.09553080052137375,
0.0509599894285202,
-0.03219800069928169,
0.034728195518255234,
0.09396515041589737,
0.1219743937253952,
-0.025814583525061607,
0.016072971746325493,
0.04156268760561943,
0.06673822551965714,
0.025982575491070747,
0.025077873840928078,
0.13004285097122192,
-0.09015349298715591,
-0.042659543454647064,
0.10056271404027939,
0.005313328001648188,
0.23659846186637878,
0.024167930707335472,
0.0982818678021431,
0.08847945928573608,
0.2100778967142105,
0.12545958161354065,
0.10860329121351242,
-0.015812508761882782,
-0.02310197241604328,
-0.06429245322942734,
-0.07575267553329468,
0.002922548446804285,
0.03270670771598816,
-0.0966273844242096,
-0.0037023623008280993,
-0.006982417311519384,
0.04942270368337631,
0.11792472004890442,
0.12404651939868927,
0.0428372360765934,
-0.13604982197284698,
-0.004819320980459452,
0.002539769746363163,
0.006712680216878653,
0.013782570138573647,
0.0917818695306778,
-0.016367830336093903,
-0.12365919351577759,
0.11502315104007721,
-0.005473922472447157,
0.1374375969171524,
-0.04887724667787552,
0.03301030397415161,
-0.1302628368139267,
-0.06141083315014839,
-0.0064675696194171906,
0.09425041824579239,
-0.3352287709712982,
0.2629392147064209,
-0.009113932028412819,
0.0043410686776041985,
-0.12100055068731308,
-0.040301818400621414,
0.09272528439760208,
0.1389191895723343,
0.14712496101856232,
-0.010118501260876656,
0.09167443215847015,
0.038883939385414124,
-0.16587889194488525,
0.05030570179224014,
0.02758118510246277,
0.033330392092466354,
-0.00820953119546175,
-0.02792515605688095,
-0.03397447243332863,
-0.000462975149275735,
0.08540939539670944,
-0.16583555936813354,
-0.06070059537887573,
0.08963627368211746,
0.03296998515725136,
-0.02292686514556408,
-0.058120980858802795,
-0.048040203750133514,
-0.038555726408958435,
0.11692462116479874,
0.00272611016407609,
-0.1023542508482933,
-0.05376475676894188,
-0.1034708172082901,
0.04281701147556305,
-0.043725740164518356,
0.05397804453969002,
-0.014381964690983295,
0.03716297447681427,
-0.04793643578886986,
-0.05172961577773094,
0.033572807908058167,
-0.12839831411838531,
-0.08989747613668442,
-0.01590047776699066,
0.11551332473754883,
-0.00792236253619194,
0.06978744268417358,
0.07276473939418793,
-0.04515170305967331,
-0.06071412190794945,
-0.15306515991687775,
-0.1090482771396637,
-0.12070400267839432,
0.07982245087623596,
-0.013446149416267872,
-0.08431118726730347,
-0.15491008758544922,
-0.06794718652963638,
-0.13438546657562256,
0.09544291347265244,
0.08964452147483826,
-0.04695641249418259,
0.09188776463270187,
0.2419726699590683,
0.0017216985579580069,
-0.25225192308425903,
-0.14688043296337128,
-0.07362287491559982,
-0.017090709879994392,
-0.027729738503694534,
-0.0589725524187088,
0.11445460468530655,
0.07505221664905548,
-0.0757993757724762,
-0.02054835483431816,
-0.2166108936071396,
-0.13572824001312256,
0.14889781177043915,
0.054845601320266724,
0.13065101206302643,
-0.17900432646274567,
-0.0789913460612297,
-0.042622897773981094,
-0.1441333144903183,
0.13066738843917847,
-0.22442391514778137,
0.057995833456516266,
0.001828833599574864,
-0.12706802785396576,
-0.02281709387898445,
-0.06200714781880379,
0.10617215186357498,
-0.009709712117910385,
0.01861417479813099,
-0.09548534452915192,
-0.054691169410943985,
0.18474218249320984,
0.011023275554180145,
0.1637907773256302,
-0.07307134568691254,
0.10208196938037872,
-0.05119328573346138,
-0.05167774111032486,
0.010129380971193314,
0.030021710321307182,
-0.038473308086395264,
-0.10640472173690796,
-0.11764530092477798,
0.07305808365345001,
-0.012054630555212498,
-0.0034006070345640182,
0.15222278237342834,
0.0011214176192879677,
-0.11495932191610336,
0.11422122269868851,
0.15914984047412872,
-0.19324879348278046,
0.10452602803707123,
-0.09491051733493805,
-0.04771896451711655,
0.05647451803088188,
-0.1008358970284462,
-0.00645827129483223,
0.07978794723749161,
0.005062025506049395,
0.07310135662555695,
0.024517402052879333,
-0.0012829066254198551,
0.035921934992074966,
0.08472172915935516,
-0.15237990021705627,
-0.04115348681807518,
-0.09737783670425415,
0.057650450617074966,
0.05085435137152672,
0.1266772598028183,
0.050536174327135086,
-0.10858476907014847,
-0.01742350310087204,
0.018636051565408707,
-0.01138481218367815,
-0.02465008571743965,
0.06956922262907028,
0.011523854918777943,
0.01814253255724907,
-0.09453775733709335,
0.07617293298244476,
0.07207933813333511,
0.07106684148311615,
-0.08059508353471756,
0.03399866074323654,
-0.18173344433307648,
-0.059125155210494995,
-0.16989345848560333,
0.07735190540552139,
-0.0620020367205143,
-0.13677600026130676,
-0.09970100969076157,
-0.1381368637084961,
-0.005373017396777868,
-0.0007975553162395954,
0.11962320655584335,
-0.001999097177758813,
0.028446078300476074,
-0.09068972617387772,
-0.03583838790655136,
0.06744468957185745,
0.09077969193458557,
0.037717513740062714,
-0.1381191909313202,
0.07163556665182114,
0.10557431727647781,
0.10237260907888412,
-0.07385274767875671,
0.02657807618379593,
-0.051156267523765564,
0.009219701401889324,
-0.07553988695144653,
0.059803009033203125,
-0.17047114670276642,
-0.041299231350421906,
-0.08062354475259781,
-0.09259513020515442,
-0.0847417563199997,
0.05387561768293381,
-0.034365661442279816,
0.023307669907808304,
-0.0058309840969741344,
0.0673002153635025,
-0.03745852783322334,
-0.03173503652215004,
0.08225679397583008,
-0.039145857095718384,
0.08005724102258682,
0.0659070536494255,
-0.07434260100126266,
0.027760455384850502,
-0.10298390686511993,
-0.025173429399728775,
0.015444371849298477,
0.09847645461559296,
-0.008600717410445213,
-0.08030455559492111,
-0.03376604616641998,
0.13958771526813507,
-0.004528900608420372,
0.01397054921835661,
0.037308044731616974,
-0.0838060975074768,
-0.06048521026968956,
-0.14693690836429596,
-0.04879720136523247,
-0.0191738773137331,
0.005469092633575201,
0.12608115375041962,
0.02009340561926365,
0.15281081199645996,
-0.024066820740699768,
0.039372507482767105,
-0.11606739461421967,
0.040670450776815414,
-0.04332168027758598,
-0.13110071420669556,
-0.13535480201244354,
-0.0930369421839714,
-0.015302913263440132,
-0.029576390981674194,
0.29395368695259094,
-0.021682174876332283,
-0.05832120403647423,
0.025483518838882446,
0.131623774766922,
0.07231447845697403,
-0.010857036337256432,
0.29648613929748535,
0.05806036293506622,
0.04826515540480614,
-0.045247092843055725,
0.06553220748901367,
-0.0331304594874382,
0.014797954820096493,
0.11587168276309967,
0.12312963604927063,
0.005785585381090641,
0.07409589737653732,
-0.013124341145157814,
0.004263668786734343,
-0.0447528213262558,
-0.02424447052180767,
-0.05166400596499443,
-0.004839232657104731,
0.012712892144918442,
0.11512583494186401,
0.259213924407959,
-0.05257626995444298,
0.05695560574531555,
0.0551275871694088,
-0.057927150279283524,
-0.06569838523864746,
-0.12397636473178864,
-0.09694040566682816,
-0.061506036669015884,
-0.059085652232170105,
-0.08662853389978409,
-0.034754782915115356,
0.068511463701725,
0.06368061155080795,
-0.04945053532719612,
0.14152035117149353,
-0.04634805768728256,
-0.05305398628115654,
0.039000604301691055,
-0.022241078317165375,
-0.0019856945145875216,
-0.04423443600535393,
-0.09147544205188751,
-0.018965208902955055,
0.00939482543617487,
-0.03128337860107422,
-0.016110291704535484,
-0.02871631272137165,
0.03180728852748871,
0.020929453894495964,
-0.028513452038168907,
-0.030487949028611183,
-0.05132284015417099,
0.10763151198625565,
0.1071397215127945,
0.008096884936094284,
-0.0023327080998569727,
0.04752185940742493,
0.2026904821395874,
0.022518938407301903,
-0.17669354379177094,
-0.05633791908621788,
0.05248071998357773,
0.015281318686902523,
-0.05055408179759979,
0.05872466787695885,
-0.01804492436349392,
0.05233721435070038,
0.3054788410663605,
0.2863720953464508,
-0.07518044114112854,
0.005574939772486687,
-0.025686996057629585,
0.004462047014385462,
0.07477574050426483,
-0.008402999490499496,
0.06979063898324966,
0.28471142053604126,
-0.03452686965465546,
-0.010836263187229633,
-0.14520162343978882,
0.0237902719527483,
-0.11734221130609512,
0.14633049070835114,
0.09345664829015732,
-0.08864159882068634,
-0.03047298640012741,
0.10129895061254501,
-0.02762002684175968,
-0.01677641086280346,
-0.10895621031522751,
-0.08608240634202957,
-0.061086203902959824,
0.0262768492102623,
-0.0007535009062848985,
0.07344599813222885,
-0.0033483824227005243,
-0.016515828669071198,
0.0923028215765953,
-0.07401268184185028,
0.0543416403234005,
-0.09283199906349182,
0.013691509142518044,
0.13385134935379028,
0.010765613988041878,
0.2344726175069809,
0.002203296637162566,
0.04251142218708992,
0.07612616568803787,
0.00872680265456438,
-0.05808683857321739,
0.1731196790933609,
0.01892155595123768,
-0.04716983437538147,
0.10281204432249069,
-0.09137389808893204,
0.013802759349346161,
-0.04652894660830498,
0.02750333771109581,
-0.05043233558535576,
0.08028742671012878,
0.12413708865642548,
-0.047716010361909866,
-0.08552327007055283,
0.13324326276779175,
-0.09074357151985168,
0.10232987999916077,
0.05517145246267319,
-0.09193974733352661,
-0.0005045011057518423,
-0.05503878369927406,
0.06127770245075226,
-0.017856089398264885,
-0.13904012739658356,
0.03327438607811928,
-0.12344568222761154,
0.011114953085780144,
-0.021558212116360664,
-0.01141363475471735,
-0.11165567487478256,
-0.04124455153942108,
-0.06889784336090088,
-0.05340832099318504,
-0.1378358155488968,
-0.05376921221613884,
0.11375419795513153,
0.0012525663478299975,
-0.01033898163586855,
-0.023289337754249573,
-0.037067994475364685,
0.01729435846209526,
-0.10544070601463318,
-0.12561310827732086
] |
null | null | transformers |
# Gandalf DialoGPT Model | {"tags": ["conversational"]} | text-generation | Laptop/DialoGPT-small-gandalf | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Gandalf DialoGPT Model | [
"# Gandalf DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Gandalf DialoGPT Model"
] | [
51,
9
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Gandalf DialoGPT Model"
] | [
-0.00460621016100049,
0.1131497472524643,
-0.007377896923571825,
0.10403112322092056,
0.1234591081738472,
0.0053472090512514114,
0.16734673082828522,
0.11113400012254715,
-0.024191226810216904,
-0.050235453993082047,
0.14147472381591797,
0.17374832928180695,
0.011733937077224255,
0.022198386490345,
-0.029490143060684204,
-0.3504922091960907,
0.035186078399419785,
0.026421932503581047,
-0.0921204686164856,
0.10529574751853943,
0.07343821972608566,
-0.007619699463248253,
0.08505943417549133,
-0.00766177661716938,
-0.10638485103845596,
-0.004496118985116482,
-0.009203296154737473,
-0.09580175578594208,
0.1542641818523407,
0.05589836835861206,
-0.011733349412679672,
-0.023313459008932114,
-0.06592471897602081,
-0.1270531266927719,
0.04724227637052536,
-0.030675917863845825,
-0.017084665596485138,
0.03495916724205017,
0.015342853963375092,
-0.043434564024209976,
0.18884336948394775,
0.13564030826091766,
0.004588625393807888,
0.025735430419445038,
-0.13440880179405212,
-0.06755173206329346,
0.02742592804133892,
0.0679701566696167,
-0.0006592888385057449,
0.09048527479171753,
-0.02265041507780552,
0.11403529345989227,
-0.016243746504187584,
0.10664872825145721,
0.11125865578651428,
-0.39968055486679077,
-0.05148051306605339,
0.17660769820213318,
0.04157522693276405,
0.12396489083766937,
-0.081522636115551,
0.07938007265329361,
-0.013491660356521606,
0.0323554091155529,
-0.03741776943206787,
-0.09615781158208847,
-0.11795090138912201,
0.04023265838623047,
-0.1091466099023819,
0.035852015018463135,
0.19416549801826477,
-0.0997980535030365,
0.05032339319586754,
-0.060295119881629944,
-0.0821363776922226,
0.014219047501683235,
-0.022646615281701088,
-0.06886877864599228,
-0.06267353892326355,
0.07074429839849472,
0.02563374862074852,
-0.10338679701089859,
-0.09132552146911621,
-0.015044694766402245,
-0.13389140367507935,
0.12590542435646057,
0.05910893529653549,
0.0581275075674057,
-0.21681106090545654,
0.11824807524681091,
-0.03351021930575371,
-0.06960809230804443,
-0.021827291697263718,
-0.07281529158353806,
-0.009254757314920425,
0.00857630092650652,
0.007253926247358322,
-0.011432142928242683,
0.03155769035220146,
0.19284285604953766,
0.012689546681940556,
0.033408358693122864,
-0.04037027806043625,
0.07750772684812546,
0.04085922613739967,
0.02690250426530838,
-0.012930345721542835,
-0.09768964350223541,
0.03800887614488602,
-0.09662877023220062,
0.054791923612356186,
-0.06991695612668991,
-0.1949336975812912,
-0.061280205845832825,
0.0023225415498018265,
0.039309412240982056,
0.022137563675642014,
0.10605164617300034,
0.017101019620895386,
-0.03633737191557884,
0.05713365226984024,
0.0005838759243488312,
-0.01225859671831131,
0.0020293663255870342,
-0.01706792414188385,
0.11154720187187195,
0.007104562595486641,
0.021614383906126022,
-0.12169289588928223,
0.053943172097206116,
-0.05383014306426048,
0.018748503178358078,
0.029469531029462814,
-0.06176181882619858,
0.01860296167433262,
0.024166876450181007,
-0.0015528658404946327,
-0.13261441886425018,
-0.16401541233062744,
0.02581726387143135,
0.007949343882501125,
-0.08364351093769073,
-0.10428491234779358,
-0.09974739700555801,
-0.05713500455021858,
0.01597749814391136,
-0.019052930176258087,
0.012956537306308746,
-0.043037742376327515,
0.07441737502813339,
-0.03828577697277069,
0.1370566189289093,
-0.09535866975784302,
0.05127450078725815,
-0.10738140344619751,
-0.04108767956495285,
-0.0804896354675293,
0.08953788876533508,
-0.0030834178905934095,
0.04695384204387665,
0.011799615807831287,
-0.03455916792154312,
-0.04610372707247734,
0.037143774330616,
-0.0524589940905571,
0.1780407726764679,
-0.1465904265642166,
-0.08785836398601532,
0.27364280819892883,
-0.10529017448425293,
-0.1866082400083542,
0.14749449491500854,
-0.009997260756790638,
0.054774001240730286,
0.1019631177186966,
0.20435383915901184,
0.0019123286474496126,
0.023100290447473526,
0.10274538397789001,
0.08608831465244293,
-0.07944673299789429,
0.008127938956022263,
0.03658723831176758,
0.015190929174423218,
-0.05177658796310425,
0.03792482614517212,
0.00911007635295391,
0.07040978223085403,
-0.006703962571918964,
-0.016700847074389458,
0.0037047970108687878,
0.008876058273017406,
0.05781126022338867,
-0.028141673654317856,
0.13755415380001068,
-0.059995852410793304,
-0.025661583989858627,
-0.10463643819093704,
0.0002251066907774657,
-0.04127488285303116,
0.09056096524000168,
-0.00512147881090641,
0.1049070954322815,
0.019593439996242523,
0.0791654884815216,
-0.12508417665958405,
-0.010133717209100723,
-0.03017987310886383,
0.1124357134103775,
0.06284242868423462,
0.09446145594120026,
0.06871743500232697,
0.02889222279191017,
-0.049836866557598114,
0.06823620200157166,
0.16815853118896484,
-0.03449784591794014,
-0.08621354401111603,
-0.13682137429714203,
0.06752511858940125,
-0.0629672259092331,
0.06575429439544678,
-0.10528282821178436,
0.041321106255054474,
0.016233770176768303,
0.09273680299520493,
-0.028000373393297195,
0.01569272018969059,
0.0009924957994371653,
-0.022767841815948486,
-0.08932660520076752,
-0.03777209669351578,
0.0933055430650711,
0.0053114378824830055,
-0.09579470008611679,
0.23412001132965088,
-0.18661560118198395,
0.11514696478843689,
0.18844285607337952,
-0.23562726378440857,
0.004645537585020065,
-0.08615560829639435,
-0.032945163547992706,
-0.012463530525565147,
0.06846268475055695,
-0.008126414380967617,
0.20710298418998718,
0.02152816578745842,
0.1799556016921997,
-0.03299377113580704,
-0.055573053658008575,
-0.06548352539539337,
-0.03873597830533981,
0.013585329055786133,
0.12083686888217926,
0.10954977571964264,
-0.09471899271011353,
0.16591253876686096,
0.06281638145446777,
0.01285959780216217,
0.1989755481481552,
0.10162375867366791,
0.018465086817741394,
0.05261732265353203,
-0.009915602393448353,
-0.016312487423419952,
-0.06617686152458191,
-0.2720363140106201,
-0.022636009380221367,
0.09089183807373047,
-0.000044819898903369904,
0.08634502440690994,
-0.1177721917629242,
-0.05302949622273445,
0.0027246414683759212,
-0.009751816280186176,
0.05398271232843399,
0.1520978808403015,
-0.020374011248350143,
0.12683804333209991,
-0.03150931000709534,
-0.07125429064035416,
0.06139340251684189,
0.007860809564590454,
-0.06915654987096786,
0.17656075954437256,
-0.13541632890701294,
-0.30423009395599365,
-0.10002188384532928,
-0.20794804394245148,
-0.08806388080120087,
0.05021306127309799,
0.08505034446716309,
-0.1202472522854805,
-0.014454866759479046,
-0.013682014308869839,
0.1025705486536026,
-0.1784762293100357,
-0.027358150109648705,
-0.07787293195724487,
-0.004314797930419445,
-0.17612019181251526,
-0.09081652015447617,
-0.03819951042532921,
-0.014087172225117683,
-0.0841885656118393,
0.14302858710289001,
-0.13169878721237183,
0.002548591000959277,
0.213802307844162,
0.027100462466478348,
0.06824927777051926,
-0.04536136984825134,
0.2325112521648407,
-0.08249329030513763,
0.021983947604894638,
0.10190591961145401,
-0.011717324145138264,
0.0727166086435318,
0.1207466870546341,
0.023063041269779205,
-0.06990478932857513,
0.002824747934937477,
-0.032633766531944275,
-0.08337754011154175,
-0.19988340139389038,
-0.06400222331285477,
-0.1320084035396576,
0.15760111808776855,
0.06374546885490417,
0.08850138634443283,
0.15267208218574524,
0.07417335361242294,
-0.011941826902329922,
0.027392378076910973,
0.09842611849308014,
0.10804754495620728,
0.26540398597717285,
-0.04679965227842331,
0.0976310446858406,
0.011697877198457718,
-0.12767644226551056,
0.06473664939403534,
0.11575727164745331,
0.10438727587461472,
0.058607831597328186,
0.0678510069847107,
-0.020579097792506218,
0.01497538574039936,
0.10904894769191742,
0.03608834743499756,
0.04561825096607208,
-0.025500640273094177,
-0.0418923981487751,
-0.05734262987971306,
0.008914070203900337,
0.07560605555772781,
0.019149649888277054,
-0.11067512631416321,
0.00275624543428421,
0.04348788782954216,
0.05517588183283806,
-0.020587924867868423,
0.07209046185016632,
-0.13969957828521729,
-0.025503646582365036,
0.0856671929359436,
-0.011570225469768047,
-0.11118893325328827,
0.12472975254058838,
0.039318010210990906,
-0.15119268000125885,
0.07064856588840485,
-0.05994023010134697,
0.09893705695867538,
-0.030644794926047325,
0.0679929107427597,
-0.08408012241125107,
-0.10547026246786118,
0.0003558758180588484,
0.08076029270887375,
-0.2821684777736664,
0.17951267957687378,
-0.03808591514825821,
-0.03410544991493225,
-0.04985491558909416,
-0.021032677963376045,
0.056860048323869705,
0.11849650740623474,
0.12979209423065186,
-0.0019196383655071259,
0.07829723507165909,
0.01881568692624569,
-0.00170033797621727,
0.016322525218129158,
0.046422455459833145,
-0.055369578301906586,
-0.0158549714833498,
-0.02669402025640011,
0.0019921984057873487,
-0.048932477831840515,
-0.033079806715250015,
0.04292672872543335,
-0.22484149038791656,
0.09117942303419113,
0.10809938609600067,
0.028686555102467537,
0.033663295209407806,
-0.06156184524297714,
-0.08281350135803223,
0.22607377171516418,
0.014403248205780983,
-0.1295873522758484,
-0.06308655440807343,
0.032366979867219925,
0.059771209955215454,
-0.0355374850332737,
-0.018700862303376198,
-0.09346245229244232,
0.04255778715014458,
-0.1265409141778946,
-0.142607644200325,
0.08159507811069489,
-0.05655594915151596,
-0.06316933780908585,
-0.027429254725575447,
0.1880079060792923,
-0.02114991471171379,
0.07580824196338654,
0.0037714382633566856,
0.03305105119943619,
-0.13178177177906036,
-0.09944485127925873,
-0.014336314052343369,
-0.054112762212753296,
-0.05475674569606781,
0.008005809970200062,
0.04339006543159485,
0.0872558206319809,
-0.07871737331151962,
-0.028180301189422607,
0.3180432915687561,
0.14157041907310486,
-0.041152141988277435,
0.16018512845039368,
0.06227409839630127,
-0.06818420439958572,
-0.23930665850639343,
-0.1138848066329956,
-0.10739355534315109,
-0.0559304840862751,
-0.059126634150743484,
-0.14686015248298645,
0.09206750988960266,
-0.05726713687181473,
0.0061450679786503315,
0.15972265601158142,
-0.3005811870098114,
-0.11088323593139648,
0.14024609327316284,
0.017290394753217697,
0.3640836775302887,
-0.1228390634059906,
-0.055082254111766815,
-0.015156857669353485,
-0.16496481001377106,
0.09070722758769989,
0.015410330146551132,
0.11901314556598663,
-0.0836920216679573,
0.18978270888328552,
0.03005683794617653,
-0.0068378145806491375,
0.1130145937204361,
0.07239632308483124,
-0.04066509008407593,
-0.08782052248716354,
-0.0776001363992691,
0.01842515356838703,
0.037652015686035156,
0.013590807095170021,
-0.06284631043672562,
-0.004790465347468853,
-0.08503337949514389,
-0.03819546848535538,
-0.09164988249540329,
-0.0015074126422405243,
-0.0014627352356910706,
-0.057050637900829315,
-0.021886419504880905,
-0.0017445459961891174,
-0.0035965461283922195,
0.03909335657954216,
0.1703273355960846,
-0.04901299625635147,
0.1574823409318924,
0.0260554738342762,
0.07109086215496063,
-0.13442687690258026,
-0.060555048286914825,
-0.03622489050030708,
-0.025915447622537613,
0.06509897112846375,
-0.06936880201101303,
-0.030921362340450287,
0.15102329850196838,
-0.020268825814127922,
0.045350465923547745,
0.1292015016078949,
0.013731560669839382,
0.0053041852079331875,
0.0570853166282177,
-0.24560818076133728,
-0.15736152231693268,
-0.052636634558439255,
-0.05197368562221527,
0.1274430900812149,
0.04840640723705292,
0.19958584010601044,
-0.06594612449407578,
-0.03397516533732414,
0.05736926943063736,
0.013749856501817703,
-0.0017229977529495955,
0.07987318933010101,
-0.015440300107002258,
0.006659801583737135,
-0.15620073676109314,
0.07459729164838791,
0.006896140519529581,
-0.10052015632390976,
0.03169224038720131,
0.18870747089385986,
-0.12493041157722473,
-0.10614178329706192,
-0.11547666788101196,
0.07271894812583923,
-0.10056423395872116,
0.0002751704305410385,
-0.0046763671562075615,
-0.1319015920162201,
0.05779172480106354,
-0.00038787536323070526,
0.061845242977142334,
0.05237482488155365,
-0.15944844484329224,
-0.03268345072865486,
-0.02349804900586605,
0.042672306299209595,
0.047068655490875244,
0.006903572473675013,
-0.058427393436431885,
0.0994153842329979,
-0.05051529407501221,
0.09632633626461029,
-0.06777458637952805,
-0.1200634092092514,
-0.0927400290966034,
0.03964018076658249,
-0.13151314854621887,
-0.0692918598651886,
-0.11806371062994003,
-0.04273033142089844,
-0.004625196103006601,
-0.035258129239082336,
-0.032276324927806854,
-0.031054425984621048,
-0.11201182752847672,
0.003935540094971657,
-0.0470658615231514,
-0.011552292853593826,
-0.06612269580364227,
-0.003940910566598177,
0.05805809050798416,
-0.03935599699616432,
0.13867168128490448,
0.16647858917713165,
-0.15514089167118073,
0.07677218317985535,
-0.1685427725315094,
-0.07516123354434967,
0.06984034180641174,
0.03165632486343384,
0.05344364419579506,
0.059440046548843384,
-0.025441037490963936,
0.017906736582517624,
0.03498870134353638,
0.07840894162654877,
0.053051963448524475,
-0.07841214537620544,
0.030624940991401672,
-0.05290471762418747,
-0.12006967514753342,
-0.000231156125664711,
-0.0226430706679821,
0.007653330452740192,
0.03761737421154976,
0.06373873353004456,
-0.0760762169957161,
0.08361746370792389,
-0.0737353041768074,
0.04220488294959068,
0.028027689084410667,
-0.15039730072021484,
-0.00910397619009018,
-0.07054219394922256,
0.02919093519449234,
-0.021660130470991135,
0.19487307965755463,
-0.01624002307653427,
0.00781339779496193,
0.018008975312113762,
0.07349169254302979,
0.01488073542714119,
-0.021530229598283768,
0.1621304750442505,
0.11021947860717773,
-0.08122758567333221,
-0.04515838623046875,
0.08057281374931335,
0.07687249779701233,
0.07451280206441879,
0.1162770465016365,
-0.07681170105934143,
-0.03407645598053932,
0.07622746378183365,
-0.039603374898433685,
0.06729553639888763,
-0.09732499718666077,
-0.10669039189815521,
0.04559433460235596,
0.05374941602349281,
-0.0527818463742733,
0.16816911101341248,
0.17918722331523895,
0.013131311163306236,
0.012708173133432865,
-0.01733400672674179,
-0.07395055890083313,
-0.1567104011774063,
-0.1784777045249939,
-0.05647404119372368,
-0.11609060317277908,
0.005330994725227356,
-0.14184488356113434,
0.04775647073984146,
-0.0017415538895875216,
0.12955868244171143,
-0.06126172095537186,
0.07519124448299408,
0.09107817709445953,
-0.08536062389612198,
0.0806393101811409,
-0.03553549572825432,
0.09202031046152115,
-0.011557330377399921,
0.044254809617996216,
-0.08543217927217484,
-0.008890951052308083,
-0.006461475044488907,
0.06062658876180649,
-0.02894883044064045,
0.01660233736038208,
-0.13762788474559784,
-0.07014933973550797,
-0.059105195105075836,
0.07127918303012848,
-0.029436225071549416,
0.1610472947359085,
0.05126805603504181,
-0.04614876210689545,
0.014419383369386196,
0.1970549076795578,
-0.052382491528987885,
-0.09264914691448212,
-0.031681641936302185,
0.16575223207473755,
0.021530043333768845,
0.05801204964518547,
-0.01118925865739584,
0.02923089638352394,
-0.11139746755361557,
0.27545517683029175,
0.3634028136730194,
-0.11353981494903564,
-0.012144984677433968,
0.02952711284160614,
0.04699595272541046,
0.12081082165241241,
0.047329820692539215,
0.09195783734321594,
0.3007553517818451,
-0.09227307140827179,
-0.0475301519036293,
-0.056458525359630585,
-0.026054421439766884,
-0.07386115193367004,
0.05792106315493584,
0.10494376718997955,
-0.059347741305828094,
-0.0452754832804203,
0.08314090967178345,
-0.252031147480011,
0.09283767640590668,
-0.16627268493175507,
-0.18303143978118896,
-0.05790427699685097,
0.010824799537658691,
0.028273558244109154,
0.0028769182972609997,
0.08227575570344925,
0.01287081465125084,
-0.07710790634155273,
0.10914352536201477,
0.010229930281639099,
-0.22411158680915833,
0.028085123747587204,
0.10111425817012787,
-0.0828917846083641,
0.001978249754756689,
-0.037217266857624054,
0.048161014914512634,
0.0860811322927475,
0.07358460128307343,
-0.014528268948197365,
-0.015057718381285667,
0.000730111263692379,
0.040068119764328,
-0.008920635096728802,
0.0557340569794178,
0.04994771629571915,
-0.1317262351512909,
0.09821461141109467,
-0.060323528945446014,
0.03660005331039429,
0.06039358675479889,
-0.007528811693191528,
-0.020978445187211037,
0.020991196855902672,
-0.042133674025535583,
0.03819144517183304,
0.11411964893341064,
-0.005739775486290455,
0.00021349964663386345,
-0.03667907044291496,
-0.07916922122240067,
-0.006765095517039299,
-0.027232836931943893,
-0.06285584717988968,
-0.13698558509349823,
-0.1051611453294754,
0.0030524462927132845,
-0.010489038191735744,
-0.20800088346004486,
-0.021541273221373558,
-0.1378927230834961,
0.04871266335248947,
-0.09494157880544662,
0.10229058563709259,
0.051117390394210815,
0.02578243613243103,
-0.009486589580774307,
-0.008693112060427666,
0.038259491324424744,
0.09200619906187057,
-0.1385052502155304,
-0.08123001456260681
] |
null | null | transformers |
## DeFormer
DeFormer är en modell som har tränats på att skilja mellan `de` och `dem` i svenska meningar. Modellen kan testas direkt i panelerna till höger under **Hosted Inference API** genom att skriva in en mening och trycka på **Compute**.
**Uppdatering 2023-05-06:** Modellen kan nu hantera även borttappade t:n i de**t**. Den nya versionen har tränats till att skilja mellan de, det och dem; samt enda och ända.
**Instruktioner:**
Använd endast de/dem/enda/ända med små bokstäver vid testning. Vid träning av modellen gjordes alla "De" och "Dem" om till gemener.
## Träningsdata
DeFormer har tränats på meningar från Europarlamentet och svenskspråkiga Wikimedia. Dessa hämtades från [OPUS](https://opus.nlpl.eu/). Källorna valdes ut för att de antogs ha ett korrekt språkbruk.
Endast meningar innehållandes `de`, `dem`, `det`, `enda` eller `ända` behölls i konstruktionen av träningsdataset. I tabellen nedan återfinns beskrivande statistik över antalet meningar som behölls från respektive dataset, samt frekvenser över förekomster av respektive ord.
| Datakälla | Meningar/dokument | # De | # Dem | # Det | # Enda | # Ända |
| ----------- | ----------- | ----------- | ----------- | -------------|---------- | --------- |
| [Europaparl sv.txt.gz](https://opus.nlpl.eu/download.php?f=Europarl/v8/mono/sv.txt.gz) | 1150556 | 461305 | 53726 | 824065 | 15553 | 1781 |
| [JRC-Acquis raw.sv.gz](https://opus.nlpl.eu/download.php?f=JRC-Acquis/mono/JRC-Acquis.raw.sv.gz) | 648387 | 399628 | 16539 | 326925 | 5975 | 267 |
| [Wikimedia sv.txt.gz](https://opus.nlpl.eu/download.php?f=wikimedia/v20210402/mono/sv.txt.gz) | 1615505 | 598371 | 38649 | 594038 | 24805 | 7063 |
| [Riksdagens anföranden](https://data.riksdagen.se/data/anforanden/) | 671031 | 497515 | 118069 | 659051 | 25912 | 4917 |
| [Riksdagens motioner (2014-2022)](https://data.riksdagen.se/data/dokument/) | 85124 | 85124 | 11773 | 104526 | 2740 | 453 |
| [SweDN (Superlim 2)](https://spraakbanken.gu.se/en/resources/swedn) | 93026 | 70254 | 16399 | 88087 | 5104 | 1236 |
| **Total** | **4286974** | **2112197** | **255155** | **2596692** | **80089** | **15717** |
Vid träningen av DeFormer introducerades slumpmässiga substitioner, där ovanstående ord byttes ut mot de former som de vanligen förväxlas med. Modellen utmanades sedan att klassificera huruvida ett givet ord tillhörde ett av följande kategorier
1. **`ord`** (alla bakgrundsord som inte är de/dem tillhör denna kategori)
2. **`DE`**
3. **`DEM`**
4. **`DET`**
5. **`ENDA`**
6. **`ÄNDA`**
Innan observationerna skickades in till modellträning byttes `de` ut mot `det` eller `dem` med cirka 50 procents sannolikhet, medan `dem` byttes till `de` i 40 procent av fallen. Liknande substutioner gjordes mellan `enda` och `ända`.
## Träffsäkerhet/Accuracy
DeFormer utvärderades på ett valideringsset bestående av 31200 meningar från samma datakälla (svenska wiki + europaparlamentet + JRC) som modellen tränats på. Slumpmässiga fel introducerades för att utmana modellen. 47 procent av förekommande `de` i ursprungsmeningarna ändrades till `dem`, medan 40 procent av förekommande `dem` ändrades till `de`. Tabellen nedan visar att DeFormer är väldigt träffsäker. De få "felaktiga" prediktioner som modellen outputtar är nästan samtliga `de/dem som`-konstruktioner med bisatser. Majoriteten av dessa är egentligen inte att anse som felaktiga, eftersom [båda formerna är accepterade](https://www4.isof.se/cgi-bin/srfl/visasvar.py?sok=dem%20som&svar=79718&log_id=705355).
**OBS:** Tabellen nedan gäller för den äldre varianten av DeFormer som endast skiljde mellan `de` och `dem`.
| | Accuracy |
| ----------- | ----------- |
| de | 99.9\% |
| dem | 98.6\% | | {"widget": [{"text": "dem har s\u00f6kt upp de f\u00f6r att prata.", "example_title": "de/dem exempel 1"}, {"text": "Jag s\u00e5g de komma runt h\u00f6rnet och g\u00e5 i riktning mot dem byggnaderna.", "example_title": "de/dem exempel 2"}, {"text": "de \u00e4r ganska tr\u00e5kigt att de blivit s\u00e5h\u00e4r, men de va de \u00e4nda jag kunde g\u00f6ra", "example_title": "enda/\u00e4nda och de(t)"}]} | token-classification | Lauler/deformer | [
"transformers",
"pytorch",
"bert",
"token-classification",
"doi:10.57967/hf/0612",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #token-classification #doi-10.57967/hf/0612 #autotrain_compatible #endpoints_compatible #region-us
| DeFormer
--------
DeFormer är en modell som har tränats på att skilja mellan 'de' och 'dem' i svenska meningar. Modellen kan testas direkt i panelerna till höger under Hosted Inference API genom att skriva in en mening och trycka på Compute.
Uppdatering 2023-05-06: Modellen kan nu hantera även borttappade t:n i det. Den nya versionen har tränats till att skilja mellan de, det och dem; samt enda och ända.
Instruktioner:
Använd endast de/dem/enda/ända med små bokstäver vid testning. Vid träning av modellen gjordes alla "De" och "Dem" om till gemener.
Träningsdata
------------
DeFormer har tränats på meningar från Europarlamentet och svenskspråkiga Wikimedia. Dessa hämtades från OPUS. Källorna valdes ut för att de antogs ha ett korrekt språkbruk.
Endast meningar innehållandes 'de', 'dem', 'det', 'enda' eller 'ända' behölls i konstruktionen av träningsdataset. I tabellen nedan återfinns beskrivande statistik över antalet meningar som behölls från respektive dataset, samt frekvenser över förekomster av respektive ord.
Vid träningen av DeFormer introducerades slumpmässiga substitioner, där ovanstående ord byttes ut mot de former som de vanligen förväxlas med. Modellen utmanades sedan att klassificera huruvida ett givet ord tillhörde ett av följande kategorier
1. 'ord' (alla bakgrundsord som inte är de/dem tillhör denna kategori)
2. 'DE'
3. 'DEM'
4. 'DET'
5. 'ENDA'
6. 'ÄNDA'
Innan observationerna skickades in till modellträning byttes 'de' ut mot 'det' eller 'dem' med cirka 50 procents sannolikhet, medan 'dem' byttes till 'de' i 40 procent av fallen. Liknande substutioner gjordes mellan 'enda' och 'ända'.
Träffsäkerhet/Accuracy
----------------------
DeFormer utvärderades på ett valideringsset bestående av 31200 meningar från samma datakälla (svenska wiki + europaparlamentet + JRC) som modellen tränats på. Slumpmässiga fel introducerades för att utmana modellen. 47 procent av förekommande 'de' i ursprungsmeningarna ändrades till 'dem', medan 40 procent av förekommande 'dem' ändrades till 'de'. Tabellen nedan visar att DeFormer är väldigt träffsäker. De få "felaktiga" prediktioner som modellen outputtar är nästan samtliga 'de/dem som'-konstruktioner med bisatser. Majoriteten av dessa är egentligen inte att anse som felaktiga, eftersom båda formerna är accepterade.
OBS: Tabellen nedan gäller för den äldre varianten av DeFormer som endast skiljde mellan 'de' och 'dem'.
| [] | [
"TAGS\n#transformers #pytorch #bert #token-classification #doi-10.57967/hf/0612 #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
49
] | [
"passage: TAGS\n#transformers #pytorch #bert #token-classification #doi-10.57967/hf/0612 #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.08486805856227875,
0.06796573102474213,
-0.007659206632524729,
0.04454497992992401,
0.1354026198387146,
0.038278840482234955,
0.08014584332704544,
0.0861060842871666,
0.06414823979139328,
-0.0036912886425852776,
0.1468573659658432,
0.24457113444805145,
-0.020719140768051147,
0.06421934068202972,
-0.10223414748907089,
-0.2698019742965698,
0.07144244760274887,
0.10113516449928284,
-0.03738278150558472,
0.10762530565261841,
0.07768973708152771,
-0.10283637791872025,
0.07942426204681396,
-0.01855839230120182,
-0.14139971137046814,
0.045560844242572784,
0.06426041573286057,
-0.10082867741584778,
0.11979899555444717,
0.03159880265593529,
0.17857497930526733,
0.04900028184056282,
-0.033496204763650894,
-0.0960734561085701,
0.021568121388554573,
0.00009558392048347741,
-0.07074825465679169,
0.06781822443008423,
0.06565099954605103,
-0.04886013641953468,
-0.006569849327206612,
0.06792818754911423,
0.0073243118822574615,
0.05919993296265602,
-0.13251866400241852,
-0.1396658718585968,
-0.058410581201314926,
0.07565885782241821,
0.06916818767786026,
0.05727722495794296,
0.025559838861227036,
0.19927500188350677,
-0.13100533187389374,
0.1038532629609108,
0.1500849425792694,
-0.2855759859085083,
0.0010837040608748794,
0.11480148136615753,
0.00030180587782524526,
-0.012838262133300304,
-0.03343314304947853,
0.029039423912763596,
0.055146608501672745,
0.0082426518201828,
-0.024917712435126305,
-0.07594607025384903,
-0.06693120300769806,
0.026393413543701172,
-0.08829404413700104,
-0.01363642793148756,
0.22165575623512268,
-0.0029840879142284393,
0.04118826985359192,
0.05508849397301674,
-0.10664666444063187,
-0.08066046983003616,
0.0007914473535493016,
-0.03402788192033768,
-0.021335311233997345,
0.026417208835482597,
0.061924465000629425,
0.04111441224813461,
-0.11426075547933578,
0.006180786993354559,
-0.2409224957227707,
0.2433861792087555,
0.018621589988470078,
0.06469783931970596,
-0.17097289860248566,
0.06867194920778275,
-0.00573805533349514,
-0.10583431273698807,
0.03799504041671753,
-0.07496270537376404,
0.021445391699671745,
-0.027804043143987656,
-0.030256405472755432,
0.020910954102873802,
0.037059955298900604,
0.15003037452697754,
0.05688805505633354,
0.05938621237874031,
-0.018845334649086,
0.08217114210128784,
0.01363718044012785,
0.1201862320303917,
-0.03363645449280739,
-0.018895551562309265,
0.046723317354917526,
-0.08974707126617432,
0.019572999328374863,
-0.051546137779951096,
-0.14196041226387024,
-0.05974816530942917,
0.07024823129177094,
0.07357756048440933,
-0.0030323988758027554,
0.06807129085063934,
-0.07115737348794937,
-0.032742906361818314,
0.11719977110624313,
-0.06511503458023071,
0.015171729028224945,
-0.0015030591748654842,
0.01301728468388319,
0.10564080625772476,
-0.020492995157837868,
0.0102321682497859,
-0.03488214686512947,
0.1456417441368103,
-0.09193770587444305,
-0.004280878230929375,
-0.02465817704796791,
-0.06716753542423248,
0.04306923970580101,
-0.13897113502025604,
0.0592038556933403,
-0.16819535195827484,
-0.062070898711681366,
0.04555121064186096,
0.009528976865112782,
-0.007739713881164789,
-0.022666260600090027,
0.002377402037382126,
-0.011031686328351498,
0.01655496284365654,
-0.050078604370355606,
-0.04470651596784592,
-0.0571843646466732,
0.07838253676891327,
0.013173893094062805,
0.051468007266521454,
-0.1290772259235382,
0.04453752189874649,
-0.09106709063053131,
0.02518492192029953,
-0.11995255202054977,
-0.042547065764665604,
-0.07602740079164505,
0.13607017695903778,
-0.023481909185647964,
-0.06049418821930885,
-0.034117892384529114,
0.005686160642653704,
-0.02065507136285305,
0.1469472050666809,
-0.06464126706123352,
-0.09723186492919922,
0.12770433723926544,
-0.1073698028922081,
-0.116763174533844,
0.07265225797891617,
0.007578488904982805,
-0.019397148862481117,
0.04548608511686325,
0.13591261208057404,
0.07621739059686661,
-0.05380651354789734,
0.042714037001132965,
0.097218818962574,
-0.12452339380979538,
-0.12530098855495453,
0.01778283715248108,
0.0032995117362588644,
-0.13227875530719757,
0.05272139236330986,
0.05455198884010315,
0.05930090323090553,
-0.06780432164669037,
-0.02973765879869461,
-0.01633274182677269,
-0.02865787222981453,
0.09676060825586319,
0.06235846132040024,
0.11097661405801773,
-0.058920204639434814,
0.01840653270483017,
0.022779010236263275,
0.03605237230658531,
0.05928763747215271,
0.015033603645861149,
-0.08944982290267944,
0.12974952161312103,
-0.08856214582920074,
-0.00936463475227356,
-0.1826900690793991,
-0.06925176829099655,
0.0048892260529100895,
0.07085948437452316,
-0.022122839465737343,
0.1326543539762497,
0.07317262887954712,
-0.050303865224123,
-0.02197180688381195,
-0.041510045528411865,
0.14838871359825134,
0.053158920258283615,
-0.06436802446842194,
-0.09667054563760757,
0.01892062835395336,
-0.05486626923084259,
-0.0011373746674507856,
-0.05963002145290375,
0.003244635183364153,
0.0992121547460556,
0.16201314330101013,
-0.0036582720931619406,
0.07889892160892487,
-0.029210872948169708,
0.04973021522164345,
-0.06904911249876022,
0.018407246097922325,
0.09650283306837082,
-0.015819881111383438,
-0.058212343603372574,
0.11523750424385071,
-0.12476594746112823,
0.3497503399848938,
0.19263949990272522,
-0.27177226543426514,
-0.004462120588868856,
-0.0010443433420732617,
-0.01656140573322773,
-0.008168457075953484,
0.0758238360285759,
0.015964249148964882,
0.032756268978118896,
-0.011750834062695503,
0.1595340371131897,
-0.02852248214185238,
-0.038726240396499634,
0.03555314615368843,
-0.049680761992931366,
-0.06884516775608063,
0.10908452421426773,
0.11788500845432281,
-0.23178821802139282,
0.17966051399707794,
0.24784523248672485,
0.008327103219926357,
0.10538381338119507,
0.0008776986505836248,
-0.0021427571773529053,
0.005855121649801731,
-0.05772211030125618,
-0.027916638180613518,
0.045377932488918304,
-0.17417936027050018,
-0.02499753050506115,
0.07774599641561508,
0.03137237951159477,
0.0474630631506443,
-0.14222653210163116,
-0.03298356384038925,
0.00903982575982809,
0.05662111937999725,
-0.04350261762738228,
0.09442698210477829,
0.03951748460531235,
0.11505383998155594,
0.008835172280669212,
-0.11301552504301071,
0.10336793959140778,
0.015022392384707928,
-0.07478994131088257,
0.17316775023937225,
-0.13510093092918396,
-0.261385977268219,
-0.13546963036060333,
-0.19230866432189941,
-0.04379459097981453,
0.035319507122039795,
0.05425408110022545,
-0.10664306581020355,
-0.05689241364598274,
0.06350059062242508,
-0.014138898812234402,
-0.112498439848423,
0.05582283064723015,
-0.03572412207722664,
0.034757163375616074,
-0.02757997065782547,
-0.06606835871934891,
-0.06926706433296204,
-0.05077655240893364,
-0.013909677974879742,
0.11512718349695206,
-0.09531501680612564,
0.06853505969047546,
0.14735902845859528,
0.001435092301107943,
0.06487064808607101,
-0.005821656435728073,
0.1574147641658783,
-0.061493292450904846,
-0.0028294825460761786,
0.17333796620368958,
-0.065517358481884,
0.07680237293243408,
0.15997086465358734,
0.03215295076370239,
-0.06382258981466293,
-0.02271472103893757,
-0.029374046251177788,
-0.0771622359752655,
-0.19305452704429626,
-0.10718647390604019,
-0.10569151490926743,
0.05833594873547554,
0.053930241614580154,
0.053444068878889084,
0.12805698812007904,
0.0907188281416893,
0.03504228964447975,
0.010838043875992298,
-0.09213469177484512,
0.06575273722410202,
0.23555795848369598,
-0.021210288628935814,
0.12627466022968292,
-0.05265846848487854,
-0.099220409989357,
0.06774601340293884,
0.03927789255976677,
0.0916614681482315,
0.11247516423463821,
-0.03298588842153549,
0.002028500195592642,
0.1806025356054306,
0.15197806060314178,
0.12803374230861664,
0.015252900309860706,
-0.05696163699030876,
-0.006368040572851896,
0.004162377677857876,
-0.042470697313547134,
0.032520271837711334,
0.07986662536859512,
-0.08995410054922104,
-0.06128702685236931,
-0.13417421281337738,
0.039033547043800354,
0.08633976429700851,
0.09436248242855072,
-0.2253304272890091,
-0.015480301342904568,
0.04826626554131508,
-0.0015665151877328753,
-0.07684772461652756,
0.07083351910114288,
-0.06582504510879517,
-0.10886162519454956,
0.07882161438465118,
-0.03542626276612282,
0.08150170743465424,
-0.041444867849349976,
0.0664299726486206,
-0.014708737842738628,
-0.08518704026937485,
0.02092091180384159,
0.08590241521596909,
-0.24301326274871826,
0.2697707712650299,
0.009632542729377747,
-0.08920590579509735,
-0.06814928352832794,
-0.02689373306930065,
0.040820952504873276,
0.20277616381645203,
0.07891666889190674,
0.02847897820174694,
-0.07132603228092194,
-0.19311639666557312,
-0.025379789993166924,
0.007482029963284731,
0.10392473638057709,
-0.014854075387120247,
-0.015612619929015636,
-0.029516618698835373,
-0.01928071863949299,
-0.004431338049471378,
-0.0019262534333392978,
0.02802143432199955,
-0.09840140491724014,
0.09432580322027206,
0.042029041796922684,
0.022881943732500076,
0.004616551101207733,
-0.06879350543022156,
-0.11283823847770691,
0.1990542709827423,
-0.10667925328016281,
-0.05198248475790024,
-0.10862982273101807,
-0.08023462444543839,
0.07940804958343506,
-0.10232588648796082,
0.055467575788497925,
-0.08501868695020676,
-0.007628878112882376,
-0.020737553015351295,
-0.16929802298545837,
0.15613879263401031,
-0.11143345385789871,
-0.06117197126150131,
-0.0710652694106102,
0.15730814635753632,
-0.07744066417217255,
0.0212615467607975,
-0.014454539865255356,
0.01925062946975231,
-0.07041966170072556,
-0.07224313169717789,
0.0430956594645977,
-0.03422855585813522,
0.07088585942983627,
0.017032716423273087,
-0.04434441030025482,
-0.010060864500701427,
-0.02845066227018833,
0.010901174508035183,
0.20048202574253082,
0.23423947393894196,
-0.07007594406604767,
0.09271761775016785,
0.1756468564271927,
-0.024784844368696213,
-0.2866666316986084,
-0.05489656701683998,
-0.12549065053462982,
-0.03832787275314331,
-0.056197043508291245,
-0.11263123899698257,
0.13648471236228943,
0.05475493520498276,
-0.04762079566717148,
0.12497297674417496,
-0.13449501991271973,
-0.08479122817516327,
0.21977393329143524,
0.010229910723865032,
0.4323659837245941,
-0.08485808223485947,
-0.07381433993577957,
-0.007746634539216757,
-0.21153394877910614,
0.09262175112962723,
0.048021722584962845,
0.06585068255662918,
-0.05549328774213791,
0.05118255689740181,
0.039964672178030014,
-0.06628475338220596,
0.1037503108382225,
0.00410434789955616,
0.04739319533109665,
-0.11668375134468079,
-0.1966085284948349,
0.03505333513021469,
-0.026960261166095734,
-0.01525372825562954,
0.061379916965961456,
0.03410210460424423,
-0.11197792738676071,
-0.012834668159484863,
-0.09177946299314499,
0.06699050962924957,
0.011840726248919964,
-0.0613759346306324,
-0.016880545765161514,
-0.008171532303094864,
-0.023026371374726295,
-0.029603997245430946,
0.2421463280916214,
-0.0058805691078305244,
0.11694755405187607,
0.10901802033185959,
0.09872961789369583,
-0.18789149820804596,
-0.00444082310423255,
-0.06699367612600327,
-0.08220221102237701,
0.0978594720363617,
-0.03875817731022835,
0.060394592583179474,
0.1570306420326233,
-0.015090388245880604,
0.04887888580560684,
0.10564344376325607,
0.039642058312892914,
-0.04391612112522125,
0.12623931467533112,
-0.22407495975494385,
0.031077539548277855,
-0.02253250777721405,
-0.014801018871366978,
0.08140172064304352,
0.12023432552814484,
0.11005232483148575,
0.036244768649339676,
-0.02413436770439148,
0.009160040877759457,
-0.022867215797305107,
-0.04114033654332161,
0.07038649171590805,
0.06479462236166,
0.03455963358283043,
-0.12086191773414612,
0.0586700402200222,
0.017024720087647438,
-0.16845448315143585,
-0.03185660019516945,
0.06556336581707001,
-0.1592981070280075,
-0.09308785200119019,
-0.08739367872476578,
0.07245512306690216,
-0.14914186298847198,
-0.054229412227869034,
-0.08222441375255585,
-0.12010370194911957,
0.07351689785718918,
0.2131398767232895,
0.11175578832626343,
0.0783991813659668,
-0.05133642256259918,
-0.03496403992176056,
-0.03087739087641239,
-0.029795126989483833,
-0.02133304253220558,
0.06489432603120804,
-0.1778351068496704,
0.0244278684258461,
-0.0124252550303936,
0.1573522388935089,
-0.07802169770002365,
-0.05205761268734932,
-0.14792492985725403,
0.03655164688825607,
-0.09281978011131287,
-0.06757786124944687,
-0.07840980589389801,
-0.0354292094707489,
0.01722162589430809,
-0.1132740005850792,
-0.0573296956717968,
-0.01945056952536106,
-0.12064875662326813,
0.04785161465406418,
0.036923348903656006,
0.01985454186797142,
-0.02904396317899227,
-0.03985984995961189,
0.10475742816925049,
-0.027176056057214737,
0.0967327430844307,
0.13546282052993774,
-0.04520484060049057,
0.0836806371808052,
-0.0580248199403286,
-0.11207251995801926,
0.11157010495662689,
0.025486595928668976,
0.10149429738521576,
0.011384231969714165,
0.010462610051035881,
0.07190549373626709,
0.012011067941784859,
0.04670463502407074,
0.06575318425893784,
-0.10424777865409851,
0.02988623082637787,
-0.006184422876685858,
-0.18726441264152527,
-0.04253389313817024,
-0.07124704122543335,
0.11066585779190063,
-0.00819470826536417,
0.1265171319246292,
-0.008251037448644638,
0.05631435662508011,
-0.05041620135307312,
0.007940859533846378,
-0.0220414437353611,
-0.19388502836227417,
-0.04169848561286926,
-0.057241491973400116,
0.0180068202316761,
-0.01885489746928215,
0.20865023136138916,
-0.04023091867566109,
-0.0027113354299217463,
0.04465341940522194,
0.05163741484284401,
-0.025130564346909523,
0.01937214471399784,
0.1573416143655777,
0.07907199114561081,
-0.04151330515742302,
-0.06220501661300659,
0.08806483447551727,
0.0027176353614777327,
0.00012362522829789668,
0.1238158568739891,
0.048286598175764084,
-0.005050875712186098,
0.05985128507018089,
0.011410177685320377,
-0.009274330921471119,
-0.15567582845687866,
-0.17643703520298004,
-0.07967861741781235,
0.06125592440366745,
0.04106973856687546,
0.08147062361240387,
0.14050820469856262,
-0.0063385250978171825,
0.026795916259288788,
-0.0645187646150589,
-0.026746271178126335,
-0.16405236721038818,
-0.09395857900381088,
-0.09169324487447739,
-0.09382317960262299,
0.020741427317261696,
-0.03396505117416382,
0.004423656966537237,
0.10102012753486633,
0.06244901940226555,
-0.03461027145385742,
0.09740552306175232,
0.017808720469474792,
-0.03233015164732933,
0.02813751995563507,
-0.0003381135466042906,
-0.014959333464503288,
-0.02815834805369377,
-0.023988613858819008,
-0.12883704900741577,
-0.04905218631029129,
-0.05301479250192642,
-0.014685035683214664,
-0.060114018619060516,
-0.027998540550470352,
-0.07296141237020493,
-0.10509709268808365,
-0.028639651834964752,
0.04079361632466316,
-0.028214924037456512,
0.08799735456705093,
-0.014370564371347427,
0.06494650989770889,
0.017880285158753395,
0.12456326931715012,
-0.07015980035066605,
-0.04477405920624733,
-0.034063920378685,
0.27681779861450195,
0.03720884025096893,
0.10092222690582275,
0.004299935419112444,
0.005531098693609238,
-0.047516316175460815,
0.28708383440971375,
0.24618589878082275,
-0.044530678540468216,
0.048667628318071365,
0.04751162230968475,
0.022701293230056763,
0.07514031231403351,
0.0894949734210968,
0.09288381040096283,
0.22092972695827484,
-0.07316848635673523,
-0.06152285262942314,
-0.0415305458009243,
-0.004184284247457981,
-0.05636128410696983,
0.07941204309463501,
0.0517464280128479,
-0.04029432311654091,
-0.09559588134288788,
0.041007909923791885,
-0.10728293657302856,
0.10965757817029953,
0.07239862531423569,
-0.18674054741859436,
-0.0813988670706749,
-0.0011089133331552148,
0.12124026566743851,
-0.014773918315768242,
0.0791589543223381,
-0.0480784997344017,
-0.09981387853622437,
0.04682059958577156,
0.01149451918900013,
-0.20041224360466003,
-0.0657256469130516,
0.09150762110948563,
-0.0170295350253582,
0.07148853689432144,
-0.024405771866440773,
0.06057792901992798,
0.10119358450174332,
0.06745836138725281,
-0.052878353744745255,
0.020763501524925232,
0.0239455197006464,
-0.09288623929023743,
-0.05071982368826866,
-0.005312150344252586,
0.025392968207597733,
-0.05703793093562126,
0.03090726211667061,
-0.184366375207901,
0.047357670962810516,
-0.05563237518072128,
-0.055318791419267654,
-0.016623783856630325,
0.04540577903389931,
-0.03322532773017883,
0.07747358828783035,
0.08659064769744873,
-0.0027512486558407545,
-0.05364847183227539,
-0.061172965914011,
-0.028390804305672646,
0.04963446035981178,
-0.09581650793552399,
-0.11675558984279633,
-0.08661825954914093,
-0.033179979771375656,
0.08803088963031769,
-0.0019758613780140877,
-0.08733633905649185,
-0.0439893901348114,
-0.06745553016662598,
0.006212969776242971,
-0.11313942819833755,
0.04763882979750633,
0.015609671361744404,
0.040742140263319016,
-0.007388617843389511,
-0.05169310048222542,
0.0252228956669569,
0.06402955204248428,
-0.13270603120326996,
-0.10431307554244995
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3793
- Accuracy: 0.8404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3542 | 1.0 | 125 | 0.3611 | 0.839 |
| 0.2255 | 2.0 | 250 | 0.3793 | 0.8404 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model-index": [{"name": "results", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metrics": [{"type": "accuracy", "value": 0.8404, "name": "Accuracy"}]}]}]} | text-classification | Lazaro97/results | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| results
=======
This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon\_reviews\_multi dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3793
* Accuracy: 0.8404
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
71,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.08700208365917206,
0.0994868278503418,
-0.002376699587330222,
0.12582293152809143,
0.171142578125,
0.036751314997673035,
0.16220171749591827,
0.11507460474967957,
-0.08503084629774094,
-0.005287930369377136,
0.11587105691432953,
0.1545402854681015,
0.02036583051085472,
0.12289277464151382,
-0.05518089979887009,
-0.24618281424045563,
-0.0018531560199335217,
0.030092554166913033,
-0.046363264322280884,
0.14976957440376282,
0.10801590979099274,
-0.1250077784061432,
0.10235647857189178,
0.006247921846807003,
-0.1681869775056839,
-0.01496038120239973,
0.022587403655052185,
-0.0692782774567604,
0.13317374885082245,
0.02704852819442749,
0.12357550114393234,
-0.0007899732445366681,
0.07582909613847733,
-0.19777917861938477,
0.01856212504208088,
0.04306720569729805,
0.007621831726282835,
0.09285315126180649,
0.028645755723118782,
-0.01815859228372574,
0.11320585757493973,
-0.05474350228905678,
0.07696537673473358,
0.017644429579377174,
-0.12040542811155319,
-0.2338421791791916,
-0.09155754745006561,
0.05099824443459511,
0.05821255221962929,
0.09833023697137833,
-0.006119126919656992,
0.1509655863046646,
-0.08167486637830734,
0.08963977545499802,
0.23493583500385284,
-0.28491365909576416,
-0.0688895434141159,
0.021884359419345856,
0.030673835426568985,
0.08525216579437256,
-0.09730427712202072,
-0.03488371893763542,
0.04817875847220421,
0.053847312927246094,
0.1267910897731781,
-0.033444516360759735,
-0.0986456349492073,
0.014154004864394665,
-0.14535050094127655,
-0.037340376526117325,
0.2102593183517456,
0.052104584872722626,
-0.0491541251540184,
-0.034109726548194885,
-0.03297628462314606,
-0.13782231509685516,
-0.04332894831895828,
0.00836306530982256,
0.06175569072365761,
-0.04849635064601898,
-0.08396949619054794,
-0.01553897000849247,
-0.10825127363204956,
-0.042508285492658615,
-0.0696210041642189,
0.12190236896276474,
0.03945663198828697,
0.02355603687465191,
-0.04136785492300987,
0.09988421201705933,
0.01800326444208622,
-0.11229164898395538,
0.01638779044151306,
0.008231783285737038,
-0.005656906869262457,
-0.04440121725201607,
-0.05541585013270378,
-0.07138244062662125,
0.011917115189135075,
0.14965279400348663,
-0.031225325539708138,
0.028543034568428993,
0.039027970284223557,
0.05874656140804291,
-0.08530770987272263,
0.2006676346063614,
-0.03921246528625488,
-0.01862970180809498,
0.0023699267767369747,
0.06457176059484482,
0.03684937208890915,
-0.01202414184808731,
-0.13392311334609985,
0.023090746253728867,
0.08366384357213974,
0.013875541277229786,
-0.053983572870492935,
0.052209652960300446,
-0.08000247180461884,
-0.05104649439454079,
-0.0015803129645064473,
-0.07308550179004669,
0.018331626430153847,
-0.01243736781179905,
-0.06838285177946091,
-0.023460686206817627,
0.019464949145913124,
0.03822393715381622,
-0.004990286659449339,
0.12960708141326904,
-0.09057244658470154,
0.027869505807757378,
-0.0821395069360733,
-0.09076271951198578,
0.03232482820749283,
-0.08150060474872589,
0.04194409027695656,
-0.10902705788612366,
-0.18558602035045624,
-0.02234000340104103,
0.06264268606901169,
-0.019160278141498566,
-0.08716733753681183,
-0.0311867818236351,
-0.061026446521282196,
0.006276224739849567,
-0.012658713385462761,
0.14893817901611328,
-0.07680050283670425,
0.10045672953128815,
0.018448742106556892,
0.052738480269908905,
-0.044931843876838684,
0.0456145703792572,
-0.1055966168642044,
-0.0007994623156264424,
-0.14383496344089508,
0.03056323528289795,
-0.04009358212351799,
0.07386671751737595,
-0.08730871975421906,
-0.10142756253480911,
0.018993813544511795,
0.0008453964837826788,
0.04378070682287216,
0.0840197503566742,
-0.16436858475208282,
-0.07369858026504517,
0.13838663697242737,
-0.05908191576600075,
-0.13594628870487213,
0.1294087916612625,
-0.0771687850356102,
0.0536700040102005,
0.0776100903749466,
0.160886749625206,
0.06201057881116867,
-0.06753662973642349,
0.033685341477394104,
-0.005141995847225189,
0.041714347898960114,
-0.06715057045221329,
0.09831234067678452,
0.009654294699430466,
-0.017041964456439018,
0.027534818276762962,
-0.050711534917354584,
0.045140720903873444,
-0.08558903634548187,
-0.09830337017774582,
-0.0393582358956337,
-0.10745860636234283,
0.06369456648826599,
0.06221801042556763,
0.06265302747488022,
-0.10574091970920563,
-0.07504937052726746,
0.05046888813376427,
0.09183834493160248,
-0.03792177513241768,
0.01999475434422493,
-0.053944673389196396,
0.07725630700588226,
-0.04023738577961922,
-0.018397558480501175,
-0.17211531102657318,
-0.02137046307325363,
0.013843217864632607,
-0.0215885192155838,
0.04070296883583069,
0.01532973162829876,
0.05154929682612419,
0.03409465402364731,
-0.06685152649879456,
-0.0011202477617189288,
-0.05197799578309059,
-0.005241766571998596,
-0.11376288533210754,
-0.21276667714118958,
-0.02328285574913025,
-0.015978340059518814,
0.15109407901763916,
-0.20327268540859222,
0.031020890921354294,
-0.05199269950389862,
0.07820747047662735,
0.03804290294647217,
-0.007561511360108852,
-0.02249547466635704,
0.07040569186210632,
-0.029041221365332603,
-0.04132775589823723,
0.07332854717969894,
0.015340017154812813,
-0.11060979962348938,
-0.003536551259458065,
-0.07311613112688065,
0.18392431735992432,
0.12867064774036407,
-0.09161365032196045,
-0.07103553414344788,
0.026987332850694656,
-0.04638233035802841,
-0.03368273004889488,
-0.07675760984420776,
0.04032280668616295,
0.17897501587867737,
0.012751135975122452,
0.13888688385486603,
-0.09600601345300674,
-0.04662704095244408,
0.0271640345454216,
-0.047503191977739334,
0.02968592196702957,
0.14003217220306396,
0.12011049687862396,
-0.08985406905412674,
0.14195796847343445,
0.17956504225730896,
-0.0845685601234436,
0.13438941538333893,
-0.045727264136075974,
-0.058078497648239136,
-0.02733679860830307,
-0.045860230922698975,
-0.01452030148357153,
0.10795670002698898,
-0.12202481925487518,
0.00819152407348156,
0.03823210299015045,
0.011542508378624916,
0.007894442416727543,
-0.220841646194458,
-0.04566241428256035,
0.03766149654984474,
-0.03835400193929672,
-0.01809580624103546,
-0.0017825699178501964,
0.014011901803314686,
0.10704617202281952,
0.01310418825596571,
-0.07685185223817825,
0.04711516946554184,
0.0077372160740196705,
-0.08596935123205185,
0.21183571219444275,
-0.07441002875566483,
-0.17757195234298706,
-0.13739146292209625,
-0.05462905392050743,
-0.05262818560004234,
-0.00406179903075099,
0.06191161647439003,
-0.07459276914596558,
-0.03109934739768505,
-0.07305019348859787,
-0.0023800795897841454,
-0.003549452405422926,
0.007917202077805996,
-0.010770102962851524,
0.014497854746878147,
0.055175360292196274,
-0.0967216044664383,
-0.011940468102693558,
-0.05010414496064186,
-0.02246546372771263,
0.03951361030340195,
0.0405210480093956,
0.1039227545261383,
0.15422174334526062,
-0.013934202492237091,
-0.00894192885607481,
-0.022405778989195824,
0.23055672645568848,
-0.08066631108522415,
-0.04367510601878166,
0.14111188054084778,
-0.0163925439119339,
0.04319426789879799,
0.13533200323581696,
0.07213948667049408,
-0.08694661408662796,
0.01575794257223606,
0.02847428247332573,
-0.0390801765024662,
-0.26894697546958923,
-0.034022364765405655,
-0.05043366551399231,
-0.006421158090233803,
0.07776890695095062,
0.0200387891381979,
0.0027495778631418943,
0.06714202463626862,
0.03613055497407913,
0.0761822983622551,
-0.025025619193911552,
0.0724017471075058,
0.12282358109951019,
0.045955050736665726,
0.1321251392364502,
-0.05193821340799332,
-0.05642131343483925,
0.06617751717567444,
-0.004355645272880793,
0.23071736097335815,
0.018108228221535683,
0.1439531296491623,
0.07447896152734756,
0.13757450878620148,
0.007778964005410671,
0.04474565386772156,
0.017672469839453697,
-0.02071199007332325,
-0.033836524933576584,
-0.023683538660407066,
-0.03732039034366608,
0.025095166638493538,
-0.047944385558366776,
0.05539260804653168,
-0.1218934953212738,
-0.011234074831008911,
0.06014161929488182,
0.262768030166626,
0.023477472364902496,
-0.3123079836368561,
-0.10170046985149384,
0.015714554116129875,
-0.055308420211076736,
-0.00005463085472001694,
0.029395120218396187,
0.0613604411482811,
-0.13169299066066742,
0.04066542163491249,
-0.0740976333618164,
0.10330117493867874,
-0.08764602988958359,
0.04324004426598549,
0.06450114399194717,
0.07437360286712646,
0.0009790807962417603,
0.08150774240493774,
-0.29978498816490173,
0.27532267570495605,
-0.008736930787563324,
0.04865380376577377,
-0.06252985447645187,
-0.028180640190839767,
0.03628745675086975,
0.054446153342723846,
0.05473126098513603,
0.0039159031584858894,
-0.03825440630316734,
-0.15811294317245483,
-0.041434962302446365,
0.027485307306051254,
0.06121610850095749,
-0.026725364848971367,
0.081423819065094,
-0.03730543330311775,
0.004455366171896458,
0.05047718435525894,
0.001474451390095055,
-0.052956532686948776,
-0.09164655953645706,
-0.0009241093648597598,
0.02331610955297947,
-0.04978277161717415,
-0.06879598647356033,
-0.12767498195171356,
-0.0789361521601677,
0.1160062924027443,
-0.01738147996366024,
-0.0485377199947834,
-0.09030980616807938,
0.06109326705336571,
0.08138199150562286,
-0.08051466941833496,
0.03593951463699341,
-0.002739695366472006,
0.08988860249519348,
0.02679605595767498,
-0.047457512468099594,
0.09062463790178299,
-0.05677734687924385,
-0.1908285766839981,
-0.06520054489374161,
0.1090390607714653,
0.023711450397968292,
0.07031859457492828,
-0.026397928595542908,
0.009784568101167679,
-0.06215127557516098,
-0.08368155360221863,
0.012429919093847275,
0.006671557668596506,
0.07080494612455368,
0.04549620673060417,
-0.03799358010292053,
0.01203010231256485,
-0.08376436680555344,
-0.06335834413766861,
0.1894311010837555,
0.22169318795204163,
-0.08695724606513977,
0.04031006246805191,
0.037616241723299026,
-0.07353144139051437,
-0.1540856957435608,
0.010377133265137672,
0.05916230380535126,
0.0006737462827004492,
0.06687473505735397,
-0.1475459337234497,
0.11889341473579407,
0.0947883203625679,
-0.020849676802754402,
0.11319177597761154,
-0.32210829854011536,
-0.13358552753925323,
0.10200092196464539,
0.1375252604484558,
0.14056244492530823,
-0.13257193565368652,
-0.020170576870441437,
-0.04353226348757744,
-0.1476873755455017,
0.13735029101371765,
-0.10203228145837784,
0.1287781000137329,
-0.030782824382185936,
0.1102219969034195,
0.0031317411921918392,
-0.04752139002084732,
0.1288173943758011,
0.01987392269074917,
0.09921771287918091,
-0.05703672021627426,
-0.029247568920254707,
0.032737426459789276,
-0.040711428970098495,
0.01758519373834133,
-0.09369727969169617,
0.030131353065371513,
-0.09266269207000732,
-0.031397975981235504,
-0.07150927931070328,
0.023609068244695663,
-0.04101251810789108,
-0.04764673858880997,
-0.04161355271935463,
0.038512445986270905,
0.03375794366002083,
-0.012358990497887135,
0.16535590589046478,
0.024552393704652786,
0.1359965205192566,
0.07446383684873581,
0.08992191404104233,
-0.06318090856075287,
-0.09795128554105759,
-0.0471341572701931,
-0.030825907364487648,
0.047910526394844055,
-0.17105786502361298,
0.02741828002035618,
0.13192114233970642,
0.011434259824454784,
0.15614619851112366,
0.06289361417293549,
-0.039232343435287476,
0.007257265970110893,
0.060017187148332596,
-0.14617328345775604,
-0.0927916094660759,
-0.007270792033523321,
-0.05527923256158829,
-0.13531219959259033,
0.03301055729389191,
0.12099903076887131,
-0.06782691925764084,
-0.033183179795742035,
-0.006760403513908386,
0.018246475607156754,
-0.050796251744031906,
0.17805954813957214,
0.07973286509513855,
0.048323482275009155,
-0.10709946602582932,
0.10741866379976273,
0.07116647064685822,
-0.06988156586885452,
0.003943779971450567,
0.05936453863978386,
-0.09223632514476776,
-0.05776161327958107,
0.058582670986652374,
0.1802459955215454,
-0.08151855319738388,
-0.055846475064754486,
-0.14399291574954987,
-0.12400598078966141,
0.08341310918331146,
0.13281936943531036,
0.11680532991886139,
0.011420821771025658,
-0.038392648100852966,
-0.02348676696419716,
-0.08121208846569061,
0.10716230422258377,
0.07361234724521637,
0.0659182071685791,
-0.15460292994976044,
0.07360323518514633,
0.02975309267640114,
0.05272964760661125,
-0.01478168647736311,
0.0371345579624176,
-0.10436312854290009,
0.014539306983351707,
-0.14081814885139465,
0.0022320200223475695,
-0.017770439386367798,
0.02378620207309723,
-0.0034365986939519644,
-0.0678773745894432,
-0.0724259540438652,
0.014366552233695984,
-0.12223313748836517,
-0.022933462634682655,
0.037971381098032,
0.07981913536787033,
-0.09664686024188995,
-0.03867397457361221,
0.04218382015824318,
-0.048222899436950684,
0.07354822009801865,
0.04109307378530502,
0.014890431426465511,
0.06568340212106705,
-0.12323684990406036,
0.03164050355553627,
0.03370248153805733,
0.02042454667389393,
0.04732903093099594,
-0.13149283826351166,
-0.0028286324813961983,
0.0005915784277021885,
0.06509817391633987,
0.02362491376698017,
0.07758110761642456,
-0.15546277165412903,
-0.011845709756016731,
0.009274037554860115,
-0.08403471112251282,
-0.04909788817167282,
0.013579824939370155,
0.06438335031270981,
0.030832013115286827,
0.22998280823230743,
-0.06679684668779373,
0.03830918297171593,
-0.19602210819721222,
0.011841483414173126,
-0.026475876569747925,
-0.12175314873456955,
-0.14745457470417023,
-0.07429337501525879,
0.04339134693145752,
-0.06696637719869614,
0.1692255437374115,
0.038181643933057785,
0.07299073040485382,
0.029359180480241776,
0.021328624337911606,
-0.0019736122339963913,
0.017843466252088547,
0.15569151937961578,
0.016850177198648453,
-0.0385357141494751,
0.054207440465688705,
0.029498573392629623,
0.0997934639453888,
0.09189300984144211,
0.18482990562915802,
0.177174374461174,
0.030581701546907425,
0.08470489829778671,
0.03549975901842117,
-0.01963348686695099,
-0.12318014353513718,
0.04167177528142929,
-0.015367982909083366,
0.11384707689285278,
-0.013019912876188755,
0.21953104436397552,
0.07774960994720459,
-0.16390360891819,
0.04640495777130127,
-0.0634671300649643,
-0.07480009645223618,
-0.10762564092874527,
-0.06652063876390457,
-0.0956379771232605,
-0.1499703824520111,
0.0006638942868448794,
-0.12002646178007126,
-0.00003808859037235379,
0.11622800678014755,
0.0029278132133185863,
-0.043462008237838745,
0.09003597497940063,
0.010867726057767868,
0.0037957627791911364,
0.08040738105773926,
0.009819505736231804,
-0.046677786856889725,
-0.08990516513586044,
-0.06345836073160172,
-0.020928392186760902,
-0.013758840039372444,
0.021909717470407486,
-0.05703682452440262,
-0.0587458573281765,
0.023176761344075203,
-0.028106026351451874,
-0.10646557062864304,
0.02174787037074566,
0.009788949973881245,
0.0733138844370842,
0.03463931009173393,
0.010893939062952995,
0.026764320209622383,
0.00802495889365673,
0.2649359107017517,
-0.058639947324991226,
-0.07068568468093872,
-0.12773792445659637,
0.22668133676052094,
0.02400570549070835,
-0.04173964634537697,
0.03614291548728943,
-0.06769814342260361,
0.0011237477883696556,
0.24829205870628357,
0.2263038456439972,
-0.09490398317575455,
-0.019746772944927216,
0.011986459605395794,
-0.007584148086607456,
-0.013415728695690632,
0.10745739936828613,
0.10931878536939621,
0.008156578987836838,
-0.08206355571746826,
-0.01506244856864214,
-0.05933893471956253,
-0.00105856207665056,
-0.01555683184415102,
0.0685846358537674,
0.040148280560970306,
-0.007201014552265406,
-0.041930753737688065,
0.07940072566270828,
-0.0924224928021431,
-0.1174686923623085,
0.03209272027015686,
-0.2101440578699112,
-0.1829909384250641,
-0.02422948181629181,
0.09232495725154877,
0.017934788018465042,
0.05786514654755592,
-0.016809647902846336,
-0.01205502636730671,
0.07161576300859451,
-0.016361655667424202,
-0.10285918414592743,
-0.10213644802570343,
0.10783683508634567,
-0.0924535021185875,
0.20134499669075012,
-0.04657701030373573,
0.05608891323208809,
0.12046187371015549,
0.0636628121137619,
-0.07441753149032593,
0.05979449301958084,
0.04439791664481163,
-0.02446291223168373,
0.043977390974760056,
0.08383888751268387,
-0.024705125018954277,
0.06854235380887985,
0.06165404990315437,
-0.10830334573984146,
0.004025823902338743,
-0.06833086907863617,
-0.042075954377651215,
-0.05492795258760452,
-0.011134050786495209,
-0.07709599286317825,
0.12711603939533234,
0.22341911494731903,
-0.05003565177321434,
-0.014641817659139633,
-0.06069831922650337,
0.022965844720602036,
0.06681426614522934,
0.015602806583046913,
-0.05343987047672272,
-0.21018347144126892,
0.009454065933823586,
0.06321214139461517,
-0.007861503399908543,
-0.2632138431072235,
-0.07203254103660583,
-0.002766986144706607,
-0.06457961350679398,
-0.0696476623415947,
0.08510375767946243,
0.08022560179233551,
0.0395769402384758,
-0.05984027683734894,
-0.04655046761035919,
-0.07181588560342789,
0.15051180124282837,
-0.15011002123355865,
-0.09080598503351212
] |
null | null | transformers |
# LeBenchmark: wav2vec2 base model trained on 1K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-1K-base | [
"transformers",
"pytorch",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 base model trained on 1K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 base model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 base model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
51,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 base model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.030394569039344788,
0.07789523154497147,
-0.0024868142791092396,
0.018176570534706116,
0.027899673208594322,
0.001474012853577733,
0.0897999033331871,
0.080659881234169,
-0.08697448670864105,
0.05953337624669075,
-0.024893561378121376,
-0.15881240367889404,
0.05638692528009415,
0.02553301304578781,
0.08993253856897354,
-0.3312523066997528,
0.018042663112282753,
-0.11785813421010971,
-0.021557604894042015,
0.008259707130491734,
0.1466185301542282,
-0.05525709688663483,
0.06412319839000702,
0.05793653056025505,
0.025504952296614647,
0.01931285671889782,
-0.07661150395870209,
-0.0783119797706604,
0.08879797905683517,
0.11249656230211258,
-0.010465293191373348,
0.020408477634191513,
0.06659911572933197,
-0.19683989882469177,
-0.008238476701080799,
0.025191305205225945,
0.022789383307099342,
0.03069288283586502,
0.06887199729681015,
0.004499540198594332,
0.08486246317625046,
-0.17139238119125366,
0.014649894088506699,
0.04711968079209328,
-0.007153686601668596,
-0.32835686206817627,
-0.11673711240291595,
0.06516432017087936,
0.0026772641576826572,
0.04048936069011688,
0.00026252135285176337,
0.025713127106428146,
-0.13595925271511078,
-0.0035193120129406452,
0.15101198852062225,
-0.21499842405319214,
-0.005602166056632996,
-0.057686690241098404,
0.05998789891600609,
0.09884306788444519,
-0.1229657530784607,
-0.005445699207484722,
-0.01747838966548443,
0.009805187582969666,
-0.03749415650963783,
-0.004812475293874741,
-0.07814846187829971,
-0.03232969716191292,
-0.10534342378377914,
0.058645159006118774,
0.160710871219635,
0.03084566816687584,
-0.09358614683151245,
-0.17011339962482452,
0.06383570283651352,
0.045890163630247116,
-0.09587960690259933,
-0.019976146519184113,
0.07412806898355484,
-0.05821004509925842,
0.03002161532640457,
-0.04446530342102051,
-0.07963842153549194,
0.025101596489548683,
-0.05871588736772537,
0.15772832930088043,
0.04078730195760727,
0.05834527313709259,
-0.009608290158212185,
-0.037782177329063416,
-0.21935905516147614,
-0.04342394694685936,
-0.07434264570474625,
-0.10404210537672043,
-0.005095029249787331,
-0.0035416518803685904,
-0.061684444546699524,
-0.0044868867844343185,
0.09408533573150635,
0.14889176189899445,
-0.134762704372406,
0.036824632436037064,
-0.036074891686439514,
-0.011006095446646214,
0.03393322601914406,
0.09338321536779404,
-0.05802951753139496,
-0.06845372915267944,
0.0022818585857748985,
-0.045781783759593964,
-0.015190208330750465,
0.043060824275016785,
-0.04818279668688774,
-0.02214866690337658,
-0.10114368796348572,
0.05267384648323059,
-0.006905977614223957,
0.010205918923020363,
0.04186704382300377,
-0.03476817533373833,
0.1865120828151703,
-0.126383438706398,
0.029355430975556374,
0.05911392718553543,
-0.007666938938200474,
0.07709403336048126,
-0.05065848305821419,
0.03444116935133934,
-0.03635435551404953,
0.010539626702666283,
-0.02006954699754715,
-0.019213685765862465,
-0.02341855876147747,
-0.0875951424241066,
0.04936935007572174,
0.0671367198228836,
-0.050692278891801834,
-0.06528498232364655,
0.024162311106920242,
-0.02103428728878498,
-0.007747558411210775,
-0.07866111397743225,
-0.00922334659844637,
-0.029791345819830894,
-0.0699349120259285,
0.04729805886745453,
-0.008742687292397022,
0.056705694645643234,
-0.029264487326145172,
-0.057702209800481796,
-0.027028245851397514,
0.08939974755048752,
-0.0914749950170517,
0.03409823030233383,
0.0016830177046358585,
0.00605146586894989,
-0.12962797284126282,
0.10406729578971863,
-0.10990513116121292,
-0.08017202466726303,
-0.10651908814907074,
-0.08423610776662827,
-0.06576863676309586,
0.018527120351791382,
-0.01329696737229824,
0.06391564756631851,
-0.15665225684642792,
-0.07461380213499069,
0.19018439948558807,
-0.11502570658922195,
-0.009035032242536545,
0.20612739026546478,
0.022738737985491753,
-0.004184960853308439,
0.05754496157169342,
0.1669524759054184,
0.1609000265598297,
-0.11406499892473221,
-0.059092458337545395,
0.10056733340024948,
0.05173349007964134,
0.09573519229888916,
0.15324202179908752,
-0.07826310396194458,
0.1305130571126938,
0.02365073747932911,
0.017776811495423317,
-0.047179970890283585,
-0.028041306883096695,
-0.0700245052576065,
0.03862447291612625,
-0.03371517360210419,
0.1326386034488678,
-0.07074324041604996,
0.012575002387166023,
-0.03775831684470177,
-0.07711664587259293,
-0.00008113882358884439,
0.13157163560390472,
-0.04795411229133606,
0.05140950158238411,
-0.07792393118143082,
-0.0743170827627182,
0.09095170348882675,
-0.0018501090817153454,
-0.09225685149431229,
-0.05071612447500229,
0.04098345711827278,
-0.12239088863134384,
0.044250357896089554,
0.12954933941364288,
0.06693031638860703,
0.039803702384233475,
-0.061262134462594986,
0.10571020841598511,
-0.026099475100636482,
-0.005148140247911215,
0.008980746380984783,
-0.1305055171251297,
-0.029868479818105698,
-0.054092299193143845,
0.13153111934661865,
-0.1402154564857483,
-0.036301180720329285,
0.08804941922426224,
0.045776933431625366,
0.03084157034754753,
0.014303234405815601,
-0.06461220979690552,
0.05015614256262779,
0.04897093027830124,
0.013712877407670021,
0.009937821887433529,
-0.052866674959659576,
0.003967067692428827,
0.11369172483682632,
-0.05662841349840164,
-0.03946729004383087,
0.051726002246141434,
0.09933742135763168,
-0.02947666496038437,
0.032831624150276184,
-0.06890693306922913,
-0.03185952827334404,
0.009182057343423367,
-0.09157771617174149,
0.19282813370227814,
0.01985257677733898,
0.0716116651892662,
-0.06928808242082596,
-0.03452034294605255,
0.026700247079133987,
-0.011886580847203732,
-0.05862608551979065,
0.06554964184761047,
-0.03634222596883774,
0.00977956224232912,
0.013161642476916313,
0.0681609958410263,
0.004314367193728685,
0.14837169647216797,
-0.03558563068509102,
-0.0659673810005188,
-0.01200028695166111,
0.002495706547051668,
-0.015769463032484055,
0.04739733785390854,
-0.06091844663023949,
-0.01672123745083809,
0.05502437427639961,
0.054133422672748566,
0.0604369193315506,
-0.04964622110128403,
0.06065141409635544,
-0.008742237463593483,
-0.08967866003513336,
-0.04269310086965561,
0.022683963179588318,
0.008596512489020824,
0.09968680888414383,
0.1038234531879425,
0.025036275386810303,
-0.0007616382208652794,
-0.054993823170661926,
-0.09544990211725235,
0.11112863570451736,
-0.13940191268920898,
-0.21581688523292542,
-0.13034796714782715,
-0.006830064579844475,
-0.09974946826696396,
-0.019128086045384407,
0.034355226904153824,
-0.10572206974029541,
-0.06875783205032349,
-0.08731275051832199,
0.11228097975254059,
-0.08702493458986282,
0.011579882353544235,
0.06815764307975769,
0.040255844593048096,
0.025850389152765274,
-0.15037758648395538,
0.0013959679054096341,
-0.04067565128207207,
-0.11050359904766083,
-0.0438222661614418,
0.07223215699195862,
-0.02343517355620861,
0.0450022853910923,
0.005352345760911703,
-0.0453055314719677,
-0.01827152445912361,
0.18347693979740143,
-0.033716995269060135,
0.012326538562774658,
0.12932227551937103,
-0.02645435929298401,
0.039141517132520676,
0.1078144758939743,
0.062121953815221786,
0.00014692584227304906,
-0.029470494017004967,
0.05942363291978836,
-0.015117357484996319,
-0.19715610146522522,
-0.13297702372074127,
-0.058074094355106354,
0.014862464740872383,
-0.043003156781196594,
0.02158467285335064,
-0.025002766400575638,
-0.03230983763933182,
-0.06975577771663666,
0.02300717867910862,
0.05841219425201416,
0.019499147310853004,
0.2464749962091446,
-0.004930271301418543,
0.03528527542948723,
-0.11941330134868622,
-0.044152867048978806,
0.1052931696176529,
-0.061544548720121384,
0.17080903053283691,
0.007777747698128223,
0.13666293025016785,
0.07535792887210846,
0.028200192376971245,
0.0404873751103878,
0.019087936729192734,
-0.055744145065546036,
-0.009961395524442196,
-0.02964760549366474,
-0.11004699021577835,
0.03863449767231941,
0.04808402433991432,
0.07353249192237854,
-0.10896948724985123,
-0.08361712098121643,
-0.09434561431407928,
0.04629223421216011,
0.13881564140319824,
0.07844068109989166,
-0.11960954964160919,
-0.07188514620065689,
0.02432306669652462,
-0.0854974240064621,
-0.011567994952201843,
-0.0023401854559779167,
0.16061677038669586,
-0.15434204041957855,
0.10653367638587952,
0.05472484976053238,
0.022044528275728226,
-0.054575126618146896,
0.04546082764863968,
0.034224532544612885,
0.11335241049528122,
0.025622282177209854,
0.09255089610815048,
-0.046091753989458084,
0.10971978306770325,
0.031907595694065094,
0.016833726316690445,
-0.07856103777885437,
0.028573842719197273,
0.012045271694660187,
-0.04330489784479141,
0.0808553397655487,
0.018222913146018982,
-0.11775093525648117,
0.023799223825335503,
-0.07332593947649002,
0.054292649030685425,
0.1670965850353241,
-0.031134309247136116,
0.06940259039402008,
-0.011928262189030647,
-0.053661588579416275,
-0.0007524870452471077,
0.04485968127846718,
-0.17916883528232574,
-0.17080484330654144,
0.07976770401000977,
0.03401188179850578,
-0.02608955278992653,
-0.051487162709236145,
-0.06782758235931396,
-0.11863628029823303,
0.14109213650226593,
-0.0864710733294487,
-0.05658087134361267,
-0.048336904495954514,
-0.08077533543109894,
0.19778767228126526,
-0.06538445502519608,
0.05724596977233887,
0.03961993381381035,
0.1783631443977356,
-0.010193428955972195,
-0.09044885635375977,
-0.005256420001387596,
-0.10536211729049683,
-0.15432186424732208,
-0.011767025105655193,
0.17485834658145905,
0.03638210520148277,
0.0277108047157526,
-0.0006990348920226097,
0.007535261567682028,
0.02092893049120903,
-0.1356951892375946,
-0.03217199072241783,
0.10581716895103455,
-0.03924624249339104,
0.05575002729892731,
-0.09076330065727234,
-0.11737609654664993,
-0.00957710575312376,
-0.0058450824581086636,
0.1273498237133026,
0.25100716948509216,
-0.08210542798042297,
0.24633973836898804,
0.14728476107120514,
-0.05187350511550903,
-0.23677998781204224,
-0.029572417959570885,
0.12386219948530197,
-0.0384642668068409,
0.014364170841872692,
-0.19312642514705658,
0.05500321462750435,
0.04555608704686165,
-0.0308168176561594,
0.020688636228442192,
-0.18456707894802094,
-0.10768162459135056,
-0.003968968987464905,
-0.11095109581947327,
0.11487777531147003,
-0.03811775520443916,
-0.05807207524776459,
-0.07840094715356827,
-0.055954791605472565,
0.14586463570594788,
-0.057898424565792084,
0.06338084489107132,
0.010863672010600567,
-0.00007642966374987736,
0.03009016439318657,
0.026259468868374825,
0.12133267521858215,
0.059274643659591675,
-0.03276042267680168,
-0.056912414729595184,
0.04872703179717064,
0.04981646686792374,
-0.005725047551095486,
0.08922994136810303,
0.008871767669916153,
-0.031208032742142677,
-0.08987665176391602,
-0.018971968442201614,
-0.09461171925067902,
0.028728341683745384,
-0.047540418803691864,
0.02640116773545742,
-0.0746549665927887,
0.05340384319424629,
0.044796813279390335,
0.00412857485935092,
-0.062318503856658936,
0.006790506653487682,
-0.02108326181769371,
0.13475655019283295,
0.16123425960540771,
0.03762904927134514,
-0.022789519280195236,
0.04004110023379326,
-0.02960364706814289,
0.022243887186050415,
-0.061303310096263885,
0.06095731258392334,
0.038775283843278885,
-0.019482232630252838,
0.05828506126999855,
0.007227386813610792,
-0.1124957799911499,
-0.02732216566801071,
0.10814123600721359,
-0.05161646008491516,
-0.16488711535930634,
-0.018689408898353577,
-0.05672381818294525,
-0.1362234503030777,
0.01584530994296074,
0.16139864921569824,
-0.02068532258272171,
-0.03390401974320412,
-0.07519269734621048,
0.09045755863189697,
-0.06896829605102539,
0.08309007436037064,
0.021187329664826393,
0.051163576543331146,
-0.07887982577085495,
0.0502263642847538,
0.07736672461032867,
-0.10837648063898087,
0.002069043694064021,
0.15089526772499084,
-0.0324137918651104,
-0.056576330214738846,
-0.0388745479285717,
-0.04466162994503975,
0.004251113161444664,
-0.0833662822842598,
0.03308139368891716,
-0.13561904430389404,
0.004926686175167561,
0.038097672164440155,
-0.020855821669101715,
0.04524926096200943,
0.06063290312886238,
0.020067965611815453,
-0.0548563115298748,
0.07619482278823853,
-0.07058172672986984,
-0.018306035548448563,
-0.003758320352062583,
0.0521678552031517,
-0.03199372813105583,
0.07355009019374847,
0.00238270265981555,
-0.005318797659128904,
-0.09366954118013382,
-0.05559158697724342,
-0.13684974610805511,
0.019639333710074425,
-0.025014184415340424,
0.029642755165696144,
-0.010649904608726501,
0.015148618258535862,
-0.02387966588139534,
0.024636056274175644,
-0.0849601998925209,
-0.022789185866713524,
-0.03076571598649025,
0.12870143353939056,
-0.09851104766130447,
0.0560363344848156,
0.059789031744003296,
-0.070547915995121,
0.13350611925125122,
0.03554859384894371,
0.014764244668185711,
0.03596295416355133,
-0.05060453340411186,
-0.05413457006216049,
-0.06874118745326996,
0.05258133262395859,
0.013186435215175152,
-0.09611961990594864,
-0.005444626789540052,
0.023447440937161446,
0.07102156430482864,
0.008695621974766254,
0.028178973123431206,
-0.05632063001394272,
0.08847244083881378,
-0.07705329358577728,
-0.06027955189347267,
-0.04411502182483673,
-0.0005577322444878519,
0.02811124548316002,
0.020642979070544243,
0.0893748328089714,
-0.07340840995311737,
-0.01086056511849165,
-0.08953317254781723,
-0.016254253685474396,
-0.042699817568063736,
0.014060414396226406,
0.060670360922813416,
-0.007725686300545931,
0.0568050816655159,
0.014812379144132137,
0.21277949213981628,
0.02363772504031658,
0.018633002415299416,
0.024200843647122383,
-0.11497757583856583,
-0.09026544541120529,
0.0807604044675827,
0.09879973530769348,
0.04925811290740967,
-0.0206472035497427,
-0.09151258319616318,
-0.013332469388842583,
-0.03629673272371292,
0.0022526097018271685,
0.1455485224723816,
0.15983034670352936,
0.11373116075992584,
0.03963106498122215,
0.14731033146381378,
-0.11755044013261795,
-0.02833125740289688,
0.09293652325868607,
0.012508589774370193,
0.0466783232986927,
-0.1384907215833664,
-0.04447471722960472,
0.07100152969360352,
-0.15488535165786743,
0.1102069541811943,
-0.054718345403671265,
-0.0483550950884819,
-0.10583341121673584,
0.003964721690863371,
-0.058593541383743286,
-0.09264272451400757,
-0.015251453965902328,
-0.09239349514245987,
0.08765804022550583,
0.0715407282114029,
0.052337151020765305,
-0.002646076725795865,
0.038274507969617844,
-0.2014317661523819,
-0.0815584659576416,
0.06714009493589401,
-0.007155051454901695,
0.04745829105377197,
0.0845516175031662,
0.03654279559850693,
0.07226753979921341,
0.047228291630744934,
0.0654429942369461,
0.06797407567501068,
0.01766805909574032,
-0.005792886950075626,
-0.06014547497034073,
-0.06076846644282341,
0.007822021842002869,
-0.016880230978131294,
0.09705497324466705,
0.1372327208518982,
0.06633598357439041,
-0.11868064850568771,
0.010338534601032734,
0.13109636306762695,
-0.04452939331531525,
-0.13583582639694214,
-0.12722259759902954,
0.08869921416044235,
0.0019142330856993794,
0.06822552531957626,
-0.03474785014986992,
-0.06245274469256401,
-0.04481428489089012,
0.13865837454795837,
0.2847604751586914,
0.033813025802373886,
0.02243128791451454,
0.019510380923748016,
-0.002586553804576397,
0.01949918270111084,
0.1038302406668663,
0.07071913778781891,
0.30691760778427124,
-0.029978545382618904,
0.028881831094622612,
0.05166666954755783,
0.06568833440542221,
-0.12390174716711044,
0.1794482171535492,
-0.08591447025537491,
0.006050462368875742,
-0.017914561554789543,
0.05963064357638359,
-0.032467350363731384,
-0.23629166185855865,
-0.017809713259339333,
-0.12839831411838531,
-0.10348545759916306,
0.023762434720993042,
-0.006576129235327244,
0.08555702120065689,
0.05693793296813965,
0.01847023516893387,
-0.08062883466482162,
0.14590470492839813,
-0.012918386608362198,
0.00047607632586732507,
-0.04187610372900963,
0.11005452275276184,
-0.039553627371788025,
0.2014165222644806,
0.04213942959904671,
0.16191376745700836,
0.06132946163415909,
-0.001858808915130794,
-0.09576275199651718,
-0.017039882019162178,
0.003946226090192795,
-0.06711389869451523,
0.03540001064538956,
0.16707763075828552,
-0.04093235731124878,
0.10473255813121796,
0.05624835938215256,
-0.036802805960178375,
0.0466436967253685,
0.13572385907173157,
-0.018608829006552696,
-0.041648540645837784,
0.06952259689569473,
-0.13165420293807983,
0.10660393536090851,
0.15196284651756287,
-0.03843226283788681,
0.010800013318657875,
-0.030826641246676445,
-0.01453746110200882,
-0.03787824511528015,
0.0682586133480072,
-0.06774896383285522,
-0.17541682720184326,
0.04118406027555466,
-0.035810984671115875,
0.07219843566417694,
-0.23141086101531982,
-0.04327385127544403,
0.03925735875964165,
0.04615368694067001,
0.0026246870402246714,
0.029018718749284744,
0.10749205201864243,
-0.040601104497909546,
-0.04088311642408371,
-0.1419004648923874,
0.01597396843135357,
0.05780896171927452,
-0.06075410917401314,
-0.043832648545503616
] |
null | null | transformers |
# LeBenchmark: wav2vec2 large model trained on 1K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-1K-large | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 large model trained on 1K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 large model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 large model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
54,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 large model trained on 1K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.03283906728029251,
0.08278512209653854,
-0.0031913467682898045,
0.010091136209666729,
0.02863323874771595,
-0.005101487040519714,
0.09404236823320389,
0.07023527473211288,
-0.06155857443809509,
0.0561629980802536,
-0.007883254438638687,
-0.15423451364040375,
0.05225997045636177,
0.02571709454059601,
0.09245207160711288,
-0.32063916325569153,
0.02669789269566536,
-0.11801442503929138,
0.003182609099894762,
0.012958260253071785,
0.14116601645946503,
-0.05544370785355568,
0.06431355327367783,
0.060998525470495224,
0.014263525605201721,
0.026705952361226082,
-0.061954330652952194,
-0.08217475563287735,
0.08945763111114502,
0.11637187004089355,
-0.008472083136439323,
0.015380781143903732,
0.0689026489853859,
-0.19825293123722076,
-0.0069431038573384285,
0.03424565866589546,
0.01527163665741682,
0.028419170528650284,
0.0669146478176117,
-0.009770713746547699,
0.08118545264005661,
-0.14532174170017242,
0.016188211739063263,
0.04725942388176918,
-0.019386012107133865,
-0.31030818819999695,
-0.11189968883991241,
0.04778202995657921,
-0.010986726731061935,
0.03534993156790733,
-0.005936144385486841,
0.007762246299535036,
-0.12453950196504593,
0.011333211325109005,
0.1552981287240982,
-0.22254517674446106,
-0.0119020389392972,
-0.030118918046355247,
0.06053202971816063,
0.09791435301303864,
-0.11476190388202667,
0.005928211845457554,
-0.019718365743756294,
0.010295267216861248,
-0.028703473508358,
-0.01201681885868311,
-0.05868738517165184,
-0.027897050604224205,
-0.10388461500406265,
0.05355321988463402,
0.14780829846858978,
0.02575913816690445,
-0.09557941555976868,
-0.17303256690502167,
0.05057404562830925,
0.024978378787636757,
-0.09563134610652924,
-0.017027314752340317,
0.07647394388914108,
-0.048968277871608734,
0.030768917873501778,
-0.03506595641374588,
-0.05949580669403076,
0.01671435311436653,
-0.06637512147426605,
0.1644507646560669,
0.03592006489634514,
0.061208851635456085,
-0.01708247885107994,
-0.03198161721229553,
-0.22342269122600555,
-0.04657507315278053,
-0.075741246342659,
-0.10901771485805511,
-0.008395384065806866,
0.006986892782151699,
-0.055981118232011795,
-0.02502286434173584,
0.09073852002620697,
0.1464756429195404,
-0.1372348517179489,
0.0513717383146286,
-0.048914723098278046,
0.0021034616511315107,
0.026639698073267937,
0.12449754029512405,
-0.05497126653790474,
-0.08172506093978882,
-0.006903508212417364,
-0.04376358166337013,
-0.01784037984907627,
0.03782564774155617,
-0.05556707829236984,
-0.008709984831511974,
-0.10021787881851196,
0.05026732757687569,
-0.014378965832293034,
0.017391622066497803,
0.043808139860630035,
-0.02605529874563217,
0.17063109576702118,
-0.12548328936100006,
0.03483172878623009,
0.04866888374090195,
-0.009236329235136509,
0.08857373148202896,
-0.03794580325484276,
0.029401635751128197,
-0.04894369840621948,
0.024267051368951797,
-0.018009908497333527,
-0.007928553968667984,
-0.028908323496580124,
-0.09561075270175934,
0.03930587321519852,
0.07408685237169266,
-0.05774776265025139,
-0.07993799448013306,
0.0300929956138134,
-0.02611381746828556,
0.007462113164365292,
-0.07374544441699982,
0.006983382161706686,
-0.04085107147693634,
-0.05913783609867096,
0.043083854019641876,
-0.004906618967652321,
0.04028049111366272,
-0.029928989708423615,
-0.06410015374422073,
-0.03461476042866707,
0.10244368016719818,
-0.08986077457666397,
0.03874894604086876,
-0.005812723655253649,
0.011395848356187344,
-0.15770329535007477,
0.11014074832201004,
-0.10854475945234299,
-0.08949153125286102,
-0.10740956664085388,
-0.07620543986558914,
-0.06861138343811035,
0.029442578554153442,
0.004588658455759287,
0.05694090574979782,
-0.16244374215602875,
-0.07029179483652115,
0.2292298674583435,
-0.10997795313596725,
-0.0129614332690835,
0.20084570348262787,
0.02544635534286499,
-0.004932301584631205,
0.05760211870074272,
0.1708427220582962,
0.12161047011613846,
-0.11742888391017914,
-0.050052713602781296,
0.09780824929475784,
0.058082543313503265,
0.11603549122810364,
0.14055226743221283,
-0.08060634881258011,
0.11460023373365402,
0.02645718865096569,
0.03936978429555893,
-0.04485557600855827,
-0.024248244240880013,
-0.06550449132919312,
0.03421609848737717,
-0.01938212290406227,
0.14642854034900665,
-0.06670381873846054,
0.003322239499539137,
-0.040091678500175476,
-0.09200316667556763,
-0.01947404257953167,
0.11573886126279831,
-0.0573037751019001,
0.0559689924120903,
-0.07805748283863068,
-0.08503158390522003,
0.08652936667203903,
0.009166711941361427,
-0.10187776386737823,
-0.04953773319721222,
0.04167172685265541,
-0.10448864847421646,
0.039619944989681244,
0.11207668483257294,
0.06321011483669281,
0.04582694172859192,
-0.05915530025959015,
0.09827029705047607,
-0.021236982196569443,
-0.009860524907708168,
0.01584736444056034,
-0.13006757199764252,
-0.016184326261281967,
-0.06041273474693298,
0.10545664280653,
-0.14981375634670258,
-0.03905586898326874,
0.07531967014074326,
0.05026283487677574,
0.03942209854722023,
0.006673010997474194,
-0.0788925364613533,
0.062283486127853394,
0.03778398782014847,
0.01052646804600954,
0.014319907873868942,
-0.05431779474020004,
0.014841082505881786,
0.11883413046598434,
-0.0609494186937809,
-0.04306832328438759,
0.057578716427087784,
0.07709844410419464,
-0.03788891062140465,
0.022625915706157684,
-0.05496962368488312,
-0.03040713630616665,
0.001660731271840632,
-0.09522322565317154,
0.20734745264053345,
0.02865002490580082,
0.08571617305278778,
-0.07023651897907257,
-0.022895613685250282,
0.03956560045480728,
-0.016547907143831253,
-0.05633307993412018,
0.06480685621500015,
-0.0027166157960891724,
-0.006300943437963724,
0.015158044174313545,
0.07577831298112869,
0.00824015773832798,
0.1570219248533249,
-0.03951422870159149,
-0.057840995490550995,
-0.01158015988767147,
-0.003109929384663701,
-0.01766575127840042,
0.05340522155165672,
-0.07821685820817947,
-0.03019980527460575,
0.043753981590270996,
0.06075860559940338,
0.0542328804731369,
-0.05611072853207588,
0.06441450119018555,
-0.013605788350105286,
-0.08591637760400772,
-0.05153926834464073,
0.0274734478443861,
0.00778933335095644,
0.09670116007328033,
0.09205371141433716,
-0.0024224675726145506,
-0.008603899739682674,
-0.05749255046248436,
-0.09737814962863922,
0.11500030755996704,
-0.14710105955600739,
-0.2350454479455948,
-0.11960744112730026,
-0.03691612556576729,
-0.11041472852230072,
-0.02373625710606575,
0.03880741074681282,
-0.09308671206235886,
-0.07090004533529282,
-0.09013339877128601,
0.11011862754821777,
-0.08752930909395218,
0.005796951707452536,
0.05062486231327057,
0.029132476076483727,
0.010751469060778618,
-0.15342488884925842,
-0.007679472677409649,
-0.04094070568680763,
-0.1025799959897995,
-0.04091919958591461,
0.06488687545061111,
-0.020460888743400574,
0.05714148283004761,
-0.0027675654273480177,
-0.040045809000730515,
-0.022999580949544907,
0.1949506402015686,
-0.04004336893558502,
0.004985286854207516,
0.11367025971412659,
-0.022434093058109283,
0.04549737647175789,
0.11349867284297943,
0.06778738647699356,
-0.006458983290940523,
-0.030735697597265244,
0.04873470589518547,
-0.032807037234306335,
-0.18601004779338837,
-0.1328851878643036,
-0.053558990359306335,
0.024264352396130562,
-0.01809687353670597,
0.020228900015354156,
-0.022639838978648186,
-0.04178356006741524,
-0.05912138894200325,
0.023982223123311996,
0.06291220337152481,
0.02822771668434143,
0.23528701066970825,
-0.007129966747015715,
0.04938720539212227,
-0.10634936392307281,
-0.032789986580610275,
0.08796712011098862,
-0.05170958861708641,
0.18538518249988556,
0.025401003658771515,
0.12201909720897675,
0.07902659475803375,
0.015876522287726402,
0.04684872180223465,
0.016277063637971878,
-0.05070075765252113,
-0.013030336238443851,
-0.02809133566915989,
-0.10899149626493454,
0.03714899346232414,
0.047304119914770126,
0.0679638534784317,
-0.11093664914369583,
-0.07385558634996414,
-0.0856843814253807,
0.05113311856985092,
0.14455315470695496,
0.06610096991062164,
-0.11570428311824799,
-0.0557292215526104,
0.01191492285579443,
-0.08944360911846161,
-0.022339772433042526,
0.017374640330672264,
0.16402383148670197,
-0.15706099569797516,
0.10677340626716614,
0.045539140701293945,
0.03314060717821121,
-0.04164522513747215,
0.048019375652074814,
0.03484812378883362,
0.11583355814218521,
0.025082362815737724,
0.0712718740105629,
-0.06096373498439789,
0.11887669563293457,
0.03063386119902134,
0.00953699927777052,
-0.07565364241600037,
0.027680110186338425,
0.008001324720680714,
-0.0182951632887125,
0.08884766697883606,
0.02271426096558571,
-0.12787681818008423,
0.01990419067442417,
-0.0520067922770977,
0.04415331408381462,
0.17199654877185822,
-0.016442937776446342,
0.062490787357091904,
-0.009822193533182144,
-0.05522054061293602,
-0.008114240132272243,
0.02778634987771511,
-0.17313332855701447,
-0.17195402085781097,
0.07631684094667435,
0.03835258632898331,
-0.019046062603592873,
-0.045427486300468445,
-0.05856343358755112,
-0.1306300312280655,
0.140313521027565,
-0.07892240583896637,
-0.04107416793704033,
-0.03899401053786278,
-0.09306637197732925,
0.1747797280550003,
-0.062128566205501556,
0.06876213103532791,
0.030402012169361115,
0.17007705569267273,
-0.022727593779563904,
-0.09250953793525696,
0.014468890614807606,
-0.1109139546751976,
-0.1300548017024994,
-0.021169641986489296,
0.17343342304229736,
0.032086972147226334,
0.014621696434915066,
0.006600504741072655,
0.018242353573441505,
0.024815663695335388,
-0.133137509226799,
-0.024797972291707993,
0.11206850409507751,
-0.04891400411725044,
0.05916064977645874,
-0.07884887605905533,
-0.10324445366859436,
-0.006457297597080469,
-0.003976321779191494,
0.12999828159809113,
0.2253115177154541,
-0.09161057323217392,
0.24499090015888214,
0.13673293590545654,
-0.06028801575303078,
-0.24089571833610535,
-0.02590891160070896,
0.1194302886724472,
-0.039800018072128296,
0.012754767201840878,
-0.20090945065021515,
0.05344259366393089,
0.040953390300273895,
-0.0262414813041687,
0.03766189143061638,
-0.19713573157787323,
-0.11007693409919739,
-0.007233905140310526,
-0.10117984563112259,
0.13388299942016602,
-0.03076108917593956,
-0.053090304136276245,
-0.07167171686887741,
-0.05462564155459404,
0.13099901378154755,
-0.05456750467419624,
0.06165104731917381,
0.02403237670660019,
0.0006310455501079559,
0.029523007571697235,
0.02958635427057743,
0.12014754116535187,
0.053640421479940414,
-0.03947572782635689,
-0.0421493798494339,
0.040500424802303314,
0.04815279319882393,
0.0019024355569854379,
0.08929372578859329,
-0.0032530403696000576,
-0.03695576637983322,
-0.06439411640167236,
-0.014629478566348553,
-0.08287589997053146,
0.020839406177401543,
-0.04953524470329285,
0.024254703894257545,
-0.06492966413497925,
0.04563562572002411,
0.04936414584517479,
0.004801934584975243,
-0.04576294869184494,
-0.010257929563522339,
-0.015031693503260612,
0.16208982467651367,
0.14662469923496246,
0.007932895794510841,
-0.04252389818429947,
0.04507457837462425,
-0.03167456388473511,
0.03604394942522049,
-0.06557915359735489,
0.0621936172246933,
0.04172645881772041,
-0.019896218553185463,
0.0690704733133316,
0.0047663794830441475,
-0.10745527595281601,
-0.032576411962509155,
0.10494908690452576,
-0.055124346166849136,
-0.19039639830589294,
-0.027460819110274315,
-0.05235669016838074,
-0.10954232513904572,
0.02404375560581684,
0.16494175791740417,
-0.020410574972629547,
-0.02751890756189823,
-0.07148624211549759,
0.08406106382608414,
-0.06419742852449417,
0.06400904059410095,
0.004889166913926601,
0.05218992382287979,
-0.08281341195106506,
0.04372192919254303,
0.07738412171602249,
-0.0979468822479248,
0.0010903985239565372,
0.1530439406633377,
-0.02847067266702652,
-0.049479514360427856,
-0.07820553332567215,
-0.026380319148302078,
0.01108491513878107,
-0.08574799448251724,
0.026974136009812355,
-0.1307554990053177,
0.008044191636145115,
0.05264667794108391,
-0.022677000612020493,
0.030203398317098618,
0.0514724925160408,
0.00864376686513424,
-0.043787144124507904,
0.07594180852174759,
-0.06615772843360901,
-0.009083048440515995,
0.005657510366290808,
0.04651348665356636,
-0.020288346335291862,
0.07622119784355164,
0.0034361628349870443,
-0.023001128807663918,
-0.09871695935726166,
-0.04746561869978905,
-0.1487158089876175,
0.021272629499435425,
-0.024790532886981964,
0.03458673134446144,
-0.0037806921172887087,
0.018243279308080673,
-0.02130976878106594,
0.019992833957076073,
-0.08127892017364502,
-0.016242604702711105,
-0.01987096667289734,
0.11878702789545059,
-0.09497004002332687,
0.05966981127858162,
0.04813048616051674,
-0.06636125594377518,
0.11923054605722427,
0.018976161256432533,
0.003358474001288414,
0.04243042692542076,
-0.05294976383447647,
-0.04390190169215202,
-0.060258131474256516,
0.059984322637319565,
0.007558020763099194,
-0.08982303738594055,
-0.005298171658068895,
0.016538146883249283,
0.06786072254180908,
0.008963891305029392,
0.011402872391045094,
-0.06038588285446167,
0.08534546196460724,
-0.06881768256425858,
-0.06280628591775894,
-0.045680683106184006,
0.016172535717487335,
0.01632893644273281,
0.03736454248428345,
0.08513717353343964,
-0.07573989778757095,
-0.008638830855488777,
-0.07680884003639221,
-0.014444371685385704,
-0.034760478883981705,
0.005259504076093435,
0.08046058565378189,
-0.012717743404209614,
0.049250274896621704,
0.010609404183924198,
0.22241470217704773,
0.050992999225854874,
0.02355181612074375,
0.026097867637872696,
-0.12313789129257202,
-0.11235549300909042,
0.07730496674776077,
0.0773390531539917,
0.04800780862569809,
-0.015426570549607277,
-0.10454487055540085,
-0.005067035090178251,
-0.03254927322268486,
0.03013911470770836,
0.1399841010570526,
0.14193187654018402,
0.12825222313404083,
0.04488138109445572,
0.1282445192337036,
-0.10704237222671509,
-0.03211966156959534,
0.08779120445251465,
0.006055748090147972,
0.053814299404621124,
-0.14199867844581604,
-0.03140166401863098,
0.06538846343755722,
-0.14597687125205994,
0.1147238239645958,
-0.042707543820142746,
-0.050710566341876984,
-0.11522021889686584,
-0.016264723613858223,
-0.054311659187078476,
-0.09781286865472794,
-0.01741798222064972,
-0.09153325855731964,
0.10133706778287888,
0.05413023754954338,
0.05417389050126076,
-0.0023368399124592543,
0.033428266644477844,
-0.196633979678154,
-0.08729240298271179,
0.0810028612613678,
-0.005515837576240301,
0.06127379834651947,
0.07128637284040451,
0.040769051760435104,
0.06352359056472778,
0.03231637924909592,
0.06303317844867706,
0.07106739282608032,
0.009672836400568485,
-0.009209530428051949,
-0.06040583923459053,
-0.052053242921829224,
0.011454455554485321,
-0.011483748443424702,
0.08358203619718552,
0.14754383265972137,
0.08049646019935608,
-0.12009986490011215,
0.013783632777631283,
0.13217169046401978,
-0.04539896175265312,
-0.12919414043426514,
-0.13694728910923004,
0.09452828764915466,
0.00543002737686038,
0.08640085905790329,
-0.042416807264089584,
-0.05865880846977234,
-0.05150984972715378,
0.12783381342887878,
0.27724704146385193,
0.036465223878622055,
0.025359008461236954,
0.01450281497091055,
0.00006520240276586264,
0.02343403548002243,
0.1059400737285614,
0.0726899728178978,
0.3109661638736725,
-0.025024941191077232,
0.03064148686826229,
0.04258587211370468,
0.054317623376846313,
-0.12647803127765656,
0.15943588316440582,
-0.06744217872619629,
-0.0026594463270157576,
-0.029518233612179756,
0.06231052801012993,
-0.04398031532764435,
-0.21297955513000488,
-0.02287990041077137,
-0.12831859290599823,
-0.09510885179042816,
0.01656331866979599,
-0.0107600511983037,
0.09010481834411621,
0.05414654687047005,
0.017625873908400536,
-0.0845862329006195,
0.15273112058639526,
-0.01155228354036808,
0.013520055450499058,
-0.050137411803007126,
0.09498780965805054,
-0.06768645346164703,
0.20502124726772308,
0.03635159879922867,
0.15408208966255188,
0.06488427519798279,
0.020795060321688652,
-0.07568571716547012,
-0.015233108773827553,
0.00482361251488328,
-0.0629773810505867,
0.024074921384453773,
0.15188518166542053,
-0.03860181197524071,
0.12121047079563141,
0.04736942797899246,
-0.021342715248465538,
0.05058953911066055,
0.12523040175437927,
-0.029722105711698532,
-0.029795709997415543,
0.06969799101352692,
-0.12135498225688934,
0.10729844123125076,
0.15716500580310822,
-0.03150014206767082,
0.01603769138455391,
-0.02671233005821705,
-0.01753397285938263,
-0.0415232889354229,
0.04667070508003235,
-0.06620606034994125,
-0.169685497879982,
0.04102225601673126,
-0.018046580255031586,
0.06693611294031143,
-0.22775976359844208,
-0.04548846557736397,
0.041133344173431396,
0.0508594736456871,
-0.0048637655563652515,
0.03428161144256592,
0.1128574013710022,
-0.043902065604925156,
-0.04622384533286095,
-0.15609195828437805,
0.019847162067890167,
0.0657711774110794,
-0.049270324409008026,
-0.04659217223525047
] |
null | null | transformers |
# LeBenchmark: wav2vec2 base model trained on 2.6K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-2.6K-base | [
"transformers",
"pytorch",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 base model trained on 2.6K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 base model trained on 2.6K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 base model trained on 2.6K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
51,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 base model trained on 2.6K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.030644239857792854,
0.07904107868671417,
-0.0024994167033582926,
0.0181537214666605,
0.02773859165608883,
0.0015102962497621775,
0.08973352611064911,
0.08043785393238068,
-0.08722684532403946,
0.05951165780425072,
-0.024893751367926598,
-0.15914678573608398,
0.056275416165590286,
0.025269586592912674,
0.09000576287508011,
-0.3314591348171234,
0.017983486875891685,
-0.1180432066321373,
-0.021778227761387825,
0.00819822121411562,
0.14666464924812317,
-0.05515317991375923,
0.06402992457151413,
0.057681940495967865,
0.02523728832602501,
0.01969035342335701,
-0.07643021643161774,
-0.0782589241862297,
0.08877499401569366,
0.11201390624046326,
-0.011020469479262829,
0.020884141325950623,
0.06700479239225388,
-0.19722609221935272,
-0.008376256562769413,
0.02504841610789299,
0.023112235590815544,
0.03102206625044346,
0.06910859793424606,
0.00505098607391119,
0.08497774600982666,
-0.17115652561187744,
0.01435532234609127,
0.04743051901459694,
-0.006610554177314043,
-0.3279396891593933,
-0.11720830947160721,
0.06475869566202164,
0.002704357262700796,
0.04065503180027008,
0.0004422689671628177,
0.025800447911024094,
-0.13612903654575348,
-0.003607263322919607,
0.15142765641212463,
-0.21559517085552216,
-0.005594453774392605,
-0.05753867328166962,
0.060606710612773895,
0.09912662953138351,
-0.12312954664230347,
-0.005352242849767208,
-0.017276158556342125,
0.009647635743021965,
-0.037657491862773895,
-0.004786658566445112,
-0.07843323796987534,
-0.03251200541853905,
-0.1054694876074791,
0.05877527967095375,
0.1612556427717209,
0.03114982508122921,
-0.09386014938354492,
-0.16945160925388336,
0.06396296620368958,
0.0459759421646595,
-0.09593135863542557,
-0.019738031551241875,
0.07439016550779343,
-0.05803962051868439,
0.03001178614795208,
-0.04500751569867134,
-0.07964713871479034,
0.024466663599014282,
-0.058403559029102325,
0.15787912905216217,
0.040733613073825836,
0.05835585668683052,
-0.009571299888193607,
-0.03801768645644188,
-0.2197912484407425,
-0.04348353296518326,
-0.07475240528583527,
-0.10440994054079056,
-0.004670890048146248,
-0.003287405939772725,
-0.061600469052791595,
-0.004318858962506056,
0.09416086226701736,
0.14831289649009705,
-0.13536465167999268,
0.03714745491743088,
-0.036198992282152176,
-0.010895383544266224,
0.033048115670681,
0.09343136101961136,
-0.057527102530002594,
-0.06869743764400482,
0.0024163597263395786,
-0.04560335725545883,
-0.015034438110888004,
0.04331178590655327,
-0.048173028975725174,
-0.02275431901216507,
-0.10120153427124023,
0.052775293588638306,
-0.007307394873350859,
0.009930149652063847,
0.04204366356134415,
-0.03464072570204735,
0.18626974523067474,
-0.12639395892620087,
0.029462696984410286,
0.05917768552899361,
-0.008029411546885967,
0.07661735266447067,
-0.05059736594557762,
0.03436405211687088,
-0.03668009117245674,
0.01012410968542099,
-0.01990641839802265,
-0.01936729997396469,
-0.023636365309357643,
-0.08784885704517365,
0.049298129975795746,
0.06684083491563797,
-0.05081409960985184,
-0.06543667614459991,
0.024056335911154747,
-0.020591963082551956,
-0.007956207729876041,
-0.07876388728618622,
-0.009522739797830582,
-0.029809849336743355,
-0.07035594433546066,
0.04760414734482765,
-0.008929360657930374,
0.05703463777899742,
-0.02938782423734665,
-0.05760354548692703,
-0.026655513793230057,
0.08966726809740067,
-0.09173059463500977,
0.0341920331120491,
0.0021394093055278063,
0.005972699727863073,
-0.1289897859096527,
0.10422533750534058,
-0.1099264994263649,
-0.08091219514608383,
-0.10693591088056564,
-0.08468487113714218,
-0.06567048281431198,
0.01826566830277443,
-0.01278457511216402,
0.06431267410516739,
-0.15714126825332642,
-0.07415705919265747,
0.18980230391025543,
-0.11505388468503952,
-0.008943801745772362,
0.20610971748828888,
0.022987794131040573,
-0.004366062115877867,
0.05717240646481514,
0.16702890396118164,
0.1614147275686264,
-0.1144322007894516,
-0.05870829150080681,
0.10093200951814651,
0.052048493176698685,
0.09506399929523468,
0.15336917340755463,
-0.07828240096569061,
0.13057897984981537,
0.023598305881023407,
0.01745600998401642,
-0.04704245924949646,
-0.028118997812271118,
-0.0698445737361908,
0.03861858695745468,
-0.034280579537153244,
0.13322976231575012,
-0.07052549719810486,
0.012740124948322773,
-0.03764002397656441,
-0.07688772678375244,
-0.0003732000186573714,
0.1322067379951477,
-0.04799189418554306,
0.0513838529586792,
-0.07780303806066513,
-0.07433146238327026,
0.09110603481531143,
-0.002092427108436823,
-0.09247661381959915,
-0.05045334994792938,
0.04118959233164787,
-0.1220586895942688,
0.04419386014342308,
0.12965764105319977,
0.06709986180067062,
0.040343306958675385,
-0.06133974343538284,
0.10559331625699997,
-0.026639115065336227,
-0.00524907186627388,
0.008995416574180126,
-0.13026566803455353,
-0.03013521060347557,
-0.05402141064405441,
0.13178345561027527,
-0.14045925438404083,
-0.03644648939371109,
0.08805958926677704,
0.045820750296115875,
0.03060191497206688,
0.014238059520721436,
-0.06467629969120026,
0.04967666044831276,
0.04890965297818184,
0.013488756492733955,
0.010011536069214344,
-0.052722424268722534,
0.0045751240104436874,
0.11366032063961029,
-0.05666199326515198,
-0.03886112570762634,
0.051830366253852844,
0.09952583909034729,
-0.028998155146837234,
0.033235590904951096,
-0.06896422803401947,
-0.03196776285767555,
0.009097105823457241,
-0.0912548154592514,
0.19242140650749207,
0.019909726455807686,
0.07207509130239487,
-0.0692208856344223,
-0.03415811061859131,
0.026887992396950722,
-0.01191829051822424,
-0.05889277532696724,
0.06553920358419418,
-0.03613709658384323,
0.009783647954463959,
0.012894653715193272,
0.06782834231853485,
0.003920623101294041,
0.1484028697013855,
-0.03554975241422653,
-0.06597930938005447,
-0.0116095757111907,
0.0028687906451523304,
-0.01580447517335415,
0.04763982817530632,
-0.06068654730916023,
-0.016539618372917175,
0.05497873201966286,
0.05417605862021446,
0.06047837808728218,
-0.04983513057231903,
0.060626138001680374,
-0.009077070280909538,
-0.09006735682487488,
-0.042742155492305756,
0.022734904661774635,
0.008362321183085442,
0.10003776103258133,
0.10386133193969727,
0.024254314601421356,
-0.0008443338447250426,
-0.05493288114666939,
-0.09546936303377151,
0.11117137968540192,
-0.13940005004405975,
-0.2154218852519989,
-0.13026829063892365,
-0.00683995895087719,
-0.10016995668411255,
-0.019085297361016273,
0.03410090133547783,
-0.10608029365539551,
-0.0686725303530693,
-0.08737284690141678,
0.11217010021209717,
-0.08761584758758545,
0.01186851691454649,
0.06834091991186142,
0.040533263236284256,
0.026253968477249146,
-0.15048359334468842,
0.0015004730084910989,
-0.04102877527475357,
-0.11049048602581024,
-0.04430713132023811,
0.07227901369333267,
-0.023511456325650215,
0.04493493586778641,
0.004989271517843008,
-0.04517350345849991,
-0.018184341490268707,
0.18319343030452728,
-0.03330887854099274,
0.012066740542650223,
0.1299956887960434,
-0.026091620326042175,
0.03922213613986969,
0.10777650028467178,
0.06182192265987396,
-0.00011161683505633846,
-0.029192879796028137,
0.059498537331819534,
-0.015092250891029835,
-0.19742250442504883,
-0.13315631449222565,
-0.05833268165588379,
0.014811624772846699,
-0.04289303347468376,
0.021510649472475052,
-0.02558133751153946,
-0.03243539109826088,
-0.06967350095510483,
0.022978227585554123,
0.05836684629321098,
0.01983887515962124,
0.24637307226657867,
-0.00468061026185751,
0.03530329465866089,
-0.11944475769996643,
-0.043990496546030045,
0.10534033924341202,
-0.061667487025260925,
0.17065852880477905,
0.007269192952662706,
0.13620607554912567,
0.07499592751264572,
0.02890164777636528,
0.0403783954679966,
0.019214507192373276,
-0.05596509575843811,
-0.0098588140681386,
-0.029592782258987427,
-0.11004627496004105,
0.03805852308869362,
0.048072587698698044,
0.0737215206027031,
-0.10894010961055756,
-0.08436009287834167,
-0.09387125074863434,
0.04561668634414673,
0.13967397809028625,
0.07894675433635712,
-0.12031099200248718,
-0.0718817487359047,
0.02410881035029888,
-0.08527492731809616,
-0.011517164297401905,
-0.0022767118643969297,
0.16138118505477905,
-0.1536605954170227,
0.10689031332731247,
0.054630883038043976,
0.02187919244170189,
-0.054326269775629044,
0.045597780495882034,
0.034362729638814926,
0.11383627355098724,
0.025975322350859642,
0.09254854917526245,
-0.04575563222169876,
0.11007487773895264,
0.03208226338028908,
0.01674697734415531,
-0.07848507165908813,
0.028615009039640427,
0.012036902830004692,
-0.04378032311797142,
0.08078102022409439,
0.01805904135107994,
-0.11756715178489685,
0.024091240018606186,
-0.07311508804559708,
0.05404838174581528,
0.16741929948329926,
-0.03096124902367592,
0.06933334469795227,
-0.011986457742750645,
-0.05392429232597351,
-0.0004749539075419307,
0.04432610049843788,
-0.17952759563922882,
-0.17056912183761597,
0.07997210323810577,
0.03439889848232269,
-0.02655530720949173,
-0.05149945244193077,
-0.06789688020944595,
-0.11758964508771896,
0.14207713305950165,
-0.0869697630405426,
-0.05649752914905548,
-0.048294950276613235,
-0.08051148056983948,
0.19771821796894073,
-0.06530828028917313,
0.05715073272585869,
0.03988737612962723,
0.1789652407169342,
-0.010124794207513332,
-0.09037811309099197,
-0.005220158025622368,
-0.10549627989530563,
-0.1542045623064041,
-0.011479751206934452,
0.17552550137043,
0.03615465387701988,
0.02777222730219364,
-0.0005782630178146064,
0.007109586149454117,
0.021463697776198387,
-0.13577589392662048,
-0.03237731382250786,
0.10563730448484421,
-0.038994692265987396,
0.055598437786102295,
-0.09063716977834702,
-0.11719939112663269,
-0.00932876206934452,
-0.005595962516963482,
0.12772950530052185,
0.251330703496933,
-0.08235393464565277,
0.24645210802555084,
0.1471327692270279,
-0.05197853595018387,
-0.23695111274719238,
-0.029149411246180534,
0.12435123324394226,
-0.03849659860134125,
0.014440704137086868,
-0.19306078553199768,
0.054244641214609146,
0.044900696724653244,
-0.03087303601205349,
0.02022412233054638,
-0.1844712197780609,
-0.10742684453725815,
-0.0042578913271427155,
-0.11093153059482574,
0.11572998017072678,
-0.03784055635333061,
-0.05808442458510399,
-0.07862348109483719,
-0.05559108778834343,
0.14625440537929535,
-0.05850640684366226,
0.06361189484596252,
0.010790007188916206,
0.0000781719500082545,
0.030292045325040817,
0.026230499148368835,
0.12140576541423798,
0.058677684515714645,
-0.033009082078933716,
-0.05689453333616257,
0.04930867999792099,
0.04961949959397316,
-0.00584240909665823,
0.08960230648517609,
0.008326899260282516,
-0.031021302565932274,
-0.08981029689311981,
-0.018731791526079178,
-0.0945543646812439,
0.02875092439353466,
-0.047442443668842316,
0.026640137657523155,
-0.07430437207221985,
0.05313621833920479,
0.04483715817332268,
0.004490827210247517,
-0.0627182126045227,
0.007475425489246845,
-0.021412953734397888,
0.13584648072719574,
0.16174623370170593,
0.03843672201037407,
-0.022557659074664116,
0.0401577465236187,
-0.029555633664131165,
0.0221182219684124,
-0.0617658756673336,
0.06090320274233818,
0.03856808319687843,
-0.01937633380293846,
0.05813043564558029,
0.007286222651600838,
-0.11276580393314362,
-0.02726486697793007,
0.10784434527158737,
-0.05209898203611374,
-0.1648130714893341,
-0.018553322181105614,
-0.05591392144560814,
-0.13659153878688812,
0.015682313591241837,
0.1619463711977005,
-0.02101982943713665,
-0.03351422771811485,
-0.07525486499071121,
0.09077057987451553,
-0.06913192570209503,
0.08391780406236649,
0.021003151312470436,
0.051324546337127686,
-0.0787401795387268,
0.05031641945242882,
0.07687254995107651,
-0.10777230560779572,
0.002327383030205965,
0.15129303932189941,
-0.03252461552619934,
-0.05663033947348595,
-0.03932395949959755,
-0.04597874730825424,
0.004417334217578173,
-0.08350219577550888,
0.032896652817726135,
-0.13568198680877686,
0.004810422658920288,
0.037416972219944,
-0.021007182076573372,
0.04490559920668602,
0.06040200591087341,
0.0201414842158556,
-0.055312253534793854,
0.07577629387378693,
-0.07072126865386963,
-0.01832708902657032,
-0.0038767652586102486,
0.05216637998819351,
-0.031864527612924576,
0.07368495315313339,
0.002475750632584095,
-0.005306261591613293,
-0.09337789565324783,
-0.05549809709191322,
-0.13695184886455536,
0.019918614998459816,
-0.024299126118421555,
0.02978067472577095,
-0.01122510340064764,
0.01485159806907177,
-0.024264592677354813,
0.025032781064510345,
-0.08504826575517654,
-0.02321806736290455,
-0.03101165220141411,
0.12845195829868317,
-0.09850670397281647,
0.056019190698862076,
0.05959588289260864,
-0.07074803113937378,
0.1337844878435135,
0.03570259362459183,
0.014991198666393757,
0.03621956706047058,
-0.0504780039191246,
-0.05479397252202034,
-0.06843379884958267,
0.05293291434645653,
0.01332881674170494,
-0.09609343111515045,
-0.005360895302146673,
0.023554237559437752,
0.07124374806880951,
0.008486294187605381,
0.028721656650304794,
-0.0562698096036911,
0.08790794759988785,
-0.07767800241708755,
-0.059893395751714706,
-0.04406600072979927,
-0.0005301673081703484,
0.028361214324831963,
0.021235086023807526,
0.08950743079185486,
-0.07352563738822937,
-0.011084668338298798,
-0.08969196677207947,
-0.016242653131484985,
-0.04287043958902359,
0.014013027772307396,
0.06054120510816574,
-0.00723277498036623,
0.05714007094502449,
0.014643745496869087,
0.211859330534935,
0.02362845465540886,
0.01946631632745266,
0.02422148920595646,
-0.11481687426567078,
-0.08984047919511795,
0.08071571588516235,
0.09867491573095322,
0.049224141985177994,
-0.02024485170841217,
-0.0909656211733818,
-0.013192007318139076,
-0.0355626717209816,
0.002795842941850424,
0.14635905623435974,
0.15987829864025116,
0.11343351751565933,
0.040171775966882706,
0.14735260605812073,
-0.11782417446374893,
-0.028634613379836082,
0.09358929842710495,
0.012816467322409153,
0.04672519862651825,
-0.13882920145988464,
-0.04463406652212143,
0.07122060656547546,
-0.15498687326908112,
0.10998072475194931,
-0.05490919202566147,
-0.0483962744474411,
-0.10616796463727951,
0.0050146314315497875,
-0.058651573956012726,
-0.0928398072719574,
-0.015260149724781513,
-0.09255138784646988,
0.08775869756937027,
0.07104068994522095,
0.05214545130729675,
-0.0022322335280478,
0.037698738276958466,
-0.2014436274766922,
-0.08167541772127151,
0.06730139255523682,
-0.007298428565263748,
0.0470065101981163,
0.08522321283817291,
0.03638487681746483,
0.07270769029855728,
0.047301553189754486,
0.06576155126094818,
0.06800670921802521,
0.01791253127157688,
-0.005400299560278654,
-0.0602300688624382,
-0.060687072575092316,
0.007769095245748758,
-0.016857828944921494,
0.09744556248188019,
0.13726627826690674,
0.06662029772996902,
-0.11892487108707428,
0.01061859168112278,
0.13112495839595795,
-0.0449715219438076,
-0.13556189835071564,
-0.12676510214805603,
0.08857709169387817,
0.0022301459684967995,
0.0685402899980545,
-0.03463892638683319,
-0.06240443140268326,
-0.04541612043976784,
0.1385921984910965,
0.28441211581230164,
0.03344372659921646,
0.02223808504641056,
0.019275128841400146,
-0.0027851141057908535,
0.019261488690972328,
0.10413140803575516,
0.07146505266427994,
0.3069469630718231,
-0.02980109490454197,
0.02853098139166832,
0.051850706338882446,
0.06595300883054733,
-0.12364186346530914,
0.17970560491085052,
-0.08626273274421692,
0.0060827708803117275,
-0.017760910093784332,
0.05947009101510048,
-0.03226838633418083,
-0.23619692027568817,
-0.018517008051276207,
-0.12897737324237823,
-0.1036827340722084,
0.02427300438284874,
-0.0068952301517128944,
0.08554760366678238,
0.0569133386015892,
0.017984209582209587,
-0.08034904301166534,
0.1455961912870407,
-0.013081012293696404,
0.00009382949792779982,
-0.042311061173677444,
0.10972758382558823,
-0.03977780044078827,
0.201864555478096,
0.04200054705142975,
0.1621507704257965,
0.06135987117886543,
-0.0018720495281741023,
-0.09615158289670944,
-0.017032526433467865,
0.004230440594255924,
-0.06789454072713852,
0.03563668951392174,
0.1676769256591797,
-0.04167807102203369,
0.1050482764840126,
0.056124910712242126,
-0.03705538064241409,
0.04599624499678612,
0.13542793691158295,
-0.01844649948179722,
-0.04172482714056969,
0.06935001164674759,
-0.13165311515331268,
0.10668177157640457,
0.15167129039764404,
-0.03870239108800888,
0.010701910592615604,
-0.030909372493624687,
-0.014254110865294933,
-0.03840983286499977,
0.06810945272445679,
-0.06773202866315842,
-0.1754499226808548,
0.04090249910950661,
-0.035854797810316086,
0.07201167196035385,
-0.23168328404426575,
-0.04321599751710892,
0.03925705701112747,
0.046165335923433304,
0.002395703922957182,
0.029268067330121994,
0.1073843315243721,
-0.04098900035023689,
-0.04114449396729469,
-0.14234405755996704,
0.015879223123192787,
0.05794040858745575,
-0.06133468821644783,
-0.04438406229019165
] |
null | null | transformers |
# LeBenchmark: wav2vec2 base model trained on 3K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-3K-base | [
"transformers",
"pytorch",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 base model trained on 3K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 base model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 base model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
51,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 base model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.029986560344696045,
0.0775303840637207,
-0.0024832722265273333,
0.01816030591726303,
0.027944190427660942,
0.001376614673063159,
0.08997615426778793,
0.08053957670927048,
-0.08795033395290375,
0.059051573276519775,
-0.02483808621764183,
-0.15824681520462036,
0.05625019967556,
0.025682518258690834,
0.08994593471288681,
-0.33119097352027893,
0.018069373443722725,
-0.11799739301204681,
-0.02098790742456913,
0.008447423577308655,
0.14671821892261505,
-0.05513802170753479,
0.06424494087696075,
0.057568036019802094,
0.02551136165857315,
0.019709397107362747,
-0.07694822549819946,
-0.0785445123910904,
0.08856234699487686,
0.11221726983785629,
-0.0109014343470335,
0.02054690010845661,
0.06647265702486038,
-0.19699963927268982,
-0.008228283375501633,
0.02484498918056488,
0.02293762005865574,
0.03042731061577797,
0.06909450143575668,
0.004708478227257729,
0.08481946587562561,
-0.17112399637699127,
0.014968800358474255,
0.04694598540663719,
-0.007014804985374212,
-0.32689806818962097,
-0.11708885431289673,
0.06535990536212921,
0.0027928368654102087,
0.04071419686079025,
0.0005503172287717462,
0.02659359946846962,
-0.13637112081050873,
-0.0033032663632184267,
0.1521936058998108,
-0.21451237797737122,
-0.005905942991375923,
-0.056798305362463,
0.060579027980566025,
0.09890709072351456,
-0.12266676127910614,
-0.005168295931071043,
-0.017687685787677765,
0.010276752524077892,
-0.03718607872724533,
-0.004953678231686354,
-0.07819346338510513,
-0.032340157777071,
-0.10578227043151855,
0.05904295668005943,
0.16102172434329987,
0.030704287812113762,
-0.09354881942272186,
-0.17086879909038544,
0.06439811736345291,
0.045951809734106064,
-0.0957253947854042,
-0.020203150808811188,
0.07405819743871689,
-0.0584857352077961,
0.029567068442702293,
-0.04466835409402847,
-0.07953611761331558,
0.024955619126558304,
-0.058327678591012955,
0.15796473622322083,
0.04071044921875,
0.05817186087369919,
-0.00934678129851818,
-0.03772896155714989,
-0.2188872992992401,
-0.043011777102947235,
-0.07447566092014313,
-0.10483565926551819,
-0.004609163384884596,
-0.0037526837550103664,
-0.06179897487163544,
-0.0049366760067641735,
0.09402970224618912,
0.14894191920757294,
-0.13471895456314087,
0.03697308152914047,
-0.035785675048828125,
-0.011107062920928001,
0.0338856503367424,
0.09330868721008301,
-0.05816878378391266,
-0.06863319128751755,
0.002195867942646146,
-0.0454634428024292,
-0.01491311751306057,
0.04315005615353584,
-0.04804898425936699,
-0.022058041766285896,
-0.10123582929372787,
0.0531577467918396,
-0.007040401920676231,
0.010450263507664204,
0.041902508586645126,
-0.03509003296494484,
0.18702825903892517,
-0.12635980546474457,
0.02898223139345646,
0.058795392513275146,
-0.007788588758558035,
0.07742593437433243,
-0.05071868374943733,
0.03463519737124443,
-0.03628922253847122,
0.01051802933216095,
-0.019600365310907364,
-0.019251378253102303,
-0.023415181785821915,
-0.08752261847257614,
0.049263548105955124,
0.06730593740940094,
-0.050738800317049026,
-0.06567122787237167,
0.023945068940520287,
-0.020752275362610817,
-0.00779211800545454,
-0.07869787514209747,
-0.009123151190578938,
-0.029734671115875244,
-0.06978171318769455,
0.04721028357744217,
-0.008945426903665066,
0.0567161962389946,
-0.02931419387459755,
-0.05792436748743057,
-0.026546655222773552,
0.08925114572048187,
-0.09177782386541367,
0.03410240262746811,
0.001911893137730658,
0.0060785855166614056,
-0.12964586913585663,
0.1038278117775917,
-0.10984301567077637,
-0.08020877093076706,
-0.10635364055633545,
-0.08455782383680344,
-0.06552429497241974,
0.018529722467064857,
-0.013124510645866394,
0.06382720917463303,
-0.15632474422454834,
-0.0741771012544632,
0.18954162299633026,
-0.11467105895280838,
-0.009156765416264534,
0.2059236764907837,
0.023035923019051552,
-0.004578712861984968,
0.05745992809534073,
0.16677363216876984,
0.16067802906036377,
-0.11460564285516739,
-0.058616217225790024,
0.10070762783288956,
0.05173978582024574,
0.09550295025110245,
0.1532820761203766,
-0.07830274105072021,
0.1307537853717804,
0.023810502141714096,
0.01742054522037506,
-0.04696986451745033,
-0.0278634000569582,
-0.07003368437290192,
0.038983315229415894,
-0.03399389237165451,
0.13258588314056396,
-0.0710798129439354,
0.012521255761384964,
-0.03792618215084076,
-0.07661857455968857,
0.00019383116159588099,
0.13165384531021118,
-0.04812934622168541,
0.051541924476623535,
-0.07788003981113434,
-0.0741155594587326,
0.09121456742286682,
-0.002122944686561823,
-0.09193859249353409,
-0.05067642033100128,
0.04099681228399277,
-0.12157522141933441,
0.04399463161826134,
0.12905746698379517,
0.06694939732551575,
0.04000478237867355,
-0.06134558841586113,
0.10578705370426178,
-0.026027344167232513,
-0.005138373002409935,
0.00923212245106697,
-0.1300203949213028,
-0.029833178967237473,
-0.054153021425008774,
0.13060684502124786,
-0.13954675197601318,
-0.036323606967926025,
0.0875091403722763,
0.04572506994009018,
0.030550947412848473,
0.014184770174324512,
-0.06431349366903305,
0.05028175562620163,
0.049000877887010574,
0.013579181395471096,
0.010126873850822449,
-0.05283830314874649,
0.004414117429405451,
0.11389173567295074,
-0.057087890803813934,
-0.039312031120061874,
0.051655709743499756,
0.09955936670303345,
-0.0294281467795372,
0.032103344798088074,
-0.06889321655035019,
-0.03185439482331276,
0.00951601006090641,
-0.09158572554588318,
0.19243551790714264,
0.019969189539551735,
0.07155808061361313,
-0.06936429440975189,
-0.034703463315963745,
0.026324911043047905,
-0.011795496568083763,
-0.05929882824420929,
0.06511213630437851,
-0.03609361872076988,
0.009792488068342209,
0.012851527892053127,
0.06862129271030426,
0.0044121104292571545,
0.1487848460674286,
-0.03517378121614456,
-0.06566506624221802,
-0.011770526878535748,
0.0024955561384558678,
-0.015853285789489746,
0.0471649095416069,
-0.06008150056004524,
-0.016729842871427536,
0.05476294830441475,
0.05435770004987717,
0.06061961129307747,
-0.04914620518684387,
0.06030234694480896,
-0.008892190642654896,
-0.0896654799580574,
-0.0419984795153141,
0.02314520999789238,
0.008151913061738014,
0.09945953637361526,
0.10407602787017822,
0.02456331066787243,
-0.000579385319724679,
-0.054970819503068924,
-0.09557194262742996,
0.11093157529830933,
-0.13975928723812103,
-0.21629519760608673,
-0.13004586100578308,
-0.007819646038115025,
-0.10050835460424423,
-0.019326936453580856,
0.0341319777071476,
-0.10567915439605713,
-0.0689060389995575,
-0.0876823291182518,
0.11212334036827087,
-0.08752409368753433,
0.011435376480221748,
0.0684671476483345,
0.04025285318493843,
0.025806818157434464,
-0.15043948590755463,
0.0013133567990735173,
-0.04073287174105644,
-0.11042395979166031,
-0.04389435797929764,
0.07183381915092468,
-0.02319636009633541,
0.044625863432884216,
0.005585501901805401,
-0.04523419216275215,
-0.01848049834370613,
0.18354137241840363,
-0.03306170552968979,
0.011811905540525913,
0.1298529952764511,
-0.026233941316604614,
0.03906594589352608,
0.10774986445903778,
0.06197343394160271,
-0.00019354977121111006,
-0.0290302075445652,
0.059387002140283585,
-0.015244338661432266,
-0.19702968001365662,
-0.1328902393579483,
-0.05824979022145271,
0.01485915295779705,
-0.04328247904777527,
0.021482666954398155,
-0.025029469281435013,
-0.032382115721702576,
-0.06972237676382065,
0.022481568157672882,
0.058658577501773834,
0.019694950431585312,
0.24647216498851776,
-0.004920598119497299,
0.0355423279106617,
-0.11908292770385742,
-0.04410528764128685,
0.10530871897935867,
-0.06113826110959053,
0.16997674107551575,
0.007581657264381647,
0.1355033814907074,
0.07558494806289673,
0.028225552290678024,
0.04013903811573982,
0.019240887835621834,
-0.0558607243001461,
-0.010123523883521557,
-0.029766671359539032,
-0.11013568937778473,
0.03856705501675606,
0.04761495068669319,
0.07426734268665314,
-0.10882405936717987,
-0.08356309682130814,
-0.09409137070178986,
0.0464896596968174,
0.13955345749855042,
0.0779304951429367,
-0.11997222900390625,
-0.07145267724990845,
0.024096885696053505,
-0.08534909784793854,
-0.01102780643850565,
-0.0021329589653760195,
0.16021671891212463,
-0.15457461774349213,
0.10706213861703873,
0.054703496396541595,
0.021763689815998077,
-0.0544082373380661,
0.045503437519073486,
0.03460371494293213,
0.1137307807803154,
0.025660885497927666,
0.09241693466901779,
-0.046931520104408264,
0.10904955118894577,
0.03185853734612465,
0.016901852563023567,
-0.07842366397380829,
0.028481250628829002,
0.012330004945397377,
-0.04347383603453636,
0.08073103427886963,
0.017862236127257347,
-0.11690692603588104,
0.023546842858195305,
-0.07356303185224533,
0.0541420616209507,
0.16726407408714294,
-0.030697615817189217,
0.06929159164428711,
-0.012038784101605415,
-0.0536373108625412,
-0.0007509436109103262,
0.04505343735218048,
-0.17962314188480377,
-0.1709841936826706,
0.07971528172492981,
0.03409012779593468,
-0.026613781228661537,
-0.051379043608903885,
-0.06799834221601486,
-0.11924812942743301,
0.14171946048736572,
-0.0857735201716423,
-0.056638386100530624,
-0.04838184639811516,
-0.08160270750522614,
0.1974610984325409,
-0.0649389922618866,
0.05700703710317612,
0.03962619602680206,
0.17845824360847473,
-0.010257174260914326,
-0.09081736207008362,
-0.005299367010593414,
-0.10595434904098511,
-0.15407389402389526,
-0.011459621600806713,
0.17509886622428894,
0.03660877048969269,
0.02764781005680561,
-0.0006091725663281977,
0.007159179542213678,
0.021440234035253525,
-0.13572731614112854,
-0.032471902668476105,
0.10630033165216446,
-0.03896399214863777,
0.055953290313482285,
-0.09082216024398804,
-0.1171523779630661,
-0.009754826314747334,
-0.005843379534780979,
0.12765997648239136,
0.25077059864997864,
-0.08161833882331848,
0.24648506939411163,
0.14697104692459106,
-0.05170091241598129,
-0.23679162561893463,
-0.029387330636382103,
0.12384377419948578,
-0.038609590381383896,
0.015149745158851147,
-0.19268178939819336,
0.05442913621664047,
0.045425936579704285,
-0.03070773370563984,
0.019538775086402893,
-0.1845352053642273,
-0.10764046013355255,
-0.004247857723385096,
-0.11027340590953827,
0.11419738084077835,
-0.03781948238611221,
-0.05761799216270447,
-0.07847332209348679,
-0.05556734651327133,
0.14612218737602234,
-0.057849183678627014,
0.06353456526994705,
0.010533408261835575,
-0.000268369447439909,
0.02997339330613613,
0.026111312210559845,
0.12109946459531784,
0.05860619619488716,
-0.03290577232837677,
-0.057169027626514435,
0.049306005239486694,
0.04959644749760628,
-0.005812664516270161,
0.08931965380907059,
0.008352348580956459,
-0.03126420080661774,
-0.08965571224689484,
-0.019110187888145447,
-0.09471631795167923,
0.028658663854002953,
-0.04747006669640541,
0.02629978395998478,
-0.07439204305410385,
0.05354837328195572,
0.04480457678437233,
0.004242666531354189,
-0.06262632459402084,
0.0065736835822463036,
-0.021432897076010704,
0.13458651304244995,
0.16197486221790314,
0.03783019632101059,
-0.02269711345434189,
0.03983406722545624,
-0.029742306098341942,
0.021847857162356377,
-0.05995266139507294,
0.06060148403048515,
0.03837254270911217,
-0.019925439730286598,
0.058031316846609116,
0.007292625959962606,
-0.11264688521623611,
-0.027351515367627144,
0.10826774686574936,
-0.05184713378548622,
-0.16332952678203583,
-0.018769601359963417,
-0.05656975135207176,
-0.1363702416419983,
0.01586812362074852,
0.16134297847747803,
-0.020540736615657806,
-0.0338502861559391,
-0.0751364454627037,
0.09058453142642975,
-0.06914141029119492,
0.08333945274353027,
0.02113056741654873,
0.050857484340667725,
-0.0788303092122078,
0.050275932997465134,
0.07657887041568756,
-0.10720086097717285,
0.0022884798236191273,
0.15135730803012848,
-0.03248237445950508,
-0.05643915757536888,
-0.03882238268852234,
-0.045550961047410965,
0.003993968013674021,
-0.08339275419712067,
0.033027373254299164,
-0.13538727164268494,
0.004853120539337397,
0.037409622222185135,
-0.02071903832256794,
0.04476472735404968,
0.06038863956928253,
0.020076699554920197,
-0.05471803620457649,
0.07578393071889877,
-0.07124083489179611,
-0.018215373158454895,
-0.003881827462464571,
0.051506008952856064,
-0.03195025026798248,
0.0734291821718216,
0.0023551832418888807,
-0.005255619529634714,
-0.09380963444709778,
-0.05543023720383644,
-0.13661925494670868,
0.01906040869653225,
-0.025146257132291794,
0.02983297035098076,
-0.010894681327044964,
0.015465164557099342,
-0.024201523512601852,
0.024788375943899155,
-0.08464407175779343,
-0.022875020280480385,
-0.03067062236368656,
0.1284855306148529,
-0.09853970259428024,
0.056111011654138565,
0.05941089242696762,
-0.07054556906223297,
0.133453369140625,
0.03548138961195946,
0.014666435308754444,
0.03619826212525368,
-0.05078911408782005,
-0.054858725517988205,
-0.06845971196889877,
0.05264505371451378,
0.01287686824798584,
-0.09605091065168381,
-0.005610052030533552,
0.023889921605587006,
0.07105947285890579,
0.008985446766018867,
0.028086448088288307,
-0.05629374086856842,
0.08821526914834976,
-0.07733757793903351,
-0.06003666669130325,
-0.04391435906291008,
-0.0004935274482704699,
0.02837083861231804,
0.02101500704884529,
0.08947519212961197,
-0.07366737723350525,
-0.011078452691435814,
-0.08898676186800003,
-0.0163215771317482,
-0.04263494536280632,
0.013966530561447144,
0.05999918654561043,
-0.007316468749195337,
0.056897591799497604,
0.014912212267518044,
0.21341454982757568,
0.023594658821821213,
0.01855527050793171,
0.024241069331765175,
-0.11493178457021713,
-0.08945317566394806,
0.0805155485868454,
0.09850230813026428,
0.04895805940032005,
-0.020477864891290665,
-0.09095529466867447,
-0.013072256930172443,
-0.036095842719078064,
0.0018049465725198388,
0.14600177109241486,
0.15975868701934814,
0.1133321076631546,
0.03985702246427536,
0.14767077565193176,
-0.11746151000261307,
-0.027865571901202202,
0.09201657772064209,
0.012900899164378643,
0.04655701294541359,
-0.1385616660118103,
-0.04502502456307411,
0.07102018594741821,
-0.1551722139120102,
0.10978376120328903,
-0.054871395230293274,
-0.048335347324609756,
-0.10586041212081909,
0.004264367278665304,
-0.0582430399954319,
-0.09248989075422287,
-0.015237038023769855,
-0.09262365102767944,
0.0873570516705513,
0.07163131982088089,
0.05259735882282257,
-0.0025574553292244673,
0.03844601660966873,
-0.20125824213027954,
-0.08158847689628601,
0.06703542172908783,
-0.007484895642846823,
0.04733586311340332,
0.08465620130300522,
0.03665810823440552,
0.07196645438671112,
0.04714363068342209,
0.06589120626449585,
0.06775600463151932,
0.01724875159561634,
-0.005800988525152206,
-0.060215163975954056,
-0.06082924082875252,
0.007806471083313227,
-0.016924209892749786,
0.09734330326318741,
0.13758303225040436,
0.06661046296358109,
-0.11899977177381516,
0.010475951246917248,
0.1305730938911438,
-0.0446440726518631,
-0.13583245873451233,
-0.1270870864391327,
0.08860931545495987,
0.001987433759495616,
0.06842026859521866,
-0.03503407537937164,
-0.06203402951359749,
-0.04547993093729019,
0.1388581544160843,
0.2852659225463867,
0.033326324075460434,
0.022584211081266403,
0.019439782947301865,
-0.0024577495642006397,
0.019378729164600372,
0.10417398065328598,
0.0712534561753273,
0.3063368797302246,
-0.029682934284210205,
0.02897956408560276,
0.05183937028050423,
0.0657111182808876,
-0.12379506230354309,
0.17866164445877075,
-0.08543726056814194,
0.0061526005156338215,
-0.017485015094280243,
0.05978044867515564,
-0.03255083039402962,
-0.23516440391540527,
-0.01891195774078369,
-0.12816081941127777,
-0.10359179973602295,
0.02385459654033184,
-0.007205287925899029,
0.0853634625673294,
0.056972671300172806,
0.018526533618569374,
-0.08037781715393066,
0.14541828632354736,
-0.013000139966607094,
0.00047149305464699864,
-0.04197705537080765,
0.11046113818883896,
-0.03848988562822342,
0.20112644135951996,
0.04206201806664467,
0.1623833328485489,
0.061263494193553925,
-0.001960452413186431,
-0.09538062661886215,
-0.016659162938594818,
0.004081041552126408,
-0.06725745648145676,
0.03545888140797615,
0.1668003648519516,
-0.041072577238082886,
0.10508197546005249,
0.05621443688869476,
-0.03618597611784935,
0.04678844287991524,
0.1356189250946045,
-0.01809939742088318,
-0.04168142005801201,
0.06991565227508545,
-0.131718710064888,
0.10697054862976074,
0.15192975103855133,
-0.03851451352238655,
0.010520716197788715,
-0.030811622738838196,
-0.0141639718785882,
-0.03818606585264206,
0.06778732687234879,
-0.06787686049938202,
-0.17573793232440948,
0.04087142273783684,
-0.036436691880226135,
0.07200543582439423,
-0.23186320066452026,
-0.043284036219120026,
0.039065852761268616,
0.046103864908218384,
0.002218264387920499,
0.029009360820055008,
0.10701357573270798,
-0.04077327996492386,
-0.040818002074956894,
-0.1408463418483734,
0.015542632900178432,
0.05749724805355072,
-0.061397239565849304,
-0.043816544115543365
] |
null | null | transformers |
# LeBenchmark: wav2vec2 large model trained on 3K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-3K-large | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 large model trained on 3K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 large model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 large model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
54,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 large model trained on 3K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.032396551221609116,
0.0826355367898941,
-0.0031880983151495457,
0.009989405050873756,
0.0285747442394495,
-0.005149358417838812,
0.09424514323472977,
0.07023361325263977,
-0.06235547363758087,
0.055712588131427765,
-0.007776682265102863,
-0.1537577509880066,
0.0521877221763134,
0.025922780856490135,
0.09241172671318054,
-0.32067012786865234,
0.026611417531967163,
-0.11810499429702759,
0.003699569497257471,
0.01309488620609045,
0.14124514162540436,
-0.05537789314985275,
0.06436765938997269,
0.06065457686781883,
0.014263535849750042,
0.026956724002957344,
-0.0622217133641243,
-0.08243047446012497,
0.08922326564788818,
0.11610908806324005,
-0.008789033629000187,
0.015448653139173985,
0.06866984814405441,
-0.19834579527378082,
-0.00689928000792861,
0.0339808352291584,
0.015475628897547722,
0.02820003218948841,
0.06707916408777237,
-0.009572933427989483,
0.08121586591005325,
-0.1452106386423111,
0.01636112481355667,
0.04695386067032814,
-0.019180674105882645,
-0.3090784251689911,
-0.11225921660661697,
0.048021309077739716,
-0.010922087356448174,
0.03544585034251213,
-0.005632579792290926,
0.008645720779895782,
-0.12484884262084961,
0.011590275913476944,
0.15624065697193146,
-0.2221333086490631,
-0.012178747914731503,
-0.02938392572104931,
0.061015333980321884,
0.09795556217432022,
-0.11445982754230499,
0.006209630984812975,
-0.01996741257607937,
0.010642646811902523,
-0.02847393788397312,
-0.012182870879769325,
-0.058814939111471176,
-0.02793721854686737,
-0.10425800830125809,
0.05394960194826126,
0.14799118041992188,
0.02567906118929386,
-0.09548188745975494,
-0.1737823784351349,
0.05109184980392456,
0.02516806311905384,
-0.09546254575252533,
-0.017185494303703308,
0.07630689442157745,
-0.049294259399175644,
0.03025904856622219,
-0.035376619547605515,
-0.0593743696808815,
0.01658421941101551,
-0.06592778116464615,
0.1647651642560959,
0.035896219313144684,
0.06114446744322777,
-0.016936983913183212,
-0.03194107487797737,
-0.22301310300827026,
-0.04629851505160332,
-0.07578501105308533,
-0.10981352627277374,
-0.007884069345891476,
0.006906481925398111,
-0.056076113134622574,
-0.02540596015751362,
0.09075889736413956,
0.14646215736865997,
-0.13724876940250397,
0.05148669332265854,
-0.04870375990867615,
0.0020684031769633293,
0.026542747393250465,
0.12444553524255753,
-0.05507845804095268,
-0.0818733423948288,
-0.006898917257785797,
-0.04352423548698425,
-0.017542148008942604,
0.03788655623793602,
-0.05540063604712486,
-0.008667336776852608,
-0.100357286632061,
0.050725698471069336,
-0.014437835663557053,
0.017593272030353546,
0.043920695781707764,
-0.02638823911547661,
0.1710439771413803,
-0.12547822296619415,
0.034517668187618256,
0.04842807352542877,
-0.009402640163898468,
0.088951475918293,
-0.038044001907110214,
0.02958584949374199,
-0.048894740641117096,
0.024333948269486427,
-0.017476847395300865,
-0.007996858097612858,
-0.028967948630452156,
-0.09554485976696014,
0.03925333544611931,
0.07407643646001816,
-0.05770767480134964,
-0.0802544355392456,
0.029902899637818336,
-0.02577219530940056,
0.0073971133679151535,
-0.07376226037740707,
0.007043605204671621,
-0.04074273258447647,
-0.059019364416599274,
0.043060630559921265,
-0.00508613046258688,
0.040320683270692825,
-0.029936838895082474,
-0.06424785405397415,
-0.03424062952399254,
0.10238975286483765,
-0.09016706794500351,
0.03871896490454674,
-0.005561949219554663,
0.011358105577528477,
-0.1577799767255783,
0.10991329699754715,
-0.10851141065359116,
-0.08967053145170212,
-0.1072554960846901,
-0.07648017257452011,
-0.06843188405036926,
0.029385961592197418,
0.004777940921485424,
0.0567576140165329,
-0.16210249066352844,
-0.06990587711334229,
0.22884568572044373,
-0.10958868265151978,
-0.013048427179455757,
0.2006494104862213,
0.025736594572663307,
-0.0053444853983819485,
0.05748827010393143,
0.17083850502967834,
0.12150698900222778,
-0.11796735227108002,
-0.04964767396450043,
0.09803763777017593,
0.05804960057139397,
0.11584090441465378,
0.14052526652812958,
-0.0806574746966362,
0.11489706486463547,
0.026626965031027794,
0.03909507021307945,
-0.04469561576843262,
-0.024045152589678764,
-0.06552952527999878,
0.034510958939790726,
-0.019650302827358246,
0.14651232957839966,
-0.0670793205499649,
0.0032764323987066746,
-0.04021203890442848,
-0.09157031029462814,
-0.019222043454647064,
0.1158832311630249,
-0.05746365338563919,
0.05607849732041359,
-0.07804743200540543,
-0.08489201962947845,
0.08679889142513275,
0.00899415835738182,
-0.10154075175523758,
-0.04950651898980141,
0.04173585772514343,
-0.10374265909194946,
0.039345841854810715,
0.11155129969120026,
0.06320057809352875,
0.04596444591879845,
-0.059194955974817276,
0.09834424406290054,
-0.021139424294233322,
-0.00984442699700594,
0.015995295718312263,
-0.12962223589420319,
-0.016107523813843727,
-0.06045794114470482,
0.10450461506843567,
-0.1491307020187378,
-0.03911134600639343,
0.07489180564880371,
0.050265390425920486,
0.03919960930943489,
0.006638542748987675,
-0.07859062403440475,
0.06243010610342026,
0.0379173569381237,
0.010437672957777977,
0.01444877777248621,
-0.05429977551102638,
0.015190613456070423,
0.11912572383880615,
-0.06131189689040184,
-0.04299325868487358,
0.0575530044734478,
0.0774146243929863,
-0.03766671568155289,
0.022102966904640198,
-0.05490637198090553,
-0.030444882810115814,
0.002027608687058091,
-0.09516215324401855,
0.2069578915834427,
0.028839606791734695,
0.0856098160147667,
-0.07031553238630295,
-0.02305406704545021,
0.03920673206448555,
-0.01650824397802353,
-0.05687583237886429,
0.0644804984331131,
-0.0025776654947549105,
-0.0062690116465091705,
0.014796825125813484,
0.07625148445367813,
0.008239143528044224,
0.15751907229423523,
-0.03920901194214821,
-0.05761202052235603,
-0.01139837596565485,
-0.0032227295450866222,
-0.01776793599128723,
0.053240180015563965,
-0.07727173715829849,
-0.03013855777680874,
0.04356393590569496,
0.06091322749853134,
0.05435149744153023,
-0.055739860981702805,
0.06411176919937134,
-0.013869017362594604,
-0.08594301342964172,
-0.05088934302330017,
0.027976764366030693,
0.007436164189130068,
0.09650200605392456,
0.09227605909109116,
-0.0027776232454925776,
-0.008439124561846256,
-0.05750390514731407,
-0.09747154265642166,
0.11475692689418793,
-0.14751344919204712,
-0.2354317605495453,
-0.11932126432657242,
-0.03769733011722565,
-0.11106090992689133,
-0.023996731266379356,
0.038580674678087234,
-0.0929545909166336,
-0.07097171247005463,
-0.09039326757192612,
0.10980018228292465,
-0.08789397031068802,
0.005661556497216225,
0.050835102796554565,
0.02910635806620121,
0.010683678090572357,
-0.15346992015838623,
-0.007725053001195192,
-0.04096761718392372,
-0.10239102691411972,
-0.040863025933504105,
0.06467472016811371,
-0.020277777686715126,
0.056801799684762955,
-0.0026763188652694225,
-0.040019381791353226,
-0.023238804191350937,
0.19489401578903198,
-0.03951140120625496,
0.004607578739523888,
0.11414052546024323,
-0.022355861961841583,
0.045507196336984634,
0.11335492879152298,
0.06764331459999084,
-0.006647653412073851,
-0.03035554848611355,
0.04868827387690544,
-0.03288824483752251,
-0.1859765201807022,
-0.1327645182609558,
-0.05370401218533516,
0.02439340204000473,
-0.01841748133301735,
0.020068589597940445,
-0.022691506892442703,
-0.04184722527861595,
-0.0591399222612381,
0.023492611944675446,
0.06305770576000214,
0.028382692486047745,
0.2352985292673111,
-0.007127170916646719,
0.049625325947999954,
-0.1061103492975235,
-0.03267206624150276,
0.0879562571644783,
-0.05128366872668266,
0.18455106019973755,
0.025195268914103508,
0.12089741975069046,
0.07924868911504745,
0.016017714515328407,
0.04660582169890404,
0.016283366829156876,
-0.05077453702688217,
-0.013145409524440765,
-0.028183693066239357,
-0.10911766439676285,
0.03704444691538811,
0.0469028577208519,
0.06865210831165314,
-0.11082344502210617,
-0.0736754834651947,
-0.08536221086978912,
0.05132950097322464,
0.14532922208309174,
0.06572353094816208,
-0.1158837080001831,
-0.0553753599524498,
0.011707834899425507,
-0.08923482894897461,
-0.021806780248880386,
0.017536042258143425,
0.1637476086616516,
-0.15734687447547913,
0.10726042836904526,
0.04544860124588013,
0.032879509031772614,
-0.041561566293239594,
0.04804018884897232,
0.03505649417638779,
0.1161930039525032,
0.025091633200645447,
0.07117873430252075,
-0.061804525554180145,
0.11821766942739487,
0.030668413266539574,
0.009661195799708366,
-0.07553595304489136,
0.027510885149240494,
0.008289245888590813,
-0.01855943165719509,
0.0886133536696434,
0.022371137514710426,
-0.12730632722377777,
0.01978912577033043,
-0.052303433418273926,
0.044085223227739334,
0.17220048606395721,
-0.01592465303838253,
0.06240430474281311,
-0.009893693961203098,
-0.055225908756256104,
-0.008115999400615692,
0.027819279581308365,
-0.17364761233329773,
-0.17205707728862762,
0.07620232552289963,
0.03860896825790405,
-0.019581502303481102,
-0.0453307069838047,
-0.05866800993680954,
-0.13107648491859436,
0.1407633125782013,
-0.0783369243144989,
-0.04118555784225464,
-0.03893739730119705,
-0.09382326900959015,
0.1744457185268402,
-0.06181194633245468,
0.06850273162126541,
0.030418897047638893,
0.17015472054481506,
-0.022778812795877457,
-0.09288136661052704,
0.01438609603792429,
-0.1114291399717331,
-0.129847913980484,
-0.02081594429910183,
0.17361709475517273,
0.0322958379983902,
0.014570573344826698,
0.0066375043243169785,
0.01787707954645157,
0.025262262672185898,
-0.13314081728458405,
-0.024927671998739243,
0.11260783672332764,
-0.04866514354944229,
0.059359725564718246,
-0.07890691608190536,
-0.10298390686511993,
-0.0067090969532728195,
-0.0040240357629954815,
0.13028088212013245,
0.22499951720237732,
-0.09119625389575958,
0.24513956904411316,
0.1365126520395279,
-0.060165371745824814,
-0.24095509946346283,
-0.025739559903740883,
0.11942409723997116,
-0.03992394730448723,
0.013458543457090855,
-0.20056882500648499,
0.052822012454271317,
0.040751636028289795,
-0.026152096688747406,
0.036745719611644745,
-0.19705089926719666,
-0.1100229024887085,
-0.007506804075092077,
-0.10062932968139648,
0.13314607739448547,
-0.030443981289863586,
-0.05269908532500267,
-0.07168612629175186,
-0.054187215864658356,
0.13122500479221344,
-0.054588835686445236,
0.061743319034576416,
0.023686371743679047,
0.0005590363871306181,
0.02941438928246498,
0.029484199360013008,
0.11983546614646912,
0.0528356172144413,
-0.03962048143148422,
-0.04238142818212509,
0.041051581501960754,
0.04794689267873764,
0.0017729117535054684,
0.0893312469124794,
-0.003820072626695037,
-0.036942943930625916,
-0.06422493606805801,
-0.014649189077317715,
-0.08297158032655716,
0.020823579281568527,
-0.049442511051893234,
0.024159515276551247,
-0.06468859314918518,
0.045674677938222885,
0.049273137003183365,
0.0049681393429636955,
-0.046098411083221436,
-0.010359114035964012,
-0.015435106121003628,
0.1619454324245453,
0.14713366329669952,
0.008302479982376099,
-0.04236673563718796,
0.04486594721674919,
-0.031824011355638504,
0.03576083853840828,
-0.06442905962467194,
0.06183268502354622,
0.04132095351815224,
-0.020242813974618912,
0.0687418133020401,
0.004759766161441803,
-0.10767795890569687,
-0.03259483352303505,
0.10498266667127609,
-0.05542236939072609,
-0.1889076828956604,
-0.027509817853569984,
-0.052222538739442825,
-0.1095939427614212,
0.02403903566300869,
0.16497279703617096,
-0.020280271768569946,
-0.02750277705490589,
-0.07151234894990921,
0.08420492708683014,
-0.0643184632062912,
0.06416928023099899,
0.004933925345540047,
0.051909808069467545,
-0.08271009474992752,
0.04380732402205467,
0.07664855569601059,
-0.09694725275039673,
0.0014124218141660094,
0.15337437391281128,
-0.028487132862210274,
-0.04937101900577545,
-0.07812140136957169,
-0.02730083279311657,
0.010969752445816994,
-0.08587242662906647,
0.027022549882531166,
-0.13041701912879944,
0.007926039397716522,
0.05200708284974098,
-0.022614067420363426,
0.029741520062088966,
0.05125971511006355,
0.008633477613329887,
-0.04364277049899101,
0.07577738910913467,
-0.06688323616981506,
-0.009023585356771946,
0.005528812296688557,
0.045850761234760284,
-0.020268026739358902,
0.07614338397979736,
0.003435736056417227,
-0.02291223779320717,
-0.09883114695549011,
-0.04735122248530388,
-0.14850912988185883,
0.020823802798986435,
-0.024770986288785934,
0.03474242240190506,
-0.00402155052870512,
0.018572479486465454,
-0.02157939039170742,
0.020165592432022095,
-0.08095410466194153,
-0.016307858750224113,
-0.019798191264271736,
0.11859146505594254,
-0.0950196385383606,
0.05969878286123276,
0.047802720218896866,
-0.06628497689962387,
0.1191394254565239,
0.018992727622389793,
0.0032848857808858156,
0.04268685728311539,
-0.05300955846905708,
-0.04456909000873566,
-0.06001284718513489,
0.060087237507104874,
0.007260085083544254,
-0.08976408839225769,
-0.0054602548480033875,
0.01684674806892872,
0.06794029474258423,
0.009215183556079865,
0.011336642317473888,
-0.06038936227560043,
0.08513566106557846,
-0.06900414824485779,
-0.06259866803884506,
-0.04553017392754555,
0.016255538910627365,
0.01653161644935608,
0.037717465311288834,
0.08524027466773987,
-0.07598313689231873,
-0.008814020082354546,
-0.07622165977954865,
-0.014506779611110687,
-0.0347287580370903,
0.005198468919843435,
0.07995689660310745,
-0.012338553555309772,
0.04937697574496269,
0.010664330795407295,
0.22293336689472198,
0.050969384610652924,
0.023417789489030838,
0.026098646223545074,
-0.12335460633039474,
-0.11186430603265762,
0.07712990045547485,
0.07715880125761032,
0.04774864763021469,
-0.015295328572392464,
-0.104079470038414,
-0.004853894934058189,
-0.032416339963674545,
0.029785605147480965,
0.14043763279914856,
0.14193417131900787,
0.12802518904209137,
0.04506761580705643,
0.1285686045885086,
-0.1069115400314331,
-0.03174314275383949,
0.0868816152215004,
0.006439632270485163,
0.053771257400512695,
-0.1420382410287857,
-0.03185532987117767,
0.0653553456068039,
-0.14622734487056732,
0.11429484188556671,
-0.04294315353035927,
-0.05069524422287941,
-0.1153012216091156,
-0.016028478741645813,
-0.053989261388778687,
-0.09762438386678696,
-0.01743461564183235,
-0.09172632545232773,
0.10110317170619965,
0.05416365712881088,
0.05434224382042885,
-0.002327095018699765,
0.03350818529725075,
-0.19643092155456543,
-0.0873134657740593,
0.08094609528779984,
-0.005744078662246466,
0.06112271174788475,
0.07144146412611008,
0.04090794548392296,
0.06326345354318619,
0.03227986767888069,
0.0634518638253212,
0.07081872969865799,
0.009205532260239124,
-0.009192202240228653,
-0.0604354590177536,
-0.05208725854754448,
0.011469051241874695,
-0.01148771122097969,
0.08397936075925827,
0.14776624739170074,
0.08078401535749435,
-0.12040936946868896,
0.013877852819859982,
0.13178673386573792,
-0.04552668333053589,
-0.12923549115657806,
-0.13677935302257538,
0.09443049877882004,
0.005421740934252739,
0.08657807111740112,
-0.04269777610898018,
-0.05828749015927315,
-0.052128277719020844,
0.1279488205909729,
0.27772852778434753,
0.036050837486982346,
0.025543073192238808,
0.01442195475101471,
0.0002098294353345409,
0.023250484839081764,
0.10631226748228073,
0.07322334498167038,
0.3104180097579956,
-0.024693485349416733,
0.03079557977616787,
0.04275652766227722,
0.054340705275535583,
-0.12654872238636017,
0.15866851806640625,
-0.06709223985671997,
-0.002689947374165058,
-0.02905522659420967,
0.062396932393312454,
-0.04408317059278488,
-0.21198861300945282,
-0.023951280862092972,
-0.1281106173992157,
-0.0952385663986206,
0.016698075458407402,
-0.01122901402413845,
0.08994391560554504,
0.05418074503540993,
0.01763761043548584,
-0.08436666429042816,
0.15234237909317017,
-0.011610416695475578,
0.013577521778643131,
-0.05015651136636734,
0.09528496861457825,
-0.06683559715747833,
0.2046007364988327,
0.03632323816418648,
0.15468701720237732,
0.06480567157268524,
0.02067158743739128,
-0.07531881332397461,
-0.01491399947553873,
0.004957483150064945,
-0.0631573349237442,
0.024134308099746704,
0.15171249210834503,
-0.03874512389302254,
0.12144331634044647,
0.04749308153986931,
-0.02068144641816616,
0.050646696239709854,
0.12517806887626648,
-0.029211122542619705,
-0.029804080724716187,
0.07007566094398499,
-0.1214301586151123,
0.10757778584957123,
0.15713685750961304,
-0.031632401049137115,
0.01580188237130642,
-0.026621215045452118,
-0.01723744161427021,
-0.041799891740083694,
0.04621129110455513,
-0.06631854176521301,
-0.16981029510498047,
0.04074736312031746,
-0.018645627424120903,
0.06683606654405594,
-0.2281588315963745,
-0.04540996626019478,
0.04090596362948418,
0.05080081522464752,
-0.0052033946849405766,
0.03425123915076256,
0.11234680563211441,
-0.04412658512592316,
-0.04613880440592766,
-0.15525752305984497,
0.019406577572226524,
0.06536895036697388,
-0.049945008009672165,
-0.04656469449400902
] |
null | null | transformers |
# LeBenchmark: wav2vec2 base model trained on 7K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-7K-base | [
"transformers",
"pytorch",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 base model trained on 7K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 base model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 base model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
51,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 base model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.03029714524745941,
0.0774158388376236,
-0.002464637625962496,
0.01801612414419651,
0.027260156348347664,
0.0014271961990743876,
0.0897834524512291,
0.08091117441654205,
-0.08669416606426239,
0.05905572324991226,
-0.024902891367673874,
-0.15848110616207123,
0.05652080848813057,
0.025354309007525444,
0.0898495614528656,
-0.3319717347621918,
0.01783066615462303,
-0.11751294881105423,
-0.021061979234218597,
0.008182782679796219,
0.14669451117515564,
-0.05557096004486084,
0.06388974189758301,
0.05775060877203941,
0.025433972477912903,
0.019490109756588936,
-0.07660847902297974,
-0.07865077257156372,
0.08886060118675232,
0.11249056458473206,
-0.010915924794971943,
0.02063019759953022,
0.06643326580524445,
-0.19677457213401794,
-0.008208288811147213,
0.02511455863714218,
0.02292286790907383,
0.030920980498194695,
0.0690390095114708,
0.005460403393954039,
0.08502987772226334,
-0.1713542938232422,
0.014484236016869545,
0.046843040734529495,
-0.006937616970390081,
-0.3279419541358948,
-0.1171068623661995,
0.06503631919622421,
0.002807905897498131,
0.04063063859939575,
0.0003592014836613089,
0.026701854541897774,
-0.13661351799964905,
-0.0030990687664598227,
0.15101197361946106,
-0.21499690413475037,
-0.005991906393319368,
-0.05691932514309883,
0.060708265751600266,
0.09910497814416885,
-0.12374522536993027,
-0.005167489871382713,
-0.01759587787091732,
0.009319587610661983,
-0.037863839417696,
-0.0045981998555362225,
-0.07789060473442078,
-0.03238106518983841,
-0.10539118945598602,
0.058979663997888565,
0.16094864904880524,
0.03136729076504707,
-0.09316843748092651,
-0.17067183554172516,
0.06382458657026291,
0.045801788568496704,
-0.09601394832134247,
-0.020019812509417534,
0.07416490465402603,
-0.05836237967014313,
0.029716257005929947,
-0.0447009913623333,
-0.0795084536075592,
0.02489180490374565,
-0.058368708938360214,
0.15722320973873138,
0.04060188680887222,
0.05835801362991333,
-0.009504294022917747,
-0.03800282999873161,
-0.2201838493347168,
-0.04350980743765831,
-0.07477540522813797,
-0.10440941900014877,
-0.004770517349243164,
-0.0036339431535452604,
-0.061634600162506104,
-0.004808530677109957,
0.09401027858257294,
0.14885827898979187,
-0.13468943536281586,
0.03725522384047508,
-0.036587465554475784,
-0.01095100212842226,
0.03319742903113365,
0.09406735002994537,
-0.057703979313373566,
-0.06904289871454239,
0.00249229627661407,
-0.0455700121819973,
-0.01505240984261036,
0.04322753846645355,
-0.04801364988088608,
-0.022836485877633095,
-0.10112151503562927,
0.05236412212252617,
-0.007075185887515545,
0.010224703699350357,
0.04231484979391098,
-0.0348871685564518,
0.1876954734325409,
-0.1260744333267212,
0.029537972062826157,
0.05877372995018959,
-0.008126926608383656,
0.07718163728713989,
-0.051287613809108734,
0.03462628275156021,
-0.03617389500141144,
0.010267619974911213,
-0.019931765273213387,
-0.019435519352555275,
-0.023903541266918182,
-0.08752963691949844,
0.049497090280056,
0.06722547113895416,
-0.05045630410313606,
-0.0649556890130043,
0.02371089719235897,
-0.020920349285006523,
-0.008079789578914642,
-0.07882646471261978,
-0.009182510897517204,
-0.02950196899473667,
-0.06992442160844803,
0.04745965451002121,
-0.008750361390411854,
0.05699596181511879,
-0.02903682552278042,
-0.057658419013023376,
-0.026548780500888824,
0.0896681547164917,
-0.09214241057634354,
0.033987805247306824,
0.0017935452051460743,
0.005900736898183823,
-0.13036027550697327,
0.10393265634775162,
-0.11003230512142181,
-0.08025620132684708,
-0.10614907741546631,
-0.08452921360731125,
-0.06637602299451828,
0.01803022064268589,
-0.01284797303378582,
0.06347901374101639,
-0.15643621981143951,
-0.07420538365840912,
0.18989954888820648,
-0.11471804976463318,
-0.009117421694099903,
0.20641349256038666,
0.022965114563703537,
-0.0045234439894557,
0.057420503348112106,
0.16797126829624176,
0.1609102040529251,
-0.11374009400606155,
-0.05873221158981323,
0.10075986385345459,
0.05201352387666702,
0.09572187811136246,
0.15298794209957123,
-0.07785089313983917,
0.13072119653224945,
0.023790575563907623,
0.018664907664060593,
-0.04727626591920853,
-0.027932366356253624,
-0.06988976150751114,
0.03883759304881096,
-0.03373011201620102,
0.13291555643081665,
-0.07031137496232986,
0.012775620445609093,
-0.03792466223239899,
-0.07677585631608963,
-0.00020166634931229055,
0.1318141669034958,
-0.04800887033343315,
0.05126778781414032,
-0.07787059247493744,
-0.0742412582039833,
0.09140481799840927,
-0.0019108967389911413,
-0.09203314036130905,
-0.050279244780540466,
0.04139067977666855,
-0.12155073136091232,
0.043825797736644745,
0.12923423945903778,
0.06698479503393173,
0.039642706513404846,
-0.061612099409103394,
0.10566822439432144,
-0.026054508984088898,
-0.005132895428687334,
0.008473725989460945,
-0.1299736201763153,
-0.030084071680903435,
-0.053908318281173706,
0.13192956149578094,
-0.1409660428762436,
-0.0364215150475502,
0.0875333845615387,
0.04619859158992767,
0.030417412519454956,
0.014422692358493805,
-0.06479109823703766,
0.050048720091581345,
0.049370113760232925,
0.013642211444675922,
0.0100528160110116,
-0.05304461345076561,
0.004377238918095827,
0.11319570988416672,
-0.056596893817186356,
-0.0392153263092041,
0.05179726704955101,
0.0999525859951973,
-0.028922129422426224,
0.03205317258834839,
-0.0687236413359642,
-0.0320998877286911,
0.009671329520642757,
-0.09156878292560577,
0.192142054438591,
0.019650211557745934,
0.07149150222539902,
-0.0697057917714119,
-0.03443115949630737,
0.026653246954083443,
-0.011760887689888477,
-0.058468353003263474,
0.06530813872814178,
-0.03700287267565727,
0.008463404141366482,
0.012820150703191757,
0.06829867511987686,
0.00446606008335948,
0.14926986396312714,
-0.03533272445201874,
-0.06569390743970871,
-0.011585439555346966,
0.0023440993390977383,
-0.016084225848317146,
0.047490306198596954,
-0.06123890355229378,
-0.016375167295336723,
0.05491526797413826,
0.05399472638964653,
0.06056493520736694,
-0.04966104403138161,
0.06063337251543999,
-0.009268030524253845,
-0.08953049033880234,
-0.04281317815184593,
0.0232688058167696,
0.008453864604234695,
0.09963070601224899,
0.10414182394742966,
0.024390147998929024,
-0.0006529134698212147,
-0.05493248254060745,
-0.09510759264230728,
0.11103419959545135,
-0.13962890207767487,
-0.2158995270729065,
-0.13033010065555573,
-0.006848624441772699,
-0.10021209716796875,
-0.01945820450782776,
0.03415221720933914,
-0.10537891089916229,
-0.06864221394062042,
-0.08727124333381653,
0.1114707663655281,
-0.08725664764642715,
0.011243738234043121,
0.06848876923322678,
0.04014783352613449,
0.025906385853886604,
-0.1505499929189682,
0.0014766632812097669,
-0.04100723937153816,
-0.11051255464553833,
-0.04388321936130524,
0.07160017639398575,
-0.02380349300801754,
0.0445919968187809,
0.0047888499684631824,
-0.04527386650443077,
-0.018522052094340324,
0.18353188037872314,
-0.03404927998781204,
0.012548564001917839,
0.129858136177063,
-0.025783777236938477,
0.03916362673044205,
0.10787516087293625,
0.06203257292509079,
0.00009910693188430741,
-0.029289161786437035,
0.05936555191874504,
-0.015067880041897297,
-0.19717542827129364,
-0.13306066393852234,
-0.05842578411102295,
0.015039284713566303,
-0.04312606528401375,
0.021612603217363358,
-0.023755239322781563,
-0.03239290416240692,
-0.07021258771419525,
0.0229830052703619,
0.058834876865148544,
0.01967906393110752,
0.24726103246212006,
-0.004901723470538855,
0.03559774160385132,
-0.11925781518220901,
-0.04411895573139191,
0.1047339141368866,
-0.06179897487163544,
0.16983366012573242,
0.007773161865770817,
0.1360451877117157,
0.07467315346002579,
0.029286349192261696,
0.040758341550827026,
0.019403768703341484,
-0.056047096848487854,
-0.010441228747367859,
-0.029630327597260475,
-0.10988637059926987,
0.038285475224256516,
0.047787200659513474,
0.07410669326782227,
-0.10880345106124878,
-0.08315348625183105,
-0.09482687711715698,
0.04605819657444954,
0.13897329568862915,
0.07828837633132935,
-0.11978612095117569,
-0.07186231017112732,
0.023808779194951057,
-0.08578997105360031,
-0.0118793286383152,
-0.002372130285948515,
0.16029907763004303,
-0.15435069799423218,
0.10697196424007416,
0.054714348167181015,
0.022138576954603195,
-0.05408032238483429,
0.04567290097475052,
0.03386765718460083,
0.1136174127459526,
0.02569403313100338,
0.09303087741136551,
-0.04628083109855652,
0.1094987541437149,
0.032077357172966,
0.01689576916396618,
-0.07883495092391968,
0.028325198218226433,
0.012003010138869286,
-0.043350718915462494,
0.08026965707540512,
0.017962582409381866,
-0.11683438718318939,
0.02364319935441017,
-0.0733201801776886,
0.0540739931166172,
0.16724351048469543,
-0.030505167320370674,
0.06904784590005875,
-0.011763272807002068,
-0.05406995117664337,
-0.0006043169996701181,
0.04495498910546303,
-0.1795046329498291,
-0.17074666917324066,
0.07973144203424454,
0.03458597511053085,
-0.025468457490205765,
-0.05142730847001076,
-0.06775646656751633,
-0.11870653927326202,
0.14105461537837982,
-0.08562619239091873,
-0.0560402013361454,
-0.04833884909749031,
-0.08057456463575363,
0.19807077944278717,
-0.06506555527448654,
0.05716502293944359,
0.03981170058250427,
0.17845062911510468,
-0.010072048753499985,
-0.09031036496162415,
-0.0049218302592635155,
-0.10525331646203995,
-0.15459883213043213,
-0.011402691714465618,
0.17515365779399872,
0.03619854152202606,
0.02769073285162449,
-0.00022933928994461894,
0.007365233264863491,
0.02101929858326912,
-0.1355527639389038,
-0.03253680467605591,
0.10583368688821793,
-0.039474692195653915,
0.05538802966475487,
-0.09023988991975784,
-0.11640924960374832,
-0.00962548702955246,
-0.005906092934310436,
0.1271250694990158,
0.25068163871765137,
-0.08170648664236069,
0.24609051644802094,
0.14740978181362152,
-0.051740389317274094,
-0.23662447929382324,
-0.029361708089709282,
0.12410110980272293,
-0.0383475124835968,
0.014369689859449863,
-0.1925528347492218,
0.05473099648952484,
0.04576360806822777,
-0.030767612159252167,
0.020008964464068413,
-0.18399225175380707,
-0.10763214528560638,
-0.004418983589857817,
-0.11140076071023941,
0.11455897986888885,
-0.03742529824376106,
-0.05783268064260483,
-0.07847905158996582,
-0.054841049015522,
0.14570355415344238,
-0.058543089777231216,
0.06359842419624329,
0.010496134869754314,
-0.0006910248193889856,
0.03007049858570099,
0.026115544140338898,
0.12125381082296371,
0.05862525850534439,
-0.03268972784280777,
-0.05679481849074364,
0.04924025386571884,
0.05021469667553902,
-0.005811886861920357,
0.0891961082816124,
0.009225509129464626,
-0.031169379130005836,
-0.08989714086055756,
-0.018827399238944054,
-0.09487254172563553,
0.02892879955470562,
-0.04749618470668793,
0.026670409366488457,
-0.07459879666566849,
0.053328972309827805,
0.04437480494379997,
0.004346759989857674,
-0.06148844212293625,
0.00692613935098052,
-0.02070707641541958,
0.13588231801986694,
0.16163530945777893,
0.03691329434514046,
-0.021845795214176178,
0.03997204452753067,
-0.02936413511633873,
0.02221263386309147,
-0.06048787385225296,
0.06078702211380005,
0.03869407996535301,
-0.019398434087634087,
0.05792413279414177,
0.007224372588098049,
-0.11275532841682434,
-0.027467278763651848,
0.10793869197368622,
-0.051622286438941956,
-0.16404952108860016,
-0.018974704667925835,
-0.05583769828081131,
-0.13611900806427002,
0.015912486240267754,
0.16112329065799713,
-0.02091507986187935,
-0.03380342572927475,
-0.07507149875164032,
0.09013141691684723,
-0.06904908269643784,
0.0835496336221695,
0.02103045955300331,
0.05117037892341614,
-0.07895360887050629,
0.049774885177612305,
0.07729732990264893,
-0.10832544416189194,
0.0018583661876618862,
0.1513349413871765,
-0.03256542608141899,
-0.05655482038855553,
-0.039020467549562454,
-0.04580390825867653,
0.004176776390522718,
-0.08354100584983826,
0.03331364691257477,
-0.1352558135986328,
0.004632267635315657,
0.03846544399857521,
-0.020867416635155678,
0.044729020446538925,
0.06049023196101189,
0.020060893148183823,
-0.055173344910144806,
0.07591747492551804,
-0.07139375060796738,
-0.018089378252625465,
-0.003691060235723853,
0.051138270646333694,
-0.03195073828101158,
0.07328386604785919,
0.0022525647655129433,
-0.005615389905869961,
-0.09383240342140198,
-0.05555734410881996,
-0.13586270809173584,
0.019179916009306908,
-0.024859629571437836,
0.029806967824697495,
-0.011140723712742329,
0.01526727993041277,
-0.02391364611685276,
0.024548230692744255,
-0.08487603813409805,
-0.02285175584256649,
-0.030742578208446503,
0.12848405539989471,
-0.09825905412435532,
0.056166376918554306,
0.05952718108892441,
-0.07034392654895782,
0.13335362076759338,
0.03556039556860924,
0.01503240317106247,
0.036197636276483536,
-0.050310440361499786,
-0.054452717304229736,
-0.06873255223035812,
0.05302376672625542,
0.013214923441410065,
-0.09562119841575623,
-0.005467974580824375,
0.02369273081421852,
0.07104963064193726,
0.008699275553226471,
0.0275362990796566,
-0.0565183199942112,
0.08752527087926865,
-0.07784368842840195,
-0.06052882969379425,
-0.04405495524406433,
-0.0002976679534185678,
0.027791624888777733,
0.020586131140589714,
0.08898653090000153,
-0.07346214354038239,
-0.011270463466644287,
-0.08968361467123032,
-0.016307782381772995,
-0.042630039155483246,
0.013580278493463993,
0.061006322503089905,
-0.0075426260009408,
0.0571664422750473,
0.014957541599869728,
0.2130020260810852,
0.023846080526709557,
0.019147759303450584,
0.024028275161981583,
-0.11528489738702774,
-0.09012733399868011,
0.08039882779121399,
0.09933313727378845,
0.04942044988274574,
-0.0204615481197834,
-0.0904393121600151,
-0.012833334505558014,
-0.036353401839733124,
0.0033231284469366074,
0.14487113058567047,
0.15960007905960083,
0.11331737786531448,
0.03963564336299896,
0.1474195271730423,
-0.11722143739461899,
-0.027897169813513756,
0.09299824386835098,
0.012959322892129421,
0.04641372337937355,
-0.13896431028842926,
-0.045154694467782974,
0.07125987112522125,
-0.15513399243354797,
0.10996560007333755,
-0.054849255830049515,
-0.04864276573061943,
-0.1057475358247757,
0.0040305377915501595,
-0.05867857113480568,
-0.09327368438243866,
-0.015235642902553082,
-0.09275678545236588,
0.08790083974599838,
0.07152040302753448,
0.05244428664445877,
-0.0028644856065511703,
0.03845701366662979,
-0.20112423598766327,
-0.08157110214233398,
0.06733094900846481,
-0.00708367582410574,
0.04756799712777138,
0.08447973430156708,
0.03646316006779671,
0.07239513099193573,
0.04672151431441307,
0.0656910240650177,
0.06766264140605927,
0.01753268763422966,
-0.005843830294907093,
-0.059590063989162445,
-0.06091222167015076,
0.008043915964663029,
-0.01679150015115738,
0.0975341647863388,
0.13692958652973175,
0.06629139930009842,
-0.11879914999008179,
0.010059461928904057,
0.13132545351982117,
-0.044716425240039825,
-0.13568592071533203,
-0.12654557824134827,
0.08912048488855362,
0.002385837957262993,
0.06825705617666245,
-0.03493523597717285,
-0.06242555007338524,
-0.04485386610031128,
0.13873735070228577,
0.2842651605606079,
0.03395577147603035,
0.022514162585139275,
0.01953551173210144,
-0.0027315705083310604,
0.019065454602241516,
0.10398844629526138,
0.0711912289261818,
0.306079238653183,
-0.029570158571004868,
0.029118049889802933,
0.05178877338767052,
0.06544634699821472,
-0.12417034059762955,
0.17891500890254974,
-0.08551344275474548,
0.005712635815143585,
-0.01764446310698986,
0.05988212674856186,
-0.032244108617305756,
-0.2356943041086197,
-0.01846049167215824,
-0.12857173383235931,
-0.10355192422866821,
0.02383030392229557,
-0.006565394811332226,
0.08561854064464569,
0.056779894977808,
0.01850014552474022,
-0.08004792034626007,
0.1449737697839737,
-0.012946088798344135,
0.0007437409949488938,
-0.04231689125299454,
0.10990297049283981,
-0.039492860436439514,
0.20097602903842926,
0.04189618304371834,
0.1625664383172989,
0.06148862838745117,
-0.0019231387414038181,
-0.09541158378124237,
-0.016803905367851257,
0.004103558138012886,
-0.06793622672557831,
0.035467520356178284,
0.16772185266017914,
-0.04061441496014595,
0.1053239107131958,
0.05616569146513939,
-0.03719710931181908,
0.04678437113761902,
0.13516142964363098,
-0.017986277118325233,
-0.04167716205120087,
0.0702390968799591,
-0.13154594600200653,
0.10699310153722763,
0.1520361304283142,
-0.03859486058354378,
0.010415934026241302,
-0.030776944011449814,
-0.014651894569396973,
-0.03797999396920204,
0.06746482104063034,
-0.06809556484222412,
-0.1757417470216751,
0.04089168459177017,
-0.03636233136057854,
0.07166305929422379,
-0.23096999526023865,
-0.04304620623588562,
0.03886531665921211,
0.04565798118710518,
0.0025882883928716183,
0.02889706939458847,
0.10720574855804443,
-0.04122156649827957,
-0.04071884974837303,
-0.1421891152858734,
0.015559152700006962,
0.057844195514917374,
-0.061412375420331955,
-0.04382181167602539
] |
null | null | transformers |
# LeBenchmark: wav2vec2 large model trained on 7K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472)
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**).
- [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english).
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
**If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)**
## Referencing LeBenchmark
```
@misc{parcollet2023lebenchmark,
title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech},
author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier},
year={2023},
eprint={2309.05472},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": "fr", "license": "apache-2.0", "tags": ["wav2vec2"]} | feature-extraction | LeBenchmark/wav2vec2-FR-7K-large | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"feature-extraction",
"fr",
"arxiv:2309.05472",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2309.05472"
] | [
"fr"
] | TAGS
#transformers #pytorch #safetensors #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us
|
# LeBenchmark: wav2vec2 large model trained on 7K hours of French speech
LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.
For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech
## Model and data descriptions
We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:
## *Lebenchmark 2.0:*
- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).
## *Lebenchmark:*
- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).
- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).
- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).
- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).
## Intended uses & limitations
Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.
## Fine-tune with Fairseq for ASR with CTC
As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.
Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.
## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...
Pretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.
While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!
1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...
2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.
If interested, simply follow this tutorial
## Referencing LeBenchmark
| [
"# LeBenchmark: wav2vec2 large model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LeBenchmark: wav2vec2 large model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech",
"## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:",
"## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).",
"## *Lebenchmark:*\n- wav2vec2-FR-7K-large: Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-7K-base: Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown).\n- wav2vec2-FR-3K-large: Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-3K-base: Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown).\n- wav2vec2-FR-2.6K-base: Base wav2vec2 trained on 2.6K hours of French speech (no spontaneous speech).\n- wav2vec2-FR-1K-large: Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).\n- wav2vec2-FR-1K-base: Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females).",
"## Intended uses & limitations\n\nPretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced.",
"## Fine-tune with Fairseq for ASR with CTC\n\nAs our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in this blogpost.\n\nPlease note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part.",
"## Integrate to SpeechBrain for ASR, Speaker, Source Separation ...\n\nPretrained wav2vec models recently gained in popularity. At the same time, SpeechBrain toolkit came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies.\n\nWhile it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models!\n\n 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ...\n 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer.\n\nIf interested, simply follow this tutorial",
"## Referencing LeBenchmark"
] | [
56,
166,
80,
152,
303,
67,
126,
281,
8
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #feature-extraction #fr #arxiv-2309.05472 #license-apache-2.0 #endpoints_compatible #region-us \n# LeBenchmark: wav2vec2 large model trained on 7K hours of French speech\n\n \n\nLeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks.\nFor more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech## Model and data descriptions\n\n \nWe release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short:## *Lebenchmark 2.0:*\n- wav2vec2-FR-14K-xlarge: xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-large: Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown).\n- wav2vec2-FR-14K-light: Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown)."
] | [
-0.0323568619787693,
0.04644672945141792,
-0.002859952161088586,
0.005962388589978218,
0.014997979626059532,
-0.013086003251373768,
0.09005064517259598,
0.0672144740819931,
-0.04059194400906563,
0.06961588561534882,
-0.006375277414917946,
-0.16205672919750214,
0.051407340914011,
0.025433475151658058,
0.08321741968393326,
-0.32924386858940125,
0.029639743268489838,
-0.11791325360536575,
-0.009298299439251423,
0.007546955719590187,
0.1371551752090454,
-0.06424671411514282,
0.0530988872051239,
0.05351725220680237,
0.014275291934609413,
0.010717914439737797,
-0.04916722699999809,
-0.09743677824735641,
0.08313304930925369,
0.09831290692090988,
-0.013399377465248108,
0.006043402478098869,
0.061884913593530655,
-0.1733393669128418,
-0.008786482736468315,
0.035298753529787064,
0.029528873041272163,
0.02334768883883953,
0.06718678772449493,
0.004353008698672056,
0.06437632441520691,
-0.16227424144744873,
0.01634075865149498,
0.03937888517975807,
-0.007367032114416361,
-0.32985782623291016,
-0.11343781650066376,
0.03869779780507088,
-0.02488946169614792,
0.030435869470238686,
0.0027220980264246464,
0.00781994964927435,
-0.13670317828655243,
0.012946411035954952,
0.14602278172969818,
-0.22429803013801575,
-0.01363212987780571,
-0.03963813930749893,
0.0418667308986187,
0.10021637380123138,
-0.11677690595388412,
0.009439430199563503,
-0.02345731481909752,
0.007249955553561449,
-0.023796889930963516,
-0.012718728743493557,
-0.04710940644145012,
-0.043355219066143036,
-0.10485367476940155,
0.0612373948097229,
0.14122094213962555,
0.03212228789925575,
-0.0876229852437973,
-0.1826050579547882,
0.04031801596283913,
0.038607314229011536,
-0.08426817506551743,
-0.029582783579826355,
0.07426891475915909,
-0.04999958351254463,
0.004930008202791214,
-0.038164470344781876,
-0.05326373130083084,
0.01961338147521019,
-0.07811289280653,
0.19611437618732452,
0.03573913499712944,
0.07499480247497559,
-0.016717251390218735,
-0.041693057864904404,
-0.23152466118335724,
-0.05233968794345856,
-0.08067303895950317,
-0.10371209681034088,
-0.00021409055625554174,
0.014423125423491001,
-0.04729325696825981,
-0.027720419690012932,
0.08623559027910233,
0.1421947479248047,
-0.15454818308353424,
0.04891715198755264,
-0.06098918244242668,
0.012119423598051071,
0.0068196565844118595,
0.15203383564949036,
-0.04925164207816124,
-0.07647166401147842,
0.005011518951505423,
-0.03920771926641464,
-0.0006291379104368389,
0.04016251862049103,
-0.05221327766776085,
-0.01081684697419405,
-0.09268563985824585,
0.042727794498205185,
-0.02715756744146347,
0.02278517559170723,
0.0496133454144001,
-0.025290146470069885,
0.1554512083530426,
-0.12180028110742569,
0.05148274824023247,
0.052741050720214844,
-0.02719530463218689,
0.10630267858505249,
-0.04258293658494949,
0.022845694795250893,
-0.04146535322070122,
0.02374170906841755,
-0.007325915619730949,
-0.004554094281047583,
-0.032750826328992844,
-0.09477968513965607,
0.03942367061972618,
0.08459101617336273,
-0.05520109832286835,
-0.08947761356830597,
0.013497854582965374,
-0.01690177619457245,
0.007996191270649433,
-0.07698962837457657,
0.01910153590142727,
-0.04110363498330116,
-0.06893671303987503,
0.043542057275772095,
0.003112515201792121,
0.012829108163714409,
-0.027687739580869675,
-0.06203043833374977,
-0.04185979440808296,
0.10494688898324966,
-0.09847677499055862,
0.03827353194355965,
-0.014584311284124851,
0.0110376151278615,
-0.18144039809703827,
0.11871562898159027,
-0.10625176131725311,
-0.0909392237663269,
-0.09641287475824356,
-0.08867309987545013,
-0.08400511741638184,
0.022100327536463737,
0.010541538707911968,
0.035728637129068375,
-0.15708410739898682,
-0.07330955564975739,
0.224124476313591,
-0.09809457510709763,
-0.02858034148812294,
0.21452756226062775,
0.029362639412283897,
0.006039050407707691,
0.05787044018507004,
0.18576228618621826,
0.11814507097005844,
-0.10472934693098068,
-0.04781955108046532,
0.10485977679491043,
0.05931421369314194,
0.13172557950019836,
0.12892362475395203,
-0.08634722977876663,
0.10733705013990402,
0.02925023064017296,
0.0657137855887413,
-0.04722059890627861,
-0.014599335379898548,
-0.05612819641828537,
0.019026832655072212,
-0.017634855583310127,
0.1636936366558075,
-0.07026979327201843,
0.00829122681170702,
-0.051604319363832474,
-0.09794621914625168,
-0.01480549480766058,
0.10597529262304306,
-0.05708790570497513,
0.05768711119890213,
-0.06913897395133972,
-0.07611693441867828,
0.08620979636907578,
0.004175853915512562,
-0.08449920266866684,
-0.05065860599279404,
0.062419310212135315,
-0.08944926410913467,
0.032499317079782486,
0.10109425336122513,
0.060760531574487686,
0.03847847133874893,
-0.056785598397254944,
0.09610273689031601,
-0.017441052943468094,
-0.009347896091639996,
0.01636134460568428,
-0.10917159169912338,
0.004216988570988178,
-0.053454939275979996,
0.07858782261610031,
-0.1467077136039734,
-0.04715179651975632,
0.08185437321662903,
0.044550422579050064,
0.039590444415807724,
0.014832979999482632,
-0.08741883188486099,
0.05927255004644394,
0.0444539375603199,
0.009439314715564251,
0.00299914856441319,
-0.05579311400651932,
-0.0014763366198167205,
0.10339561849832535,
-0.06866855174303055,
-0.04978983849287033,
0.04270640015602112,
0.0830937996506691,
-0.02611530013382435,
0.024571223184466362,
-0.052842315286397934,
-0.032882872968912125,
0.00038039166247472167,
-0.08859198540449142,
0.21612648665905,
0.020756719633936882,
0.08428185433149338,
-0.07790626585483551,
-0.019077926874160767,
0.033951617777347565,
-0.01966775767505169,
-0.044704947620630264,
0.05960949510335922,
-0.03132512420415878,
-0.02932627685368061,
0.016880536451935768,
0.08364797383546829,
-0.01558695174753666,
0.15532754361629486,
-0.045692767947912216,
-0.05683052912354469,
-0.013827448710799217,
0.006693797651678324,
-0.01688958704471588,
0.04922323673963547,
-0.057829514145851135,
-0.021489515900611877,
0.043126292526721954,
0.07146754115819931,
0.040600743144750595,
-0.056649357080459595,
0.07645361870527267,
-0.022960038855671883,
-0.07802197337150574,
-0.034986741840839386,
0.03690146654844284,
0.024964531883597374,
0.09279980510473251,
0.10260964184999466,
-0.01261582039296627,
0.0047078002244234085,
-0.05623706057667732,
-0.09062297642230988,
0.11530327051877975,
-0.1571543663740158,
-0.23061449825763702,
-0.11079547554254532,
-0.0071049220860004425,
-0.11786297708749771,
-0.030634179711341858,
0.03749362379312515,
-0.07363701611757278,
-0.06804285198450089,
-0.08976523578166962,
0.09514815360307693,
-0.09202571213245392,
0.004673444665968418,
0.05415909364819527,
0.0200396329164505,
0.008129396475851536,
-0.14685577154159546,
-0.011589937843382359,
-0.03853416070342064,
-0.1205415278673172,
-0.03825410455465317,
0.06584631651639938,
-0.037695419043302536,
0.06147376447916031,
-0.015566077083349228,
-0.04151626303792,
-0.033169541507959366,
0.17095164954662323,
-0.051668740808963776,
0.022065170109272003,
0.09319432824850082,
-0.018055522814393044,
0.05586620047688484,
0.12106718868017197,
0.0767112597823143,
0.005120344925671816,
-0.02444680593907833,
0.039060790091753006,
-0.03333881497383118,
-0.17169474065303802,
-0.13383789360523224,
-0.050320856273174286,
0.03874100744724274,
-0.022403638809919357,
0.021939527243375778,
-0.014038550667464733,
-0.03925001621246338,
-0.06084086373448372,
0.02166091278195381,
0.07650744915008545,
0.028446204960346222,
0.22688326239585876,
0.005743993911892176,
0.04741797223687172,
-0.0949675515294075,
-0.027320289984345436,
0.08198344707489014,
-0.05884958803653717,
0.1863507330417633,
0.0051781595684587955,
0.121799536049366,
0.06961384415626526,
0.019982822239398956,
0.051070842891931534,
0.00831403024494648,
-0.052332423627376556,
-0.013704177923500538,
-0.021936753764748573,
-0.10694848746061325,
0.03820071369409561,
0.053072694689035416,
0.06580783426761627,
-0.06551097333431244,
-0.057809196412563324,
-0.06974580138921738,
0.06118777021765709,
0.153307244181633,
0.07461963593959808,
-0.10215901583433151,
-0.07061310112476349,
0.007876225747168064,
-0.08701558411121368,
-0.02530473656952381,
0.038041580468416214,
0.17831063270568848,
-0.163166344165802,
0.11108355224132538,
0.04082874208688736,
0.027893194928765297,
-0.024240383878350258,
0.04455842077732086,
0.02835198864340782,
0.12237827479839325,
0.029587870463728905,
0.067429319024086,
-0.06703805178403854,
0.10945427417755127,
0.029786307364702225,
0.01661434955894947,
-0.08363673835992813,
0.02204674482345581,
0.013042869046330452,
-0.018028493970632553,
0.07553710788488388,
0.023475470021367073,
-0.11396399885416031,
0.022095857188105583,
-0.05597643926739693,
0.03856427222490311,
0.19134853780269623,
0.01105589885264635,
0.056419555097818375,
-0.020042767748236656,
-0.05507415160536766,
-0.00215717451646924,
0.00597381591796875,
-0.16964924335479736,
-0.16042070090770721,
0.07031773775815964,
0.055871281772851944,
-0.020599311217665672,
-0.052564837038517,
-0.05063384771347046,
-0.13991639018058777,
0.1239408552646637,
-0.06603539735078812,
-0.03636326268315315,
-0.030293907970190048,
-0.10397877544164658,
0.1774977743625641,
-0.06571874767541885,
0.07991228997707367,
0.021752212196588516,
0.163493350148201,
-0.015976281836628914,
-0.09002992510795593,
0.02815914899110794,
-0.11045271903276443,
-0.14229434728622437,
-0.012271086685359478,
0.16539068520069122,
0.03470229730010033,
0.017501726746559143,
0.011810018680989742,
0.03370106220245361,
0.018802449107170105,
-0.12721408903598785,
-0.022432781755924225,
0.1263047456741333,
-0.06784576177597046,
0.07563938945531845,
-0.07246866077184677,
-0.08220230042934418,
-0.0005885924911126494,
0.0014962974237278104,
0.13266360759735107,
0.20259124040603638,
-0.10550496727228165,
0.24127797782421112,
0.13504289090633392,
-0.046466827392578125,
-0.25138095021247864,
-0.012476122938096523,
0.12323840707540512,
-0.03766432777047157,
0.006654625758528709,
-0.17594014108181,
0.06448981910943985,
0.048356663435697556,
-0.03056790865957737,
0.04040483012795448,
-0.19596275687217712,
-0.10434266179800034,
-0.008299631997942924,
-0.11996763944625854,
0.13239111006259918,
-0.027700209990143776,
-0.05004936829209328,
-0.06501699239015579,
0.00824839435517788,
0.10682401806116104,
-0.06102454662322998,
0.06644181162118912,
0.013794807717204094,
0.010086346417665482,
0.02833241969347,
0.030067482963204384,
0.10888507962226868,
0.026744602248072624,
-0.03583778440952301,
-0.04945319890975952,
0.04946416616439819,
0.04998005926609039,
-0.015633227303624153,
0.09487994760274887,
0.00016542764205951244,
-0.026385124772787094,
-0.037252023816108704,
-0.0037738215178251266,
-0.09126675128936768,
0.034204695373773575,
-0.04107280448079109,
0.026678482070565224,
-0.08010593801736832,
0.043410126119852066,
0.057053618133068085,
0.006288433913141489,
-0.021891944110393524,
0.008610454387962818,
-0.011586430482566357,
0.16471272706985474,
0.14969061315059662,
-0.0039090258069336414,
-0.04270923137664795,
0.05092557147145271,
-0.03596928343176842,
0.04522588849067688,
-0.0424296073615551,
0.06007211282849312,
0.047892842441797256,
-0.010804853402078152,
0.0650109276175499,
0.005656123161315918,
-0.10614660382270813,
-0.02693592943251133,
0.08794688433408737,
-0.030854718759655952,
-0.22286273539066315,
-0.03269108384847641,
-0.02697780355811119,
-0.10283783823251724,
0.03544212132692337,
0.15588992834091187,
-0.026287982240319252,
-0.017545422539114952,
-0.070804663002491,
0.07704227417707443,
-0.062059223651885986,
0.045117512345314026,
0.008753242902457714,
0.04769190028309822,
-0.06906961649656296,
0.05467216670513153,
0.07786155492067337,
-0.08014395087957382,
0.009148835204541683,
0.14898554980754852,
-0.03452413156628609,
-0.04305063188076019,
-0.07501529157161713,
-0.05271939933300018,
0.03952605649828911,
-0.09267939627170563,
0.035124216228723526,
-0.13376978039741516,
0.0006400973652489483,
0.08313111960887909,
-0.02915390208363533,
0.015708230435848236,
0.039253778755664825,
0.020115815103054047,
-0.044999297708272934,
0.09247658401727676,
-0.07822033762931824,
0.0005169150535948575,
0.004036228638142347,
0.042136050760746,
-0.0278386939316988,
0.07524163275957108,
-0.0021847435273230076,
-0.025534270331263542,
-0.1006537675857544,
-0.04589983448386192,
-0.16605685651302338,
0.0212690569460392,
-0.014297942630946636,
0.0333004929125309,
-0.004066030029207468,
0.01628093421459198,
-0.011758261360228062,
0.025551075115799904,
-0.0714934915304184,
-0.013824794441461563,
-0.010581500828266144,
0.1117333322763443,
-0.08719892054796219,
0.04849699139595032,
0.042907148599624634,
-0.05862341448664665,
0.12188703566789627,
0.022255929186940193,
0.0026495824567973614,
0.03698696196079254,
-0.052811168134212494,
-0.052935417741537094,
-0.05081601440906525,
0.0657106563448906,
0.013563073240220547,
-0.0846928209066391,
-0.013214007951319218,
0.008987261913716793,
0.06666766852140427,
0.006671701092272997,
0.003695000661537051,
-0.05773169547319412,
0.09019342809915543,
-0.06530573964118958,
-0.06453000754117966,
-0.050390567630529404,
0.01784258708357811,
-0.016567714512348175,
0.04057067632675171,
0.07566901296377182,
-0.0869412049651146,
-0.005238222889602184,
-0.05329974740743637,
-0.023720333352684975,
-0.03147135674953461,
0.005682846065610647,
0.07921605557203293,
-0.0007113570463843644,
0.05276430398225784,
0.013603351078927517,
0.21220600605010986,
0.047093357890844345,
-0.013213002122938633,
0.022554447874426842,
-0.14709196984767914,
-0.1233193427324295,
0.0695812925696373,
0.07620806992053986,
0.05759742483496666,
-0.023142080754041672,
-0.10038857161998749,
-0.010090889409184456,
-0.028174245730042458,
0.0401916429400444,
0.1363864541053772,
0.1363055408000946,
0.10403770953416824,
0.044686201959848404,
0.11813495308160782,
-0.10351641476154327,
-0.031534627079963684,
0.058610059320926666,
0.0013936265604570508,
0.05321748927235603,
-0.1393134444952011,
-0.024467505514621735,
0.05916493386030197,
-0.1352076232433319,
0.10701759904623032,
-0.04212851822376251,
-0.056226201355457306,
-0.11821670830249786,
-0.02435995265841484,
-0.060618966817855835,
-0.10416907072067261,
-0.01822708360850811,
-0.08589756488800049,
0.101384237408638,
0.04488353058695793,
0.06142103672027588,
-0.0028290883637964725,
0.04751022905111313,
-0.21517416834831238,
-0.07684214413166046,
0.09687557816505432,
-0.0008516596280969679,
0.06556864827871323,
0.08313759416341782,
0.029584664851427078,
0.049682050943374634,
0.024161092936992645,
0.06681393831968307,
0.06599154323339462,
0.002151956083253026,
-0.021310698240995407,
-0.04527382552623749,
-0.04112664610147476,
0.020206110551953316,
-0.011762718670070171,
0.07546257972717285,
0.12136488407850266,
0.08626522868871689,
-0.12422861903905869,
0.008135431446135044,
0.13471338152885437,
-0.061114002019166946,
-0.13611163198947906,
-0.11834603548049927,
0.10409996658563614,
-0.010912391357123852,
0.08378489315509796,
-0.05029039457440376,
-0.07227202504873276,
-0.06187764182686806,
0.11033669859170914,
0.2662855088710785,
0.04200121760368347,
0.035915594547986984,
0.00798872858285904,
-0.002234007930383086,
0.009505626745522022,
0.097969651222229,
0.06629732251167297,
0.31400737166404724,
-0.017255987972021103,
0.03042277880012989,
0.049761150032281876,
0.05083104968070984,
-0.15683527290821075,
0.13478760421276093,
-0.07589402049779892,
-0.0013286872999742627,
-0.03870072588324547,
0.050339475274086,
-0.0395459346473217,
-0.19787395000457764,
-0.016503144055604935,
-0.12463806569576263,
-0.09549904614686966,
0.012264912948012352,
-0.02075585536658764,
0.08041008561849594,
0.048777300864458084,
0.020793363451957703,
-0.079129159450531,
0.13915053009986877,
-0.01572146639227867,
0.029309893026947975,
-0.03051912970840931,
0.08406472951173782,
-0.06677448749542236,
0.2091236263513565,
0.04406179487705231,
0.1587342917919159,
0.06628571450710297,
0.024945665150880814,
-0.0657891035079956,
-0.00426947558298707,
0.015142057090997696,
-0.06616878509521484,
0.017704684287309647,
0.15605314075946808,
-0.0445500984787941,
0.1358545869588852,
0.06339576095342636,
-0.02872702106833458,
0.04638153687119484,
0.13609856367111206,
-0.039484553039073944,
-0.04840626195073128,
0.05558237060904503,
-0.11339525133371353,
0.11179442703723907,
0.15943261981010437,
-0.034505099058151245,
0.014889020472764969,
-0.018373766914010048,
-0.019535915926098824,
-0.02382543310523033,
0.04527441784739494,
-0.05910833179950714,
-0.16972596943378448,
0.040399521589279175,
-0.01566077210009098,
0.06965711712837219,
-0.22418124973773956,
-0.047234874218702316,
0.03503543511033058,
0.04663686081767082,
0.0032202699221670628,
0.026323460042476654,
0.09590891748666763,
-0.04745640605688095,
-0.045752041041851044,
-0.16774070262908936,
0.007391464896500111,
0.061764419078826904,
-0.05331092327833176,
-0.03125014901161194
] |
null | null | null | {} | null | Legendarysoren/Twitter | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
||
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2Vec2_xls_r_300m_hi_cv7
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6567
- Wer: 0.6273
- Cer: 0.2093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 35
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 5.6969 | 9.52 | 400 | 3.3092 | 1.0 | 0.9800 |
| 1.7721 | 19.05 | 800 | 0.7769 | 0.7045 | 0.2367 |
| 0.6384 | 28.57 | 1200 | 0.6567 | 0.6273 | 0.2093 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "Wav2Vec2_xls_r_300m_hi_cv7", "results": []}]} | automatic-speech-recognition | LegolasTheElf/Wav2Vec2_xls_r_300m_hi_cv7 | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
| Wav2Vec2\_xls\_r\_300m\_hi\_cv7
===============================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6567
* Wer: 0.6273
* Cer: 0.2093
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 100
* num\_epochs: 35
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 35\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 35\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
61,
158,
4,
38
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 35\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.13477756083011627,
0.06695632636547089,
-0.002172968816012144,
0.04090968146920204,
0.13508029282093048,
-0.0018373995553702116,
0.09800254553556442,
0.14068101346492767,
-0.09447257965803146,
0.07466406375169754,
0.09520430117845535,
0.08861402422189713,
0.06407933682203293,
0.10492292791604996,
-0.020005784928798676,
-0.32153084874153137,
0.018728330731391907,
0.02275356836616993,
-0.1336628496646881,
0.11786182969808578,
0.11947504431009293,
-0.10251562297344208,
0.023614969104528427,
0.043445367366075516,
-0.13503070175647736,
0.012037471868097782,
-0.0124518359079957,
-0.06967001408338547,
0.12159955501556396,
0.04397357627749443,
0.09462978690862656,
0.008776189759373665,
0.08819875866174698,
-0.26118987798690796,
0.013793163932859898,
0.06098753213882446,
0.051947254687547684,
0.07160772383213043,
0.09390106797218323,
-0.0071415891870856285,
0.14258460700511932,
-0.066072978079319,
0.06922822445631027,
0.06575850397348404,
-0.11314713209867477,
-0.3332158625125885,
-0.08875378221273422,
0.02686150372028351,
0.11436964571475983,
0.10195226222276688,
-0.03128613904118538,
0.07711523771286011,
-0.07033376395702362,
0.08855576813220978,
0.2162630558013916,
-0.2392241656780243,
-0.08273652195930481,
-0.03529612347483635,
0.0515839047729969,
0.025129420682787895,
-0.12394289672374725,
-0.03401503339409828,
0.043702464550733566,
0.03688130900263786,
0.08996438980102539,
0.0170449111610651,
-0.04076896980404854,
0.01265618484467268,
-0.1362779438495636,
-0.05990879610180855,
0.15697501599788666,
0.09329488128423691,
-0.04733690619468689,
-0.07819848507642746,
-0.005185343790799379,
-0.20444265007972717,
-0.04801981523633003,
0.01868767850100994,
0.025970647111535072,
-0.03696216642856598,
-0.12211500108242035,
0.021225426346063614,
-0.09201101958751678,
-0.09816926717758179,
0.020225275307893753,
0.16500438749790192,
0.04303285479545593,
-0.026747172698378563,
-0.0002647015789989382,
0.09659484028816223,
0.041356850415468216,
-0.13947473466396332,
-0.01747424155473709,
0.04686777666211128,
-0.08959513902664185,
-0.018570849671959877,
-0.05423814803361893,
-0.020544536411762238,
0.0028283074498176575,
0.12625397741794586,
-0.0179760605096817,
0.07723711431026459,
0.017756160348653793,
0.022386599332094193,
-0.09319762140512466,
0.19608934223651886,
-0.06302265077829361,
-0.004872492048889399,
-0.039588261395692825,
0.08384289592504501,
-0.02609633095562458,
-0.012004433199763298,
-0.05212430655956268,
0.021569542586803436,
0.10851865261793137,
0.04410292208194733,
-0.03622795268893242,
0.018520191311836243,
-0.05747668072581291,
-0.019049644470214844,
-0.018130887299776077,
-0.10345666110515594,
0.020711809396743774,
0.020133109763264656,
-0.08685359358787537,
0.008167335763573647,
0.004519667476415634,
0.027462875470519066,
-0.011942879296839237,
0.094095878303051,
-0.0723443552851677,
-0.0011720973998308182,
-0.0894259586930275,
-0.10916052013635635,
0.03300550952553749,
-0.015389565378427505,
0.012667830102145672,
-0.07496537268161774,
-0.11592463403940201,
-0.0538611002266407,
0.05045412480831146,
-0.032578904181718826,
-0.07658544182777405,
-0.0642029196023941,
-0.07229576259851456,
0.05149364098906517,
-0.0300312340259552,
0.16563725471496582,
-0.057232294231653214,
0.11884590238332748,
0.04473186656832695,
0.03504420071840286,
0.019310936331748962,
0.07170497626066208,
-0.057326316833496094,
0.03511786088347435,
-0.11357875913381577,
0.0712495818734169,
-0.08949463814496994,
0.07473628968000412,
-0.14004889130592346,
-0.13157671689987183,
-0.016109714284539223,
0.002221212722361088,
0.10642246156930923,
0.08505130559206009,
-0.17979861795902252,
-0.09593461453914642,
0.17129148542881012,
-0.07769814878702164,
-0.12485136091709137,
0.12794022262096405,
-0.02298766002058983,
0.02723628655076027,
0.05105200782418251,
0.16698868572711945,
0.0897502601146698,
-0.09377468377351761,
0.003617761889472604,
-0.05808589607477188,
0.13508234918117523,
0.01436870638281107,
0.10572822391986847,
-0.04316865652799606,
0.0018765493296086788,
0.0037016267888247967,
-0.030105741694569588,
0.07444559037685394,
-0.10227864980697632,
-0.0892753079533577,
-0.029696276411414146,
-0.08964473754167557,
-0.005743313115090132,
0.0633443221449852,
0.043426476418972015,
-0.10612327605485916,
-0.12126325815916061,
0.04427385330200195,
0.1204228326678276,
-0.10364791005849838,
0.029885992407798767,
-0.08333828300237656,
0.02644304558634758,
-0.016830502077937126,
-0.017944196239113808,
-0.16363225877285004,
-0.015864385291934013,
0.02883807197213173,
-0.049929454922676086,
0.028707722201943398,
-0.031201515346765518,
0.07835507392883301,
0.0354892760515213,
-0.04552055150270462,
-0.06598559021949768,
-0.08958578109741211,
-0.009440476074814796,
-0.07062257081270218,
-0.203654482960701,
-0.08367696404457092,
-0.020090999081730843,
0.1645525097846985,
-0.22742508351802826,
0.0113295903429389,
0.014464659616351128,
0.1022004634141922,
0.026850728318095207,
-0.052221160382032394,
-0.014732507057487965,
0.07834398746490479,
-0.0212112870067358,
-0.06355838477611542,
0.027199463918805122,
0.015109862200915813,
-0.1238594651222229,
0.02493421919643879,
-0.10620033740997314,
0.10314898937940598,
0.10238832980394363,
-0.03393891453742981,
-0.07377233356237411,
-0.05175742134451866,
-0.073386549949646,
-0.061240874230861664,
-0.024271175265312195,
-0.015785083174705505,
0.17278939485549927,
0.02558234892785549,
0.1166672483086586,
-0.08022025972604752,
-0.04393693432211876,
0.030274394899606705,
-0.0005043118144385517,
0.0002207768993685022,
0.12559494376182556,
0.05903223156929016,
-0.04377949982881546,
0.09411695599555969,
0.06461156904697418,
-0.08403542637825012,
0.15059737861156464,
-0.0831233412027359,
-0.1264095902442932,
-0.01616617664694786,
0.01818770542740822,
0.037064094096422195,
0.11428002268075943,
-0.15494482219219208,
-0.00034361652797088027,
0.024913033470511436,
0.02908381074666977,
0.030141402035951614,
-0.21475501358509064,
-0.015929074957966805,
0.042981673032045364,
-0.06977542489767075,
-0.07070259004831314,
-0.0026816886384040117,
-0.010868273675441742,
0.08147598057985306,
0.0036174512933939695,
-0.04504391551017761,
-0.015056737698614597,
-0.026471903547644615,
-0.08895628154277802,
0.19828131794929504,
-0.09635165333747864,
-0.13617414236068726,
-0.15018349885940552,
-0.03946317359805107,
-0.002486668759956956,
-0.011158137582242489,
0.051897890865802765,
-0.12317927181720734,
-0.03837570175528526,
-0.052647802978754044,
0.05034814774990082,
-0.06984379142522812,
0.030131909996271133,
0.003638943424448371,
0.01946120709180832,
0.09417222440242767,
-0.11633007228374481,
0.022211184725165367,
-0.015660502016544342,
-0.04934172332286835,
0.021717136725783348,
0.0156397745013237,
0.10112694650888443,
0.16414670646190643,
0.03823238983750343,
0.02229415252804756,
-0.03932913765311241,
0.18213190138339996,
-0.1039961576461792,
-0.046683892607688904,
0.12276028096675873,
0.018168890848755836,
0.033535800874233246,
0.10404351353645325,
0.058791641145944595,
-0.09612786769866943,
0.039749760180711746,
0.0498679056763649,
-0.017479239031672478,
-0.25243768095970154,
-0.02604876458644867,
-0.06859277933835983,
-0.033790115267038345,
0.11911674588918686,
0.028489500284194946,
0.0085923932492733,
0.03424005210399628,
-0.018075337633490562,
0.01037538331001997,
-0.000002525435093048145,
0.07162347435951233,
0.09303472936153412,
0.044223539531230927,
0.11751487851142883,
-0.02402067929506302,
-0.03815188631415367,
0.02366434969007969,
-0.0014139986597001553,
0.2612215578556061,
0.01485881581902504,
0.1788884401321411,
0.059999868273735046,
0.1570201963186264,
0.008724183775484562,
0.09166134893894196,
0.016427554190158844,
-0.02536260150372982,
0.02529987134039402,
-0.05760158970952034,
-0.03823002800345421,
0.04149458184838295,
0.07369145005941391,
0.0418965108692646,
-0.1380496472120285,
-0.03730780631303787,
0.00836231466382742,
0.3660277724266052,
0.07143700867891312,
-0.3076345920562744,
-0.11488861590623856,
-0.0030437970999628305,
-0.0948944240808487,
-0.05581233277916908,
0.028652286157011986,
0.08755987137556076,
-0.10041014105081558,
0.049691613763570786,
-0.06391838937997818,
0.1120334193110466,
-0.03986583277583122,
-0.0010704952292144299,
0.07743373513221741,
0.0653197318315506,
-0.003927098121494055,
0.07485045492649078,
-0.2721657454967499,
0.3097946047782898,
-0.02133239060640335,
0.08950347453355789,
-0.033045534044504166,
0.028208287432789803,
0.03674866631627083,
-0.049119044095277786,
0.045962437987327576,
-0.011732016690075397,
-0.1004544124007225,
-0.20750457048416138,
-0.06868959963321686,
0.038165975362062454,
0.12472575902938843,
-0.047864168882369995,
0.12487129867076874,
-0.03397030383348465,
0.0017177602276206017,
0.07024185359477997,
-0.07218670845031738,
-0.1181652843952179,
-0.09690695255994797,
0.011568927206099033,
0.0385601632297039,
0.10975687205791473,
-0.11445651203393936,
-0.11175049841403961,
-0.05075988546013832,
0.14435315132141113,
-0.06430770456790924,
-0.01001234631985426,
-0.12719760835170746,
0.09588057547807693,
0.17732827365398407,
-0.065974161028862,
0.059191834181547165,
0.02310740202665329,
0.13434509932994843,
0.037157196551561356,
-0.0007214026991277933,
0.10094316303730011,
-0.07968610525131226,
-0.18905925750732422,
-0.048762716352939606,
0.16502909362316132,
0.04286828637123108,
0.06710923463106155,
-0.017802949994802475,
0.02343178540468216,
-0.035816922783851624,
-0.07988211512565613,
0.04361697658896446,
-0.0015684174140915275,
-0.01008087582886219,
0.06094632297754288,
-0.03811051324009895,
0.033439818769693375,
-0.08391714096069336,
-0.07340297847986221,
0.15648837387561798,
0.2817116379737854,
-0.0681133046746254,
-0.0022408280055969954,
0.02828175202012062,
-0.04338758811354637,
-0.12631233036518097,
0.03164507821202278,
0.14968575537204742,
0.040832649916410446,
-0.006458019372075796,
-0.23583148419857025,
0.06820032000541687,
0.09516321867704391,
-0.024787403643131256,
0.08689863234758377,
-0.2910078465938568,
-0.13498423993587494,
0.12012970447540283,
0.09935098886489868,
-0.019542938098311424,
-0.1487707495689392,
-0.06223563849925995,
-0.03287350758910179,
-0.12113911658525467,
0.0827581137418747,
-0.007682239171117544,
0.12362087517976761,
-0.004835206083953381,
0.07957804203033447,
0.022610116750001907,
-0.04701366275548935,
0.1564142256975174,
-0.0041412897408008575,
0.05570634827017784,
0.0029072060715407133,
0.07065242528915405,
0.02041187509894371,
-0.045620713382959366,
0.0173040721565485,
-0.06436149775981903,
0.022800559177994728,
-0.14574798941612244,
-0.03778182342648506,
-0.09341027587652206,
0.028756894171237946,
-0.03542793542146683,
-0.03981360048055649,
-0.017231114208698273,
0.038907695561647415,
0.05275756120681763,
0.008281112648546696,
0.12791486084461212,
-0.05158344656229019,
0.16522498428821564,
0.05725274607539177,
0.09044832736253738,
-0.012288928031921387,
-0.08416072279214859,
-0.006028205621987581,
-0.012728579342365265,
0.05476662889122963,
-0.1275510936975479,
0.029819153249263763,
0.14405587315559387,
0.056291863322257996,
0.15580537915229797,
0.061386168003082275,
-0.07713909447193146,
0.020077407360076904,
0.07308892160654068,
-0.053589481860399246,
-0.1054496169090271,
-0.02074257656931877,
0.08064214140176773,
-0.15615081787109375,
0.01135649997740984,
0.09438803791999817,
-0.059006474912166595,
-0.0107052531093359,
0.005353717133402824,
0.009203534573316574,
-0.07052388042211533,
0.23236340284347534,
0.04318569228053093,
0.08540915697813034,
-0.09376826882362366,
0.07248909771442413,
0.052316952496767044,
-0.1561802625656128,
0.015210844576358795,
0.05818875506520271,
-0.034213483333587646,
-0.009230755269527435,
0.00864117220044136,
0.05518408119678497,
-0.02800096943974495,
-0.06758526712656021,
-0.11821714788675308,
-0.15099038183689117,
0.08409538865089417,
0.09923043847084045,
0.03946727141737938,
0.039709243923425674,
-0.04354383796453476,
0.05007847771048546,
-0.1162487342953682,
0.07867366075515747,
0.09664326161146164,
0.07724607735872269,
-0.129419207572937,
0.1513831615447998,
0.012432980351150036,
0.00975174643099308,
0.013139728456735611,
-0.017768356949090958,
-0.08533308655023575,
0.038245197385549545,
-0.1187429279088974,
-0.03385310247540474,
-0.05209168419241905,
-0.0023285874631255865,
0.016125069931149483,
-0.0640130564570427,
-0.07083059102296829,
0.027462350204586983,
-0.12781111896038055,
-0.05041494965553284,
-0.0012038032291457057,
0.07237173616886139,
-0.10136326402425766,
-0.015911854803562164,
0.06503554433584213,
-0.11641956120729446,
0.08323051035404205,
0.06870318949222565,
0.024270977824926376,
0.05913521349430084,
-0.10556472837924957,
0.015871578827500343,
0.04742342233657837,
0.0023282072506844997,
0.024097777903079987,
-0.16492772102355957,
-0.002948446199297905,
-0.007951945066452026,
0.05047455430030823,
-0.004401029087603092,
0.020339591428637505,
-0.13656418025493622,
-0.06559685617685318,
-0.02067883312702179,
-0.055170170962810516,
-0.054643332958221436,
0.03937886655330658,
0.054125696420669556,
0.0576266385614872,
0.16199803352355957,
-0.08042426407337189,
0.036251213401556015,
-0.22817768156528473,
0.01912430301308632,
-0.047332458198070526,
-0.07415930181741714,
-0.06274272501468658,
-0.032672129571437836,
0.08368326723575592,
-0.06418239325284958,
0.09711026400327682,
-0.06424608081579208,
0.06136811524629593,
0.03481714800000191,
-0.10456628352403641,
0.035863883793354034,
0.03366778418421745,
0.28184500336647034,
0.06181459501385689,
-0.015868032351136208,
0.08211031556129456,
0.00005407274511526339,
0.05167835205793381,
0.16636957228183746,
0.14512225985527039,
0.16963329911231995,
0.024167269468307495,
0.09616696834564209,
0.06898804008960724,
-0.10078999400138855,
-0.10565780848264694,
0.09368651360273361,
-0.013148103840649128,
0.12456873804330826,
-0.0028588532004505396,
0.24594618380069733,
0.11349815875291824,
-0.19823451340198517,
0.055623434484004974,
-0.035268332809209824,
-0.0874108225107193,
-0.09779477119445801,
-0.03455628827214241,
-0.07123388350009918,
-0.19308225810527802,
0.01937822252511978,
-0.12430962920188904,
0.056976065039634705,
0.05526832118630409,
0.03236420080065727,
0.01770230010151863,
0.1367202252149582,
0.04376053810119629,
-0.010041729547083378,
0.1154661774635315,
-0.00525221461430192,
-0.02064196579158306,
-0.06114252656698227,
-0.10111690312623978,
0.04942804202437401,
-0.02782513201236725,
0.053782906383275986,
-0.05390932038426399,
-0.11275278031826019,
0.06412909179925919,
0.010291993618011475,
-0.10598202049732208,
0.016478281468153,
-0.004631447605788708,
0.07432547956705093,
0.07827626168727875,
0.033323824405670166,
0.003347285557538271,
-0.015854552388191223,
0.2569441497325897,
-0.1053583100438118,
-0.065819650888443,
-0.13725817203521729,
0.2483111470937729,
0.028304947540163994,
-0.0267286766320467,
0.01869252696633339,
-0.06848502904176712,
-0.007794257719069719,
0.16316747665405273,
0.11481986194849014,
-0.004602343775331974,
-0.025998743250966072,
-0.0019042006460949779,
-0.01849661022424698,
-0.06381455063819885,
0.09182657301425934,
0.13052216172218323,
0.04825041443109512,
-0.06602857261896133,
-0.046560872346162796,
-0.05834323540329933,
-0.048564959317445755,
-0.014796172268688679,
0.07254984229803085,
0.020959222689270973,
-0.025999652221798897,
-0.02436508983373642,
0.12576398253440857,
-0.06381209194660187,
-0.10571090877056122,
0.007577745709568262,
-0.16023020446300507,
-0.1837003231048584,
-0.04290826991200447,
0.03364657983183861,
0.04115830734372139,
0.049250032752752304,
-0.01892905868589878,
-0.014178404584527016,
0.10763517022132874,
0.004413435235619545,
-0.04240596666932106,
-0.13723334670066833,
0.10493602603673935,
-0.07826326042413712,
0.1882757842540741,
-0.04145698994398117,
0.035377707332372665,
0.11791270226240158,
0.07865501195192337,
-0.07283075898885727,
0.06361449509859085,
0.0698060393333435,
-0.1271108239889145,
0.048888374119997025,
0.19172221422195435,
-0.03726065158843994,
0.14311179518699646,
0.03131592646241188,
-0.13665972650051117,
0.02123035117983818,
-0.08413722366094589,
-0.04351348057389259,
-0.07785782963037491,
-0.019789868965744972,
-0.05250433459877968,
0.1257830560207367,
0.22453837096691132,
-0.08245591074228287,
-0.021680312231183052,
-0.06495814770460129,
0.015747414901852608,
0.05489771068096161,
0.10824732482433319,
-0.052223000675439835,
-0.288987398147583,
0.013802438043057919,
0.013317900709807873,
-0.004787765443325043,
-0.25169238448143005,
-0.08422424644231796,
0.03947043791413307,
-0.07278777658939362,
-0.028795044869184494,
0.11720878630876541,
0.06731300801038742,
0.043769314885139465,
-0.05273342505097389,
-0.08667349815368652,
-0.040437035262584686,
0.19734454154968262,
-0.17280004918575287,
-0.0705622062087059
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2Vec2_xls_r_300m_hi_final
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3035
- Wer: 0.3137
- Cer: 0.0972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 |
| 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 |
| 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 |
| 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 |
| 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 |
| 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 |
| 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 |
| 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 |
| 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 |
| 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 |
| 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 |
| 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "Openslr Multilingual", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "model-index": [{"name": "Wav2Vec2_xls_r_300m_hi_final", "results": []}]} | automatic-speech-recognition | LegolasTheElf/Wav2Vec2_xls_r_300m_hi_final | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"Openslr Multilingual",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"hi",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"hi"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #mozilla-foundation/common_voice_7_0 #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us
| Wav2Vec2\_xls\_r\_300m\_hi\_final
=================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the 'Openslr Multilingual and code-switching ASR challenge' dataset and 'mozilla-foundation/common\_voice\_7\_0' dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3035
* Wer: 0.3137
* Cer: 0.0972
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 100
* num\_epochs: 8
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #mozilla-foundation/common_voice_7_0 #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
77,
158,
4,
38
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #mozilla-foundation/common_voice_7_0 #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.12248454242944717,
0.11022644490003586,
-0.004381866659969091,
0.047543033957481384,
0.10122683644294739,
0.012949842028319836,
0.10017100721597672,
0.16478107869625092,
-0.055892348289489746,
0.1130698174238205,
0.08987310528755188,
0.09031985700130463,
0.07757281512022018,
0.15976502001285553,
-0.03272998705506325,
-0.30112627148628235,
0.03897705674171448,
-0.019329287111759186,
-0.08371761441230774,
0.09867589920759201,
0.08626050502061844,
-0.09376662969589233,
0.023387908935546875,
0.008603379130363464,
-0.0672946348786354,
-0.012878773733973503,
-0.05323725938796997,
-0.07033422589302063,
0.10708437114953995,
0.04354359582066536,
0.04012153297662735,
0.026671962812542915,
0.06078349053859711,
-0.2760321795940399,
0.008525805547833443,
0.0572899729013443,
0.031184770166873932,
0.05104490742087364,
0.11468422412872314,
-0.006595805753022432,
0.1033182442188263,
-0.08300194889307022,
0.06417400389909744,
0.045201439410448074,
-0.0768444612622261,
-0.32472941279411316,
-0.08310726284980774,
0.02198963053524494,
0.13164222240447998,
0.07032078504562378,
-0.03095964528620243,
0.0633276030421257,
-0.06385783106088638,
0.10199097543954849,
0.2372138947248459,
-0.24769729375839233,
-0.05885598063468933,
-0.02218966744840145,
0.04010437801480293,
0.024273019284009933,
-0.10172612220048904,
-0.01876743882894516,
0.019093552604317665,
0.0308886356651783,
0.0902533009648323,
-0.0011204606853425503,
0.021866722032427788,
-0.012217309325933456,
-0.1431865245103836,
-0.04998750984668732,
0.12255872040987015,
0.08233678340911865,
-0.027677064761519432,
-0.1378929764032364,
-0.04128364473581314,
-0.16205626726150513,
-0.04697256162762642,
0.008400816470384598,
0.029947608709335327,
-0.026392821222543716,
-0.07496757805347443,
0.01319668535143137,
-0.05805918574333191,
-0.05852551758289337,
0.020174410194158554,
0.1707368642091751,
0.0640227273106575,
-0.03357098624110222,
0.027633551508188248,
0.08607422560453415,
0.03654364496469498,
-0.15340106189250946,
-0.018284855410456657,
0.03989167883992195,
-0.10142537951469421,
-0.002042953157797456,
-0.0290797408670187,
0.0031158074270933867,
0.05250672623515129,
0.1784978061914444,
-0.024187175557017326,
0.10928727686405182,
0.01840694434940815,
0.013222006149590015,
-0.06236794963479042,
0.13824936747550964,
-0.05320930480957031,
-0.0728800967335701,
-0.038492027670145035,
0.1008877381682396,
0.017607219517230988,
-0.02317075990140438,
-0.07646660506725311,
0.02461962215602398,
0.10998208075761795,
0.05373947694897652,
-0.007468081545084715,
0.023875610902905464,
-0.0663684755563736,
-0.029179101809859276,
-0.005083991214632988,
-0.11823265999555588,
0.06062096729874611,
0.03858638182282448,
-0.05934244394302368,
0.022354520857334137,
-0.010112487711012363,
0.02188565582036972,
-0.031573690474033356,
0.13001525402069092,
-0.035470619797706604,
0.0008464548736810684,
-0.06308500468730927,
-0.08805998414754868,
0.0460854209959507,
-0.04976078122854233,
-0.0038040000945329666,
-0.07324063032865524,
-0.09789156913757324,
-0.061784081161022186,
0.05915447697043419,
-0.060242656618356705,
-0.06125763803720474,
-0.07802743464708328,
-0.06215647980570793,
0.06410883367061615,
-0.03166818246245384,
0.1515047252178192,
-0.07191278785467148,
0.09551086276769638,
0.010231257416307926,
0.055717818439006805,
0.05127542465925217,
0.06807266920804977,
-0.026443926617503166,
0.04151565954089165,
-0.1571003496646881,
0.09830612689256668,
-0.10452382266521454,
0.03336908668279648,
-0.14364729821681976,
-0.09576655179262161,
-0.00966858770698309,
0.0043800026178359985,
0.09480199962854385,
0.11911382526159286,
-0.15611201524734497,
-0.0960356816649437,
0.1741609424352646,
-0.08061673492193222,
-0.07500816136598587,
0.14842036366462708,
-0.017165882512927055,
-0.04767041280865669,
0.030917147174477577,
0.1837192326784134,
0.09381662309169769,
-0.09793990850448608,
0.0028410751838237047,
-0.04894740507006645,
0.12621904909610748,
0.05099215358495712,
0.10310918092727661,
-0.05692555010318756,
0.04595249146223068,
0.004869242664426565,
0.0021582564804702997,
0.06863334029912949,
-0.07099414616823196,
-0.0677013099193573,
-0.018797408789396286,
-0.055344440042972565,
0.0060186549089848995,
0.04072224721312523,
0.02864946611225605,
-0.10472121834754944,
-0.12110604345798492,
-0.007386568933725357,
0.11885930597782135,
-0.1012910008430481,
0.03788543492555618,
-0.06798753142356873,
0.06285745650529861,
-0.009745841845870018,
0.00336903496645391,
-0.16062140464782715,
0.010879850015044212,
0.05360843613743782,
-0.06313470005989075,
0.016144974157214165,
-0.02789199724793434,
0.06599678844213486,
0.0434076301753521,
-0.050678178668022156,
-0.0652148425579071,
-0.02474529854953289,
-0.007555216550827026,
-0.0650436207652092,
-0.2301933765411377,
-0.0631018653512001,
-0.04126235842704773,
0.14067018032073975,
-0.16991263628005981,
0.005790997762233019,
0.0525747574865818,
0.1483677476644516,
0.03735959902405739,
-0.0440300852060318,
0.016385482624173164,
0.07423441857099533,
-0.016884392127394676,
-0.07486078888177872,
0.03956208378076553,
0.005078173242509365,
-0.12234000861644745,
0.011163896881043911,
-0.12059275060892105,
0.09476303309202194,
0.0972723588347435,
0.00683991564437747,
-0.0787341296672821,
-0.07635612785816193,
-0.052903782576322556,
-0.06366104632616043,
-0.03926553949713707,
-0.003905938006937504,
0.17828190326690674,
0.022336293011903763,
0.11077112704515457,
-0.07486489415168762,
-0.036604177206754684,
0.032236430794000626,
0.01591256633400917,
-0.02018924057483673,
0.13680939376354218,
0.07075072079896927,
-0.07442310452461243,
0.10301462560892105,
0.07336773723363876,
-0.05028538778424263,
0.1420658677816391,
-0.07374116778373718,
-0.08772827684879303,
-0.026295114308595657,
0.05248833820223808,
0.016136005520820618,
0.07788461446762085,
-0.17200718820095062,
-0.012549851089715958,
0.03106001392006874,
0.0416487418115139,
0.019310902804136276,
-0.1835763305425644,
0.018721435219049454,
0.0373222716152668,
-0.07278503477573395,
0.031000711023807526,
0.007938016206026077,
-0.008345531299710274,
0.08099638670682907,
0.009736747480928898,
-0.08732948452234268,
-0.013714050874114037,
-0.029912486672401428,
-0.0853961631655693,
0.16695573925971985,
-0.11420709639787674,
-0.14681118726730347,
-0.1123470813035965,
-0.05508876591920853,
-0.03312375769019127,
-0.018465494737029076,
0.07715050876140594,
-0.0808139517903328,
-0.03954564407467842,
-0.05953105911612511,
0.013914440758526325,
-0.06299380958080292,
0.036841508001089096,
0.013112456537783146,
0.0009790995391085744,
0.0404520221054554,
-0.0997333899140358,
0.0041869101114571095,
-0.006386932916939259,
-0.015819333493709564,
0.01854771189391613,
0.012976251542568207,
0.07466179132461548,
0.14768564701080322,
0.06630542874336243,
0.031527865678071976,
-0.0548429861664772,
0.150469109416008,
-0.11103036254644394,
-0.012922790832817554,
0.10756439715623856,
0.008493850007653236,
0.05733735114336014,
0.15121965110301971,
0.04599224403500557,
-0.09422782063484192,
0.01178936567157507,
0.029117301106452942,
-0.01347368024289608,
-0.2195984274148941,
-0.0358673594892025,
-0.07889676839113235,
0.005984798539429903,
0.1118108481168747,
0.047196850180625916,
-0.015731075778603554,
0.02586878091096878,
-0.03298801928758621,
0.010939073748886585,
0.025511756539344788,
0.07162252068519592,
0.10173867642879486,
0.03822876140475273,
0.11872164905071259,
-0.015857454389333725,
-0.025012340396642685,
0.05113665387034416,
-0.000923883868381381,
0.2438390552997589,
0.009120122529566288,
0.17274042963981628,
0.0428796149790287,
0.14683522284030914,
-0.002344101434573531,
0.04473244771361351,
0.008770459331572056,
0.008020047098398209,
-0.000869562616571784,
-0.05644732713699341,
-0.03333355113863945,
0.049536556005477905,
0.1135413870215416,
0.013482957147061825,
-0.11705110222101212,
-0.01740795001387596,
0.028171584010124207,
0.3686293065547943,
0.07404860854148865,
-0.25872763991355896,
-0.06147336959838867,
0.012483363971114159,
-0.1011560931801796,
-0.034563250839710236,
0.034134719520807266,
0.12212180346250534,
-0.09494593739509583,
0.09987116605043411,
-0.056099504232406616,
0.0874636098742485,
-0.08881524950265884,
-0.006103644613176584,
0.05758408457040787,
0.08184004575014114,
0.00522636529058218,
0.05737978219985962,
-0.2714674472808838,
0.26975199580192566,
-0.005568551365286112,
0.06704080104827881,
-0.05781031399965286,
0.054816972464323044,
0.050729356706142426,
-0.03395408019423485,
0.06323985010385513,
-0.018602285534143448,
-0.1380998194217682,
-0.14785075187683105,
-0.11163254827260971,
0.014264659956097603,
0.128035768866539,
-0.06413727253675461,
0.10196156054735184,
-0.022952686995267868,
-0.03408767655491829,
0.03292742744088173,
-0.030812067911028862,
-0.10115910321474075,
-0.11251756548881531,
0.03277964144945145,
0.07204703986644745,
0.049834199249744415,
-0.08428449183702469,
-0.10977725684642792,
-0.08029720187187195,
0.1599891483783722,
-0.06842377036809921,
-0.028986886143684387,
-0.13499310612678528,
0.060620974749326706,
0.15356934070587158,
-0.07349640130996704,
0.060485903173685074,
0.002170177875086665,
0.09910173714160919,
0.011105227284133434,
-0.018124183639883995,
0.1231541782617569,
-0.07901876419782639,
-0.20482909679412842,
-0.0634416714310646,
0.17144328355789185,
0.011903766542673111,
0.05888458341360092,
-0.035471051931381226,
0.03350844606757164,
-0.009510758332908154,
-0.07776974141597748,
0.07196296751499176,
0.0618269182741642,
0.03913223370909691,
0.07990443706512451,
-0.027729250490665436,
-0.03914682939648628,
-0.06204302981495857,
-0.08280283957719803,
0.13896708190441132,
0.2911180853843689,
-0.07633110135793686,
0.06374353170394897,
0.05861210450530052,
-0.04364144429564476,
-0.1270921528339386,
-0.03433702513575554,
0.12962159514427185,
0.03460557758808136,
-0.0018677609041333199,
-0.21798373758792877,
-0.002096040640026331,
0.07511521130800247,
-0.02920101210474968,
0.09095527231693268,
-0.3212156891822815,
-0.13685692846775055,
0.08745361864566803,
0.07283663004636765,
0.00013266413589008152,
-0.16714322566986084,
-0.0721442922949791,
-0.011777251027524471,
-0.09000562876462936,
0.03630613535642624,
-0.017141487449407578,
0.1436886340379715,
0.003420489374548197,
0.024139076471328735,
0.015234642662107944,
-0.039545122534036636,
0.1499849408864975,
0.0002538010594435036,
0.0372634120285511,
-0.021560290828347206,
0.04687333106994629,
-0.06646962463855743,
-0.062315937131643295,
0.013121120631694794,
-0.09864648431539536,
0.01660309173166752,
-0.14550445973873138,
-0.03359556198120117,
-0.06192817911505699,
0.026202380657196045,
-0.024370593950152397,
-0.03066338039934635,
-0.037182990461587906,
0.03173653036355972,
0.07571674138307571,
0.0061818319372832775,
0.13440580666065216,
-0.04280375689268112,
0.13479310274124146,
0.14158883690834045,
0.0833766981959343,
-0.025567147880792618,
-0.10732860118150711,
-0.03529379889369011,
-0.022257179021835327,
0.03953763097524643,
-0.10670461505651474,
0.02704685553908348,
0.1316983997821808,
0.03151772916316986,
0.1527622938156128,
0.049647554755210876,
-0.08628939837217331,
0.02784298174083233,
0.05593237280845642,
-0.07963604480028152,
-0.1367110013961792,
-0.007571081165224314,
0.03842335194349289,
-0.10286376625299454,
0.014068943448364735,
0.12271208316087723,
-0.024213671684265137,
-0.007357217837125063,
0.010243497788906097,
0.03471565619111061,
-0.020829137414693832,
0.22253559529781342,
0.0033751260489225388,
0.07160915434360504,
-0.10134574770927429,
0.09118608385324478,
0.05641002580523491,
-0.14804519712924957,
0.050739314407110214,
0.10142716020345688,
-0.05738743022084236,
-0.020417237654328346,
0.025862164795398712,
0.0868167132139206,
0.051039163023233414,
-0.06481686234474182,
-0.1021871417760849,
-0.13619469106197357,
0.10030603408813477,
0.0682259202003479,
0.041240010410547256,
0.02033041976392269,
-0.024183524772524834,
0.03227046877145767,
-0.06683382391929626,
0.09211736917495728,
0.09522315859794617,
0.05706404522061348,
-0.12643815577030182,
0.10553980618715286,
0.019492069259285927,
0.0005324160447344184,
-0.0000431691987614613,
-0.018522847443819046,
-0.10682636499404907,
0.018568985164165497,
-0.1077490746974945,
-0.0021055927500128746,
-0.07463442534208298,
-0.0017564952140673995,
0.019457412883639336,
-0.06213464215397835,
-0.04266892373561859,
0.018628835678100586,
-0.11602333188056946,
-0.04771408811211586,
-0.03591471165418625,
0.07887351512908936,
-0.09434441477060318,
-0.029651498422026634,
0.02513926848769188,
-0.12412752956151962,
0.10605917125940323,
0.05316162109375,
0.005342304706573486,
0.00025393886608071625,
-0.09253163635730743,
-0.0071536763571202755,
0.04674558714032173,
-0.004883754998445511,
0.0177445188164711,
-0.18214106559753418,
-0.007184133864939213,
-0.018503203988075256,
0.021395239979028702,
-0.007998401299118996,
0.05610101670026779,
-0.1288594901561737,
-0.026036741212010384,
-0.0557018406689167,
-0.06988084316253662,
-0.04495719075202942,
0.04300842061638832,
0.07544596493244171,
0.023463668301701546,
0.15235203504562378,
-0.0830991342663765,
0.06407518684864044,
-0.20662492513656616,
0.008321166038513184,
-0.025257891044020653,
-0.07064855843782425,
-0.047201499342918396,
-0.025084028020501137,
0.0909365862607956,
-0.0481039322912693,
0.09657175838947296,
-0.0608011893928051,
0.05729732662439346,
0.01867295429110527,
-0.12484801560640335,
0.03467285633087158,
0.04112423211336136,
0.16349834203720093,
0.047709107398986816,
-0.019742846488952637,
0.05788649991154671,
0.000617673562373966,
0.0741402879357338,
0.13695520162582397,
0.12362118810415268,
0.14518485963344574,
0.06479625403881073,
0.10601688921451569,
0.0533708892762661,
-0.12477415055036545,
-0.14978766441345215,
0.11326325684785843,
-0.017370427027344704,
0.14923256635665894,
-0.02166658267378807,
0.2090909481048584,
0.08593729138374329,
-0.19384917616844177,
0.06385712325572968,
-0.017152557149529457,
-0.062105316668748856,
-0.10997004806995392,
-0.0757942870259285,
-0.08352268487215042,
-0.19516263902187347,
0.006597709376364946,
-0.08920755982398987,
0.05467873066663742,
0.026945549994707108,
0.05375194177031517,
0.04167180880904198,
0.07782965153455734,
0.01084529235959053,
-0.006962901912629604,
0.12572838366031647,
0.014335148967802525,
-0.01881832629442215,
-0.043054670095443726,
-0.11818092316389084,
0.02751237154006958,
-0.033366087824106216,
0.06872846931219101,
-0.024682609364390373,
-0.09607300907373428,
0.061546605080366135,
0.009081339463591576,
-0.09653043746948242,
0.02369530312716961,
-0.01809288188815117,
0.06802838295698166,
0.12113217264413834,
0.038150854408741,
-0.018964651972055435,
-0.008687141351401806,
0.21272681653499603,
-0.10251253843307495,
-0.04913441464304924,
-0.13248571753501892,
0.1814572662115097,
-0.0012530533131211996,
-0.00525681721046567,
0.021244950592517853,
-0.07557695358991623,
-0.026093745604157448,
0.14949294924736023,
0.1264057159423828,
-0.0021727806888520718,
-0.00930239912122488,
0.03759719058871269,
-0.011652589775621891,
-0.01978820189833641,
0.06904163956642151,
0.11387326568365097,
0.08286356180906296,
-0.04889829829335213,
-0.031130824238061905,
-0.027509966865181923,
-0.056746914982795715,
-0.057084813714027405,
0.06268572807312012,
0.0065894597209990025,
-0.0183404590934515,
-0.016156470403075218,
0.11017073690891266,
-0.039235979318618774,
-0.138713538646698,
0.042697180062532425,
-0.18172983825206757,
-0.18234120309352875,
-0.022187592461705208,
0.06715111434459686,
0.0552968755364418,
0.05389770120382309,
0.0004365583008620888,
-0.025546934455633163,
0.1088126003742218,
-0.0029381776694208384,
-0.05044737830758095,
-0.1083303764462471,
0.0730944573879242,
-0.0910414606332779,
0.15441803634166718,
-0.03222772106528282,
0.0517503097653389,
0.12346405535936356,
0.07942163944244385,
-0.07167866826057434,
0.035348642617464066,
0.07712163776159286,
-0.11273965984582901,
0.05826788768172264,
0.1710532158613205,
-0.04967071861028671,
0.13580894470214844,
0.05013769492506981,
-0.07929503172636032,
0.029479915276169777,
-0.0551573820412159,
-0.04357307404279709,
-0.06500234454870224,
0.013521081767976284,
-0.05809061974287033,
0.13284459710121155,
0.18416662514209747,
-0.06208157166838646,
-0.03319309651851654,
-0.03756626322865486,
0.020946331322193146,
0.028638314455747604,
0.09033248573541641,
-0.04886370897293091,
-0.2749195396900177,
0.02558612823486328,
0.017920583486557007,
0.039065878838300705,
-0.19932235777378082,
-0.10198323428630829,
0.026483500376343727,
-0.050087820738554,
-0.08400918543338776,
0.10459025204181671,
0.03528702259063721,
0.029925236478447914,
-0.062263552099466324,
-0.16491080820560455,
-0.021688371896743774,
0.16820363700389862,
-0.1807176172733307,
-0.052353277802467346
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2Vec2_xls_r_300m_hi_final
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3035
- Wer: 0.3137
- Cer: 0.0972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 |
| 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 |
| 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 |
| 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 |
| 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 |
| 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 |
| 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 |
| 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 |
| 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 |
| 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 |
| 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 |
| 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0 | {"language": ["hi"], "license": "apache-2.0", "tags": ["Openslr Multilingual", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "Wav2Vec2_xls_r_300m_hi_final", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 34.21, "name": "Test WER"}]}]}]} | automatic-speech-recognition | LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"Openslr Multilingual",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"hi",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"hi"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
| Wav2Vec2\_xls\_r\_300m\_hi\_final
=================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the 'Openslr Multilingual and code-switching ASR challenge' dataset and 'mozilla-foundation/common\_voice\_7\_0' dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3035
* Wer: 0.3137
* Cer: 0.0972
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 100
* num\_epochs: 8
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
118,
158,
4,
38
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Openslr Multilingual #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.11417249590158463,
0.10214134305715561,
-0.005908648949116468,
0.03927413001656532,
0.11017046123743057,
0.018366079777479172,
0.11013852059841156,
0.13396504521369934,
-0.06076676398515701,
0.0986829549074173,
0.07319633662700653,
0.06789445132017136,
0.08571590483188629,
0.09480057656764984,
-0.011646750383079052,
-0.3053116798400879,
0.022265635430812836,
-0.040686771273612976,
-0.12492771446704865,
0.09237090498209,
0.09594479203224182,
-0.08789057284593582,
0.0227696280926466,
0.021841183304786682,
-0.07052798569202423,
-0.00025838956935331225,
-0.048753928393125534,
-0.04985639452934265,
0.09251435101032257,
0.04830056428909302,
0.04904019087553024,
0.032945629209280014,
0.1043534055352211,
-0.2643454074859619,
0.011611135676503181,
0.061658669263124466,
0.033867768943309784,
0.05181824415922165,
0.10829517990350723,
-0.004326740745455027,
0.11012830585241318,
-0.04975428804755211,
0.042566440999507904,
0.055982839316129684,
-0.09760600328445435,
-0.25072550773620605,
-0.08384551107883453,
0.031493958085775375,
0.12813612818717957,
0.08522222191095352,
-0.03174388408660889,
0.01642661914229393,
-0.08884726464748383,
0.08841490000486374,
0.205600306391716,
-0.197179913520813,
-0.06741457432508469,
-0.01404501497745514,
0.03402874618768692,
0.030938243493437767,
-0.10368947684764862,
-0.01975022815167904,
0.01705259084701538,
0.008705435320734978,
0.06516019254922867,
0.015983644872903824,
0.020424464717507362,
-0.0002618195430841297,
-0.13213029503822327,
-0.052572108805179596,
0.11562949419021606,
0.07759901136159897,
-0.0069206939078867435,
-0.10553444921970367,
-0.024473408237099648,
-0.1643667221069336,
-0.048116572201251984,
0.045018769800662994,
0.016041098162531853,
-0.026392120867967606,
-0.02684842050075531,
0.018278105184435844,
-0.04186699166893959,
-0.06990572065114975,
0.0666244849562645,
0.125264972448349,
0.05139346048235893,
-0.034427642822265625,
0.008432412520051003,
0.09774017333984375,
0.09600879997015,
-0.17264136672019958,
-0.023479748517274857,
0.03161143511533737,
-0.11029066890478134,
0.0017385839018970728,
-0.012291916646063328,
0.05016903206706047,
0.05217636749148369,
0.12153217941522598,
-0.009175417944788933,
0.08778826892375946,
0.010051941499114037,
0.01257325243204832,
-0.0769600197672844,
0.15343336760997772,
-0.0662786066532135,
-0.06949187070131302,
-0.04407192021608353,
0.1200113520026207,
-0.009236717596650124,
-0.014182636514306068,
-0.07126257568597794,
0.03489985316991806,
0.07161637395620346,
0.0612315759062767,
-0.007668709848076105,
0.033552613109350204,
-0.048837292939424515,
-0.023260153830051422,
-0.012959619984030724,
-0.13732855021953583,
0.032383617013692856,
0.06901780515909195,
-0.0730707198381424,
0.008012549951672554,
-0.026413243263959885,
0.012446540407836437,
-0.05590151995420456,
0.08007945120334625,
-0.03626507893204689,
0.0005978058325126767,
-0.08457998186349869,
-0.08778361976146698,
0.033880867063999176,
-0.04421905428171158,
0.0018996840808540583,
-0.04977796599268913,
-0.10850322246551514,
-0.06973095238208771,
0.053285032510757446,
-0.0692417323589325,
-0.0692962110042572,
-0.07741003483533859,
-0.09193921089172363,
0.05168022960424423,
-0.02675948105752468,
0.15909869968891144,
-0.053091853857040405,
0.07354528456926346,
0.015692930668592453,
0.04423884302377701,
0.11431363970041275,
0.06696544587612152,
-0.011518068611621857,
0.054477304220199585,
-0.10947253555059433,
0.1108122318983078,
-0.12127679586410522,
0.05356870964169502,
-0.1169222816824913,
-0.10479497909545898,
-0.01364162378013134,
0.01549539901316166,
0.08945874124765396,
0.1258767545223236,
-0.15441682934761047,
-0.09204010665416718,
0.18498004972934723,
-0.05932992696762085,
-0.07951860129833221,
0.12764228880405426,
-0.01536132674664259,
-0.045191675424575806,
0.01961323618888855,
0.16263023018836975,
0.12667474150657654,
-0.09187950938940048,
0.015916913747787476,
-0.03831399604678154,
0.13373205065727234,
0.07842805236577988,
0.0900823101401329,
-0.03824727609753609,
0.049406539648771286,
0.0023428588174283504,
-0.0367109552025795,
0.06367926299571991,
-0.07370192557573318,
-0.08637182414531708,
-0.0054281954653561115,
-0.061915021389722824,
-0.0058801802806556225,
0.05852252244949341,
0.015728840604424477,
-0.06867606192827225,
-0.13299819827079773,
-0.0028070141561329365,
0.11049111187458038,
-0.1079314723610878,
0.017144756391644478,
-0.08232738077640533,
0.04817487671971321,
0.0075215972028672695,
-0.00044382395572029054,
-0.13985149562358856,
-0.016114866361021996,
0.029415687546133995,
-0.05774049833416939,
0.0066072060726583,
0.010170815512537956,
0.0682653933763504,
0.04974115639925003,
-0.03483910486102104,
-0.06977399438619614,
-0.051161669194698334,
-0.001772700110450387,
-0.03346378356218338,
-0.23734478652477264,
-0.08177320659160614,
-0.025149459019303322,
0.17937524616718292,
-0.20480290055274963,
0.009412363171577454,
0.04625494033098221,
0.14006128907203674,
0.013386783190071583,
-0.03968154266476631,
0.007316322531551123,
0.05288619548082352,
-0.02340243197977543,
-0.08352158963680267,
0.021764811128377914,
0.008950000628829002,
-0.08861370384693146,
0.025659453123807907,
-0.11503008753061295,
0.07785246521234512,
0.08484403789043427,
-0.004855882376432419,
-0.05718957260251045,
-0.013910463079810143,
-0.0553358793258667,
-0.05347687005996704,
-0.021955618634819984,
-0.011428764089941978,
0.16899296641349792,
0.012496085837483406,
0.11432824283838272,
-0.07390861213207245,
-0.049854207783937454,
0.029199574142694473,
0.01320397574454546,
0.00446768943220377,
0.16128139197826385,
0.05077279359102249,
-0.040924422442913055,
0.0973348468542099,
0.005808799061924219,
-0.0556936040520668,
0.1647869348526001,
-0.08381225168704987,
-0.08636973053216934,
-0.03030034527182579,
0.025690767914056778,
0.018465086817741394,
0.1000775471329689,
-0.1852339804172516,
-0.01936226710677147,
0.01724119670689106,
0.024867456406354904,
0.03029184602200985,
-0.17716744542121887,
-0.004702925682067871,
0.03422161191701889,
-0.08172649145126343,
-0.002022975357249379,
0.002515083644539118,
-0.01387148629873991,
0.0795949399471283,
0.0015923201572149992,
-0.09126126021146774,
-0.03750378638505936,
-0.05919583886861801,
-0.09399194270372391,
0.16520899534225464,
-0.08287063986063004,
-0.13435818254947662,
-0.11233522742986679,
-0.03462432697415352,
-0.011148680932819843,
-0.017107784748077393,
0.03203596919775009,
-0.11235775798559189,
-0.03808479756116867,
-0.06948800384998322,
0.024379532784223557,
-0.04555661231279373,
0.0034322000574320555,
0.06080830842256546,
0.014012368395924568,
0.049253787845373154,
-0.09780196845531464,
0.014405851252377033,
-0.013751955702900887,
-0.03578128665685654,
-0.008827433921396732,
0.012889635749161243,
0.0735865980386734,
0.166899174451828,
0.07203251123428345,
0.04688303917646408,
-0.01756380870938301,
0.18011555075645447,
-0.13059329986572266,
0.006273431237787008,
0.10619380325078964,
0.004348838236182928,
0.03631926700472832,
0.14360973238945007,
0.052622806280851364,
-0.07049570232629776,
0.010712459683418274,
0.03464528173208237,
-0.0178982000797987,
-0.2414141595363617,
-0.035203251987695694,
-0.08226919174194336,
-0.02789478935301304,
0.09363043308258057,
0.03252273425459862,
0.002768470672890544,
0.013557953760027885,
-0.03985876217484474,
-0.008686480112373829,
0.06235891580581665,
0.04082028195261955,
0.06771530956029892,
0.03432010859251022,
0.09877290576696396,
-0.017899364233016968,
-0.040928229689598083,
0.01636393927037716,
-0.001550888642668724,
0.2352985441684723,
-0.0026743344496935606,
0.18439790606498718,
0.04951196908950806,
0.12162637710571289,
-0.0038464192766696215,
0.04770934581756592,
0.002104738261550665,
0.00011507761519169435,
0.029181256890296936,
-0.05375628545880318,
-0.014287278056144714,
0.035806264728307724,
0.09637756645679474,
0.008904245682060719,
-0.08407878875732422,
0.014421412721276283,
0.02173450216650963,
0.3472581207752228,
0.07996676862239838,
-0.25505638122558594,
-0.06127279996871948,
0.019564758986234665,
-0.07460422813892365,
-0.032857004553079605,
0.04123477265238762,
0.11020262539386749,
-0.07521859556436539,
0.07823128253221512,
-0.042760610580444336,
0.09132770448923111,
-0.06538297981023788,
0.0055110096000134945,
0.08847004175186157,
0.08207229524850845,
0.015409519895911217,
0.0686236172914505,
-0.24359455704689026,
0.26394495368003845,
-0.0242961086332798,
0.07759173214435577,
-0.04583277553319931,
0.05348673462867737,
0.04093433544039726,
-0.02222178876399994,
0.076731376349926,
0.004029748495668173,
-0.1307796984910965,
-0.15311142802238464,
-0.08273912966251373,
0.010110486298799515,
0.11914201080799103,
-0.06151656061410904,
0.11685285717248917,
-0.03979945927858353,
-0.04144757241010666,
0.03569415956735611,
-0.07790951430797577,
-0.12040996551513672,
-0.11475793272256851,
0.05478929728269577,
0.0036176503635942936,
0.07669897377490997,
-0.08944935351610184,
-0.09526880830526352,
-0.07297088205814362,
0.144999697804451,
-0.1329951286315918,
-0.020645830780267715,
-0.1344367116689682,
0.06384610384702682,
0.1518259346485138,
-0.06061394140124321,
0.0356825590133667,
0.0270713958889246,
0.13115951418876648,
0.03043198026716709,
-0.015499750152230263,
0.09936463832855225,
-0.08844325691461563,
-0.20872542262077332,
-0.04204953461885452,
0.17342627048492432,
0.03203800693154335,
0.06693262606859207,
-0.015215164050459862,
0.023177601397037506,
-0.0024921291042119265,
-0.07921666651964188,
0.07640615105628967,
0.0574837327003479,
0.006625721696764231,
0.05627123638987541,
-0.04287751764059067,
0.007981724105775356,
-0.07110823690891266,
-0.06148829311132431,
0.1068430170416832,
0.23286399245262146,
-0.07649676501750946,
0.05515263229608536,
0.024353647604584694,
-0.0757255107164383,
-0.15483374893665314,
-0.01679736189544201,
0.1303137093782425,
0.04450138658285141,
-0.030521875247359276,
-0.21965011954307556,
0.013093414716422558,
0.055977530777454376,
-0.022979486733675003,
0.060211945325136185,
-0.3251115679740906,
-0.12541697919368744,
0.09023436903953552,
0.047728460282087326,
-0.046586621552705765,
-0.15549609065055847,
-0.058500517159700394,
-0.03327297419309616,
-0.10367695987224579,
0.037143535912036896,
-0.012748788110911846,
0.11292686313390732,
0.006175883114337921,
0.010768182575702667,
0.0147568853572011,
-0.051655806601047516,
0.15245670080184937,
0.022088387981057167,
0.03334767743945122,
-0.012946268543601036,
0.022125374525785446,
0.014405334368348122,
-0.05870957300066948,
0.014884812757372856,
-0.05878965184092522,
0.020380785688757896,
-0.1529456079006195,
-0.03289269655942917,
-0.08949825167655945,
0.013118078000843525,
-0.05258391052484512,
-0.01350904069840908,
-0.00722561776638031,
0.0497916005551815,
0.10727141052484512,
0.026387136429548264,
0.10771723091602325,
-0.06486175209283829,
0.12019537389278412,
0.11691274493932724,
0.10869838297367096,
0.026341993361711502,
-0.08761394023895264,
-0.02001921460032463,
0.01894354447722435,
0.03213619440793991,
-0.10893255472183228,
0.04439773038029671,
0.13425090909004211,
0.04294346272945404,
0.14237789809703827,
0.0557950958609581,
-0.08926204591989517,
0.0035175855737179518,
0.05475573614239693,
-0.06691328436136246,
-0.1402122974395752,
-0.027941737323999405,
0.02307168021798134,
-0.09879996627569199,
-0.008242425508797169,
0.11142722517251968,
-0.038447268307209015,
0.0036789122968912125,
0.010370716452598572,
0.06004837900400162,
-0.03257745876908302,
0.21080465614795685,
0.031022002920508385,
0.10003677755594254,
-0.09237122535705566,
0.06519132107496262,
0.045995935797691345,
-0.10296964645385742,
0.03639945387840271,
0.11397348344326019,
-0.04467003792524338,
-0.03028011880815029,
0.0027399598620831966,
0.07806052267551422,
0.0529334731400013,
-0.05622383952140808,
-0.11528022587299347,
-0.16673822700977325,
0.09369561821222305,
0.06793682277202606,
0.0185276810079813,
0.02859840914607048,
-0.02074560895562172,
0.03329390287399292,
-0.0832204818725586,
0.1074412614107132,
0.08973875641822815,
0.054944686591625214,
-0.11507749557495117,
0.08779680728912354,
0.013988977298140526,
0.006335494574159384,
0.0008972537470981479,
-0.01563364267349243,
-0.10719825327396393,
0.03643513843417168,
-0.1311914622783661,
-0.0026274172123521566,
-0.050976984202861786,
0.004253753460943699,
0.002396354917436838,
-0.06199665740132332,
-0.054146550595760345,
0.025070440024137497,
-0.11502896249294281,
-0.035053934901952744,
-0.042600177228450775,
0.06840009242296219,
-0.08679713308811188,
-0.008073500357568264,
0.03511340171098709,
-0.14315085113048553,
0.09456562995910645,
0.047635044902563095,
0.0038643914740532637,
0.020407937467098236,
-0.09454774856567383,
-0.010496583767235279,
0.016042789444327354,
0.020345820114016533,
0.03147130087018013,
-0.17700934410095215,
0.00022397711290977895,
-0.024083152413368225,
0.015136835165321827,
-0.019456371665000916,
-0.004582341760396957,
-0.10724576562643051,
0.01002559345215559,
-0.0336974561214447,
-0.06085844710469246,
-0.05056455731391907,
0.07192080467939377,
0.0748898833990097,
0.017478296533226967,
0.13631920516490936,
-0.07387048751115799,
0.07951167970895767,
-0.2266141176223755,
0.004392530769109726,
0.001151511212810874,
-0.06048094108700752,
-0.02990826591849327,
-0.026652788743376732,
0.10400185734033585,
-0.05681108310818672,
0.10898808389902115,
-0.02290196344256401,
0.034725211560726166,
0.020821863785386086,
-0.11931212991476059,
0.032668329775333405,
0.07025682926177979,
0.1551615595817566,
0.04856014996767044,
-0.009234997443854809,
0.06738831102848053,
-0.04419586434960365,
0.043872084468603134,
0.1189059242606163,
0.1313265860080719,
0.1443709284067154,
0.08863850682973862,
0.07460625469684601,
0.10234751552343369,
-0.14858478307724,
-0.115012988448143,
0.1464717835187912,
-0.06400792300701141,
0.14482256770133972,
-0.03892379254102707,
0.17628678679466248,
0.10750435292720795,
-0.19395849108695984,
0.06632039695978165,
-0.04627727344632149,
-0.08514418452978134,
-0.11109261214733124,
-0.09578313678503036,
-0.0723949447274208,
-0.1709957867860794,
0.029031619429588318,
-0.10651693493127823,
0.06638163328170776,
0.06763075292110443,
0.052424561232328415,
0.03353964537382126,
0.08926770836114883,
0.08036106079816818,
-0.0009558739839121699,
0.11491340398788452,
0.007186294998973608,
-0.011987161822617054,
-0.058878909796476364,
-0.0934528112411499,
0.04130572825670242,
-0.029081150889396667,
0.054361265152692795,
-0.030917709693312645,
-0.10595151036977768,
0.05810809135437012,
0.021206747740507126,
-0.09130705893039703,
0.03961221128702164,
-0.031115451827645302,
0.06018267199397087,
0.0921231359243393,
0.03707197308540344,
-0.015539032407104969,
-0.009199115447700024,
0.1930726319551468,
-0.08660294115543365,
-0.06778683513402939,
-0.12985719740390778,
0.16317278146743774,
0.0011088133323937654,
0.007784491870552301,
0.02963702380657196,
-0.05542687699198723,
-0.020270144566893578,
0.16585035622119904,
0.1524234563112259,
-0.028299611061811447,
-0.01838187500834465,
0.024027112871408463,
-0.005682243965566158,
-0.02948872372508049,
0.07819584757089615,
0.1252768337726593,
0.07038147747516632,
-0.03952852636575699,
-0.027490172535181046,
-0.018789824098348618,
-0.07375172525644302,
-0.03502822667360306,
0.08741124719381332,
0.013951661065220833,
-0.0047372812405228615,
-0.021287059411406517,
0.1152224913239479,
-0.08268125355243683,
-0.1611560881137848,
0.03948312997817993,
-0.1672184020280838,
-0.18721337616443634,
-0.03939933702349663,
0.06570211797952652,
0.054740678519010544,
0.05845888331532478,
-0.0023458204232156277,
-0.054292481392621994,
0.11713366210460663,
0.01156220305711031,
-0.029737645760178566,
-0.09145239740610123,
0.07069892436265945,
-0.1383330523967743,
0.1666177660226822,
-0.04631950333714485,
0.03808151185512543,
0.11625995486974716,
0.048335447907447815,
-0.07892228662967682,
0.02448996528983116,
0.09244751930236816,
-0.12899650633335114,
0.03811417147517204,
0.1945962756872177,
-0.04730941355228424,
0.12809710204601288,
0.04608583822846413,
-0.0952877327799797,
0.026868049055337906,
-0.03298269584774971,
-0.046970516443252563,
-0.060488127171993256,
0.0014232106041163206,
-0.04386106878519058,
0.13542114198207855,
0.2097814530134201,
-0.07554630190134048,
-0.016710540279746056,
-0.03841203823685646,
0.010652108117938042,
0.0011046677827835083,
0.12669506669044495,
-0.03823735937476158,
-0.2725280225276947,
0.016492022201418877,
-0.017337927594780922,
0.03514518216252327,
-0.18265995383262634,
-0.07960736751556396,
0.02832292951643467,
-0.059460628777742386,
-0.06655006855726242,
0.11850987374782562,
0.06659545004367828,
0.04575634375214577,
-0.05257798358798027,
-0.10317964851856232,
-0.021749919280409813,
0.1783691942691803,
-0.17350371181964874,
-0.055798597633838654
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2Vec2_xls_r_openslr_Hi_V2
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Harveenchadha/indic-voice](https://huggingface.co/datasets/Harveenchadha/indic-voice) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3184
- Wer: 0.3104
- Cer: 0.0958
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 7.1097 | 0.48 | 300 | 0.9965 | 3.3989 | 1.0 |
| 3.0235 | 0.96 | 600 | 0.3163 | 1.3183 | 0.7977 |
| 1.1419 | 1.44 | 900 | 0.1913 | 0.6416 | 0.5543 |
| 0.8242 | 1.92 | 1200 | 0.1608 | 0.5063 | 0.4804 |
| 0.6876 | 2.56 | 1600 | 0.1387 | 0.4401 | 0.4280 |
| 0.5868 | 3.21 | 2000 | 0.1249 | 0.3940 | 0.3907 |
| 0.5285 | 3.85 | 2400 | 0.1200 | 0.3661 | 0.3763 |
| 0.5 | 4.49 | 2800 | 0.3528 | 0.3610 | 0.1136 |
| 0.4538 | 5.13 | 3200 | 0.3403 | 0.3485 | 0.1086 |
| 0.4165 | 5.77 | 3600 | 0.3335 | 0.3439 | 0.1062 |
| 0.3989 | 6.41 | 4000 | 0.3264 | 0.3340 | 0.1036 |
| 0.3679 | 7.05 | 4400 | 0.3256 | 0.3287 | 0.1013 |
| 0.3517 | 7.69 | 4800 | 0.3212 | 0.3223 | 0.1002 |
| 0.3357 | 8.33 | 5200 | 0.3173 | 0.3196 | 0.0986 |
| 0.3225 | 8.97 | 5600 | 0.3142 | 0.3177 | 0.0985 |
| 0.3057 | 9.62 | 6000 | 0.3199 | 0.3156 | 0.0975 |
| 0.2972 | 10.26 | 6400 | 0.3139 | 0.3128 | 0.0967 |
| 0.2881 | 10.9 | 6800 | 0.3184 | 0.3107 | 0.0957 |
| 0.2791 | 11.54 | 7200 | 0.3184 | 0.3104 | 0.0958 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
| {"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "Harveenchadha/indic-voice", "generated_from_trainer"], "model-index": [{"name": "Wav2Vec2_xls_r_openslr_Hi_V2", "results": []}]} | automatic-speech-recognition | LegolasTheElf/Wav2Vec2_xls_r_openslr_Hi_V2 | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"Harveenchadha/indic-voice",
"generated_from_trainer",
"hi",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"hi"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Harveenchadha/indic-voice #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us
| Wav2Vec2\_xls\_r\_openslr\_Hi\_V2
=================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Harveenchadha/indic-voice dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3184
* Wer: 0.3104
* Cer: 0.0958
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 200
* num\_epochs: 12
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.2.dev0
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Harveenchadha/indic-voice #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0"
] | [
66,
158,
4,
39
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #Harveenchadha/indic-voice #generated_from_trainer #hi #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0"
] | [
-0.1184004470705986,
0.07665704935789108,
-0.0033797144424170256,
0.045457951724529266,
0.12545733153820038,
0.010028697550296783,
0.09510842710733414,
0.1498725712299347,
-0.08926284313201904,
0.08249568939208984,
0.08938845247030258,
0.08286289125680923,
0.0660819485783577,
0.1005638837814331,
-0.012264597229659557,
-0.32209691405296326,
0.01820547506213188,
0.012070400640368462,
-0.09937386214733124,
0.11161956936120987,
0.10061948746442795,
-0.11598029732704163,
0.0236501507461071,
0.03493664786219597,
-0.1113402396440506,
0.010582114569842815,
-0.024971920996904373,
-0.06630919873714447,
0.12708505988121033,
0.02990364283323288,
0.09817485511302948,
0.014053206890821457,
0.09594462811946869,
-0.26663705706596375,
0.013394201174378395,
0.06797783076763153,
0.048025015741586685,
0.07110617309808731,
0.11488032341003418,
-0.009775525890290737,
0.15148767828941345,
-0.06887326389551163,
0.0742766335606575,
0.04597597196698189,
-0.1071997657418251,
-0.3339200019836426,
-0.08382013440132141,
0.02161826752126217,
0.11970436573028564,
0.10634881258010864,
-0.025956805795431137,
0.06483438611030579,
-0.08057519793510437,
0.08908425271511078,
0.22697050869464874,
-0.23516756296157837,
-0.07512453943490982,
-0.03001120500266552,
0.046948231756687164,
0.04160211607813835,
-0.12664330005645752,
-0.03391442075371742,
0.019197756424546242,
0.04020363464951515,
0.10800858587026596,
0.009190073236823082,
-0.029512090608477592,
0.0187943484634161,
-0.13494475185871124,
-0.0524810329079628,
0.10662583261728287,
0.07065694034099579,
-0.02869875729084015,
-0.07662651687860489,
-0.024107296019792557,
-0.20371168851852417,
-0.054196733981370926,
0.01545936893671751,
0.02613288350403309,
-0.0342261828482151,
-0.09062547981739044,
0.02018587291240692,
-0.08004395663738251,
-0.0928543359041214,
0.027073215693235397,
0.13576865196228027,
0.05362151563167572,
-0.03637823835015297,
0.008805393241345882,
0.10353007912635803,
0.044076044112443924,
-0.1359160989522934,
-0.003142029047012329,
0.04601151868700981,
-0.0969017967581749,
-0.010704503394663334,
-0.03916146606206894,
-0.021083515137434006,
0.00239188433624804,
0.11451706290245056,
-0.0368482880294323,
0.09069737792015076,
0.008603055030107498,
0.02268195152282715,
-0.09637593477964401,
0.1809123158454895,
-0.05836440250277519,
-0.035291437059640884,
-0.04361795634031296,
0.08706407994031906,
-0.02149108611047268,
-0.016766592860221863,
-0.06074877828359604,
0.017289526760578156,
0.10902778804302216,
0.04064202681183815,
-0.031659938395023346,
0.017348704859614372,
-0.059255391359329224,
-0.018318045884370804,
-0.026443185284733772,
-0.10921666771173477,
0.04445395618677139,
0.029993347823619843,
-0.07171353697776794,
0.0211758054792881,
0.004616427235305309,
0.017045950517058372,
-0.042764220386743546,
0.12977227568626404,
-0.05850069597363472,
0.011171434074640274,
-0.09560447186231613,
-0.1042977124452591,
0.026630772277712822,
-0.04287686571478844,
0.008019190281629562,
-0.06948338449001312,
-0.10568229109048843,
-0.046686604619026184,
0.06440456211566925,
-0.04854985326528549,
-0.059476569294929504,
-0.06300033628940582,
-0.0679989904165268,
0.05549433454871178,
-0.02740389294922352,
0.16687943041324615,
-0.06439325958490372,
0.11204427480697632,
0.019439978525042534,
0.037658318877220154,
0.03598437458276749,
0.08063490688800812,
-0.04486953839659691,
0.0342632420361042,
-0.13638772070407867,
0.06410887837409973,
-0.09021785855293274,
0.05368456244468689,
-0.1420036107301712,
-0.13587602972984314,
-0.010251365602016449,
-0.0007703241426497698,
0.10571379959583282,
0.08483835309743881,
-0.17988841235637665,
-0.0873505175113678,
0.17176370322704315,
-0.07384949177503586,
-0.08845946192741394,
0.13485032320022583,
-0.025564156472682953,
-0.013775577768683434,
0.03840959444642067,
0.1675211638212204,
0.08713490515947342,
-0.09999913722276688,
0.03176279738545418,
-0.049238692969083786,
0.13141478598117828,
0.028538363054394722,
0.09455832093954086,
-0.043287720531225204,
0.02173444628715515,
-0.005018452648073435,
-0.023848602548241615,
0.06934240460395813,
-0.08877109736204147,
-0.08241357654333115,
-0.022383878007531166,
-0.0671134889125824,
0.0007825748762115836,
0.06408661603927612,
0.02934294380247593,
-0.09381484240293503,
-0.13105306029319763,
0.015458525158464909,
0.11326219141483307,
-0.10712485760450363,
0.03346194326877594,
-0.07748516649007797,
0.038093455135822296,
-0.01071277167648077,
-0.008664621971547604,
-0.1678241789340973,
0.00899569969624281,
0.027989791706204414,
-0.051443155854940414,
0.021840427070856094,
0.002012035110965371,
0.08194901049137115,
0.05056895688176155,
-0.047589633613824844,
-0.08090400695800781,
-0.07654142379760742,
-0.005051931366324425,
-0.0705261081457138,
-0.227166548371315,
-0.07721196115016937,
-0.02688685432076454,
0.14431430399417877,
-0.2170601189136505,
0.0016632548067718744,
0.026084845885634422,
0.1074819341301918,
0.03114955872297287,
-0.042998265475034714,
-0.02039375901222229,
0.08700075000524521,
-0.01765703782439232,
-0.06619735062122345,
0.035140808671712875,
0.0059171863831579685,
-0.10976780205965042,
0.021323662251234055,
-0.11366730183362961,
0.09657194465398788,
0.10832288861274719,
-0.040597304701805115,
-0.07157615572214127,
-0.057950228452682495,
-0.06058374419808388,
-0.0648905411362648,
-0.02420315332710743,
0.002785246819257736,
0.2039385885000229,
0.03365500643849373,
0.1193452700972557,
-0.0720812976360321,
-0.036497194319963455,
0.0281208623200655,
0.011439893394708633,
0.0007581199170090258,
0.13539443910121918,
0.0613742470741272,
-0.026488490402698517,
0.08865760266780853,
0.08414117246866226,
-0.08814283460378647,
0.14071109890937805,
-0.07224038243293762,
-0.12862780690193176,
-0.011585523374378681,
0.015755150467157364,
0.02867533080279827,
0.1120663583278656,
-0.16961246728897095,
-0.0018317016074433923,
0.02140633389353752,
0.03152105584740639,
0.02413446456193924,
-0.21620415151119232,
-0.00674425670877099,
0.043074704706668854,
-0.06478893011808395,
-0.044867463409900665,
-0.018282225355505943,
0.0032063403632491827,
0.08292664587497711,
0.006454865913838148,
-0.06705865263938904,
-0.015146671794354916,
-0.030043218284845352,
-0.07692040503025055,
0.18646946549415588,
-0.10727877914905548,
-0.1319979578256607,
-0.13436461985111237,
-0.06617626547813416,
0.006233674939721823,
-0.01209939457476139,
0.056629665195941925,
-0.11933470517396927,
-0.04595617204904556,
-0.05379511043429375,
0.04861261695623398,
-0.07369491457939148,
0.025507209822535515,
-0.009497730061411858,
0.008396103978157043,
0.08355706930160522,
-0.10538916289806366,
0.017864324152469635,
-0.0065848506055772305,
-0.044536083936691284,
0.03210112079977989,
0.0467730313539505,
0.0937357097864151,
0.1624079793691635,
0.03489132970571518,
0.017398295924067497,
-0.03370058164000511,
0.1613081395626068,
-0.10211310535669327,
-0.02800167165696621,
0.11974100768566132,
0.003527039662003517,
0.047084517776966095,
0.1187826544046402,
0.05926127731800079,
-0.08272548019886017,
0.017968475818634033,
0.043972764164209366,
-0.01223220955580473,
-0.24598050117492676,
-0.03423704206943512,
-0.06577996909618378,
-0.0365341380238533,
0.12034892290830612,
0.031344227492809296,
-0.005985107738524675,
0.028307350352406502,
-0.01149892807006836,
0.020498471334576607,
-0.0009954359848052263,
0.06957577913999557,
0.08574344217777252,
0.03441299870610237,
0.10865072906017303,
-0.015483441762626171,
-0.03753020241856575,
0.02477801777422428,
0.0024064378812909126,
0.2586401700973511,
0.00035618938272818923,
0.1649501472711563,
0.048399668186903,
0.16359633207321167,
0.01198212057352066,
0.07011421769857407,
0.012237511575222015,
-0.02335830219089985,
0.013643858954310417,
-0.05552404373884201,
-0.03942550718784332,
0.04013807699084282,
0.07651625573635101,
0.03198477625846863,
-0.11947020888328552,
-0.023963093757629395,
0.010000130161643028,
0.35868948698043823,
0.056673813611269,
-0.3007759153842926,
-0.08981858938932419,
0.0016006081132218242,
-0.08872585743665695,
-0.06025166064500809,
0.03331603482365608,
0.0957910344004631,
-0.1000216081738472,
0.04307647421956062,
-0.07047419995069504,
0.10157716274261475,
-0.06415300816297531,
0.010396073572337627,
0.08347786217927933,
0.08344712853431702,
0.004384887870401144,
0.07051404565572739,
-0.2760270833969116,
0.30410781502723694,
-0.018984226509928703,
0.08447794616222382,
-0.04383384436368942,
0.03873082995414734,
0.03753319010138512,
-0.03847329318523407,
0.05962961167097092,
-0.012934860773384571,
-0.11240847408771515,
-0.19458146393299103,
-0.06323041021823883,
0.026030423119664192,
0.12916211783885956,
-0.039343688637018204,
0.12027095258235931,
-0.037216659635305405,
-0.008337755687534809,
0.051626432687044144,
-0.08514156192541122,
-0.10070904344320297,
-0.10657382011413574,
0.019963722676038742,
0.03192758560180664,
0.09858711063861847,
-0.10462923347949982,
-0.10243922472000122,
-0.06851831823587418,
0.14923658967018127,
-0.07407700270414352,
-0.004866979084908962,
-0.1317104548215866,
0.08861871808767319,
0.16342326998710632,
-0.06863963603973389,
0.05880735442042351,
0.024175383150577545,
0.1183476373553276,
0.036227043718099594,
-0.004905397538095713,
0.1102738007903099,
-0.08599632233381271,
-0.18191516399383545,
-0.05520794168114662,
0.1567320078611374,
0.03919047489762306,
0.06953224539756775,
-0.026737969368696213,
0.02581130340695381,
-0.031156720593571663,
-0.07714766263961792,
0.051460567861795425,
0.022869164124131203,
0.008029354736208916,
0.058133192360401154,
-0.04202667623758316,
0.01036678347736597,
-0.07444562762975693,
-0.0693211778998375,
0.15365229547023773,
0.27292266488075256,
-0.07320833951234818,
0.031159011647105217,
0.046391695737838745,
-0.04941178858280182,
-0.1417389214038849,
0.020045889541506767,
0.12441568821668625,
0.031312815845012665,
0.002214240375906229,
-0.240082785487175,
0.06022920459508896,
0.0870637521147728,
-0.01821363903582096,
0.07033079862594604,
-0.31485259532928467,
-0.12322395294904709,
0.11505625396966934,
0.11277218908071518,
-0.035309817641973495,
-0.1522110551595688,
-0.05490735173225403,
-0.02484070137143135,
-0.11953243613243103,
0.037345025688409805,
-0.024440638720989227,
0.12408451735973358,
-0.013046670705080032,
0.07038851082324982,
0.02245931699872017,
-0.051790546625852585,
0.14971189200878143,
-0.013624387793242931,
0.059321608394384384,
-0.013517922721803188,
0.08103130012750626,
0.004379960708320141,
-0.04302455857396126,
0.001449156436137855,
-0.07145669311285019,
0.016780951991677284,
-0.14023363590240479,
-0.02698470465838909,
-0.08584480732679367,
0.014267351478338242,
-0.03868900611996651,
-0.046967435628175735,
-0.006554153747856617,
0.04270501807332039,
0.07045164704322815,
0.0037750329356640577,
0.11408103257417679,
-0.05283110961318016,
0.1452677994966507,
0.06517757475376129,
0.08984450995922089,
-0.014402340166270733,
-0.09885472804307938,
-0.014099165797233582,
-0.00487567437812686,
0.05559999495744705,
-0.1153210774064064,
0.030877741053700447,
0.14410895109176636,
0.04549865052103996,
0.14877332746982574,
0.06254751980304718,
-0.07706793397665024,
0.021404096856713295,
0.06679150462150574,
-0.07874337583780289,
-0.12212377786636353,
-0.012119620107114315,
0.07543835788965225,
-0.1221366822719574,
-0.003164266236126423,
0.10296863317489624,
-0.05043695494532585,
-0.007994714193046093,
0.01240508258342743,
0.020010516047477722,
-0.0558062419295311,
0.221456378698349,
0.01831795647740364,
0.07534797489643097,
-0.09657850861549377,
0.07532412558794022,
0.06253242492675781,
-0.1821262687444687,
0.02538728341460228,
0.09005925804376602,
-0.038136307150125504,
-0.02201031893491745,
0.02854030951857567,
0.07684633135795593,
0.0038965092971920967,
-0.06362956017255783,
-0.10572206228971481,
-0.15074647963047028,
0.0879770815372467,
0.07244803756475449,
0.030845599249005318,
0.020596301183104515,
-0.052056506276130676,
0.04520367085933685,
-0.11416824162006378,
0.08367568254470825,
0.08804228901863098,
0.07581168413162231,
-0.13350403308868408,
0.14695118367671967,
0.016633931547403336,
0.0018061823211610317,
0.010375271551311016,
-0.009232519194483757,
-0.08992910385131836,
0.03651678189635277,
-0.13018719851970673,
-0.024232923984527588,
-0.05020831525325775,
-0.00008624016481917351,
0.005660837050527334,
-0.054283756762742996,
-0.048581622540950775,
0.02532421424984932,
-0.12144476175308228,
-0.0461500808596611,
-0.01081103552132845,
0.0716758593916893,
-0.09772200882434845,
-0.017322678118944168,
0.05140895023941994,
-0.11541499942541122,
0.09061310440301895,
0.061476930975914,
0.016495807096362114,
0.050855979323387146,
-0.1278425008058548,
0.007873649708926678,
0.041521355509757996,
0.0006739512318745255,
0.03529008477926254,
-0.16702069342136383,
-0.011553727090358734,
-0.01577622815966606,
0.03256148099899292,
-0.011647386476397514,
0.031180445104837418,
-0.13466079533100128,
-0.042679473757743835,
-0.029606537893414497,
-0.07827714830636978,
-0.06039869040250778,
0.04868463799357414,
0.06978987902402878,
0.03849416971206665,
0.16161592304706573,
-0.08592521399259567,
0.05778831988573074,
-0.20989996194839478,
0.013860901817679405,
-0.038045287132263184,
-0.06665493547916412,
-0.07090579718351364,
-0.04256119951605797,
0.0848001167178154,
-0.07032202184200287,
0.08105159550905228,
-0.047624219208955765,
0.06617020815610886,
0.02959597110748291,
-0.12629346549510956,
0.009401788003742695,
0.03671473637223244,
0.23877251148223877,
0.05379306524991989,
-0.026557574048638344,
0.07109709084033966,
0.0009696136694401503,
0.05247084051370621,
0.1986839473247528,
0.14098934829235077,
0.18514856696128845,
0.06742759793996811,
0.09090020507574081,
0.06144525855779648,
-0.11784492433071136,
-0.1402994841337204,
0.123064786195755,
-0.02242707833647728,
0.1356584131717682,
-0.017933832481503487,
0.260150283575058,
0.10800730437040329,
-0.1969233900308609,
0.060588538646698,
-0.04198995977640152,
-0.0850028544664383,
-0.09068845212459564,
-0.04353442043066025,
-0.06945762783288956,
-0.18873465061187744,
0.016168517991900444,
-0.107297383248806,
0.0701102688908577,
0.05889100208878517,
0.039080776274204254,
0.019558535888791084,
0.1353723108768463,
0.05592621490359306,
-0.003932161256670952,
0.10981376469135284,
0.015396079048514366,
-0.014275625348091125,
-0.04376367852091789,
-0.0975114181637764,
0.03775033354759216,
-0.04100121185183525,
0.048068590462207794,
-0.043740689754486084,
-0.11063186824321747,
0.05810109153389931,
0.004993485286831856,
-0.09973084181547165,
0.028199829161167145,
-0.017989790067076683,
0.06405540555715561,
0.11229966580867767,
0.032008104026317596,
-0.00527273491024971,
-0.021847229450941086,
0.25898477435112,
-0.10855962336063385,
-0.06485297530889511,
-0.1280217319726944,
0.25715363025665283,
0.029664691537618637,
-0.022376852110028267,
0.02346203848719597,
-0.0646723136305809,
-0.002039319835603237,
0.15376155078411102,
0.11907675117254257,
-0.020988522097468376,
-0.019337642937898636,
0.013194523751735687,
-0.013328470289707184,
-0.062492456287145615,
0.0934048518538475,
0.1453314870595932,
0.05040116235613823,
-0.06794626265764236,
-0.033942531794309616,
-0.05757520720362663,
-0.049155812710523605,
-0.039316143840551376,
0.0663888081908226,
0.02943514473736286,
-0.02339744009077549,
-0.02073909528553486,
0.11163678765296936,
-0.0616268515586853,
-0.12085380405187607,
0.024591855704784393,
-0.16501307487487793,
-0.18262648582458496,
-0.03194309398531914,
0.07046393305063248,
0.03923821449279785,
0.04788264259696007,
-0.014041533693671227,
-0.022275863215327263,
0.1153663843870163,
0.004545063711702824,
-0.033258792012929916,
-0.11746611446142197,
0.09767067432403564,
-0.08727116137742996,
0.18459168076515198,
-0.03936602547764778,
0.026368454098701477,
0.11955349147319794,
0.08708277344703674,
-0.07458321750164032,
0.05901439115405083,
0.07289621978998184,
-0.14470766484737396,
0.045460738241672516,
0.20210027694702148,
-0.039115503430366516,
0.13144688308238983,
0.03816517814993858,
-0.1100887879729271,
0.02924404852092266,
-0.08501233905553818,
-0.04953499138355255,
-0.05003854259848595,
-0.01782054454088211,
-0.04710182547569275,
0.13102586567401886,
0.2237679660320282,
-0.0571165531873703,
-0.019192572683095932,
-0.06559218466281891,
0.010978343896567822,
0.03379596024751663,
0.1153169572353363,
-0.05268807336688042,
-0.26466161012649536,
0.016685159876942635,
0.013950849883258343,
0.015069135464727879,
-0.24084030091762543,
-0.0982494205236435,
0.0370190367102623,
-0.05792726203799248,
-0.06540827453136444,
0.11794571578502655,
0.06094496324658394,
0.045386143028736115,
-0.05399997532367706,
-0.0994146540760994,
-0.036092158406972885,
0.18877792358398438,
-0.1779688149690628,
-0.05838068574666977
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5561 | 1.0 | 782 | 2.3738 |
| 2.4474 | 2.0 | 1564 | 2.3108 |
| 2.4037 | 3.0 | 2346 | 2.3017 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imdb"], "model-index": [{"name": "distilbert-base-uncased-finetuned-imdb", "results": []}]} | fill-mask | Leisa/distilbert-base-uncased-finetuned-imdb | [
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #distilbert #fill-mask #generated_from_trainer #dataset-imdb #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-imdb
======================================
This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset.
It achieves the following results on the evaluation set:
* Loss: 2.3114
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0
* Datasets 1.15.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #distilbert #fill-mask #generated_from_trainer #dataset-imdb #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
59,
113,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #distilbert #fill-mask #generated_from_trainer #dataset-imdb #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
-0.11078503727912903,
0.05219342187047005,
-0.002497183857485652,
0.11434442549943924,
0.15562742948532104,
0.028768470510840416,
0.129608154296875,
0.11528027802705765,
-0.08486105501651764,
0.006379219703376293,
0.12130721658468246,
0.14198116958141327,
0.02579641342163086,
0.13767367601394653,
-0.038641396909952164,
-0.2658229470252991,
0.007990894839167595,
0.02223891019821167,
-0.08545729517936707,
0.13286960124969482,
0.10106444358825684,
-0.11866594105958939,
0.07349260151386261,
0.012708945199847221,
-0.1713668256998062,
0.010775468312203884,
0.016382882371544838,
-0.05494558811187744,
0.15327556431293488,
0.016069963574409485,
0.12151847779750824,
0.0068124704994261265,
0.09965401142835617,
-0.19367004930973053,
0.013956566341221333,
0.052504763007164,
0.015742352232336998,
0.07815538346767426,
0.05182158946990967,
0.019551588222384453,
0.11590404808521271,
-0.07412032783031464,
0.06205553561449051,
0.02410910651087761,
-0.13159285485744476,
-0.27891626954078674,
-0.09347900003194809,
0.015892894938588142,
0.06942757219076157,
0.10924974083900452,
-0.0003596582100726664,
0.13672025501728058,
-0.10847850143909454,
0.09163736552000046,
0.21903221309185028,
-0.2672845721244812,
-0.05977213382720947,
0.007449704222381115,
0.023370249196887016,
0.04487273842096329,
-0.09773372858762741,
-0.026448765769600868,
0.02306542918086052,
0.055212993174791336,
0.1485009789466858,
-0.02561003901064396,
-0.09895021468400955,
0.008160533383488655,
-0.13569580018520355,
-0.05110492929816246,
0.13320420682430267,
0.046218376606702805,
-0.04220229759812355,
-0.03558332100510597,
-0.05855998024344444,
-0.13654038310050964,
-0.05192776769399643,
-0.011617900803685188,
0.04555051773786545,
-0.028548482805490494,
-0.07597259432077408,
0.006054770667105913,
-0.09539702534675598,
-0.08157829940319061,
-0.0784759521484375,
0.13830435276031494,
0.04252805560827255,
0.010131006129086018,
-0.028404483571648598,
0.09547832608222961,
-0.021062247455120087,
-0.14197689294815063,
0.00695790583267808,
0.027486048638820648,
-0.027921000495553017,
-0.03355715051293373,
-0.06997625529766083,
-0.032355520874261856,
0.018827658146619797,
0.15451167523860931,
-0.06636518985033035,
0.046434395015239716,
0.02985263615846634,
0.04062465578317642,
-0.1063535287976265,
0.18115448951721191,
-0.0396626777946949,
-0.014387323521077633,
0.0028930616099387407,
0.040808334946632385,
0.01983773335814476,
-0.013237616047263145,
-0.10268134623765945,
0.005734487436711788,
0.09305242449045181,
0.016582729294896126,
-0.05859125405550003,
0.057634059339761734,
-0.06207975372672081,
-0.016882242634892464,
0.033286597579717636,
-0.09033893048763275,
0.03490076959133148,
-0.004963559098541737,
-0.07902620732784271,
-0.028314340859651566,
0.04025213420391083,
0.0239719245582819,
-0.0098604466766119,
0.1090926006436348,
-0.07324027270078659,
0.03536469116806984,
-0.10116417706012726,
-0.1244203969836235,
0.015272796154022217,
-0.05727657303214073,
0.021048007532954216,
-0.10441256314516068,
-0.19555173814296722,
0.0023368033580482006,
0.06831225752830505,
-0.02747507579624653,
-0.04760870710015297,
-0.029179029166698456,
-0.05392233282327652,
0.01604563742876053,
-0.01876937225461006,
0.14624159038066864,
-0.07092681527137756,
0.10385286062955856,
0.040901798754930496,
0.069842629134655,
-0.05318295210599899,
0.06267045438289642,
-0.10617049038410187,
0.018680982291698456,
-0.183849036693573,
0.03989265486598015,
-0.05193081125617027,
0.0460314117372036,
-0.09182067215442657,
-0.11649138480424881,
0.006644797045737505,
-0.011883897706866264,
0.09489485621452332,
0.10674349218606949,
-0.1864652931690216,
-0.07293377071619034,
0.15886352956295013,
-0.07045207917690277,
-0.11300862580537796,
0.13147999346256256,
-0.059813279658555984,
0.02458052523434162,
0.05621404945850372,
0.14320479333400726,
0.07130717486143112,
-0.11077158898115158,
0.04076644033193588,
-0.002357435179874301,
0.05599996820092201,
-0.04706075042486191,
0.08827406913042068,
-0.007149525452405214,
-0.016232715919613838,
0.0269470177590847,
-0.02353772521018982,
0.09129825979471207,
-0.09860512614250183,
-0.09505446255207062,
-0.04222138226032257,
-0.09179500490427017,
0.058578092604875565,
0.06327749788761139,
0.0624593049287796,
-0.10197872668504715,
-0.08153540641069412,
0.041077859699726105,
0.08756428211927414,
-0.03772015869617462,
0.02888481691479683,
-0.064246766269207,
0.0619400329887867,
-0.02897769957780838,
-0.016626356169581413,
-0.18581120669841766,
-0.02300245314836502,
0.00973015557974577,
-0.009476786479353905,
0.02105455845594406,
-0.009859243407845497,
0.08198077231645584,
0.08124937117099762,
-0.059377074241638184,
-0.031434472650289536,
-0.051195256412029266,
0.004021296743303537,
-0.11464873701334,
-0.20410698652267456,
-0.0464375764131546,
-0.017488621175289154,
0.14829936623573303,
-0.17968933284282684,
0.02545253559947014,
-0.07297791540622711,
0.07517636567354202,
0.005414963699877262,
-0.008997555822134018,
-0.05357138812541962,
0.08791801333427429,
-0.02735193260014057,
-0.05013643950223923,
0.06461542099714279,
0.009856758639216423,
-0.09959527105093002,
-0.021968495100736618,
-0.08875735104084015,
0.17053280770778656,
0.11807228624820709,
-0.10290483385324478,
-0.0765945315361023,
-0.0037871378008276224,
-0.06188996881246567,
-0.04092182591557503,
-0.04490962252020836,
0.047162167727947235,
0.15791550278663635,
-0.0015876928810030222,
0.13846254348754883,
-0.06370538473129272,
-0.023624388501048088,
0.025739584118127823,
-0.04005671292543411,
0.026692470535635948,
0.10653512179851532,
0.12203240394592285,
-0.07993999123573303,
0.13398967683315277,
0.17531678080558777,
-0.09190467745065689,
0.12180694937705994,
-0.040985219180583954,
-0.08073809742927551,
-0.027989935129880905,
-0.03181019797921181,
0.003305165795609355,
0.11333254724740982,
-0.125267893075943,
0.02508613094687462,
0.03404543176293373,
0.029996903613209724,
0.008155295625329018,
-0.21859608590602875,
-0.045264534652233124,
0.044852886348962784,
-0.05123741179704666,
-0.07924611866474152,
-0.0008690006216056645,
0.01669217459857464,
0.1023557186126709,
-0.0015204865485429764,
-0.09873699396848679,
0.03848692402243614,
0.006105024833232164,
-0.06994250416755676,
0.20664843916893005,
-0.10301633924245834,
-0.16164334118366241,
-0.11358776688575745,
-0.10146808624267578,
-0.04144001007080078,
0.009523777291178703,
0.06897439807653427,
-0.0893559381365776,
-0.030375923961400986,
-0.05776302516460419,
0.0175476111471653,
0.0027840419206768274,
0.03251991420984268,
-0.0045287758111953735,
-0.018302056938409805,
0.09585622698068619,
-0.10429929196834564,
-0.015026329085230827,
-0.0359356664121151,
-0.04766557738184929,
0.061502739787101746,
0.044523898512125015,
0.12009645253419876,
0.1345256268978119,
-0.008622739464044571,
0.006459395866841078,
-0.02252737432718277,
0.24891307950019836,
-0.0629005879163742,
-0.02983921952545643,
0.15809448063373566,
0.00200804159976542,
0.05883895978331566,
0.11912413686513901,
0.06791947782039642,
-0.0847773477435112,
0.008563537150621414,
0.028287667781114578,
-0.038243312388658524,
-0.20130501687526703,
-0.04940620809793472,
-0.06748272478580475,
-0.039424095302820206,
0.09294963628053665,
0.015293627977371216,
0.03697715699672699,
0.05835189297795296,
0.027730245143175125,
0.06453818082809448,
-0.03926711529493332,
0.05031079053878784,
0.10160262882709503,
0.04606173560023308,
0.12768694758415222,
-0.03046833537518978,
-0.06384759396314621,
0.037866849452257156,
-0.025415092706680298,
0.2336454540491104,
0.009405467659235,
0.11205467581748962,
0.06735976040363312,
0.20723821222782135,
-0.004904909059405327,
0.09347984194755554,
0.014617202803492546,
-0.04628320410847664,
-0.015109417960047722,
-0.04289267957210541,
-0.038486018776893616,
0.012760515324771404,
-0.026845723390579224,
0.05349063128232956,
-0.12840937077999115,
-0.005735510028898716,
0.033279530704021454,
0.27184104919433594,
0.03303959220647812,
-0.33208316564559937,
-0.09587074816226959,
-0.0023112392518669367,
-0.027252107858657837,
-0.032491885125637054,
0.0052906968630850315,
0.07644824683666229,
-0.10169443488121033,
0.043845854699611664,
-0.06512895226478577,
0.10203970968723297,
0.009960277937352657,
0.04359614849090576,
0.06655491888523102,
0.10930012166500092,
0.013270096853375435,
0.0803207978606224,
-0.3220941722393036,
0.2983763515949249,
-0.009173611178994179,
0.06940387934446335,
-0.08461299538612366,
0.009786955080926418,
0.05541340634226799,
0.05735424906015396,
0.06006292998790741,
-0.004120220430195332,
-0.055971767753362656,
-0.2124980390071869,
-0.05615677312016487,
0.028652718290686607,
0.07739102840423584,
-0.022768180817365646,
0.09529872238636017,
-0.029934726655483246,
0.005000779405236244,
0.08140644431114197,
0.01833580620586872,
-0.10968928039073944,
-0.0920637845993042,
-0.007908954285085201,
0.037578146904706955,
-0.02322959154844284,
-0.08073663711547852,
-0.11035556346178055,
-0.11183984577655792,
0.13686630129814148,
0.026384111493825912,
-0.01979602687060833,
-0.1218448057770729,
0.0839814692735672,
0.10592424869537354,
-0.09199947863817215,
0.048526581376791,
0.003572257002815604,
0.07046273350715637,
0.030969619750976562,
-0.06829474866390228,
0.11256992071866989,
-0.08809526264667511,
-0.15243853628635406,
-0.0640629380941391,
0.09069041162729263,
0.04138091579079628,
0.08311745524406433,
-0.010506385937333107,
0.025786498561501503,
-0.036511071026325226,
-0.08318699151277542,
0.030547238886356354,
-0.03536828234791756,
0.06504463404417038,
0.052348919212818146,
-0.053547125309705734,
0.023545214906334877,
-0.05702734738588333,
-0.04254625365138054,
0.17971928417682648,
0.25757232308387756,
-0.09769869595766068,
0.034873999655246735,
0.03255505859851837,
-0.05504319444298744,
-0.19214074313640594,
0.01597389206290245,
0.06452642381191254,
0.01614386774599552,
0.07291936129331589,
-0.19510459899902344,
0.09840031713247299,
0.09842700511217117,
-0.018385494127869606,
0.09686967730522156,
-0.3271349370479584,
-0.12795527279376984,
0.14820215106010437,
0.13421279191970825,
0.11064708232879639,
-0.1327562928199768,
-0.015253720805048943,
-0.037486881017684937,
-0.09741368889808655,
0.08194602280855179,
-0.08024922013282776,
0.12604719400405884,
-0.03543935343623161,
0.08123277127742767,
0.0026886239647865295,
-0.06058915704488754,
0.1398356407880783,
-0.007436572574079037,
0.10490529984235764,
-0.06442561745643616,
0.026525886729359627,
0.02907087281346321,
-0.0398576594889164,
0.018365247175097466,
-0.08815937489271164,
0.0340924896299839,
-0.0657571330666542,
-0.014421161264181137,
-0.08767296373844147,
0.04576156660914421,
-0.02912309393286705,
-0.05824229493737221,
-0.023322638124227524,
0.03761810436844826,
0.05509449914097786,
-0.020697269588708878,
0.11597846448421478,
0.02199285477399826,
0.15133018791675568,
0.07513581216335297,
0.04866694658994675,
-0.05166291818022728,
-0.07991309463977814,
-0.021033022552728653,
-0.018596626818180084,
0.05690263956785202,
-0.09977059066295624,
0.029863480478525162,
0.12707310914993286,
0.019458234310150146,
0.14210841059684753,
0.07918722182512283,
-0.03086026757955551,
0.010917331092059612,
0.0669146180152893,
-0.14172157645225525,
-0.08859146386384964,
-0.001900099334307015,
-0.02538016252219677,
-0.10792271047830582,
0.018237046897411346,
0.0870521143078804,
-0.06914827972650528,
-0.001717488979920745,
-0.010288321413099766,
0.020657885819673538,
-0.0721130445599556,
0.2130759060382843,
0.039279527962207794,
0.052413806319236755,
-0.11006765812635422,
0.06658491492271423,
0.048991378396749496,
-0.07541609555482864,
0.004122495651245117,
0.06752999871969223,
-0.07360188663005829,
-0.04222360998392105,
0.09320656955242157,
0.17926184833049774,
-0.04522755369544029,
-0.06129325181245804,
-0.13886383175849915,
-0.13485033810138702,
0.08764030039310455,
0.1298031508922577,
0.09996019303798676,
0.0034167778212577105,
-0.05523214116692543,
0.006832055281847715,
-0.10355361551046371,
0.08147484809160233,
0.06336452811956406,
0.060530226677656174,
-0.12864360213279724,
0.14522770047187805,
0.011215899139642715,
0.053692176938056946,
-0.019564615562558174,
0.017132671549916267,
-0.08887200802564621,
0.0217849500477314,
-0.15819191932678223,
-0.03755531832575798,
-0.0292217954993248,
0.005136929452419281,
-0.006993315648287535,
-0.06348805129528046,
-0.05287623405456543,
0.018087079748511314,
-0.12208901345729828,
-0.0385562926530838,
0.02773399092257023,
0.053167421370744705,
-0.12004901468753815,
-0.05630791187286377,
0.043923523277044296,
-0.06670840829610825,
0.06275436282157898,
0.07013154029846191,
0.011251207441091537,
0.0550062321126461,
-0.1492188721895218,
-0.02413003519177437,
0.05760987848043442,
0.023567412048578262,
0.06991536170244217,
-0.11924639344215393,
-0.010669087059795856,
0.004906453657895327,
0.04441244900226593,
0.009842934086918831,
0.07249640673398972,
-0.1392534375190735,
-0.018928008154034615,
-0.017098726704716682,
-0.09108323603868484,
-0.056798335164785385,
0.02128215692937374,
0.075309157371521,
0.027558980509638786,
0.20311865210533142,
-0.09549783915281296,
0.055568352341651917,
-0.22093762457370758,
0.0024255583994090557,
-0.02334073930978775,
-0.09999697655439377,
-0.1207965761423111,
-0.06616430729627609,
0.07169440388679504,
-0.0437123142182827,
0.137522891163826,
0.008219392038881779,
0.060861047357320786,
0.019853414967656136,
-0.01905047334730625,
0.03561355173587799,
0.0029673604294657707,
0.21489979326725006,
0.0409587062895298,
-0.0406918078660965,
0.08454834669828415,
0.05725008249282837,
0.09612660855054855,
0.13706731796264648,
0.20554812252521515,
0.16328002512454987,
0.04060080274939537,
0.08606589585542679,
0.033174630254507065,
-0.07702387124300003,
-0.13488008081912994,
0.011105186305940151,
-0.025559114292263985,
0.10330192744731903,
-0.015527931973338127,
0.20833298563957214,
0.05777702480554581,
-0.1773388683795929,
0.06812245398759842,
-0.055398326367139816,
-0.08199392259120941,
-0.11285082250833511,
-0.042733557522296906,
-0.08087783306837082,
-0.14859870076179504,
-0.0031307211611419916,
-0.09890924394130707,
0.03267626836895943,
0.10757635533809662,
0.007431712467223406,
-0.013742505572736263,
0.15169496834278107,
0.013813639990985394,
0.02474713698029518,
0.03826221451163292,
-0.011301698163151741,
-0.030453355982899666,
-0.07779793441295624,
-0.08252549171447754,
0.006433308124542236,
-0.019126925617456436,
0.040737926959991455,
-0.05860690400004387,
-0.08022891730070114,
0.05556228384375572,
-0.023081395775079727,
-0.11107449978590012,
0.012443620711565018,
0.010562989860773087,
0.0644485205411911,
0.07607255131006241,
0.02050657384097576,
0.03381580859422684,
-0.013772141188383102,
0.20446744561195374,
-0.0806010290980339,
-0.1134890466928482,
-0.10704335570335388,
0.2775716185569763,
0.03916106000542641,
-0.02366025559604168,
0.03373056277632713,
-0.05621887743473053,
-0.012641001492738724,
0.22893470525741577,
0.2104811668395996,
-0.09168175607919693,
-0.01017183531075716,
-0.0026489628944545984,
-0.018814070150256157,
-0.04133033752441406,
0.12026075273752213,
0.14513954520225525,
0.046069927513599396,
-0.09920541197061539,
-0.03562598302960396,
-0.07417649775743484,
-0.01572241820394993,
-0.05129929259419441,
0.055190425366163254,
0.04117989167571068,
0.00075532216578722,
-0.033074572682380676,
0.06708726286888123,
-0.06072354316711426,
-0.08381610363721848,
0.05123182386159897,
-0.17319776117801666,
-0.16289883852005005,
-0.023583976551890373,
0.09435413777828217,
0.024414002895355225,
0.06021350994706154,
-0.036783937364816666,
0.02110998146235943,
0.08028478175401688,
-0.020215976983308792,
-0.0639878585934639,
-0.10845044255256653,
0.11732954531908035,
-0.06453264504671097,
0.20989371836185455,
-0.036496102809906006,
0.07637064903974533,
0.126989483833313,
0.07718085497617722,
-0.07603868097066879,
0.08098292350769043,
0.04395860433578491,
-0.07285282015800476,
0.02695520967245102,
0.1027936190366745,
-0.03869317099452019,
0.04836194962263107,
0.03629758581519127,
-0.12403546273708344,
0.03073946386575699,
-0.0810178816318512,
-0.06208394467830658,
-0.030211688950657845,
-0.02651023678481579,
-0.05221746861934662,
0.11883436888456345,
0.21855467557907104,
-0.030597077682614326,
0.006277714855968952,
-0.08193804323673248,
0.021719682961702347,
0.06274391710758209,
0.014193931594491005,
-0.08538646250963211,
-0.2160305380821228,
0.016269918531179428,
0.04930344969034195,
-0.020324887707829475,
-0.2362973392009735,
-0.10688797384500504,
-0.002986209001392126,
-0.08442366123199463,
-0.0818052813410759,
0.08351029455661774,
0.06772664934396744,
0.05731085687875748,
-0.04941006749868393,
-0.08932007104158401,
-0.07200269401073456,
0.1550762951374054,
-0.1521516889333725,
-0.07570105046033859
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8558
- Bleu: 52.9454
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["translation", "generated_from_trainer"], "datasets": ["kde4"], "metrics": ["bleu"], "model-index": [{"name": "marian-finetuned-kde4-en-to-fr", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "kde4", "type": "kde4", "args": "en-fr"}, "metrics": [{"type": "bleu", "value": 52.94538305859332, "name": "Bleu"}]}]}]} | translation | Leisa/marian-finetuned-kde4-en-to-fr | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #marian #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-fr on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8558
- Bleu: 52.9454
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0
- Datasets 1.15.1
- Tokenizers 0.10.3
| [
"# marian-finetuned-kde4-en-to-fr\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-fr on the kde4 dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.8558\n- Bleu: 52.9454",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #marian #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"# marian-finetuned-kde4-en-to-fr\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-fr on the kde4 dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.8558\n- Bleu: 52.9454",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
68,
73,
6,
12,
8,
3,
103,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #marian #text2text-generation #translation #generated_from_trainer #dataset-kde4 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# marian-finetuned-kde4-en-to-fr\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-fr on the kde4 dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.8558\n- Bleu: 52.9454## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] | [
-0.11411257088184357,
0.12465663999319077,
-0.003432153956964612,
0.0713447704911232,
0.1320497691631317,
0.008358274586498737,
0.06516797840595245,
0.13684549927711487,
-0.07280271500349045,
0.07042130082845688,
0.0895254984498024,
0.06332909315824509,
0.07724340260028839,
0.14251521229743958,
-0.016565287485718727,
-0.2931157946586609,
0.02684115059673786,
0.025329511612653732,
-0.07854568958282471,
0.09887224435806274,
0.13752467930316925,
-0.07794726639986038,
0.051406897604465485,
0.041007451713085175,
-0.12636306881904602,
0.023775216192007065,
-0.04308178648352623,
-0.08192799985408783,
0.08770706504583359,
0.027633892372250557,
0.0739862248301506,
0.017783459275960922,
0.08938683569431305,
-0.22023095190525055,
-0.002815749729052186,
0.03993196040391922,
0.055126287043094635,
0.08119179308414459,
0.07859767973423004,
0.057253725826740265,
0.12434614449739456,
-0.17138813436031342,
0.06941624730825424,
0.008603548631072044,
-0.055019740015268326,
-0.21122370660305023,
-0.06964297592639923,
0.07685749232769012,
0.0938669815659523,
0.10430549085140228,
-0.007205866742879152,
0.1517195999622345,
-0.05089607089757919,
0.07350579649209976,
0.17170365154743195,
-0.25130102038383484,
-0.058827150613069534,
0.014523475430905819,
0.06559411436319351,
0.0363556444644928,
-0.06728460639715195,
0.004841874819248915,
0.04314040020108223,
0.0203732717782259,
0.06652255356311798,
-0.003542922902852297,
-0.029139036312699318,
-0.03345850855112076,
-0.12041282653808594,
-0.06683555990457535,
0.23417583107948303,
0.07043612003326416,
-0.045223601162433624,
-0.11849229782819748,
-0.015789752826094627,
-0.08131290227174759,
-0.026446977630257607,
-0.055614396929740906,
0.021742522716522217,
-0.055844489485025406,
-0.01998470351099968,
-0.06581881642341614,
-0.09009476006031036,
-0.03403903916478157,
0.04259264096617699,
0.1339222490787506,
0.06171596795320511,
-0.0032748335506767035,
-0.025252416729927063,
0.09817899763584137,
-0.00860972236841917,
-0.13768832385540009,
-0.03178311511874199,
-0.015125574544072151,
-0.036336638033390045,
-0.047051575034856796,
-0.05096004530787468,
-0.05783296748995781,
0.004553572274744511,
0.08193854987621307,
-0.0530349425971508,
0.05196235701441765,
0.04537033662199974,
0.010164632461965084,
-0.0074653709307312965,
0.16461120545864105,
-0.05001155659556389,
-0.0191993098706007,
0.010488091967999935,
0.08285095542669296,
-0.011887130327522755,
-0.012412749230861664,
-0.07745060324668884,
-0.06308914721012115,
0.10706895589828491,
0.07807048410177231,
-0.033824723213911057,
0.03374109044671059,
-0.046635594218969345,
-0.06092804670333862,
0.013145367614924908,
-0.13727450370788574,
0.019563186913728714,
-0.022750766947865486,
-0.10215437412261963,
-0.015131237916648388,
0.015418153256177902,
-0.006026937626302242,
-0.08937207609415054,
0.03967741131782532,
-0.05043940618634224,
-0.026016855612397194,
-0.06960928440093994,
-0.049830179661512375,
0.01714673452079296,
-0.03048669919371605,
0.0359998382627964,
-0.08409091830253601,
-0.15043087303638458,
-0.02779349312186241,
0.045072417706251144,
-0.0613107793033123,
-0.11052120476961136,
-0.025313351303339005,
-0.050801753997802734,
0.014656929299235344,
-0.03260008618235588,
0.1362389475107193,
-0.02953074872493744,
0.050541479140520096,
0.01633988320827484,
0.010193422436714172,
0.04762367531657219,
0.05482830852270126,
-0.0728352963924408,
0.04060276597738266,
-0.06726055592298508,
0.10095349699258804,
-0.09995338320732117,
-0.006219757255166769,
-0.1329568475484848,
-0.1257678121328354,
0.01016993261873722,
-0.018634604290127754,
0.09528971463441849,
0.11744917184114456,
-0.1167995035648346,
-0.023697244003415108,
0.12097243964672089,
-0.053895652294158936,
-0.08490803092718124,
0.08036070317029953,
-0.020803140476346016,
0.030717436224222183,
0.0512978620827198,
0.1705782413482666,
0.13117964565753937,
-0.0942004844546318,
-0.0046875146217644215,
0.03522287681698799,
0.06586980819702148,
-0.0018536398420110345,
0.08410730957984924,
-0.0019325684988871217,
-0.00484842574223876,
0.044050924479961395,
-0.09338481724262238,
0.00445486418902874,
-0.06497218459844589,
-0.09025011956691742,
-0.04661443457007408,
-0.05971684679389,
0.0019852358382195234,
0.01909487135708332,
0.050239741802215576,
-0.07240419834852219,
-0.09977949410676956,
0.08034469932317734,
0.13981378078460693,
-0.06173653528094292,
0.022503290325403214,
-0.059735462069511414,
0.06287408620119095,
-0.038369204849004745,
-0.011901210993528366,
-0.1779872626066208,
-0.09298244118690491,
0.062002379447221756,
-0.1361638903617859,
0.014615364372730255,
0.014291069470345974,
0.0447995588183403,
0.05843005329370499,
-0.03453310951590538,
-0.04056788980960846,
-0.12753285467624664,
-0.009060679003596306,
-0.08306841552257538,
-0.14076334238052368,
-0.055319253355264664,
-0.023335834965109825,
0.1396540403366089,
-0.21658913791179657,
-0.003404572606086731,
0.016247589141130447,
0.14315836131572723,
-0.014615759253501892,
-0.028844906017184258,
0.008769867941737175,
0.02140638418495655,
0.004077255260199308,
-0.09036136418581009,
0.04155810549855232,
0.007292440161108971,
-0.10538410395383835,
0.02588256448507309,
-0.09358049929141998,
0.024047283455729485,
0.0710655227303505,
0.06970716267824173,
-0.06141525134444237,
-0.027118001133203506,
-0.06865322589874268,
-0.049003325402736664,
-0.038163479417562485,
0.007262997794896364,
0.22179828584194183,
0.008288228884339333,
0.12807154655456543,
-0.08849461376667023,
-0.06478635966777802,
0.022986572235822678,
-0.0038216107059270144,
-0.06143965572118759,
0.10521982610225677,
0.022056957706809044,
-0.15275993943214417,
0.06389975547790527,
0.07737076282501221,
-0.03752527013421059,
0.1826455146074295,
-0.06280042231082916,
-0.1179107129573822,
-0.024037374183535576,
0.024499624967575073,
-0.00754514429718256,
0.12754561007022858,
-0.09529643505811691,
0.02346540056169033,
0.059456489980220795,
0.028455277904868126,
0.06083889678120613,
-0.138614222407341,
-0.0007525059627369046,
0.03829391300678253,
-0.04632330685853958,
0.012608838267624378,
0.017209772020578384,
0.01378553919494152,
0.08149021118879318,
0.025969134643673897,
-0.021057700738310814,
0.025478925555944443,
-0.017996927723288536,
-0.06258131563663483,
0.18734624981880188,
-0.11587625741958618,
-0.21673649549484253,
-0.15357515215873718,
0.08371052891016006,
-0.07341339439153671,
-0.0388588011264801,
0.02105838619172573,
-0.07162535190582275,
-0.06656397134065628,
-0.08269836008548737,
0.025926632806658745,
-0.09238774329423904,
-0.021982800215482712,
0.03411753848195076,
0.01856296882033348,
0.09305594861507416,
-0.13007807731628418,
0.007274447474628687,
-0.0040552434511482716,
-0.04446263611316681,
-0.012403542175889015,
0.018425175920128822,
0.08474493026733398,
0.08020322024822235,
-0.035651348531246185,
0.027155790477991104,
-0.009776606224477291,
0.2146984040737152,
-0.08176175504922867,
-0.0053793201223015785,
0.12438363581895828,
0.03847312182188034,
0.04955119639635086,
0.11245586723089218,
0.011412294581532478,
-0.07451227307319641,
0.017429688945412636,
0.03049483895301819,
0.0011023998958989978,
-0.2627519965171814,
-0.055785950273275375,
-0.03931228816509247,
-0.07316582649946213,
0.12048160284757614,
0.04810471460223198,
-0.008062811568379402,
0.07909940183162689,
-0.033756230026483536,
0.03654555603861809,
-0.00858163833618164,
0.09572741389274597,
0.1383487582206726,
0.04288579151034355,
0.07726060599088669,
-0.022155167534947395,
-0.030280008912086487,
0.07214228063821793,
0.021696284413337708,
0.26855412125587463,
-0.046205971390008926,
0.12779636681079865,
0.03330124542117119,
0.14566121995449066,
0.001377265201881528,
0.049109894782304764,
0.03215467557311058,
0.020118122920393944,
0.009186087176203728,
-0.06131051108241081,
-0.02863212674856186,
0.015298089943826199,
0.00974359828978777,
0.019056828692555428,
-0.10904337465763092,
0.022080017253756523,
-0.017425943166017532,
0.24936729669570923,
0.04672732576727867,
-0.2783653438091278,
-0.08926237374544144,
0.007249623537063599,
-0.026916714385151863,
-0.11075286567211151,
0.002174723893404007,
0.08347019553184509,
-0.16627730429172516,
0.0574113167822361,
-0.06746668368577957,
0.10580944269895554,
-0.044458966702222824,
-0.013937190175056458,
0.0455695316195488,
0.10971803963184357,
0.0242176353931427,
0.1330280750989914,
-0.20065836608409882,
0.2396339476108551,
-0.004916804376989603,
0.09706391394138336,
-0.06061473861336708,
0.05286921560764313,
0.001125246286392212,
0.07191828638315201,
0.1163017675280571,
0.028566274791955948,
-0.0889400914311409,
-0.1512283980846405,
-0.1097399890422821,
0.04001264274120331,
0.08382545411586761,
-0.04746980592608452,
0.07069047540426254,
-0.03452936187386513,
0.01599053107202053,
0.014918272383511066,
-0.04882596805691719,
-0.18532845377922058,
-0.14715416729450226,
0.03977086767554283,
0.019713714718818665,
-0.006596914492547512,
-0.08896975964307785,
-0.11358510702848434,
0.003430234268307686,
0.1963539570569992,
0.05195998027920723,
-0.07747049629688263,
-0.1452021449804306,
0.07927452027797699,
0.15847571194171906,
-0.08711013942956924,
0.01994405873119831,
-0.002897472819313407,
0.16013149917125702,
0.024658799171447754,
-0.06079802289605141,
0.03868985176086426,
-0.060668133199214935,
-0.14524225890636444,
-0.00850560050457716,
0.14624561369419098,
0.017418147996068,
0.02921551838517189,
0.03639937564730644,
0.012872169725596905,
-0.010934539139270782,
-0.08833392709493637,
-0.018733184784650803,
0.04509585723280907,
0.0688880905508995,
0.04074149951338768,
-0.0912514328956604,
0.03348295018076897,
-0.0708322525024414,
-0.03494912013411522,
0.1441996842622757,
0.23230449855327606,
-0.07794025540351868,
0.05768783763051033,
0.052960921078920364,
-0.09505955129861832,
-0.1646270453929901,
0.017941396683454514,
0.14237181842327118,
0.04975976049900055,
0.044279079884290695,
-0.19880372285842896,
0.06877681612968445,
0.08755317330360413,
-0.02196621522307396,
0.0205962173640728,
-0.2793847620487213,
-0.13083617389202118,
0.10017131268978119,
0.1366683542728424,
0.04057014733552933,
-0.08325664699077606,
-0.05480891093611717,
-0.03090459294617176,
-0.10263577848672867,
0.08265562355518341,
-0.015269213356077671,
0.11454571038484573,
-0.0299297533929348,
0.08660564571619034,
0.04807943105697632,
-0.029894771054387093,
0.18190063536167145,
0.021908937022089958,
0.0356471948325634,
-0.06434344500303268,
0.10205940157175064,
0.0814492255449295,
-0.07340384274721146,
0.11056733876466751,
-0.03931031748652458,
0.07532653212547302,
-0.19268344342708588,
-0.038676612079143524,
-0.066193588078022,
0.1081753596663475,
-0.06573760509490967,
-0.050551846623420715,
-0.035313501954078674,
0.060694620013237,
0.08572764694690704,
-0.022001560777425766,
0.06697647273540497,
0.026975255459547043,
0.01215425506234169,
0.08489273488521576,
0.10432683676481247,
0.05788465589284897,
-0.108072429895401,
-0.005788362119346857,
-0.004523544106632471,
0.06838415563106537,
-0.07239676266908646,
0.011429485864937305,
0.1265130341053009,
0.0052683851681649685,
0.09742290526628494,
-0.0006494229892268777,
-0.08650501817464828,
-0.02231004647910595,
0.035690706223249435,
-0.08728597313165665,
-0.14737527072429657,
-0.06637421250343323,
0.00777782779186964,
-0.10173845291137695,
-0.0066331229172647,
0.11632104963064194,
-0.07630889862775803,
-0.026757212355732918,
-0.030205650255084038,
0.005479894578456879,
-0.018120640888810158,
0.1745796948671341,
0.03828195109963417,
0.07306403666734695,
-0.0671408623456955,
0.11930715292692184,
0.06913155317306519,
-0.09083664417266846,
0.07029644399881363,
0.047513801604509354,
-0.0930754691362381,
-0.0388743095099926,
0.07290777564048767,
0.09689445793628693,
-0.020023275166749954,
-0.07099000364542007,
-0.06677047163248062,
-0.09214455634355545,
0.0477319061756134,
-0.011964347213506699,
0.0539984293282032,
-0.014538075774908066,
-0.025857239961624146,
-0.02343493327498436,
-0.15114368498325348,
0.1119784340262413,
0.07719508558511734,
0.06276382505893707,
-0.14275506138801575,
0.04133018106222153,
0.008497108705341816,
0.06535548716783524,
-0.009094435721635818,
-0.0017466392600908875,
-0.05187532305717468,
-0.02834012173116207,
-0.1096956804394722,
-0.0017372763250023127,
-0.017380105331540108,
0.002409992041066289,
-0.04564055800437927,
-0.04070878028869629,
-0.04737464711070061,
0.07845783233642578,
-0.07091592997312546,
-0.07221107184886932,
-0.01592548005282879,
0.0692734569311142,
-0.08884257823228836,
-0.025664228945970535,
0.03215630725026131,
-0.10811328887939453,
0.07963157445192337,
0.05444316193461418,
0.02670089341700077,
0.04728609323501587,
-0.018572848290205002,
0.014580064453184605,
0.008573059923946857,
0.05637260526418686,
0.04224275425076485,
-0.1264391392469406,
0.010811624117195606,
0.0053441524505615234,
0.04378878325223923,
-0.006729029584676027,
0.03948276489973068,
-0.13702386617660522,
-0.09074460715055466,
-0.037890952080488205,
-0.0512852780520916,
-0.06218412518501282,
0.07587037980556488,
0.04919107258319855,
0.04754120856523514,
0.15955059230327606,
-0.06281796842813492,
0.04142328351736069,
-0.17850863933563232,
-0.016378197818994522,
-0.010550237260758877,
-0.04202473908662796,
-0.026987342163920403,
-0.03742770105600357,
0.07185022532939911,
-0.06362654268741608,
0.1302691251039505,
0.0066738249734044075,
0.07345906645059586,
0.034550976008176804,
-0.0772964134812355,
0.033439166843891144,
0.01392739824950695,
0.21995671093463898,
0.05356886610388756,
0.009809857234358788,
0.08683424443006516,
-0.018096039071679115,
0.03480454161763191,
0.09269101172685623,
0.10160202533006668,
0.1783781349658966,
0.004527986980974674,
0.07737021893262863,
0.06305665522813797,
-0.06609776616096497,
-0.13032042980194092,
0.054031603038311005,
-0.011337874457240105,
0.12778881192207336,
-0.011045536957681179,
0.14700275659561157,
0.09451943635940552,
-0.18971610069274902,
0.07104752957820892,
-0.04901992157101631,
-0.1261748969554901,
-0.10251510888338089,
-0.13794094324111938,
-0.09101317822933197,
-0.10439706593751907,
0.030969806015491486,
-0.13194376230239868,
0.008501474745571613,
0.04251537472009659,
0.01597832888364792,
-0.03684092313051224,
0.15493813157081604,
-0.009093904867768288,
-0.03322932496666908,
0.10421999543905258,
-0.0011752843856811523,
0.0007415783475153148,
-0.043851617723703384,
-0.04661053419113159,
0.031833503395318985,
0.018759729340672493,
0.05596975237131119,
-0.03843001276254654,
-0.018480906262993813,
0.016951842233538628,
0.009426303207874298,
-0.06815558671951294,
0.004434356931596994,
0.00375113682821393,
0.04725624993443489,
0.034444741904735565,
0.04598342627286911,
-0.028676839545369148,
-0.04870593920350075,
0.25935325026512146,
-0.020282521843910217,
-0.07478239387273788,
-0.11344051361083984,
0.1405562311410904,
0.06122672185301781,
-0.02177365869283676,
0.08269950747489929,
-0.08592256903648376,
-0.015569925308227539,
0.13596999645233154,
0.1354232281446457,
-0.013013494201004505,
-0.02997315302491188,
-0.013147098943591118,
-0.01894494518637657,
-0.050177499651908875,
0.12386459112167358,
0.09834574162960052,
-0.012215996161103249,
-0.05454046279191971,
0.01029810681939125,
-0.03847525641322136,
-0.022153951227664948,
-0.10108404606580734,
0.10407178848981857,
0.026109537109732628,
-0.03363128378987312,
-0.03699084371328354,
0.07817194610834122,
0.0008983121369965374,
-0.12725895643234253,
-0.003850767621770501,
-0.13247866928577423,
-0.1977657973766327,
-0.046408530324697495,
0.05669719725847244,
-0.009240105748176575,
0.06068946793675423,
-0.010072671808302402,
0.00911674089729786,
0.125085711479187,
0.006880637723952532,
-0.05858223885297775,
-0.08123411983251572,
0.0872572585940361,
-0.07108663022518158,
0.23072250187397003,
0.024937957525253296,
0.08704323321580887,
0.09552247822284698,
0.0023027323186397552,
-0.14423468708992004,
0.0398222990334034,
0.07806762307882309,
-0.005122630391269922,
0.07772573083639145,
0.1802566945552826,
-0.038720495998859406,
0.03210572898387909,
0.029233161360025406,
-0.11649703979492188,
-0.03769133612513542,
-0.053924426436424255,
0.012828808277845383,
-0.07151500880718231,
0.026053132489323616,
-0.08906161785125732,
0.14379437267780304,
0.2200235277414322,
-0.053139135241508484,
-0.04220584034919739,
-0.09840206801891327,
0.04757469892501831,
0.046249017119407654,
0.09271974861621857,
0.014747821725904942,
-0.17229540646076202,
-0.031780093908309937,
0.016250047832727432,
0.04020705074071884,
-0.2231495976448059,
-0.09493312984704971,
0.01839798502624035,
-0.07898314297199249,
-0.04351865500211716,
0.12257438153028488,
0.040060561150312424,
0.017008479684591293,
-0.03467651084065437,
-0.06814483553171158,
-0.0572272464632988,
0.11498197168111801,
-0.150806725025177,
-0.05361242964863777
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
## Model description
We fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech
collected from [RTL.lu](https://www.rtl.lu/). Then the model was fine-tuned on 4h of labelled
Luxembourgish speech from the same domain.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
## Citation
This model is a result of our paper `IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS` submitted to the [IEEE SLT 2022 workshop](https://slt2022.org/)
```
@misc{lb-wav2vec2,
author = {Nguyen, Le Minh and Nayak, Shekhar and Coler, Matt.},
keywords = {Luxembourgish, multilingual speech recognition, language modelling, wav2vec 2.0 XLSR-53, under-resourced language},
title = {IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS},
year = {2022},
copyright = {2023 IEEE}
}
``` | {"language": ["lb"], "license": "mit", "tags": ["automatic-speech-recognition", "generated_from_trainer"], "metrics": ["wer"], "pipeline_tag": "automatic-speech-recognition"} | automatic-speech-recognition | Lemswasabi/wav2vec2-large-xlsr-53-842h-luxembourgish-4h | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"lb",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"lb"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #lb #license-mit #model-index #endpoints_compatible #region-us
|
#
## Model description
We fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech
collected from URL. Then the model was fine-tuned on 4h of labelled
Luxembourgish speech from the same domain.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
This model is a result of our paper 'IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS' submitted to the IEEE SLT 2022 workshop
| [
"#",
"## Model description\n\nWe fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech\ncollected from URL. Then the model was fine-tuned on 4h of labelled\nLuxembourgish speech from the same domain.",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.20.0.dev0\n- Pytorch 1.11.0+cu113\n- Datasets 2.2.1\n- Tokenizers 0.12.1\n\nThis model is a result of our paper 'IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS' submitted to the IEEE SLT 2022 workshop"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #lb #license-mit #model-index #endpoints_compatible #region-us \n",
"#",
"## Model description\n\nWe fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech\ncollected from URL. Then the model was fine-tuned on 4h of labelled\nLuxembourgish speech from the same domain.",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.20.0.dev0\n- Pytorch 1.11.0+cu113\n- Datasets 2.2.1\n- Tokenizers 0.12.1\n\nThis model is a result of our paper 'IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS' submitted to the IEEE SLT 2022 workshop"
] | [
55,
1,
59,
12,
8,
3,
142,
86
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #lb #license-mit #model-index #endpoints_compatible #region-us \n### Model description\n\nWe fine-tuned a wav2vec 2.0 large XLSR-53 checkpoint with 842h of unlabelled Luxembourgish speech\ncollected from URL. Then the model was fine-tuned on 4h of labelled\nLuxembourgish speech from the same domain.## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7.5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 2000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.20.0.dev0\n- Pytorch 1.11.0+cu113\n- Datasets 2.2.1\n- Tokenizers 0.12.1\n\nThis model is a result of our paper 'IMPROVING LUXEMBOURGISH SPEECH RECOGNITION WITH CROSS-LINGUAL SPEECH REPRESENTATIONS' submitted to the IEEE SLT 2022 workshop"
] | [
-0.08809591829776764,
0.08881115913391113,
-0.004004145506769419,
0.056009020656347275,
0.11761795729398727,
-0.025611065328121185,
0.07918588817119598,
0.09431463479995728,
-0.0514378659427166,
0.06474658101797104,
0.05224185064435005,
0.011976164765655994,
0.05200747027993202,
0.06997967511415482,
-0.019234415143728256,
-0.24068744480609894,
0.04651100933551788,
-0.07314018160104752,
-0.06942882388830185,
0.0930529311299324,
0.14342652261257172,
-0.06664455682039261,
0.05832228437066078,
0.04335329309105873,
-0.12631630897521973,
0.050618354231119156,
-0.03895474970340729,
-0.03994717821478844,
0.08893492817878723,
0.05402914434671402,
0.11415208876132965,
0.025151947513222694,
0.09835521131753922,
-0.24301910400390625,
-0.006002838257700205,
0.05873624607920647,
0.04990805312991142,
0.05860360711812973,
0.08873581141233444,
-0.011018453165888786,
0.06656156480312347,
-0.14235584437847137,
0.04773148149251938,
0.055641528218984604,
-0.06117530167102814,
-0.14183014631271362,
-0.12710437178611755,
0.0600055493414402,
0.1029520183801651,
0.10722275823354721,
-0.02709338441491127,
0.11271531879901886,
-0.061765141785144806,
0.0885469913482666,
0.140155628323555,
-0.25197020173072815,
-0.03964781016111374,
-0.012756429612636566,
0.05963851511478424,
0.025638040155172348,
-0.08824517577886581,
0.0030619013123214245,
0.021366579458117485,
0.013912726193666458,
0.012887186370790005,
-0.030438678339123726,
-0.03721197694540024,
-0.021555373445153236,
-0.12885041534900665,
-0.021494129672646523,
0.14102023839950562,
0.06197527423501015,
-0.07769474387168884,
-0.11231270432472229,
-0.01431354135274887,
-0.06587735563516617,
-0.014494320377707481,
-0.0377669520676136,
0.03362029045820236,
-0.025844600051641464,
-0.007513296790421009,
-0.08890745043754578,
-0.07164251804351807,
-0.03689636290073395,
0.005519302561879158,
0.18321006000041962,
0.03052334673702717,
-0.01030644215643406,
0.011645284481346607,
0.06859931349754333,
0.008414382115006447,
-0.10027577728033066,
-0.01585651934146881,
-0.0003623517113737762,
-0.08575433492660522,
-0.04003796726465225,
-0.042730119079351425,
-0.041746918112039566,
-0.0014968401519581676,
0.1283293515443802,
-0.07191585749387741,
0.06591949611902237,
-0.0373726412653923,
0.020751630887389183,
-0.032111089676618576,
0.18362747132778168,
-0.03682326897978783,
-0.07357263565063477,
-0.02916262485086918,
0.0627361312508583,
-0.00040390517096966505,
0.00826878659427166,
-0.07819122821092606,
-0.014183629304170609,
0.037600595504045486,
0.07886745035648346,
-0.04967913776636124,
0.03041786700487137,
-0.047892291098833084,
-0.0226233322173357,
0.10049803555011749,
-0.13102209568023682,
0.044349588453769684,
0.01207383070141077,
-0.06773541867733002,
0.020209480077028275,
0.008252638392150402,
0.040058884769678116,
-0.07949858158826828,
0.07392721623182297,
-0.04210328683257103,
0.03165822848677635,
-0.044966623187065125,
-0.11260785162448883,
0.0007048887200653553,
0.013025653548538685,
-0.033948928117752075,
-0.08020353317260742,
-0.10121703147888184,
-0.061625801026821136,
0.028408408164978027,
-0.058250125497579575,
-0.007668637204915285,
-0.05901073291897774,
-0.05178007483482361,
0.039251331239938736,
0.000060022157413186505,
0.052986402064561844,
-0.04472669959068298,
0.014489807188510895,
-0.033075518906116486,
-0.014887765049934387,
-0.04438549280166626,
0.045758266001939774,
-0.08088979125022888,
0.0016290904022753239,
-0.1514580398797989,
0.11693411320447922,
-0.1111546978354454,
-0.009096683003008366,
-0.15543046593666077,
-0.10201413184404373,
0.018655918538570404,
0.0009765212307684124,
0.09349179267883301,
0.12418358027935028,
-0.1899120807647705,
-0.04424448683857918,
0.11918983608484268,
-0.0632505714893341,
-0.024859726428985596,
0.17031632363796234,
-0.028204375877976418,
-0.008945955894887447,
0.05410132184624672,
0.18112243711948395,
0.09384209662675858,
-0.14216449856758118,
-0.03789389133453369,
-0.0019782620947808027,
0.049064017832279205,
0.08547304570674896,
0.08812641352415085,
-0.0814943015575409,
0.013547527603805065,
-0.006885011680424213,
-0.038201428949832916,
0.02038235403597355,
-0.03788144513964653,
-0.06180591508746147,
-0.021412570029497147,
-0.05013175308704376,
0.05541149899363518,
-0.004210098646581173,
0.013548515737056732,
-0.09032813459634781,
-0.14256416261196136,
0.09046576917171478,
0.1258012056350708,
-0.07457499206066132,
0.043138034641742706,
-0.06907817721366882,
0.013579572550952435,
0.00967524852603674,
-0.048344701528549194,
-0.16674140095710754,
-0.0464608334004879,
0.03955359756946564,
-0.078340083360672,
0.0787423849105835,
0.019903242588043213,
0.04662856459617615,
0.05620742589235306,
-0.05519804358482361,
-0.009754524566233158,
-0.07280219346284866,
0.021462062373757362,
-0.05804121494293213,
-0.14530256390571594,
-0.029462194070219994,
-0.03721150383353233,
0.19447335600852966,
-0.18433316051959991,
-0.008088643662631512,
0.04142198711633682,
0.15662260353565216,
0.02502594143152237,
-0.05764106288552284,
-0.004362646955996752,
0.0566692054271698,
0.00550842983648181,
-0.07186312973499298,
0.039528004825115204,
0.007728190626949072,
-0.0876409187912941,
0.032707564532756805,
-0.10726696997880936,
-0.05659453943371773,
0.0858929380774498,
0.03270156309008598,
-0.08932192623615265,
-0.05833158642053604,
-0.05685308575630188,
-0.028132634237408638,
-0.04011012613773346,
-0.04884779825806618,
0.2662375867366791,
0.019901864230632782,
0.12785963714122772,
-0.04920961707830429,
-0.04903264716267586,
-0.012790325097739697,
0.02047378197312355,
-0.04233111813664436,
0.10482139140367508,
-0.006306306459009647,
-0.17316581308841705,
0.06205535680055618,
0.09847886860370636,
-0.03712760657072067,
0.1369456946849823,
-0.024672921746969223,
-0.06439009308815002,
-0.028858710080385208,
0.043865785002708435,
-0.014656833373010159,
0.07055342197418213,
-0.10015140473842621,
0.0011322124628350139,
0.022785425186157227,
0.0396760068833828,
0.046467412263154984,
-0.14741569757461548,
0.04579995945096016,
0.028252525255084038,
-0.06624430418014526,
-0.07081130146980286,
-0.00326111214235425,
0.013369958847761154,
0.06269475072622299,
0.00634643854573369,
-0.07294504344463348,
-0.006194571033120155,
-0.028596609830856323,
-0.07614702731370926,
0.14669936895370483,
-0.1354212462902069,
-0.19924592971801758,
-0.1417539417743683,
0.03229470178484917,
-0.08837532997131348,
-0.024641508236527443,
0.02714184857904911,
-0.07648943364620209,
-0.07008403539657593,
-0.0954895094037056,
0.023460082709789276,
-0.05217259004712105,
-0.014911013655364513,
0.025400040671229362,
-0.002520577283576131,
0.06133032217621803,
-0.15106141567230225,
-0.00788465142250061,
-0.010936110280454159,
-0.023705091327428818,
-0.06680502742528915,
0.029674774035811424,
0.06346407532691956,
0.11092939972877502,
-0.027536684647202492,
-0.00026217455160804093,
-0.03600451350212097,
0.2421184629201889,
-0.09822623431682587,
0.002551053185015917,
0.08652853965759277,
-0.03948768600821495,
0.0513651967048645,
0.15845133364200592,
0.04814939573407173,
-0.080911785364151,
0.02498713508248329,
0.0435592457652092,
0.01966019533574581,
-0.24671578407287598,
-0.09272471815347672,
-0.05401044338941574,
-0.07792478054761887,
0.054820943623781204,
0.03332626074552536,
-0.05092427507042885,
-0.007545318454504013,
-0.040050655603408813,
-0.02108130417764187,
0.02319912798702717,
0.07302551716566086,
0.11453454941511154,
0.01734297350049019,
0.10296909511089325,
-0.023712268099188805,
-0.04549216851592064,
0.0720253735780716,
0.015459219925105572,
0.20506109297275543,
0.012910893186926842,
0.15607783198356628,
0.02210390381515026,
0.08519688248634338,
0.0037006805650889874,
0.04032169282436371,
0.008549464866518974,
-0.00811002030968666,
-0.0026902789250016212,
-0.06163952499628067,
0.013018918223679066,
0.03154735267162323,
0.12236525863409042,
-0.012125330977141857,
-0.0774611085653305,
-0.03848375007510185,
0.05563731491565704,
0.23751115798950195,
0.08240697532892227,
-0.22105206549167633,
-0.054914191365242004,
0.006351562216877937,
-0.06909936666488647,
-0.051438551396131516,
0.01298111118376255,
0.09991660714149475,
-0.1116684228181839,
0.07543924450874329,
-0.04037570580840111,
0.09039803594350815,
-0.033050891011953354,
0.00347643974237144,
0.023647626861929893,
0.10161114484071732,
-0.017074374482035637,
0.07318822294473648,
-0.1499108523130417,
0.24335862696170807,
0.01986020617187023,
0.08539658039808273,
-0.03283914178609848,
0.0604642890393734,
0.030859168618917465,
0.044406067579984665,
0.12144296616315842,
0.024340784177184105,
-0.10939031839370728,
-0.1236567571759224,
-0.07715373486280441,
0.026150038465857506,
0.15247826278209686,
-0.004250232130289078,
0.06168223172426224,
-0.051727186888456345,
-0.027849582955241203,
0.03478555381298065,
-0.07459228485822678,
-0.2121809870004654,
-0.14522169530391693,
0.05095143988728523,
0.05768010392785072,
-0.010587489232420921,
-0.050092652440071106,
-0.07277271151542664,
-0.054074592888355255,
0.23463542759418488,
-0.04195670038461685,
-0.0261758491396904,
-0.12658573687076569,
-0.00429272698238492,
0.16450025141239166,
-0.05438071861863136,
0.028805751353502274,
0.019713595509529114,
0.10932297259569168,
0.005476729944348335,
-0.02230043150484562,
0.07319771498441696,
-0.08240506052970886,
-0.11572622507810593,
-0.026657572016119957,
0.18059897422790527,
0.020858541131019592,
0.0670454353094101,
0.021234383806586266,
0.03493236005306244,
0.0072394562885165215,
-0.09919386357069016,
-0.0066326092928647995,
0.014458957128226757,
0.03995158523321152,
0.10078570991754532,
-0.03901255875825882,
-0.05286576971411705,
-0.09548524767160416,
-0.032244324684143066,
0.17210645973682404,
0.26948633790016174,
-0.07671250402927399,
0.08518075942993164,
0.08482888340950012,
-0.06715846061706543,
-0.172140970826149,
0.050853878259658813,
0.11234121024608612,
0.02169947884976864,
0.005773505661636591,
-0.1411050707101822,
0.029774820432066917,
0.09196200966835022,
-0.01836976781487465,
-0.003335327375680208,
-0.26204273104667664,
-0.16561263799667358,
0.09877195209264755,
0.016382940113544464,
0.024094095453619957,
-0.07147619128227234,
-0.050399694591760635,
-0.06278330087661743,
-0.07738064974546432,
0.0905717983841896,
-0.04564027860760689,
0.10498598963022232,
0.04681604728102684,
0.04542265459895134,
0.032232653349637985,
-0.02531200274825096,
0.1864849478006363,
0.03613399341702461,
0.03944898396730423,
-0.01277215126901865,
0.013332505710422993,
-0.01037216279655695,
-0.03431595116853714,
0.07286862283945084,
-0.05735001340508461,
0.04830306023359299,
-0.12930375337600708,
-0.014867845922708511,
-0.06639531999826431,
0.06627938151359558,
-0.02393414080142975,
-0.04031646251678467,
-0.06013747304677963,
0.04999777302145958,
0.05216431990265846,
-0.01576927676796913,
0.05890152230858803,
-0.03645461052656174,
0.01694338582456112,
0.15756766498088837,
0.11412511020898819,
0.005345786456018686,
-0.072195865213871,
0.04410364851355553,
-0.031686123460531235,
0.046727050095796585,
-0.03253379091620445,
0.03981984779238701,
0.11593449860811234,
0.01809101738035679,
0.15760505199432373,
0.015379662625491619,
-0.05146242678165436,
-0.008570753037929535,
0.028100695461034775,
-0.08065376430749893,
-0.18777795135974884,
-0.037815652787685394,
-0.011330279521644115,
-0.09139516949653625,
-0.01943097449839115,
0.1717623472213745,
-0.06108216196298599,
-0.005170928314328194,
-0.00011625008482951671,
0.005681193899363279,
-0.06747061759233475,
0.18359829485416412,
0.011741889640688896,
0.05251751467585564,
-0.07190465927124023,
0.11823593825101852,
0.07426469773054123,
-0.1164800152182579,
0.03413280472159386,
0.06470607966184616,
-0.06070047989487648,
-0.029087938368320465,
-0.010425246320664883,
0.0662045106291771,
-0.03905923664569855,
-0.05832364782691002,
-0.07329954206943512,
-0.09419558942317963,
0.028370093554258347,
0.06366037577390671,
0.04972252622246742,
-0.010022328235208988,
-0.0412280410528183,
0.014949413016438484,
-0.11728207767009735,
0.07736731320619583,
0.07239696383476257,
0.046840548515319824,
-0.09153436124324799,
0.13952817022800446,
-0.004857924301177263,
0.007253085263073444,
-0.004916484002023935,
-0.0034956797026097775,
-0.07165335863828659,
-0.008841902948915958,
-0.11499179899692535,
-0.0103953517973423,
0.0035815921146422625,
0.00789494626224041,
-0.0011662144679576159,
-0.060273636132478714,
-0.03993548825383186,
0.051301222294569016,
-0.0855194553732872,
-0.05759074166417122,
0.001142867375165224,
0.060217827558517456,
-0.13149210810661316,
-0.002333987969905138,
0.05538306012749672,
-0.09992673248052597,
0.09938625246286392,
0.06154241785407066,
-0.007910839281976223,
0.03904745727777481,
-0.14950408041477203,
-0.0542004331946373,
0.025781739503145218,
0.028261452913284302,
0.04039241001009941,
-0.14851194620132446,
-0.011715400964021683,
0.004791376646608114,
0.07122828811407089,
-0.001231614500284195,
0.09753412008285522,
-0.08122026920318604,
-0.04465998709201813,
-0.04424077644944191,
-0.06001953035593033,
-0.050907813012599945,
0.04799274355173111,
0.08500048518180847,
0.07862140238285065,
0.16159427165985107,
-0.07454390078783035,
0.03801045939326286,
-0.12747064232826233,
0.007690488826483488,
-0.010144618339836597,
-0.05461868271231651,
-0.014897486194968224,
-0.0332479402422905,
0.07065881788730621,
-0.045378200709819794,
0.11163659393787384,
-0.03041214868426323,
0.0981081947684288,
0.0641980990767479,
-0.06222943589091301,
-0.06878859549760818,
0.03138263151049614,
0.13654440641403198,
0.04506386071443558,
-0.010171267203986645,
0.004138539079576731,
-0.04096411541104317,
0.045905739068984985,
0.10860057175159454,
0.16227658092975616,
0.20055699348449707,
0.020847372710704803,
0.08545099943876266,
0.06016148626804352,
-0.10098888725042343,
-0.15862594544887543,
0.05833076685667038,
0.008243120275437832,
0.11719471961259842,
-0.0816979855298996,
0.17834414541721344,
0.07870753109455109,
-0.17907845973968506,
0.0652572512626648,
-0.041634198278188705,
-0.11521247029304504,
-0.11153604090213776,
0.003625656710937619,
-0.05909666419029236,
-0.10710237920284271,
0.01189668569713831,
-0.09604325890541077,
0.09963792562484741,
0.03286585956811905,
0.048834580928087234,
0.028866421431303024,
0.11389102786779404,
-0.13902434706687927,
-0.03674040362238884,
0.10088911652565002,
-0.01945662498474121,
0.022971685975790024,
-0.03978470712900162,
-0.058245327323675156,
0.0445326529443264,
0.013000791892409325,
0.0884576067328453,
0.005818018689751625,
-0.011607571505010128,
0.011735010892152786,
-0.022041011601686478,
-0.07210367918014526,
0.003284513484686613,
0.029119936749339104,
0.06851253658533096,
0.13728678226470947,
0.07422630488872528,
-0.01608884148299694,
-0.033026084303855896,
0.2354751080274582,
-0.09299089759588242,
-0.09855157136917114,
-0.14106957614421844,
0.1510140597820282,
0.03581763058900833,
0.04284697398543358,
0.03540913388133049,
-0.10822312533855438,
-0.022827738896012306,
0.1150749996304512,
0.17380447685718536,
-0.04403754323720932,
-0.002378069795668125,
-0.006961580831557512,
-0.0017723387572914362,
-0.027408666908740997,
0.08374277502298355,
0.07728573679924011,
0.06228425353765488,
-0.04310060292482376,
0.0004651252820622176,
-0.018141644075512886,
-0.04987666383385658,
-0.0587073490023613,
0.10696300119161606,
-0.029597053304314613,
-0.02695426531136036,
-0.03826460987329483,
0.09871771931648254,
-0.013954234309494495,
-0.2187063992023468,
-0.045750949531793594,
-0.14634713530540466,
-0.159727543592453,
0.010019113309681416,
0.05116990581154823,
0.029098981991410255,
0.06293773651123047,
-0.01349901594221592,
-0.029204748570919037,
0.14436885714530945,
-0.002475836779922247,
-0.02348453551530838,
-0.11540822684764862,
0.06389422714710236,
-0.06729375571012497,
0.19631966948509216,
0.02233515866100788,
0.11935213208198547,
0.09141566604375839,
0.04496501013636589,
-0.10550032556056976,
0.020828235894441605,
0.06517688184976578,
-0.06327326595783234,
0.0741536095738411,
0.1954469233751297,
-0.0673416405916214,
0.1488039195537567,
0.01629919931292534,
-0.11124807596206665,
0.041908059269189835,
-0.03173794597387314,
-0.04721451178193092,
-0.07905583083629608,
0.010168380104005337,
-0.09000880271196365,
0.14463496208190918,
0.20880579948425293,
-0.014944239519536495,
0.03393997251987457,
-0.040366921573877335,
-0.0007673820364288986,
0.044573210179805756,
0.11094613373279572,
-0.04045497253537178,
-0.20805634558200836,
0.02394029125571251,
0.03238992020487785,
0.038301147520542145,
-0.2080475389957428,
-0.07858330011367798,
0.0019756185356527567,
-0.01559839490801096,
-0.030260954052209854,
0.1205374076962471,
0.042891256511211395,
0.007082803640514612,
-0.017948662862181664,
-0.13347892463207245,
-0.01648513413965702,
0.10346904397010803,
-0.11587096750736237,
-0.03618061542510986
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad-Endpoint_with_impossible.csv
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7950
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.25 | 1.0 | 1273 | 0.8052 |
| 1.1199 | 2.0 | 2546 | 0.7950 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad-Endpoint_with_impossible.csv", "results": []}]} | question-answering | LenaSchmidt/distilbert-base-uncased-finetuned-squad-Endpoint_with_impossible.csv | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-squad-Endpoint\_with\_impossible.csv
======================================================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7950
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
50,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.0997086614370346,
0.050349604338407516,
-0.001783874467946589,
0.11853207647800446,
0.17214179039001465,
0.024877697229385376,
0.09947533905506134,
0.10928848385810852,
-0.10214147716760635,
0.0345265232026577,
0.12724660336971283,
0.16647715866565704,
-0.0029195600654929876,
0.05395059660077095,
-0.0556086041033268,
-0.22228074073791504,
-0.025324154645204544,
0.04039604589343071,
-0.09205252677202225,
0.13900083303451538,
0.08154886215925217,
-0.15304572880268097,
0.06771175563335419,
-0.0009523321059532464,
-0.22903700172901154,
0.016286520287394524,
0.007343222852796316,
-0.03358390927314758,
0.14689138531684875,
-0.004066917113959789,
0.1392606943845749,
-0.0017882424872368574,
0.08886875957250595,
-0.17818495631217957,
0.013681433163583279,
0.054939430207014084,
0.00806264579296112,
0.07813279330730438,
0.05293508619070053,
0.002150320215150714,
0.10751581937074661,
-0.09318371117115021,
0.046880606561899185,
0.019492214545607567,
-0.12777486443519592,
-0.23578742146492004,
-0.10606654733419418,
0.007712842896580696,
0.067299023270607,
0.11919836699962616,
-0.003072029445320368,
0.1701558232307434,
-0.1174045205116272,
0.09036386013031006,
0.24902279675006866,
-0.29858988523483276,
-0.0789979100227356,
0.04433500021696091,
0.017435336485505104,
0.07977119088172913,
-0.10782001912593842,
-0.029782045632600784,
0.061491742730140686,
0.05643133074045181,
0.10619109123945236,
-0.043872054666280746,
-0.12893399596214294,
0.03674392029643059,
-0.15205512940883636,
-0.029278021305799484,
0.0936497300863266,
0.04596038535237312,
-0.028746699914336205,
-0.009554901160299778,
-0.06691983342170715,
-0.1251368671655655,
-0.02647964097559452,
-0.02205181121826172,
0.053555190563201904,
-0.050979454070329666,
-0.08458217978477478,
-0.0027890196070075035,
-0.10702130943536758,
-0.08102104067802429,
-0.0761607214808464,
0.1456291228532791,
0.0397447869181633,
0.033015936613082886,
-0.04248129948973656,
0.1025032177567482,
-0.0037338014226406813,
-0.14017371833324432,
0.02209210954606533,
0.037212714552879333,
-0.024590328335762024,
-0.04345080628991127,
-0.07048604637384415,
-0.0655590370297432,
0.02304239571094513,
0.1113794595003128,
-0.07149874418973923,
0.04114603251218796,
0.0502312108874321,
0.04111796244978905,
-0.10050739347934723,
0.1828523725271225,
-0.04746345058083534,
-0.010728070512413979,
-0.005184623412787914,
0.0458548367023468,
-0.0002212246909039095,
-0.0012844887096434832,
-0.09847137331962585,
0.0019432894187048078,
0.0912904292345047,
0.0176691934466362,
-0.044329117983579636,
0.04540508985519409,
-0.041549861431121826,
-0.014356393367052078,
-0.025239858776330948,
-0.08955997973680496,
0.0377570204436779,
-0.003716527484357357,
-0.09081223607063293,
-0.006599701475352049,
0.00637393444776535,
0.01871638372540474,
-0.009635524824261665,
0.13300937414169312,
-0.08754918724298477,
0.04775360971689224,
-0.10795392096042633,
-0.09442738443613052,
0.02361246570944786,
-0.07386121153831482,
0.02339465357363224,
-0.08332469314336777,
-0.15404239296913147,
-0.017739931121468544,
0.06344597041606903,
-0.03174123913049698,
-0.039186522364616394,
-0.03133907914161682,
-0.09602327644824982,
-0.011304827407002449,
-0.01927810162305832,
0.18320226669311523,
-0.058604154735803604,
0.12055032700300217,
0.044744644314050674,
0.06142082437872887,
-0.04731067642569542,
0.0463685467839241,
-0.09337004274129868,
0.013234565034508705,
-0.18819685280323029,
0.027594055980443954,
-0.0598551481962204,
0.07820386439561844,
-0.09224865585565567,
-0.12331049144268036,
0.019785244017839432,
-0.01956072822213173,
0.09459307044744492,
0.08795204013586044,
-0.1736009418964386,
-0.05950526148080826,
0.13621805608272552,
-0.04900249466300011,
-0.1361531913280487,
0.12481402605772018,
-0.06074901297688484,
0.02877434529364109,
0.0703364834189415,
0.1687447875738144,
0.03791384398937225,
-0.10933404415845871,
0.021472616121172905,
-0.013770363293588161,
0.045511193573474884,
-0.0691060796380043,
0.054698970168828964,
-0.00427984818816185,
0.01953572779893875,
0.023760881274938583,
-0.061004508286714554,
0.05117732286453247,
-0.11558530479669571,
-0.09381850063800812,
-0.057595930993556976,
-0.10733874142169952,
0.02627631276845932,
0.0867898240685463,
0.0733705461025238,
-0.10695814341306686,
-0.06945157051086426,
0.07278569042682648,
0.06367919594049454,
-0.04790687561035156,
0.03080824948847294,
-0.05684244632720947,
0.07009643316268921,
-0.060756076127290726,
-0.03253786265850067,
-0.19855692982673645,
-0.020260877907276154,
-0.0005013151676394045,
0.009152399376034737,
0.02961866743862629,
0.03971904516220093,
0.08082719892263412,
0.04320591315627098,
-0.06006596237421036,
-0.01091320812702179,
-0.04954050853848457,
-0.006576663814485073,
-0.13717126846313477,
-0.19937391579151154,
-0.029586736112833023,
-0.012830667197704315,
0.0818430483341217,
-0.1826612651348114,
0.018484454602003098,
-0.034585870802402496,
0.06925483793020248,
-0.009052876383066177,
-0.008600716479122639,
-0.05944165214896202,
0.0873013436794281,
-0.009821807034313679,
-0.04436040297150612,
0.06797788292169571,
-0.006176081486046314,
-0.08723121881484985,
-0.0781521126627922,
-0.06797194480895996,
0.16281743347644806,
0.13728946447372437,
-0.1424904316663742,
-0.07059076428413391,
0.019409893080592155,
-0.0691991001367569,
-0.029340475797653198,
-0.04712193086743355,
0.05407831072807312,
0.18583138287067413,
-0.0025075741577893496,
0.12483718991279602,
-0.07824427634477615,
-0.04890425130724907,
0.008858761750161648,
-0.03187057375907898,
0.05756901949644089,
0.12134414911270142,
0.13705915212631226,
-0.07169581949710846,
0.1288699358701706,
0.16805337369441986,
-0.11592783033847809,
0.08362466096878052,
-0.06405535340309143,
-0.08788358420133591,
-0.030320582911372185,
0.002695241244509816,
-0.002260462148115039,
0.12794704735279083,
-0.12637679278850555,
0.011540046893060207,
0.01697360910475254,
0.02594936452805996,
0.024618135765194893,
-0.24055519700050354,
-0.05997785925865173,
0.017272228375077248,
-0.03909897804260254,
-0.03439595177769661,
-0.01630963198840618,
0.021413041278719902,
0.10483906418085098,
-0.007394840475171804,
-0.06890008598566055,
0.026319831609725952,
-0.006679935846477747,
-0.06392938643693924,
0.21632812917232513,
-0.06692709773778915,
-0.08105207234621048,
-0.08192233741283417,
-0.053387708961963654,
-0.04007568955421448,
-0.0037845890037715435,
0.05866052210330963,
-0.10291674733161926,
-0.019579660147428513,
-0.041718561202287674,
0.014596245251595974,
-0.0028126665856689215,
0.03329251706600189,
0.014434877783060074,
-0.005633772816509008,
0.08190645277500153,
-0.11899227648973465,
0.0034525382798165083,
-0.06597347557544708,
-0.07871130108833313,
0.050693683326244354,
0.0664881244301796,
0.12728527188301086,
0.14992719888687134,
-0.01522999256849289,
0.00016118089843075722,
-0.01811186410486698,
0.2639700174331665,
-0.0715179517865181,
-0.04433493688702583,
0.12808912992477417,
-0.002436605980619788,
0.06337374448776245,
0.10734471678733826,
0.08382709324359894,
-0.10514680296182632,
0.009445478208363056,
0.039324261248111725,
-0.034779082983732224,
-0.24028895795345306,
-0.026792602613568306,
-0.060188163071870804,
-0.04519723355770111,
0.06607120484113693,
0.02475772053003311,
0.027620762586593628,
0.06397532671689987,
0.048161763697862625,
0.05513528361916542,
-0.06662889569997787,
0.041374605149030685,
0.10049028694629669,
0.04985877126455307,
0.1170755997300148,
-0.04708486050367355,
-0.06819528341293335,
0.024485601112246513,
-0.014349371194839478,
0.2509550452232361,
-0.0015468569472432137,
0.12082598358392715,
0.07819121330976486,
0.21256911754608154,
-0.019708827137947083,
0.07847654819488525,
-0.01095051784068346,
-0.059782709926366806,
-0.0070162671618163586,
-0.03722565621137619,
-0.02014056034386158,
0.009130732156336308,
-0.04242493212223053,
0.0703214779496193,
-0.09390745311975479,
-0.018441596999764442,
0.06295566260814667,
0.26176005601882935,
0.021284986287355423,
-0.2857288718223572,
-0.07322154194116592,
-0.004908832721412182,
-0.03641771897673607,
0.005073662847280502,
0.01280414778739214,
0.11298231035470963,
-0.0865975096821785,
0.01047507207840681,
-0.06576615571975708,
0.10712233930826187,
0.012567427009344101,
0.043102871626615524,
0.06538984179496765,
0.09325708448886871,
0.012151293456554413,
0.07872014492750168,
-0.32816576957702637,
0.2872217297554016,
0.005946275312453508,
0.09320789575576782,
-0.0754263624548912,
-0.01343607995659113,
0.02072368934750557,
0.024314038455486298,
0.06646161526441574,
-0.013228698633611202,
-0.003492452437058091,
-0.16775360703468323,
-0.029519570991396904,
0.04267829284071922,
0.10666327178478241,
-0.0025547596160322428,
0.09754778444766998,
-0.01346203126013279,
0.01196726318448782,
0.080574169754982,
0.004405143670737743,
-0.061044663190841675,
-0.06727319210767746,
-0.023642709478735924,
0.00017048095469363034,
-0.07639307528734207,
-0.06531911343336105,
-0.10381010174751282,
-0.13818901777267456,
0.1153896152973175,
0.0030684799421578646,
-0.021462634205818176,
-0.10779466480016708,
0.09620404988527298,
0.10202852636575699,
-0.08059722185134888,
0.03549840301275253,
0.020227763801813126,
0.02073734812438488,
0.0400870256125927,
-0.061417076736688614,
0.10010158270597458,
-0.0636146143078804,
-0.15797273814678192,
-0.049622148275375366,
0.10604971647262573,
0.04892432317137718,
0.07172947376966476,
-0.014238503761589527,
0.019757084548473358,
-0.05517822876572609,
-0.10722184926271439,
0.029935374855995178,
-0.04620359465479851,
0.08837665617465973,
0.018029043450951576,
-0.02397148124873638,
0.042337287217378616,
-0.06016319617629051,
-0.01922973059117794,
0.17558494210243225,
0.24795934557914734,
-0.09443627297878265,
0.000499902933370322,
0.03284693881869316,
-0.046144288033246994,
-0.17757722735404968,
0.07227937877178192,
0.07929358631372452,
-0.011604368686676025,
0.05993792787194252,
-0.1402646005153656,
0.1625383347272873,
0.10985816270112991,
-0.011324668303132057,
0.1146409660577774,
-0.35883045196533203,
-0.12245286256074905,
0.0802946612238884,
0.1698322594165802,
0.1374521106481552,
-0.16266894340515137,
-0.01977260410785675,
-0.004474913235753775,
-0.1667683869600296,
0.09489716589450836,
-0.09855813533067703,
0.10933929681777954,
-0.02650154009461403,
0.11301879584789276,
-0.0017431468004360795,
-0.07442401349544525,
0.12768623232841492,
0.026980185881257057,
0.1089356541633606,
-0.05320024862885475,
-0.03083556331694126,
0.06533366441726685,
-0.020314732566475868,
0.0033831836190074682,
-0.06514641642570496,
0.03651692718267441,
-0.07996057718992233,
-0.010987021028995514,
-0.10372369736433029,
0.038651663810014725,
-0.044058527797460556,
-0.053700074553489685,
-0.0330471508204937,
0.020025165751576424,
0.049119774252176285,
-0.01667373813688755,
0.11206785589456558,
0.027909399941563606,
0.15364961326122284,
0.0800386443734169,
0.06768078356981277,
-0.07638188451528549,
-0.09593744575977325,
-0.005872055888175964,
-0.0067404150031507015,
0.05737147107720375,
-0.14642933011054993,
0.021463003009557724,
0.1571464091539383,
0.04834266006946564,
0.1121123880147934,
0.08244609087705612,
-0.028506742790341377,
0.011798318475484848,
0.046335190534591675,
-0.16036763787269592,
-0.12547767162322998,
0.024250056594610214,
-0.06253387033939362,
-0.10522736608982086,
0.05782588943839073,
0.059735193848609924,
-0.05644737184047699,
-0.008050722070038319,
-0.0018773089395835996,
-0.009895538911223412,
-0.07454612106084824,
0.2140464335680008,
0.08160751312971115,
0.04941984638571739,
-0.1094982847571373,
0.07212602347135544,
0.050081945955753326,
-0.10132522135972977,
-0.012535539455711842,
0.06498783081769943,
-0.06563395261764526,
-0.03229445219039917,
0.12043554335832596,
0.1683560460805893,
-0.05208813026547432,
-0.0256175696849823,
-0.13486286997795105,
-0.1132633164525032,
0.07361576706171036,
0.16376864910125732,
0.11680037528276443,
-0.006863836199045181,
-0.04586262255907059,
0.028773469850420952,
-0.12262820452451706,
0.07853380590677261,
0.04489454627037048,
0.06926967203617096,
-0.12792938947677612,
0.14748692512512207,
0.00537048140540719,
0.05406099557876587,
-0.02051072008907795,
0.04714344069361687,
-0.10010358691215515,
0.03662869334220886,
-0.14776036143302917,
-0.040920380502939224,
-0.016579492017626762,
-0.00947481393814087,
-0.004834230523556471,
-0.09198342263698578,
-0.06924796849489212,
0.023227088153362274,
-0.1315147429704666,
-0.022415902465581894,
0.053208112716674805,
0.03127840906381607,
-0.14160366356372833,
-0.04748786985874176,
0.03919288143515587,
-0.05183550342917442,
0.04992670565843582,
0.06646986305713654,
0.009885248728096485,
0.07353515177965164,
-0.16373080015182495,
-0.029774991795420647,
0.05489024892449379,
0.01620013453066349,
0.08733122795820236,
-0.07788033038377762,
-0.021469227969646454,
0.007903862744569778,
0.09308339655399323,
0.017603982239961624,
0.05019773170351982,
-0.1380516141653061,
-0.012393676675856113,
-0.03012939542531967,
-0.09661976248025894,
-0.06309390068054199,
0.0011240503517910838,
0.08871296793222427,
0.026607492938637733,
0.19857817888259888,
-0.06456713378429413,
0.05928885191679001,
-0.2223457247018814,
-0.00950703490525484,
-0.013497723266482353,
-0.09085704386234283,
-0.12181413173675537,
-0.052354514598846436,
0.07345809042453766,
-0.0633503794670105,
0.11520536988973618,
-0.00598117895424366,
0.06653507053852081,
0.030643954873085022,
-0.011477243155241013,
0.020618069916963577,
0.018874788656830788,
0.23982112109661102,
0.025543097406625748,
-0.025553448125720024,
0.07102572917938232,
0.05556907877326012,
0.07937286794185638,
0.09897200018167496,
0.22769798338413239,
0.18556912243366241,
0.010876381769776344,
0.07464916259050369,
0.038124799728393555,
-0.0502999871969223,
-0.13867293298244476,
0.03378437086939812,
-0.037136588245630264,
0.07905445247888565,
-0.02483091689646244,
0.23369887471199036,
0.058775488287210464,
-0.17526127398014069,
0.0519530288875103,
-0.07389051467180252,
-0.09196477383375168,
-0.08853595703840256,
-0.006895971484482288,
-0.07208622992038727,
-0.15330186486244202,
0.022714875638484955,
-0.11086677014827728,
0.02851284295320511,
0.1365443766117096,
0.01377791166305542,
-0.025956422090530396,
0.18668289482593536,
0.0471685566008091,
0.03998111933469772,
0.041503164917230606,
0.0011684580240398645,
-0.02119806595146656,
-0.07341975718736649,
-0.048181574791669846,
-0.01712762378156185,
-0.027325624600052834,
0.042738161981105804,
-0.05725577473640442,
-0.09691165387630463,
0.027846096083521843,
-0.026529869064688683,
-0.09415683150291443,
0.015393417328596115,
0.03261789679527283,
0.07865734398365021,
0.05847666412591934,
0.007601592689752579,
0.0373476967215538,
-0.02585652284324169,
0.22925710678100586,
-0.08683361113071442,
-0.10132665187120438,
-0.08935929089784622,
0.24648608267307281,
0.02811182104051113,
-0.01792413741350174,
0.034380510449409485,
-0.07084166258573532,
0.00886503141373396,
0.24167560040950775,
0.1745111644268036,
-0.12585438787937164,
-0.012438442558050156,
0.007487996015697718,
-0.009509561583399773,
-0.04456740990281105,
0.10243728011846542,
0.14873827993869781,
0.055653177201747894,
-0.11661256104707718,
-0.04552370309829712,
-0.07216168940067291,
-0.012577845714986324,
-0.04482428729534149,
0.0462103895843029,
0.0467921607196331,
-0.005709282122552395,
-0.04226159304380417,
0.07448860257863998,
-0.06457339972257614,
-0.13456639647483826,
0.07710524648427963,
-0.20378954708576202,
-0.16489601135253906,
-0.01480118092149496,
0.1404695212841034,
0.00013818935258314013,
0.06139927729964256,
-0.039405349642038345,
0.006830683443695307,
0.059469111263751984,
-0.026934700086712837,
-0.07612217217683792,
-0.09060649573802948,
0.1184474378824234,
-0.12357565760612488,
0.18866483867168427,
-0.03621192276477814,
0.0981975719332695,
0.12627185881137848,
0.0658816397190094,
-0.07164166867733002,
0.06322803348302841,
0.06599598377943039,
-0.1266004741191864,
0.01242173369973898,
0.08914472162723541,
-0.017945393919944763,
0.035249367356300354,
0.04365157708525658,
-0.12324393540620804,
0.018358202651143074,
-0.03245152160525322,
-0.02718738280236721,
-0.06690739095211029,
-0.04087773710489273,
-0.06514223664999008,
0.11940842866897583,
0.21526116132736206,
-0.03012886829674244,
0.0322783999145031,
-0.08099495619535446,
0.013181178830564022,
0.05445597320795059,
0.04372643306851387,
-0.09022677689790726,
-0.2287972867488861,
0.030072666704654694,
0.06217653676867485,
-0.03458649665117264,
-0.1908082515001297,
-0.09728468954563141,
0.02642415091395378,
-0.08131109923124313,
-0.07755470275878906,
0.06706424057483673,
0.08194933831691742,
0.055115047842264175,
-0.043234750628471375,
-0.10583814978599548,
-0.09099069982767105,
0.15954938530921936,
-0.15172123908996582,
-0.0802343487739563
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0325 | 1.0 | 585 | 1.7520 |
| 1.609 | 2.0 | 1170 | 1.7713 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]} | question-answering | LenaSchmidt/distilbert-base-uncased-finetuned-squad | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-squad
=======================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.7713
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
50,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.0997086614370346,
0.050349604338407516,
-0.001783874467946589,
0.11853207647800446,
0.17214179039001465,
0.024877697229385376,
0.09947533905506134,
0.10928848385810852,
-0.10214147716760635,
0.0345265232026577,
0.12724660336971283,
0.16647715866565704,
-0.0029195600654929876,
0.05395059660077095,
-0.0556086041033268,
-0.22228074073791504,
-0.025324154645204544,
0.04039604589343071,
-0.09205252677202225,
0.13900083303451538,
0.08154886215925217,
-0.15304572880268097,
0.06771175563335419,
-0.0009523321059532464,
-0.22903700172901154,
0.016286520287394524,
0.007343222852796316,
-0.03358390927314758,
0.14689138531684875,
-0.004066917113959789,
0.1392606943845749,
-0.0017882424872368574,
0.08886875957250595,
-0.17818495631217957,
0.013681433163583279,
0.054939430207014084,
0.00806264579296112,
0.07813279330730438,
0.05293508619070053,
0.002150320215150714,
0.10751581937074661,
-0.09318371117115021,
0.046880606561899185,
0.019492214545607567,
-0.12777486443519592,
-0.23578742146492004,
-0.10606654733419418,
0.007712842896580696,
0.067299023270607,
0.11919836699962616,
-0.003072029445320368,
0.1701558232307434,
-0.1174045205116272,
0.09036386013031006,
0.24902279675006866,
-0.29858988523483276,
-0.0789979100227356,
0.04433500021696091,
0.017435336485505104,
0.07977119088172913,
-0.10782001912593842,
-0.029782045632600784,
0.061491742730140686,
0.05643133074045181,
0.10619109123945236,
-0.043872054666280746,
-0.12893399596214294,
0.03674392029643059,
-0.15205512940883636,
-0.029278021305799484,
0.0936497300863266,
0.04596038535237312,
-0.028746699914336205,
-0.009554901160299778,
-0.06691983342170715,
-0.1251368671655655,
-0.02647964097559452,
-0.02205181121826172,
0.053555190563201904,
-0.050979454070329666,
-0.08458217978477478,
-0.0027890196070075035,
-0.10702130943536758,
-0.08102104067802429,
-0.0761607214808464,
0.1456291228532791,
0.0397447869181633,
0.033015936613082886,
-0.04248129948973656,
0.1025032177567482,
-0.0037338014226406813,
-0.14017371833324432,
0.02209210954606533,
0.037212714552879333,
-0.024590328335762024,
-0.04345080628991127,
-0.07048604637384415,
-0.0655590370297432,
0.02304239571094513,
0.1113794595003128,
-0.07149874418973923,
0.04114603251218796,
0.0502312108874321,
0.04111796244978905,
-0.10050739347934723,
0.1828523725271225,
-0.04746345058083534,
-0.010728070512413979,
-0.005184623412787914,
0.0458548367023468,
-0.0002212246909039095,
-0.0012844887096434832,
-0.09847137331962585,
0.0019432894187048078,
0.0912904292345047,
0.0176691934466362,
-0.044329117983579636,
0.04540508985519409,
-0.041549861431121826,
-0.014356393367052078,
-0.025239858776330948,
-0.08955997973680496,
0.0377570204436779,
-0.003716527484357357,
-0.09081223607063293,
-0.006599701475352049,
0.00637393444776535,
0.01871638372540474,
-0.009635524824261665,
0.13300937414169312,
-0.08754918724298477,
0.04775360971689224,
-0.10795392096042633,
-0.09442738443613052,
0.02361246570944786,
-0.07386121153831482,
0.02339465357363224,
-0.08332469314336777,
-0.15404239296913147,
-0.017739931121468544,
0.06344597041606903,
-0.03174123913049698,
-0.039186522364616394,
-0.03133907914161682,
-0.09602327644824982,
-0.011304827407002449,
-0.01927810162305832,
0.18320226669311523,
-0.058604154735803604,
0.12055032700300217,
0.044744644314050674,
0.06142082437872887,
-0.04731067642569542,
0.0463685467839241,
-0.09337004274129868,
0.013234565034508705,
-0.18819685280323029,
0.027594055980443954,
-0.0598551481962204,
0.07820386439561844,
-0.09224865585565567,
-0.12331049144268036,
0.019785244017839432,
-0.01956072822213173,
0.09459307044744492,
0.08795204013586044,
-0.1736009418964386,
-0.05950526148080826,
0.13621805608272552,
-0.04900249466300011,
-0.1361531913280487,
0.12481402605772018,
-0.06074901297688484,
0.02877434529364109,
0.0703364834189415,
0.1687447875738144,
0.03791384398937225,
-0.10933404415845871,
0.021472616121172905,
-0.013770363293588161,
0.045511193573474884,
-0.0691060796380043,
0.054698970168828964,
-0.00427984818816185,
0.01953572779893875,
0.023760881274938583,
-0.061004508286714554,
0.05117732286453247,
-0.11558530479669571,
-0.09381850063800812,
-0.057595930993556976,
-0.10733874142169952,
0.02627631276845932,
0.0867898240685463,
0.0733705461025238,
-0.10695814341306686,
-0.06945157051086426,
0.07278569042682648,
0.06367919594049454,
-0.04790687561035156,
0.03080824948847294,
-0.05684244632720947,
0.07009643316268921,
-0.060756076127290726,
-0.03253786265850067,
-0.19855692982673645,
-0.020260877907276154,
-0.0005013151676394045,
0.009152399376034737,
0.02961866743862629,
0.03971904516220093,
0.08082719892263412,
0.04320591315627098,
-0.06006596237421036,
-0.01091320812702179,
-0.04954050853848457,
-0.006576663814485073,
-0.13717126846313477,
-0.19937391579151154,
-0.029586736112833023,
-0.012830667197704315,
0.0818430483341217,
-0.1826612651348114,
0.018484454602003098,
-0.034585870802402496,
0.06925483793020248,
-0.009052876383066177,
-0.008600716479122639,
-0.05944165214896202,
0.0873013436794281,
-0.009821807034313679,
-0.04436040297150612,
0.06797788292169571,
-0.006176081486046314,
-0.08723121881484985,
-0.0781521126627922,
-0.06797194480895996,
0.16281743347644806,
0.13728946447372437,
-0.1424904316663742,
-0.07059076428413391,
0.019409893080592155,
-0.0691991001367569,
-0.029340475797653198,
-0.04712193086743355,
0.05407831072807312,
0.18583138287067413,
-0.0025075741577893496,
0.12483718991279602,
-0.07824427634477615,
-0.04890425130724907,
0.008858761750161648,
-0.03187057375907898,
0.05756901949644089,
0.12134414911270142,
0.13705915212631226,
-0.07169581949710846,
0.1288699358701706,
0.16805337369441986,
-0.11592783033847809,
0.08362466096878052,
-0.06405535340309143,
-0.08788358420133591,
-0.030320582911372185,
0.002695241244509816,
-0.002260462148115039,
0.12794704735279083,
-0.12637679278850555,
0.011540046893060207,
0.01697360910475254,
0.02594936452805996,
0.024618135765194893,
-0.24055519700050354,
-0.05997785925865173,
0.017272228375077248,
-0.03909897804260254,
-0.03439595177769661,
-0.01630963198840618,
0.021413041278719902,
0.10483906418085098,
-0.007394840475171804,
-0.06890008598566055,
0.026319831609725952,
-0.006679935846477747,
-0.06392938643693924,
0.21632812917232513,
-0.06692709773778915,
-0.08105207234621048,
-0.08192233741283417,
-0.053387708961963654,
-0.04007568955421448,
-0.0037845890037715435,
0.05866052210330963,
-0.10291674733161926,
-0.019579660147428513,
-0.041718561202287674,
0.014596245251595974,
-0.0028126665856689215,
0.03329251706600189,
0.014434877783060074,
-0.005633772816509008,
0.08190645277500153,
-0.11899227648973465,
0.0034525382798165083,
-0.06597347557544708,
-0.07871130108833313,
0.050693683326244354,
0.0664881244301796,
0.12728527188301086,
0.14992719888687134,
-0.01522999256849289,
0.00016118089843075722,
-0.01811186410486698,
0.2639700174331665,
-0.0715179517865181,
-0.04433493688702583,
0.12808912992477417,
-0.002436605980619788,
0.06337374448776245,
0.10734471678733826,
0.08382709324359894,
-0.10514680296182632,
0.009445478208363056,
0.039324261248111725,
-0.034779082983732224,
-0.24028895795345306,
-0.026792602613568306,
-0.060188163071870804,
-0.04519723355770111,
0.06607120484113693,
0.02475772053003311,
0.027620762586593628,
0.06397532671689987,
0.048161763697862625,
0.05513528361916542,
-0.06662889569997787,
0.041374605149030685,
0.10049028694629669,
0.04985877126455307,
0.1170755997300148,
-0.04708486050367355,
-0.06819528341293335,
0.024485601112246513,
-0.014349371194839478,
0.2509550452232361,
-0.0015468569472432137,
0.12082598358392715,
0.07819121330976486,
0.21256911754608154,
-0.019708827137947083,
0.07847654819488525,
-0.01095051784068346,
-0.059782709926366806,
-0.0070162671618163586,
-0.03722565621137619,
-0.02014056034386158,
0.009130732156336308,
-0.04242493212223053,
0.0703214779496193,
-0.09390745311975479,
-0.018441596999764442,
0.06295566260814667,
0.26176005601882935,
0.021284986287355423,
-0.2857288718223572,
-0.07322154194116592,
-0.004908832721412182,
-0.03641771897673607,
0.005073662847280502,
0.01280414778739214,
0.11298231035470963,
-0.0865975096821785,
0.01047507207840681,
-0.06576615571975708,
0.10712233930826187,
0.012567427009344101,
0.043102871626615524,
0.06538984179496765,
0.09325708448886871,
0.012151293456554413,
0.07872014492750168,
-0.32816576957702637,
0.2872217297554016,
0.005946275312453508,
0.09320789575576782,
-0.0754263624548912,
-0.01343607995659113,
0.02072368934750557,
0.024314038455486298,
0.06646161526441574,
-0.013228698633611202,
-0.003492452437058091,
-0.16775360703468323,
-0.029519570991396904,
0.04267829284071922,
0.10666327178478241,
-0.0025547596160322428,
0.09754778444766998,
-0.01346203126013279,
0.01196726318448782,
0.080574169754982,
0.004405143670737743,
-0.061044663190841675,
-0.06727319210767746,
-0.023642709478735924,
0.00017048095469363034,
-0.07639307528734207,
-0.06531911343336105,
-0.10381010174751282,
-0.13818901777267456,
0.1153896152973175,
0.0030684799421578646,
-0.021462634205818176,
-0.10779466480016708,
0.09620404988527298,
0.10202852636575699,
-0.08059722185134888,
0.03549840301275253,
0.020227763801813126,
0.02073734812438488,
0.0400870256125927,
-0.061417076736688614,
0.10010158270597458,
-0.0636146143078804,
-0.15797273814678192,
-0.049622148275375366,
0.10604971647262573,
0.04892432317137718,
0.07172947376966476,
-0.014238503761589527,
0.019757084548473358,
-0.05517822876572609,
-0.10722184926271439,
0.029935374855995178,
-0.04620359465479851,
0.08837665617465973,
0.018029043450951576,
-0.02397148124873638,
0.042337287217378616,
-0.06016319617629051,
-0.01922973059117794,
0.17558494210243225,
0.24795934557914734,
-0.09443627297878265,
0.000499902933370322,
0.03284693881869316,
-0.046144288033246994,
-0.17757722735404968,
0.07227937877178192,
0.07929358631372452,
-0.011604368686676025,
0.05993792787194252,
-0.1402646005153656,
0.1625383347272873,
0.10985816270112991,
-0.011324668303132057,
0.1146409660577774,
-0.35883045196533203,
-0.12245286256074905,
0.0802946612238884,
0.1698322594165802,
0.1374521106481552,
-0.16266894340515137,
-0.01977260410785675,
-0.004474913235753775,
-0.1667683869600296,
0.09489716589450836,
-0.09855813533067703,
0.10933929681777954,
-0.02650154009461403,
0.11301879584789276,
-0.0017431468004360795,
-0.07442401349544525,
0.12768623232841492,
0.026980185881257057,
0.1089356541633606,
-0.05320024862885475,
-0.03083556331694126,
0.06533366441726685,
-0.020314732566475868,
0.0033831836190074682,
-0.06514641642570496,
0.03651692718267441,
-0.07996057718992233,
-0.010987021028995514,
-0.10372369736433029,
0.038651663810014725,
-0.044058527797460556,
-0.053700074553489685,
-0.0330471508204937,
0.020025165751576424,
0.049119774252176285,
-0.01667373813688755,
0.11206785589456558,
0.027909399941563606,
0.15364961326122284,
0.0800386443734169,
0.06768078356981277,
-0.07638188451528549,
-0.09593744575977325,
-0.005872055888175964,
-0.0067404150031507015,
0.05737147107720375,
-0.14642933011054993,
0.021463003009557724,
0.1571464091539383,
0.04834266006946564,
0.1121123880147934,
0.08244609087705612,
-0.028506742790341377,
0.011798318475484848,
0.046335190534591675,
-0.16036763787269592,
-0.12547767162322998,
0.024250056594610214,
-0.06253387033939362,
-0.10522736608982086,
0.05782588943839073,
0.059735193848609924,
-0.05644737184047699,
-0.008050722070038319,
-0.0018773089395835996,
-0.009895538911223412,
-0.07454612106084824,
0.2140464335680008,
0.08160751312971115,
0.04941984638571739,
-0.1094982847571373,
0.07212602347135544,
0.050081945955753326,
-0.10132522135972977,
-0.012535539455711842,
0.06498783081769943,
-0.06563395261764526,
-0.03229445219039917,
0.12043554335832596,
0.1683560460805893,
-0.05208813026547432,
-0.0256175696849823,
-0.13486286997795105,
-0.1132633164525032,
0.07361576706171036,
0.16376864910125732,
0.11680037528276443,
-0.006863836199045181,
-0.04586262255907059,
0.028773469850420952,
-0.12262820452451706,
0.07853380590677261,
0.04489454627037048,
0.06926967203617096,
-0.12792938947677612,
0.14748692512512207,
0.00537048140540719,
0.05406099557876587,
-0.02051072008907795,
0.04714344069361687,
-0.10010358691215515,
0.03662869334220886,
-0.14776036143302917,
-0.040920380502939224,
-0.016579492017626762,
-0.00947481393814087,
-0.004834230523556471,
-0.09198342263698578,
-0.06924796849489212,
0.023227088153362274,
-0.1315147429704666,
-0.022415902465581894,
0.053208112716674805,
0.03127840906381607,
-0.14160366356372833,
-0.04748786985874176,
0.03919288143515587,
-0.05183550342917442,
0.04992670565843582,
0.06646986305713654,
0.009885248728096485,
0.07353515177965164,
-0.16373080015182495,
-0.029774991795420647,
0.05489024892449379,
0.01620013453066349,
0.08733122795820236,
-0.07788033038377762,
-0.021469227969646454,
0.007903862744569778,
0.09308339655399323,
0.017603982239961624,
0.05019773170351982,
-0.1380516141653061,
-0.012393676675856113,
-0.03012939542531967,
-0.09661976248025894,
-0.06309390068054199,
0.0011240503517910838,
0.08871296793222427,
0.026607492938637733,
0.19857817888259888,
-0.06456713378429413,
0.05928885191679001,
-0.2223457247018814,
-0.00950703490525484,
-0.013497723266482353,
-0.09085704386234283,
-0.12181413173675537,
-0.052354514598846436,
0.07345809042453766,
-0.0633503794670105,
0.11520536988973618,
-0.00598117895424366,
0.06653507053852081,
0.030643954873085022,
-0.011477243155241013,
0.020618069916963577,
0.018874788656830788,
0.23982112109661102,
0.025543097406625748,
-0.025553448125720024,
0.07102572917938232,
0.05556907877326012,
0.07937286794185638,
0.09897200018167496,
0.22769798338413239,
0.18556912243366241,
0.010876381769776344,
0.07464916259050369,
0.038124799728393555,
-0.0502999871969223,
-0.13867293298244476,
0.03378437086939812,
-0.037136588245630264,
0.07905445247888565,
-0.02483091689646244,
0.23369887471199036,
0.058775488287210464,
-0.17526127398014069,
0.0519530288875103,
-0.07389051467180252,
-0.09196477383375168,
-0.08853595703840256,
-0.006895971484482288,
-0.07208622992038727,
-0.15330186486244202,
0.022714875638484955,
-0.11086677014827728,
0.02851284295320511,
0.1365443766117096,
0.01377791166305542,
-0.025956422090530396,
0.18668289482593536,
0.0471685566008091,
0.03998111933469772,
0.041503164917230606,
0.0011684580240398645,
-0.02119806595146656,
-0.07341975718736649,
-0.048181574791669846,
-0.01712762378156185,
-0.027325624600052834,
0.042738161981105804,
-0.05725577473640442,
-0.09691165387630463,
0.027846096083521843,
-0.026529869064688683,
-0.09415683150291443,
0.015393417328596115,
0.03261789679527283,
0.07865734398365021,
0.05847666412591934,
0.007601592689752579,
0.0373476967215538,
-0.02585652284324169,
0.22925710678100586,
-0.08683361113071442,
-0.10132665187120438,
-0.08935929089784622,
0.24648608267307281,
0.02811182104051113,
-0.01792413741350174,
0.034380510449409485,
-0.07084166258573532,
0.00886503141373396,
0.24167560040950775,
0.1745111644268036,
-0.12585438787937164,
-0.012438442558050156,
0.007487996015697718,
-0.009509561583399773,
-0.04456740990281105,
0.10243728011846542,
0.14873827993869781,
0.055653177201747894,
-0.11661256104707718,
-0.04552370309829712,
-0.07216168940067291,
-0.012577845714986324,
-0.04482428729534149,
0.0462103895843029,
0.0467921607196331,
-0.005709282122552395,
-0.04226159304380417,
0.07448860257863998,
-0.06457339972257614,
-0.13456639647483826,
0.07710524648427963,
-0.20378954708576202,
-0.16489601135253906,
-0.01480118092149496,
0.1404695212841034,
0.00013818935258314013,
0.06139927729964256,
-0.039405349642038345,
0.006830683443695307,
0.059469111263751984,
-0.026934700086712837,
-0.07612217217683792,
-0.09060649573802948,
0.1184474378824234,
-0.12357565760612488,
0.18866483867168427,
-0.03621192276477814,
0.0981975719332695,
0.12627185881137848,
0.0658816397190094,
-0.07164166867733002,
0.06322803348302841,
0.06599598377943039,
-0.1266004741191864,
0.01242173369973898,
0.08914472162723541,
-0.017945393919944763,
0.035249367356300354,
0.04365157708525658,
-0.12324393540620804,
0.018358202651143074,
-0.03245152160525322,
-0.02718738280236721,
-0.06690739095211029,
-0.04087773710489273,
-0.06514223664999008,
0.11940842866897583,
0.21526116132736206,
-0.03012886829674244,
0.0322783999145031,
-0.08099495619535446,
0.013181178830564022,
0.05445597320795059,
0.04372643306851387,
-0.09022677689790726,
-0.2287972867488861,
0.030072666704654694,
0.06217653676867485,
-0.03458649665117264,
-0.1908082515001297,
-0.09728468954563141,
0.02642415091395378,
-0.08131109923124313,
-0.07755470275878906,
0.06706424057483673,
0.08194933831691742,
0.055115047842264175,
-0.043234750628471375,
-0.10583814978599548,
-0.09099069982767105,
0.15954938530921936,
-0.15172123908996582,
-0.0802343487739563
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7608 | 1.0 | 2334 | 3.6655 |
| 3.6335 | 2.0 | 4668 | 3.6455 |
| 3.6066 | 3.0 | 7002 | 3.6424 |
### Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitext2", "results": []}]} | text-generation | LenaT/distilgpt2-finetuned-wikitext2 | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| distilgpt2-finetuned-wikitext2
==============================
This model is a fine-tuned version of distilgpt2 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 3.6424
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.11.2
* Pytorch 1.9.0+cu102
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Tokenizers 0.10.3"
] | [
66,
98,
4,
28
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.11.2\n* Pytorch 1.9.0+cu102\n* Tokenizers 0.10.3"
] | [
-0.07923904806375504,
0.03797958046197891,
-0.0026957872323691845,
0.10857729613780975,
0.14782021939754486,
0.01820305921137333,
0.12765948474407196,
0.13405272364616394,
-0.11238924413919449,
0.02930758148431778,
0.14300453662872314,
0.17063027620315552,
0.015094534493982792,
0.09130219370126724,
-0.041826505213975906,
-0.26264259219169617,
-0.0020572468638420105,
0.048008065670728683,
-0.04627411440014839,
0.13679593801498413,
0.08881588280200958,
-0.11629219353199005,
0.09177956730127335,
0.015347340144217014,
-0.19994372129440308,
0.014105459675192833,
-0.002358193276450038,
-0.06290128827095032,
0.1467338651418686,
0.030227789655327797,
0.09611061215400696,
0.0017885310808196664,
0.06037885323166847,
-0.18579047918319702,
0.009506091475486755,
0.05131208151578903,
-0.0014212187379598618,
0.0796947106719017,
0.045152731239795685,
0.013329609297215939,
0.205176442861557,
-0.06477615237236023,
0.04080098122358322,
0.018397828564047813,
-0.11364991962909698,
-0.19868862628936768,
-0.08097495138645172,
0.040376365184783936,
0.08025471121072769,
0.12277651578187943,
-0.004703329876065254,
0.13180260360240936,
-0.07253198325634003,
0.09987282752990723,
0.24407978355884552,
-0.30768635869026184,
-0.06805898994207382,
0.002686518244445324,
0.03553163260221481,
0.06792961061000824,
-0.085238017141819,
-0.01566086709499359,
0.05086401849985123,
0.051100488752126694,
0.1191350594162941,
-0.0379352793097496,
-0.09512118995189667,
0.014343628659844398,
-0.1469825953245163,
-0.05513822287321091,
0.1609545648097992,
0.025563888251781464,
-0.03162810951471329,
-0.06007923185825348,
-0.06866065412759781,
-0.16252417862415314,
-0.03536507487297058,
-0.013657069765031338,
0.036922670900821686,
-0.012153135612607002,
-0.05126179754734039,
-0.043213050812482834,
-0.11738914251327515,
-0.0713169276714325,
-0.07358156889677048,
0.14962433278560638,
0.042199473828077316,
0.012312176637351513,
-0.04550155997276306,
0.11328447610139847,
-0.008458227850496769,
-0.12798576056957245,
0.0037969399709254503,
0.036631643772125244,
0.04593535140156746,
-0.026081880554556847,
-0.064617820084095,
-0.07728881388902664,
0.02271534688770771,
0.12824997305870056,
-0.06587793678045273,
0.05237491801381111,
0.03327680751681328,
0.04996531084179878,
-0.10530418157577515,
0.19078542292118073,
-0.011213071644306183,
0.0054884497076272964,
0.017118509858846664,
0.03531436622142792,
0.04406333714723587,
-0.02250886894762516,
-0.13400976359844208,
0.003767895046621561,
0.09517374634742737,
0.016435768455266953,
-0.06548155844211578,
0.08135011792182922,
-0.031135452911257744,
-0.012838514521718025,
0.013269869610667229,
-0.09549888223409653,
0.027821088209748268,
-0.00529550900682807,
-0.06445188075304031,
-0.0064668902195990086,
0.03111410140991211,
0.015250608325004578,
-0.04677601158618927,
0.10040076822042465,
-0.07287994772195816,
0.029392004013061523,
-0.09966804087162018,
-0.09373658150434494,
0.018200961872935295,
-0.08734740316867828,
0.026059726253151894,
-0.10096026957035065,
-0.17989443242549896,
-0.0013862402411177754,
0.05569329485297203,
-0.019894547760486603,
-0.06563171744346619,
-0.060223180800676346,
-0.08089710026979446,
0.024243246763944626,
-0.024244874715805054,
0.13878265023231506,
-0.0639360174536705,
0.09613214433193207,
0.04823056235909462,
0.055705148726701736,
-0.056192535907030106,
0.050365567207336426,
-0.092742919921875,
0.008893823251128197,
-0.16491444408893585,
0.03723040968179703,
-0.02991281822323799,
0.07254127413034439,
-0.07373041659593582,
-0.10170633345842361,
-0.013625765219330788,
0.010111406445503235,
0.06454257667064667,
0.08778814226388931,
-0.13931602239608765,
-0.09480423480272293,
0.17240004241466522,
-0.07788410782814026,
-0.12934041023254395,
0.12698693573474884,
-0.04720426723361015,
0.04506911337375641,
0.06456580013036728,
0.17078815400600433,
0.0656139925122261,
-0.08873597532510757,
0.01750519871711731,
0.02256290800869465,
0.0316150076687336,
-0.06265027821063995,
0.05892232432961464,
-0.00836146343499422,
0.026291873306035995,
0.03600236028432846,
-0.023576363921165466,
0.057630978524684906,
-0.07335366308689117,
-0.08774276077747345,
-0.06107800826430321,
-0.07392420619726181,
0.011746806092560291,
0.06234317272901535,
0.08536548167467117,
-0.11429276317358017,
-0.09777410328388214,
0.031036745756864548,
0.07261831313371658,
-0.07820577174425125,
0.04756360128521919,
-0.06162194535136223,
0.07947005331516266,
-0.029436621814966202,
-0.002276446670293808,
-0.17141327261924744,
0.00413710530847311,
0.010783655568957329,
0.000014632037164119538,
0.026540450751781464,
0.013872598297894001,
0.06910976022481918,
0.05502365529537201,
-0.040116097778081894,
-0.01221209205687046,
-0.02485078014433384,
-0.02308073453605175,
-0.12681728601455688,
-0.17892687022686005,
-0.016673699021339417,
-0.018275516107678413,
0.11441506445407867,
-0.18766330182552338,
0.04983299970626831,
0.01719927228987217,
0.04971379414200783,
-0.004759623669087887,
-0.002387251704931259,
-0.05625670403242111,
0.07228076457977295,
-0.05644572898745537,
-0.047185949981212616,
0.07941605895757675,
0.021118564531207085,
-0.0936049148440361,
-0.03574999421834946,
-0.1275227665901184,
0.1550522744655609,
0.1505877524614334,
-0.1266324669122696,
-0.06049998104572296,
-0.007073631044477224,
-0.05873073264956474,
-0.029503095895051956,
-0.01973860152065754,
0.022583000361919403,
0.23075418174266815,
-0.019376415759325027,
0.15775635838508606,
-0.0797579362988472,
-0.057393431663513184,
0.025778399780392647,
-0.03343348205089569,
0.026900647208094597,
0.11761714518070221,
0.1276349127292633,
-0.05862076207995415,
0.14210408926010132,
0.1516975313425064,
-0.09690462797880173,
0.14020901918411255,
-0.04256858304142952,
-0.07266035676002502,
-0.0000677053103572689,
-0.00024727830896154046,
-0.0009822379797697067,
0.06657203286886215,
-0.198159322142601,
-0.014351335354149342,
0.01905493624508381,
0.02395661734044552,
0.041963741183280945,
-0.23451204597949982,
-0.02516399510204792,
0.03519205003976822,
-0.05603107810020447,
0.00449909083545208,
-0.007426997646689415,
-0.008719749748706818,
0.09916818886995316,
0.003115098224952817,
-0.07679049670696259,
0.04475269466638565,
0.0069492291659116745,
-0.08734233677387238,
0.21091866493225098,
-0.07636754959821701,
-0.16981589794158936,
-0.13321365416049957,
-0.08146607130765915,
-0.055861786007881165,
0.016276869922876358,
0.09027846157550812,
-0.08832448720932007,
-0.030840042978525162,
-0.08312886953353882,
0.02735956571996212,
-0.014550518244504929,
0.03482013940811157,
0.022835126146674156,
-0.0010612111072987318,
0.050383828580379486,
-0.11475034803152084,
-0.021801380440592766,
-0.05199496075510979,
-0.07249610126018524,
0.044517867267131805,
0.03374345228075981,
0.11114498227834702,
0.15302132070064545,
-0.008075233548879623,
0.01897740177810192,
-0.029608186334371567,
0.21255527436733246,
-0.07402851432561874,
-0.033390503376722336,
0.15856969356536865,
-0.000755158020183444,
0.05724293366074562,
0.0813046470284462,
0.055513858795166016,
-0.08728713542222977,
0.00983226764947176,
0.01609412394464016,
-0.04771832749247551,
-0.21875478327274323,
-0.03680025786161423,
-0.06613105535507202,
0.002401534002274275,
0.08988571912050247,
0.044250015169382095,
0.05669267848134041,
0.06930949538946152,
0.02678713947534561,
0.09044688940048218,
-0.02083003893494606,
0.06753560900688171,
0.1380571871995926,
0.04289470613002777,
0.1277693808078766,
-0.05944434180855751,
-0.06909795105457306,
0.04488208144903183,
-0.010216080583631992,
0.2178724706172943,
0.014024125412106514,
0.1547800749540329,
0.05472460016608238,
0.15757149457931519,
-0.002572221914306283,
0.08098573237657547,
-0.027038639411330223,
-0.04491271823644638,
-0.0178606528788805,
-0.04317782446742058,
-0.03805088251829147,
0.03003358654677868,
-0.09542376548051834,
0.05448189005255699,
-0.11508235335350037,
0.009230364114046097,
0.05870315805077553,
0.2701497972011566,
0.015754586085677147,
-0.31661874055862427,
-0.0890495628118515,
0.010888748802244663,
-0.04763985797762871,
-0.018901564180850983,
0.03861343115568161,
0.08997596055269241,
-0.08493943512439728,
0.038336433470249176,
-0.0686061903834343,
0.09812978655099869,
-0.03905786573886871,
0.0641254186630249,
0.06718702614307404,
0.08396695554256439,
0.019784729927778244,
0.09215293079614639,
-0.3152852952480316,
0.25784140825271606,
-0.0007832208648324013,
0.07895377278327942,
-0.08777976036071777,
0.025911742821335793,
0.030387170612812042,
0.06258939951658249,
0.07247568666934967,
-0.02597837895154953,
-0.057054318487644196,
-0.14413414895534515,
-0.0553504042327404,
0.039724238216876984,
0.09818856418132782,
-0.022724507376551628,
0.09447894245386124,
-0.03684036061167717,
0.012917316518723965,
0.0694168359041214,
-0.003739331616088748,
-0.03450774401426315,
-0.12096600234508514,
0.0030504250898957253,
0.02495109662413597,
-0.054450299590826035,
-0.06289693713188171,
-0.0989706888794899,
-0.13275696337223053,
0.1846151202917099,
-0.04068414121866226,
-0.041955143213272095,
-0.10019321739673615,
0.05491079390048981,
0.04604039713740349,
-0.09039495140314102,
0.041664980351924896,
0.005939343478530645,
0.06835458427667618,
0.028410008177161217,
-0.08419841527938843,
0.10913514345884323,
-0.06534608453512192,
-0.155705988407135,
-0.04194490984082222,
0.1111355796456337,
0.011229456402361393,
0.05189123377203941,
-0.012360859662294388,
0.009027463383972645,
-0.06405801326036453,
-0.10445764660835266,
0.018221894279122353,
-0.009970980696380138,
0.07616333663463593,
-0.014592284336686134,
-0.054334018379449844,
0.03350662812590599,
-0.06298363953828812,
-0.04297386854887009,
0.20899252593517303,
0.22805258631706238,
-0.08450626581907272,
0.0352441631257534,
0.02014089561998844,
-0.07683642953634262,
-0.19896955788135529,
0.006102752406150103,
0.040780823677778244,
0.0007942160009406507,
0.009864721447229385,
-0.18600450456142426,
0.10637687891721725,
0.11222109198570251,
-0.012262891978025436,
0.12757359445095062,
-0.3567127287387848,
-0.12981826066970825,
0.11584068089723587,
0.13081881403923035,
0.12453541904687881,
-0.15674592554569244,
-0.02827749028801918,
-0.034162282943725586,
-0.11836014688014984,
0.09509821981191635,
-0.1035427674651146,
0.12366300821304321,
-0.037920113652944565,
0.09693010151386261,
-0.002618335420265794,
-0.06031116470694542,
0.11082872003316879,
-0.001695383689366281,
0.08610232174396515,
-0.07282381504774094,
0.0016137202037498355,
0.03016698732972145,
-0.037467893213033676,
0.03163902461528778,
-0.1292082965373993,
0.022449247539043427,
-0.09288719296455383,
-0.0313536673784256,
-0.06361163407564163,
0.04781480133533478,
-0.030942823737859726,
-0.0556039921939373,
-0.0384317971765995,
-0.026229947805404663,
0.040303248912096024,
-0.003390358295291662,
0.15709653496742249,
0.012076949700713158,
0.14162412285804749,
0.11380090564489365,
0.08860782533884048,
-0.09846673160791397,
-0.0563422292470932,
-0.018754733726382256,
-0.00947896484285593,
0.05835980549454689,
-0.15495920181274414,
0.022455675527453423,
0.13045816123485565,
0.015364018268883228,
0.13119235634803772,
0.09012340754270554,
-0.023200109601020813,
0.02310366742312908,
0.0600946806371212,
-0.1781502664089203,
-0.08761449158191681,
-0.018992412835359573,
-0.04269208014011383,
-0.08557376265525818,
0.06777767091989517,
0.09650351852178574,
-0.06511034071445465,
-0.006099587306380272,
-0.010219492018222809,
0.0051897750236094,
-0.061448052525520325,
0.16553351283073425,
0.030874056741595268,
0.036186583340168,
-0.09764053672552109,
0.06883846968412399,
0.031033409759402275,
-0.09051930159330368,
0.026515714824199677,
0.10120793431997299,
-0.07915274053812027,
-0.056907981634140015,
0.07153917104005814,
0.17402002215385437,
-0.05500908941030502,
-0.0549575537443161,
-0.13600091636180878,
-0.1307031512260437,
0.09254186600446701,
0.14507779479026794,
0.1094866544008255,
0.008974512107670307,
-0.06912553310394287,
0.026394685730338097,
-0.12023743987083435,
0.07595054805278778,
0.01752055063843727,
0.0649205893278122,
-0.13025502860546112,
0.1403416395187378,
0.018477721139788628,
0.04210285842418671,
-0.021788010373711586,
0.0245546605437994,
-0.09329211711883545,
0.014922255650162697,
-0.10963162779808044,
-0.024785863235592842,
-0.028559371829032898,
0.00045781914377585053,
0.00126043485943228,
-0.039320237934589386,
-0.06696983426809311,
0.0197520162910223,
-0.11330541223287582,
-0.024366814643144608,
0.01505294255912304,
0.05245044082403183,
-0.10619164258241653,
-0.019268648698925972,
0.028505563735961914,
-0.07208744436502457,
0.07615699619054794,
0.06740924715995789,
0.008474166505038738,
0.07000183314085007,
-0.1446516215801239,
0.02061592973768711,
0.08146732300519943,
0.025731533765792847,
0.04448211193084717,
-0.06869412213563919,
-0.006551444996148348,
0.01876293309032917,
0.057844363152980804,
0.019602090120315552,
0.06504455953836441,
-0.14189757406711578,
0.00976424291729927,
-0.017615042626857758,
-0.09514930844306946,
-0.07110154628753662,
0.031829264014959335,
0.07846935838460922,
0.008141113445162773,
0.19915729761123657,
-0.0845981165766716,
0.034865736961364746,
-0.20004726946353912,
0.01674378290772438,
0.00783037394285202,
-0.11711649596691132,
-0.11540446430444717,
-0.07313238829374313,
0.05637813359498978,
-0.054578736424446106,
0.14961503446102142,
0.02219170704483986,
0.0220696572214365,
0.02920030802488327,
-0.025889599695801735,
0.03185104578733444,
0.009471672587096691,
0.23475995659828186,
0.044346366077661514,
-0.03461979702115059,
0.049091145396232605,
0.04005514085292816,
0.11224639415740967,
0.09754115343093872,
0.19556207954883575,
0.13134925067424774,
-0.014144772663712502,
0.12221409380435944,
0.026940396055579185,
-0.043218452483415604,
-0.16206499934196472,
0.03835810720920563,
-0.04363081976771355,
0.11582822352647781,
-0.02231883443892002,
0.22713464498519897,
0.10789533704519272,
-0.15208709239959717,
0.0335286520421505,
-0.04364963620901108,
-0.07588652521371841,
-0.12063096463680267,
-0.0720706507563591,
-0.0820397436618805,
-0.15232424437999725,
0.010998135432600975,
-0.11197800189256668,
0.030639473348855972,
0.09070561826229095,
0.008990966714918613,
-0.03009095788002014,
0.1590561866760254,
0.03000054508447647,
0.012810504995286465,
0.05634384974837303,
-0.005485121626406908,
-0.03160809352993965,
-0.10431920737028122,
-0.06477000564336777,
-0.018107088282704353,
-0.0283319391310215,
0.047042373567819595,
-0.040762852877378464,
-0.050759099423885345,
0.03259798884391785,
-0.03584195300936699,
-0.08371960371732712,
0.0067182909697294235,
0.024672580882906914,
0.06354303658008575,
0.04371257871389389,
0.0026055886410176754,
-0.004670150578022003,
-0.0064459871500730515,
0.20439034700393677,
-0.08730269968509674,
-0.08167767524719238,
-0.07716140151023865,
0.24871663749217987,
0.04414954409003258,
-0.0071757398545742035,
0.017924221232533455,
-0.053497713059186935,
-0.011567256413400173,
0.2789044976234436,
0.20209148526191711,
-0.06732571870088577,
-0.008100504986941814,
0.005027037113904953,
-0.0010701667051762342,
-0.016357174143195152,
0.11054019629955292,
0.16260436177253723,
0.06915086507797241,
-0.08656234294176102,
-0.047941457480192184,
-0.044562362134456635,
0.002052710624411702,
-0.06526816636323929,
0.07649657875299454,
0.035020362585783005,
-0.00413206173107028,
-0.02341560833156109,
0.04299053177237511,
-0.06312926858663559,
-0.06256786733865738,
0.031317707151174545,
-0.1924925297498703,
-0.14121145009994507,
0.01681959256529808,
0.13309255242347717,
-0.008666014298796654,
0.07223021239042282,
-0.02133398875594139,
-0.010540107265114784,
0.06701137125492096,
-0.018650012090802193,
-0.11468195915222168,
-0.04471354931592941,
0.0844879150390625,
-0.14249271154403687,
0.19887536764144897,
-0.04229637235403061,
0.061928752809762955,
0.1254209578037262,
0.06536075472831726,
-0.0665871724486351,
0.07668159157037735,
0.03193240240216255,
-0.07017600536346436,
0.03178057447075844,
0.07220780104398727,
-0.027154529467225075,
0.02786719985306263,
0.04959278926253319,
-0.11241080611944199,
0.02165621519088745,
-0.05883655697107315,
-0.046509236097335815,
-0.031249644234776497,
-0.04584915563464165,
-0.07146351784467697,
0.12345847487449646,
0.20228703320026398,
-0.02110148034989834,
-0.0023121878039091825,
-0.07694638520479202,
0.011732825078070164,
0.044571198523044586,
0.03546658530831337,
-0.062274787575006485,
-0.22559262812137604,
-0.002270206343382597,
0.07193957269191742,
-0.028978057205677032,
-0.26471731066703796,
-0.09302103519439697,
-0.0005294749862514436,
-0.060326479375362396,
-0.11624365299940109,
0.06115511804819107,
0.10020197927951813,
0.04463325813412666,
-0.05539698526263237,
-0.05594179406762123,
-0.07388204336166382,
0.15519540011882782,
-0.14047743380069733,
-0.09014378488063812
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# first
This model is a fine-tuned version of [longformer-gottbert-base-8192-aw512-](https://huggingface.co/longformer-8192-aw512-gottbert-base) on the a 500 million token subset of the german parts of the OSCAR dataset.
It achieves the following results on the custom evaluation set:
- Loss: 1.4981
## Model description
The weights of the model are initialized from the german version of Roberta [gottbert-base](https://huggingface.co/uklfr/gottbert-base).
The local attention windows have a fixed size of 512 tokens across all layers.
The maximum sequence length is 8192.
## Intended uses & limitations
Longformer models enable processing long texts using a mixture of local attention on each subword token and task specific global attention on a subset of the tokens.
## Training and evaluation data
The [OSCAR](https://oscar-corpus.com) dataset is freely avaible corpus of filtered web texts from the Common Crawl in various languages. We used the 2017 version of the dataset.
## Training procedure
The model was trained with masked language modeling for 3 epochs on a customly created 500 million tokens subset of the german proportion of the [OSCAR](https://oscar-corpus.com) dataset.
It was validated using 5% of the original subset.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.5636 | 0.1 | 500 | 2.2399 |
| 2.0426 | 0.2 | 1000 | 1.8841 |
| 1.9653 | 0.3 | 1500 | 1.7807 |
| 1.9422 | 0.4 | 2000 | 1.7206 |
| 1.9323 | 0.49 | 2500 | 1.6800 |
| 1.7587 | 0.59 | 3000 | 1.6507 |
| 1.7239 | 0.69 | 3500 | 1.6316 |
| 1.7452 | 0.79 | 4000 | 1.6137 |
| 1.7415 | 0.89 | 4500 | 1.5983 |
| 1.7733 | 0.99 | 5000 | 1.5830 |
| 1.7656 | 1.09 | 5500 | 1.5735 |
| 1.6543 | 1.19 | 6000 | 1.5643 |
| 1.7131 | 1.28 | 6500 | 1.5546 |
| 1.6456 | 1.38 | 7000 | 1.5503 |
| 1.716 | 1.48 | 7500 | 1.5422 |
| 1.806 | 1.58 | 8000 | 1.5377 |
| 1.8407 | 1.68 | 8500 | 1.5327 |
| 1.6371 | 1.78 | 9000 | 1.5278 |
| 1.6453 | 1.88 | 9500 | 1.5231 |
| 1.7754 | 1.98 | 10000 | 1.5214 |
| 1.7695 | 2.08 | 10500 | 1.5165 |
| 1.7109 | 2.17 | 11000 | 1.5138 |
| 1.6992 | 2.27 | 11500 | 1.5107 |
| 1.6707 | 2.37 | 12000 | 1.5097 |
| 1.6835 | 2.47 | 12500 | 1.5040 |
| 1.7171 | 2.57 | 13000 | 1.5041 |
| 1.7257 | 2.67 | 13500 | 1.4990 |
| 1.6287 | 2.77 | 14000 | 1.5017 |
| 1.7737 | 2.87 | 14500 | 1.4983 |
| 1.4002 | 2.96 | 15000 | 1.4992 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "first", "results": []}]} | fill-mask | LennartKeller/longformer-gottbert-base-8192-aw512 | [
"transformers",
"pytorch",
"safetensors",
"longformer",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #safetensors #longformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| first
=====
This model is a fine-tuned version of longformer-gottbert-base-8192-aw512- on the a 500 million token subset of the german parts of the OSCAR dataset.
It achieves the following results on the custom evaluation set:
* Loss: 1.4981
Model description
-----------------
The weights of the model are initialized from the german version of Roberta gottbert-base.
The local attention windows have a fixed size of 512 tokens across all layers.
The maximum sequence length is 8192.
Intended uses & limitations
---------------------------
Longformer models enable processing long texts using a mixture of local attention on each subword token and task specific global attention on a subset of the tokens.
Training and evaluation data
----------------------------
The OSCAR dataset is freely avaible corpus of filtered web texts from the Common Crawl in various languages. We used the 2017 version of the dataset.
Training procedure
------------------
The model was trained with masked language modeling for 3 epochs on a customly created 500 million tokens subset of the german proportion of the OSCAR dataset.
It was validated using 5% of the original subset.
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 2
* eval\_batch\_size: 4
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 16
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 3.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1+cu113
* Datasets 1.17.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #safetensors #longformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] | [
49,
159,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #longformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu113\n* Datasets 1.17.0\n* Tokenizers 0.10.3"
] | [
-0.1275612860918045,
0.05506393313407898,
-0.002775980159640312,
0.09256312251091003,
0.14804986119270325,
0.022818749770522118,
0.12101464718580246,
0.11850626021623611,
-0.1073843315243721,
0.07019662857055664,
0.12978123128414154,
0.07995116710662842,
0.04130259528756142,
0.13828538358211517,
-0.030688900500535965,
-0.30871373414993286,
0.005854885559529066,
0.010216668248176575,
-0.1413225531578064,
0.12551556527614594,
0.099289171397686,
-0.12783969938755035,
0.0573028102517128,
0.024804966524243355,
-0.14172446727752686,
-0.025812918320298195,
-0.0028279488906264305,
-0.08208481222391129,
0.11706195026636124,
0.00645430339500308,
0.1282099038362503,
0.019072681665420532,
0.0922539010643959,
-0.17051130533218384,
0.008437245152890682,
0.05223469436168671,
0.03700026497244835,
0.08744171261787415,
0.08000905066728592,
-0.00025924021610990167,
0.06577250361442566,
-0.10691652446985245,
0.0849282294511795,
0.02322952263057232,
-0.12413109838962555,
-0.3090033233165741,
-0.09555929154157639,
0.052996646612882614,
0.10500526428222656,
0.09520217031240463,
-0.0023637425620108843,
0.10710073262453079,
-0.10577153414487839,
0.07147090137004852,
0.27803075313568115,
-0.26775744557380676,
-0.07914169132709503,
-0.04077831655740738,
0.04200373962521553,
0.016170548275113106,
-0.12646816670894623,
-0.04654496908187866,
0.027647269889712334,
0.040203195065259933,
0.15468885004520416,
0.011851788498461246,
-0.008851954713463783,
0.00529833510518074,
-0.15258735418319702,
-0.0402599573135376,
0.07865679264068604,
0.03684915602207184,
-0.0365290492773056,
-0.08288930356502533,
-0.04054637625813484,
-0.23207980394363403,
-0.05371079221367836,
0.002297519240528345,
0.028141694143414497,
-0.07690417766571045,
-0.08321177214384079,
0.015907201915979385,
-0.09290288388729095,
-0.08041110634803772,
-0.013649942353367805,
0.21496061980724335,
0.06421328336000443,
-0.007614735048264265,
-0.027792027220129967,
0.11459257453680038,
0.036406803876161575,
-0.1737992912530899,
0.011057967320084572,
0.023377902805805206,
-0.04118703305721283,
-0.025276202708482742,
-0.05125811696052551,
-0.009861298836767673,
0.001385658048093319,
0.16242514550685883,
-0.08134272694587708,
0.03517569229006767,
0.05063080042600632,
0.02828337997198105,
-0.1205325797200203,
0.18006214499473572,
-0.07474222034215927,
-0.010795814916491508,
0.001030927523970604,
0.11144109815359116,
0.018295397982001305,
-0.0036682242061942816,
-0.0669073760509491,
0.004692563321441412,
0.10567350685596466,
0.04790279269218445,
-0.031863532960414886,
0.03144553303718567,
-0.0495729073882103,
-0.0169390719383955,
0.04220975190401077,
-0.10367302596569061,
0.03790117800235748,
0.01982451230287552,
-0.10129570215940475,
-0.02494034916162491,
0.008392278105020523,
-0.008816077373921871,
-0.006798663176596165,
0.16701072454452515,
-0.09043054282665253,
0.0009982712799683213,
-0.10241635888814926,
-0.11276248842477798,
0.015048903413116932,
-0.039517130702733994,
0.00930829532444477,
-0.08247118443250656,
-0.1304710954427719,
-0.017441917210817337,
0.027704747393727303,
-0.0466441884636879,
-0.05056239664554596,
-0.027464374899864197,
-0.09828098118305206,
0.04033626988530159,
-0.012744225561618805,
0.15699909627437592,
-0.06200256943702698,
0.12566694617271423,
0.054890599101781845,
0.07922259718179703,
0.034392546862363815,
0.05350421741604805,
-0.08314019441604614,
0.03104584477841854,
-0.1903494894504547,
0.011767481453716755,
-0.05618296191096306,
0.05187661945819855,
-0.09084141999483109,
-0.14874181151390076,
0.011765028350055218,
-0.016696790233254433,
0.10365641117095947,
0.1273459494113922,
-0.11462385952472687,
-0.08738164603710175,
0.1731356680393219,
-0.08747491985559464,
-0.11425866931676865,
0.13437248766422272,
-0.015246767550706863,
-0.020583687350153923,
0.013937007635831833,
0.08990181982517242,
0.1213727593421936,
-0.10819271951913834,
0.00553169846534729,
-0.05038042739033699,
0.08343958854675293,
-0.007081311661750078,
0.09816166758537292,
0.002799793379381299,
0.01778818666934967,
0.0109938345849514,
-0.04416128993034363,
0.07914452254772186,
-0.11163383722305298,
-0.08659829199314117,
-0.028220901265740395,
-0.08393516391515732,
0.08943373709917068,
0.05216551572084427,
0.06255471706390381,
-0.09679455310106277,
-0.117604561150074,
0.023348137736320496,
0.10346958786249161,
-0.04747267812490463,
0.017724985256791115,
-0.06277171522378922,
0.08813203126192093,
-0.03753707557916641,
-0.028751885518431664,
-0.16817259788513184,
-0.08549045771360397,
0.012014472857117653,
-0.03889715299010277,
-0.008539171889424324,
-0.06261245161294937,
0.09377837926149368,
0.09710824489593506,
-0.056819502264261246,
-0.07315240055322647,
-0.09045455604791641,
-0.018681515008211136,
-0.09221436083316803,
-0.21607892215251923,
-0.0836237445473671,
-0.012386081740260124,
0.14859133958816528,
-0.1937711238861084,
0.03410359472036362,
-0.026604311540722847,
0.10989873111248016,
0.03279803693294525,
-0.014165867120027542,
-0.02230319008231163,
0.08351238816976547,
-0.010514591820538044,
-0.05978767201304436,
0.03374827653169632,
-0.0013302098959684372,
-0.08416002243757248,
-0.022588325664401054,
-0.13073229789733887,
0.1615944802761078,
0.10955195128917694,
-0.008108379319310188,
-0.10848817974328995,
-0.012284237891435623,
-0.08651769161224365,
-0.05436117947101593,
-0.0427512563765049,
0.0293967816978693,
0.12581777572631836,
0.029577035456895828,
0.14257945120334625,
-0.07031910866498947,
-0.05278648063540459,
0.04118109866976738,
-0.020919814705848694,
0.007786339148879051,
0.10864359885454178,
0.0666622593998909,
-0.03905296325683594,
0.1350036859512329,
0.13690875470638275,
-0.09740646928548813,
0.1501121073961258,
-0.04998815059661865,
-0.1102374717593193,
-0.0254533588886261,
0.009964180178940296,
0.03389444947242737,
0.13585206866264343,
-0.08024188131093979,
0.0055258609354496,
0.029833512380719185,
0.01466867234557867,
0.009539524093270302,
-0.21825487911701202,
-0.03241784870624542,
0.0415310338139534,
-0.03567752614617348,
-0.02912948653101921,
-0.008809506893157959,
0.04974275454878807,
0.11323866248130798,
0.03148815408349037,
-0.06850031018257141,
0.008346869610249996,
0.0019088214030489326,
-0.06662923842668533,
0.21675074100494385,
-0.0869016945362091,
-0.15797336399555206,
-0.14754857122898102,
-0.01589703932404518,
-0.0394442155957222,
-0.013567361049354076,
0.045608486980199814,
-0.10545077919960022,
-0.023073654621839523,
-0.03958602249622345,
0.05944308638572693,
0.0029088782612234354,
0.06395237147808075,
-0.024484511464834213,
0.005570453591644764,
0.06876140832901001,
-0.09220673888921738,
0.009340589866042137,
-0.034272901713848114,
-0.038768693804740906,
0.04426887631416321,
0.08512216806411743,
0.09733336418867111,
0.1435232162475586,
-0.005709399003535509,
0.0018237828044220805,
-0.027257699519395828,
0.17745710909366608,
-0.09116457402706146,
-0.043229252099990845,
0.1522984802722931,
-0.007296321913599968,
0.06031499058008194,
0.1057104840874672,
0.0659015104174614,
-0.07404229044914246,
0.02083275094628334,
0.031216422095894814,
-0.013933801092207432,
-0.19611264765262604,
-0.03577041998505592,
-0.04788842797279358,
-0.004628690890967846,
0.12836501002311707,
0.016954626888036728,
-0.009280029684305191,
0.0570513978600502,
-0.021760251373052597,
0.0017059092642739415,
-0.038237471133470535,
0.08393126726150513,
0.0559329017996788,
0.0462590754032135,
0.12027288973331451,
-0.014512584544718266,
-0.07171471416950226,
0.02815142273902893,
-0.03529555723071098,
0.2256101667881012,
-0.04882045462727547,
0.1233353391289711,
0.03906022384762764,
0.19901315867900848,
0.011340467259287834,
0.10775117576122284,
0.02099638059735298,
-0.0512382946908474,
0.02669755183160305,
-0.057922981679439545,
-0.022543899714946747,
0.018350865691900253,
0.0036141735035926104,
0.09661528468132019,
-0.17594873905181885,
0.005090923048555851,
0.02569972351193428,
0.3429427444934845,
0.06409317255020142,
-0.3494553565979004,
-0.12816987931728363,
-0.016756881028413773,
-0.041267815977334976,
-0.05090630427002907,
0.004009469412267208,
0.10155722498893738,
-0.10818423330783844,
0.04484901577234268,
-0.08738180994987488,
0.0646839365363121,
-0.019004981964826584,
0.006488483399152756,
0.09749791771173477,
0.1150718405842781,
-0.002208428457379341,
0.055967070162296295,
-0.2479369044303894,
0.30846673250198364,
-0.00595833221450448,
0.07085147500038147,
-0.07148366421461105,
0.020632455125451088,
0.034093234688043594,
-0.011478581465780735,
0.05632258579134941,
-0.024561094120144844,
-0.03225909546017647,
-0.2069561928510666,
-0.11520890891551971,
0.0034665297716856003,
0.13312765955924988,
-0.06088684871792793,
0.1392684280872345,
-0.032107848674058914,
-0.022192606702446938,
0.052630238234996796,
-0.07690930366516113,
-0.046753570437431335,
-0.07300326973199844,
0.027551384642720222,
0.003980700392276049,
0.018972963094711304,
-0.10708130896091461,
-0.13021507859230042,
-0.04227365925908089,
0.17093676328659058,
-0.05795551463961601,
-0.03958943486213684,
-0.13813623785972595,
0.09298673272132874,
0.14731566607952118,
-0.08295843005180359,
0.06807141751050949,
0.01126146037131548,
0.11650515347719193,
0.022487934678792953,
-0.03273603320121765,
0.11378951370716095,
-0.09186612814664841,
-0.2307468205690384,
-0.04737982898950577,
0.15055324137210846,
0.028667321428656578,
0.06387825310230255,
-0.04019838944077492,
0.03398216888308525,
-0.027974585071206093,
-0.08471042662858963,
0.021522777155041695,
-0.030426520854234695,
0.05630792677402496,
0.05506705865263939,
-0.04932541400194168,
0.02634279429912567,
-0.04997483640909195,
-0.02359643019735813,
0.14983665943145752,
0.3065316677093506,
-0.10414846986532211,
0.01483948901295662,
0.03412007540464401,
-0.008532397449016571,
-0.17000801861286163,
0.026466073468327522,
0.1042179986834526,
0.02278858795762062,
0.016095152124762535,
-0.17917007207870483,
0.08061172813177109,
0.09727256745100021,
-0.02283434197306633,
0.10855166614055634,
-0.31859660148620605,
-0.13508620858192444,
0.11774065345525742,
0.12628334760665894,
0.041466470807790756,
-0.15359941124916077,
-0.029423486441373825,
0.011736641637980938,
-0.0881473496556282,
0.0843442752957344,
-0.03248891606926918,
0.12007437646389008,
-0.04530706629157066,
0.0630529522895813,
0.02620234526693821,
-0.07800131291151047,
0.14273791015148163,
-0.053623877465724945,
0.08227137476205826,
-0.03427307680249214,
0.009846610948443413,
0.040795937180519104,
-0.060237471014261246,
0.028371214866638184,
-0.04606568440794945,
0.026216134428977966,
-0.08512577414512634,
-0.0194917693734169,
-0.11669781059026718,
0.03768002241849899,
-0.04936997964978218,
-0.0447685532271862,
-0.015525131486356258,
0.051557477563619614,
0.03941831365227699,
-0.027712058275938034,
0.13387498259544373,
0.027420207858085632,
0.18161915242671967,
0.06619314849376678,
0.07099026441574097,
-0.014538325369358063,
-0.09965375810861588,
0.0012683580862358212,
-0.013114883564412594,
0.07100523263216019,
-0.0870891734957695,
0.014936798252165318,
0.13772514462471008,
0.05304521694779396,
0.10675769299268723,
0.08822783827781677,
-0.04605939984321594,
-0.0023689130321145058,
0.09451356530189514,
-0.1445084661245346,
-0.0837801918387413,
-0.018065178766846657,
0.00940393004566431,
-0.16469983756542206,
0.016539137810468674,
0.09397628158330917,
-0.07519259303808212,
-0.01940147764980793,
0.0015532971592620015,
0.027294909581542015,
-0.037970297038555145,
0.23285910487174988,
0.04687706008553505,
0.08871158957481384,
-0.09423317760229111,
0.06390394270420074,
0.053094442933797836,
-0.13178426027297974,
0.00043463055044412613,
0.12136468291282654,
-0.05869908258318901,
-0.02022279053926468,
0.06259104609489441,
0.0677192434668541,
-0.04467136040329933,
-0.04218119755387306,
-0.16299177706241608,
-0.13199535012245178,
0.08069215714931488,
0.1491934061050415,
0.05415713042020798,
0.017157170921564102,
-0.009983564727008343,
0.046373989433050156,
-0.1364719569683075,
0.10967491567134857,
0.07220848649740219,
0.08725512027740479,
-0.13814234733581543,
0.19125406444072723,
-0.006419038865715265,
0.05303805693984032,
-0.008465318940579891,
0.032609496265649796,
-0.1147809624671936,
0.009897677227854729,
-0.10341450572013855,
-0.04574403539299965,
-0.03881600499153137,
-0.01071091741323471,
-0.012672758661210537,
-0.044930074363946915,
-0.04913443326950073,
0.01861487329006195,
-0.10899294167757034,
-0.0467957966029644,
0.002932175761088729,
0.027271693572402,
-0.13097944855690002,
-0.029455000534653664,
0.043035246431827545,
-0.11412575840950012,
0.0885639637708664,
0.06895219534635544,
0.053771357983350754,
0.03114371933043003,
-0.06962969154119492,
-0.012276455760002136,
0.04217742383480072,
-0.017341265454888344,
0.054802924394607544,
-0.15951184928417206,
0.006084660068154335,
-0.043696511536836624,
0.022901995107531548,
0.012058192864060402,
0.05452950298786163,
-0.15587830543518066,
0.005087529309093952,
-0.001318599795922637,
-0.03382616117596626,
-0.06591790169477463,
0.007609374355524778,
0.04487023875117302,
0.0003941615577787161,
0.1639658510684967,
-0.09184033423662186,
0.06642666459083557,
-0.20979291200637817,
-0.0062965466640889645,
-0.055400703102350235,
-0.08907948434352875,
-0.0617280974984169,
-0.008494277484714985,
0.09166119992733002,
-0.0453198105096817,
0.07321731746196747,
-0.03505413234233856,
0.07466892153024673,
0.04480071738362312,
-0.04782232642173767,
0.02567853033542633,
0.05356498062610626,
0.15637074410915375,
0.035334087908267975,
-0.05002644285559654,
0.07865012437105179,
0.05118127912282944,
0.07554793357849121,
0.11955572664737701,
0.23130309581756592,
0.14119574427604675,
0.036629341542720795,
0.08639073371887207,
0.04732322692871094,
-0.10053913295269012,
-0.16636234521865845,
0.03398539870977402,
-0.030713263899087906,
0.10686555504798889,
-0.013736842200160027,
0.17224153876304626,
0.11133012920618057,
-0.1764535754919052,
0.0501335971057415,
-0.040314219892024994,
-0.07292374968528748,
-0.10963858664035797,
0.0031345048919320107,
-0.06839309632778168,
-0.13532575964927673,
0.006752866320312023,
-0.10732180625200272,
0.016448544338345528,
0.07100384682416916,
0.028407501056790352,
0.015135616064071655,
0.18673203885555267,
0.07261009514331818,
0.026529375463724136,
0.07653365284204483,
0.035622283816337585,
0.013026555068790913,
-0.04007559269666672,
-0.08867379277944565,
-0.0032629440538585186,
-0.04619589447975159,
0.04134368151426315,
-0.06595588475465775,
-0.10819660127162933,
0.05965372547507286,
0.018441572785377502,
-0.1169867217540741,
0.03062155842781067,
-0.004796554334461689,
0.0880369022488594,
0.06616124510765076,
0.00702865794301033,
0.02268378995358944,
-0.044050030410289764,
0.2583160102367401,
-0.1046796664595604,
-0.07658589631319046,
-0.11812493205070496,
0.2834118604660034,
0.02419767715036869,
-0.033713143318891525,
0.02847857028245926,
-0.07550971210002899,
-0.031880006194114685,
0.17949771881103516,
0.1579117774963379,
-0.04191172495484352,
0.01055772416293621,
0.015042456798255444,
-0.02427288331091404,
-0.05358500778675079,
0.09199117869138718,
0.14937803149223328,
0.10211720317602158,
-0.09193532913923264,
-0.04675443843007088,
-0.05370757356286049,
-0.023877903819084167,
-0.06464575231075287,
0.07086769491434097,
0.023055147379636765,
0.023631973192095757,
-0.04423472657799721,
0.06463649123907089,
-0.036910656839609146,
-0.10743249952793121,
0.06581363826990128,
-0.21196720004081726,
-0.20111379027366638,
-0.03469768911600113,
0.06746669113636017,
0.00796514842659235,
0.08440332114696503,
0.012368058785796165,
-0.03601834923028946,
0.06566664576530457,
-0.005169044714421034,
-0.030390720814466476,
-0.1303291767835617,
0.10588547587394714,
-0.04564932361245155,
0.22381621599197388,
-0.0380549319088459,
0.03259362280368805,
0.12661436200141907,
0.049525175243616104,
-0.12201820313930511,
0.018938491120934486,
0.08090810477733612,
-0.13269679248332977,
0.034985560923814774,
0.18789459764957428,
-0.0351673886179924,
0.07173656672239304,
0.029708081856369972,
-0.16338562965393066,
0.0059308079071342945,
-0.08649295568466187,
-0.043810054659843445,
-0.03450614586472511,
-0.01956113427877426,
-0.022931188344955444,
0.1324746310710907,
0.2479933798313141,
-0.055838435888290405,
-0.013917610980570316,
-0.06070786714553833,
0.01715485379099846,
0.07270841300487518,
0.10094278305768967,
-0.04337137192487717,
-0.268318235874176,
0.023288942873477936,
0.03954185172915459,
0.0027352089527994394,
-0.2715061902999878,
-0.09552903473377228,
0.04982774704694748,
-0.06801974773406982,
-0.0890418142080307,
0.08859667181968689,
0.052123382687568665,
0.06085997447371483,
-0.04846210405230522,
-0.07159212976694107,
-0.07394270598888397,
0.1677674502134323,
-0.1917819231748581,
-0.080500528216362
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# first
This model is a fine-tuned version of [nystromformer-gottbert-base-8192](https://huggingface.co/nystromformer-gottbert-base-8192) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.7133 | 0.1 | 500 | 6.6155 |
| 2.7876 | 0.2 | 1000 | 2.5542 |
| 2.1831 | 0.3 | 1500 | 2.0356 |
| 2.0316 | 0.4 | 2000 | 1.8793 |
| 2.0678 | 0.49 | 2500 | 1.7954 |
| 1.8182 | 0.59 | 3000 | 1.7473 |
| 1.7393 | 0.69 | 3500 | 1.7081 |
| 1.7586 | 0.79 | 4000 | 1.6787 |
| 1.7417 | 0.89 | 4500 | 1.6563 |
| 1.8256 | 0.99 | 5000 | 1.6370 |
| 1.7957 | 1.09 | 5500 | 1.6219 |
| 1.6876 | 1.19 | 6000 | 1.6084 |
| 1.7172 | 1.28 | 6500 | 1.5941 |
| 1.6564 | 1.38 | 7000 | 1.5881 |
| 1.732 | 1.48 | 7500 | 1.5757 |
| 1.8272 | 1.58 | 8000 | 1.5692 |
| 1.7951 | 1.68 | 8500 | 1.5617 |
| 1.6669 | 1.78 | 9000 | 1.5546 |
| 1.6489 | 1.88 | 9500 | 1.5458 |
| 1.772 | 1.98 | 10000 | 1.5439 |
| 1.7424 | 2.08 | 10500 | 1.5379 |
| 1.7077 | 2.17 | 11000 | 1.5322 |
| 1.6926 | 2.27 | 11500 | 1.5294 |
| 1.656 | 2.37 | 12000 | 1.5274 |
| 1.7002 | 2.47 | 12500 | 1.5201 |
| 1.7102 | 2.57 | 13000 | 1.5197 |
| 1.7158 | 2.67 | 13500 | 1.5162 |
| 1.6081 | 2.77 | 14000 | 1.5169 |
| 1.754 | 2.87 | 14500 | 1.5140 |
| 1.3588 | 2.96 | 15000 | 1.5135 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.1+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "first", "results": []}]} | fill-mask | LennartKeller/nystromformer-gottbert-base-8192 | [
"transformers",
"pytorch",
"safetensors",
"nystromformer",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #safetensors #nystromformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| first
=====
This model is a fine-tuned version of nystromformer-gottbert-base-8192 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.5135
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 2
* eval\_batch\_size: 4
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 16
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 3.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.1+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #safetensors #nystromformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
50,
159,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #nystromformer #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.1+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.12769226729869843,
0.08607607334852219,
-0.0028185350820422173,
0.08430663496255875,
0.14555679261684418,
0.030167318880558014,
0.12406685203313828,
0.12278791517019272,
-0.08479885756969452,
0.06701286137104034,
0.1245448961853981,
0.09598717093467712,
0.03870777040719986,
0.137950599193573,
-0.025704242289066315,
-0.3074667453765869,
0.014739871956408024,
0.02263643406331539,
-0.1473316103219986,
0.12764722108840942,
0.09938058257102966,
-0.1188119575381279,
0.05042530968785286,
0.027354536578059196,
-0.13687469065189362,
-0.01725633442401886,
0.004331188276410103,
-0.07391460239887238,
0.1297101378440857,
0.008627637289464474,
0.14114302396774292,
0.029107989743351936,
0.10184847563505173,
-0.18105603754520416,
0.012088327668607235,
0.06362351030111313,
0.0291929729282856,
0.08859004080295563,
0.07464687526226044,
-0.013546561822295189,
0.08370034396648407,
-0.09514927119016647,
0.08473268896341324,
0.018359579145908356,
-0.1284225583076477,
-0.3063971996307373,
-0.09260102361440659,
0.05519483610987663,
0.1144394651055336,
0.08473022282123566,
-0.0064221592620015144,
0.12830503284931183,
-0.0738091990351677,
0.08311305940151215,
0.2648327052593231,
-0.2626537084579468,
-0.0876777172088623,
-0.019497988745570183,
0.04060746729373932,
0.009641600772738457,
-0.1171916276216507,
-0.04127737134695053,
0.027162449434399605,
0.04118170589208603,
0.15148232877254486,
0.003927248064428568,
-0.006126953288912773,
-0.0034242058172822,
-0.16001227498054504,
-0.04687048867344856,
0.0965997502207756,
0.04186225309967995,
-0.03850492462515831,
-0.06768327206373215,
-0.05595622584223747,
-0.18439243733882904,
-0.04455278441309929,
0.0013346958439797163,
0.0118746068328619,
-0.07087834179401398,
-0.09553965926170349,
0.010222191922366619,
-0.08993159234523773,
-0.08210063725709915,
0.007924295961856842,
0.22695931792259216,
0.0567818284034729,
-0.0029605734162032604,
-0.001545121893286705,
0.12893858551979065,
0.02579486183822155,
-0.17230728268623352,
0.02549813501536846,
0.015290671028196812,
-0.061232175678014755,
-0.02534034289419651,
-0.04697072133421898,
-0.015287382528185844,
-0.0022961266804486513,
0.16225942969322205,
-0.06697001308202744,
0.04244865104556084,
0.0584847591817379,
0.02460474520921707,
-0.09881820529699326,
0.17528432607650757,
-0.06955558806657791,
0.0003305522259324789,
-0.017268793657422066,
0.1137382909655571,
0.015429412946105003,
-0.010468859225511551,
-0.06690090149641037,
0.018345830962061882,
0.11237987875938416,
0.044899433851242065,
-0.029992016032338142,
0.04291987791657448,
-0.04485171660780907,
-0.021232958883047104,
0.04101391136646271,
-0.09978688508272171,
0.029485464096069336,
0.00540195545181632,
-0.08137917518615723,
-0.030008111149072647,
0.01377980224788189,
-0.00009038030839292333,
-0.00002809625948430039,
0.16379955410957336,
-0.10424090921878815,
-0.007363707292824984,
-0.09625215828418732,
-0.11122042685747147,
0.008518361486494541,
-0.042185284197330475,
0.008415598422288895,
-0.08416379243135452,
-0.14073310792446136,
-0.01591837778687477,
0.0509466715157032,
-0.03699472174048424,
-0.055495571345090866,
-0.01854640245437622,
-0.09121136367321014,
0.036312036216259,
-0.010851049795746803,
0.14228270947933197,
-0.05583435297012329,
0.13018861413002014,
0.0451536551117897,
0.06466957181692123,
0.024980051442980766,
0.04325849190354347,
-0.09131661802530289,
0.04909778758883476,
-0.1877916306257248,
0.015342393890023232,
-0.07794226706027985,
0.034199830144643784,
-0.0976116731762886,
-0.14164496958255768,
0.01862339675426483,
-0.018162716180086136,
0.10831580311059952,
0.12897741794586182,
-0.12071380019187927,
-0.0880274847149849,
0.1679767519235611,
-0.09719222038984299,
-0.10703577101230621,
0.12050554156303406,
-0.028194604441523552,
-0.02281864732503891,
0.02044314332306385,
0.12104860693216324,
0.10790847986936569,
-0.11407283693552017,
0.002268790500238538,
-0.05386874079704285,
0.10367998480796814,
0.01064069103449583,
0.09420028328895569,
0.00030785423587076366,
-0.011885344050824642,
0.014352834783494473,
-0.07183197140693665,
0.06497708708047867,
-0.11844466626644135,
-0.09013442695140839,
-0.025525186210870743,
-0.08588238805532455,
0.09445387870073318,
0.061249274760484695,
0.043498869985342026,
-0.09867723286151886,
-0.12763886153697968,
0.03252289444208145,
0.11164669692516327,
-0.06329267472028732,
0.0134860435500741,
-0.05493861064314842,
0.07748697698116302,
-0.03836549445986748,
-0.02651108428835869,
-0.1694607138633728,
-0.09927929192781448,
0.019017403945326805,
-0.05254047363996506,
-0.003978234250098467,
-0.05355807766318321,
0.08781367540359497,
0.10194532573223114,
-0.07425124198198318,
-0.07514654099941254,
-0.0989297404885292,
-0.00864239688962698,
-0.08849190920591354,
-0.21696150302886963,
-0.09320180118083954,
-0.02407706342637539,
0.13955149054527283,
-0.19077681005001068,
0.03284190595149994,
-0.039710842072963715,
0.12784001231193542,
0.027284376323223114,
-0.028331248089671135,
-0.024744240567088127,
0.08158531039953232,
-0.019184527918696404,
-0.06513842940330505,
0.03646942600607872,
-0.001447032205760479,
-0.09484284371137619,
-0.032290831208229065,
-0.12553006410598755,
0.1565026491880417,
0.10064379870891571,
0.0006833021761849523,
-0.10970396548509598,
-0.021520229056477547,
-0.08786389976739883,
-0.044028230011463165,
-0.045080944895744324,
0.021441640332341194,
0.11139160394668579,
0.026292884722352028,
0.12540428340435028,
-0.0687694102525711,
-0.04569900780916214,
0.049533192068338394,
-0.025349192321300507,
-0.0063680256716907024,
0.10522398352622986,
0.09544344991445541,
-0.0504378117620945,
0.13327334821224213,
0.1361493319272995,
-0.09491154551506042,
0.14331993460655212,
-0.053702518343925476,
-0.09634965658187866,
-0.03145202249288559,
-0.00034603214589878917,
0.028783120214939117,
0.15123270452022552,
-0.07527901232242584,
0.009414062835276127,
0.023791758343577385,
0.010422416031360626,
0.009636500850319862,
-0.21369101107120514,
-0.038667961955070496,
0.030292440205812454,
-0.03325418382883072,
-0.028887081891298294,
-0.005493846256285906,
0.02260785736143589,
0.10775591433048248,
0.018055789172649384,
-0.067057304084301,
0.001024533761665225,
0.0031805734615772963,
-0.0634714737534523,
0.21995900571346283,
-0.0916968435049057,
-0.14784592390060425,
-0.1428990215063095,
-0.014087136834859848,
-0.04935109242796898,
-0.0048145814798772335,
0.042639993131160736,
-0.09151172637939453,
-0.02648863196372986,
-0.038300130516290665,
0.04937198385596275,
0.0012602859642356634,
0.053430039435625076,
-0.00361243961378932,
-0.0058800880797207355,
0.06901467591524124,
-0.09755711257457733,
0.008125030435621738,
-0.027868090197443962,
-0.04749639332294464,
0.05374518781900406,
0.05613958090543747,
0.10853051394224167,
0.15462441742420197,
0.00019254990911576897,
0.012281839735805988,
-0.03171247988939285,
0.20223937928676605,
-0.0931955873966217,
-0.023079421371221542,
0.13174809515476227,
-0.0038858335465192795,
0.06808482855558395,
0.10933917760848999,
0.06200132891535759,
-0.07638518512248993,
0.018760105594992638,
0.03497563675045967,
-0.023676395416259766,
-0.20364347100257874,
-0.044254738837480545,
-0.04341994598507881,
-0.013148494064807892,
0.12918543815612793,
0.019535217434167862,
0.009098215028643608,
0.06635181605815887,
-0.02478514239192009,
-0.004651556722819805,
-0.027900638058781624,
0.08859340101480484,
0.0546768382191658,
0.04897536337375641,
0.12696810066699982,
-0.011697981506586075,
-0.07490024715662003,
0.023078488186001778,
-0.013470268808305264,
0.2280542254447937,
-0.031223105266690254,
0.09197457134723663,
0.048223789781332016,
0.188446506857872,
0.003297580638900399,
0.10801198333501816,
0.02626083791255951,
-0.037671808153390884,
0.01277611032128334,
-0.05961766466498375,
-0.01797563210129738,
0.024126214906573296,
0.006993782240897417,
0.066597580909729,
-0.15339696407318115,
-0.013507380150258541,
0.03331489488482475,
0.330773264169693,
0.06867922097444534,
-0.3329976201057434,
-0.11931520700454712,
-0.009116953238844872,
-0.036290645599365234,
-0.049983978271484375,
0.003502757055684924,
0.09386913478374481,
-0.10433349013328552,
0.059357840567827225,
-0.09118501096963882,
0.07150325924158096,
-0.012208466418087482,
0.010577167384326458,
0.09004313498735428,
0.10240413248538971,
-0.010340056382119656,
0.058917589485645294,
-0.22775989770889282,
0.31837785243988037,
-0.00812594499439001,
0.0675022155046463,
-0.0568702407181263,
0.01579093560576439,
0.03519440069794655,
0.00783713348209858,
0.06891143321990967,
-0.01376816164702177,
-0.05032768473029137,
-0.21424977481365204,
-0.08660929650068283,
0.014318753033876419,
0.12790252268314362,
-0.07278475165367126,
0.13826392590999603,
-0.026715919375419617,
-0.02121216617524624,
0.05918780341744423,
-0.05129041150212288,
-0.06809360533952713,
-0.07738952338695526,
0.03529595956206322,
-0.017335912212729454,
0.013884414918720722,
-0.11305790394544601,
-0.13689348101615906,
-0.04781217873096466,
0.15701277554035187,
-0.0413297601044178,
-0.03974531590938568,
-0.14494575560092926,
0.08049830794334412,
0.16741417348384857,
-0.08281759917736053,
0.059715449810028076,
0.0013209085445851088,
0.12719301879405975,
-0.0011358140036463737,
-0.03963537886738777,
0.10168866068124771,
-0.09039314091205597,
-0.2281499058008194,
-0.05590099096298218,
0.15746170282363892,
0.033922649919986725,
0.05746300891041756,
-0.030119743198156357,
0.043602097779512405,
-0.013658080250024796,
-0.08608608692884445,
0.044903699308633804,
-0.04419412836432457,
0.054360538721084595,
0.04798917472362518,
-0.044599734246730804,
0.026609038934111595,
-0.06726154685020447,
-0.023808378726243973,
0.11798156052827835,
0.3131374716758728,
-0.10139906406402588,
-0.003114686580374837,
0.058897312730550766,
-0.026830215007066727,
-0.16741091012954712,
0.016982426866889,
0.10921379923820496,
0.012073295190930367,
0.02784724533557892,
-0.19348981976509094,
0.0646304339170456,
0.09781693667173386,
-0.032840222120285034,
0.11229406297206879,
-0.30166780948638916,
-0.12900526821613312,
0.11683214455842972,
0.13698680698871613,
0.028930285945534706,
-0.1608165204524994,
-0.034291449934244156,
0.010324888862669468,
-0.09164600819349289,
0.09841219335794449,
-0.028495553880929947,
0.11529576033353806,
-0.03127744421362877,
0.06647839397192001,
0.02321784198284149,
-0.07093668729066849,
0.14568404853343964,
-0.033924493938684464,
0.08148787170648575,
-0.021430596709251404,
0.00014371132419910282,
0.05419270694255829,
-0.05465356260538101,
0.014916304498910904,
-0.03309580311179161,
0.03834446892142296,
-0.0691087618470192,
-0.017946990206837654,
-0.11863444745540619,
0.05296901986002922,
-0.049253154546022415,
-0.06432194262742996,
-0.0142925214022398,
0.05824362114071846,
0.03771114721894264,
-0.03137684240937233,
0.13989463448524475,
0.02326313965022564,
0.20824064314365387,
0.07539304345846176,
0.04910248517990112,
0.0016056513413786888,
-0.09406676143407822,
-0.004565525334328413,
-0.02646111510694027,
0.06463851034641266,
-0.09908406436443329,
0.014598460868000984,
0.1393790990114212,
0.057841695845127106,
0.11771970242261887,
0.07914948463439941,
-0.05691996216773987,
-0.004127212334424257,
0.08568792045116425,
-0.16471680998802185,
-0.07149937748908997,
-0.02460019290447235,
0.01187247596681118,
-0.1530093103647232,
0.04088261350989342,
0.1010834202170372,
-0.07271503657102585,
-0.01950216293334961,
0.00172229774761945,
0.019362038001418114,
-0.030740752816200256,
0.22739973664283752,
0.0635063424706459,
0.0918247327208519,
-0.08895882964134216,
0.06627074629068375,
0.05456623062491417,
-0.12685035169124603,
0.00047049950808286667,
0.10056428611278534,
-0.0650240108370781,
-0.020980291068553925,
0.04787608981132507,
0.0764463022351265,
-0.04728474095463753,
-0.029895881190896034,
-0.1608346849679947,
-0.1277747005224228,
0.06733116507530212,
0.15605944395065308,
0.05998767912387848,
0.014335195533931255,
-0.016706541180610657,
0.04606955870985985,
-0.13526767492294312,
0.11117491126060486,
0.0767052099108696,
0.09297920763492584,
-0.14183968305587769,
0.1666232943534851,
-0.0019087431719526649,
0.05047783628106117,
-0.01268429309129715,
0.020378459244966507,
-0.11887772381305695,
0.007928337901830673,
-0.0983007550239563,
-0.05283063277602196,
-0.051096029579639435,
-0.016854023560881615,
-0.010503784753382206,
-0.06711050868034363,
-0.05606195330619812,
0.01643245667219162,
-0.11248579621315002,
-0.039661746472120285,
0.0027554123662412167,
0.02187744341790676,
-0.1278499811887741,
-0.03486381098628044,
0.05194111540913582,
-0.11663360893726349,
0.08267160505056381,
0.053587980568408966,
0.04835144802927971,
0.05246219038963318,
-0.06816424429416656,
-0.000038611888157902285,
0.03613950312137604,
-0.015227067284286022,
0.04354644566774368,
-0.16201627254486084,
-0.005479011218994856,
-0.04897575452923775,
0.04280776530504227,
0.006085192319005728,
0.05448974296450615,
-0.1485545039176941,
-0.00701731164008379,
0.006212329957634211,
-0.05756055563688278,
-0.05635606497526169,
0.0179656483232975,
0.0666186511516571,
0.01348311360925436,
0.1687806397676468,
-0.08799152821302414,
0.07310433685779572,
-0.2210833877325058,
-0.008876552805304527,
-0.04299638420343399,
-0.09559626877307892,
-0.05977559834718704,
-0.01093052513897419,
0.07941661775112152,
-0.053333718329668045,
0.08408388495445251,
-0.03788777068257332,
0.08824941515922546,
0.037759169936180115,
-0.05677400901913643,
0.02816353365778923,
0.04941592738032341,
0.17303508520126343,
0.03568623214960098,
-0.04487064853310585,
0.06229941546916962,
0.04013147950172424,
0.05866972729563713,
0.10265710949897766,
0.20500701665878296,
0.11904336512088776,
0.04527539014816284,
0.07232236117124557,
0.05323976278305054,
-0.09675712138414383,
-0.16489674150943756,
0.0052785929292440414,
-0.011405051685869694,
0.10689925402402878,
-0.0035732074175029993,
0.18616756796836853,
0.10445209592580795,
-0.18212643265724182,
0.05286518856883049,
-0.0366482138633728,
-0.08015310019254684,
-0.09955320507287979,
-0.035315413028001785,
-0.06460150331258774,
-0.1393139809370041,
0.011705211363732815,
-0.11185424774885178,
0.013356911018490791,
0.07531693577766418,
0.0180214811116457,
0.009308264590799809,
0.18219678103923798,
0.07673875987529755,
0.022975312545895576,
0.07074399292469025,
0.03827985003590584,
-0.0031767142936587334,
-0.03440059348940849,
-0.08655621856451035,
-0.006127187050879002,
-0.026919418945908546,
0.032752037048339844,
-0.06981880217790604,
-0.10974575579166412,
0.059588272124528885,
0.0202927365899086,
-0.11433546990156174,
0.02327795699238777,
0.0004666219465434551,
0.07987073063850403,
0.05512014403939247,
0.0007827175431884825,
0.01764412596821785,
-0.03669160231947899,
0.24384121596813202,
-0.09579695761203766,
-0.07354619354009628,
-0.12402394413948059,
0.30485180020332336,
0.011059418320655823,
-0.029721418395638466,
0.041560206562280655,
-0.06934776902198792,
-0.01624750904738903,
0.17229288816452026,
0.16027121245861053,
-0.029530832543969154,
0.0013194611528888345,
0.018625706434249878,
-0.01871754601597786,
-0.050847675651311874,
0.098220095038414,
0.12330827116966248,
0.08497697114944458,
-0.09446500241756439,
-0.03518975153565407,
-0.06324587017297745,
-0.026382310315966606,
-0.04389435797929764,
0.06596068292856216,
0.03153906762599945,
0.0031968920957297087,
-0.04700975492596626,
0.08403977751731873,
-0.04158636927604675,
-0.12154274433851242,
0.053089868277311325,
-0.20084317028522491,
-0.19322754442691803,
-0.026926424354314804,
0.0585625097155571,
0.0032705841585993767,
0.08007402718067169,
0.001219708938151598,
-0.029695412144064903,
0.0751354843378067,
0.0032167176250368357,
-0.029950926080346107,
-0.13843177258968353,
0.1089988648891449,
-0.05803891271352768,
0.2271249145269394,
-0.03992930427193642,
0.041165389120578766,
0.11994969099760056,
0.045925769954919815,
-0.09660354256629944,
0.03224177658557892,
0.09134932607412338,
-0.12282609194517136,
0.021814892068505287,
0.17119747400283813,
-0.03415699675679207,
0.08212362974882126,
0.023993363603949547,
-0.1573256105184555,
0.006946700159460306,
-0.06504333764314651,
-0.04627196490764618,
-0.035568736493587494,
-0.006536899600178003,
-0.0343148298561573,
0.13352318108081818,
0.23702387511730194,
-0.053587622940540314,
-0.009401064366102219,
-0.06674588471651077,
0.025935402140021324,
0.07616065442562103,
0.09424328804016113,
-0.04276510700583458,
-0.2680549919605255,
0.013883383013308048,
0.030382076278328896,
-0.0010929980780929327,
-0.25777027010917664,
-0.09571016579866409,
0.038518715649843216,
-0.07112734019756317,
-0.07683387398719788,
0.09971390664577484,
0.04144614562392235,
0.05511438474059105,
-0.04529951512813568,
-0.06858401000499725,
-0.07533438503742218,
0.16286689043045044,
-0.18892516195774078,
-0.07434673607349396
] |
null | null | transformers |
#Kobayashi DialoGPT Model | {"tags": ["conversational"]} | text-generation | Lenza/DialoGPT-medium-Kobayashi | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Kobayashi DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers | ## Hyperparameters
{
"num_train_epochs": 3,
"seed": 7,
"summary_column": "output_text",
"text_column": "text",
"encoder_max_length" : 512,
"decoder_max_length" :36,
"batch_size" : 256
}
## Usage
## Results
| key | value |
| --- | ----- |
| eval loss | 4.539857387542725|
| eval_rouge1 |23.7478 |
| eval_rouge2 |7.3616 |
| eval_rougeL |20.6615 |
| eval_rougeLsum |20.7371 |
| eval_gen_len| 16.1806|
|test loss | 4.515065670013428|
| test_rouge1 | 23.7415|
| test_rouge2 | 7.3548|
| test_rougeL | 20.746|
| test_rougeLsum | 20.8149|
| test_gen_len| 16.1926|
| {"language": "es", "license": "apache-2.0", "tags": ["summarization", "spanish", "beto2beto", "encoder-decoder"], "datasets": ["LeoCordoba/CC-NEWS-ES-titles"], "widget": [{"text": "La chocotorta, el tradicional y pr\u00e1ctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por cr\u00edticos de restaurants internacionales, a casi 40 a\u00f1os de su creaci\u00f3n. El r\u00e1nking Taste Atlas ubic\u00f3 primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. \u201cEste postre argentino sin hornear fue influenciado por la cocina italiana y se inspir\u00f3 en el famoso tiramis\u00fa italiano. Est\u00e1 elaborado con tres ingredientes b\u00e1sicos argentinos: galletas de chocolate, dulce de leche y queso crema\u201d, explica la p\u00e1gina web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votaci\u00f3n, super\u00f3 tambi\u00e9n a los waffles belgas y el zserb\u00f3 h\u00fangaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompa\u00f1a al list\u00f3n dorado de \u201cpostre n\u00famero uno\u201c, los expertos ense\u00f1an adem\u00e1s c\u00f3mo se hacen las chocotortas, paso por paso. \u201cLas galletas se ablandan en leche y se cubren con una combinaci\u00f3n de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, caf\u00e9 o incluso licor de caf\u00e9\u201d, detallan. Por \u00faltimo, adjudican su creaci\u00f3n a una \u201ccampa\u00f1a de m\u00e1rketing\u201d dise\u00f1ada para promover las galletitas ic\u00f3nicas que le dan su nombre. La chocotorta, infaltable en los cumplea\u00f1os argentinos, fue creada en 1982 por una creativa de las agencias m\u00e1s importantes del pa\u00eds, Marit\u00e9 Mabraga\u00f1a."}], "model-index": [{"name": "beto2beto-ccnews-titles-es", "results": [{"task": {"type": "abstractive-text-summarization", "name": "Abstractive Text Summarization"}, "dataset": {"name": "CCNEWS-ES-titles", "type": "LeoCordoba/CC-NEWS-ES-titles"}, "metrics": [{"type": "rogue-1", "value": 23.7478, "name": "Validation ROGUE-1"}, {"type": "rogue-2", "value": 7.3616, "name": "Validation ROGUE-2"}, {"type": "rogue-l", "value": 20.6615, "name": "Validation ROGUE-L"}, {"type": "rogue-lsum", "value": 20.7371, "name": "Validation ROGUE-Lsum"}, {"type": "rogue-1", "value": 23.7415, "name": "Test ROGUE-1"}, {"type": "rogue-2", "value": 7.3548, "name": "Test ROGUE-2"}, {"type": "rogue-l", "value": 20.746, "name": "Test ROGUE-L"}, {"type": "rogue-lsum", "value": 20.8149, "name": "Test ROGUE-Lsum"}]}]}]} | summarization | LeoCordoba/beto2beto-cc-news-es-titles | [
"transformers",
"pytorch",
"safetensors",
"encoder-decoder",
"text2text-generation",
"summarization",
"spanish",
"beto2beto",
"es",
"dataset:LeoCordoba/CC-NEWS-ES-titles",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto2beto #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
| Hyperparameters
---------------
{
```
"num_train_epochs": 3,
"seed": 7,
"summary_column": "output_text",
"text_column": "text",
"encoder_max_length" : 512,
"decoder_max_length" :36,
"batch_size" : 256
```
}
Usage
-----
Results
-------
| [] | [
"TAGS\n#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto2beto #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
96
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto2beto #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
-0.08686521649360657,
0.19506636261940002,
-0.005803561303764582,
0.04350420460104942,
0.0973116010427475,
-0.010804547928273678,
0.10336773097515106,
0.09833552688360214,
-0.05368518456816673,
-0.0020938199013471603,
0.1117658019065857,
0.12196525931358337,
0.007455883082002401,
0.16002798080444336,
-0.09380342811346054,
-0.16864335536956787,
0.1270165592432022,
0.015880972146987915,
0.0407257042825222,
0.09943550080060959,
0.11743593215942383,
-0.06653846800327301,
0.07436291873455048,
-0.05383753776550293,
-0.055108360946178436,
0.04319006949663162,
0.007218420039862394,
-0.15341654419898987,
0.09441766887903214,
0.017542866989970207,
0.08065735548734665,
0.11183083802461624,
-0.0116435457020998,
-0.1246548742055893,
0.02474384382367134,
0.026867447420954704,
-0.08725926280021667,
0.057939693331718445,
0.0684271827340126,
-0.05100598186254501,
0.05711900815367699,
-0.07234414666891098,
-0.030985644087195396,
0.0064087617211043835,
-0.11768074333667755,
-0.1625724732875824,
-0.045227255672216415,
0.013814334757626057,
0.07200435549020767,
0.09248896688222885,
-0.010154454968869686,
0.11665742844343185,
-0.07340258359909058,
0.0679105669260025,
0.09216202795505524,
-0.27964675426483154,
-0.007521355524659157,
0.08456128090620041,
0.057390499860048294,
0.06144772469997406,
-0.003000670112669468,
0.045716796070337296,
0.0796058401465416,
-0.008285319432616234,
0.016714539378881454,
-0.05046766623854637,
-0.14848297834396362,
-0.024486761540174484,
-0.06462317705154419,
-0.08643197268247604,
0.24841122329235077,
-0.01705431193113327,
0.030360164120793343,
-0.05166591331362724,
-0.09248640388250351,
0.06383619457483292,
-0.02753000520169735,
0.04594962298870087,
0.02326207235455513,
0.07597639411687851,
0.0528363473713398,
0.011354132555425167,
-0.1552477478981018,
0.027984775602817535,
-0.18548272550106049,
0.062402524054050446,
0.005990614183247089,
0.04616573825478554,
-0.11045240610837936,
0.07582500576972961,
0.09357170760631561,
-0.19824089109897614,
0.05253049358725548,
-0.05804041028022766,
0.12786568701267242,
0.04773242771625519,
-0.0412386991083622,
-0.0520300418138504,
0.1319723278284073,
0.07168938219547272,
-0.14131782948970795,
-0.023030444979667664,
-0.05049306899309158,
0.10836561024188995,
0.019714195281267166,
0.04340963810682297,
-0.06490984559059143,
-0.06764295697212219,
0.07345683127641678,
-0.03782172128558159,
0.103797048330307,
-0.034365564584732056,
-0.13007032871246338,
-0.0031111896969377995,
-0.00738028297200799,
0.0917881429195404,
0.12044031172990799,
0.06820070743560791,
-0.07144050300121307,
0.045683685690164566,
0.15279661118984222,
-0.06820204108953476,
0.014508447609841824,
-0.001718768384307623,
0.03234069421887398,
0.04647378996014595,
0.005936962552368641,
0.041640039533376694,
-0.05851306393742561,
0.048923540860414505,
-0.06900529563426971,
-0.05385691672563553,
-0.02028360776603222,
-0.06720645725727081,
0.09505398571491241,
-0.06223560497164726,
0.02560395561158657,
-0.14937838912010193,
-0.13617776334285736,
-0.016773702576756477,
0.03453318774700165,
-0.028911976143717766,
-0.0701090544462204,
-0.03841046988964081,
-0.05242782458662987,
0.06616867333650589,
-0.08072738349437714,
-0.02450260892510414,
-0.11180277913808823,
0.08594133704900742,
-0.06445734202861786,
0.06750977784395218,
-0.15448333323001862,
0.02560725063085556,
-0.1661829799413681,
-0.0015072007663547993,
-0.09325873106718063,
0.058195482939481735,
-0.06087389960885048,
0.11129344999790192,
-0.05353856459259987,
-0.0017733912682160735,
-0.015920108184218407,
0.07327799499034882,
-0.00698921037837863,
0.1985948234796524,
-0.14890070259571075,
-0.04491765797138214,
0.24998310208320618,
-0.13063456118106842,
-0.11656830459833145,
0.07764919847249985,
0.02162538282573223,
0.019302744418382645,
0.09141922742128372,
0.1762392669916153,
-0.05949472263455391,
-0.03110971488058567,
-0.02470696158707142,
0.10109829157590866,
-0.020758576691150665,
-0.11912605911493301,
0.0763021782040596,
-0.0030454066582024097,
-0.039330266416072845,
0.03521399572491646,
-0.039510004222393036,
0.044777706265449524,
-0.011433825828135014,
-0.06147465109825134,
-0.01889786310493946,
-0.009916458278894424,
0.02260941080749035,
0.0074860332533717155,
0.023089734837412834,
-0.08724702149629593,
-0.06056996434926987,
-0.05518227070569992,
0.018694207072257996,
0.009317394345998764,
0.04343206062912941,
-0.06167251989245415,
0.09982769191265106,
-0.04514964669942856,
0.03862159326672554,
-0.11055237054824829,
0.015229851007461548,
-0.028140775859355927,
0.07308734208345413,
-0.06075696647167206,
0.04187403619289398,
-0.0005712032434530556,
-0.05322597175836563,
-0.029079414904117584,
-0.05558065325021744,
0.11886759847402573,
0.033474091440439224,
-0.02336304821074009,
-0.17504823207855225,
0.09821251034736633,
-0.06228063628077507,
0.07630684971809387,
-0.08998547494411469,
0.034064654260873795,
0.06218099594116211,
0.12657858431339264,
-0.028014294803142548,
0.07707981020212173,
0.014728651382029057,
0.030266065150499344,
-0.05664452537894249,
-0.011241747997701168,
0.08266422897577286,
0.05770973116159439,
-0.07629067450761795,
0.22755882143974304,
-0.10417907685041428,
0.28077593445777893,
0.2060510814189911,
-0.12645314633846283,
0.045348264276981354,
0.03677498921751976,
-0.0009221693617291749,
0.025564199313521385,
-0.00857072789222002,
-0.03314695507287979,
-0.0009703153627924621,
-0.012023652903735638,
0.15401042997837067,
-0.11473852396011353,
-0.006325689610093832,
0.017314236611127853,
-0.0669563040137291,
-0.07036920636892319,
0.09920959174633026,
0.053840093314647675,
-0.1455049365758896,
0.21576178073883057,
0.29092520475387573,
0.020550841465592384,
0.1634061485528946,
-0.053846728056669235,
-0.0065251803025603294,
0.04800286889076233,
-0.02376454882323742,
-0.04506915062665939,
0.050043243914842606,
-0.10053563117980957,
0.022197619080543518,
0.08024217933416367,
0.010729735717177391,
0.06289779394865036,
-0.11395207047462463,
-0.05688362941145897,
0.0033340496011078358,
-0.01543866004794836,
-0.10375987738370895,
0.05221576616168022,
-0.0051074218936264515,
0.12480470538139343,
-0.04583997279405594,
-0.10752037167549133,
0.0781036838889122,
-0.012748662382364273,
-0.069784015417099,
0.17145074903964996,
-0.13622620701789856,
-0.3385561406612396,
-0.11895622313022614,
-0.040196314454078674,
-0.0016661160625517368,
0.040717583149671555,
0.13260875642299652,
-0.054676178842782974,
-0.03412535786628723,
-0.07194441556930542,
-0.05683140456676483,
0.027855390682816505,
-0.0073748319409787655,
0.0331420935690403,
0.05290192738175392,
0.013636472634971142,
-0.1105794683098793,
-0.023775286972522736,
0.022463398054242134,
-0.044468458741903305,
0.10906840115785599,
-0.07656491547822952,
0.12603750824928284,
0.10326287895441055,
0.026535725221037865,
-0.00487574003636837,
-0.038319818675518036,
0.1292559951543808,
-0.07348058372735977,
0.013095395639538765,
0.2021133303642273,
-0.01459655724465847,
0.06801127642393112,
0.20636440813541412,
0.023096639662981033,
-0.04682210832834244,
0.010087740607559681,
-0.0711277574300766,
-0.052622534334659576,
-0.23325788974761963,
-0.14076852798461914,
-0.060470227152109146,
0.06396590173244476,
-0.0019282102584838867,
0.05642460659146309,
0.03530074656009674,
0.07387528568506241,
-0.0646677166223526,
-0.04606403410434723,
-0.0016115265898406506,
0.05647585541009903,
0.17248772084712982,
-0.03448992595076561,
0.11319407820701599,
-0.08013554662466049,
-0.08593824505805969,
0.1225273385643959,
0.0489543117582798,
-0.00937635451555252,
0.03879784420132637,
0.007383837830275297,
0.0440441258251667,
0.09060638397932053,
0.06435258686542511,
0.10873391479253769,
-0.004513854160904884,
-0.012286584824323654,
-0.06651989370584488,
-0.04528460651636124,
-0.024522680789232254,
0.0040021310560405254,
-0.07175741344690323,
-0.08472186326980591,
-0.04874803498387337,
-0.08068669587373734,
0.11151889711618423,
0.1072402074933052,
0.069215327501297,
-0.21284417808055878,
0.024749960750341415,
0.08220025897026062,
0.027609962970018387,
-0.08396270871162415,
0.049109406769275665,
0.0916091650724411,
-0.059681668877601624,
0.11914331465959549,
0.03544561564922333,
0.10690691322088242,
-0.017144285142421722,
0.06687275320291519,
-0.10564801841974258,
-0.10121466964483261,
0.018831592053174973,
0.10908093303442001,
-0.24584175646305084,
0.2444312423467636,
0.00578310526907444,
-0.019043035805225372,
-0.054763879626989365,
0.009679073467850685,
0.011146342381834984,
0.175221249461174,
0.1488310694694519,
0.014155433513224125,
-0.0733906552195549,
-0.03902580216526985,
-0.141008198261261,
0.05309995636343956,
-0.013979637995362282,
-0.036067161709070206,
-0.0031389251817017794,
0.00023986012092791498,
-0.015615621581673622,
0.015125819481909275,
0.04162008315324783,
-0.030388781800866127,
-0.15475521981716156,
0.03474784269928932,
0.13534550368785858,
0.029380636289715767,
-0.07463030517101288,
-0.05938904359936714,
-0.07711783051490784,
0.08815516531467438,
-0.09581529349088669,
-0.10459793359041214,
-0.09860700368881226,
-0.05511258915066719,
0.034914661198854446,
-0.04433241859078407,
0.04085797443985939,
-0.023416128009557724,
0.06701050698757172,
-0.05989130586385727,
-0.1288171261548996,
0.13282068073749542,
-0.14308179914951324,
-0.08602915704250336,
-0.07472697645425797,
0.11784972250461578,
-0.08121149986982346,
0.014967731200158596,
0.042419131845235825,
0.02797583118081093,
-0.06853120028972626,
-0.07841669023036957,
-0.027508290484547615,
0.005436246283352375,
0.09945705533027649,
0.017704814672470093,
-0.06308116763830185,
-0.2135409116744995,
0.03885069116950035,
-0.07553791254758835,
0.16537541151046753,
0.2378404587507248,
-0.06961672008037567,
0.11402621865272522,
0.23653316497802734,
-0.06536806374788284,
-0.3450774848461151,
-0.14208346605300903,
-0.10713428258895874,
-0.03660266101360321,
-0.008497506380081177,
-0.10426163673400879,
0.09579301625490189,
0.04766584560275078,
-0.09550449997186661,
0.0241145808249712,
-0.23518671095371246,
-0.04815921187400818,
0.150265634059906,
-0.0650370642542839,
0.3084593117237091,
-0.1245085597038269,
-0.07947564870119095,
-0.08723414689302444,
-0.14286647737026215,
0.12510323524475098,
-0.17185811698436737,
0.033399082720279694,
0.015848645940423012,
-0.04420766979455948,
0.0059233796782791615,
-0.030659513548016548,
0.11879574507474899,
-0.03696313500404358,
0.011501941829919815,
-0.09216918796300888,
-0.013984735123813152,
0.14693154394626617,
-0.023046160116791725,
0.038710854947566986,
-0.17082621157169342,
0.04413887485861778,
-0.12301171571016312,
-0.00861162319779396,
-0.06379417330026627,
0.04324110969901085,
-0.028040559962391853,
-0.019682379439473152,
-0.014413047581911087,
-0.006179085932672024,
0.05751749128103256,
0.0013262511929497123,
0.23020276427268982,
-0.016542505472898483,
0.059054698795080185,
0.18860776722431183,
0.07402246445417404,
-0.16493448615074158,
0.0918702706694603,
-0.05182747542858124,
-0.0694037452340126,
0.0863729938864708,
-0.14224845170974731,
0.04235391691327095,
0.0786750316619873,
-0.06234545633196831,
0.016512881964445114,
0.05468031391501427,
-0.0018548988737165928,
-0.007229764014482498,
0.18378019332885742,
-0.16820231080055237,
-0.005837651435285807,
-0.02093789167702198,
0.10916028916835785,
0.016918018460273743,
0.05556442588567734,
0.16351407766342163,
0.00826338306069374,
-0.025972440838813782,
0.017515240237116814,
0.03540441393852234,
-0.023137737065553665,
0.0769679993391037,
0.01918976940214634,
0.013573600910604,
-0.15130028128623962,
0.12707671523094177,
0.05786170810461044,
-0.13299661874771118,
-0.008573140949010849,
0.05880874767899513,
-0.13251686096191406,
-0.11815084517002106,
0.008911838755011559,
0.10319707542657852,
-0.12795481085777283,
-0.12658174335956573,
-0.09454107284545898,
-0.12286274135112762,
0.041621871292591095,
0.10635126382112503,
0.08641587942838669,
0.061731815338134766,
0.03120909258723259,
-0.06749999523162842,
0.02663286216557026,
0.03852393105626106,
0.030188007280230522,
0.032611530274152756,
-0.1121298298239708,
-0.02904192917048931,
-0.008528223261237144,
0.06206902489066124,
-0.07133236527442932,
0.028949487954378128,
-0.10417422652244568,
0.024664221331477165,
-0.0861692875623703,
0.030850008130073547,
-0.07453553378582001,
-0.05187351256608963,
-0.03456632047891617,
-0.07898621261119843,
-0.0394388884305954,
-0.024289770051836967,
-0.07187719643115997,
-0.0026441628579050303,
-0.02809268981218338,
0.10813917219638824,
-0.11850645393133163,
-0.04473519325256348,
0.03508860245347023,
-0.04614046961069107,
0.10377387702465057,
0.03907006233930588,
-0.0670715868473053,
0.05070747062563896,
-0.2244243621826172,
-0.07026895880699158,
0.12108919024467468,
0.031063567847013474,
0.037349555641412735,
0.09445193409919739,
0.009700282476842403,
0.12054910510778427,
-0.050855692476034164,
0.03335729241371155,
0.031141117215156555,
-0.11507728695869446,
0.033988140523433685,
-0.023539584130048752,
-0.08875087648630142,
0.021065838634967804,
-0.028218984603881836,
0.17586126923561096,
-0.013528678566217422,
0.19465799629688263,
-0.08090052008628845,
0.010136368684470654,
-0.08864770084619522,
0.03096778690814972,
-0.019865239039063454,
-0.1611117422580719,
-0.11219126731157303,
-0.028389034792780876,
0.012329586781561375,
-0.028243660926818848,
0.25118184089660645,
0.06881211698055267,
-0.022515498101711273,
0.05091766268014908,
0.05805577337741852,
0.051016855984926224,
0.03330802917480469,
0.21963590383529663,
0.05800797790288925,
-0.010478666052222252,
-0.11394140124320984,
-0.011306365951895714,
0.07963785529136658,
-0.017073893919587135,
0.0065403045155107975,
0.1547141969203949,
0.15741592645645142,
0.10112335532903671,
0.043698474764823914,
0.026160603389143944,
-0.07553359121084213,
-0.09885352849960327,
-0.043263670057058334,
0.07675416767597198,
0.027872884646058083,
0.03653367608785629,
0.14827586710453033,
-0.03511080890893936,
-0.000081947298895102,
-0.02782364934682846,
0.022645318880677223,
-0.11778923124074936,
-0.11693600565195084,
-0.08201485872268677,
-0.13145896792411804,
-0.03308035060763359,
-0.09552650153636932,
0.009034688584506512,
0.08666930347681046,
0.031301554292440414,
-0.07476687431335449,
0.041030798107385635,
0.06437532603740692,
-0.07959648221731186,
0.10890915244817734,
0.017034975811839104,
0.059055306017398834,
-0.02803637459874153,
-0.026128120720386505,
-0.018584804609417915,
0.11317887157201767,
-0.020500436425209045,
0.059007711708545685,
0.012652375735342503,
0.05832786485552788,
-0.10755231231451035,
-0.08041629195213318,
-0.030804619193077087,
0.035130519419908524,
-0.00167516665533185,
0.1130993589758873,
0.02919812500476837,
0.023110441863536835,
0.0882624089717865,
0.21681612730026245,
-0.04217376559972763,
-0.12150570005178452,
-0.04576847702264786,
0.07984531670808792,
0.017975209280848503,
0.10947853326797485,
0.00036337896017357707,
-0.0785425528883934,
-0.07521598041057587,
0.21587195992469788,
0.2763635218143463,
-0.08243033289909363,
0.02120736986398697,
-0.03643244877457619,
0.02731209248304367,
0.031625695526599884,
0.04420842230319977,
0.10251181572675705,
0.24048537015914917,
-0.0706065371632576,
-0.014796635136008263,
-0.06514691561460495,
0.023203697055578232,
-0.12415330857038498,
0.07765842229127884,
-0.026692776009440422,
-0.0926722064614296,
-0.02785329520702362,
0.11182866245508194,
-0.09417816251516342,
-0.022150306031107903,
-0.0641007348895073,
-0.16749273240566254,
-0.06493191421031952,
-0.01111866720020771,
0.1813947558403015,
0.06237656623125076,
0.015642065554857254,
-0.00852622278034687,
-0.007878931239247322,
0.03612783923745155,
-0.016983438283205032,
-0.09217990934848785,
-0.04225213825702667,
0.009099261835217476,
-0.13053493201732635,
0.19841454923152924,
-0.01875886134803295,
0.015420527197420597,
0.07908392697572708,
0.04449893906712532,
-0.08269593119621277,
0.10040924698114395,
0.0308414027094841,
-0.0028685000725090504,
0.05902496352791786,
-0.09083724021911621,
-0.01997517980635166,
-0.03529452160000801,
0.09947336465120316,
-0.10033158212900162,
0.05891457200050354,
0.027047615498304367,
-0.07533815503120422,
-0.05640147253870964,
0.04063858836889267,
-0.0541788674890995,
0.03486352786421776,
0.03142496198415756,
-0.03667226806282997,
-0.010742541402578354,
-0.017399653792381287,
0.011702184565365314,
0.024733321741223335,
-0.07707517594099045,
0.002769757527858019,
-0.08816123753786087,
-0.03571776673197746,
0.05047229677438736,
0.08254623413085938,
-0.12577606737613678,
0.0391542874276638,
-0.12092454731464386,
0.014798130840063095,
-0.14212661981582642,
0.017705148085951805,
0.07976993173360825,
-0.009243990294635296,
-0.01604735106229782,
-0.04191828891634941,
0.03558266535401344,
0.06224523112177849,
-0.04210089519619942,
-0.07548392564058304
] |
null | null | transformers | ## beto2beto-mlsum
This model was trained on the Spanish section of MLSum: https://paperswithcode.com/sota/abstractive-text-summarization-on-mlsum.
## Hyperparameters
{
"dataset_config": "es",
"dataset_name": "mlsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"max_target_length": 64,
"num_train_epochs": 10,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"sagemaker_container_log_level": 20,
"sagemaker_program": "run_summarization.py",
"seed": 7,
"summary_column": "summary",
"text_column": "text"
}
## Usage
## Results
| metric | score |
| --- | ----- |
| validation_loss | 2.5021677017211914 |
| validation_rouge1 | 26.1256 |
| validation_rouge2 | 9.2552 |
| validation_rougeL | 21.4899 |
| validation_rougeLsum | 21.8194 |
| test_loss | 2.57672381401062 |
| test_rouge1 | 25.8639 |
| test_rouge2 | 8.911 |
| test_rougeL | 21.2426 |
| test_rougeLsum | 21.5859 |
| {"language": "es", "license": "apache-2.0", "tags": ["summarization", "spanish", "encoder-decoder", "beto"], "datasets": ["mlsum - es"], "widget": [{"text": "La chocotorta, el tradicional y pr\u00e1ctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por cr\u00edticos de restaurants internacionales, a casi 40 a\u00f1os de su creaci\u00f3n. El r\u00e1nking Taste Atlas ubic\u00f3 primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. \u201cEste postre argentino sin hornear fue influenciado por la cocina italiana y se inspir\u00f3 en el famoso tiramis\u00fa italiano. Est\u00e1 elaborado con tres ingredientes b\u00e1sicos argentinos: galletas de chocolate, dulce de leche y queso crema\u201d, explica la p\u00e1gina web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votaci\u00f3n, super\u00f3 tambi\u00e9n a los waffles belgas y el zserb\u00f3 h\u00fangaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompa\u00f1a al list\u00f3n dorado de \u201cpostre n\u00famero uno\", los expertos ense\u00f1an adem\u00e1s c\u00f3mo se hacen las chocotortas, paso por paso. \u201cLas galletas se ablandan en leche y se cubren con una combinaci\u00f3n de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, caf\u00e9 o incluso licor de caf\u00e9\u201d, detallan. Por \u00faltimo, adjudican su creaci\u00f3n a una \u201ccampa\u00f1a de m\u00e1rketing\u201d dise\u00f1ada para promover las galletitas ic\u00f3nicas que le dan su nombre. La chocotorta, infaltable en los cumplea\u00f1os argentinos, fue creada en 1982 por una creativa de las agencias m\u00e1s importantes del pa\u00eds, Marit\u00e9 Mabraga\u00f1a."}], "model-index": [{"name": "beto2beto-mlsum", "results": [{"task": {"type": "summarization", "name": "abstractive summarization"}, "dataset": {"name": "mlsum-es", "type": "mlsum", "args": "es"}, "metrics": [{"type": "rouge1", "value": 25.8639, "name": "rouge1"}, {"type": "rouge2", "value": 8.911, "name": "rouge2"}, {"type": "rougeL", "value": 21.2426, "name": "rougeL"}, {"type": "rougeLsum", "value": 21.5859, "name": "rougeLsum"}]}]}]} | summarization | LeoCordoba/beto2beto-mlsum | [
"transformers",
"pytorch",
"safetensors",
"encoder-decoder",
"text2text-generation",
"summarization",
"spanish",
"beto",
"es",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| beto2beto-mlsum
---------------
This model was trained on the Spanish section of MLSum: URL
Hyperparameters
---------------
```
{
"dataset_config": "es",
"dataset_name": "mlsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"max_target_length": 64,
"num_train_epochs": 10,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"sagemaker_container_log_level": 20,
"sagemaker_program": "run_summarization.py",
"seed": 7,
"summary_column": "summary",
"text_column": "text"
```
}
Usage
-----
Results
-------
| [] | [
"TAGS\n#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
71
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #encoder-decoder #text2text-generation #summarization #spanish #beto #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.0776815190911293,
0.14171990752220154,
-0.007327162194997072,
0.031011883169412613,
0.12399767339229584,
-0.022001272067427635,
0.10122904926538467,
0.11975845694541931,
-0.028650563210248947,
-0.022757265716791153,
0.1084192544221878,
0.19173121452331543,
0.01191492285579443,
0.13405820727348328,
-0.09326321631669998,
-0.18731571733951569,
0.11252517998218536,
0.015489098615944386,
0.022209174931049347,
0.09504286199808121,
0.12357132136821747,
-0.04440281540155411,
0.07346675544977188,
-0.03572936728596687,
-0.02780039794743061,
0.05049123615026474,
0.009989434853196144,
-0.1494310200214386,
0.07439960539340973,
0.025675427168607712,
0.07232458144426346,
0.07153686881065369,
-0.014022680930793285,
-0.17907458543777466,
0.013647720217704773,
0.018967274576425552,
-0.06492522358894348,
0.044475238770246506,
0.10329272598028183,
-0.05082391947507858,
0.05253364518284798,
0.013420548290014267,
-0.03203723207116127,
0.03604506328701973,
-0.08566438406705856,
-0.15849943459033966,
-0.031742535531520844,
0.011982878670096397,
0.08775559067726135,
0.07935286313295364,
0.002573786536231637,
0.11356530338525772,
-0.06583478301763535,
0.08624470233917236,
0.08729933202266693,
-0.2748076319694519,
0.00959748588502407,
0.013144426047801971,
0.037969209253787994,
0.055730484426021576,
0.010044831782579422,
0.025455040857195854,
0.07190613448619843,
0.003125125076621771,
0.039412032812833786,
-0.054907504469156265,
-0.1469251662492752,
-0.027581285685300827,
-0.06241762265563011,
-0.08822569996118546,
0.22365142405033112,
-0.02146201953291893,
0.030372701585292816,
-0.05786215513944626,
-0.1035054624080658,
0.05080956593155861,
-0.030159343034029007,
0.037338465452194214,
0.025424687191843987,
0.09644389152526855,
0.08818996697664261,
-0.0071114469319581985,
-0.12449470162391663,
0.015975017100572586,
-0.17611370980739594,
0.07474615424871445,
0.03896200656890869,
0.03664550557732582,
-0.12049223482608795,
0.05802806094288826,
0.07399081438779831,
-0.1823367178440094,
0.03623408451676369,
-0.060762736946344376,
0.1384236216545105,
0.05597103014588356,
-0.01699800230562687,
-0.0839872881770134,
0.1778353452682495,
0.11999335139989853,
-0.1274048537015915,
0.020553894340991974,
-0.052608098834753036,
0.09886149317026138,
-0.007065906655043364,
0.07409288734197617,
0.004581531975418329,
-0.04685553163290024,
0.08364972472190857,
-0.0461350679397583,
0.08120697736740112,
-0.020285196602344513,
-0.146876260638237,
0.009733403101563454,
0.042747706174850464,
0.13560472428798676,
0.0690305083990097,
0.058862216770648956,
-0.05152435973286629,
0.03944602236151695,
0.13055281341075897,
-0.08141224086284637,
0.008197708055377007,
0.008714723400771618,
0.03811642527580261,
0.04865937680006027,
-0.005672694183886051,
0.020305059850215912,
-0.12868236005306244,
0.04391595721244812,
-0.03269714489579201,
-0.03801265358924866,
-0.039589181542396545,
-0.048186030238866806,
0.07776787132024765,
-0.08979931473731995,
0.04662132263183594,
-0.15548542141914368,
-0.1683073192834854,
0.0026060438249260187,
0.041435644030570984,
-0.023491283878684044,
-0.03826754540205002,
-0.03291863203048706,
-0.029143374413251877,
0.03807942941784859,
-0.10148622840642929,
-0.06003640592098236,
-0.1085335910320282,
0.08111054450273514,
-0.04847527667880058,
0.024553054943680763,
-0.13337969779968262,
0.048599664121866226,
-0.1763661950826645,
-0.00606610206887126,
-0.08872441202402115,
0.05013636499643326,
-0.06495118141174316,
0.13944031298160553,
-0.0538720078766346,
-0.022881360724568367,
-0.02239137887954712,
0.05385126918554306,
-0.00707018468528986,
0.1677466481924057,
-0.09942794591188431,
-0.04622470214962959,
0.26929599046707153,
-0.1542317271232605,
-0.16799968481063843,
0.10358601808547974,
0.03850647434592247,
0.0037058584857732058,
0.08421703428030014,
0.2025453746318817,
0.008145418018102646,
-0.012764440849423409,
0.0469009131193161,
0.15657520294189453,
-0.027107270434498787,
-0.13859911262989044,
0.05426156893372536,
-0.06513075530529022,
-0.05766668915748596,
0.05911429598927498,
-0.026535222306847572,
0.07691863179206848,
-0.005563236307352781,
-0.06230967864394188,
-0.02862205170094967,
-0.023031791672110558,
0.023799652233719826,
0.01896147057414055,
0.03676317259669304,
-0.09312792122364044,
-0.038869138807058334,
-0.07945749908685684,
0.019504670053720474,
-0.024006713181734085,
0.030476300045847893,
-0.06485960632562637,
0.1211002841591835,
-0.015914184972643852,
0.04701490327715874,
-0.1324377954006195,
0.0016281885327771306,
-0.014861596748232841,
0.015483824536204338,
-0.06426198035478592,
-0.012472355738282204,
0.02024240419268608,
-0.017578894272446632,
-0.0025934132281690836,
-0.05758426710963249,
0.14672085642814636,
0.03122785873711109,
-0.019703513011336327,
-0.14281725883483887,
0.07826828956604004,
-0.04406046122312546,
0.01944580301642418,
-0.019888881593942642,
0.038113970309495926,
0.02349042147397995,
0.10808802396059036,
-0.03212296962738037,
0.08531241118907928,
-0.01441035233438015,
0.03816797584295273,
-0.06800290942192078,
-0.020233767107129097,
0.10261823982000351,
0.05130011588335037,
-0.05325284227728844,
0.1993158906698227,
-0.1208447515964508,
0.2869327962398529,
0.20486697554588318,
-0.17449016869068146,
0.06767398118972778,
-0.0034998503979295492,
0.011850683018565178,
0.026487035676836967,
-0.0036163353361189365,
0.0018115830607712269,
0.02907954528927803,
0.0012817047536373138,
0.19778351485729218,
-0.12082326412200928,
-0.004900848027318716,
0.01124890148639679,
-0.08349087834358215,
-0.03168695420026779,
0.07379282265901566,
0.10649269074201584,
-0.159526064991951,
0.20275884866714478,
0.2731432318687439,
0.016976548358798027,
0.15235896408557892,
-0.0883101150393486,
-0.00021300672960933298,
0.08778207004070282,
0.02858329750597477,
-0.035496342927217484,
-0.025934485718607903,
-0.13438914716243744,
0.024702396243810654,
0.07729630917310715,
0.03521406650543213,
0.06994611024856567,
-0.1263391524553299,
-0.018905432894825935,
0.004483622498810291,
-0.04813214763998985,
-0.03564183786511421,
0.04524977505207062,
0.0033510620705783367,
0.10659351944923401,
-0.0655163824558258,
-0.11926653236150742,
0.08958612382411957,
0.001635271473787725,
-0.08091963827610016,
0.19336362183094025,
-0.15329933166503906,
-0.31349045038223267,
-0.15940465033054352,
-0.05433421581983566,
-0.03107076697051525,
0.043541036546230316,
0.17411623895168304,
-0.06501024216413498,
-0.04987063631415367,
-0.05556130036711693,
-0.04550842568278313,
0.04861653968691826,
-0.024480432271957397,
-0.0014176781987771392,
0.06200917065143585,
0.008654174394905567,
-0.12341105192899704,
-0.04527067020535469,
0.038231078535318375,
-0.024241924285888672,
0.08074744790792465,
-0.09114939719438553,
0.11464173346757889,
0.12585234642028809,
0.00895501859486103,
0.004536367487162352,
-0.039670173078775406,
0.11160072684288025,
-0.04996049404144287,
-0.008692662231624126,
0.25422969460487366,
-0.033215731382369995,
0.07854542881250381,
0.15085400640964508,
0.0020883409306406975,
-0.05555855482816696,
0.00555045809596777,
-0.07788079231977463,
-0.06790581345558167,
-0.2511714696884155,
-0.12931808829307556,
-0.06381937116384506,
0.05938946455717087,
0.02691856399178505,
0.07088993489742279,
0.05723940581083298,
0.10466413199901581,
-0.056611329317092896,
-0.05508580431342125,
0.031769659370183945,
0.06178942322731018,
0.19104735553264618,
-0.015656594187021255,
0.11443457007408142,
-0.10119771957397461,
-0.09027986973524094,
0.11201401799917221,
0.0426890067756176,
0.046959031373262405,
0.03661718592047691,
0.03817972540855408,
0.06207740679383278,
0.09998369216918945,
0.046557165682315826,
0.1454182118177414,
0.001601901021786034,
0.01834389939904213,
-0.06437048316001892,
-0.04245993122458458,
-0.07001756131649017,
-0.013962475582957268,
-0.10068345814943314,
-0.08428432792425156,
-0.10243277996778488,
-0.03531665727496147,
0.11290153861045837,
0.13419443368911743,
0.02731236070394516,
-0.21264666318893433,
0.025842314586043358,
0.08070886135101318,
0.00721278740093112,
-0.08851608633995056,
0.09527166932821274,
0.008770392276346684,
-0.08906956017017365,
0.12198147177696228,
-0.0067604766227304935,
0.1321396678686142,
-0.025625992566347122,
0.06820724159479141,
-0.07120642066001892,
-0.03960108757019043,
0.0533602200448513,
0.13569675385951996,
-0.24251757562160492,
0.2150406837463379,
-0.011994581669569016,
0.015369917266070843,
-0.0711529403924942,
0.04532695561647415,
0.03081396035850048,
0.1928999125957489,
0.13935284316539764,
-0.0068259271793067455,
-0.08266805857419968,
-0.03197715803980827,
-0.07307057082653046,
0.0546039342880249,
0.015477058477699757,
0.016039542853832245,
-0.021414730697870255,
-0.04112309589982033,
-0.014561767689883709,
-0.014127146452665329,
-0.03679659962654114,
-0.016783835366368294,
-0.15611621737480164,
0.013870670460164547,
0.1054128110408783,
0.06389684975147247,
-0.06452104449272156,
-0.019343925639986992,
-0.10416025668382645,
0.1173282265663147,
-0.07531654089689255,
-0.13492707908153534,
-0.0845613107085228,
-0.10912135988473892,
0.03386342152953148,
-0.060327302664518356,
0.05833461135625839,
-0.06138795241713524,
0.03090864233672619,
-0.042927831411361694,
-0.15511497855186462,
0.11566746979951859,
-0.1591622531414032,
-0.04889238253235817,
-0.04007566347718239,
0.11675377190113068,
-0.12102055549621582,
-0.02296527661383152,
0.05724653974175453,
-0.014611702412366867,
-0.07033923268318176,
-0.10916507989168167,
-0.06052941083908081,
-0.001812113099731505,
0.08145289123058319,
0.028046365827322006,
-0.08853931725025177,
-0.1623317450284958,
0.023566987365484238,
-0.05788305774331093,
0.1937800794839859,
0.18090415000915527,
-0.0444229356944561,
0.11797163635492325,
0.2544635236263275,
-0.09742707014083862,
-0.32580816745758057,
-0.18990926444530487,
-0.11314786225557327,
-0.06339981406927109,
0.0014225475024431944,
-0.11010013520717621,
0.09085159003734589,
0.036856625229120255,
-0.07388670742511749,
-0.0038962189573794603,
-0.23972809314727783,
-0.053205035626888275,
0.18493255972862244,
0.008928721770644188,
0.2478998750448227,
-0.13839106261730194,
-0.09451591223478317,
-0.10010869055986404,
-0.16105377674102783,
0.07430800795555115,
-0.1522490233182907,
0.0307230893522501,
0.019224513322114944,
-0.058742426335811615,
0.009683618322014809,
-0.03926339000463486,
0.1088615134358406,
-0.055169474333524704,
0.02452152594923973,
-0.09429710358381271,
0.07123633474111557,
0.08674772828817368,
-0.016271593049168587,
0.0852850079536438,
-0.19603611528873444,
0.05665650591254234,
-0.0836934819817543,
-0.03196687996387482,
-0.038927171379327774,
0.05862947925925255,
0.001365670352242887,
-0.03934527561068535,
0.004128031432628632,
-0.05045166611671448,
0.06277810037136078,
0.009771873243153095,
0.2277316004037857,
0.003731693373993039,
0.08321521431207657,
0.21941624581813812,
0.13427627086639404,
-0.19614280760288239,
0.042412418872117996,
-0.07576841115951538,
-0.06717652082443237,
0.05909530073404312,
-0.10534394532442093,
0.0720042958855629,
0.07991550117731094,
-0.08210968971252441,
0.03585686534643173,
0.061047088354825974,
0.017921356484293938,
-0.016324622556567192,
0.16506263613700867,
-0.13154776394367218,
-0.020267024636268616,
-0.03709021955728531,
0.0720035657286644,
0.03738589584827423,
0.07538000494241714,
0.1375807672739029,
0.03648262843489647,
-0.02613009698688984,
-0.015278285369277,
0.034905318170785904,
-0.023356443271040916,
0.0924515426158905,
0.018671782687306404,
0.009908782318234444,
-0.140228271484375,
0.11087536811828613,
0.015606403350830078,
-0.14537928998470306,
0.004059705883264542,
0.10579883307218552,
-0.16084246337413788,
-0.13497711718082428,
0.03880312666296959,
0.14261119067668915,
-0.13705633580684662,
-0.1592107117176056,
-0.11677961051464081,
-0.15086261928081512,
0.040315061807632446,
0.0782567709684372,
0.10133614391088486,
0.03753957897424698,
0.019804058596491814,
-0.0710575133562088,
0.015858925879001617,
0.043573055416345596,
0.011648823507130146,
0.023206893354654312,
-0.125736802816391,
-0.04090676084160805,
0.005266423337161541,
0.06411030143499374,
-0.05871940776705742,
0.015190099366009235,
-0.0939401313662529,
0.03652138262987137,
-0.1498623490333557,
0.03993041813373566,
-0.09543995559215546,
-0.0287201888859272,
-0.012259870767593384,
-0.042507242411375046,
-0.018792277202010155,
-0.006866542622447014,
-0.08086113631725311,
-0.015752991661429405,
-0.04028989374637604,
0.08760273456573486,
-0.1155966967344284,
-0.022816002368927002,
0.04127972573041916,
-0.041032228618860245,
0.09609170258045197,
0.03285457566380501,
-0.08743967860937119,
0.09905275702476501,
-0.2232341468334198,
-0.08008894324302673,
0.13142552971839905,
0.046520061790943146,
0.009497568011283875,
0.07321324944496155,
0.03345634415745735,
0.15600460767745972,
-0.05733465775847435,
0.015750767663121223,
0.03793465718626976,
-0.12961918115615845,
0.00943088810890913,
-0.013717918656766415,
-0.10243196785449982,
0.0092838816344738,
-0.024792125448584557,
0.13115347921848297,
-0.02222263626754284,
0.20108163356781006,
-0.08039513975381851,
0.024115275591611862,
-0.07271324843168259,
0.023372529074549675,
-0.010829547420144081,
-0.1545913815498352,
-0.13307645916938782,
-0.053153470158576965,
-0.007087432313710451,
-0.0164214838296175,
0.24326421320438385,
0.10499077290296555,
0.03127260133624077,
0.05192697048187256,
0.02910461835563183,
0.08292511850595474,
0.03392227739095688,
0.24680504202842712,
0.03877542167901993,
-0.008007129654288292,
-0.130327045917511,
-0.006224437616765499,
0.06008131057024002,
-0.04690033569931984,
0.02707398124039173,
0.13922511041164398,
0.06470930576324463,
0.1010245680809021,
0.02486109361052513,
0.04949430003762245,
-0.10231389850378036,
-0.12127311527729034,
0.030092302709817886,
0.08770008385181427,
0.05395067110657692,
0.059040989726781845,
0.1650582104921341,
-0.0264739952981472,
0.01515858992934227,
-0.009912988170981407,
-0.003886948339641094,
-0.1739916205406189,
-0.0948571115732193,
-0.08713549375534058,
-0.14800246059894562,
-0.009858974255621433,
-0.08411228656768799,
-0.0031758309341967106,
0.060636162757873535,
0.04041718319058418,
-0.08733540028333664,
0.05323600396513939,
0.037413712590932846,
-0.0867302417755127,
0.05713596194982529,
-0.00742728216573596,
0.04674149677157402,
0.017106564715504646,
-0.0473351925611496,
-0.05157143995165825,
0.037924621254205704,
-0.023723220452666283,
0.06741104274988174,
-0.014375683851540089,
0.06611856818199158,
-0.11920606344938278,
-0.06156935915350914,
-0.019733363762497902,
0.03778768703341484,
-0.009105666540563107,
0.1505432426929474,
0.021439790725708008,
-0.016721589490771294,
0.09277777373790741,
0.19284886121749878,
-0.047498464584350586,
-0.16492576897144318,
-0.05586577206850052,
0.1590808779001236,
0.0614953376352787,
0.11402002722024918,
0.021255595609545708,
-0.0336739607155323,
-0.05847876891493797,
0.2588726282119751,
0.2656499743461609,
-0.049294039607048035,
0.008084055036306381,
-0.03523832932114601,
0.020154288038611412,
0.04718545451760292,
0.1040847972035408,
0.11868330836296082,
0.23661679029464722,
-0.06446665525436401,
0.02313125878572464,
-0.058046530932188034,
0.02224056050181389,
-0.17627297341823578,
0.08385570347309113,
-0.02489558607339859,
-0.07914134114980698,
-0.007522110361605883,
0.12581558525562286,
-0.1005697026848793,
0.05435735732316971,
-0.05896180495619774,
-0.10259772092103958,
-0.03642250597476959,
-0.014602581970393658,
0.20023392140865326,
0.06504795700311661,
0.01038921158760786,
-0.006936945952475071,
-0.03292829170823097,
0.06928584724664688,
-0.009761111810803413,
-0.1321037858724594,
-0.03336755931377411,
-0.013345230370759964,
-0.13470050692558289,
0.16373127698898315,
0.01064201071858406,
0.025443118065595627,
0.08222781866788864,
0.05820208787918091,
-0.07137599587440491,
0.12780775129795074,
0.017138659954071045,
0.02424577996134758,
0.10083084553480148,
-0.1228465884923935,
-0.02404871955513954,
-0.052353426814079285,
0.04983402416110039,
-0.10071856528520584,
0.05066708102822304,
0.02441638521850109,
-0.09412945061922073,
-0.030030718073248863,
0.03901004046201706,
-0.077113077044487,
0.025470612570643425,
0.016856161877512932,
-0.010109676979482174,
-0.013804136775434017,
-0.03718073293566704,
0.038926027715206146,
0.010253753513097763,
-0.12061509490013123,
-0.01212575938552618,
-0.08255147188901901,
-0.0472639724612236,
0.12214327603578568,
0.0608474425971508,
-0.15326590836048126,
0.039399221539497375,
-0.12175282835960388,
0.02644815854728222,
-0.19335299730300903,
0.026961375027894974,
0.09134531766176224,
0.0018634835723787546,
-0.012932869605720043,
-0.04459129273891449,
0.011935827322304249,
0.06355375051498413,
-0.04810841754078865,
-0.07928410172462463
] |
null | null | transformers | ## beto2beto
Usage example here: https://colab.research.google.com/drive/18a2ZfF1e_Kyyydlv8INQIkJbv294xcAm?usp=sharing
Entrenado por 3 epochs sobre CC-NEWS-ES (2019), aproximadamente 68.000 steps. Encoder max length: 40•Decoder max length: 128
## Hyperparameters
## Usage
## Results
| key | value |
| --- | ----- |
| test_loss | 2.65148806571960452 |
| {"language": "es", "license": "apache-2.0", "tags": ["text-generation", "spanish", "encoder-decoder", "beto"], "datasets": ["LeoCordoba/CC-NEWS-ES"]} | text-generation | LeoCordoba/beto2beto | [
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"text-generation",
"spanish",
"beto",
"es",
"dataset:LeoCordoba/CC-NEWS-ES",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #encoder-decoder #text2text-generation #text-generation #spanish #beto #es #dataset-LeoCordoba/CC-NEWS-ES #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| beto2beto
---------
Usage example here: URL
Entrenado por 3 epochs sobre CC-NEWS-ES (2019), aproximadamente 68.000 steps. Encoder max length: 40•Decoder max length: 128
Hyperparameters
---------------
Usage
-----
Results
-------
| [] | [
"TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #text-generation #spanish #beto #es #dataset-LeoCordoba/CC-NEWS-ES #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
78
] | [
"passage: TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #text-generation #spanish #beto #es #dataset-LeoCordoba/CC-NEWS-ES #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.08147159218788147,
0.1576736569404602,
-0.005962647497653961,
0.035768795758485794,
0.12249460816383362,
0.0008696048753336072,
0.09790969640016556,
0.11916844546794891,
-0.060586243867874146,
-0.03217935189604759,
0.132427379488945,
0.1968124955892563,
0.014935885556042194,
0.09833066165447235,
-0.07356578856706619,
-0.17031975090503693,
0.08899212628602982,
0.03572101518511772,
0.02451455593109131,
0.09044118225574493,
0.09542106091976166,
-0.030083755031228065,
0.08271809667348862,
-0.03988465666770935,
-0.08599870651960373,
0.06097731366753578,
0.009656314738094807,
-0.1468890756368637,
0.08257206529378891,
0.035064492374658585,
0.06897269189357758,
0.08145063370466232,
-0.03374138101935387,
-0.14854532480239868,
0.011469154618680477,
0.008685574866831303,
-0.080997534096241,
0.05371997877955437,
0.08650513738393784,
-0.05726393312215805,
0.05102472007274628,
-0.020852092653512955,
-0.04036717861890793,
0.02788711152970791,
-0.0983707383275032,
-0.1319778710603714,
-0.07724710553884506,
0.010058199055492878,
0.07549350708723068,
0.1119307279586792,
0.017452917993068695,
0.08102566003799438,
-0.06482347846031189,
0.05915621295571327,
0.10057291388511658,
-0.2642894983291626,
0.013797200284898281,
0.012051371857523918,
0.05340708792209625,
0.08409926295280457,
0.02865372598171234,
0.025534838438034058,
0.08416776359081268,
0.010288839228451252,
-0.02185099571943283,
-0.06863947212696075,
-0.17787262797355652,
-0.004107860382646322,
-0.035452648997306824,
-0.08856554329395294,
0.24032537639141083,
-0.05011384189128876,
0.04530927538871765,
0.00003653782914625481,
-0.0692596510052681,
0.016750788316130638,
-0.009907754138112068,
0.04846176505088806,
0.0048986473120749,
0.09852351248264313,
0.061044611036777496,
-0.031062638387084007,
-0.14057797193527222,
0.01677214354276657,
-0.19472017884254456,
0.04202328994870186,
0.015134811401367188,
0.05883398279547691,
-0.12560845911502838,
0.08279510587453842,
0.12506763637065887,
-0.17512884736061096,
0.03605238348245621,
-0.03366200253367424,
0.14012020826339722,
0.06109137833118439,
-0.04869819059967995,
-0.0279774721711874,
0.1303701102733612,
0.09351473301649094,
-0.09714328497648239,
-0.007633981294929981,
-0.0707072913646698,
0.1072041466832161,
-0.021190084517002106,
0.018117643892765045,
-0.00820972304791212,
-0.05785665288567543,
0.06856875866651535,
-0.10619775205850601,
0.06618887931108475,
-0.02908105030655861,
-0.1606954038143158,
-0.02079930528998375,
-0.037084516137838364,
0.1074482649564743,
0.10592389851808548,
0.036476943641901016,
-0.05314581096172333,
0.01565999910235405,
0.14150017499923706,
-0.06977607309818268,
0.013025740161538124,
-0.0013211049372330308,
0.008641327731311321,
0.11837563663721085,
0.005686559714376926,
0.030603772029280663,
-0.09645502269268036,
0.04720761254429817,
-0.0522630549967289,
-0.04909578338265419,
-0.03766647353768349,
-0.02050655148923397,
0.09202674776315689,
-0.11025229841470718,
0.02286411263048649,
-0.1484072059392929,
-0.18462365865707397,
-0.020503509789705276,
0.02714988961815834,
-0.04048565402626991,
-0.06332962960004807,
-0.06469706445932388,
-0.041226863861083984,
0.08007887750864029,
-0.09895217418670654,
-0.002166263060644269,
-0.10738074779510498,
0.09478973597288132,
-0.061132773756980896,
0.046743810176849365,
-0.16211733222007751,
0.04113306477665901,
-0.13529987633228302,
-0.02802569977939129,
-0.04624064266681671,
0.09498756378889084,
-0.06760650873184204,
0.13043303787708282,
-0.06824439764022827,
-0.0012421772116795182,
-0.0005594140384346247,
0.05730918422341347,
-0.013213579542934895,
0.18285489082336426,
-0.12685751914978027,
-0.07584013789892197,
0.25431716442108154,
-0.08681771159172058,
-0.11968743801116943,
0.06286859512329102,
0.026960361748933792,
0.023988856002688408,
0.0968492403626442,
0.12054275721311569,
0.004585791379213333,
-0.016774624586105347,
0.02829139120876789,
0.1037796214222908,
-0.019797204062342644,
-0.17759554088115692,
0.0613119937479496,
-0.05817491188645363,
-0.04980031028389931,
0.05459000542759895,
-0.043666381388902664,
0.08190921694040298,
-0.0036337440833449364,
-0.04609009250998497,
-0.02231980860233307,
-0.020277537405490875,
-0.0014929425669834018,
-0.010274586267769337,
0.05626114457845688,
-0.07350356131792068,
-0.0394010990858078,
-0.05201283469796181,
0.009561993181705475,
0.008140061981976032,
0.06434682756662369,
-0.05193408951163292,
0.06656163930892944,
-0.032437410205602646,
0.05174330249428749,
-0.12127077579498291,
0.0500127337872982,
-0.019132519140839577,
0.10396553575992584,
-0.0415603369474411,
0.02756735123693943,
-0.002034837380051613,
-0.07783867418766022,
-0.013468778692185879,
-0.031214728951454163,
0.10826564580202103,
0.0027786297723650932,
-0.02423861436545849,
-0.14806003868579865,
0.11167403310537338,
-0.046095747500658035,
0.031682856380939484,
-0.03462879732251167,
0.024719662964344025,
0.059841737151145935,
0.10631825029850006,
-0.04756323620676994,
0.08796461671590805,
-0.04164943844079971,
0.046764347702264786,
-0.0841539278626442,
-0.005706084426492453,
0.09676438570022583,
0.057288575917482376,
-0.0707426518201828,
0.2253640592098236,
-0.06320741772651672,
0.1926765739917755,
0.19485674798488617,
-0.16582661867141724,
0.06982854753732681,
0.004600818268954754,
-0.00046367390314117074,
0.008294540457427502,
0.01516971830278635,
-0.024454524740576744,
0.09910064935684204,
0.001023157499730587,
0.19617363810539246,
-0.09496639668941498,
-0.0167989544570446,
0.005117104388773441,
-0.05089350417256355,
-0.03443371504545212,
0.08185536414384842,
0.10627040266990662,
-0.0893496572971344,
0.20385606586933136,
0.24549500644207,
0.007228554226458073,
0.16994433104991913,
-0.054558057337999344,
-0.016970187425613403,
0.07038377225399017,
-0.032276418060064316,
-0.019646642729640007,
-0.01969277486205101,
-0.11038162559270859,
0.016348620876669884,
0.08130618929862976,
0.031785983592271805,
0.09330960363149643,
-0.10876074433326721,
-0.046778030693531036,
-0.003578340169042349,
-0.02843388170003891,
-0.04455104470252991,
0.039940472692251205,
-0.006026662886142731,
0.10399318486452103,
-0.03882400691509247,
-0.07842981815338135,
0.09771029651165009,
0.0059465509839355946,
-0.08570275455713272,
0.17035093903541565,
-0.17577756941318512,
-0.3299340605735779,
-0.18035361170768738,
-0.09857075661420822,
-0.016316549852490425,
0.05165219306945801,
0.1513521820306778,
-0.09654714167118073,
-0.021078145131468773,
-0.012661135755479336,
-0.0339948907494545,
0.029391029849648476,
-0.019566237926483154,
0.05707098916172981,
0.054960012435913086,
-0.020367540419101715,
-0.1077924370765686,
-0.018484000116586685,
0.04490752890706062,
-0.038163866847753525,
0.07149510085582733,
-0.11566728353500366,
0.11263525485992432,
0.11746365576982498,
0.05917159095406532,
0.009535410441458225,
-0.029137112200260162,
0.09291151911020279,
-0.06357204914093018,
-0.0088302381336689,
0.2220352739095688,
-0.010687957517802715,
0.0610027089715004,
0.1435510814189911,
0.01379995048046112,
-0.0498337559401989,
-0.004182793665677309,
-0.06990383565425873,
-0.05486854165792465,
-0.3025113642215729,
-0.12656453251838684,
-0.07316581159830093,
0.050287991762161255,
0.018451901152729988,
0.0655616894364357,
0.08962301164865494,
0.08736900985240936,
-0.05049988627433777,
0.0077329897321760654,
-0.019024964421987534,
0.06795444339513779,
0.20957715809345245,
-0.022001441568136215,
0.10215087234973907,
-0.10079145431518555,
-0.05366923287510872,
0.13732019066810608,
0.10379350185394287,
0.03620494157075882,
0.06396323442459106,
0.09658569097518921,
0.03634653612971306,
0.08075892925262451,
0.04404647648334503,
0.08925295621156693,
0.020623650401830673,
0.013737868517637253,
-0.057120900601148605,
-0.028711987659335136,
-0.05304364487528801,
-0.011804391629993916,
-0.0832936018705368,
-0.1093849241733551,
-0.05043814703822136,
-0.08536525815725327,
0.0871920958161354,
0.1267286092042923,
0.009042770601809025,
-0.2059597671031952,
0.03296194598078728,
0.06558901071548462,
0.01729469560086727,
-0.09145902842283249,
0.0664939284324646,
0.03135224059224129,
-0.08647000044584274,
0.126475989818573,
0.010062715038657188,
0.13810418546199799,
-0.04974273219704628,
0.059444572776556015,
-0.04787295311689377,
-0.09373756498098373,
0.0559370219707489,
0.1265723556280136,
-0.28593966364860535,
0.19961154460906982,
0.0019007528899237514,
-0.01280669029802084,
-0.07234098017215729,
0.02361077442765236,
-0.006410018540918827,
0.17818818986415863,
0.11911208182573318,
0.008753696456551552,
-0.028048930689692497,
0.0024664150550961494,
-0.12899844348430634,
0.04550983011722565,
0.010586959309875965,
-0.03138408064842224,
-0.02153201214969158,
-0.012584647163748741,
-0.014373943209648132,
-0.016083192080259323,
-0.031932439655065536,
-0.03283487632870674,
-0.19355328381061554,
0.05665579065680504,
0.13205133378505707,
0.061304494738578796,
-0.04176459088921547,
-0.04651160538196564,
-0.0628952756524086,
0.13965757191181183,
-0.17879988253116608,
-0.10923821479082108,
-0.10951371490955353,
-0.0692036971449852,
0.02881539799273014,
-0.04955865070223808,
0.03382210060954094,
-0.03420354798436165,
0.03130354359745979,
-0.05448982119560242,
-0.14157193899154663,
0.10658276826143265,
-0.1476156860589981,
-0.06302027404308319,
-0.07034599035978317,
0.11510264873504639,
-0.06621292978525162,
0.007171283476054668,
0.03614048659801483,
-0.01422195602208376,
-0.07695562392473221,
-0.08255355805158615,
-0.042680494487285614,
0.021962612867355347,
0.0986841693520546,
0.00027955524274148047,
-0.0796818882226944,
-0.14158576726913452,
0.001875615562312305,
-0.10250254720449448,
0.21461208164691925,
0.15692022442817688,
-0.056706782430410385,
0.16743271052837372,
0.22107115387916565,
-0.11920497566461563,
-0.30724796652793884,
-0.14399297535419464,
-0.06791909039020538,
-0.0572509840130806,
-0.06379569321870804,
-0.189925879240036,
0.06645715981721878,
0.06761729717254639,
-0.06368635594844818,
0.04587971791625023,
-0.2857506573200226,
-0.04359327629208565,
0.10923314839601517,
-0.06282621622085571,
0.2998546361923218,
-0.1311284899711609,
-0.11911968886852264,
-0.1195501908659935,
-0.1690993756055832,
0.13808941841125488,
-0.10525389760732651,
0.04288993030786514,
-0.0038070392329245806,
0.009281929582357407,
-0.00444019353017211,
-0.026482535526156425,
0.1140386313199997,
-0.007009549997746944,
-0.016949621960520744,
-0.09200295805931091,
0.044607341289520264,
0.12713764607906342,
-0.006198934745043516,
0.015774747356772423,
-0.16022850573062897,
0.026304109022021294,
-0.1583486646413803,
-0.02110375463962555,
-0.06855787336826324,
0.03978084400296211,
-0.013875722885131836,
-0.002618728205561638,
-0.0012532840482890606,
-0.07147611677646637,
0.0697602853178978,
-0.0018842540448531508,
0.2159140557050705,
0.004225106909871101,
0.03675573319196701,
0.1444413810968399,
0.10030903667211533,
-0.14521031081676483,
0.045374635607004166,
-0.08735586702823639,
-0.058525022119283676,
0.06902806460857391,
-0.142274871468544,
0.025101542472839355,
0.09913299232721329,
-0.08506587892770767,
0.029271529987454414,
0.05945397540926933,
-0.014063198119401932,
0.0059463693760335445,
0.15860682725906372,
-0.15392495691776276,
0.07880104333162308,
-0.026375921443104744,
0.12287871539592743,
0.058090366423130035,
0.05195726454257965,
0.16001583635807037,
0.03783545270562172,
-0.04346255958080292,
0.016411859542131424,
0.02720344066619873,
-0.032209888100624084,
0.09419271349906921,
0.016514617949724197,
-0.009589452296495438,
-0.15596401691436768,
0.12934216856956482,
0.04351343587040901,
-0.17027311027050018,
0.01061980053782463,
0.11140545457601547,
-0.141807422041893,
-0.10869241505861282,
0.05287683755159378,
0.12302917242050171,
-0.21481946110725403,
-0.13723452389240265,
-0.10380896925926208,
-0.1007106676697731,
0.08484306186437607,
0.10908576101064682,
0.06277469545602798,
0.047438059002161026,
0.00963240023702383,
-0.06643255800008774,
0.025913041085004807,
0.004282153211534023,
-0.01698806881904602,
0.03232012316584587,
-0.08225986361503601,
-0.03462284058332443,
0.0027751841116696596,
0.08118540793657303,
-0.051063671708106995,
0.01301652006804943,
-0.08681568503379822,
0.041228193789720535,
-0.1318456083536148,
0.029841236770153046,
-0.061625078320503235,
-0.05892675742506981,
-0.031938984990119934,
-0.06241627410054207,
-0.030901717022061348,
-0.020099319517612457,
-0.08807109296321869,
-0.01673264242708683,
-0.03910146653652191,
0.0877014547586441,
-0.11462780088186264,
-0.024052977561950684,
0.05125818029046059,
-0.02860376238822937,
0.09991908818483353,
0.06789792329072952,
-0.07645441591739655,
0.0798003077507019,
-0.18275779485702515,
-0.07209762930870056,
0.11374036222696304,
0.047700826078653336,
0.0492425300180912,
0.09742657840251923,
0.02656503953039646,
0.13652867078781128,
-0.04018918052315712,
0.028089040890336037,
0.03963540121912956,
-0.13125865161418915,
0.015212458558380604,
-0.012955707497894764,
-0.10181663930416107,
-0.002159245079383254,
-0.020673835650086403,
0.16980350017547607,
0.0019703430589288473,
0.18354053795337677,
-0.07281848043203354,
0.04205181822180748,
-0.0245249904692173,
0.02332991734147072,
-0.006218370981514454,
-0.1386416107416153,
-0.10377373546361923,
-0.0508965440094471,
-0.0022849480155855417,
0.0015360149554908276,
0.23254874348640442,
0.03901899605989456,
0.02606539987027645,
0.042949777096509933,
0.045135002583265305,
0.01104455254971981,
0.02188112773001194,
0.22462505102157593,
0.07762965559959412,
-0.0018348126905038953,
-0.11455114930868149,
0.018702462315559387,
0.07442666590213776,
-0.012205315753817558,
0.02771955542266369,
0.09648916125297546,
0.16080933809280396,
0.11034955084323883,
0.04030323401093483,
0.009774413891136646,
-0.08231092244386673,
-0.1388574093580246,
-0.018190737813711166,
0.07322710752487183,
0.036110769957304,
0.09523862600326538,
0.11238729953765869,
-0.036978114396333694,
-0.0011520819971337914,
0.0008519840775988996,
0.010441076010465622,
-0.12207140773534775,
-0.09498310089111328,
-0.06337737292051315,
-0.14496690034866333,
-0.016317812725901604,
-0.08585275709629059,
0.05210636183619499,
0.05974694713950157,
0.041367046535015106,
-0.08967948704957962,
0.015359578654170036,
0.05926962196826935,
-0.12173416465520859,
0.08528159558773041,
-0.00156344473361969,
0.07050763070583344,
-0.061694350093603134,
-0.012906634248793125,
-0.04471950978040695,
0.07633832842111588,
-0.016266701743006706,
0.09039229899644852,
0.022981833666563034,
0.052547141909599304,
-0.10685029625892639,
-0.05890414118766785,
-0.02031842991709709,
0.04750734940171242,
0.002618546597659588,
0.156996488571167,
0.02581898681819439,
0.010819530114531517,
0.09163623303174973,
0.17820051312446594,
-0.04614245146512985,
-0.10298656672239304,
-0.037641413509845734,
0.047113217413425446,
0.05952094867825508,
0.11127221584320068,
-0.005796355661004782,
-0.03256438300013542,
-0.09804650396108627,
0.2898428440093994,
0.2271355837583542,
-0.0677727609872818,
-0.003444021800532937,
-0.013056589290499687,
0.03683803603053093,
0.07581987977027893,
0.09635290503501892,
0.12017431855201721,
0.23710910975933075,
-0.05937211215496063,
-0.05579771474003792,
-0.0566444918513298,
0.02182735875248909,
-0.14694339036941528,
0.08422432839870453,
-0.06815167516469955,
-0.10351768136024475,
-0.0003856268886011094,
0.11733244359493256,
-0.12822911143302917,
0.019873125478625298,
-0.03625323623418808,
-0.13211247324943542,
-0.05291822552680969,
-0.01641983911395073,
0.21548275649547577,
0.046181317418813705,
0.013615638948976994,
0.021209796890616417,
-0.038621123880147934,
0.10474015772342682,
-0.016447192057967186,
-0.14918272197246552,
-0.048484884202480316,
0.009297396056354046,
-0.17287646234035492,
0.13312649726867676,
-0.01658933237195015,
0.05890968441963196,
0.07986296713352203,
0.07428024709224701,
-0.09352042526006699,
0.06466104090213776,
0.021243412047624588,
0.009363492950797081,
0.07866188138723373,
-0.09811347723007202,
-0.018905801698565483,
-0.06543675810098648,
0.08242883533239365,
-0.06288225203752518,
0.05963323637843132,
0.05422813817858696,
-0.04242795705795288,
-0.04492180049419403,
0.04113387316465378,
-0.07038754224777222,
0.034448180347681046,
0.016354920342564583,
-0.023645691573619843,
-0.017687194049358368,
-0.04547156020998955,
0.0025835742708295584,
0.012492264620959759,
-0.06456528604030609,
-0.02163766324520111,
-0.09666319936513901,
-0.06896393746137619,
0.09153692424297333,
0.08612418174743652,
-0.13127785921096802,
0.047873131930828094,
-0.11893334984779358,
0.00539299426600337,
-0.15931783616542816,
0.021899862214922905,
0.0397237204015255,
-0.0012458364944905043,
-0.009785451926290989,
-0.022583860903978348,
0.026652460917830467,
0.04974813014268875,
-0.06618379056453705,
-0.0752226859331131
] |
null | null | transformers |
## Hyperparameters
{
"max_target_length": 64,
"model_name_or_path": "google/mt5-small",
"num_train_epochs": 3,
"seed": 7,
"summary_column": "output_text",
"text_column": "text",
"encoder_max_length" : 512,
"decoder_max_length" :36,
"batch_size" : 128
}
## Usage
```
article = """ La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. """
from transformers import pipeline
summarizer = pipeline("summarization", model="LeoCordoba/mt5-small-ccnews-titles-es")
summarizer(article, min_length=5, max_length=64)
```
## Results
| metric | score |
| --- | ----- |
| eval_loss | 2.879085063934326 |
| eval_rouge1 | 22.6623 |
| eval_rouge2 | 7.7894 |
| eval_rougeL | 19.8015, |
| eval_rougeLsum | 19.8092 |
| eval_gen_len | 17.1839 |
| test_loss | 2.878429412841797 |
| test_rouge1 | 22.9263 |
| test_rouge2 | 7.9146 |
| test_rougeL | 20.0272 |
| test_rougeLsum | 20.0387 |
| test_gen_len | 17.1696 | | {"language": "es", "license": "apache-2.0", "tags": ["summarization", "mt5", "spanish"], "datasets": ["LeoCordoba/CC-NEWS-ES-titles"], "widget": [{"text": "La chocotorta, el tradicional y pr\u00e1ctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por cr\u00edticos de restaurants internacionales, a casi 40 a\u00f1os de su creaci\u00f3n. El r\u00e1nking Taste Atlas ubic\u00f3 primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. \u201cEste postre argentino sin hornear fue influenciado por la cocina italiana y se inspir\u00f3 en el famoso tiramis\u00fa italiano. Est\u00e1 elaborado con tres ingredientes b\u00e1sicos argentinos: galletas de chocolate, dulce de leche y queso crema\u201d, explica la p\u00e1gina web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votaci\u00f3n, super\u00f3 tambi\u00e9n a los waffles belgas y el zserb\u00f3 h\u00fangaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompa\u00f1a al list\u00f3n dorado de \u201cpostre n\u00famero uno\u201c, los expertos ense\u00f1an adem\u00e1s c\u00f3mo se hacen las chocotortas, paso por paso. \u201cLas galletas se ablandan en leche y se cubren con una combinaci\u00f3n de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, caf\u00e9 o incluso licor de caf\u00e9\u201d, detallan. Por \u00faltimo, adjudican su creaci\u00f3n a una \u201ccampa\u00f1a de m\u00e1rketing\u201d dise\u00f1ada para promover las galletitas ic\u00f3nicas que le dan su nombre. La chocotorta, infaltable en los cumplea\u00f1os argentinos, fue creada en 1982 por una creativa de las agencias m\u00e1s importantes del pa\u00eds, Marit\u00e9 Mabraga\u00f1a."}], "model-index": [{"name": "mt5-small-ccnews-titles-es", "results": [{"task": {"type": "abstractive-text-summarization", "name": "Abstractive Text Summarization"}, "dataset": {"name": "CCNEWS-ES-titles", "type": "LeoCordoba/CC-NEWS-ES-titles"}, "metrics": [{"type": "rogue-1", "value": 22.6623, "name": "Validation ROGUE-1"}, {"type": "rogue-2", "value": 7.7894, "name": "Validation ROGUE-2"}, {"type": "rogue-l", "value": 19.8015, "name": "Validation ROGUE-L"}, {"type": "rogue-lsum", "value": 19.8092, "name": "Validation ROGUE-Lsum"}, {"type": "rogue-1", "value": 22.9263, "name": "Test ROGUE-1"}, {"type": "rogue-2", "value": 7.9146, "name": "Test ROGUE-2"}, {"type": "rogue-l", "value": 20.0272, "name": "Test ROGUE-L"}, {"type": "rogue-lsum", "value": 20.0387, "name": "Test ROGUE-Lsum"}]}]}]} | summarization | LeoCordoba/mt5-small-cc-news-es-titles | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"summarization",
"spanish",
"es",
"dataset:LeoCordoba/CC-NEWS-ES-titles",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #mt5 #text2text-generation #summarization #spanish #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Hyperparameters
---------------
{
```
"max_target_length": 64,
"model_name_or_path": "google/mt5-small",
"num_train_epochs": 3,
"seed": 7,
"summary_column": "output_text",
"text_column": "text",
"encoder_max_length" : 512,
"decoder_max_length" :36,
"batch_size" : 128
```
}
Usage
-----
Results
-------
| [] | [
"TAGS\n#transformers #pytorch #mt5 #text2text-generation #summarization #spanish #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
88
] | [
"passage: TAGS\n#transformers #pytorch #mt5 #text2text-generation #summarization #spanish #es #dataset-LeoCordoba/CC-NEWS-ES-titles #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.07505755871534348,
0.14469628036022186,
-0.0056408001109957695,
0.034111570566892624,
0.1324397325515747,
0.008037456311285496,
0.11981961876153946,
0.10259143263101578,
-0.0557849258184433,
-0.045570675283670425,
0.13295893371105194,
0.1772337555885315,
0.011278451420366764,
0.09054197371006012,
-0.07912581413984299,
-0.2366999089717865,
0.09071274101734161,
0.007883837446570396,
-0.021522197872400284,
0.10285017639398575,
0.12670879065990448,
-0.03306195139884949,
0.08625824749469757,
-0.037351273000240326,
-0.07006881386041641,
0.045779939740896225,
0.0062797339633107185,
-0.15454794466495514,
0.09117735177278519,
0.05652764439582825,
0.024736888706684113,
0.09329881519079208,
-0.022664936259388924,
-0.13263332843780518,
0.01851465366780758,
-0.013923631981015205,
-0.08514904230833054,
0.07127198576927185,
0.08847877383232117,
-0.04181833192706108,
0.12430515140295029,
-0.035684309899806976,
-0.036437686532735825,
0.03709014132618904,
-0.12157747894525528,
-0.06257808953523636,
-0.07578752189874649,
0.014273184351623058,
0.07873298227787018,
0.09872698783874512,
0.010931110009551048,
0.10146742314100266,
-0.10093460232019424,
0.042196162045001984,
0.08472864329814911,
-0.2927286624908447,
-0.008582348003983498,
0.07192759215831757,
0.040676299482584,
0.07373172789812088,
0.021189523860812187,
0.07526162266731262,
0.0818764716386795,
-0.006650113500654697,
-0.03130040317773819,
-0.05584387853741646,
-0.1384311020374298,
0.02284134551882744,
-0.06147013604640961,
-0.07680211961269379,
0.3178076446056366,
-0.011082755401730537,
0.046888235956430435,
-0.018958156928420067,
-0.06798799335956573,
0.08444654196500778,
-0.02656795084476471,
0.05044601112604141,
0.023346954956650734,
0.09381762892007828,
0.06422676891088486,
-0.016005493700504303,
-0.13229316473007202,
0.020885741338133812,
-0.1947299987077713,
-0.015920365229249,
-0.0052822912111878395,
0.05277685448527336,
-0.13323789834976196,
0.07871048152446747,
0.04231143370270729,
-0.15522992610931396,
0.041045866906642914,
-0.06133921071887016,
0.09734392166137695,
0.0402287058532238,
-0.044912420213222504,
-0.06617572903633118,
0.11865098774433136,
0.0578606091439724,
-0.043404921889305115,
-0.022729407995939255,
-0.046729471534490585,
0.11849639564752579,
0.01668216660618782,
0.03595128655433655,
-0.05424417182803154,
-0.10293944180011749,
0.05938339605927467,
-0.09568603336811066,
0.06989049166440964,
-0.03273408114910126,
-0.14876995980739594,
-0.018263066187500954,
-0.048589516431093216,
0.10061679035425186,
0.11142505705356598,
0.06898217648267746,
-0.055868927389383316,
-0.016777919605374336,
0.1025230810046196,
-0.05706807225942612,
-0.011421351693570614,
-0.011604918166995049,
-0.00015032259398140013,
0.155831977725029,
0.009400837123394012,
0.04292679950594902,
-0.08405683189630508,
0.04613447189331055,
-0.09862899780273438,
-0.06195070594549179,
-0.03873644769191742,
-0.02824096754193306,
0.10553355515003204,
-0.05398416146636009,
0.026354603469371796,
-0.12080267071723938,
-0.2053993046283722,
-0.02224484644830227,
0.036893103271722794,
-0.045570436865091324,
-0.10466860979795456,
-0.06490759551525116,
-0.028131499886512756,
0.06895504146814346,
-0.07246851176023483,
0.07027503103017807,
-0.11035189777612686,
0.07929887622594833,
-0.09024738520383835,
0.041835349053144455,
-0.15455397963523865,
0.04392245039343834,
-0.13882620632648468,
-0.014475853182375431,
-0.04779090732336044,
0.09836061298847198,
-0.05021284893155098,
0.14569981396198273,
-0.07753492891788483,
0.012023886665701866,
-0.011374221183359623,
0.05590575560927391,
-0.030596157535910606,
0.23168346285820007,
-0.1466137170791626,
-0.07955905795097351,
0.21291498839855194,
-0.09404820948839188,
-0.13594605028629303,
0.04911556467413902,
0.02389734424650669,
0.09240881353616714,
0.11840834468603134,
0.13436995446681976,
-0.0592733658850193,
-0.007208138704299927,
0.03623034805059433,
0.07882111519575119,
-0.023118305951356888,
-0.15860392153263092,
0.08473879843950272,
-0.032435137778520584,
-0.10130900889635086,
0.06373213976621628,
-0.041316743940114975,
0.03432494029402733,
-0.02305416390299797,
-0.054240718483924866,
-0.006713918875902891,
-0.007466904353350401,
-0.017246970906853676,
-0.01961379498243332,
0.06774205714464188,
-0.04974339157342911,
-0.0232503954321146,
-0.017808685079216957,
0.01577831245958805,
0.030327551066875458,
0.038453105837106705,
-0.042379576712846756,
0.06852953881025314,
-0.05219288915395737,
0.06880597025156021,
-0.12509353458881378,
0.027843546122312546,
-0.02868817187845707,
0.08990181982517242,
0.012435637414455414,
0.03398502618074417,
-0.011701405048370361,
-0.08279590308666229,
-0.03207774832844734,
0.004390733316540718,
0.112126424908638,
0.003675872227177024,
-0.0435505211353302,
-0.19620206952095032,
0.09327562898397446,
-0.03246774524450302,
0.0797242522239685,
-0.07977519184350967,
0.024129068478941917,
0.029205191880464554,
0.08781832456588745,
-0.0462019219994545,
0.0994071364402771,
-0.00505734933540225,
0.019249703735113144,
-0.05554230138659477,
0.00388371292501688,
0.10419369488954544,
0.052235838025808334,
-0.09212981909513474,
0.23531362414360046,
-0.05167929455637932,
0.20414690673351288,
0.19572867453098297,
-0.15864203870296478,
0.06855599582195282,
-0.03543512895703316,
-0.004744279198348522,
0.001784197986125946,
0.003397469175979495,
-0.03404487296938896,
0.03641432151198387,
0.012835263274610043,
0.16334116458892822,
-0.10692406445741653,
-0.013092303648591042,
0.002380074467509985,
-0.0337226428091526,
-0.05317843332886696,
0.11355612426996231,
0.17358417809009552,
-0.1901169717311859,
0.1913490742444992,
0.2681061029434204,
0.03672510385513306,
0.1723228543996811,
-0.05561135709285736,
-0.03287532180547714,
0.06564223021268845,
-0.06650150567293167,
-0.03183688968420029,
0.008639060892164707,
-0.14314748346805573,
0.02069394290447235,
0.09050853550434113,
0.031106920912861824,
0.09850255399942398,
-0.0980571061372757,
-0.0701458677649498,
-0.011780474334955215,
-0.009788744151592255,
-0.11260509490966797,
0.05702533945441246,
-0.015610946342349052,
0.13085336983203888,
-0.020564619451761246,
-0.06552964448928833,
0.09354668110609055,
-0.013308209367096424,
-0.10412619262933731,
0.18001806735992432,
-0.1413479745388031,
-0.30854567885398865,
-0.1588013470172882,
-0.06483612954616547,
-0.0466710589826107,
0.026403697207570076,
0.11381087452173233,
-0.06931668519973755,
-0.029497088864445686,
-0.01890394277870655,
0.011859813705086708,
-0.005008724518120289,
-0.021837426349520683,
0.020473310723900795,
0.06808391958475113,
-0.03963392227888107,
-0.11247695237398148,
-0.021884869784116745,
0.008900857530534267,
-0.0390273779630661,
0.08196031302213669,
-0.15225850045681,
0.12034471333026886,
0.15160490572452545,
0.06005797162652016,
0.005218971986323595,
-0.025438612326979637,
0.13005681335926056,
-0.07354044169187546,
0.001299616415053606,
0.20743215084075928,
0.030141130089759827,
0.05597612261772156,
0.1655370444059372,
0.027682224288582802,
-0.060037292540073395,
0.01087621133774519,
-0.05377093702554703,
-0.05373898893594742,
-0.33071061968803406,
-0.13894471526145935,
-0.09133101254701614,
0.04872821271419525,
0.019315071403980255,
0.04620080441236496,
0.08100249618291855,
0.08149099349975586,
-0.04681960865855217,
0.011592245660722256,
0.008240156807005405,
0.0676441639661789,
0.22692400217056274,
-0.02255803905427456,
0.10573863983154297,
-0.09778150171041489,
-0.06864066421985626,
0.13454894721508026,
0.053452637046575546,
0.06869025528430939,
0.09690260887145996,
0.08753959089517593,
0.05875823646783829,
0.03913063183426857,
0.0612703301012516,
0.12922538816928864,
0.03303049877285957,
0.0001984486443689093,
-0.09276636689901352,
-0.050957802683115005,
-0.039984337985515594,
0.023017479106783867,
-0.05753161758184433,
-0.10422276705503464,
-0.06536068767309189,
-0.07369620352983475,
0.0869925320148468,
0.17186811566352844,
0.028222737833857536,
-0.20453998446464539,
0.017913123592734337,
0.0760130062699318,
0.000056947053963085636,
-0.0662817656993866,
0.057904861867427826,
-0.009309099987149239,
-0.11403809487819672,
0.1398991495370865,
0.020352020859718323,
0.16668207943439484,
-0.008056484162807465,
0.06429683417081833,
-0.07969450950622559,
-0.09955056011676788,
0.035122454166412354,
0.13619258999824524,
-0.2898731827735901,
0.2559067904949188,
0.012838254682719707,
-0.033725492656230927,
-0.08097820729017258,
-0.0012756005162373185,
0.007986702024936676,
0.18020963668823242,
0.12332397699356079,
0.007846832275390625,
-0.06211600452661514,
0.049004532396793365,
-0.12902070581912994,
0.06290007382631302,
-0.02049187757074833,
-0.05362975597381592,
-0.010895663872361183,
-0.016845062375068665,
-0.007567193824797869,
-0.0003024896723218262,
0.05658452585339546,
-0.04256211221218109,
-0.194491446018219,
0.05521274730563164,
0.07379110157489777,
0.04923773184418678,
-0.03744874894618988,
-0.06375472247600555,
-0.030796455219388008,
0.13232015073299408,
-0.09141802042722702,
-0.09940490871667862,
-0.12859143316745758,
-0.045156240463256836,
0.05344756692647934,
-0.04372792690992355,
0.006521888542920351,
-0.041617151349782944,
0.04587163031101227,
-0.05281544849276543,
-0.15422235429286957,
0.12774568796157837,
-0.1392402946949005,
-0.06698953360319138,
-0.07105976343154907,
0.13482868671417236,
-0.08273182064294815,
0.03376901149749756,
0.030069688335061073,
0.006528794299811125,
-0.06422614306211472,
-0.09230267256498337,
-0.03342467546463013,
0.05211615562438965,
0.05421473830938339,
0.008208328858017921,
-0.10359928011894226,
-0.10713887959718704,
-0.009054048918187618,
-0.10659180581569672,
0.21092209219932556,
0.1838366836309433,
-0.040044888854026794,
0.1678393930196762,
0.2192024141550064,
-0.12562575936317444,
-0.310001403093338,
-0.11811356991529465,
-0.09023422002792358,
-0.040639955550432205,
-0.03613914176821709,
-0.17775774002075195,
0.08055570721626282,
0.0790979266166687,
-0.06583468616008759,
0.053981419652700424,
-0.30114591121673584,
-0.06793472915887833,
0.09594535827636719,
-0.07929956167936325,
0.31782063841819763,
-0.1314050704240799,
-0.11469072848558426,
-0.1186181977391243,
-0.13706855475902557,
0.17918524146080017,
-0.10934371501207352,
0.05633486434817314,
0.00014199511497281492,
0.024601968005299568,
-0.001760997693054378,
-0.01277670357376337,
0.13633416593074799,
0.01075167115777731,
-0.02434610202908516,
-0.07271888107061386,
0.009351042099297047,
0.13427701592445374,
0.00530207809060812,
0.023746052756905556,
-0.12694592773914337,
0.020142365247011185,
-0.13769328594207764,
-0.026953982189297676,
-0.06972567737102509,
0.032482217997312546,
-0.021308565512299538,
-0.012691617012023926,
0.0024775348138064146,
-0.027807336300611496,
0.05823111906647682,
-0.01029609702527523,
0.23585514724254608,
-0.01907387189567089,
0.052770260721445084,
0.12740583717823029,
0.11367794871330261,
-0.167469784617424,
0.04335790500044823,
-0.10603004693984985,
-0.05282709375023842,
0.07872933894395828,
-0.1780409812927246,
0.02337639406323433,
0.11658128350973129,
-0.051375336945056915,
0.03797806426882744,
0.06409477442502975,
-0.024629637598991394,
-0.02100829780101776,
0.1621144711971283,
-0.15180671215057373,
0.02320115454494953,
-0.04726618900895119,
0.12052392959594727,
0.041803255677223206,
0.026522750034928322,
0.16360260546207428,
0.016059482470154762,
-0.04208168014883995,
0.033057697117328644,
0.04325827211141586,
-0.03804126754403114,
0.1054420918226242,
0.00429218215867877,
-0.0042435661889612675,
-0.17324790358543396,
0.16299466788768768,
0.06862065941095352,
-0.15663254261016846,
-0.029345903545618057,
0.11903360486030579,
-0.12551085650920868,
-0.10301662236452103,
0.019556986168026924,
0.10366543382406235,
-0.2149084061384201,
-0.10804858058691025,
-0.09409193694591522,
-0.12863372266292572,
0.08847019821405411,
0.08480161428451538,
0.06297743320465088,
0.05331418290734291,
-0.009617963805794716,
-0.0942160040140152,
0.034851010888814926,
0.00178814516402781,
0.01390522625297308,
0.004296261817216873,
-0.07935146242380142,
-0.062137991189956665,
0.0018726966809481382,
0.08841114491224289,
-0.059080254286527634,
-0.0038494542241096497,
-0.09206676483154297,
0.032903965562582016,
-0.1105983778834343,
0.022363200783729553,
-0.07235759496688843,
-0.06147336959838867,
-0.03887027129530907,
-0.05865143612027168,
-0.06859681755304337,
-0.04042923077940941,
-0.10922612249851227,
-0.012554429471492767,
-0.04985964670777321,
0.12161161750555038,
-0.0816810205578804,
-0.02411254122853279,
0.07007819414138794,
-0.037549957633018494,
0.09721178561449051,
0.06113085895776749,
-0.0650576576590538,
0.095770463347435,
-0.20403248071670532,
-0.061333779245615005,
0.09949564188718796,
0.04990895465016365,
0.05254165083169937,
0.06443596631288528,
0.02048559859395027,
0.12965112924575806,
-0.031021686270833015,
0.04043755680322647,
-0.04676613584160805,
-0.14574433863162994,
-0.0017404474783688784,
-0.013862695544958115,
-0.11248728632926941,
0.00653462577611208,
-0.03782900050282478,
0.13537225127220154,
0.005991336889564991,
0.18047180771827698,
-0.07567426562309265,
0.03713090345263481,
-0.06500910222530365,
0.04158840328454971,
-0.017404640093445778,
-0.1305461972951889,
-0.10748935490846634,
-0.054702624678611755,
0.00593682611361146,
-0.013033253140747547,
0.26722604036331177,
0.05024149268865585,
0.010784303769469261,
0.0530330091714859,
0.10468193888664246,
0.039982251822948456,
0.02316845767199993,
0.22817496955394745,
0.09996745735406876,
0.03311452642083168,
-0.09635486453771591,
0.03183981031179428,
0.05640721693634987,
0.015521373599767685,
0.0698329359292984,
0.11661309003829956,
0.1580870896577835,
0.1188669428229332,
0.05636855959892273,
0.03395819291472435,
-0.027526866644620895,
-0.07362009584903717,
0.024189285933971405,
0.0755031630396843,
0.017268450930714607,
0.059682756662368774,
0.1342933624982834,
-0.053577326238155365,
0.012887262739241123,
-0.028381524607539177,
0.015274183824658394,
-0.13345275819301605,
-0.14123806357383728,
-0.07531778514385223,
-0.13818500936031342,
-0.023720432072877884,
-0.10581201314926147,
0.03080982156097889,
0.08114216476678848,
0.05815022066235542,
-0.09896346926689148,
-0.05028402432799339,
0.027681123465299606,
-0.12695828080177307,
0.11056042462587357,
-0.006951904855668545,
0.05691104382276535,
-0.08040713518857956,
0.008492321707308292,
-0.034415896981954575,
0.09063919633626938,
-0.04163811355829239,
0.07791686058044434,
0.015805751085281372,
0.04065714031457901,
-0.10518333315849304,
-0.06666862219572067,
-0.03698526322841644,
0.03779759630560875,
-0.003987270873039961,
0.12377560883760452,
0.017105815932154655,
0.010894378647208214,
0.09752683341503143,
0.2058582901954651,
-0.029149016365408897,
-0.11167889088392258,
-0.06099051609635353,
0.09881992638111115,
0.01525819394737482,
0.094961978495121,
-0.000538781110662967,
-0.03896011784672737,
-0.07665238529443741,
0.2827376425266266,
0.3130190372467041,
-0.1052141785621643,
-0.02333151176571846,
-0.02756168320775032,
0.03168463334441185,
0.07715088874101639,
0.07963619381189346,
0.07247917354106903,
0.24415476620197296,
-0.0719379261136055,
0.0038285446353256702,
-0.07544839382171631,
0.03035815991461277,
-0.09764790534973145,
0.10974510759115219,
-0.013503564521670341,
-0.11183702200651169,
0.005593713838607073,
0.15481334924697876,
-0.14869403839111328,
0.006553633138537407,
-0.0993303433060646,
-0.15039002895355225,
-0.09151853621006012,
-0.034892112016677856,
0.11681058257818222,
0.07216446101665497,
0.04280081391334534,
-0.002960634883493185,
-0.0365789569914341,
0.05891148000955582,
0.0015333748888224363,
-0.1797812134027481,
-0.09076359868049622,
0.06381803005933762,
-0.0833534449338913,
0.13914307951927185,
-0.011681891977787018,
0.03264915570616722,
0.062034040689468384,
0.0531315952539444,
-0.08137565851211548,
0.038664624094963074,
0.03599289059638977,
0.013534682802855968,
0.08104594796895981,
-0.10396160930395126,
-0.0016905011143535376,
-0.03980570659041405,
0.09702716767787933,
-0.07764453440904617,
0.0614030584692955,
0.039862941950559616,
-0.06207266449928284,
-0.04599504917860031,
0.06280121207237244,
-0.07903323322534561,
0.042265571653842926,
0.06677698343992233,
-0.03828003257513046,
-0.018613724038004875,
-0.054674070328474045,
0.022029733285307884,
0.01864767260849476,
-0.0952555388212204,
-0.027049846947193146,
-0.08897089958190918,
-0.06026604026556015,
0.025816451758146286,
0.06328672170639038,
-0.15096649527549744,
0.0418318510055542,
-0.12058044224977493,
0.009137599729001522,
-0.14834406971931458,
0.045686837285757065,
0.06854292005300522,
-0.01961757056415081,
-0.004673807416111231,
-0.07665249705314636,
0.04222521930932999,
0.049461815506219864,
-0.061312414705753326,
-0.06720756739377975
] |
null | null | transformers | ## mt5-small-mlsum
This model was trained on the Spanish section of MLSum: https://paperswithcode.com/sota/abstractive-text-summarization-on-mlsum based on mt5-small.
## Hyperparameters
{
"dataset_config": "es",
"dataset_name": "mlsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"max_target_length": 64,
"model_name_or_path": "google/mt5-small",
"num_train_epochs": 10,
"output_dir": "/opt/ml/checkpoints",
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"sagemaker_container_log_level": 20,
"sagemaker_program": "run_summarization.py",
"save_strategy": "epoch",
"seed": 7,
"summary_column": "summary",
"text_column": "text"
}
## Usage
```
article = """ La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. """
from transformers import pipeline
summarizer = pipeline("summarization", model="LeoCordoba/mt5-small-mlsum")
summarizer(article, min_length=5, max_length=64)
```
result: [{'summary_text': 'El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche'}]
## Results
| metric | score |
| --- | ----- |
| eval_rouge1 | 26.4352 |
| eval_rouge2 | 8.9293 |
| eval_rougeL | 21.2622 |
| eval_rougeLsum | 21.5518 |
| test_rouge1 | 26.0756 |
| test_rouge2 | 8.4669 |
| test_rougeL | 20.8167 |
| test_rougeLsum | 21.0822 |
| {"language": "es", "license": "apache-2.0", "tags": ["summarization", "sagemaker", "mt5", "spanish"], "datasets": ["mlsum - es"], "widget": [{"text": "La chocotorta, el tradicional y pr\u00e1ctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por cr\u00edticos de restaurants internacionales, a casi 40 a\u00f1os de su creaci\u00f3n. El r\u00e1nking Taste Atlas ubic\u00f3 primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. \u201cEste postre argentino sin hornear fue influenciado por la cocina italiana y se inspir\u00f3 en el famoso tiramis\u00fa italiano. Est\u00e1 elaborado con tres ingredientes b\u00e1sicos argentinos: galletas de chocolate, dulce de leche y queso crema\u201d, explica la p\u00e1gina web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votaci\u00f3n, super\u00f3 tambi\u00e9n a los waffles belgas y el zserb\u00f3 h\u00fangaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompa\u00f1a al list\u00f3n dorado de \u201cpostre n\u00famero uno\u201c, los expertos ense\u00f1an adem\u00e1s c\u00f3mo se hacen las chocotortas, paso por paso. \u201cLas galletas se ablandan en leche y se cubren con una combinaci\u00f3n de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, caf\u00e9 o incluso licor de caf\u00e9\u201d, detallan. Por \u00faltimo, adjudican su creaci\u00f3n a una \u201ccampa\u00f1a de m\u00e1rketing\u201d dise\u00f1ada para promover las galletitas ic\u00f3nicas que le dan su nombre. La chocotorta, infaltable en los cumplea\u00f1os argentinos, fue creada en 1982 por una creativa de las agencias m\u00e1s importantes del pa\u00eds, Marit\u00e9 Mabraga\u00f1a."}], "model-index": [{"name": "mt5-small-mlsum", "results": [{"task": {"type": "summarization", "name": "abstractive summarization"}, "dataset": {"name": "mlsum-es", "type": "mlsum", "args": "es"}, "metrics": [{"type": "rouge1", "value": 26.0756, "name": "rouge1"}, {"type": "rouge2", "value": 8.4669, "name": "rouge2"}, {"type": "rougeL", "value": 20.8167, "name": "rougeL"}, {"type": "rougeLsum", "value": 21.0822, "name": "rougeLsum"}]}]}]} | summarization | LeoCordoba/mt5-small-mlsum | [
"transformers",
"pytorch",
"jax",
"safetensors",
"mt5",
"text2text-generation",
"summarization",
"sagemaker",
"spanish",
"es",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"es"
] | TAGS
#transformers #pytorch #jax #safetensors #mt5 #text2text-generation #summarization #sagemaker #spanish #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| mt5-small-mlsum
---------------
This model was trained on the Spanish section of MLSum: URL based on mt5-small.
Hyperparameters
---------------
{
"dataset\_config": "es",
"dataset\_name": "mlsum",
"do\_eval": true,
"do\_predict": true,
"do\_train": true,
"fp16": true,
"max\_target\_length": 64,
"model\_name\_or\_path": "google/mt5-small",
"num\_train\_epochs": 10,
"output\_dir": "/opt/ml/checkpoints",
"per\_device\_eval\_batch\_size": 4,
"per\_device\_train\_batch\_size": 4,
"predict\_with\_generate": true,
"sagemaker\_container\_log\_level": 20,
"sagemaker\_program": "run\_summarization.py",
"save\_strategy": "epoch",
"seed": 7,
"summary\_column": "summary",
"text\_column": "text"
}
Usage
-----
result: [{'summary\_text': 'El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche'}]
Results
-------
| [] | [
"TAGS\n#transformers #pytorch #jax #safetensors #mt5 #text2text-generation #summarization #sagemaker #spanish #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
82
] | [
"passage: TAGS\n#transformers #pytorch #jax #safetensors #mt5 #text2text-generation #summarization #sagemaker #spanish #es #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.07130929082632065,
0.09877025336027145,
-0.006737436633557081,
0.02838265709578991,
0.10980041325092316,
-0.023372525349259377,
0.1383628100156784,
0.11327214539051056,
-0.006514452397823334,
-0.03584810346364975,
0.139883354306221,
0.20385324954986572,
0.0008185408660210669,
0.09526070952415466,
-0.09825874119997025,
-0.20224681496620178,
0.09512574225664139,
-0.020830629393458366,
-0.01725025661289692,
0.09660108387470245,
0.12102507799863815,
-0.043831679970026016,
0.07742495089769363,
-0.0407334566116333,
-0.040469780564308167,
0.032552797347307205,
0.03535810858011246,
-0.15408053994178772,
0.09463439136743546,
0.04014291614294052,
0.03031587414443493,
0.07987258583307266,
-0.01888667605817318,
-0.17069754004478455,
0.022204061970114708,
0.0128483260050416,
-0.06439107656478882,
0.06145910918712616,
0.11034205555915833,
-0.05256379023194313,
0.09096141904592514,
0.014294683001935482,
-0.019714657217264175,
0.05417157709598541,
-0.11564147472381592,
-0.08868610113859177,
-0.056556325405836105,
0.021590398624539375,
0.08728723973035812,
0.09570964425802231,
0.01367910485714674,
0.14068865776062012,
-0.07993005216121674,
0.07465295493602753,
0.12245085090398788,
-0.3005701005458832,
-0.011629924178123474,
0.04908788949251175,
0.06092856079339981,
0.08310867846012115,
-0.007645243778824806,
0.06971781700849533,
0.07062437385320663,
-0.005794194992631674,
0.04943334683775902,
-0.06007003411650658,
-0.12403828650712967,
0.010908524505794048,
-0.07260868698358536,
-0.07872600853443146,
0.291251003742218,
-0.01718948967754841,
0.0340038426220417,
-0.05158957839012146,
-0.08589253574609756,
0.07546546310186386,
-0.013432089239358902,
0.027722930535674095,
0.021818071603775024,
0.08956465870141983,
0.07780994474887848,
-0.011967698112130165,
-0.12116788327693939,
0.00256150821223855,
-0.15119782090187073,
0.027087301015853882,
0.008698593825101852,
0.04561692848801613,
-0.15908260643482208,
0.06304104626178741,
0.030678657814860344,
-0.163225919008255,
0.03577258065342903,
-0.07521860301494598,
0.09997665137052536,
0.03414095938205719,
-0.01626487448811531,
-0.07939985394477844,
0.16017544269561768,
0.11271047592163086,
-0.062081314623355865,
0.020081782713532448,
-0.044656552374362946,
0.10650396347045898,
0.010279634967446327,
0.04512610659003258,
0.012393522076308727,
-0.06822487711906433,
0.08444396406412125,
-0.05463625118136406,
0.06788225471973419,
-0.036572035402059555,
-0.12767724692821503,
0.0009211329743266106,
0.03267950937151909,
0.14374032616615295,
0.08609692752361298,
0.06178554147481918,
-0.042116276919841766,
0.011305775493383408,
0.08285962790250778,
-0.06778939813375473,
-0.0058858441188931465,
0.007262812927365303,
0.027759278193116188,
0.06874729692935944,
-0.0016444609500467777,
0.030857224017381668,
-0.09561370313167572,
0.03944302722811699,
-0.06509881466627121,
-0.04517826437950134,
-0.04262720048427582,
-0.04457348585128784,
0.09374118596315384,
-0.07427652180194855,
0.041258376091718674,
-0.14710400998592377,
-0.20237962901592255,
-0.00570098590105772,
0.03806788846850395,
-0.02373271808028221,
-0.08025237172842026,
-0.0316302627325058,
-0.03632665053009987,
0.049815449863672256,
-0.0791216641664505,
0.015971524640917778,
-0.10228763520717621,
0.07027892768383026,
-0.0663890391588211,
0.02436099201440811,
-0.1197715550661087,
0.035746537148952484,
-0.14237160980701447,
0.0042410679161548615,
-0.0664772018790245,
0.03147447481751442,
-0.049013059586286545,
0.18649683892726898,
-0.05769450590014458,
0.009911470115184784,
-0.026403086259961128,
0.039888571947813034,
-0.021194910630583763,
0.21101321280002594,
-0.1293310523033142,
-0.056795813143253326,
0.20781736075878143,
-0.13347014784812927,
-0.20238488912582397,
0.08563337475061417,
0.02730807662010193,
0.06602639704942703,
0.09979331493377686,
0.1775021106004715,
-0.0010826009092852473,
-0.029327960684895515,
0.06578870117664337,
0.10912919789552689,
-0.04254147782921791,
-0.13987131416797638,
0.06225484982132912,
-0.054660264402627945,
-0.11464831233024597,
0.05929386243224144,
-0.014008692465722561,
0.04410647600889206,
-0.02248837612569332,
-0.05953842028975487,
-0.03490229696035385,
-0.02505730837583542,
-0.0021244152449071407,
-0.012619024142622948,
0.06567592918872833,
-0.07780510932207108,
-0.011624842882156372,
-0.05413825437426567,
0.015224764123558998,
0.014202135615050793,
0.01996290497481823,
-0.0471041165292263,
0.09761994332075119,
-0.021617760881781578,
0.05776962637901306,
-0.13680866360664368,
-0.0028796715196222067,
-0.010780134238302708,
0.050122667104005814,
-0.018984174355864525,
-0.008056418970227242,
0.03504263982176781,
-0.020099632441997528,
-0.0032727045472711325,
-0.033190030604600906,
0.14447088539600372,
0.01968555897474289,
-0.04598290100693703,
-0.18280158936977386,
0.07945883274078369,
-0.05264541134238243,
0.028096454218029976,
-0.07385889440774918,
0.04099699482321739,
0.010724312625825405,
0.08212306350469589,
-0.02565075270831585,
0.08693910390138626,
-0.012237940914928913,
0.0012148595415055752,
-0.06358442455530167,
-0.01039635855704546,
0.10694253444671631,
0.04413381591439247,
-0.06762617081403732,
0.20657554268836975,
-0.13177339732646942,
0.28031405806541443,
0.19569237530231476,
-0.16504913568496704,
0.07212883979082108,
-0.04157822206616402,
0.008652180433273315,
0.007943304255604744,
0.0005252409027889371,
-0.0008843645337037742,
0.005014640744775534,
0.009912976063787937,
0.1656493991613388,
-0.12002269923686981,
-0.03300227224826813,
0.008484335616230965,
-0.06409907341003418,
-0.04166475310921669,
0.09415126591920853,
0.13021869957447052,
-0.18553316593170166,
0.18711815774440765,
0.30168023705482483,
0.03496411070227623,
0.14728502929210663,
-0.0707412138581276,
-0.009023681282997131,
0.06924452632665634,
0.005069025792181492,
-0.013661353848874569,
-0.005611581727862358,
-0.14610104262828827,
0.007482246495783329,
0.06890510767698288,
0.04717346653342247,
0.0766400396823883,
-0.11282679438591003,
-0.049814872443675995,
-0.007145758252590895,
-0.02400563471019268,
-0.05532682687044144,
0.062161047011613846,
-0.012986262328922749,
0.1256965547800064,
-0.05796608328819275,
-0.0786074548959732,
0.09162762016057968,
-0.008424821309745312,
-0.105199433863163,
0.19151745736598969,
-0.145168274641037,
-0.2917953133583069,
-0.1403813511133194,
-0.062488529831171036,
-0.05553779378533363,
0.028375109657645226,
0.14676755666732788,
-0.0694989338517189,
-0.03469785302877426,
-0.05118849501013756,
-0.008436066098511219,
-0.007022854406386614,
-0.010366219095885754,
-0.018684029579162598,
0.07496028393507004,
-0.016335707157850266,
-0.11209052056074142,
-0.041965555399656296,
0.022954896092414856,
-0.035411179065704346,
0.08551294356584549,
-0.10292795300483704,
0.10756590962409973,
0.13957463204860687,
0.034733183681964874,
0.008833586238324642,
-0.031861864030361176,
0.13224992156028748,
-0.04166236147284508,
-0.004196341149508953,
0.2432490885257721,
0.00700002908706665,
0.06405768543481827,
0.14771442115306854,
0.012043572030961514,
-0.06954438239336014,
0.019375400617718697,
-0.06158914044499397,
-0.05968533083796501,
-0.2922585606575012,
-0.11094184219837189,
-0.08485865592956543,
0.070316843688488,
0.03939224034547806,
0.06839725375175476,
0.09016311168670654,
0.09450946003198624,
-0.04645270109176636,
-0.026058873161673546,
0.05865015462040901,
0.07920847833156586,
0.16252698004245758,
-0.021451149135828018,
0.1128808856010437,
-0.09420065581798553,
-0.07004034519195557,
0.11287057399749756,
0.031020749360322952,
0.08753712475299835,
0.08021548390388489,
0.0586223267018795,
0.07413262128829956,
0.1017669290304184,
0.0703199952840805,
0.14424772560596466,
0.02580174244940281,
-0.00746897840872407,
-0.07076451182365417,
-0.060678619891405106,
-0.06372782588005066,
0.012364021502435207,
-0.10125017911195755,
-0.06387148052453995,
-0.10830572247505188,
-0.034190304577350616,
0.1051161140203476,
0.16167522966861725,
0.016781628131866455,
-0.19705572724342346,
0.020839573815464973,
0.10446079075336456,
-0.0025711082853376865,
-0.06788492202758789,
0.09241753071546555,
0.002516578882932663,
-0.10508718341588974,
0.10499872267246246,
-0.017133308574557304,
0.15584246814250946,
0.01152756717056036,
0.07640837132930756,
-0.09617020189762115,
-0.050211790949106216,
0.030235830694437027,
0.12880150973796844,
-0.2932208180427551,
0.2330828309059143,
-0.0005475740181282163,
0.0017363809747621417,
-0.0834733247756958,
0.020657477900385857,
0.0370294488966465,
0.19886116683483124,
0.1334906965494156,
0.0002569486969150603,
-0.12239925563335419,
0.03154391422867775,
-0.06922449916601181,
0.05335879325866699,
0.004089090507477522,
-0.009659960865974426,
-0.0189619529992342,
-0.05016598105430603,
-0.003990067634731531,
-0.0035073040053248405,
0.018162354826927185,
-0.06457750499248505,
-0.15756605565547943,
0.020022541284561157,
0.061937544494867325,
0.06596698611974716,
-0.06561783701181412,
-0.021660516038537025,
-0.07689206302165985,
0.1306702196598053,
-0.05819127336144447,
-0.0842631459236145,
-0.10911614447832108,
-0.11541987210512161,
0.04447723925113678,
-0.05258527025580406,
0.022577863186597824,
-0.05722251534461975,
0.045526716858148575,
-0.059538260102272034,
-0.166667640209198,
0.12019255757331848,
-0.16255314648151398,
-0.054501138627529144,
-0.05230076238512993,
0.1400803029537201,
-0.10155223309993744,
-0.003508902620524168,
0.045203279703855515,
-0.0009381265263073146,
-0.0819128081202507,
-0.11086373776197433,
-0.03068976104259491,
0.036480989307165146,
0.036803290247917175,
0.010473162867128849,
-0.10033009946346283,
-0.12871330976486206,
0.0032490831799805164,
-0.07288210093975067,
0.20339788496494293,
0.2097061574459076,
-0.03694833070039749,
0.1528269648551941,
0.23698006570339203,
-0.12506292760372162,
-0.30305275321006775,
-0.13884443044662476,
-0.13194456696510315,
-0.05490011349320412,
0.013169771991670132,
-0.11481493711471558,
0.07264124602079391,
0.04815364256501198,
-0.06933494657278061,
0.042269516736269,
-0.27996620535850525,
-0.07053296267986298,
0.14869344234466553,
0.017452985048294067,
0.2901466190814972,
-0.16669365763664246,
-0.10813353955745697,
-0.11701332032680511,
-0.12384194880723953,
0.11883177608251572,
-0.18278688192367554,
0.0352250412106514,
0.00301502482034266,
-0.02835521660745144,
0.009774452075362206,
-0.03972585126757622,
0.13169264793395996,
-0.047580331563949585,
0.03318874165415764,
-0.0926610454916954,
0.05732673406600952,
0.1109980121254921,
-0.02128061093389988,
0.05348934233188629,
-0.18025867640972137,
0.03896671533584595,
-0.07813642919063568,
-0.027356339618563652,
-0.05131484195590019,
0.06265905499458313,
-0.017383914440870285,
-0.03475811332464218,
0.029505910351872444,
-0.04360558092594147,
0.04444685950875282,
-0.006187405902892351,
0.23818135261535645,
-0.011681988835334778,
0.12525217235088348,
0.18547290563583374,
0.14714258909225464,
-0.1846754252910614,
0.03523816540837288,
-0.0818040743470192,
-0.0595291368663311,
0.06866524368524551,
-0.14877918362617493,
0.0556439533829689,
0.08580043166875839,
-0.053518157452344894,
0.05563998222351074,
0.06527537852525711,
-0.0053723715245723724,
-0.028033863753080368,
0.15531282126903534,
-0.1579728126525879,
-0.022911397740244865,
-0.0439448319375515,
0.12177406251430511,
0.04022027179598808,
0.06344079226255417,
0.1475660800933838,
0.01580967754125595,
-0.025777475908398628,
-0.010740811005234718,
0.05032102391123772,
-0.029124366119503975,
0.09202055633068085,
0.004490496590733528,
0.01401434000581503,
-0.13651563227176666,
0.14334629476070404,
0.02259150706231594,
-0.1450567990541458,
-0.014787138439714909,
0.15333041548728943,
-0.13492074608802795,
-0.13050726056098938,
0.036031726747751236,
0.12896016240119934,
-0.13279198110103607,
-0.12393200397491455,
-0.10331808030605316,
-0.16484831273555756,
0.06163565441966057,
0.11244522035121918,
0.06985700875520706,
0.03242545202374458,
0.011323532089591026,
-0.08521916717290878,
0.0182208064943552,
0.025418123230338097,
-0.004244307987391949,
0.005003651604056358,
-0.1283547729253769,
-0.04206892102956772,
0.004804491996765137,
0.060311030596494675,
-0.056591276079416275,
-0.002813796978443861,
-0.12252626568078995,
0.02846752479672432,
-0.14373309910297394,
0.026433803141117096,
-0.08967609703540802,
-0.035244349390268326,
-0.021542636677622795,
-0.03750726953148842,
-0.04089176282286644,
-0.020620258525013924,
-0.09829974919557571,
-0.01532607153058052,
-0.0441998615860939,
0.10461267083883286,
-0.09238124638795853,
-0.01812407560646534,
0.0615219846367836,
-0.045060526579618454,
0.10204246640205383,
0.05763842910528183,
-0.08259772509336472,
0.11411435157060623,
-0.23857179284095764,
-0.0699198991060257,
0.10817339271306992,
0.03756202012300491,
0.018431248143315315,
0.023508867248892784,
0.011558960191905499,
0.13472945988178253,
-0.02587749809026718,
0.03226669877767563,
-0.030013959854841232,
-0.13569310307502747,
-0.006296137813478708,
0.016816286370158195,
-0.12426698952913284,
0.0029890513978898525,
-0.05588489770889282,
0.10730532556772232,
-0.02156650833785534,
0.18071316182613373,
-0.07088379561901093,
0.04227469116449356,
-0.09592341631650925,
0.03844386339187622,
-0.009085976518690586,
-0.15312249958515167,
-0.15104475617408752,
-0.045544564723968506,
0.005116124637424946,
-0.015199101530015469,
0.2315654754638672,
0.06520096957683563,
-0.0013329109642654657,
0.05774662271142006,
0.058394644409418106,
0.06043373793363571,
0.030800940468907356,
0.24410174787044525,
0.05339939147233963,
0.011451205238699913,
-0.10533145070075989,
0.023880917578935623,
0.052204884588718414,
-0.024309907108545303,
0.07840124517679214,
0.1254122108221054,
0.07845760881900787,
0.09922967851161957,
0.04780355840921402,
0.043738991022109985,
-0.019777657464146614,
-0.09234040230512619,
0.04838533699512482,
0.07793738692998886,
0.01733451336622238,
0.04172999784350395,
0.20753856003284454,
-0.03329777345061302,
0.007136674597859383,
-0.04395158216357231,
-0.00504406588152051,
-0.17619486153125763,
-0.13470685482025146,
-0.08479892462491989,
-0.12822642922401428,
-0.018519610166549683,
-0.09619937092065811,
0.019327128306031227,
0.04196513816714287,
0.05641878396272659,
-0.0829748585820198,
-0.015435737557709217,
0.033505331724882126,
-0.09477928280830383,
0.0579017698764801,
-0.016608094796538353,
0.03462280333042145,
-0.027750879526138306,
-0.012619725428521633,
-0.05335446819663048,
0.013758447021245956,
-0.048267386853694916,
0.06533200293779373,
-0.018470926210284233,
0.05923086032271385,
-0.1094576045870781,
-0.06879705935716629,
-0.023544538766145706,
0.03405914455652237,
-0.013845869340002537,
0.14974966645240784,
0.0228625126183033,
-0.024471554905176163,
0.09433838725090027,
0.24602563679218292,
-0.047471784055233,
-0.1548488736152649,
-0.05107392370700836,
0.17415277659893036,
0.024742303416132927,
0.08679468184709549,
0.0019730725325644016,
-0.009699746966362,
-0.036495696753263474,
0.26754987239837646,
0.31820744276046753,
-0.07314690947532654,
0.0075349085964262486,
-0.06426902115345001,
0.018550584092736244,
0.05344678461551666,
0.1014595702290535,
0.09305042773485184,
0.2339787781238556,
-0.07488108426332474,
0.06737925857305527,
-0.04599609971046448,
0.029498785734176636,
-0.14744940400123596,
0.09875518083572388,
-0.007761157583445311,
-0.07973695546388626,
0.014065036550164223,
0.13861556351184845,
-0.12388472259044647,
0.06691040843725204,
-0.10909337550401688,
-0.11068553477525711,
-0.055805504322052,
-0.029784033074975014,
0.16537389159202576,
0.04913962259888649,
0.041323255747556686,
-0.014182042330503464,
-0.03918403387069702,
0.033875856548547745,
-0.006561181042343378,
-0.16898281872272491,
-0.07588422298431396,
0.042223647236824036,
-0.06411011517047882,
0.14101693034172058,
0.008366372436285019,
0.01795104332268238,
0.08080350607633591,
0.03226874768733978,
-0.09924938529729843,
0.08402903378009796,
0.016447506844997406,
0.0011912949848920107,
0.07699207961559296,
-0.11004840582609177,
-0.0022643068805336952,
-0.02975061535835266,
0.0567738339304924,
-0.08096758276224136,
0.04913211986422539,
0.017173897475004196,
-0.07234863191843033,
-0.028281869366765022,
0.0647900253534317,
-0.06778813153505325,
0.04421401023864746,
0.029892167076468468,
-0.02712349034845829,
-0.01292483787983656,
-0.0518990159034729,
0.03323595970869064,
0.004684006795287132,
-0.12880098819732666,
-0.02957232855260372,
-0.09304510056972504,
-0.05133206397294998,
0.09547565132379532,
0.036856044083833694,
-0.2016371339559555,
0.01266233716160059,
-0.11865263432264328,
0.01600687950849533,
-0.1828201413154602,
0.030507007613778114,
0.11758280545473099,
-0.0006665028049610555,
-0.002311950782313943,
-0.07677050679922104,
0.022181717678904533,
0.07792562246322632,
-0.04522241652011871,
-0.08104103803634644
] |
null | null | transformers | 利用THUC dataset 訓練的文章分類器,共支援14種種類 | {} | text-classification | LeoFeng/ChineseSequenceClassification | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
| 利用THUC dataset 訓練的文章分類器,共支援14種種類 | [] | [
"TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
36
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.026536712422966957,
0.04976736754179001,
-0.007731540594249964,
0.02341027930378914,
0.20494870841503143,
0.04218224436044693,
0.07166644185781479,
0.1081078052520752,
0.06540437042713165,
-0.032089509069919586,
0.10898502916097641,
0.22890737652778625,
-0.03745893016457558,
0.11566723883152008,
-0.11783017218112946,
-0.2979154586791992,
0.06830790638923645,
0.06908033788204193,
-0.00024103521718643606,
0.11134638637304306,
0.08377818018198013,
-0.08843351900577545,
0.07041390985250473,
-0.039391499012708664,
-0.11928878724575043,
0.04120895266532898,
0.04201217740774155,
-0.128968745470047,
0.10206019878387451,
0.04667878895998001,
0.1612440049648285,
0.020005566999316216,
-0.06739236414432526,
-0.154616579413414,
0.0336696095764637,
-0.0003978070744778961,
-0.07949702441692352,
0.041154924780130386,
0.0834934264421463,
-0.11765240132808685,
0.009522730484604836,
0.03841863572597504,
0.022789550945162773,
0.05028093606233597,
-0.14333219826221466,
-0.07251771539449692,
-0.002419156488031149,
0.029012316837906837,
0.05913800001144409,
0.0598759762942791,
-0.002957597142085433,
0.1424214392900467,
-0.13965049386024475,
0.12620261311531067,
0.09429286420345306,
-0.2923010587692261,
-0.0088807987049222,
0.08759160339832306,
0.027602141723036766,
0.05489844083786011,
-0.0477239191532135,
0.050349123775959015,
0.02152593620121479,
0.006244409829378128,
0.0014351755380630493,
-0.07273159921169281,
-0.10605065524578094,
0.035220496356487274,
-0.08316893875598907,
-0.049130894243717194,
0.19201035797595978,
-0.05444741249084473,
0.07102859020233154,
-0.02369237318634987,
-0.09560474008321762,
-0.05289671570062637,
-0.025107022374868393,
0.018850168213248253,
-0.04439172148704529,
0.06905210763216019,
0.029569845646619797,
0.010320127010345459,
-0.10565698146820068,
0.03122977539896965,
-0.21760006248950958,
0.20976117253303528,
0.014575785025954247,
0.05031627416610718,
-0.18153272569179535,
0.05320606753230095,
0.012799138203263283,
-0.09720049053430557,
0.05345968157052994,
-0.10138970613479614,
0.025928562507033348,
-0.03812453895807266,
-0.07192374020814896,
-0.02739580348134041,
0.0816444382071495,
0.13516521453857422,
0.041108258068561554,
0.059053935110569,
-0.041404832154512405,
0.08655412495136261,
0.03162030130624771,
0.13472779095172882,
0.033738039433956146,
-0.03977132961153984,
0.03946247324347496,
-0.1231473833322525,
-0.00647841626778245,
-0.07187561690807343,
-0.15673033893108368,
-0.028635773807764053,
0.0752328485250473,
0.08006087690591812,
0.004822878632694483,
0.09519599378108978,
-0.060662589967250824,
-0.03062121570110321,
0.08224024623632431,
-0.07733647525310516,
0.02224470116198063,
0.026406224817037582,
0.022000659257173538,
0.101798415184021,
-0.019659440964460373,
-0.0015375112416222692,
-0.08451379835605621,
0.14397169649600983,
-0.05375861003994942,
0.007298978511244059,
-0.033063821494579315,
-0.08073414862155914,
0.030349934473633766,
-0.1405506432056427,
0.02792905643582344,
-0.17062804102897644,
-0.09528942406177521,
0.012332682497799397,
0.019128363579511642,
0.001749284565448761,
-0.023433325812220573,
-0.03093680739402771,
0.006545908749103546,
0.0424383319914341,
-0.06069215387105942,
-0.06501442193984985,
-0.07589498907327652,
0.09581612050533295,
-0.030969982966780663,
0.07632152736186981,
-0.12148407846689224,
0.0795503556728363,
-0.09479566663503647,
-0.02546360157430172,
-0.12941965460777283,
0.0373355858027935,
-0.04622753709554672,
0.1718803346157074,
0.013590065762400627,
-0.04714406654238701,
-0.05325024202466011,
0.06296809762716293,
-0.0670921728014946,
0.1699289232492447,
-0.06951840966939926,
-0.11890474706888199,
0.21500444412231445,
-0.08380883932113647,
-0.13756290078163147,
0.08620618283748627,
-0.014584669843316078,
0.0003590308187995106,
0.10495591163635254,
0.2001815140247345,
0.09155366569757462,
0.006830575410276651,
0.08820617198944092,
0.12077005207538605,
-0.08545669168233871,
-0.11240582168102264,
-0.005832689814269543,
-0.005655956454575062,
-0.14152070879936218,
0.057374704629182816,
0.07428599894046783,
0.07163040339946747,
-0.05171000212430954,
-0.03735769912600517,
-0.00994520727545023,
-0.007230670657008886,
0.13671016693115234,
0.054894041270017624,
0.11879090964794159,
-0.08347898721694946,
0.0004564806877169758,
0.008610726334154606,
-0.01850513368844986,
0.016449708491563797,
0.02691977098584175,
-0.06303919106721878,
0.11149293184280396,
0.01560661755502224,
0.030040156096220016,
-0.22954900562763214,
-0.07738739997148514,
-0.004857209976762533,
0.1317768543958664,
-0.016139987856149673,
0.11725185811519623,
0.05058206245303154,
-0.058512113988399506,
-0.013537165708839893,
-0.022089142352342606,
0.18155772984027863,
0.021907884627580643,
-0.06484844535589218,
-0.06583412736654282,
0.06355377286672592,
-0.07136932015419006,
-0.0009439446148462594,
-0.07689674198627472,
0.014060765504837036,
0.07748502492904663,
0.11273034662008286,
0.01009473018348217,
0.0715249702334404,
-0.026004934683442116,
0.06679531186819077,
-0.06401108205318451,
0.026931757107377052,
0.118758425116539,
-0.012655431404709816,
-0.0722615197300911,
0.15806308388710022,
-0.14796574413776398,
0.29817652702331543,
0.2068978101015091,
-0.3074952960014343,
0.003431171178817749,
-0.04410141706466675,
-0.0044579943642020226,
0.02857346273958683,
0.03858071565628052,
0.0010076105827465653,
0.0966758206486702,
0.001866061589680612,
0.20398299396038055,
-0.02794223465025425,
-0.041622765362262726,
-0.013331537134945393,
-0.048477016389369965,
-0.030720924958586693,
0.0930258184671402,
0.06317867338657379,
-0.2123168408870697,
0.1965867280960083,
0.2256951779127121,
0.020235497504472733,
0.16021281480789185,
-0.007587776519358158,
0.039776433259248734,
0.09032315015792847,
-0.04407169669866562,
-0.028124243021011353,
-0.07736045867204666,
-0.19754260778427124,
-0.048038698732852936,
0.07934695482254028,
0.03309439867734909,
0.06981316953897476,
-0.11398086696863174,
-0.028780505061149597,
0.005873502232134342,
0.02043827436864376,
-0.030085694044828415,
0.07733964174985886,
0.08143315464258194,
0.11509016901254654,
0.004185348749160767,
-0.07153625786304474,
0.11260948330163956,
-0.000511682010255754,
-0.0829218178987503,
0.18312713503837585,
-0.15064290165901184,
-0.35457029938697815,
-0.15102937817573547,
-0.20665821433067322,
-0.024193694815039635,
0.05783972144126892,
0.10403360426425934,
-0.11499883979558945,
-0.043235164135694504,
0.04162687435746193,
-0.002294909907504916,
-0.062236279249191284,
0.043300777673721313,
-0.06919633597135544,
0.06772983074188232,
-0.056030891835689545,
-0.06578446924686432,
-0.07393626123666763,
-0.03732382878661156,
-0.014316183514893055,
0.15351881086826324,
-0.13038954138755798,
0.07227112352848053,
0.17736823856830597,
-0.010089537128806114,
0.06711666285991669,
-0.038066890090703964,
0.17289850115776062,
-0.08991120010614395,
-0.028915125876665115,
0.17436328530311584,
-0.08250410854816437,
0.0786806121468544,
0.1608263999223709,
0.022829625755548477,
-0.06656418740749359,
0.029574787244200706,
-0.039340466260910034,
-0.08898156136274338,
-0.21838922798633575,
-0.148067444562912,
-0.11992256343364716,
0.05924250930547714,
0.062341220676898956,
0.0696515217423439,
0.12266137450933456,
0.059203725308179855,
0.015477290377020836,
-0.0007553264731541276,
-0.00036606789217330515,
0.07583136856555939,
0.2552264630794525,
-0.0020075372885912657,
0.14774726331233978,
-0.05434580519795418,
-0.1357378363609314,
0.08277737349271774,
0.01842481829226017,
0.11255297809839249,
0.09960044920444489,
0.014388641342520714,
0.00644803699105978,
0.061373550444841385,
0.16953399777412415,
0.12216762453317642,
0.03140265494585037,
-0.015582526102662086,
-0.02194071002304554,
0.0020790479611605406,
-0.07317613065242767,
0.01304252166301012,
0.07926664501428604,
-0.15208743512630463,
-0.08082117140293121,
-0.15637393295764923,
0.09561088681221008,
0.07428078353404999,
0.049813296645879745,
-0.2040114849805832,
0.009754637256264687,
0.09391142427921295,
-0.030124526470899582,
-0.09943006932735443,
0.07721024006605148,
-0.04655788093805313,
-0.14170965552330017,
0.10022298991680145,
-0.03493443876504898,
0.13963255286216736,
-0.08681212365627289,
0.0932496190071106,
-0.03828613832592964,
-0.11996456235647202,
0.032416898757219315,
0.11279566586017609,
-0.2732636332511902,
0.2332872599363327,
0.010946370661258698,
-0.07370878010988235,
-0.07934506237506866,
-0.026762953028082848,
0.041629474610090256,
0.2184235155582428,
0.059754300862550735,
0.002968377433717251,
-0.06075876206159592,
-0.18870088458061218,
-0.006565387360751629,
0.009197798557579517,
0.1304895579814911,
-0.03775089234113693,
-0.01569267176091671,
-0.0419037826359272,
-0.03293319419026375,
-0.029366329312324524,
-0.038726381957530975,
0.035019759088754654,
-0.17148956656455994,
0.05544491484761238,
0.0377817265689373,
0.07244952023029327,
0.019013661891222,
-0.04418788477778435,
-0.12382309138774872,
0.197775200009346,
-0.07774023711681366,
-0.07762428373098373,
-0.11156740039587021,
-0.0784677043557167,
0.02202191948890686,
-0.08583451807498932,
0.06005251407623291,
-0.08652466535568237,
0.016779478639364243,
-0.06327100098133087,
-0.20542916655540466,
0.13557077944278717,
-0.09933868050575256,
-0.02806651033461094,
-0.06584896147251129,
0.15001823008060455,
-0.0767940878868103,
0.01665390096604824,
0.032243192195892334,
0.01813752017915249,
-0.08950473368167877,
-0.07632966339588165,
-0.0018591269617900252,
0.016023563221096992,
0.051190294325351715,
0.06099539250135422,
-0.10083866119384766,
-0.06429562717676163,
-0.03685735538601875,
0.014633421786129475,
0.2983008325099945,
0.15201643109321594,
-0.064842589199543,
0.15137214958667755,
0.1384977251291275,
-0.07145120203495026,
-0.3431456387042999,
-0.08484037965536118,
-0.10642081499099731,
-0.04306303709745407,
-0.046289920806884766,
-0.16240264475345612,
0.1177973523736,
-0.01295482087880373,
-0.017609771341085434,
0.08445491641759872,
-0.15145616233348846,
-0.08574660867452621,
0.20116515457630157,
-0.026354258880019188,
0.39032095670700073,
-0.10577060282230377,
-0.09967513382434845,
-0.058081019669771194,
-0.121647909283638,
0.1404253989458084,
0.01047214213758707,
0.08493805676698685,
-0.009310578927397728,
0.06269232928752899,
0.044362664222717285,
-0.039699576795101166,
0.0946895033121109,
0.011379079893231392,
0.01612018421292305,
-0.1131248027086258,
-0.11301706731319427,
0.007961280643939972,
-0.020395388826727867,
-0.015760453417897224,
-0.00797135941684246,
0.010495016351342201,
-0.1657717525959015,
-0.04052681475877762,
-0.07803480327129364,
0.05654771998524666,
0.04092846438288689,
-0.03739452734589577,
0.006628011353313923,
-0.021788200363516808,
-0.004880301654338837,
0.005630741827189922,
0.2613779604434967,
-0.0545232780277729,
0.17406699061393738,
0.09997852146625519,
0.13454613089561462,
-0.1609681397676468,
0.02098797634243965,
-0.07239851355552673,
-0.06214495375752449,
0.07092934846878052,
-0.07368351519107819,
0.07252470403909683,
0.13665559887886047,
-0.06541655212640762,
0.06771941483020782,
0.11662118136882782,
0.059408992528915405,
-0.036289941519498825,
0.15761438012123108,
-0.22834214568138123,
0.03067406453192234,
-0.05344350263476372,
-0.016603386029601097,
0.06837030500173569,
0.06279473006725311,
0.13393236696720123,
0.05459635332226753,
-0.043871067464351654,
0.002848769072443247,
-0.009000388905405998,
-0.0024182628840208054,
0.06304551661014557,
0.05966060236096382,
0.04511803761124611,
-0.1356714963912964,
0.04809432104229927,
0.04747392609715462,
-0.180133655667305,
-0.015834158286452293,
0.13596458733081818,
-0.16409757733345032,
-0.1254369467496872,
-0.014882639050483704,
0.14192621409893036,
-0.10471435636281967,
-0.05383450537919998,
-0.06129157543182373,
-0.13381800055503845,
0.07413940876722336,
0.2071639746427536,
0.1222052350640297,
0.0868266150355339,
-0.05386051535606384,
-0.04268129542469978,
0.013526189140975475,
-0.0048812017776072025,
0.000410786597058177,
0.025256112217903137,
-0.10814032703638077,
0.030668657273054123,
-0.016766557469964027,
0.1549694985151291,
-0.0959596261382103,
-0.07802556455135345,
-0.1802983283996582,
0.04513133689761162,
-0.09466184675693512,
-0.0370473749935627,
-0.0709371566772461,
-0.02417352795600891,
0.006666520144790411,
-0.05355566740036011,
-0.037236955016851425,
-0.06802111119031906,
-0.12928707897663116,
0.041479259729385376,
-0.020978856831789017,
0.04500049725174904,
-0.06915231049060822,
-0.044879116117954254,
0.10159214586019516,
-0.03420831635594368,
0.09736357629299164,
0.10930681228637695,
-0.09245149046182632,
0.10182034969329834,
-0.1422983705997467,
-0.12590330839157104,
0.12893438339233398,
0.02711927518248558,
0.07729022204875946,
0.07507030665874481,
0.03763207420706749,
0.06823369115591049,
0.010589729994535446,
0.06981854140758514,
0.07503756135702133,
-0.12291653454303741,
0.05968776345252991,
-0.029884058982133865,
-0.1753014773130417,
-0.0433085560798645,
-0.04439191892743111,
0.0955316424369812,
0.0027241117786616087,
0.1497408151626587,
-0.05511422082781792,
0.10076558589935303,
-0.034150879830121994,
0.007692268583923578,
-0.018073493614792824,
-0.21772713959217072,
-0.0606854185461998,
-0.0871635228395462,
0.02593981847167015,
0.0011935612419620156,
0.25321871042251587,
0.060501862317323685,
0.047848355025053024,
0.05219770595431328,
0.0803675726056099,
-0.005114862695336342,
0.024529730901122093,
0.17962703108787537,
0.10480687767267227,
-0.056110929697752,
-0.06051088124513626,
0.06334816664457321,
0.020930401980876923,
0.0037487365771085024,
0.1370624452829361,
0.07126225531101227,
-0.025097444653511047,
0.07946188747882843,
-0.022343091666698456,
0.04902622103691101,
-0.13099198043346405,
-0.18797338008880615,
-0.0362858846783638,
0.0822635069489479,
0.008193853311240673,
0.06443964689970016,
0.08426562696695328,
-0.029682213440537453,
0.05306922271847725,
-0.05066857486963272,
-0.05351173132658005,
-0.18930195271968842,
-0.08380404114723206,
-0.09822331368923187,
-0.10457178205251694,
0.005494547076523304,
-0.07776138931512833,
-0.007010516710579395,
0.0889914408326149,
0.04661707207560539,
-0.04920143634080887,
0.07530294358730316,
0.005946568213403225,
-0.05706603452563286,
0.08126048743724823,
-0.03929980844259262,
0.035573069006204605,
-0.004914599005132914,
-0.03371923416852951,
-0.14008314907550812,
-0.01516553945839405,
-0.04801462963223457,
0.04064973443746567,
-0.06195714324712753,
0.005159671418368816,
-0.14515186846256256,
-0.12241504341363907,
-0.02803012728691101,
0.052396051585674286,
-0.057535864412784576,
0.1368633210659027,
0.0011574793606996536,
0.005521169863641262,
0.04932842403650284,
0.20023545622825623,
-0.06511733680963516,
-0.05715160444378853,
-0.03652770072221756,
0.25829756259918213,
0.07457830011844635,
0.1169453114271164,
-0.00899919681251049,
-0.005612371955066919,
-0.09091201424598694,
0.33026692271232605,
0.2956998944282532,
-0.053279418498277664,
0.04956240579485893,
0.021509597077965736,
0.03881188482046127,
0.15772217512130737,
0.14865562319755554,
0.08992809802293777,
0.23702938854694366,
-0.06422201544046402,
-0.03442860767245293,
-0.01987340860068798,
-0.020380141213536263,
-0.12080796808004379,
0.0805739313364029,
0.0668584331870079,
-0.04897911474108696,
-0.07300020754337311,
0.10295598208904266,
-0.20242395997047424,
0.1379757672548294,
-0.0004371747490949929,
-0.21978750824928284,
-0.07235769927501678,
-0.033254899084568024,
0.14364826679229736,
-0.008563272655010223,
0.08543892204761505,
-0.0008842989918775856,
-0.11287369579076767,
0.02438463270664215,
0.019631659612059593,
-0.2149261236190796,
-0.020671725273132324,
0.06799837201833725,
-0.04828084260225296,
-0.0022455095313489437,
-0.019154418259859085,
0.03060556948184967,
0.07118745148181915,
0.06662483513355255,
-0.008223235607147217,
0.04078114032745361,
0.002477803034707904,
-0.04111843183636665,
0.005046389531344175,
0.015769492834806442,
0.0016257762908935547,
-0.09229632467031479,
0.06661305576562881,
-0.16755518317222595,
0.05424373224377632,
-0.08128474652767181,
-0.06260967999696732,
-0.009263207204639912,
0.034962452948093414,
-0.054396457970142365,
0.04791352152824402,
0.10115863382816315,
0.0075232600793242455,
-0.032317593693733215,
-0.050817299634218216,
-0.03972724452614784,
-0.0014734352007508278,
-0.1398703157901764,
-0.14837034046649933,
-0.09151425212621689,
-0.09747706353664398,
0.11042709648609161,
0.001969041768461466,
-0.15724746882915497,
-0.0015884727472439408,
-0.0997534990310669,
0.06987065821886063,
-0.16953794658184052,
0.09285256266593933,
0.0341578908264637,
0.015343928709626198,
-0.015839118510484695,
-0.06526738405227661,
0.05342889577150345,
0.07730220258235931,
-0.12141184508800507,
-0.08985189348459244
] |
null | null | transformers |
This is Chandler.
Chandler is your friend too. | {"tags": ["conversational"]} | text-generation | Leonel/DialoGPT-small-chandler | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
This is Chandler.
Chandler is your friend too. | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Michael DialoGPT Model | {"tags": ["conversational"]} | text-generation | Leostronkest/DialoGPT-small-michael | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Michael DialoGPT Model | [
"# Michael DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Michael DialoGPT Model"
] | [
51,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Michael DialoGPT Model"
] | [
-0.03939000144600868,
0.09936091303825378,
-0.005677757319062948,
0.017598656937479973,
0.13143807649612427,
0.0017587903421372175,
0.17250199615955353,
0.11649895459413528,
-0.006742970552295446,
-0.04316012188792229,
0.127635195851326,
0.16300971806049347,
-0.01939617097377777,
0.11127127707004547,
-0.06505872309207916,
-0.3087896406650543,
0.048797935247421265,
0.044956520199775696,
0.007997221313416958,
0.11756012588739395,
0.1005830317735672,
-0.045338235795497894,
0.07657212018966675,
0.006713459733873606,
-0.14874108135700226,
0.010197543539106846,
0.024214070290327072,
-0.11001848429441452,
0.1032794937491417,
0.05529014766216278,
0.013400962576270103,
0.040565118193626404,
-0.05264459550380707,
-0.12453117221593857,
0.034136369824409485,
-0.015625135973095894,
-0.03650890663266182,
0.03499090299010277,
0.023113276809453964,
-0.10033904016017914,
0.14066734910011292,
0.11764302104711533,
0.003122518537566066,
0.039789482951164246,
-0.16993694007396698,
0.013987204991281033,
0.0052820416167378426,
0.06003580614924431,
0.08464749902486801,
0.12311415374279022,
-0.04314601793885231,
0.11468655616044998,
-0.06411133706569672,
0.11343789845705032,
0.05986457318067551,
-0.3048990070819855,
-0.020116202533245087,
0.11895295232534409,
0.01945597492158413,
0.07367841899394989,
-0.03051583655178547,
0.08321057260036469,
0.013196971267461777,
-0.0013667279854416847,
-0.010412915609776974,
-0.07592862099409103,
-0.08376237004995346,
0.017262110486626625,
-0.09912243485450745,
-0.01361020840704441,
0.26423409581184387,
-0.02920036017894745,
0.0774378553032875,
-0.08647231012582779,
-0.0899270549416542,
-0.0315253846347332,
-0.03030301257967949,
-0.035961903631687164,
-0.08469973504543304,
0.07043366134166718,
-0.020549077540636063,
-0.09447883814573288,
-0.11600130796432495,
-0.012706123292446136,
-0.17589955031871796,
0.1489230990409851,
0.02032877318561077,
0.03529781475663185,
-0.21187883615493774,
0.09993312507867813,
0.000007206394002423622,
-0.10071398317813873,
0.03356761112809181,
-0.08400234580039978,
0.02348973974585533,
0.006326192989945412,
-0.033701878041028976,
-0.0441712848842144,
0.05291224643588066,
0.07835959643125534,
0.03884778544306755,
0.013688603416085243,
0.00023226704797707498,
0.04119091108441353,
0.05446887016296387,
0.09087585657835007,
-0.00850379467010498,
-0.0973934456706047,
0.025616638362407684,
-0.08196593821048737,
0.0020734667778015137,
-0.058083049952983856,
-0.18679797649383545,
-0.013447490520775318,
0.05891251564025879,
0.044931817799806595,
0.03594224900007248,
0.13307763636112213,
-0.0034173226449638605,
-0.05084287375211716,
0.033731382340192795,
-0.023523395881056786,
-0.03283826634287834,
0.006832180544734001,
-0.00814814679324627,
0.12313995510339737,
0.019463244825601578,
0.037663355469703674,
-0.12362559884786606,
0.030837727710604668,
-0.0635233223438263,
-0.014239606447517872,
-0.016951167955994606,
-0.04358842223882675,
-0.011026049964129925,
-0.011120396666228771,
0.012212058529257774,
-0.14368876814842224,
-0.14499787986278534,
-0.00825593899935484,
-0.014758652076125145,
-0.03245539218187332,
-0.11382195353507996,
-0.10562480241060257,
-0.012219974771142006,
0.022230016067624092,
-0.06434010714292526,
-0.04403982684016228,
-0.06507039070129395,
0.0844557136297226,
-0.015540252439677715,
0.0886443555355072,
-0.10416626185178757,
0.08283136039972305,
-0.08087357878684998,
-0.039825450628995895,
-0.10479307174682617,
0.1319834589958191,
0.003879542462527752,
0.06590031087398529,
-0.020899798721075058,
-0.019577594473958015,
-0.08182325959205627,
0.060700882226228714,
-0.05203840136528015,
0.2534775137901306,
-0.05660134181380272,
-0.12086569517850876,
0.2634108066558838,
-0.04823458567261696,
-0.12026037275791168,
0.12163951247930527,
-0.010773181915283203,
0.09872136265039444,
0.14279045164585114,
0.2083006203174591,
0.01790137216448784,
-0.012257291004061699,
0.09168598800897598,
0.10671762377023697,
-0.06683915853500366,
-0.01542159728705883,
0.015888690948486328,
-0.01397978700697422,
-0.06785304099321365,
0.044029537588357925,
0.06264679878950119,
0.06708215177059174,
-0.051637571305036545,
-0.024722300469875336,
0.015700791031122208,
-0.004526864271610975,
0.07771643251180649,
-0.03357565030455589,
0.13459938764572144,
-0.024069689214229584,
-0.04523804411292076,
0.02301507629454136,
0.017121968790888786,
-0.044882748275995255,
0.027691133320331573,
-0.07900325953960419,
0.06511443853378296,
-0.02984544076025486,
0.048016469925642014,
-0.14523382484912872,
-0.07814322412014008,
-0.046104807406663895,
0.14948494732379913,
0.06520222127437592,
0.11633390933275223,
0.05234382301568985,
-0.04813680425286293,
-0.021817617118358612,
0.03267877921462059,
0.17741212248802185,
-0.0031801124569028616,
-0.0791124701499939,
-0.09780430793762207,
0.10387039184570312,
-0.05079352483153343,
0.14053760468959808,
-0.06365951895713806,
0.013411556370556355,
0.00528734689578414,
0.10385295748710632,
-0.015186566859483719,
0.020855313166975975,
0.02534346655011177,
-0.019724499434232712,
-0.034125588834285736,
-0.002098295371979475,
0.09758199751377106,
0.008781367912888527,
-0.09149694442749023,
0.21300764381885529,
-0.19281312823295593,
0.16622254252433777,
0.19332265853881836,
-0.23891642689704895,
-0.0019899082835763693,
-0.12553448975086212,
-0.026101004332304,
-0.0008117844699881971,
0.06151692941784859,
-0.03392708674073219,
0.22153030335903168,
-0.02475624531507492,
0.173585906624794,
-0.027532678097486496,
-0.045980602502822876,
-0.03588997945189476,
-0.041034020483493805,
0.0005235938588157296,
0.097398541867733,
0.09350001066923141,
-0.17898789048194885,
0.17007671296596527,
0.10391323268413544,
0.053171221166849136,
0.18328559398651123,
0.03516718000173569,
0.0016262560384348035,
0.05942339822649956,
-0.0011971044586971402,
-0.05829950049519539,
-0.056436195969581604,
-0.30276229977607727,
-0.03119889460504055,
0.06426482647657394,
0.03963766619563103,
0.12134167551994324,
-0.08851610869169235,
-0.029035594314336777,
0.0049608927220106125,
-0.010672594420611858,
0.005004840902984142,
0.11134602129459381,
0.023178670555353165,
0.12304535508155823,
-0.014756285585463047,
-0.05070682615041733,
0.0628804937005043,
0.01451678853482008,
-0.09183169156312943,
0.18535441160202026,
-0.13036993145942688,
-0.31897562742233276,
-0.09985069930553436,
-0.20056718587875366,
-0.08109397441148758,
0.04334805905818939,
0.0870104432106018,
-0.10387739539146423,
-0.012865763157606125,
-0.00825527310371399,
0.10229437053203583,
-0.10503000020980835,
-0.006046682596206665,
-0.03782336041331291,
-0.006582295522093773,
-0.12306991964578629,
-0.09482645243406296,
-0.056315116584300995,
-0.03769025579094887,
-0.049106910824775696,
0.11625637859106064,
-0.15221811830997467,
0.01484198123216629,
0.24046121537685394,
0.05757472291588783,
0.06648284941911697,
-0.03628833219408989,
0.24051488935947418,
-0.11050956696271896,
-0.0073564969934523106,
0.17769795656204224,
-0.04437507688999176,
0.04680410400032997,
0.1241360455751419,
-0.014312594197690487,
-0.07184242457151413,
0.024828527122735977,
-0.024940067902207375,
-0.054562103003263474,
-0.20257622003555298,
-0.14063654839992523,
-0.11695202440023422,
0.07608935236930847,
0.021268097683787346,
0.04173678532242775,
0.15998759865760803,
0.06020312383770943,
-0.02983609400689602,
-0.012989978305995464,
0.05709948018193245,
0.08145109564065933,
0.30033737421035767,
-0.08206872642040253,
0.13218528032302856,
-0.014281247742474079,
-0.16797775030136108,
0.07571759819984436,
0.045457031577825546,
0.07059868425130844,
0.058993130922317505,
0.06355852633714676,
0.0020967447198927402,
0.027345355600118637,
0.11270688474178314,
0.05762750282883644,
0.036121927201747894,
-0.03228326141834259,
-0.043525129556655884,
-0.054906122386455536,
-0.027089199051260948,
0.04450162500143051,
0.07229604572057724,
-0.15921704471111298,
-0.029922300949692726,
-0.0256807841360569,
0.05801156535744667,
0.05545241758227348,
0.10264428704977036,
-0.19553837180137634,
-0.025177879258990288,
0.06564610451459885,
-0.035814519971609116,
-0.1148717999458313,
0.07839582115411758,
0.017096055671572685,
-0.12304167449474335,
0.051077816635370255,
-0.002210403559729457,
0.11325982213020325,
-0.09623630344867706,
0.07734386622905731,
-0.10912590473890305,
-0.08579275012016296,
0.006603721529245377,
0.09936495870351791,
-0.2511194050312042,
0.22413724660873413,
-0.003455116879194975,
-0.05478156358003616,
-0.09728503227233887,
-0.016795657575130463,
0.015426433645188808,
0.1352822333574295,
0.1101725697517395,
-0.00465916795656085,
0.04525301605463028,
0.013405745849013329,
-0.08250211179256439,
0.023236624896526337,
0.09987249225378036,
-0.04590543359518051,
-0.01381195429712534,
-0.03529682382941246,
-0.008088107220828533,
-0.005720947869122028,
-0.07742661982774734,
0.009582902304828167,
-0.19403955340385437,
0.09726780652999878,
0.06041645631194115,
0.08129992336034775,
0.043101124465465546,
-0.03389094024896622,
-0.05861914902925491,
0.26016879081726074,
0.007907964289188385,
-0.0959833487868309,
-0.09878432005643845,
-0.020098043605685234,
0.042532872408628464,
-0.06461307406425476,
0.008877312764525414,
-0.05275969207286835,
0.02524867095053196,
-0.05720732733607292,
-0.1839199662208557,
0.12365394830703735,
-0.08626024425029755,
-0.01783239282667637,
-0.03312443196773529,
0.21258831024169922,
-0.021359620615839958,
0.014795753173530102,
0.038347575813531876,
-0.004039387684315443,
-0.10357947647571564,
-0.0929117500782013,
0.005569541826844215,
0.026128461584448814,
-0.007910025306046009,
0.029765544459223747,
-0.025298485532402992,
-0.056094203144311905,
-0.05887283757328987,
-0.0087471604347229,
0.3123321533203125,
0.14804883301258087,
-0.03463435545563698,
0.145284965634346,
0.13408343493938446,
-0.06490323692560196,
-0.26853469014167786,
-0.07309934496879578,
-0.09130288660526276,
-0.04474364593625069,
-0.0648379847407341,
-0.1579088568687439,
0.09984051436185837,
-0.04628771170973778,
-0.012761648744344711,
0.10244084894657135,
-0.2812485098838806,
-0.10428018122911453,
0.18280327320098877,
-0.026653463020920753,
0.43361908197402954,
-0.0953822135925293,
-0.07418876886367798,
-0.048851415514945984,
-0.1931166797876358,
0.12488702684640884,
0.018502000719308853,
0.11405506730079651,
0.005710173863917589,
0.18297342956066132,
0.04906707629561424,
0.0009945409838110209,
0.07620228826999664,
0.01877027563750744,
-0.06063414365053177,
-0.09256552904844284,
-0.10287032276391983,
0.002656227443367243,
0.019249355420470238,
0.018644817173480988,
-0.02653404511511326,
0.032442156225442886,
-0.13327249884605408,
-0.0681605413556099,
-0.08723188936710358,
0.04023899510502815,
0.023508453741669655,
-0.07252217084169388,
0.013796748593449593,
-0.03420837223529816,
0.001568859675899148,
-0.005330739542841911,
0.11955346167087555,
-0.1218673437833786,
0.12969540059566498,
0.06206398829817772,
0.14095009863376617,
-0.12344618141651154,
-0.04357393458485603,
-0.05433504283428192,
-0.061660829931497574,
0.06447546929121017,
-0.08348327875137329,
0.02279394119977951,
0.10717565566301346,
-0.025574877858161926,
0.07814930379390717,
0.09253020584583282,
0.006841964088380337,
0.005894442554563284,
0.09418897330760956,
-0.26042622327804565,
-0.0718250572681427,
-0.08467237651348114,
-0.0076712570153176785,
0.08507169038057327,
0.09813820570707321,
0.21080531179904938,
-0.01542550977319479,
-0.024750158190727234,
0.01144880149513483,
0.010167471133172512,
-0.036028433591127396,
0.06883184611797333,
-0.019396144896745682,
0.010728600434958935,
-0.1440783143043518,
0.05647880211472511,
0.004483409691601992,
-0.11957748979330063,
0.01089209970086813,
0.14124944806098938,
-0.10921953618526459,
-0.11621790379285812,
-0.08574050664901733,
0.11019273102283478,
-0.11115536838769913,
0.011931907385587692,
-0.0372258797287941,
-0.13229794800281525,
0.0520431287586689,
0.11930868774652481,
0.053163666278123856,
0.056599561125040054,
-0.1028817743062973,
-0.017132408916950226,
-0.023351406678557396,
0.000301259191473946,
0.05061672627925873,
-0.020591244101524353,
-0.05053252726793289,
0.0900612622499466,
-0.04160243645310402,
0.11856546998023987,
-0.09138824045658112,
-0.10874529927968979,
-0.1460409313440323,
0.029542196542024612,
-0.08323434740304947,
-0.1075119823217392,
-0.09608305245637894,
-0.042436882853507996,
-0.013807312585413456,
-0.03368694707751274,
-0.04840897023677826,
-0.046831581741571426,
-0.11599060893058777,
0.037209659814834595,
-0.03713835030794144,
0.013095139525830746,
-0.06331861764192581,
0.03312873840332031,
0.050341591238975525,
-0.03123735822737217,
0.16610178351402283,
0.15515369176864624,
-0.11173855513334274,
0.08067122101783752,
-0.11464374512434006,
-0.08406728506088257,
0.10363107174634933,
0.0178816057741642,
0.06035919487476349,
0.04926057159900665,
0.006903373170644045,
0.057477597147226334,
0.06935988366603851,
0.05526011437177658,
0.04405948147177696,
-0.08424012362957001,
0.029922887682914734,
-0.04614540934562683,
-0.11788865178823471,
-0.046230051666498184,
-0.029928503558039665,
0.038695089519023895,
0.03280457854270935,
0.09420302510261536,
-0.05676328018307686,
0.07947836071252823,
-0.06326775997877121,
0.0387340784072876,
0.024932794272899628,
-0.17613844573497772,
-0.01472008042037487,
-0.07954069972038269,
0.06259488314390182,
0.0072180707938969135,
0.22961358726024628,
0.014312474988400936,
-0.03323864936828613,
0.04206100478768349,
0.06081610172986984,
0.0581749752163887,
-0.008307693526148796,
0.1790158599615097,
0.11517998576164246,
-0.047538235783576965,
-0.07670719176530838,
0.08191341161727905,
0.026424303650856018,
0.06947927922010422,
0.146599680185318,
-0.0020047121215611696,
-0.037008605897426605,
0.09185897558927536,
-0.004676868673413992,
0.03630085289478302,
-0.12365598231554031,
-0.17112524807453156,
-0.028577663004398346,
0.08495324850082397,
-0.05678500607609749,
0.10610327869653702,
0.14064423739910126,
-0.018431900069117546,
0.024867495521903038,
-0.016665451228618622,
-0.06751850247383118,
-0.18648692965507507,
-0.17372868955135345,
-0.07352548837661743,
-0.13210541009902954,
0.0000053954222494212445,
-0.13515174388885498,
0.04209126532077789,
0.01601117104291916,
0.10259287059307098,
-0.07605472207069397,
0.08468461781740189,
0.020633764564990997,
-0.11351105570793152,
0.09407635778188705,
-0.030476607382297516,
0.08943215012550354,
-0.05473979562520981,
0.010312805883586407,
-0.07862779498100281,
0.05432012304663658,
0.008005077950656414,
0.031258080154657364,
-0.05621477961540222,
0.007611981127411127,
-0.12645341455936432,
-0.08218171447515488,
-0.06967132538557053,
0.06850592792034149,
-0.0009481728775426745,
0.16478335857391357,
0.005744027439504862,
-0.03393072262406349,
0.02151934616267681,
0.24506689608097076,
-0.08107024431228638,
-0.1103486567735672,
-0.07084188610315323,
0.20438627898693085,
-0.005759181454777718,
0.09943758696317673,
-0.03604508563876152,
0.009205357171595097,
-0.08808325231075287,
0.3518165946006775,
0.3184647858142853,
-0.10896119475364685,
0.009804260917007923,
0.008011017926037312,
0.04503285512328148,
0.11531058698892593,
0.09997225552797318,
0.08274372667074203,
0.3110145926475525,
-0.057352472096681595,
-0.017281321808695793,
-0.01672429032623768,
-0.029127860441803932,
-0.053763795644044876,
0.06237722188234329,
0.08344881236553192,
-0.06639360636472702,
-0.032284945249557495,
0.11822441220283508,
-0.2471485733985901,
0.09902971982955933,
-0.18284665048122406,
-0.1865670531988144,
-0.09939432144165039,
-0.001182001898996532,
0.08283642679452896,
0.02660754881799221,
0.0904005840420723,
-0.0008841541712172329,
-0.06612206250429153,
0.06914392113685608,
0.019540827721357346,
-0.20465263724327087,
-0.015904875472187996,
0.08672123402357101,
-0.03998008742928505,
-0.042985137552022934,
-0.0161016546189785,
0.06537085026502609,
0.06504110246896744,
0.04672379046678543,
-0.010409120470285416,
0.044483814388513565,
-0.005457607563585043,
-0.08124997466802597,
0.02422797866165638,
0.037877582013607025,
0.004855592269450426,
-0.07848426699638367,
0.08201700448989868,
-0.12255168706178665,
0.05590234696865082,
-0.025679921731352806,
-0.054053112864494324,
-0.02508552372455597,
0.019368896260857582,
-0.05840635299682617,
0.07965665310621262,
0.11691774427890778,
-0.016706479713320732,
-0.016994228586554527,
-0.023691879585385323,
-0.021331267431378365,
-0.012271406129002571,
-0.07277131825685501,
-0.0974363386631012,
-0.16394628584384918,
-0.12080942839384079,
0.05496848747134209,
-0.00007929340790724382,
-0.18578307330608368,
0.011860228143632412,
-0.12412714958190918,
0.05605940520763397,
-0.11348982155323029,
0.11971799284219742,
0.07681654393672943,
0.018241796642541885,
0.0007381247123703361,
-0.015553999692201614,
0.04571715369820595,
0.0876338854432106,
-0.1395075023174286,
-0.09047716856002808
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.